WO2016136149A1 - Plasma jet plug - Google Patents

Plasma jet plug Download PDF

Info

Publication number
WO2016136149A1
WO2016136149A1 PCT/JP2016/000563 JP2016000563W WO2016136149A1 WO 2016136149 A1 WO2016136149 A1 WO 2016136149A1 JP 2016000563 W JP2016000563 W JP 2016000563W WO 2016136149 A1 WO2016136149 A1 WO 2016136149A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma jet
jet plug
insulator
cavity
center electrode
Prior art date
Application number
PCT/JP2016/000563
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 亀田
直志 向山
大輔 笠原
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015036010A external-priority patent/JP6067043B2/en
Priority claimed from JP2015105326A external-priority patent/JP6153965B2/en
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to EP16754905.4A priority Critical patent/EP3264545A4/en
Priority to US15/552,205 priority patent/US20180038337A1/en
Publication of WO2016136149A1 publication Critical patent/WO2016136149A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/54Sparking plugs having electrodes arranged in a partly-enclosed ignition chamber

Definitions

  • the present invention relates to a plasma jet plug that ignites a fuel mixture by injecting plasma.
  • the plasma jet plug is a spark plug having a space for generating plasma called a cavity (Patent Document 1).
  • An orifice electrode also referred to as a “ground electrode” having an opening is provided at the exit of the cavity, and a center electrode is provided inside the cavity via the orifice electrode and a gap.
  • the wall surface in the cavity is made of an insulator except for the orifice electrode and the center electrode.
  • a large current is supplied to this cavity, and the fuel mixture is ignited by filling the cavity space and ejecting it with a large amount of plasma.
  • a large current When applying a large current to the cavity, first, a high voltage is applied between the orifice electrode and the center electrode to cause a dielectric breakdown to form a discharge path in the cavity, and then a large voltage is applied at a low voltage. Superimpose current.
  • an air path that is a path in a space away from the wall surface of the cavity and a creeping path along the wall surface of the cavity (particularly the surface of the insulator) can be formed.
  • a creeping route is more easily formed than an air route.
  • channeling occurs in which the surface of the insulator in contact with the creeping path melts in a groove shape due to the current at the time of dielectric breakdown.
  • channeling occurs, the cavity shape changes greatly, and the plasma ejection performance deteriorates.
  • a problem that a deeper groove is formed by concentration of discharge in the groove formed by channeling.
  • a technique is desired that can prevent the occurrence of creeping discharge and can stably perform air discharge and suppress the occurrence of channeling.
  • the inventor of the present application also shows that when the length of the exposed portion of the central electrode in the cavity is large, the area where the central electrode comes into contact with the plasma becomes large, and the consumption of the central electrode due to the heat of the plasma becomes excessively large. I found out that there is a problem that.
  • the inventors of the present application have further found that when the inner surface of the orifice electrode is exposed in the cavity, there is a problem that the inner surface of the orifice electrode is excessively consumed by the heat of the plasma.
  • the present invention has been made to solve the above-described problems, and can be realized as the following modes.
  • a plasma jet plug includes a cylindrical insulator having an axial hole extending along an axial direction, a center electrode disposed inside the axial hole, a metal shell disposed on an outer periphery of the insulator, An orifice electrode electrically connected to the metal shell and disposed on the distal end side of the insulator, and a plasma generating cavity is formed by the surface of the center electrode, the inner surface of the insulator, and the inner surface of the orifice electrode. Is formed.
  • the shortest path length D1 of the creeping path from the surface of the center electrode to the inner surface of the orifice electrode through the inner surface of the insulator in the cavity is such that the center electrode and the It is characterized by being 5 times or more the air gap G which is the shortest distance between the orifice electrodes.
  • the shortest path length D1 of the creeping path is sufficiently larger than the air gap G, creeping discharge hardly occurs and air discharge can be stably performed. Ring generation can be suppressed.
  • the inner surface of the insulator may have one or more grooves that form a concave path in the creeping path, and the groove width may be 0.1 mm or more. .
  • the groove width may be 0.1 mm or more.
  • the said plasma jet plug WHEREIN The depth of the said groove part is good also as what is 3 times or less of the said groove width. According to this configuration, by setting the depth of the groove portion to three times or less of the groove width, it is possible to increase the shortest path length D1 of the creeping path and to suppress the volume of the cavity and facilitate the ejection of plasma. Is possible.
  • a surface area of a side surface of the center electrode facing the cavity may be 20 mm 2 or less. According to this configuration, by setting the surface area of the side surface of the center electrode facing the cavity to 20 mm 2 or less, the phenomenon that the plasma is cooled by the center electrode can be suppressed, and the plasma can be easily ejected.
  • the insulator facing the cavity may be composed of a plurality of members. According to this configuration, if the insulator facing the cavity is composed of a plurality of members, it is easy to form the inner surface shape of the insulator facing the cavity so as to increase the path length D1 of the creeping path.
  • the plurality of members of the insulator include a first member provided on an outer peripheral side of the center electrode and a second member provided on an outer peripheral side of the first member.
  • the first member is made of a first insulating material having a higher thermal conductivity than the second member, and the second member has a second insulation having a higher withstand voltage than the first member. It may be formed of a material. According to this configuration, since the thermal conductivity of the first member is higher than the thermal conductivity of the second member, the heat extraction from the center electrode by the first member can be increased, and the durability of the center electrode is improved. Can be made. Moreover, since the withstand voltage of the second member is higher than that of the first member, the withstand voltage of the entire insulator can be improved.
  • the side surface of the center electrode in the cavity is covered with an insulating material, and the distance from the tip of the insulating material provided on the side surface of the center electrode to the tip of the center electrode L may be 0.4 mm or less. According to this configuration, since the length L of the tip portion of the center electrode exposed from the insulating material is as short as 0.4 mm or less, the consumption of the center electrode due to the heat of plasma can be suppressed.
  • a distance H between the side surface of the center electrode and the inner wall surface of the cavity when measured along a direction perpendicular to the axial direction is larger than the air gap G. It may be a thing. According to this configuration, creeping discharge hardly occurs along the path from the side surface of the center electrode to the inner wall surface of the cavity along the direction perpendicular to the axial direction, so that stable air discharge can be performed. it can.
  • an inner surface of the orifice electrode around the through hole of the orifice electrode is covered with an insulating material except an exposed surface adjacent to the through hole, and is perpendicular to the axial direction.
  • a distance J between the outermost peripheral position of the exposed surface and the side surface of the center electrode when measured along the direction may be smaller than the distance H.
  • a distance K between the outermost peripheral position of the exposed surface and the tip of the center electrode may be larger than the air gap G. According to this configuration, creeping discharge hardly occurs along the path from the tip of the center electrode to the insulating material covering the inner surface around the through hole of the orifice electrode, so that stable air discharge can be performed. Can do.
  • a plasma jet plug includes a cylindrical insulator having an axial hole extending along an axial direction, a center electrode disposed inside the axial hole, a metal shell disposed on an outer periphery of the insulator, An orifice electrode electrically connected to the metal shell and disposed on the distal end side of the insulator, and a plasma generating cavity is formed by the surface of the center electrode, the inner surface of the insulator, and the inner surface of the orifice electrode. Is formed.
  • the plasma jet plug according to the second aspect includes an air gap G that is the shortest distance between the center electrode and the orifice electrode, and a shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator.
  • the relationship is characterized by satisfying 1.5 ⁇ G ⁇ Dr.
  • the characteristic part of the plasma jet plug of the second form can be adopted in combination with the plasma jet plug of the first form described above, and is independent of the presence or absence of the characteristic part of the plasma jet plug of the first form. It is also possible to adopt.
  • the plasma jet plug of the second embodiment since the shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator is sufficiently larger than the air gap G, creeping discharge hardly occurs. Since air discharge can be performed stably, the occurrence of channeling can be suppressed.
  • the inner surface of the insulator facing the cavity has a reduced diameter portion provided so that the inner surface of the insulator is reduced in diameter toward the rear end side of the insulator.
  • the cavity has a first cavity portion on the front end side of the rear end of the reduced diameter portion of the insulator and a second cavity portion on the rear end side of the rear end of the reduced diameter portion. Also good. According to this configuration, since the shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator can be increased by the second cavity portion having a small volume, the volume of the entire cavity can be suppressed while suppressing the occurrence of creeping discharge. It is possible to make the plasma easy to be ejected while keeping the value small.
  • a radial spatial distance Dp that is a distance measured in a radial direction perpendicular to the axial direction between the surface of the center electrode and the inner surface of the insulator in the second cavity portion. It is good also as what is 0.1 mm or more. According to this configuration, the occurrence of creeping discharge in the second cavity portion can be suppressed and air discharge can be stably performed, so that the occurrence of channeling can be suppressed.
  • a depth Dq of the second cavity portion measured along the axial direction may satisfy 0 ⁇ Dq ⁇ 3 ⁇ Dp. According to this configuration, by setting the depth Dq of the second cavity portion in this range, it is possible to increase the tendency that air discharge is more likely to occur than creeping discharge, and the volume of the second cavity portion. Can be prevented from becoming excessively large, and plasma can be easily ejected.
  • the present invention can be realized in various modes.
  • an ignition device using a plasma jet plug or a plasma jet plug an internal combustion engine equipped with the plasma jet plug, or the plasma jet plug is used.
  • This can be realized in the form of an internal combustion engine or the like equipped with the conventional ignition device.
  • the fragmentary sectional view of the plasma jet plug as one embodiment. Sectional drawing which expanded the front-end
  • Explanatory drawing which shows the test result regarding Dr / G Explanatory drawing which shows the test result regarding the radial direction spatial distance Dp of a 2nd cavity part. Explanatory drawing which shows the test result (the 1) regarding Dq / Dp. Explanatory drawing which shows the test result (the 2) regarding Dq / Dp. Explanatory drawing which shows the test result regarding Dp / Dr.
  • FIG. 1 is a partial cross-sectional view of a plasma jet plug 100 as an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the tip portion of the plasma jet plug 100.
  • the lower side along the direction of the axis O of the plasma jet plug 100 is referred to as the front end side of the plasma jet plug 100, and the upper side is referred to as the rear end side.
  • a direction that intersects the axis O and is perpendicular to the axis O is referred to as a “radial direction”.
  • the plasma jet plug 100 includes an insulator 10, a metal shell 50 that holds the insulator 10, a center electrode 20 that is held inside the insulator 10, and an orifice electrode 30 that is disposed at a distal end portion 57 of the metal shell 50. And a terminal fitting 40 disposed at the rear end of the insulator 10.
  • the insulator 10 is formed by firing a ceramic material such as alumina, and is a cylindrical insulating member having an axial hole 12 extending in the direction of the axis O.
  • a flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end side body portion 18 is formed on the rear end side.
  • a small leg length 13 is formed. Between the leg long part 13 and the front end side body part 17, it is formed in a step shape.
  • a portion of the shaft hole 12 corresponding to the inner periphery of the long leg portion 13 is formed as an electrode housing portion 15.
  • the electrode housing portion 15 is smaller in diameter than any inner peripheral portion of the front end side body portion 17, the flange portion 19, and the rear end side body portion 18.
  • a center electrode 20 is held inside the electrode housing portion 15.
  • An enlarged inner diameter portion 16 having a larger inner diameter than the leg length portion 13 is formed on the distal end side of the leg length portion 13 of the insulator 10.
  • the center electrode 20 is a rod-shaped conductive member extending along the axis O, and is disposed inside the shaft hole 12 of the insulator 10.
  • the center electrode 20 is an integrally molded product formed of a high melting point material such as tungsten.
  • various other configurations can be adopted as the configuration of the center electrode 20. For example, a configuration having a double structure of a base material and a core material embedded in the base material may be adopted.
  • the center electrode 20 has a head 21 on the most rear end side and a leg portion 22 that is located on the tip side of the head 21 and has an outer diameter smaller than that of the head 21.
  • the leg portion 22 of the center electrode 20 is housed in the electrode housing portion 15, and the head portion 21 of the center electrode 20 is housed in a portion on the rear end side from the reduced inner diameter portion 10 z of the shaft hole 12.
  • the surface on the front end side of the head 21 and the surface on the rear end side of the reduced inner diameter portion 10z are in close contact with each other, and are sealed over the entire circumference in the circumferential direction.
  • the center electrode 20 is electrically connected to the terminal fitting 40 on the rear end side through a conductive seal body 4 made of a mixture of metal and glass provided in the shaft hole 12. It is connected. With this seal body 4, the center electrode 20 and the terminal fitting 40 are fixed in the shaft hole 12 and are electrically connected to each other.
  • a high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown).
  • the main metal fitting 50 is a cylindrical metal fitting for fixing the plasma jet plug 100 to the engine head of the internal combustion engine, and holds the insulator 10 so as to surround it.
  • the metal shell 50 includes a tool engaging portion 51 into which a plug wrench is fitted and a screw portion 52 to be screwed into the engine head.
  • a caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51.
  • Annular ring members 6, 7 are interposed between the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the rear end side body portion 18 of the insulator 10, and two ring members Between 6 and 7, talc 9 (talc) powder is filled.
  • the insulator 10 is pressed toward the distal end side in the metal shell 50 through the ring members 6, 7 and the talc 9.
  • the stepped portion between the leg length portion 13 of the insulator 10 and the front end side body portion 17 is provided with an annular packing 80 on the locking portion 56 formed in a step shape on the inner peripheral surface of the metal shell 50.
  • the metal shell 50 and the insulator 10 are integrated with each other.
  • this packing 80 airtightness between the metal shell 50 and the insulator 10 is maintained, and combustion gas is prevented from flowing out.
  • a flange 54 is formed between the tool engaging portion 51 and the screw portion 52, and the gasket 5 is inserted into the vicinity of the rear end side of the screw portion 52, that is, the seat surface 55 of the flange 54. ing.
  • the orifice electrode 30 is provided at the front end portion 57 of the metal shell 50. As shown in FIG. 2, a concave portion 57A is formed on the inner peripheral side of the distal end portion 57 of the metal shell 50, and the orifice electrode 30 is fitted in the concave portion 57A.
  • the orifice electrode 30 is an annular plate member having a through hole 31 at the center. The through hole 31 functions as an ejection hole for ejecting plasma.
  • the peripheral edge of the orifice electrode 30 is joined to the metal shell 50 by laser welding or the like over the entire circumference.
  • the metal shell 50 and the orifice electrode 30 are electrically connected. Since the metal shell 50 is screwed to the engine head and grounded, the orifice electrode 30 is also grounded.
  • the orifice electrode 30 covers the opening in the distal direction of the metal shell 50.
  • the cavity CV for generating plasma is formed between the inner surface of the tip portion of the insulator 10, the surface of the tip portion of the center electrode 20, and the inner surface of the orifice electrode 30.
  • Plasma is generated by applying a voltage between the center electrode 20 and the orifice electrode 30.
  • FIG. 3 is a block diagram showing the configuration of the ignition device 120 that ignites the plasma jet plug 100.
  • the ignition device 120 includes a spark discharge circuit unit 140, a plasma discharge circuit unit 160, and two control circuit units 130 and 150 for controlling them. Control circuit units 130 and 150 are connected to the ECU of the automobile.
  • the spark discharge circuit section 140 is for performing a so-called trigger discharge in which a high voltage is applied to the gap between the center electrode 20 and the orifice electrode 30 of the plasma jet plug 100 to cause a dielectric breakdown to start a spark discharge. It is a power supply circuit.
  • the plasma discharge circuit unit 160 is a power supply circuit for supplying a large current to a gap where dielectric breakdown has occurred due to trigger discharge.
  • the plasma discharge circuit unit 160 includes a capacitor 162 for storing electric energy and a high voltage generation circuit 161 for charging the capacitor 162. One end of the capacitor 162 is grounded, and the other end is connected to the center electrode 20.
  • the gas in the cavity CV is excited by a large current supplied from the ignition device 120 to form plasma.
  • the plasma formed in the cavity CV expands and the pressure in the cavity CV increases, the plasma in the cavity CV is ejected from the through hole 31 of the orifice electrode 30.
  • the air-fuel mixture in the combustion chamber of the internal combustion engine is ignited by the ejected plasma.
  • FIG. 4A is an enlarged view of the cross section of the tip portion of the first embodiment of the plasma jet plug
  • FIG. 4B is an enlarged view of the cross section of the tip portion of the modification. 4 is upside down with respect to FIGS. 1 and 2, the upper side of FIG. 4 is the front end side of the plasma jet plug, and the lower side of FIG. 4 is the rear end side of the plasma jet plug.
  • the tip portion of the center electrode 20 is formed as a columnar leg portion 22.
  • An enlarged inner diameter portion 16 having an inner diameter larger than that of the leg length portion 13 is formed in the leg length portion 13 in the vicinity of the tip of the insulator 10.
  • the long leg portion 13 is also referred to as a “small inner diameter portion 13”.
  • a reduced diameter portion 14 is formed between the leg length portion 13 and the enlarged inner diameter portion 16.
  • the reduced diameter portion 14 is formed as a surface perpendicular to the axis O, but may be formed in a tapered shape.
  • annular groove Gr ⁇ b> 1 On the outer edge of the reduced diameter portion 14 of the insulator 10, an annular groove Gr ⁇ b> 1 that is recessed toward the rear end side from the surface of the reduced diameter portion 14 is formed.
  • This groove part Gr1 forms a concave path in the creeping path.
  • the size of the groove part Gr1 is defined by the width Wa1 and the depth Wd1 of the groove part Gr1. The effect of forming the groove part Gr1 will be described later.
  • the cavity CV is a space surrounded by the surface 20s of the center electrode 20, the inner surface 10in of the insulator 10, and the inner surface 30in of the orifice electrode 30.
  • the cavity CV does not include the portion of the through hole 31 of the orifice electrode 30, and means a space inside the inner surface 30in of the orifice electrode 30 when it is assumed that there is no through hole 31.
  • a minute gap (less than 0.06 mm) is formed between the outer peripheral surface of the leg portion 22 of the center electrode 20 and the inner surface of the insulator 10 in order to assemble them.
  • a space with a gap of less than 0.06 mm is very small and plasma is not generated, so it does not function as a part of the cavity CV.
  • the “cavity” means a space where plasma is generated, and means a space having a gap of 0.06 mm or more. More specifically, the “cavity” in the first embodiment of FIG. 4A includes the inner surface 10 in of the tip portion of the insulator 10, the surface of the tip portion of the center electrode 20, and the inner surface 30 in of the orifice electrode 30. Means a space having a gap of 0.06 mm or more, and does not include a space having a gap of less than 0.06 mm.
  • the creeping shortest path length D1 includes the length of the concave path along the groove part Gr1.
  • E Inner diameter of the through hole 31 of the orifice electrode 30.
  • G A distance G in the axial direction between the inner surface 30 in of the orifice electrode 30 and the tip surface 20 t of the center electrode 20. This distance G is also referred to as “air gap G”. A typical value range of the air gap G is, for example, 0.3 mm to 1.5 mm.
  • the inner diameter E of the through hole 31 of the orifice electrode 30 is preferably smaller than the outer diameter of the leg portion 22 at the tip of the center electrode 20. This is to facilitate air discharge in the air gap G.
  • FIG. 4B is an enlarged view of a cross section of a tip portion of a plasma jet plug 100r as a modification.
  • This plasma jet plug 100r is obtained by omitting the groove Gr1 of the insulator 10 from the plasma jet plug 100 of the first embodiment, and the other configuration is the same as that of the first embodiment.
  • the creeping shortest path length D1 can be increased as compared with the modified example. As a result, creeping discharge can be made difficult to occur, and air discharge can be stably performed. From this point of view, it is particularly preferable that the creepage shortest path length D1 is 5 times or more the air gap G. However, also in the modification shown in FIG. 4B, if the creepage shortest path length D1r is 5 times or more of the air gap G, it is possible to make it difficult to generate the creeping discharge, and to stabilize the air discharge. Therefore, it can be adopted as an embodiment of the present invention.
  • the creeping shortest path length D1 without excessively increasing the volume of the cavity CV. Is preferable in that it can be lengthened.
  • the groove width Wa1 of the groove part Gr1 may be 0.06 mm or more, but is preferably 0.1 mm or more. This is because if the groove width Wa1 is excessively small, the groove part Gr1 may not have a function of extending the creeping path (that is, a discharge is generated by jumping over the groove part Gr1). Providing the groove part Gr1 having a groove width Wa1 of 0.1 mm or more is preferable in that the creepage shortest path length D1 can be increased while keeping the volume of the cavity small.
  • the maximum value of the groove width Wa1 is not particularly limited, but for example, the groove width Wa1 is preferably 0.5 mm or less, and more preferably 0.3 mm or less.
  • the depth Wd1 of the groove part Gr1 is not more than three times the groove width Wa1. In this way, it is possible to make it easier to eject plasma by reducing the volume of the cavity CV while increasing the shortest creepage path length D1.
  • FIG. 5 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100a in the second embodiment.
  • This plasma jet plug 100a is obtained by adding an annular second groove Gr2 to the inner surface 10in of the insulator 10 of the plasma jet plug 100 (FIG. 4A) of the first embodiment.
  • the groove depth Wd1 of the second groove portion Gr2 is the same as the groove depth of the first groove portion Gr1 in the example of FIG. 5, but the depths of both may be changed.
  • the groove width Wa2 of the second groove part Gr2 may be the same as or different from the groove width Wa1 of the first groove part Gr1. Further, three or more grooves may be provided. In the example of FIG. 5, the groove portions Gr ⁇ b> 1 and Gr ⁇ b> 2 are provided in the reduced diameter portion 14 of the insulator 10, but the groove portion may be formed on the cylindrical inner surface of the insulator 10 along the axis O.
  • FIG. 6 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100b in the third embodiment.
  • This plasma jet plug 100b is obtained by extending the cavity CV portion of the plasma jet plug 100 (FIG. 4A) of the first embodiment along the direction of the axis O, and the other configuration is the first embodiment. Is the same. That is, in the plasma jet plug 100b of the second embodiment, the side surface 20f of the center electrode 20 facing the cavity CV is longer than that of the first embodiment.
  • R is the radius of the exposed portion of the center electrode 20
  • L is the length of the exposed portion of the center electrode 20 in the axial direction.
  • a typical value range for the radius R is, for example, 0.25 mm to 1 mm.
  • a typical value range of the length L is, for example, 0 mm to 5 mm.
  • the surface area S 20f of the side surface 20f of the center electrode 20 becomes excessively large, the plasma is cooled by the center electrode 20 and the plasma ejection performance may be lowered. Considering this point, it is preferable that the surface area S 20f of the side surface 20f of the center electrode 20 is 20 mm 2 or less. In this way, the phenomenon that the plasma is cooled by the center electrode 20 can be suppressed, and the plasma can be easily ejected.
  • FIG. 7 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100c in the fourth embodiment.
  • the insulator 10 facing the cavity CV is configured by a plurality of members 13c and 16c, and other configurations are the same as those of the first embodiment. More specifically, the leg length portion 13 of the insulator 10 and the portion of the enlarged inner diameter portion 16 following the distal end side thereof are provided on the outer peripheral side of the first member 13 c provided on the outer peripheral side of the center electrode 20.
  • the second member 16c was separated into two members.
  • the first member 13 c corresponds to the leg long part 13 of FIG. 4A and is formed to have a smaller outer diameter than the leg long part 13.
  • the second member 16c is a substantially annular member, and is fitted and fixed to the outer peripheral side of the first member 13c.
  • a groove part Gr1 that forms a concave path in the creeping path is formed at a position where the first member 13c and the second member 16c are in contact with each other.
  • This groove part Gr1 is formed in the boundary part of the two members 13c and 16c. If the insulator 10 facing the cavity CV is constituted by a plurality of members 13c and 16c, there is an advantage that the groove Gr1 can be formed more easily. However, the groove portion Gr1 may be omitted and the shape similar to that shown in FIG.
  • the insulator 10 facing the cavity CV is constituted by a plurality of members 13c and 16c, and further advantages can be obtained by changing their materials.
  • the first member 13c on the inner peripheral side is formed of a first insulating material (for example, aluminum nitride (AlN)) having a higher thermal conductivity than the second member 16c on the outer peripheral side, and the second member on the outer peripheral side.
  • the 16c may be formed in the second insulating material withstand voltage is higher than the first member 13c on the inner circumferential side (for example, alumina (Al 2 O 3)).
  • the heat sink from the center electrode 20 by the 1st member 13c can be increased, and durability of the center electrode 20 can be improved. Moreover, since the withstand voltage of the second member 16c is higher than that of the first member 13c, the withstand voltage of the entire insulator 10 can be improved.
  • FIG. 8 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100d in the fifth embodiment.
  • the insulator 10 facing the cavity CV is composed of a plurality of members 13d and 16d.
  • the first groove 13r is provided in the first member 13d of the insulator 10
  • the second groove Gr2 is provided at the boundary position between the first member 13d and the second member 16d.
  • a part of the wall surface of the second groove part Gr2 is configured by the surface of the first member 13d, and the other part is configured by the surface of the second member 16d.
  • FIG. 9 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100e in the sixth embodiment.
  • the insulator 10 facing the cavity CV is composed of a plurality of members 13e and 16e. . 9 differs from FIG. 7 in that a tip opening 16p having a small opening is provided at the tip of the second member 16d and covers the inner surface 30in of the orifice electrode 30.
  • the tip opening 16p of the second member 16d may cover the entire inner surface 30in of the orifice electrode 30, or may cover only a part thereof.
  • the creeping shortest path length D1 can be further increased.
  • test results In the following, the test results relating to the preferred dimensions of the plasma jet plug shown in FIGS. 4 to 9 will be described sequentially.
  • FIG. 10 is an explanatory diagram showing test results regarding the ratio D1 / G between the creepage shortest path length D1 and the air gap G.
  • FIG. FIG. 10A is a schematic plan view of the test apparatus. In this test, the insulator 210 having the groove 212 is installed in the pressure chamber, and the first electrode 220 and the second electrode 230 are installed facing each other with the groove 212 sandwiched on the surface of the insulator 210. did.
  • the insulator 210 was made of alumina.
  • the gap Dg between the two electrodes 220 and 230 was set to a constant value of 0.5 mm.
  • the groove width Da of the groove portion 212 was set to a constant value of 0.2 mm, and the groove portion path length DL was changed by changing the groove depth Dd of the groove portion 212.
  • the two electrodes 220 and 230 simulate the center electrode 20 and the orifice electrode 30.
  • the following two discharge paths may occur between the two electrodes 220 and 230.
  • First discharge path RT1 A discharge path that jumps over the groove 212 in the vicinity of the upper surface 210s of the insulator 210 (indicated by a black arrow in FIG. 10A).
  • Second discharge path a creeping path (not shown) that follows the upper surface 210s of the insulator 210 and the groove path length DL.
  • the difference between the two discharge paths passes through the air path of the groove width Da in the first discharge path RT1, and the second The discharge path is only a point passing through a concave creepage path having a groove path length DL. Therefore, when this structure is applied to the structure of FIG. 4, the groove width Da has a role as a dimension for simulating the air gap G of FIG. 4, and the groove path length DL is the creepage shortest path length D1. It can be understood that it has a role as a simulated dimension.
  • FIG. 10B shows the relationship between the value of the ratio DL / Da and the creeping discharge rate.
  • the creeping discharge ratio decreased as the value of the ratio DL / Da increased, and when DL / Da was 5 or more, the creeping discharge did not occur, and all were in the air.
  • This result can be understood as follows. That is, when the groove portion path length DL in FIG. 10A is increased, the creeping discharge that passes through the second discharge path described above becomes difficult to occur, and the air discharge that passes through the first discharge path RT1 is likely to occur. Therefore, by setting DL / Da to 5 or more, air discharge can be stably generated.
  • the groove portion path length DL simulates the creeping shortest path length D1 of FIG. 4, and the groove width Da simulates the air gap G. Therefore, it can be considered that the horizontal axis of FIG. 10B simulates the ratio D1 / G between the creepage shortest path length D1 and the air gap G. Considering this test result, it is preferable to set the value of the ratio D1 / G of the creepage shortest path length D1 and the air gap G to 5 or more in the plasma jet plug. In other words, the creepage shortest path length D1 is preferably 5 times or more the air gap G. If it carries out like this, generation
  • FIG. 11 is an explanatory diagram showing test results regarding the groove width Wa1 of the groove part Gr1.
  • the test apparatus shown in FIG. 11A is the same as that shown in FIG. 10A, but the setting of dimensions is different from the test shown in FIG. That is, in the test of FIG. 11, the groove width Da was changed to several values, and the groove depth Dd was also changed so that the groove depth Dd became equal to the groove width Da. Furthermore, the air gap Dg was set to a value obtained by adding 0.3 mm to the groove width Da. In this test, the groove width Da simulates the groove width Wa1 of the groove part Gr1 in FIG.
  • discharge was performed 100 times in a state where the pressure chamber was pressurized to 0.8 MPa (atmosphere), and discharge occurred in the first discharge path RT1 out of 100 discharges.
  • the ratio of the number of times was measured, and this was defined as the “in-air discharge ratio”.
  • FIG. 11 (B) shows the relationship between the value of the groove width Da and the air discharge rate. According to this test result, the air discharge ratio decreased as the value of the groove width Da increased. When the groove width Da was 0.1 mm or more, no air discharge was generated, and all the surface discharge occurred. This result can be understood as follows. That is, when the groove width Da is small, air discharge is likely to occur along the first discharge path RT1 without passing through the concave creeping path (second discharge path) along the groove 212. On the other hand, as the groove width Da increases, creeping discharge along the concave creeping path along the groove 212 is likely to occur.
  • the concave path along the groove part 212 hardly functions as a discharge path, whereas the groove width Da is 0.1 mm or more. Then, the concave path along the groove 212 sufficiently functions as a discharge path.
  • the groove width Wa1 of the groove part Gr1 it is preferable to set the groove width Wa1 of the groove part Gr1 to 0.1 mm or more. The same applies to the groove widths of the other grooves Gr2 (FIGS. 5 and 8). If the groove width Wa1 is set to 0.1 mm or more, the creeping path can be made substantially longer by the groove part Gr1, so that the occurrence of creeping discharge in the cavity CV is further suppressed, and air discharge is stably performed. Can be done.
  • FIG. 12 is an explanatory diagram showing test results regarding the groove depth Wd1 and the groove width Wa1 of the groove part Gr1.
  • L + G L is the length of the exposed portion of the center electrode 20 and G is the air gap
  • the outer diameter 2R of the center electrode 20 is set to 1.5 mm.
  • the inner diameter of each of the ten enlarged inner diameter portions 16 was set to 3.5 mm.
  • the groove width Wa1 is set to three values of 0.2 mm, 0.3 mm, and 0.5 mm, and the groove depth Wd1 is set so that the value of Wd1 / Wa1 ranges from 0.5 to 5.0.
  • the plasma jet plug sample is discharged in a state where the pressure chamber is pressurized to 0.6 MPa (atmosphere), and the plasma ejected from the through-hole 31 of the orifice electrode 30 is photographed from the side to obtain a schlieren image. did.
  • the Schlieren image was binarized and classified into pixels representing a high-density portion and pixels representing a low-density portion, and the number of pixels representing the high-density portion was calculated as the size of the ejected plasma.
  • photography was performed for every sample, and the average value of the pixel number of the plasma calculated by 10 imaging
  • FIG. 12B shows the relationship between the value of the ratio Wd1 / Wa1 of the groove depth Wd1 and the groove width Wa1 and the plasma ejection area.
  • FIG. 13 shows the results of the plasma ejection test for the surface area of the side surface of the central electrode facing the cavity.
  • the surface area S 20f of the side surface 20f of the center electrode 20 facing the cavity CV is different.
  • the air gap G is set to 0.5 mm or 1.0 mm
  • the outer diameter 2R of the center electrode 20 is 1 mm
  • the groove width Wa1 is 0.2 mm
  • the groove depth Wd1 is 0.00.
  • the constant value was 4 mm.
  • schlieren imaging was executed under the same conditions as in FIG. 12, and the average value of the number of plasma pixels calculated by 10 imaging operations was taken as the ejection area.
  • FIG. 13 (B) shows the relationship between the ejection area of the surface area S 20f and the plasma side 20f of the center electrode 20 facing the cavity CV.
  • the plasma jet area of the larger the value of the surface area S 20f side 20f is increased of the center electrode 20 tends to be smaller.
  • the value of the surface area S 20f side 20f of the center electrode 20 is small, it is preferable.
  • the plasma ejection area does not increase so much, so it is sufficient that the value of the surface area S 20f is 20 mm 2 or less.
  • a shape in which the length L of the center electrode 20 facing the cavity CV is negative (a shape in which the leg portion 22 at the front end of the center electrode 20 is retracted to the rear end side from the reduced diameter portion 14 of the insulator 10). It is also possible to do. However, such a shape may easily cause creeping discharge.
  • the length L of the center electrode 20 facing the cavity CV is set to 0 mm or more, that is, the surface area S 20f of the side surface 20f of the center electrode 20 facing the cavity CV is set to 0 mm 2 or more. Is preferred.
  • FIG. 14 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100f in the seventh embodiment.
  • This plasma jet plug 100f is common to the fourth embodiment (FIG. 7) in that the insulator 10 facing the cavity CV is composed of a plurality of members 13f and 16f, and the fourth embodiment is the following two points. It is different from the form.
  • the first difference is that the reduced diameter portion 14f of the insulator 10 extends so as to cover the side surface of the distal end portion (leg portion 22) of the center electrode 20 with a part of the distal end portion of the center electrode 20 exposed. It is a point.
  • the distance L from the tip 14t of the reduced diameter portion 14f (insulating material) provided on the side surface of the center electrode 20 to the tip of the center electrode 20 is preferably set to 0.4 mm or less.
  • the distance L (referred to as “exposed length L of the center electrode 20”) becomes sufficiently short, so that the consumption of the center electrode due to the heat of plasma can be suppressed.
  • the second difference is that the distance H between the side surface of the center electrode 20 and the inner wall surface of the cavity CV when measured along the direction perpendicular to the direction of the axis O is smaller than that in the fourth embodiment (FIG. 7). Is a point. In this case, however, the distance H is preferably larger than the air gap G.
  • FIG. 15 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100g in the eighth embodiment.
  • the plasma jet plug 100g is different from the seventh embodiment (FIG. 14) in that the distal end portion (leg portion) of the center electrode 20 is replaced by an insulating member 14g different from the insulator 10 instead of the reduced diameter portion 14f of the insulator 10. 22) and the other configuration is the same as that of the seventh embodiment.
  • the insulating member 14g can be formed of any insulating material such as alumina, for example.
  • the insulating member 14g can be formed so as to cover the periphery of the center electrode 20 using any method such as plating.
  • FIG. 16 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100h in the ninth embodiment.
  • This plasma jet plug 100h differs from the seventh embodiment (FIG. 14) in the following two points.
  • the first difference is that the reduced diameter portion 14h of the insulator 10 has a tip portion 14e covering the tip portion of the center electrode 20, but a gap GP is formed on the lower side (rear end side) of the tip portion 14e. It is a point that is formed. However, this gap GP may not be present.
  • the second difference is that the distance H between the side surface of the center electrode 20 and the inner wall surface of the cavity CV when measured along the direction perpendicular to the direction of the axis O is larger than that in the seventh embodiment (FIG. 14). Is a point. However, since the importance of the second difference is low, this difference may not be provided.
  • a part of the insulator 10 can be used as the insulating material covering the side surface of the center electrode 20 in the cavity CV. It is also possible to use different insulating materials (for example, the insulating member 14g in FIG. 15). In these embodiments, since the exposed length L of the center electrode 20 is sufficiently short, consumption of the center electrode due to the heat of plasma can be suppressed.
  • FIG. 17 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100j in the tenth embodiment.
  • the plasma jet plug 100j is different from the seventh embodiment (FIG. 14) in that a tip opening having a small opening at the tip of the second member 16j of the insulator 10 is the same as the sixth embodiment shown in FIG.
  • the point 16 p is provided to cover the inner surface of the orifice electrode 30.
  • the opening of the tip opening 16p is larger than the through hole 31 of the orifice electrode 30, and the exposed surface 32 that is not covered by the tip opening 16p remains on the inner surface of the orifice electrode 30.
  • the exposed surface 32 exists at a position adjacent to the through hole 31 of the orifice electrode 30.
  • the outermost peripheral position 32 e of the exposed surface 32 is preferably located on the radially outer side than the edge portion at the tip of the center electrode 20.
  • the “radial direction” means a direction perpendicular to the axis O direction.
  • the distance J between the outermost peripheral position 32e of the exposed surface 32 and the side surface of the center electrode 20 when measured along the radial direction is the distance between the side surface of the center electrode 20 and the inner wall surface of the cavity CV. It is preferably smaller than H.
  • the tenth embodiment further has a feature that the linear distance K between the outermost peripheral position 32e of the exposed surface 32 and the tip of the center electrode 20 is larger than the air gap G. If the condition of G ⁇ K is satisfied, creeping discharge occurs along the path from the tip of the center electrode 20 to the insulating material (tip opening 16p) covering the inner surface around the through hole 31 of the orifice electrode 30. Since it becomes difficult, air discharge can be performed stably.
  • the tip opening 16p of the second member 16j that is a part of the insulator 10 is used. Instead, an insulating material different from the insulator 10 may be used.
  • the insulator 10 is composed of a plurality of members (for example, two members 13f and 16f in FIG. 14). Instead, the insulator 10 is composed of one member. May be.
  • FIG. 18 is an explanatory diagram showing a test result regarding the exposed length L of the center electrode 20.
  • FIG. 18A shows the shape of the sample, which is in conformity with the seventh embodiment shown in FIG. The following parameters were used in this test.
  • -Creeping shortest path length D1 3.5mm ⁇ Inner diameter E of through-hole 31 of orifice electrode 30: 0.5 mm ⁇ Air gap G: 0.5mm ⁇ Outer diameter 2R of the center electrode 20: 1.5 mm ⁇ Inner diameter Dcv of cavity CV (inner diameter of enlarged inner diameter portion 16f): 3.5 mm
  • the exposed length L of the center electrode 20 (when the insulating member 14f is shielded): 0 to 0.6 mm -The exposed length L of the center electrode 20 (in the case of no shielding by the insulating member 14f): 2.0 mm
  • FIG. 18B is a graph showing test results regarding the relationship between the exposed length L of the center electrode 20 and the amount of wear at the tip of the center electrode 20.
  • the vertical axis represents a ratio obtained by dividing the amount of wear at the tip of the center electrode 20 when the side surface of the center electrode 20 is shielded by the amount of wear when there is no shield.
  • the “consumed amount” is a value obtained by measuring the volume lost from the tip portion of the center electrode 20 after performing a spark discharge endurance test at 30 Hz for 30 hours.
  • FIG. 19 is an explanatory diagram showing test results regarding the insulator coating on the inner surface of the orifice electrode 30.
  • FIG. 19A shows the shape of the sample, which is in conformity with the tenth embodiment shown in FIG. The following parameters were used in this test.
  • FIG. 19B is a graph showing test results regarding the relationship between the outer diameter D32 of the exposed surface 32 on the inner surface of the orifice electrode 30 and the amount of wear on the inner surface of the orifice electrode 30.
  • the vertical axis represents the ratio obtained by dividing the amount of wear on the inner surface of the orifice electrode 30 when the inner surface of the orifice electrode 30 is shielded by the amount of wear when there is no shield.
  • “the inner surface of the orifice electrode 30 is shielded” means that the inner surface of the orifice electrode 30 is covered with the tip opening 16p of the insulator 10.
  • no shielding of the inner surface of the orifice electrode 30 means that the inner surface of the orifice electrode 30 is not covered with the tip opening 16p of the insulator 10.
  • the “consumed amount” is a value obtained by measuring the volume lost from the inner surface of the orifice electrode 30 after performing a spark discharge durability test at 30 Hz for 30 hours.
  • FIG. 20 is an enlarged cross-sectional view of the tip portion of the plasma jet plug 100k according to the eleventh embodiment.
  • the center electrode 20k has a head 21 on the most rear end side, a leg 22 having a smaller outer diameter than the head 21 and a position on the most tip side. However, it has a tip small diameter portion 27 having the smallest outer diameter. Since the other structure of the plasma jet plug 100k is almost the same as that shown in FIG. 2, the description thereof is omitted here.
  • FIG. 21 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100k of the eleventh embodiment. 21 is upside down with respect to FIGS. 1 and 20, the upper side of FIG. 21 is the front end side of the plasma jet plug 100k, and the lower side of FIG. 21 is the rear end side of the plasma jet plug 100k.
  • the leg portion 22 and the tip small diameter portion 27 are formed in the vicinity of the tip of the center electrode 20k.
  • Each of the leg portion 22 and the tip small diameter portion 27 has a cylindrical shape.
  • a reduced diameter portion 28 is provided between the leg portion 22 and the distal end small diameter portion 27.
  • the reduced diameter portion 28 is formed in a tapered shape in the example of FIG. 21, the reduced diameter portion 28 may be formed in a plane perpendicular to the axis 0 instead of the tapered shape.
  • An enlarged inner diameter portion 16 having an inner diameter larger than that of the leg length portion 13 is formed in the leg length portion 13 near the tip of the insulator 10.
  • the long leg portion 13 is also referred to as a “small inner diameter portion 13”.
  • a reduced diameter portion 14 is formed between the leg length portion 13 and the enlarged inner diameter portion 16.
  • the reduced diameter portion 14 is formed in a tapered shape, but it may be formed in a surface perpendicular to the axis 0 instead of the tapered shape.
  • the reduced diameter portion 14 of the insulator 10 is provided on the distal end side with respect to the reduced diameter portion 28 of the center electrode 20k.
  • the outer periphery of the tip small-diameter portion 27 of the center electrode 20k and the inner surface of the leg long portion 13 of the insulator 10 are separated by a distance Dp.
  • the annular groove having a width of the distance Dp corresponds to a second cavity CV2 described below.
  • the cavity CV is a space surrounded by the surface 20s of the center electrode 20k, the inner surface 10in of the insulator 10, and the inner surface 30in of the orifice electrode 30.
  • the cavity CV does not include the portion of the through hole 31 of the orifice electrode 30, and means a space inside the inner surface 30in of the orifice electrode 30 when it is assumed that there is no through hole 31.
  • a minute gap (less than 0.06 mm) is formed between the outer peripheral surface of the leg portion 22 of the center electrode 20k and the inner surface of the insulator 10 for assembly of both.
  • a space with a gap of less than 0.06 mm is very small and plasma is not generated, so it does not function as a part of the cavity CV.
  • the “cavity” means a space where plasma is generated, and means a space having a gap of 0.06 mm or more. More specifically, the “cavity” in the eleventh embodiment of FIG. 21 is defined between the inner surface 10 in of the tip portion of the insulator 10, the surface of the tip portion of the center electrode 20 k, and the inner surface 30 in of the orifice electrode 30. Means a space with a gap of 0.06 mm or more, and does not include a space with a gap of less than 0.06 mm.
  • the cavity CV can be classified into the following two.
  • FIG. 21 further shows the following dimensions.
  • Dp A distance between the outer periphery of the tip small-diameter portion 27 of the center electrode 20k and the leg long portion 13 of the insulator 10 (referred to as “radial direction spatial distance Dp”).
  • the radial space distance Dp corresponds to the width of the second cavity portion CV2.
  • Dq distance between the rear end 28e of the reduced diameter portion 28 of the center electrode 20k and the rear end 14e of the reduced diameter portion 14 of the insulator 10. This distance Dq corresponds to the axial depth of the second cavity CV2.
  • Dr the shortest distance between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10.
  • the “shortest distance” means the minimum value when the distance from the tip edge 20c of the center electrode 20k to the inner surface 10in of the insulator 10 is measured in an arbitrary direction.
  • Ds difference between the inner radius of the enlarged inner diameter portion 16 of the insulator 10 and the inner radius of the leg length portion 13. This difference Ds corresponds to the difference between the inner radius of the enlarged inner diameter portion 16 of the insulator 10 and the outer radius of the leg portion 22 of the center electrode 20k.
  • D27 The outer diameter of the tip small diameter portion 27 of the center electrode 20k.
  • D22 The outer diameter of the leg portion 22 of the center electrode 20k.
  • E Inner diameter of the through hole 31 of the orifice electrode 30.
  • G A distance in the axial direction between the inner surface 30in of the orifice electrode 30 and the tip surface 20t of the center electrode 20k. This distance G is also referred to as “air gap G”.
  • Z Distance between the inner surface 30 in of the orifice electrode 30 and the rear end 14 e of the reduced diameter portion 14 of the insulator 10. This distance Z corresponds to the axial depth of the first cavity CV1.
  • the inner diameter E of the through hole 31 of the orifice electrode 30 is preferably smaller than the outer diameter D27 of the tip small diameter portion 27 of the center electrode 20k. This is to facilitate air discharge in the air gap G.
  • FIG. 22 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100m in the twelfth embodiment.
  • the center electrode 20m of the plasma jet plug 100m does not have the tip small-diameter portion 27 that the center electrode 20k of the plasma jet plug 100k in FIG. 21 has, and the leg portion 22 is extended to the tip as it is. Have. Therefore, the second cavity CV2 existing in the plasma jet plug 100k of FIG. 21 does not exist in the plasma jet plug 100m of FIG.
  • the shortest distance Dr between the tip edge 20c of the center electrode 20m and the inner surface 10in of the insulator 10 is sufficiently large. Creeping discharge hardly occurs and air discharge can be stably performed.
  • the second cavity portion CV2 is provided as shown in FIG. 21, the shortest distance Dr between the tip edge 20c of the center electrode 20m and the inner surface 10in of the insulator 10 can be increased, so that creeping discharge occurs.
  • the volume of the entire cavity CV can be suppressed to be small, and plasma can be easily ejected.
  • FIG. 23 shows the result of the discharge path confirmation test regarding the relationship between the shortest distance Dr between the tip edge 20c of the center electrode 20n and the inner surface 10in of the insulator 10 and the air gap G.
  • FIG. 23A shows a longitudinal sectional view of a plasma jet plug 100n for a discharge path confirmation test
  • FIG. 23B shows a plan view thereof.
  • the plasma jet plug 100n has a configuration in which the orifice electrode 30 of the plasma jet plug 100m without the second cavity portion CV2 shown in FIG. 22 is replaced with a rod-shaped electrode 30bar. This is because it is difficult to photograph the inside of the cavity CV from the through hole 31 (FIG. 22) of the orifice electrode 30.
  • the plasma jet plug 100n was attached in the pressure chamber, and discharge was performed 100 times in a state where the pressure chamber was pressurized to 1.0 MPa (atmosphere). At this time, the discharge path in the cavity CV was photographed using a high-speed camera, and the ratio of the number of occurrences of creeping discharge out of 100 discharges was measured.
  • FIG. 23C shows samples S101 to S104 in which the value of the ratio Dr / G between the shortest distance Dr between the tip edge 20c of the center electrode 20n and the inner surface 10in of the insulator 10 and the air gap G is used as a parameter.
  • four samples S101 to S104 were used in which the air gap G was constant at 0.5 mm and the value of the shortest distance Dr was changed in the range of 0.25 mm to 1.00 mm.
  • FIG. 23 (D) shows the creeping discharge ratio obtained in the discharge path confirmation test.
  • the creeping discharge rate decreased as the value of Dr / G increased, and when Dr / G was 1.5 or more, the creeping discharge did not occur and all became air discharge.
  • the value Dr / G of the ratio of the shortest distance Dr to the air gap G is preferably as large as possible, and it is particularly preferable that the following relationship is satisfied. 1.5 ⁇ G ⁇ Dr (1) If this equation (1) is satisfied, the shortest distance Dr between the tip edge 20c of the center electrode 20n and the inner surface 10in of the insulator 10 is sufficiently larger than the air gap G, so that creeping discharge occurs. It becomes difficult, and air discharge can be performed stably. As a result, the occurrence of channeling can be suppressed.
  • the relationship of the above formula (1) is not limited to the plasma jet plug 100m without the second cavity portion CV2 as shown in FIG. 22, but the plasma jet plug with the second cavity portion CV2 as shown in FIG. It is estimated that the same applies to 100k.
  • the reason for this is that even when the second cavity portion CV2 is present, if the above formula (1) is satisfied, the shortest distance Dr becomes sufficiently larger than the air gap G, and therefore it is difficult for creeping discharges to occur and is stable. This is because air discharge is expected to occur.
  • the value of Dr is the value of the cavity CV. It is preferable to keep the volume within a range that does not become excessively large. This is because if the volume of the cavity CV becomes excessively large, the plasma ejection performance may deteriorate.
  • the value of Dr is, for example, preferably 2 mm or less, more preferably 1.5 mm or less, and most preferably 1 mm or less.
  • FIG. 24 is an explanatory diagram showing a discharge test result with respect to the radial space distance Dp of the second cavity portion CV2.
  • FIG. 24A is a schematic plan view of the test apparatus
  • FIG. 24B is a cross-sectional view taken along the line BB.
  • the first electrode 210 is installed in the pressure chamber 300
  • the rectangular insulator 220 is fitted into the recess on the upper surface of the first electrode 210
  • the cylindrical second electrode 230 is placed on the insulator 220.
  • a wall portion 212 rising vertically upward was formed, and a spatial distance Dp was set between the wall portion 212 and the insulator 220.
  • the creepage distance on the insulator 220 in the creeping path from the side surface of the second electrode 230 toward the wall portion 212 of the first electrode 210 was set to 0.5 mm.
  • the distance Dq between the upper surface of the first electrode 210 and the upper surface of the insulator 220 was changed by changing the thickness of the insulator 220 to several values.
  • the spatial distance Dp was adjusted so that the distance Dq and the spatial distance Dp were equal.
  • the wall portion 212 of the first electrode 210 simulates the center electrode 20k in FIG. 21, and the groove portion GV between the wall portion 212 of the first electrode 210 and the insulator 220 forms the second cavity portion CV2 in FIG. Mock up. That is, the spatial distance Dp in FIG. 24 (B) simulates the radial spatial distance Dp of the second cavity portion CV2 (FIG. 21), and the distance Dq in FIG. 24 (B) is equal to the second cavity portion CV2. Depth Dq is simulated.
  • FIG. 24 (C) shows the relationship between the spatial distance Dp and the air discharge rate.
  • the air discharge rate decreased as the value of the space distance Dp increased, and when the space distance Dp was 0.1 mm or more, no air discharge was generated, and all were creeping discharges.
  • This result can be understood as follows. That is, when the spatial distance Dp in FIG. 24B increases, an air discharge that reaches the second electrode 230 in the lateral direction from the surface of the wall portion 212 of the first electrode 210 through the air becomes difficult to occur. When this is applied to the plasma jet plug 100k of FIG.
  • the radial space distance Dp of the second cavity portion CV2 is preferably set to 0.1 mm or more.
  • the value of Dp is It is preferable that the volume of the second cavity portion CV2 is within a range that does not become excessively large. In this sense, the value of Dp is preferably, for example, 1 mm or less, more preferably 0.7 mm or less, and most preferably 0.5 mm or less.
  • FIG. 25 shows the test results for the ratio Dq / Dp between the depth Dq of the second cavity CV2 and the radial space distance Dp.
  • a plasma jet plug 100k was attached in the pressure chamber, and discharge was performed 100 times in a state where the pressure chamber was pressurized to 1.0 MPa (atmosphere), and the discharge voltage was measured.
  • the “discharge voltage” means a voltage when a dielectric breakdown occurs by applying a high voltage.
  • FIG. 25 (A) shows the dimensions of samples S201 to S216.
  • Sample S201 is a plug having the shape of FIG. 22 without the second cavity CV2.
  • Samples S202 to S206 are samples in which the radial space distance Dp of the second cavity part CV2 is set to a constant value of 0.1 mm and the depth Dq of the second cavity part CV2 is changed.
  • Samples S207 to S211 are samples in which the radial space distance Dp of the second cavity part CV2 is set to a constant value of 0.3 mm and the depth Dq of the second cavity part CV2 is changed.
  • Samples S212 to S215 are samples in which the radial space distance Dp of the second cavity part CV2 is set to a constant value of 0.5 mm, and the depth Dq of the second cavity part CV2 is changed.
  • the difference in the radial space distance Dp among the three sample groups S202 to S206, S207 to S211, and S212 to S216 was adjusted by changing the outer diameter D27 of the tip small diameter portion 27 of the center electrode 20k.
  • the inner diameter E of the through hole 31 of the orifice electrode 30 was set to 2.5 mm, which was an excessive value compared to a normal value (about 1.0 mm). The reason for this is to ensure that a creeping discharge occurs without causing an air discharge from the center electrode 20k to the orifice electrode 30.
  • FIG. 25B shows the relationship between the value of Dq / Dp and the discharge voltage.
  • the discharge voltage tends to increase as the value of Dq / Dp increases.
  • the test sample has a shape in which creeping discharge is always generated without generating an air discharge from the center electrode 20k to the orifice electrode 30, and therefore, the discharge voltage in FIG. 25B is high.
  • air discharge from the center electrode 20k to the orifice electrode 30 is likely to occur. Therefore, a higher discharge voltage in this test is preferable because air discharge is likely to occur and creeping discharge is less likely to occur.
  • the value of the ratio Dq / Dp between the depth Dq of the second cavity part CV2 and the radial space distance Dp exceeds 0 (that is, the second cavity part CV2 exists).
  • the discharge voltage does not increase any more, so that the value of Dq / Dp is 3 or less.
  • FIG. 26 shows the result of the plasma ejection test for the ratio Dq / Dp of the depth Dq of the second cavity CV2 and the radial space distance Dp.
  • the plasma jet plug 100k was discharged in a state where the pressure chamber was pressurized to 0.6 MPa (atmosphere), and the plasma ejected from the through hole 31 of the orifice electrode 30 was photographed from the side to obtain a Schlieren image. I got it. Then, the Schlieren image was binarized and classified into pixels representing a high-density portion and pixels representing a low-density portion, and the number of pixels representing the high-density portion was calculated as the size of the ejected plasma. In addition, 10 schlieren imaging
  • FIG. 26 (A) shows the dimensions of samples S302 to S316.
  • the dimensions of the samples S302 to S316 are the same as the samples S202 to S216 shown in FIG. 25A except that the inner diameter E of the through hole 31 of the orifice electrode 30 is 1.0 mm (normal value).
  • the reason why the inner diameter E of the through hole 31 of the orifice electrode 30 is 1.0 mm in the samples S302 to S316 in FIG. 26A is that the air discharge is caused by the air gap G between the center electrode 20k and the orifice electrode 30. To generate.
  • FIG. 26B shows the relationship between the value of Dq / Dp and the plasma ejection area.
  • the plasma ejection area tends to decrease as the value of Dq / Dp increases. Therefore, from the result of FIG. 26B, it is preferable that the value of the ratio Dq / Dp between the depth Dq of the second cavity portion CV2 and the radial space distance Dp is small. However, even if the value of Dq / Dp is smaller than 3, the plasma ejection area does not increase so much, so it is sufficient that the value of Dq / Dp is 3 or less.
  • the radial space distance Dp and the depth Dq of the second cavity portion CV2 satisfy the following relationship. 0 ⁇ Dq ⁇ 3 ⁇ Dp (2) If the depth Dq of the second cavity portion CV2 is set within the range of the expression (2), the tendency of generating air discharge more easily than creeping discharge can be increased (FIG. 25B). In addition, it is possible to prevent the volume of the second cavity portion from becoming excessively large, and to facilitate the ejection of plasma (FIG. 26B).
  • FIG. 27 shows the plasma ejection test for the ratio Dp / Dr between the radial space distance Dp of the second cavity CV2 and the shortest distance Dr between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10. Results are shown. This plasma ejection test was performed under the same conditions as in FIG. 26 except for the shape of the sample.
  • FIG. 27 (A) shows the dimensions of samples S401 to S405.
  • the radial distance Dp of the second cavity portion CV2 was changed by changing the outer diameter D22 of the leg portion 22 of the center electrode 20k.
  • the inner radius and leg length of the enlarged inner diameter portion 16 of the insulator 10 are set so that the shortest distance Dr between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10 becomes a constant value (1.0 mm). The difference Ds from the inner radius of 13 was adjusted.
  • FIG. 27 (B) shows the relationship between the Dp / Dr value and the plasma ejection area.
  • the plasma ejection area tends to decrease as the value of Dp / Dr increases. Therefore, from the result of FIG. 27B, it is preferable that the value of Dp / Dr is small. However, even if the value of Dq / Dp is smaller than 0.5, the plasma ejection area does not increase any more, so it is sufficient that the value of Dq / Dp is 0.5 or less.
  • Dp is the distance from the side surface (outer peripheral surface) of the center electrode 20k to the wall surface of the insulator 10 constituting the outer periphery of the second cavity portion CV2.
  • Dr is the shortest distance from the tip edge 20c of the center electrode 20k to the inner surface 10in of the insulator 10 constituting the outer periphery of the first cavity portion CV1.
  • the result of FIG. 27B shows that when the value of the ratio Dp / Dr of these distances exceeds 0.5, the plasma easily spreads to the back of the second cavity portion CV2, so that the through hole 31 of the orifice electrode 30 It can be understood that the jet power at which plasma is ejected to the outside decreases.
  • the relationship between the radial space distance Dp of the second cavity portion CV2 and the shortest distance Dr between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10 is as follows. The following relationship is preferably satisfied. (Dp / Dr) ⁇ 0.5 (3) If Dp / Dr is set so as to satisfy this equation (3), it is possible to make it easier to eject plasma.
  • Modification 2 As the configuration of the plasma jet plug, various configurations other than the configurations shown in FIGS. 4 to 9, 14 to 17, and 21 to 22 can be adopted.
  • the shape near the tip of the center electrode 20 may not be a simple cylindrical shape, but may be provided with irregularities on the surface.
  • the tip of the center electrode 20 is not an acute edge, and may be chamfered such as R chamfering or C chamfering. In this way, since electric field concentration is unlikely to occur, it is possible to further suppress the consumption of the center electrode 20 due to the heat of the plasma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spark Plugs (AREA)

Abstract

This plasma jet plug comprises: a tubular insulating body having an axial hole that extends along the direction of an axial line; a center electrode placed inside the axial hole; a main metallic fitting placed in the outer periphery of the insulating body; and an orifice electrode that is electrically connected to the main metallic fitting and that is placed at the leading end side of the insulating body. A cavity for generating plasma is formed by the surface of the center electrode, the inner surface of the insulating body, and the inner surface of the orifice electrode. In this plasma jet plug, a minimum route length D1 of a creepage route from the surface of the center electrode to the inner surface of the orifice electrode via the inner surface of the insulating body in the cavity, is greater than or equal to five times an air gap G which is a minimum distance between the center electrode and the orifice electrode.

Description

プラズマジェットプラグPlasma jet plug 関連出願の相互参照Cross-reference of related applications
 本願は、2015年2月26日に出願された出願番号2015-036010,2015年4月2日に出願された出願番号2015-075551,及び,2015年5月25日に出願された出願番号2015-105326の日本特許出願に基づく優先権を主張し、その開示の全てが参照によって本願に組み込まれる。 The present application is filed with an application number 2015-036010 filed on February 26, 2015, an application number 2015-0755551 filed on April 2, 2015, and an application number 2015 filed on May 25, 2015. Claims priority based on Japanese Patent Application No. 105326, the entire disclosure of which is incorporated herein by reference.
 本発明は、プラズマを噴射することによって燃料混合気を着火させるプラズマジェットプラグに関する。 The present invention relates to a plasma jet plug that ignites a fuel mixture by injecting plasma.
 プラズマジェットプラグは、キャビティと呼ばれるプラズマを生成するための空間を有する点火プラグである(特許文献1)。キャビティの出口には開口を有するオリフィス電極(「接地電極」とも呼ばれる)が設けられており、キャビティの内部にはオリフィス電極とギャップを介して中心電極が設けられている。キャビティ内の壁面は、オリフィス電極と中心電極以外の部分は絶縁体で構成されている。このキャビティに大電流を投入し、大量のプラズマでキャビティ空間を満たして噴出させることによって、燃料混合気を着火させる。キャビティに大電流を投入する際には、先ず、オリフィス電極と中心電極との間に高電圧を印加することによって絶縁破壊を生じさせてキャビティ内に放電経路を形成し、その後に低電圧で大電流を重ね合わせる。 The plasma jet plug is a spark plug having a space for generating plasma called a cavity (Patent Document 1). An orifice electrode (also referred to as a “ground electrode”) having an opening is provided at the exit of the cavity, and a center electrode is provided inside the cavity via the orifice electrode and a gap. The wall surface in the cavity is made of an insulator except for the orifice electrode and the center electrode. A large current is supplied to this cavity, and the fuel mixture is ignited by filling the cavity space and ejecting it with a large amount of plasma. When applying a large current to the cavity, first, a high voltage is applied between the orifice electrode and the center electrode to cause a dielectric breakdown to form a discharge path in the cavity, and then a large voltage is applied at a low voltage. Superimpose current.
特開2008-045449号公報JP 2008-045449 A
 キャビティ内の放電経路としては、キャビティの壁面から離れた空間中の経路である気中経路と、キャビティの壁面(特に絶縁体の表面)に沿った沿面経路とが形成され得る。通常は、気中経路よりも沿面経路が形成され易い。沿面経路が形成されると、絶縁破壊時の電流によって、沿面経路と接する絶縁体の表面が溝状に溶融する「チャンネリング」と呼ばれる現象が発生する。チャンネリングが発生するとキャビティ形状が大きく変化し、プラズマ噴出性能が悪化する。さらには、チャンネリングで形成された溝に放電が集中して、より深い溝が形成されるという問題が生じる。そこで、沿面放電を発生し難くして安定して気中放電を行わせることができ、チャンネリングの発生を抑制できる技術が望まれている。 As the discharge path in the cavity, an air path that is a path in a space away from the wall surface of the cavity and a creeping path along the wall surface of the cavity (particularly the surface of the insulator) can be formed. Usually, a creeping route is more easily formed than an air route. When the creeping path is formed, a phenomenon called “channeling” occurs in which the surface of the insulator in contact with the creeping path melts in a groove shape due to the current at the time of dielectric breakdown. When channeling occurs, the cavity shape changes greatly, and the plasma ejection performance deteriorates. Furthermore, there arises a problem that a deeper groove is formed by concentration of discharge in the groove formed by channeling. Thus, a technique is desired that can prevent the occurrence of creeping discharge and can stably perform air discharge and suppress the occurrence of channeling.
 本願の発明者は、また、キャビティ内における中心電極の露出部分の長さが大きい場合には、中心電極がプラズマに接触する面積が大きくなり、プラズマの熱による中心電極の消耗が過度に大きくなってしまうという問題があることを見出した。本願の発明者は、更に、オリフィス電極の内面がキャビティ内に露出していると、プラズマの熱によってオリフィス電極の内面が過度に消耗してしまうという問題があることを見出した。 The inventor of the present application also shows that when the length of the exposed portion of the central electrode in the cavity is large, the area where the central electrode comes into contact with the plasma becomes large, and the consumption of the central electrode due to the heat of the plasma becomes excessively large. I found out that there is a problem that. The inventors of the present application have further found that when the inner surface of the orifice electrode is exposed in the cavity, there is a problem that the inner surface of the orifice electrode is excessively consumed by the heat of the plasma.
 本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。 The present invention has been made to solve the above-described problems, and can be realized as the following modes.
(1)本発明の第1形態によれば、プラズマジェットプラグが提供される。このプラズマジェットプラグは、軸線方向に沿って延びる軸孔を有する筒状の絶縁体と、前記軸孔の内部に配置された中心電極と、前記絶縁体の外周に配置された主体金具と、前記主体金具に電気的に接続され前記絶縁体の先端側に配置されたオリフィス電極と、を備え、前記中心電極の表面と前記絶縁体の内面と前記オリフィス電極の内面とによってプラズマ生成用のキャビティが形成されている。第1形態のプラズマジェットプラグは、前記キャビティ内において前記中心電極の表面から前記絶縁体の内面を経由して前記オリフィス電極の内面に至る沿面経路の最短の経路長D1が、前記中心電極と前記オリフィス電極の間の最短距離である気中ギャップGの5倍以上あることを特徴とする。
 このプラズマジェットプラグによれば、沿面経路の最短の経路長D1が気中ギャップGに比べて十分に大きいので、沿面放電が発生し難く、安定して気中放電を行わせることができ、チャンネリングの発生を抑制できる。
(1) According to the first aspect of the present invention, a plasma jet plug is provided. The plasma jet plug includes a cylindrical insulator having an axial hole extending along an axial direction, a center electrode disposed inside the axial hole, a metal shell disposed on an outer periphery of the insulator, An orifice electrode electrically connected to the metal shell and disposed on the distal end side of the insulator, and a plasma generating cavity is formed by the surface of the center electrode, the inner surface of the insulator, and the inner surface of the orifice electrode. Is formed. In the plasma jet plug of the first form, the shortest path length D1 of the creeping path from the surface of the center electrode to the inner surface of the orifice electrode through the inner surface of the insulator in the cavity is such that the center electrode and the It is characterized by being 5 times or more the air gap G which is the shortest distance between the orifice electrodes.
According to this plasma jet plug, since the shortest path length D1 of the creeping path is sufficiently larger than the air gap G, creeping discharge hardly occurs and air discharge can be stably performed. Ring generation can be suppressed.
(2)上記プラズマジェットプラグにおいて、前記絶縁体の内面は、前記沿面経路において凹状経路を形成する1つ以上の溝部を有し、前記溝部の溝幅が0.1mm以上であるものとしてもよい。
 この構成によれば、絶縁体の内面に溝部を設けることにより、キャビティの容積を小さく抑えてプラズマを噴出し易くしつつ沿面経路の最短の経路長D1を長くすることができ、また、溝部の溝幅を0.1mm以上とすることにより、沿面経路の最短の経路長D1の実効的な長さを溝部に沿った長さとすることができるので、より安定して気中放電を行わせることができる。
(2) In the plasma jet plug, the inner surface of the insulator may have one or more grooves that form a concave path in the creeping path, and the groove width may be 0.1 mm or more. .
According to this configuration, by providing the groove on the inner surface of the insulator, the shortest path length D1 of the creeping path can be increased while suppressing the volume of the cavity and facilitating the ejection of plasma. By setting the groove width to 0.1 mm or more, the effective length of the shortest path length D1 of the creeping path can be set to the length along the groove portion, so that air discharge can be performed more stably. Can do.
(3)上記プラズマジェットプラグにおいて、前記溝部の深さが前記溝幅の3倍以下であるものとしてもよい。
 この構成によれば、溝部の深さを溝幅の3倍以下とすることにより、沿面経路の最短の経路長D1を長くしつつ、キャビティの容積を小さく抑えてプラズマを噴出し易くすることが可能である。
(3) The said plasma jet plug WHEREIN: The depth of the said groove part is good also as what is 3 times or less of the said groove width.
According to this configuration, by setting the depth of the groove portion to three times or less of the groove width, it is possible to increase the shortest path length D1 of the creeping path and to suppress the volume of the cavity and facilitate the ejection of plasma. Is possible.
(4)上記プラズマジェットプラグにおいて、前記キャビティに面する前記中心電極の側面の表面積が、20mm2以下であるものとしてもよい。
 この構成によれば、キャビティに面する中心電極の側面の表面積を20mm2以下とすることにより、中心電極によってプラズマが冷却されてしまう現象を抑制でき、プラズマを噴出し易くすることができる。
(4) In the plasma jet plug, a surface area of a side surface of the center electrode facing the cavity may be 20 mm 2 or less.
According to this configuration, by setting the surface area of the side surface of the center electrode facing the cavity to 20 mm 2 or less, the phenomenon that the plasma is cooled by the center electrode can be suppressed, and the plasma can be easily ejected.
(5)上記プラズマジェットプラグにおいて、前記キャビティに面する前記絶縁体が複数の部材から構成されているものとしてもよい。
 この構成によれば、キャビティに面する絶縁体を複数の部材から構成すれば、沿面経路の経路長D1を長くするようにキャビティに面する絶縁体の内面形状を形成し易い。
(5) In the plasma jet plug, the insulator facing the cavity may be composed of a plurality of members.
According to this configuration, if the insulator facing the cavity is composed of a plurality of members, it is easy to form the inner surface shape of the insulator facing the cavity so as to increase the path length D1 of the creeping path.
(6)上記プラズマジェットプラグにおいて、前記絶縁体の前記複数の部材は、前記中心電極の外周側に設けられた第1部材と、前記第1部材の外周側に設けられた第2部材とを含み、前記第1部材は、前記第2部材よりも熱伝導率が高い第1の絶縁材料で形成されており、前記第2部材は、前記第1部材よりも耐電圧が高い第2の絶縁材料で形成されているものとしてもよい。
 この構成によれば、第1部材の熱伝導率が第2部材の熱伝導率よりも高いので、第1部材による中心電極からの熱引きを増大させることができ、中心電極の耐久性を向上させることができる。また、第2部材の耐電圧が第1部材よりも高いので、絶縁体全体の耐電圧性を向上させることができる。
(6) In the plasma jet plug, the plurality of members of the insulator include a first member provided on an outer peripheral side of the center electrode and a second member provided on an outer peripheral side of the first member. The first member is made of a first insulating material having a higher thermal conductivity than the second member, and the second member has a second insulation having a higher withstand voltage than the first member. It may be formed of a material.
According to this configuration, since the thermal conductivity of the first member is higher than the thermal conductivity of the second member, the heat extraction from the center electrode by the first member can be increased, and the durability of the center electrode is improved. Can be made. Moreover, since the withstand voltage of the second member is higher than that of the first member, the withstand voltage of the entire insulator can be improved.
(7)上記プラズマジェットプラグにおいて、前記キャビティ内における前記中心電極の側面が絶縁材料で覆われており、前記中心電極の側面に設けられた前記絶縁材料の先端から前記中心電極の先端までの距離Lが、0.4mm以下であるものとしてもよい。
 この構成によれば、絶縁材料から露出する中心電極の先端部分の長さLが0.4mm以下と短いので、プラズマの熱による中心電極の消耗を抑制することができる。
(7) In the plasma jet plug, the side surface of the center electrode in the cavity is covered with an insulating material, and the distance from the tip of the insulating material provided on the side surface of the center electrode to the tip of the center electrode L may be 0.4 mm or less.
According to this configuration, since the length L of the tip portion of the center electrode exposed from the insulating material is as short as 0.4 mm or less, the consumption of the center electrode due to the heat of plasma can be suppressed.
(8)上記プラズマジェットプラグにおいて、前記軸線方向と垂直な方向に沿って測ったときの前記中心電極の側面と前記キャビティの内壁面との間の距離Hが、前記気中ギャップGよりも大きいものとしてもよい。
 この構成によれば、軸線方向と垂直な方向に沿って中心電極の側面からキャビティの内壁面に至る経路に沿って沿面放電が発生し難くなるので、安定して気中放電を行わせることができる。
(8) In the plasma jet plug, a distance H between the side surface of the center electrode and the inner wall surface of the cavity when measured along a direction perpendicular to the axial direction is larger than the air gap G. It may be a thing.
According to this configuration, creeping discharge hardly occurs along the path from the side surface of the center electrode to the inner wall surface of the cavity along the direction perpendicular to the axial direction, so that stable air discharge can be performed. it can.
(9)上記プラズマジェットプラグにおいて、前記オリフィス電極の貫通孔の周囲における前記オリフィス電極の内面が、前記貫通孔に隣接する露出面を残して絶縁材料で覆われており、前記軸線方向と垂直な方向に沿って測ったときの前記露出面の最外周位置と前記中心電極の側面との間の距離Jが、前記距離Hよりも小さいものとしてもよい。
 この構成によれば、オリフィス電極の内面が、貫通孔に隣接する露出面を残して絶縁材料で覆われているので、プラズマによるオリフィス電極の内面の消耗を抑制することができる。
(9) In the plasma jet plug, an inner surface of the orifice electrode around the through hole of the orifice electrode is covered with an insulating material except an exposed surface adjacent to the through hole, and is perpendicular to the axial direction. A distance J between the outermost peripheral position of the exposed surface and the side surface of the center electrode when measured along the direction may be smaller than the distance H.
According to this configuration, since the inner surface of the orifice electrode is covered with the insulating material leaving the exposed surface adjacent to the through hole, it is possible to suppress the consumption of the inner surface of the orifice electrode due to plasma.
(10)上記プラズマジェットプラグにおいて、前記露出面の最外周位置と前記中心電極の先端との間の距離Kが、前記気中ギャップGよりも大きいものとしてもよい。
 この構成によれば、中心電極の先端から、オリフィス電極の貫通孔の周囲の内面を覆う絶縁材料に至る経路に沿って沿面放電が発生し難くなるので、安定して気中放電を行わせることができる。
(10) In the plasma jet plug, a distance K between the outermost peripheral position of the exposed surface and the tip of the center electrode may be larger than the air gap G.
According to this configuration, creeping discharge hardly occurs along the path from the tip of the center electrode to the insulating material covering the inner surface around the through hole of the orifice electrode, so that stable air discharge can be performed. Can do.
(11)本発明の第2形態によれば、プラズマジェットプラグが提供される。このプラズマジェットプラグは、軸線方向に沿って延びる軸孔を有する筒状の絶縁体と、前記軸孔の内部に配置された中心電極と、前記絶縁体の外周に配置された主体金具と、前記主体金具に電気的に接続され前記絶縁体の先端側に配置されたオリフィス電極と、を備え、前記中心電極の表面と前記絶縁体の内面と前記オリフィス電極の内面とによってプラズマ生成用のキャビティが形成されている。第2形態のプラズマジェットプラグは、前記中心電極と前記オリフィス電極の間の最短距離である気中ギャップGと、前記中心電極の先端縁と前記絶縁体の内面との間の最短距離Drとの関係が、1.5×G≦Drを満たすことを特徴とする。第2形態のプラズマジェットプラグの特徴部分は、上述した第1形態のプラズマジェットプラグと組合せて採用することが可能であり、また、第1形態のプラズマジェットプラグの特徴部分の有無とは無関係に採用することも可能である。
 第2形態のプラズマジェットプラグによれば、中心電極の先端縁と絶縁体の内面との間の最短距離Drが、気中ギャップGに比べて十分に大きいので、沿面放電が発生し難くなり、安定して気中放電を行わせることができるので、チャンネリングの発生を抑制できる。
(11) According to the second aspect of the present invention, a plasma jet plug is provided. The plasma jet plug includes a cylindrical insulator having an axial hole extending along an axial direction, a center electrode disposed inside the axial hole, a metal shell disposed on an outer periphery of the insulator, An orifice electrode electrically connected to the metal shell and disposed on the distal end side of the insulator, and a plasma generating cavity is formed by the surface of the center electrode, the inner surface of the insulator, and the inner surface of the orifice electrode. Is formed. The plasma jet plug according to the second aspect includes an air gap G that is the shortest distance between the center electrode and the orifice electrode, and a shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator. The relationship is characterized by satisfying 1.5 × G ≦ Dr. The characteristic part of the plasma jet plug of the second form can be adopted in combination with the plasma jet plug of the first form described above, and is independent of the presence or absence of the characteristic part of the plasma jet plug of the first form. It is also possible to adopt.
According to the plasma jet plug of the second embodiment, since the shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator is sufficiently larger than the air gap G, creeping discharge hardly occurs. Since air discharge can be performed stably, the occurrence of channeling can be suppressed.
(12)上記プラズマジェットプラグにおいて、前記キャビティに面する前記絶縁体の内面は、前記絶縁体の後端側に向かって前記絶縁体の内面が縮径するように設けられた縮径部を有し、前記キャビティは、前記絶縁体の前記縮径部の後端よりも先端側の第1キャビティ部と、前記縮径部の後端よりも後端側の第2キャビティ部とを有するものとしてもよい。
 この構成によれば、小さな容積の第2キャビティ部によって、中心電極の先端縁と絶縁体の内面との間の最短距離Drを大きくできるので、沿面放電が発生を抑制しつつ、キャビティ全体の容積を小さく抑えてプラズマを噴出し易くすることができる。
(12) In the plasma jet plug, the inner surface of the insulator facing the cavity has a reduced diameter portion provided so that the inner surface of the insulator is reduced in diameter toward the rear end side of the insulator. The cavity has a first cavity portion on the front end side of the rear end of the reduced diameter portion of the insulator and a second cavity portion on the rear end side of the rear end of the reduced diameter portion. Also good.
According to this configuration, since the shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator can be increased by the second cavity portion having a small volume, the volume of the entire cavity can be suppressed while suppressing the occurrence of creeping discharge. It is possible to make the plasma easy to be ejected while keeping the value small.
(13)上記プラズマジェットプラグにおいて、前記第2キャビティ部において前記中心電極の表面と前記絶縁体の内面との間を前記軸線方向に垂直な径方向に測った距離である径方向空間距離Dpが、0.1mm以上であるものとしてもよい。
 この構成によれば、第2キャビティ部における沿面放電の発生を抑制して安定して気中放電を行わせることができるので、チャンネリングの発生を抑制できる。
(13) In the plasma jet plug, a radial spatial distance Dp that is a distance measured in a radial direction perpendicular to the axial direction between the surface of the center electrode and the inner surface of the insulator in the second cavity portion. It is good also as what is 0.1 mm or more.
According to this configuration, the occurrence of creeping discharge in the second cavity portion can be suppressed and air discharge can be stably performed, so that the occurrence of channeling can be suppressed.
(14)上記プラズマジェットプラグにおいて、前記軸線方向に沿って測った前記第2キャビティ部の深さDqが、0<Dq≦3×Dpを満たすものとしてもよい。
 この構成によれば、第2キャビティ部の深さDqをこの範囲に設定することにより、沿面放電よりも気中放電が発生し易くなる傾向を高めることができ、また、第2キャビティ部の容積が過度に大きくなることを防止してプラズマを噴出し易くすることができる。
(14) In the plasma jet plug, a depth Dq of the second cavity portion measured along the axial direction may satisfy 0 <Dq ≦ 3 × Dp.
According to this configuration, by setting the depth Dq of the second cavity portion in this range, it is possible to increase the tendency that air discharge is more likely to occur than creeping discharge, and the volume of the second cavity portion. Can be prevented from becoming excessively large, and plasma can be easily ejected.
(15)上記プラズマジェットプラグにおいて、前記第2キャビティ部の前記径方向空間距離Dpと、前記中心電極の先端縁と前記絶縁体の内面との間の前記最短距離Drとの関係が、Dp/Dr≦0.5を満たすものとしてもよい。
 この構成によれば、Dp/Drをこの範囲内に設定することにより、プラズマをより噴出し易くすることができる。
(15) In the plasma jet plug, the relationship between the radial space distance Dp of the second cavity portion and the shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator is Dp / It is good also as satisfy | filling Dr <= 0.5.
According to this configuration, plasma can be more easily ejected by setting Dp / Dr within this range.
 なお、本発明は、種々の態様で実現することが可能であり、例えば、プラズマジェットプラグやプラズマジェットプラグを用いた点火装置、そのプラズマジェットプラグを搭載する内燃機関や、そのプラズマジェットプラグを用いた点火装置を搭載する内燃機関等の態様で実現することができる。 The present invention can be realized in various modes. For example, an ignition device using a plasma jet plug or a plasma jet plug, an internal combustion engine equipped with the plasma jet plug, or the plasma jet plug is used. This can be realized in the form of an internal combustion engine or the like equipped with the conventional ignition device.
一実施形態としてのプラズマジェットプラグの部分断面図。The fragmentary sectional view of the plasma jet plug as one embodiment. プラズマジェットプラグの先端部分を拡大した断面図。Sectional drawing which expanded the front-end | tip part of the plasma jet plug. 点火装置のブロック図。The block diagram of an ignition device. 第1実施形態と変形例のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 1st Embodiment and a modification. 第2実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 2nd Embodiment. 第3実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 3rd Embodiment. 第4実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 4th Embodiment. 第5実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 5th Embodiment. 第6実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 6th Embodiment. D1/Gに関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding D1 / G. 溝幅に関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding a groove width. 溝深さと溝幅の関係に関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding the relationship between groove depth and groove width. キャビティに面する中心電極の側面の表面積に関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding the surface area of the side surface of the center electrode which faces a cavity. 第7実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 7th Embodiment. 第8実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 8th Embodiment. 第9実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 9th Embodiment. 第10実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 10th Embodiment. 中心電極の露出長さに関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding the exposure length of a center electrode. オリフィス電極内面の絶縁体被覆に関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding the insulator coating | cover of an orifice electrode inner surface. 第11実施形態のプラズマジェットプラグの先端部分を拡大した断面図。Sectional drawing which expanded the front-end | tip part of the plasma jet plug of 11th Embodiment. 第11実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 11th Embodiment. 第12実施形態のプラズマジェットプラグの先端部分の断面の拡大図。The enlarged view of the cross section of the front-end | tip part of the plasma jet plug of 12th Embodiment. Dr/Gに関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding Dr / G. 第2キャビティ部の径方向空間距離Dpに関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding the radial direction spatial distance Dp of a 2nd cavity part. Dq/Dpに関する試験結果(その1)を示す説明図。Explanatory drawing which shows the test result (the 1) regarding Dq / Dp. Dq/Dpに関する試験結果(その2)を示す説明図。Explanatory drawing which shows the test result (the 2) regarding Dq / Dp. Dp/Drに関する試験結果を示す説明図。Explanatory drawing which shows the test result regarding Dp / Dr.
A.全体構成:
 図1は、本発明の一実施形態としてのプラズマジェットプラグ100の部分断面図である。また、図2は、プラズマジェットプラグ100の先端部分を拡大した断面図である。図1,2において、プラズマジェットプラグ100の軸線Oの方向に沿って下側をプラズマジェットプラグ100の先端側と呼び、上側を後端側と呼ぶ。また、軸線Oと交差し、軸線Oに垂直な方向を「径方向」と呼ぶ。
A. overall structure:
FIG. 1 is a partial cross-sectional view of a plasma jet plug 100 as an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the tip portion of the plasma jet plug 100. 1 and 2, the lower side along the direction of the axis O of the plasma jet plug 100 is referred to as the front end side of the plasma jet plug 100, and the upper side is referred to as the rear end side. A direction that intersects the axis O and is perpendicular to the axis O is referred to as a “radial direction”.
 図1において、軸線Oより右側はプラズマジェットプラグ100の外観を示し、軸線Oの左側は断面図を示している。プラズマジェットプラグ100は、絶縁体10と、絶縁体10を保持する主体金具50と、絶縁体10の内部に保持された中心電極20と、主体金具50の先端部57に配置されたオリフィス電極30と、絶縁体10の後端部に配置された端子金具40とを備えている。 In FIG. 1, the right side of the axis O shows the appearance of the plasma jet plug 100, and the left side of the axis O shows a cross-sectional view. The plasma jet plug 100 includes an insulator 10, a metal shell 50 that holds the insulator 10, a center electrode 20 that is held inside the insulator 10, and an orifice electrode 30 that is disposed at a distal end portion 57 of the metal shell 50. And a terminal fitting 40 disposed at the rear end of the insulator 10.
 絶縁体10は、アルミナ等のセラミックス材料を焼成して形成されており、軸線O方向に延びる軸孔12を有する筒状の絶縁部材である。軸線O方向の略中央には外径が最も大きな鍔部19が形成されており、これより後端側には後端側胴部18が形成されている。また、鍔部19より先端側には後端側胴部18より外径の小さな先端側胴部17と、その先端側胴部17よりも先端側で先端側胴部17よりも更に外径の小さな脚長部13とが形成されている。この脚長部13と先端側胴部17との間は段状に形成されている。軸孔12のうち脚長部13の内周にあたる部分は、電極収容部15として形成されている。この電極収容部15は、先端側胴部17と鍔部19と後端側胴部18のいずれの内周部分よりも縮径されている。この電極収容部15の内部には中心電極20が保持される。絶縁体10の脚長部13の先端側には、脚長部13よりも内径が大きな拡大内径部16が形成されている。 The insulator 10 is formed by firing a ceramic material such as alumina, and is a cylindrical insulating member having an axial hole 12 extending in the direction of the axis O. A flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end side body portion 18 is formed on the rear end side. Further, a distal end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 on the front end side from the flange portion 19, and a further outer diameter than the front end side body portion 17 on the front end side of the front end side body portion 17. A small leg length 13 is formed. Between the leg long part 13 and the front end side body part 17, it is formed in a step shape. A portion of the shaft hole 12 corresponding to the inner periphery of the long leg portion 13 is formed as an electrode housing portion 15. The electrode housing portion 15 is smaller in diameter than any inner peripheral portion of the front end side body portion 17, the flange portion 19, and the rear end side body portion 18. A center electrode 20 is held inside the electrode housing portion 15. An enlarged inner diameter portion 16 having a larger inner diameter than the leg length portion 13 is formed on the distal end side of the leg length portion 13 of the insulator 10.
 中心電極20は、軸線Oに沿って延びる棒状の導電性部材であり、絶縁体10の軸孔12の内部に配置されている。本実施形態では、中心電極20は、タングステン等の高融点材料で形成された一体成形品である。ただし、中心電極20の構成としては、他の種々の構成を採用可能である。例えば、母材と、母材内に埋設された芯材と、の2重構造を有する構成を採用してもよい。 The center electrode 20 is a rod-shaped conductive member extending along the axis O, and is disposed inside the shaft hole 12 of the insulator 10. In the present embodiment, the center electrode 20 is an integrally molded product formed of a high melting point material such as tungsten. However, various other configurations can be adopted as the configuration of the center electrode 20. For example, a configuration having a double structure of a base material and a core material embedded in the base material may be adopted.
 図2に示すように、中心電極20は、最も後端側の頭部21と、頭部21よりも先端側に位置し頭部21より外径が小さい脚部22とを有している。中心電極20の脚部22は、電極収容部15に収容され、中心電極20の頭部21は、軸孔12の縮内径部10zから後端側の部分に収容されている。頭部21の先端側の面と縮内径部10zの後端側の面とが密着しており、その周方向の全周に亘って封止されている。 As shown in FIG. 2, the center electrode 20 has a head 21 on the most rear end side and a leg portion 22 that is located on the tip side of the head 21 and has an outer diameter smaller than that of the head 21. The leg portion 22 of the center electrode 20 is housed in the electrode housing portion 15, and the head portion 21 of the center electrode 20 is housed in a portion on the rear end side from the reduced inner diameter portion 10 z of the shaft hole 12. The surface on the front end side of the head 21 and the surface on the rear end side of the reduced inner diameter portion 10z are in close contact with each other, and are sealed over the entire circumference in the circumferential direction.
 図1に示すように、中心電極20は、軸孔12の内部に設けられた金属とガラスの混合物からなる導電性のシール体4を経由して、後端側の端子金具40に電気的に接続されている。このシール体4により、中心電極20および端子金具40が、軸孔12内で固定されると共に、相互に導通する。端子金具40にはプラグキャップ(図示外)を介して高圧ケーブル(図示外)が接続される。 As shown in FIG. 1, the center electrode 20 is electrically connected to the terminal fitting 40 on the rear end side through a conductive seal body 4 made of a mixture of metal and glass provided in the shaft hole 12. It is connected. With this seal body 4, the center electrode 20 and the terminal fitting 40 are fixed in the shaft hole 12 and are electrically connected to each other. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown).
 主体金具50は、内燃機関のエンジンヘッドにプラズマジェットプラグ100を固定するための円筒状の金具であり、絶縁体10を取り囲むようにして保持している。主体金具50は、プラグレンチが嵌合する工具係合部51と、エンジンヘッドに螺合するねじ部52とを備えている。主体金具50の工具係合部51より後端側には加締部53が設けられている。工具係合部51から加締部53にかけての主体金具50と、絶縁体10の後端側胴部18との間には円環状のリング部材6,7が介在されており、2つのリング部材6,7の間にタルク9(滑石)の粉末が充填されている。そして、加締部53を加締めることにより、リング部材6,7およびタルク9を介して絶縁体10が主体金具50内で先端側に向け押圧される。これにより、絶縁体10の脚長部13と先端側胴部17との間の段状の部位が、主体金具50の内周面に段状に形成された係止部56に環状のパッキン80を介して支持されて、主体金具50と絶縁体10とが一体にされる。このパッキン80によって、主体金具50と絶縁体10との間の気密は保持され、燃焼ガスの流出が防止される。また、工具係合部51とねじ部52との間には鍔部54が形成されており、ねじ部52の後端側近傍、すなわち鍔部54の座面55にはガスケット5が嵌挿されている。 The main metal fitting 50 is a cylindrical metal fitting for fixing the plasma jet plug 100 to the engine head of the internal combustion engine, and holds the insulator 10 so as to surround it. The metal shell 50 includes a tool engaging portion 51 into which a plug wrench is fitted and a screw portion 52 to be screwed into the engine head. A caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51. Annular ring members 6, 7 are interposed between the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the rear end side body portion 18 of the insulator 10, and two ring members Between 6 and 7, talc 9 (talc) powder is filled. Then, by crimping the crimping portion 53, the insulator 10 is pressed toward the distal end side in the metal shell 50 through the ring members 6, 7 and the talc 9. As a result, the stepped portion between the leg length portion 13 of the insulator 10 and the front end side body portion 17 is provided with an annular packing 80 on the locking portion 56 formed in a step shape on the inner peripheral surface of the metal shell 50. The metal shell 50 and the insulator 10 are integrated with each other. By this packing 80, airtightness between the metal shell 50 and the insulator 10 is maintained, and combustion gas is prevented from flowing out. Further, a flange 54 is formed between the tool engaging portion 51 and the screw portion 52, and the gasket 5 is inserted into the vicinity of the rear end side of the screw portion 52, that is, the seat surface 55 of the flange 54. ing.
 オリフィス電極30は、主体金具50の先端部57に設けられている。図2に示すように、主体金具50の先端部57の内周側には凹部57Aが形成されており、この凹部57A内にオリフィス電極30が嵌め込まれている。オリフィス電極30は、中央に貫通孔31を有する円環状の板状部材である。この貫通孔31は、プラズマを噴出する噴出孔として機能する。オリフィス電極30の周縁は、全周に亘ってレーザー溶接などによって主体金具50に接合されている。主体金具50とオリフィス電極30は電気的に導通している。主体金具50はエンジンヘッドに螺合されて接地されるので、オリフィス電極30も接地される。また、オリフィス電極30は、主体金具50の先端方向の開口を覆っている。 The orifice electrode 30 is provided at the front end portion 57 of the metal shell 50. As shown in FIG. 2, a concave portion 57A is formed on the inner peripheral side of the distal end portion 57 of the metal shell 50, and the orifice electrode 30 is fitted in the concave portion 57A. The orifice electrode 30 is an annular plate member having a through hole 31 at the center. The through hole 31 functions as an ejection hole for ejecting plasma. The peripheral edge of the orifice electrode 30 is joined to the metal shell 50 by laser welding or the like over the entire circumference. The metal shell 50 and the orifice electrode 30 are electrically connected. Since the metal shell 50 is screwed to the engine head and grounded, the orifice electrode 30 is also grounded. The orifice electrode 30 covers the opening in the distal direction of the metal shell 50.
 プラズマを生成するためのキャビティCVは、図2に示すように、絶縁体10の先端部分の内面と、中心電極20の先端部分の表面と、オリフィス電極30の内面との間に形成されている。中心電極20とオリフィス電極30との間に電圧を印加することによって、プラズマが生成される。 As shown in FIG. 2, the cavity CV for generating plasma is formed between the inner surface of the tip portion of the insulator 10, the surface of the tip portion of the center electrode 20, and the inner surface of the orifice electrode 30. . Plasma is generated by applying a voltage between the center electrode 20 and the orifice electrode 30.
 図3は、プラズマジェットプラグ100を点火させる点火装置120の構成を示すブロック図である。この点火装置120は、火花放電回路部140と、プラズマ放電回路部160と、これらを制御する2つの制御回路部130,150とを有している。制御回路部130,150は、自動車のECUに接続される。 FIG. 3 is a block diagram showing the configuration of the ignition device 120 that ignites the plasma jet plug 100. The ignition device 120 includes a spark discharge circuit unit 140, a plasma discharge circuit unit 160, and two control circuit units 130 and 150 for controlling them. Control circuit units 130 and 150 are connected to the ECU of the automobile.
 火花放電回路部140は、プラズマジェットプラグ100の中心電極20とオリフィス電極30の間のギャップに高電圧を印加することによって絶縁破壊を生じさせて火花放電を開始させる、いわゆるトリガー放電を行うための電源回路である。プラズマ放電回路部160は、トリガー放電により絶縁破壊が生じたギャップに大電流を供給するための電源回路である。プラズマ放電回路部160は、電気エネルギーを蓄えておくコンデンサ162と、コンデンサ162を充電するための高電圧発生回路161と、を有している。コンデンサ162の一端は接地され、他端は中心電極20に接続されている。中心電極20とオリフィス電極30との間のギャップで放電が生じると、点火装置120から供給される大電流によってキャビティCV内の気体が励起されてプラズマが形成される。キャビティCV内に形成されたプラズマが膨張し、キャビティCV内の圧力が高まると、キャビティCV内のプラズマは、オリフィス電極30の貫通孔31から噴出される。噴出されたプラズマによって、内燃機関の燃焼室内の混合気が着火する。 The spark discharge circuit section 140 is for performing a so-called trigger discharge in which a high voltage is applied to the gap between the center electrode 20 and the orifice electrode 30 of the plasma jet plug 100 to cause a dielectric breakdown to start a spark discharge. It is a power supply circuit. The plasma discharge circuit unit 160 is a power supply circuit for supplying a large current to a gap where dielectric breakdown has occurred due to trigger discharge. The plasma discharge circuit unit 160 includes a capacitor 162 for storing electric energy and a high voltage generation circuit 161 for charging the capacitor 162. One end of the capacitor 162 is grounded, and the other end is connected to the center electrode 20. When a discharge occurs in the gap between the center electrode 20 and the orifice electrode 30, the gas in the cavity CV is excited by a large current supplied from the ignition device 120 to form plasma. When the plasma formed in the cavity CV expands and the pressure in the cavity CV increases, the plasma in the cavity CV is ejected from the through hole 31 of the orifice electrode 30. The air-fuel mixture in the combustion chamber of the internal combustion engine is ignited by the ejected plasma.
B.プラズマジェットプラグの先端部分の各種実施形態:
 図4(A)は、プラズマジェットプラグの第1実施形態の先端部分の断面の拡大図であり、図4(B)はその変形例の先端部分の断面の拡大図である。なお、図4では、図1及び図2とは上下が逆であり、図4の上側がプラズマジェットプラグの先端側であり、図4の下側がプラズマジェットプラグの後端側である。
B. Various embodiments of the tip portion of the plasma jet plug:
FIG. 4A is an enlarged view of the cross section of the tip portion of the first embodiment of the plasma jet plug, and FIG. 4B is an enlarged view of the cross section of the tip portion of the modification. 4 is upside down with respect to FIGS. 1 and 2, the upper side of FIG. 4 is the front end side of the plasma jet plug, and the lower side of FIG. 4 is the rear end side of the plasma jet plug.
 図4(A)に示す第1実施形態のプラズマジェットプラグ100において、中心電極20の先端部分は円柱形状の脚部22として形成されている。絶縁体10の先端近傍の脚長部13には、脚長部13よりも内径が大きな拡大内径部16が形成されている。なお、脚長部13を「小内径部13」とも呼ぶ。脚長部13と拡大内径部16との間には縮径部14が形成されている。この例では、縮径部14は軸線Oに垂直な面として形成されているが、テーパ状に形成されていてもよい。絶縁体10の縮径部14の外縁には、縮径部14の表面よりも後端側に窪んだ円環状の溝部Gr1が形成されている。この溝部Gr1は、沿面経路に凹状経路を形成するものである。溝部Gr1の大きさは、溝部Gr1の幅Wa1と深さWd1とで規定される。溝部Gr1を形成する効果については後述する。 In the plasma jet plug 100 of the first embodiment shown in FIG. 4A, the tip portion of the center electrode 20 is formed as a columnar leg portion 22. An enlarged inner diameter portion 16 having an inner diameter larger than that of the leg length portion 13 is formed in the leg length portion 13 in the vicinity of the tip of the insulator 10. The long leg portion 13 is also referred to as a “small inner diameter portion 13”. A reduced diameter portion 14 is formed between the leg length portion 13 and the enlarged inner diameter portion 16. In this example, the reduced diameter portion 14 is formed as a surface perpendicular to the axis O, but may be formed in a tapered shape. On the outer edge of the reduced diameter portion 14 of the insulator 10, an annular groove Gr <b> 1 that is recessed toward the rear end side from the surface of the reduced diameter portion 14 is formed. This groove part Gr1 forms a concave path in the creeping path. The size of the groove part Gr1 is defined by the width Wa1 and the depth Wd1 of the groove part Gr1. The effect of forming the groove part Gr1 will be described later.
 キャビティCVは、中心電極20の表面20sと、絶縁体10の内面10inと、オリフィス電極30の内面30inとによって囲まれる空間である。但し、キャビティCVは、オリフィス電極30の貫通孔31の部分を含んでおらず、貫通孔31が無いと仮定したときのオリフィス電極30の内面30inの内側の空間を意味している。なお、中心電極20の脚部22の外周面と絶縁体10の内面との間には、両者の組み付けのために微少な隙間(0.06mm未満)が形成されている。隙間が0.06mm未満の空間は微少であり、プラズマが発生しないので、キャビティCVの一部として機能しない。本明細書において、「キャビティ」とは、プラズマが生成される空間を意味し、隙間が0.06mm以上の空間を意味する。より具体的に言えば、図4(A)の第1実施形態における「キャビティ」は、絶縁体10の先端部分の内面10inと、中心電極20の先端部分の表面と、オリフィス電極30の内面30inとの間に形成される空間のうち、隙間が0.06mm以上の空間を意味し、隙間が0.06mm未満の空間を含まない。 The cavity CV is a space surrounded by the surface 20s of the center electrode 20, the inner surface 10in of the insulator 10, and the inner surface 30in of the orifice electrode 30. However, the cavity CV does not include the portion of the through hole 31 of the orifice electrode 30, and means a space inside the inner surface 30in of the orifice electrode 30 when it is assumed that there is no through hole 31. Note that a minute gap (less than 0.06 mm) is formed between the outer peripheral surface of the leg portion 22 of the center electrode 20 and the inner surface of the insulator 10 in order to assemble them. A space with a gap of less than 0.06 mm is very small and plasma is not generated, so it does not function as a part of the cavity CV. In this specification, the “cavity” means a space where plasma is generated, and means a space having a gap of 0.06 mm or more. More specifically, the “cavity” in the first embodiment of FIG. 4A includes the inner surface 10 in of the tip portion of the insulator 10, the surface of the tip portion of the center electrode 20, and the inner surface 30 in of the orifice electrode 30. Means a space having a gap of 0.06 mm or more, and does not include a space having a gap of less than 0.06 mm.
 図4(A)では、更に、以下の寸法が示されている。
(1)D1:中心電極20の表面20sから絶縁体10の内面を経由してオリフィス電極30の内面30inに至るまでの沿面経路の最短長さ(以下、「沿面最短経路長」と呼ぶ)。図4(A)では、この沿面最短経路長D1は、溝部Gr1に沿った凹状経路の長さを含んでいる。
(2)E:オリフィス電極30の貫通孔31の内径。
(3)G:オリフィス電極30の内面30inと、中心電極20の先端面20tとの間の軸線方向の距離G。この距離Gを「気中ギャップG」とも呼ぶ。気中ギャップGの典型的な値の範囲は、例えば0.3mm~1.5mmである。
In FIG. 4A, the following dimensions are further shown.
(1) D1: The shortest length of the creeping path from the surface 20s of the center electrode 20 through the inner surface of the insulator 10 to the inner surface 30in of the orifice electrode 30 (hereinafter referred to as “the creepage shortest path length”). In FIG. 4A, the creeping shortest path length D1 includes the length of the concave path along the groove part Gr1.
(2) E: Inner diameter of the through hole 31 of the orifice electrode 30.
(3) G: A distance G in the axial direction between the inner surface 30 in of the orifice electrode 30 and the tip surface 20 t of the center electrode 20. This distance G is also referred to as “air gap G”. A typical value range of the air gap G is, for example, 0.3 mm to 1.5 mm.
 なお、オリフィス電極30の貫通孔31の内径Eは、中心電極20の先端にある脚部22の外径よりも小さいことが好ましい。これは、気中ギャップGにおいて気中放電を生じ易くするためである。 Note that the inner diameter E of the through hole 31 of the orifice electrode 30 is preferably smaller than the outer diameter of the leg portion 22 at the tip of the center electrode 20. This is to facilitate air discharge in the air gap G.
 図4(B)は、変形例としてのプラズマジェットプラグ100rの先端部分の断面の拡大図である。このプラズマジェットプラグ100rは、第1実施形態のプラズマジェットプラグ100から、絶縁体10の溝部Gr1を省略したものであり、他の構成は第1実施形態と同じである。この変形例における沿面最短経路長D1rは、溝部Gr1の長さ(=Wa1+2×Wd1)の分だけ第1実施形態における沿面最短経路長D1よりも短い。 FIG. 4B is an enlarged view of a cross section of a tip portion of a plasma jet plug 100r as a modification. This plasma jet plug 100r is obtained by omitting the groove Gr1 of the insulator 10 from the plasma jet plug 100 of the first embodiment, and the other configuration is the same as that of the first embodiment. The shortest creepage path length D1r in this modification is shorter than the shortest creepage path length D1 in the first embodiment by the length of the groove Gr1 (= Wa1 + 2 × Wd1).
 図4(A)に示す第1実施形態では、絶縁体10の内面10inの一部に溝部Gr1を設けているので、変形例に比べて沿面最短経路長D1を長くすることができる。この結果、沿面放電を発生し難くすることができ、安定して気中放電を行わせることができる。この観点からは、特に、沿面最短経路長D1を気中ギャップGの5倍以上とすることが好ましい。但し、図4(B)に示した変形例においても、沿面最短経路長D1rを気中ギャップGの5倍以上とすれば、沿面放電を発生し難くすることができ、安定して気中放電を行わせることが可能なので、本発明の実施形態として採用することが可能である。但し、図4(A)に示す第1実施形態のように、沿面経路において凹状経路を形成する溝部Gr1を設けるようにすれば、キャビティCVの容積を過度に増大させること無く沿面最短経路長D1を長くできる点で好ましい。 In the first embodiment shown in FIG. 4A, since the groove portion Gr1 is provided in a part of the inner surface 10in of the insulator 10, the creeping shortest path length D1 can be increased as compared with the modified example. As a result, creeping discharge can be made difficult to occur, and air discharge can be stably performed. From this point of view, it is particularly preferable that the creepage shortest path length D1 is 5 times or more the air gap G. However, also in the modification shown in FIG. 4B, if the creepage shortest path length D1r is 5 times or more of the air gap G, it is possible to make it difficult to generate the creeping discharge, and to stabilize the air discharge. Therefore, it can be adopted as an embodiment of the present invention. However, as in the first embodiment shown in FIG. 4A, if the groove portion Gr1 that forms the concave path is provided in the creeping path, the creeping shortest path length D1 without excessively increasing the volume of the cavity CV. Is preferable in that it can be lengthened.
 溝部Gr1の溝幅Wa1は0.06mm以上であれば良いが、0.1mm以上とすることが好ましい。溝幅Wa1が過度に小さいと、溝部Gr1が沿面経路を延長する機能を有さない(すなわち溝部Gr1を飛び越えて放電が生じる)可能性があるからである。溝幅Wa1が0.1mm以上である溝部Gr1を設けるようにすれば、キャビティの容積を小さく抑えつつ、沿面最短経路長D1を長くすることができる点で好ましい。なお、溝幅Wa1の最大値には特に制限は無いが、例えば溝幅Wa1を0.5mm以下とすることが好ましく、0.3mm以下とすることが更に好ましい。 The groove width Wa1 of the groove part Gr1 may be 0.06 mm or more, but is preferably 0.1 mm or more. This is because if the groove width Wa1 is excessively small, the groove part Gr1 may not have a function of extending the creeping path (that is, a discharge is generated by jumping over the groove part Gr1). Providing the groove part Gr1 having a groove width Wa1 of 0.1 mm or more is preferable in that the creepage shortest path length D1 can be increased while keeping the volume of the cavity small. The maximum value of the groove width Wa1 is not particularly limited, but for example, the groove width Wa1 is preferably 0.5 mm or less, and more preferably 0.3 mm or less.
 また、溝部Gr1の深さWd1は、溝幅Wa1の3倍以下とすることが好ましい。こうすれば、沿面最短経路長D1を長くしつつ、キャビティCVの容積を小さく抑えてプラズマを噴出し易くすることが可能である。 Further, it is preferable that the depth Wd1 of the groove part Gr1 is not more than three times the groove width Wa1. In this way, it is possible to make it easier to eject plasma by reducing the volume of the cavity CV while increasing the shortest creepage path length D1.
 図5は、第2実施形態におけるプラズマジェットプラグ100aの先端部分の断面の拡大図である。このプラズマジェットプラグ100aは、第1実施形態のプラズマジェットプラグ100(図4(A))の絶縁体10の内面10inに円環状の第2の溝部Gr2を追加したものであり、他の構成は第1実施形態と同じである。すなわち、第2実施形態のプラズマジェットプラグ100aは、絶縁体10の内面10inに2つの溝部Gr1,Gr2を設けている。第2の溝部Gr2の溝深さWd1は図5の例では第1の溝部Gr1の溝深さと同じであるが、両者の深さは変えても良い。また、第2の溝部Gr2の溝幅Wa2は、第1の溝部Gr1の溝幅Wa1と同じでも良く、異なっていても良い。更に、溝部を3つ以上設けても良い。また、図5の例では、絶縁体10の縮径部14に溝部Gr1,Gr2を設けているが、軸線Oに沿った絶縁体10の円筒内面に溝部を形成してもよい。 FIG. 5 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100a in the second embodiment. This plasma jet plug 100a is obtained by adding an annular second groove Gr2 to the inner surface 10in of the insulator 10 of the plasma jet plug 100 (FIG. 4A) of the first embodiment. The same as in the first embodiment. That is, in the plasma jet plug 100a of the second embodiment, two grooves Gr1 and Gr2 are provided on the inner surface 10in of the insulator 10. The groove depth Wd1 of the second groove portion Gr2 is the same as the groove depth of the first groove portion Gr1 in the example of FIG. 5, but the depths of both may be changed. Further, the groove width Wa2 of the second groove part Gr2 may be the same as or different from the groove width Wa1 of the first groove part Gr1. Further, three or more grooves may be provided. In the example of FIG. 5, the groove portions Gr <b> 1 and Gr <b> 2 are provided in the reduced diameter portion 14 of the insulator 10, but the groove portion may be formed on the cylindrical inner surface of the insulator 10 along the axis O.
 図6は、第3実施形態におけるプラズマジェットプラグ100bの先端部分の断面の拡大図である。このプラズマジェットプラグ100bは、第1実施形態のプラズマジェットプラグ100(図4(A))のキャビティCVの部分を軸線Oの方向に沿って引き延ばしたものであり、他の構成は第1実施形態と同じである。すなわち、第2実施形態のプラズマジェットプラグ100bでは、キャビティCVに面している中心電極20の側面20fが、第1実施形態に比べて長くなっている。中心電極20の側面20fの表面積S20fは、以下で表される。
 S20f=2πR・L    …(1)
ここで、Rは中心電極20の露出部分の半径、Lは中心電極20の露出部分の軸線方向の長さである。半径Rの典型的な値の範囲は、例えば0.25mm~1mmである。また、長さLの典型的な値の範囲は、例えば0mm~5mmである。
FIG. 6 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100b in the third embodiment. This plasma jet plug 100b is obtained by extending the cavity CV portion of the plasma jet plug 100 (FIG. 4A) of the first embodiment along the direction of the axis O, and the other configuration is the first embodiment. Is the same. That is, in the plasma jet plug 100b of the second embodiment, the side surface 20f of the center electrode 20 facing the cavity CV is longer than that of the first embodiment. The surface area S 20f of the side surface 20f of the center electrode 20 is expressed as follows.
S 20f = 2πR · L (1)
Here, R is the radius of the exposed portion of the center electrode 20, and L is the length of the exposed portion of the center electrode 20 in the axial direction. A typical value range for the radius R is, for example, 0.25 mm to 1 mm. A typical value range of the length L is, for example, 0 mm to 5 mm.
 中心電極20の側面20fの表面積S20fが過度に大きくなると、中心電極20によってプラズマが冷却されてしまい、プラズマ噴出性能が低下する可能性がある。この点を考慮すると、中心電極20の側面20fの表面積S20fを20mm2以下とすることが好ましい。こうすれば、中心電極20によってプラズマが冷却されてしまう現象を抑制でき、プラズマを噴出し易くすることができる。 If the surface area S 20f of the side surface 20f of the center electrode 20 becomes excessively large, the plasma is cooled by the center electrode 20 and the plasma ejection performance may be lowered. Considering this point, it is preferable that the surface area S 20f of the side surface 20f of the center electrode 20 is 20 mm 2 or less. In this way, the phenomenon that the plasma is cooled by the center electrode 20 can be suppressed, and the plasma can be easily ejected.
 図7は、第4実施形態におけるプラズマジェットプラグ100cの先端部分の断面の拡大図である。このプラズマジェットプラグ100cは、キャビティCVに面する絶縁体10を、複数の部材13c、16cで構成したものであり、他の構成は第1実施形態と同じである。より具体的には、絶縁体10の脚長部13及びその先端側に続く拡大内径部16の部分を、中心電極20の外周側に設けられた第1部材13cと、その外周側に設けられた第2部材16cの2つの部材に分離した。第1部材13cは、図4(A)の脚長部13に相当するものであり、脚長部13に比べて小さな外径を有するように形成されている。また、第2部材16cは略円環状の部材であり、第1部材13cの外周側にはめ込まれて固定されている。 FIG. 7 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100c in the fourth embodiment. In the plasma jet plug 100c, the insulator 10 facing the cavity CV is configured by a plurality of members 13c and 16c, and other configurations are the same as those of the first embodiment. More specifically, the leg length portion 13 of the insulator 10 and the portion of the enlarged inner diameter portion 16 following the distal end side thereof are provided on the outer peripheral side of the first member 13 c provided on the outer peripheral side of the center electrode 20. The second member 16c was separated into two members. The first member 13 c corresponds to the leg long part 13 of FIG. 4A and is formed to have a smaller outer diameter than the leg long part 13. The second member 16c is a substantially annular member, and is fitted and fixed to the outer peripheral side of the first member 13c.
 また、図7では、第1部材13cと第2部材16cとが接する位置に、沿面経路において凹状経路を形成する溝部Gr1が形成されている。この溝部Gr1は、2つの部材13c、16cの境界部分に形成されている。キャビティCVに面する絶縁体10を複数の部材13c,16cで構成するようにすれば、溝部Gr1をより形成しやすいという利点がある。但し、溝部Gr1を省略して、図4(B)と同様の形状にしてもよい。 Further, in FIG. 7, a groove part Gr1 that forms a concave path in the creeping path is formed at a position where the first member 13c and the second member 16c are in contact with each other. This groove part Gr1 is formed in the boundary part of the two members 13c and 16c. If the insulator 10 facing the cavity CV is constituted by a plurality of members 13c and 16c, there is an advantage that the groove Gr1 can be formed more easily. However, the groove portion Gr1 may be omitted and the shape similar to that shown in FIG.
 また、キャビティCVに面する絶縁体10を複数の部材13c,16cで構成するとともに、それらの材質を変えることによって、更なる利点を得ることができる。例えば、内周側の第1部材13cを、外周側の第2部材16cよりも熱伝導率が高い第1の絶縁材料(例えば窒化アルミニウム(AlN))で形成するとともに、外周側の第2部材16cを、内周側の第1部材13cよりも耐電圧が高い第2の絶縁材料(例えばアルミナ(Al23))で形成するようにしてもよい。このような構成を採用すれば、第1部材13cによる中心電極20からの熱引きを増大させることができ、中心電極20の耐久性を向上させることができる。また、第2部材16cの耐電圧が第1部材13cよりも高いので、絶縁体10全体の耐電圧性を向上させることができる。 Further, the insulator 10 facing the cavity CV is constituted by a plurality of members 13c and 16c, and further advantages can be obtained by changing their materials. For example, the first member 13c on the inner peripheral side is formed of a first insulating material (for example, aluminum nitride (AlN)) having a higher thermal conductivity than the second member 16c on the outer peripheral side, and the second member on the outer peripheral side. the 16c, may be formed in the second insulating material withstand voltage is higher than the first member 13c on the inner circumferential side (for example, alumina (Al 2 O 3)). If such a structure is employ | adopted, the heat sink from the center electrode 20 by the 1st member 13c can be increased, and durability of the center electrode 20 can be improved. Moreover, since the withstand voltage of the second member 16c is higher than that of the first member 13c, the withstand voltage of the entire insulator 10 can be improved.
 図8は、第5実施形態におけるプラズマジェットプラグ100dの先端部分の断面の拡大図である。このプラズマジェットプラグ100dは、第4実施形態(図7)と同様に、キャビティCVに面する絶縁体10を、複数の部材13d、16dで構成したものである。また、図8では、絶縁体10の第1部材13dに第1の溝部Gr1を設けるとともに、第1部材13dと第2部材16dの境界位置に第2の溝部Gr2を設けている。換言すれば、第2の溝部Gr2の壁面の一部は第1部材13dの表面で構成されており、他の部分は第2部材16dの表面で構成されている。この結果、複数の溝部Gr1,Gr2によって、沿面最短経路長D1を十分に長くすることが容易である。 FIG. 8 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100d in the fifth embodiment. In the plasma jet plug 100d, as in the fourth embodiment (FIG. 7), the insulator 10 facing the cavity CV is composed of a plurality of members 13d and 16d. In FIG. 8, the first groove 13r is provided in the first member 13d of the insulator 10, and the second groove Gr2 is provided at the boundary position between the first member 13d and the second member 16d. In other words, a part of the wall surface of the second groove part Gr2 is configured by the surface of the first member 13d, and the other part is configured by the surface of the second member 16d. As a result, it is easy to sufficiently lengthen the creepage shortest path length D1 by the plurality of grooves Gr1 and Gr2.
 図9は、第6実施形態におけるプラズマジェットプラグ100eの先端部分の断面の拡大図である。このプラズマジェットプラグ100eは、第4実施形態(図7)及び第5実施形態(図8)と同様に、キャビティCVに面する絶縁体10を、複数の部材13e、16eで構成したものである。図9では、第2部材16dの先端に小さな開口を有する先端開口部16pを設けて、オリフィス電極30の内面30inを覆っている点が図7と異なっている。なお、第2部材16dの先端開口部16pは、オリフィス電極30の内面30inの全体を覆っても良く、その一部のみを覆っても良い。このように、第2部材16dに先端開口部16pを設けて、オリフィス電極30の内面30inを覆うようにすれば、沿面最短経路長D1を更に長くすることが可能である。 FIG. 9 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100e in the sixth embodiment. In the plasma jet plug 100e, as in the fourth embodiment (FIG. 7) and the fifth embodiment (FIG. 8), the insulator 10 facing the cavity CV is composed of a plurality of members 13e and 16e. . 9 differs from FIG. 7 in that a tip opening 16p having a small opening is provided at the tip of the second member 16d and covers the inner surface 30in of the orifice electrode 30. The tip opening 16p of the second member 16d may cover the entire inner surface 30in of the orifice electrode 30, or may cover only a part thereof. Thus, if the tip opening 16p is provided in the second member 16d so as to cover the inner surface 30in of the orifice electrode 30, the creeping shortest path length D1 can be further increased.
 以上の図4~図9の実施形態から理解できるように、中心電極20の表面20sから絶縁体10の内面を経由してオリフィス電極30の内面30inに至るまでの最短の沿面経路にある絶縁体10の内面に、1つ以上の溝部を設けるようにすれば、沿面最短経路長D1を十分に長くとることが可能である。この結果、沿面放電を発生し難くすることができ、安定して気中放電を行わせることができる。また、図7~図9の例から理解できるように、キャビティCVに面する絶縁体10を複数の部材で構成するようにすれば、沿面最短経路長D1を長くするようにキャビティに面する絶縁体の内面形状を形成し易いという利点がある。 As can be understood from the above embodiments of FIGS. 4 to 9, the insulator in the shortest creepage path from the surface 20s of the center electrode 20 through the inner surface of the insulator 10 to the inner surface 30in of the orifice electrode 30. If one or more grooves are provided on the inner surface of the surface 10, the shortest creepage path length D1 can be made sufficiently long. As a result, creeping discharge can be made difficult to occur, and air discharge can be stably performed. Further, as can be understood from the examples of FIGS. 7 to 9, if the insulator 10 facing the cavity CV is composed of a plurality of members, the insulation facing the cavity is increased so as to increase the shortest creepage path length D1. There is an advantage that it is easy to form the inner surface shape of the body.
C.試験結果:
 以下では、図4~図9に示したプラズマジェットプラグの好ましい寸法に関する試験結果について順次説明する。
C. Test results:
In the following, the test results relating to the preferred dimensions of the plasma jet plug shown in FIGS. 4 to 9 will be described sequentially.
 図10は、沿面最短経路長D1と気中ギャップGとの比D1/Gに関する試験結果を示す説明図である。図10(A)は試験装置の模式的な平面図である。この試験では、圧力チャンバ内に、溝部212を有する絶縁体210を設置するとともに、絶縁体210の表面上に溝部212を挟んで第1電極220と第2電極230とを対向させた状態で設置した。絶縁体210はアルミナで形成した。2つの電極220,230のギャップDgは、0.5mmの一定値に設定した。溝部212の溝幅Daは0.2mmの一定値とし、溝部212の溝深さDdを変えることによって溝部経路長DLを変更した。「溝部経路長DL」は、溝部212の内面を辿る最短の経路長であり、DL=Da+2Ddで与えられる。 FIG. 10 is an explanatory diagram showing test results regarding the ratio D1 / G between the creepage shortest path length D1 and the air gap G. FIG. FIG. 10A is a schematic plan view of the test apparatus. In this test, the insulator 210 having the groove 212 is installed in the pressure chamber, and the first electrode 220 and the second electrode 230 are installed facing each other with the groove 212 sandwiched on the surface of the insulator 210. did. The insulator 210 was made of alumina. The gap Dg between the two electrodes 220 and 230 was set to a constant value of 0.5 mm. The groove width Da of the groove portion 212 was set to a constant value of 0.2 mm, and the groove portion path length DL was changed by changing the groove depth Dd of the groove portion 212. The “groove path length DL” is the shortest path length that follows the inner surface of the groove 212 and is given by DL = Da + 2Dd.
 2つの電極220,230は、中心電極20とオリフィス電極30を模擬している。2つの電極220,230の間の放電経路としては、次の2つが生じ得る。
(1)第1放電経路RT1:絶縁体210の上表面210s付近において溝部212を飛び越える放電経路(図10(A)に黒矢印で示す)。
(2)第2放電経路:絶縁体210の上表面210sと溝部経路長DLとを辿る沿面経路(図示省略)。
 これらの2つの放電経路は、絶縁体210の上表面210sに沿った経路部分は共通しているので、両者の差は、第1放電経路RT1では溝幅Daの気中経路を通り、第2放電経路では溝部経路長DLの凹状の沿面経路を通る点だけである。そこで、この構造を図4の構造に当てはめて考えると、溝幅Daは図4の気中ギャップGを模擬する寸法としての役割を有しており、溝部経路長DLは沿面最短経路長D1を模擬する寸法としての役割を有していることが理解できる。
The two electrodes 220 and 230 simulate the center electrode 20 and the orifice electrode 30. The following two discharge paths may occur between the two electrodes 220 and 230.
(1) First discharge path RT1: A discharge path that jumps over the groove 212 in the vicinity of the upper surface 210s of the insulator 210 (indicated by a black arrow in FIG. 10A).
(2) Second discharge path: a creeping path (not shown) that follows the upper surface 210s of the insulator 210 and the groove path length DL.
Since these two discharge paths have a common path portion along the upper surface 210s of the insulator 210, the difference between the two discharge paths passes through the air path of the groove width Da in the first discharge path RT1, and the second The discharge path is only a point passing through a concave creepage path having a groove path length DL. Therefore, when this structure is applied to the structure of FIG. 4, the groove width Da has a role as a dimension for simulating the air gap G of FIG. 4, and the groove path length DL is the creepage shortest path length D1. It can be understood that it has a role as a simulated dimension.
 図10の放電経路確認試験では、圧力チャンバ内を0.4MPa,1.2MPa,2.0MPa(いずれも大気)に加圧した状態でそれぞれ100回の放電を行った。そして、高速度カメラを用いて放電経路を撮影し、100回の放電のうちで上述した第2放電経路で放電が生じた回数の割合を測定し、これを「沿面放電割合」とした。ここで、「沿面放電」とは上述した第2放電経路に沿った放電を意味し、「気中放電」とは第1放電経路RT1に沿った放電を意味する。 In the discharge path confirmation test of FIG. 10, discharge was performed 100 times each in a state where the pressure chamber was pressurized to 0.4 MPa, 1.2 MPa, and 2.0 MPa (all in the atmosphere). Then, the discharge path was photographed using a high-speed camera, and the ratio of the number of times the discharge occurred in the second discharge path described above out of 100 discharges was measured, and this was defined as the “creeping discharge ratio”. Here, “creepage discharge” means discharge along the second discharge path described above, and “air discharge” means discharge along the first discharge path RT1.
 図10(B)は、比DL/Daの値と沿面放電割合との関係を示している。この試験結果によれば、比DL/Daの値が増加するに従って沿面放電割合が減少し、DL/Daが5以上になると沿面放電が発生せず、すべて気中放電となった。この結果は、次のように理解することができる。すなわち、図10(A)の溝部経路長DLが大きくなると、上述した第2放電経路を経由する沿面放電が発生し難くなり、第1放電経路RT1を経由する気中放電が発生し易くなる。従って、DL/Daを5以上に設定することによって、安定して気中放電を生じさせることができる。ところで、前述したように、溝部経路長DLは図4の沿面最短経路長D1を模擬しており、溝幅Daは気中ギャップGを模擬している。従って、図10(B)の横軸は、沿面最短経路長D1と気中ギャップGとの比D1/Gを模擬しているものと考えることができる。この試験結果を考慮すると、プラズマジェットプラグにおいて、沿面最短経路長D1と気中ギャップGとの比D1/Gの値を5以上に設定することが好ましい。換言すれば、沿面最短経路長D1は、気中ギャップGの5倍以上とすることが好ましい。こうすれば、キャビティCV内における沿面放電の発生を抑制して、安定して気中放電を行わせることができる。 FIG. 10B shows the relationship between the value of the ratio DL / Da and the creeping discharge rate. According to this test result, the creeping discharge ratio decreased as the value of the ratio DL / Da increased, and when DL / Da was 5 or more, the creeping discharge did not occur, and all were in the air. This result can be understood as follows. That is, when the groove portion path length DL in FIG. 10A is increased, the creeping discharge that passes through the second discharge path described above becomes difficult to occur, and the air discharge that passes through the first discharge path RT1 is likely to occur. Therefore, by setting DL / Da to 5 or more, air discharge can be stably generated. Incidentally, as described above, the groove portion path length DL simulates the creeping shortest path length D1 of FIG. 4, and the groove width Da simulates the air gap G. Therefore, it can be considered that the horizontal axis of FIG. 10B simulates the ratio D1 / G between the creepage shortest path length D1 and the air gap G. Considering this test result, it is preferable to set the value of the ratio D1 / G of the creepage shortest path length D1 and the air gap G to 5 or more in the plasma jet plug. In other words, the creepage shortest path length D1 is preferably 5 times or more the air gap G. If it carries out like this, generation | occurrence | production of the creeping discharge in the cavity CV can be suppressed, and air discharge can be performed stably.
 図11は、溝部Gr1の溝幅Wa1に関する試験結果を示す説明図である。図11(A)に示す試験装置は、図10(A)に示したものと同じものであるが、寸法の設定が図10の試験と異なる。すなわち、図11の試験では、溝幅Daを幾つかの値に変更し、また、溝深さDdが溝幅Daと等しくなるように溝深さDdも変更した。さらに、気中ギャップDgは、溝幅Daに0.3mmを加えた値に設定した。この試験において、溝幅Daは、図4における溝部Gr1の溝幅Wa1を模擬している。また、この放電経路確認試験では、圧力チャンバ内を0.8MPa(大気)に加圧した状態でそれぞれ100回の放電を行い、100回の放電のうちで第1放電経路RT1で放電が生じた回数の割合を測定し、これを「気中放電割合」とした。 FIG. 11 is an explanatory diagram showing test results regarding the groove width Wa1 of the groove part Gr1. The test apparatus shown in FIG. 11A is the same as that shown in FIG. 10A, but the setting of dimensions is different from the test shown in FIG. That is, in the test of FIG. 11, the groove width Da was changed to several values, and the groove depth Dd was also changed so that the groove depth Dd became equal to the groove width Da. Furthermore, the air gap Dg was set to a value obtained by adding 0.3 mm to the groove width Da. In this test, the groove width Da simulates the groove width Wa1 of the groove part Gr1 in FIG. Further, in this discharge path confirmation test, discharge was performed 100 times in a state where the pressure chamber was pressurized to 0.8 MPa (atmosphere), and discharge occurred in the first discharge path RT1 out of 100 discharges. The ratio of the number of times was measured, and this was defined as the “in-air discharge ratio”.
 図11(B)は、溝幅Daの値と気中放電割合との関係を示している。この試験結果によれば、溝幅Daの値が増加するに従って気中放電割合が減少し、溝幅Daが0.1mm以上になると気中放電が発生せず、すべて沿面放電となった。この結果は、次のように理解することができる。すなわち、溝幅Daが小さい場合には、溝部212に沿った凹状の沿面経路(第2放電経路)を経由することなく、第1放電経路RT1に沿って気中放電が生じ易い。一方、溝幅Daが大きくなるに従って、溝部212に沿った凹状の沿面経路に沿った沿面放電が生じ易くなる。換言すれば、溝部212の溝幅Daが0.1mm未満の場合には溝部212に沿った凹状の経路が放電経路としての機能を果たし難いのに対して、溝幅Daが0.1mm以上になると溝部212に沿った凹状の経路が放電経路としての機能を十分に果たすようになる。この試験結果を考慮すると、図4のプラズマジェットプラグにおいて、溝部Gr1の溝幅Wa1を0.1mm以上に設定することが好ましい。他の溝部Gr2(図5、図8)の溝幅も同様である。溝幅Wa1を0.1mm以上に設定すれば、溝部Gr1によって沿面経路を実質的に長くすることができるので、キャビティCV内における沿面放電の発生を更に抑制して、安定して気中放電を行わせることができる。 FIG. 11 (B) shows the relationship between the value of the groove width Da and the air discharge rate. According to this test result, the air discharge ratio decreased as the value of the groove width Da increased. When the groove width Da was 0.1 mm or more, no air discharge was generated, and all the surface discharge occurred. This result can be understood as follows. That is, when the groove width Da is small, air discharge is likely to occur along the first discharge path RT1 without passing through the concave creeping path (second discharge path) along the groove 212. On the other hand, as the groove width Da increases, creeping discharge along the concave creeping path along the groove 212 is likely to occur. In other words, when the groove width Da of the groove part 212 is less than 0.1 mm, the concave path along the groove part 212 hardly functions as a discharge path, whereas the groove width Da is 0.1 mm or more. Then, the concave path along the groove 212 sufficiently functions as a discharge path. Considering this test result, in the plasma jet plug of FIG. 4, it is preferable to set the groove width Wa1 of the groove part Gr1 to 0.1 mm or more. The same applies to the groove widths of the other grooves Gr2 (FIGS. 5 and 8). If the groove width Wa1 is set to 0.1 mm or more, the creeping path can be made substantially longer by the groove part Gr1, so that the occurrence of creeping discharge in the cavity CV is further suppressed, and air discharge is stably performed. Can be done.
 図12は、溝部Gr1の溝深さWd1と溝幅Wa1に関する試験結果を示す説明図である。この試験では、溝部Gr1の溝深さWd1と溝幅Wa1が異なる複数種類のサンプルを作成した。これらのサンプルでは、L+G(Lは中心電極20の露出部分の長さ、Gは気中ギャップ)を3.5mmに設定し、また、中心電極20の外径2Rを1.5mmに、絶縁体10の拡大内径部16の内径を3.5mmにそれぞれ設定した。また、溝幅Wa1は、0.2mm,0.3mm,0.5mmの3つの値に設定し、溝深さWd1は、Wd1/Wa1の値が0.5~5.0の範囲に亘るように設定した。そして、圧力チャンバ内を0.6MPa(大気)に加圧した状態でプラズマジェットプラグのサンプルを放電させ、オリフィス電極30の貫通孔31から噴出されたプラズマを側方から撮影してシュリーレン画像を取得した。そして、シュリーレン画像を二値化して、高密度部分を表す画素と低密度部分を表す画素とに分類し、高密度部分を表す画素の個数を、噴出されたプラズマのサイズとして算出した。なお、サンプルごとに10回のシュリーレン撮影を実行し、10回の撮影により算出されたプラズマの画素数の平均値を噴出面積とした。 FIG. 12 is an explanatory diagram showing test results regarding the groove depth Wd1 and the groove width Wa1 of the groove part Gr1. In this test, a plurality of types of samples having different groove depths Wd1 and groove widths Wa1 were prepared. In these samples, L + G (L is the length of the exposed portion of the center electrode 20 and G is the air gap) is set to 3.5 mm, and the outer diameter 2R of the center electrode 20 is set to 1.5 mm. The inner diameter of each of the ten enlarged inner diameter portions 16 was set to 3.5 mm. The groove width Wa1 is set to three values of 0.2 mm, 0.3 mm, and 0.5 mm, and the groove depth Wd1 is set so that the value of Wd1 / Wa1 ranges from 0.5 to 5.0. Set to. Then, the plasma jet plug sample is discharged in a state where the pressure chamber is pressurized to 0.6 MPa (atmosphere), and the plasma ejected from the through-hole 31 of the orifice electrode 30 is photographed from the side to obtain a schlieren image. did. Then, the Schlieren image was binarized and classified into pixels representing a high-density portion and pixels representing a low-density portion, and the number of pixels representing the high-density portion was calculated as the size of the ejected plasma. In addition, 10 schlieren imaging | photography was performed for every sample, and the average value of the pixel number of the plasma calculated by 10 imaging | photography was made into the ejection area.
 図12(B)は、溝深さWd1と溝幅Wa1の比Wd1/Wa1の値とプラズマの噴出面積との関係を示している。この試験結果によれば、溝幅Wa1の値に拘わらず、Wd1/Wa1の値が3以上になるとWd1/Wa1の値が増加するほどプラズマの噴出面積が低下した。この理由は、溝深さWd1を過度に増加させるとキャビティCVの容積が過度に増大してしまい、プラズマが噴出し難くなるためであると推定される。この試験結果を考慮すると、溝部Gr1の深さWd1は、溝幅Wa1の3倍以下とすることが好ましい。他の溝部Gr2の溝幅も同様である。こうすれば、沿面最短経路長D1を長くしつつ、キャビティCVの容積を小さく抑えてプラズマを噴出し易くすることが可能である。 FIG. 12B shows the relationship between the value of the ratio Wd1 / Wa1 of the groove depth Wd1 and the groove width Wa1 and the plasma ejection area. According to this test result, regardless of the value of the groove width Wa1, when the value of Wd1 / Wa1 is 3 or more, the plasma ejection area decreases as the value of Wd1 / Wa1 increases. The reason for this is presumed that when the groove depth Wd1 is excessively increased, the volume of the cavity CV is excessively increased, and it becomes difficult to eject plasma. Considering this test result, it is preferable that the depth Wd1 of the groove part Gr1 is not more than three times the groove width Wa1. The same applies to the groove widths of the other groove portions Gr2. In this way, it is possible to make it easier to eject plasma by reducing the volume of the cavity CV while increasing the shortest creepage path length D1.
 図13は、キャビティに面する中心電極の側面の表面積に関するプラズマ噴出試験の結果を示している。この試験では、図6に示したように、キャビティCVに露出している中心電極20の長さLを変更することによって、キャビティCVに面する中心電極20の側面20fの表面積S20fが異なる複数種類のサンプルを作成した。また、これらのサンプルでは、気中ギャップGを0.5mm又は1.0mmに設定し、また、中心電極20の外径2Rを1mm、溝幅Wa1を0.2mm、溝深さWd1を0.4mmの一定値とした。そして、図12と同様の条件でシュリーレン撮影を実行し、10回の撮影により算出されたプラズマの画素数の平均値を噴出面積とした。 FIG. 13 shows the results of the plasma ejection test for the surface area of the side surface of the central electrode facing the cavity. In this test, as shown in FIG. 6, by changing the length L of the center electrode 20 exposed in the cavity CV, the surface area S 20f of the side surface 20f of the center electrode 20 facing the cavity CV is different. A variety of samples were created. In these samples, the air gap G is set to 0.5 mm or 1.0 mm, the outer diameter 2R of the center electrode 20 is 1 mm, the groove width Wa1 is 0.2 mm, and the groove depth Wd1 is 0.00. The constant value was 4 mm. Then, schlieren imaging was executed under the same conditions as in FIG. 12, and the average value of the number of plasma pixels calculated by 10 imaging operations was taken as the ejection area.
 図13(B)は、キャビティCVに面する中心電極20の側面20fの表面積S20fとプラズマの噴出面積との関係を示している。この試験結果から理解できるように、中心電極20の側面20fの表面積S20fの値が大きくなるほどプラズマの噴出面積が小さくなる傾向にある。この試験結果を考慮すると、中心電極20の側面20fの表面積S20fの値は小さいことが好ましい。但し、表面積S20fの値が20mmより小さくなってもプラズマの噴出面積はそれほど増大しないので、表面積S20fの値を20mm以下とすれば十分である。なお、キャビティCVに面する中心電極20の長さLをマイナスにした形状(中心電極20の先端の脚部22を絶縁体10の縮径部14よりも後端側に引っ込ませた形状)とすることも可能である。但し、このような形状は、却って沿面放電を生じ易くする可能性がある。この点を考慮すれば、キャビティCVに面する中心電極20の長さLを0mm以上とすること、すなわち、キャビティCVに面する中心電極20の側面20fの表面積S20fを0mm以上とすることが好ましい。 FIG. 13 (B) shows the relationship between the ejection area of the surface area S 20f and the plasma side 20f of the center electrode 20 facing the cavity CV. As can be understood from the test results, the plasma jet area of the larger the value of the surface area S 20f side 20f is increased of the center electrode 20 tends to be smaller. In view of this test result, the value of the surface area S 20f side 20f of the center electrode 20 is small, it is preferable. However, even if the value of the surface area S 20f is smaller than 20 mm 2, the plasma ejection area does not increase so much, so it is sufficient that the value of the surface area S 20f is 20 mm 2 or less. A shape in which the length L of the center electrode 20 facing the cavity CV is negative (a shape in which the leg portion 22 at the front end of the center electrode 20 is retracted to the rear end side from the reduced diameter portion 14 of the insulator 10). It is also possible to do. However, such a shape may easily cause creeping discharge. Considering this point, the length L of the center electrode 20 facing the cavity CV is set to 0 mm or more, that is, the surface area S 20f of the side surface 20f of the center electrode 20 facing the cavity CV is set to 0 mm 2 or more. Is preferred.
D.他の実施形態:
 図14は、第7実施形態におけるプラズマジェットプラグ100fの先端部分の断面の拡大図である。このプラズマジェットプラグ100fは、キャビティCVに面する絶縁体10を複数の部材13f、16fで構成した点は第4実施形態(図7)と共通しており、以下の2つの点で第4実施形態と異なっている。第1の差異は、絶縁体10の縮径部14fが、中心電極20の先端部分の一部を露出させた状態で中心電極20の先端部分(脚部22)の側面を覆うように延びている点である。このとき、中心電極20の側面に設けられた縮径部14f(絶縁材料)の先端14tから中心電極20の先端までの距離Lは、0.4mm以下に設定されていることが好ましい。こうすれば、距離L(「中心電極20の露出長さL」と呼ぶ)が十分に短くなるので、プラズマの熱による中心電極の消耗を抑制することができる。第2の差異は、軸線O方向と垂直な方向に沿って測ったときの中心電極20の側面とキャビティCVの内壁面との間の距離Hが、第4実施形態(図7)よりも小さい点である。但し、この場合にも、この距離Hは、気中ギャップGよりも大きいことが好ましい。こうすれば、軸線O方向と垂直な方向に沿って中心電極20の側面からキャビティCVの内壁面に至る経路に沿って沿面放電が発生し難くなるので、安定して気中放電を行わせることができる。なお、G<Hであるという条件は、他の各種実施形態も満足することが好ましい。
D. Other embodiments:
FIG. 14 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100f in the seventh embodiment. This plasma jet plug 100f is common to the fourth embodiment (FIG. 7) in that the insulator 10 facing the cavity CV is composed of a plurality of members 13f and 16f, and the fourth embodiment is the following two points. It is different from the form. The first difference is that the reduced diameter portion 14f of the insulator 10 extends so as to cover the side surface of the distal end portion (leg portion 22) of the center electrode 20 with a part of the distal end portion of the center electrode 20 exposed. It is a point. At this time, the distance L from the tip 14t of the reduced diameter portion 14f (insulating material) provided on the side surface of the center electrode 20 to the tip of the center electrode 20 is preferably set to 0.4 mm or less. By doing so, the distance L (referred to as “exposed length L of the center electrode 20”) becomes sufficiently short, so that the consumption of the center electrode due to the heat of plasma can be suppressed. The second difference is that the distance H between the side surface of the center electrode 20 and the inner wall surface of the cavity CV when measured along the direction perpendicular to the direction of the axis O is smaller than that in the fourth embodiment (FIG. 7). Is a point. In this case, however, the distance H is preferably larger than the air gap G. This makes it difficult for creeping discharge to occur along the path from the side surface of the center electrode 20 to the inner wall surface of the cavity CV along the direction perpendicular to the direction of the axis O, so that air discharge can be performed stably. Can do. The condition that G <H is preferably satisfied in other various embodiments.
 図15は、第8実施形態におけるプラズマジェットプラグ100gの先端部分の断面の拡大図である。このプラズマジェットプラグ100gが第7実施形態(図14)と異なる点は、絶縁体10の縮径部14fの代わりに、絶縁体10とは異なる絶縁部材14gで中心電極20の先端部分(脚部22)の側面を覆っている点であり、他の構成は第7実施形態と同じである。絶縁部材14gは、例えば、アルミナなどの任意の絶縁材料で形成することが可能である。この絶縁部材14gは、メッキなどの任意の方法を利用して中心電極20の周囲を被覆するように形成することが可能である。 FIG. 15 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100g in the eighth embodiment. The plasma jet plug 100g is different from the seventh embodiment (FIG. 14) in that the distal end portion (leg portion) of the center electrode 20 is replaced by an insulating member 14g different from the insulator 10 instead of the reduced diameter portion 14f of the insulator 10. 22) and the other configuration is the same as that of the seventh embodiment. The insulating member 14g can be formed of any insulating material such as alumina, for example. The insulating member 14g can be formed so as to cover the periphery of the center electrode 20 using any method such as plating.
 図16は、第9実施形態におけるプラズマジェットプラグ100hの先端部分の断面の拡大図である。このプラズマジェットプラグ100hは、以下の2つの点で第7実施形態(図14)と異なっている。第1の差異は、絶縁体10の縮径部14hは、その先端部分14eが中心電極20の先端部分を被覆しているが、先端部分14eの下側(後端側)にはギャップGPが形成されている点である。但し、このギャップGPは無くても良い。第2の差異は、軸線O方向と垂直な方向に沿って測ったときの中心電極20の側面とキャビティCVの内壁面との間の距離Hが、第7実施形態(図14)よりも大きい点である。但し、この第2の差異の重要性は低いので、この差異は設けなくてもよい。 FIG. 16 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100h in the ninth embodiment. This plasma jet plug 100h differs from the seventh embodiment (FIG. 14) in the following two points. The first difference is that the reduced diameter portion 14h of the insulator 10 has a tip portion 14e covering the tip portion of the center electrode 20, but a gap GP is formed on the lower side (rear end side) of the tip portion 14e. It is a point that is formed. However, this gap GP may not be present. The second difference is that the distance H between the side surface of the center electrode 20 and the inner wall surface of the cavity CV when measured along the direction perpendicular to the direction of the axis O is larger than that in the seventh embodiment (FIG. 14). Is a point. However, since the importance of the second difference is low, this difference may not be provided.
 上述した第7~第9実施形態から理解できるように、キャビティCV内における中心電極20の側面を覆う絶縁材料としては、絶縁体10の一部を利用することもでき、また、絶縁体10とは異なる絶縁材料(例えば図15の絶縁部材14g)を利用することも可能である。これらの実施形態では、中心電極20の露出長さLが十分に短いので、プラズマの熱による中心電極の消耗を抑制することができる。 As can be understood from the seventh to ninth embodiments described above, a part of the insulator 10 can be used as the insulating material covering the side surface of the center electrode 20 in the cavity CV. It is also possible to use different insulating materials (for example, the insulating member 14g in FIG. 15). In these embodiments, since the exposed length L of the center electrode 20 is sufficiently short, consumption of the center electrode due to the heat of plasma can be suppressed.
 図17は、第10実施形態におけるプラズマジェットプラグ100jの先端部分の断面の拡大図である。このプラズマジェットプラグ100jが第7実施形態(図14)と異なる点は、図9に示した第6実施形態と同様に、絶縁体10の第2部材16jの先端に、小さな開口を有する先端開口部16pを設けて、オリフィス電極30の内面を覆っている点である。但し、先端開口部16pの開口はオリフィス電極30の貫通孔31よりも大きくなっており、オリフィス電極30の内面には先端開口部16pで覆われていない露出面32が残存している。この露出面32は、オリフィス電極30の貫通孔31に隣接する位置に存在する。また、露出面32の最外周位置32eは、中心電極20の先端のエッジ部よりも径方向外側に位置することが好ましい。ここで、「径方向」とは、軸線O方向と垂直な方向を意味する。このとき、径方向に沿って測ったときの露出面32の最外周位置32eと中心電極20の側面との間の距離Jは、中心電極20の側面とキャビティCVの内壁面との間の距離Hよりも小さいことが好ましい。こうすれば、オリフィス電極30の内面が、貫通孔31に隣接する露出面32を残して絶縁材料で覆われるので、プラズマによるオリフィス電極30の内面の消耗を抑制することができる。 FIG. 17 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100j in the tenth embodiment. The plasma jet plug 100j is different from the seventh embodiment (FIG. 14) in that a tip opening having a small opening at the tip of the second member 16j of the insulator 10 is the same as the sixth embodiment shown in FIG. The point 16 p is provided to cover the inner surface of the orifice electrode 30. However, the opening of the tip opening 16p is larger than the through hole 31 of the orifice electrode 30, and the exposed surface 32 that is not covered by the tip opening 16p remains on the inner surface of the orifice electrode 30. The exposed surface 32 exists at a position adjacent to the through hole 31 of the orifice electrode 30. In addition, the outermost peripheral position 32 e of the exposed surface 32 is preferably located on the radially outer side than the edge portion at the tip of the center electrode 20. Here, the “radial direction” means a direction perpendicular to the axis O direction. At this time, the distance J between the outermost peripheral position 32e of the exposed surface 32 and the side surface of the center electrode 20 when measured along the radial direction is the distance between the side surface of the center electrode 20 and the inner wall surface of the cavity CV. It is preferably smaller than H. By doing so, the inner surface of the orifice electrode 30 is covered with the insulating material leaving the exposed surface 32 adjacent to the through hole 31, so that the inner surface of the orifice electrode 30 due to plasma can be suppressed.
 第10実施形態では、更に、露出面32の最外周位置32eと中心電極20の先端との間の直線的な距離Kが、気中ギャップGよりも大きいという特徴も有する。このG<Kという条件を満足すれば、中心電極20の先端から、オリフィス電極30の貫通孔31の周囲の内面を覆う絶縁材料(先端開口部16p)に至る経路に沿って沿面放電が発生し難くなるので、安定して気中放電を行わせることができる。なお、第10実施形態において、オリフィス電極30の貫通孔31の周囲の内面を覆う絶縁材料としては、絶縁体10の一部である第2部材16jの先端開口部16pを用いていたが、この代わりに、絶縁体10とは異なる絶縁材料を用いても良い。 The tenth embodiment further has a feature that the linear distance K between the outermost peripheral position 32e of the exposed surface 32 and the tip of the center electrode 20 is larger than the air gap G. If the condition of G <K is satisfied, creeping discharge occurs along the path from the tip of the center electrode 20 to the insulating material (tip opening 16p) covering the inner surface around the through hole 31 of the orifice electrode 30. Since it becomes difficult, air discharge can be performed stably. In the tenth embodiment, as the insulating material covering the inner surface around the through hole 31 of the orifice electrode 30, the tip opening 16p of the second member 16j that is a part of the insulator 10 is used. Instead, an insulating material different from the insulator 10 may be used.
 なお、第7~第10実施形態では、絶縁体10を複数の部材(例えば図14では2つの部材13f、16f)で構成しているが、この代わりに、絶縁体10を1つの部材で構成してもよい。 In the seventh to tenth embodiments, the insulator 10 is composed of a plurality of members (for example, two members 13f and 16f in FIG. 14). Instead, the insulator 10 is composed of one member. May be.
 図18は、中心電極20の露出長さLに関する試験結果を示す説明図である。図18(A)はサンプルの形状を示しており、これは、図14に示した第7実施形態に即した形状である。この試験では、以下のパラメータを使用した。
・沿面最短経路長D1:3.5mm
・オリフィス電極30の貫通孔31の内径E:0.5mm
・気中ギャップG:0.5mm
・中心電極20の外径2R:1.5mm
・キャビティCVの内径Dcv(拡大内径部16fの内径):3.5mm
・中心電極20の側面とキャビティCVの内壁面との間の距離H:1.0mm
・中心電極20の露出長さL(絶縁部材14fによる遮蔽有の場合):0~0.6mm
・中心電極20の露出長さL(絶縁部材14fによる遮蔽無の場合):2.0mm
FIG. 18 is an explanatory diagram showing a test result regarding the exposed length L of the center electrode 20. FIG. 18A shows the shape of the sample, which is in conformity with the seventh embodiment shown in FIG. The following parameters were used in this test.
-Creeping shortest path length D1: 3.5mm
・ Inner diameter E of through-hole 31 of orifice electrode 30: 0.5 mm
・ Air gap G: 0.5mm
Outer diameter 2R of the center electrode 20: 1.5 mm
・ Inner diameter Dcv of cavity CV (inner diameter of enlarged inner diameter portion 16f): 3.5 mm
The distance H between the side surface of the center electrode 20 and the inner wall surface of the cavity CV: 1.0 mm
The exposed length L of the center electrode 20 (when the insulating member 14f is shielded): 0 to 0.6 mm
-The exposed length L of the center electrode 20 (in the case of no shielding by the insulating member 14f): 2.0 mm
 図18(B)は、中心電極20の露出長さLと、中心電極20の先端の消耗量との関係に関する試験結果を示すグラフである。縦軸は、中心電極20の側面の遮蔽有りの場合における中心電極20の先端の消耗量を、遮蔽無しの場合における消耗量で除した比率を示している。ここで、「中心電極20の側面の遮蔽有り」とは、中心電極20の先端部分の側面を絶縁体10の縮径部14fで覆っている場合(L=0~0.6mm)を意味している。また、「中心電極20の側面の遮蔽無し」とは、中心電極20の先端部分の側面を絶縁体10の縮径部14fで覆っていない場合(L=2.0mm)を意味している。また、「消耗量」は、30Hzで30時間の火花放電耐久試験を行った後に、中心電極20の先端部分から消失した体積を測定した値である。 FIG. 18B is a graph showing test results regarding the relationship between the exposed length L of the center electrode 20 and the amount of wear at the tip of the center electrode 20. The vertical axis represents a ratio obtained by dividing the amount of wear at the tip of the center electrode 20 when the side surface of the center electrode 20 is shielded by the amount of wear when there is no shield. Here, “the side of the center electrode 20 is shielded” means that the side of the tip of the center electrode 20 is covered with the reduced diameter portion 14f of the insulator 10 (L = 0 to 0.6 mm). ing. Further, “no shielding of the side surface of the center electrode 20” means that the side surface of the tip portion of the center electrode 20 is not covered with the reduced diameter portion 14f of the insulator 10 (L = 2.0 mm). The “consumed amount” is a value obtained by measuring the volume lost from the tip portion of the center electrode 20 after performing a spark discharge endurance test at 30 Hz for 30 hours.
 図18(B)の結果から理解できるように、中心電極20の側面を絶縁材料で遮蔽すると、遮蔽無しの場合に比べて中心電極20の先端における消耗量が低下する。特に、中心電極20の露出長さLを0.4mm以下に設定すれば、プラズマの熱による中心電極の消耗を抑制する効果が顕著である。 As can be understood from the result of FIG. 18B, when the side surface of the center electrode 20 is shielded with an insulating material, the amount of wear at the tip of the center electrode 20 is reduced as compared to the case without shielding. In particular, if the exposed length L of the center electrode 20 is set to 0.4 mm or less, the effect of suppressing the consumption of the center electrode due to the heat of plasma is remarkable.
 図19は、オリフィス電極30の内面の絶縁体被覆に関する試験結果を示す説明図である。図19(A)はサンプルの形状を示しており、これは、図17に示した第10実施形態に即した形状である。この試験では、以下のパラメータを使用した。
・沿面最短経路長D1:4.0mm
・オリフィス電極30の貫通孔31の内径E:0.5mm
・気中ギャップG:0.5mm
・中心電極20の外径2R:1.5mm
・キャビティCVの内径Dcv(拡大内径部16fの内径):3.5mm
・中心電極20の側面とキャビティCVの内壁面との間の距離H:1.0mm
・オリフィス電極30の内面の露出面32の外径D32:1.4~1.7mm
FIG. 19 is an explanatory diagram showing test results regarding the insulator coating on the inner surface of the orifice electrode 30. FIG. 19A shows the shape of the sample, which is in conformity with the tenth embodiment shown in FIG. The following parameters were used in this test.
-Creeping shortest path length D1: 4.0 mm
・ Inner diameter E of through-hole 31 of orifice electrode 30: 0.5 mm
・ Air gap G: 0.5mm
Outer diameter 2R of the center electrode 20: 1.5 mm
・ Inner diameter Dcv of cavity CV (inner diameter of enlarged inner diameter portion 16f): 3.5 mm
The distance H between the side surface of the center electrode 20 and the inner wall surface of the cavity CV: 1.0 mm
The outer diameter D32 of the exposed surface 32 on the inner surface of the orifice electrode 30: 1.4 to 1.7 mm
 なお、露出面32の外径D32は、オリフィス電極30の貫通孔31の周囲の内面を覆う先端開口部16pの内径と同じである。また、径方向に沿って測ったときの露出面32の最外周位置32eと中心電極20の側面との間の距離Jは、J=(D32-2R)/2に等しい。 The outer diameter D32 of the exposed surface 32 is the same as the inner diameter of the tip opening 16p that covers the inner surface around the through hole 31 of the orifice electrode 30. Further, the distance J between the outermost peripheral position 32e of the exposed surface 32 and the side surface of the center electrode 20 when measured along the radial direction is equal to J = (D32-2R) / 2.
 図19(B)は、オリフィス電極30の内面の露出面32の外径D32と、オリフィス電極30の内面の消耗量との関係に関する試験結果を示すグラフである。縦軸は、オリフィス電極30の内面の遮蔽有りの場合におけるオリフィス電極30の内面の消耗量を、遮蔽無しの場合における消耗量で除した比率を示している。ここで、「オリフィス電極30の内面の遮蔽有り」とは、オリフィス電極30の内面を絶縁体10の先端開口部16pで覆っている場合を意味している。また、「オリフィス電極30の内面の遮蔽無し」とは、オリフィス電極30の内面を絶縁体10の先端開口部16pで覆っていない場合を意味している。「消耗量」は、30Hzで30時間の火花放電耐久試験を行った後に、オリフィス電極30の内面から消失した体積を測定した値である。 FIG. 19B is a graph showing test results regarding the relationship between the outer diameter D32 of the exposed surface 32 on the inner surface of the orifice electrode 30 and the amount of wear on the inner surface of the orifice electrode 30. The vertical axis represents the ratio obtained by dividing the amount of wear on the inner surface of the orifice electrode 30 when the inner surface of the orifice electrode 30 is shielded by the amount of wear when there is no shield. Here, “the inner surface of the orifice electrode 30 is shielded” means that the inner surface of the orifice electrode 30 is covered with the tip opening 16p of the insulator 10. Further, “no shielding of the inner surface of the orifice electrode 30” means that the inner surface of the orifice electrode 30 is not covered with the tip opening 16p of the insulator 10. The “consumed amount” is a value obtained by measuring the volume lost from the inner surface of the orifice electrode 30 after performing a spark discharge durability test at 30 Hz for 30 hours.
 図19(B)の下端に示すように、D32=1.4mm,1.5mmの場合は、露出面32の最外周位置32eと中心電極20の先端との間の距離Kが、気中ギャップGと等しい。これらの場合には、絶縁体10の先端開口部16pにチャンネリングが若干発生していた。一方、D32=1.6mm,1.7mmの場合は、露出面32の最外周位置32eと中心電極20の先端との間の距離Kが、気中ギャップGよりも大きい。これらの場合には、絶縁体10の先端開口部16pにチャンネリングは発生していなかった。この理由は、G<Kを満足する場合には、中心電極20の先端から、オリフィス電極30の貫通孔31の周囲の内面を覆う絶縁材料(先端開口部16p)に至る経路に沿って沿面放電が発生し難くなるからであると推定される。 As shown in the lower end of FIG. 19B, when D32 = 1.4 mm and 1.5 mm, the distance K between the outermost peripheral position 32e of the exposed surface 32 and the tip of the center electrode 20 is the air gap. Equal to G. In these cases, some channeling occurred in the tip opening 16p of the insulator 10. On the other hand, when D32 = 1.6 mm and 1.7 mm, the distance K between the outermost peripheral position 32e of the exposed surface 32 and the tip of the center electrode 20 is larger than the air gap G. In these cases, channeling did not occur in the tip opening 16p of the insulator 10. The reason for this is that when G <K is satisfied, creeping discharge occurs along a path from the tip of the center electrode 20 to an insulating material (tip opening 16p) covering the inner surface around the through hole 31 of the orifice electrode 30. It is presumed that this is difficult to occur.
 図19(B)の結果から理解できるように、オリフィス電極30の内面を絶縁材料で遮蔽すると、遮蔽無しの場合に比べてオリフィス電極30の内面における消耗量が低下する点で好ましい。また、沿面放電が発生し難くするためには、G<Kを満足するようにオリフィス電極30の貫通孔31の周囲の内面を絶縁材料で覆うことが好ましいことが理解できる。 As can be understood from the result of FIG. 19 (B), it is preferable to shield the inner surface of the orifice electrode 30 with an insulating material in that the amount of wear on the inner surface of the orifice electrode 30 is reduced as compared with the case without shielding. Further, it can be understood that it is preferable to cover the inner surface around the through hole 31 of the orifice electrode 30 with an insulating material so as to satisfy the condition of G <K in order to make the creeping discharge difficult to occur.
E.更に他の実施形態:
 図20は、第11実施形態のプラズマジェットプラグ100kの先端部分を拡大した断面図である。このプラズマジェットプラグ100kでは、中心電極20kが、最も後端側の頭部21と、頭部21よりも先端側に位置し頭部21より外径が小さい脚部22と、最も先端側に位置し最も外径が小さい先端小径部27とを有している。プラズマジェットプラグ100kの他の構成は、図2に示したものとほぼ同じなので、ここでは説明を省略する。
E. Still other embodiments:
FIG. 20 is an enlarged cross-sectional view of the tip portion of the plasma jet plug 100k according to the eleventh embodiment. In this plasma jet plug 100k, the center electrode 20k has a head 21 on the most rear end side, a leg 22 having a smaller outer diameter than the head 21 and a position on the most tip side. However, it has a tip small diameter portion 27 having the smallest outer diameter. Since the other structure of the plasma jet plug 100k is almost the same as that shown in FIG. 2, the description thereof is omitted here.
 図21は、第11実施形態のプラズマジェットプラグ100kの先端部分の断面の拡大図である。なお、図21では、図1及び図20とは上下が逆であり、図21の上側がプラズマジェットプラグ100kの先端側であり、図21の下側がプラズマジェットプラグ100kの後端側である。 FIG. 21 is an enlarged view of the cross section of the tip portion of the plasma jet plug 100k of the eleventh embodiment. 21 is upside down with respect to FIGS. 1 and 20, the upper side of FIG. 21 is the front end side of the plasma jet plug 100k, and the lower side of FIG. 21 is the rear end side of the plasma jet plug 100k.
 中心電極20kの先端近傍には、前述したように、脚部22と先端小径部27とが形成されている。脚部22と先端小径部27はそれぞれ円柱形状を有する。脚部22と先端小径部27との間には、縮径部28が設けられている。縮径部28は、図21の例ではテーパ状に形成されているが、テーパ状ではなく軸線0に垂直な面を構成するようにしてもよい。 As described above, the leg portion 22 and the tip small diameter portion 27 are formed in the vicinity of the tip of the center electrode 20k. Each of the leg portion 22 and the tip small diameter portion 27 has a cylindrical shape. A reduced diameter portion 28 is provided between the leg portion 22 and the distal end small diameter portion 27. Although the reduced diameter portion 28 is formed in a tapered shape in the example of FIG. 21, the reduced diameter portion 28 may be formed in a plane perpendicular to the axis 0 instead of the tapered shape.
 絶縁体10の先端近傍の脚長部13には、脚長部13よりも内径が大きな拡大内径部16が形成されている。なお、脚長部13を「小内径部13」とも呼ぶ。脚長部13と拡大内径部16との間には縮径部14が形成されている。この例では、縮径部14はテーパ状に形成されているが、テーパ状ではなく軸線0に垂直な面を構成するようにしてもよい。絶縁体10の縮径部14は、中心電極20kの縮径部28よりも先端側に設けられている。中心電極20kの先端小径部27の外周と、絶縁体10の脚長部13の内面との間は、距離Dpだけ離間している。この距離Dpの幅の円環状の溝部は、以下で説明する第2キャビティ部CV2に相当する。 An enlarged inner diameter portion 16 having an inner diameter larger than that of the leg length portion 13 is formed in the leg length portion 13 near the tip of the insulator 10. The long leg portion 13 is also referred to as a “small inner diameter portion 13”. A reduced diameter portion 14 is formed between the leg length portion 13 and the enlarged inner diameter portion 16. In this example, the reduced diameter portion 14 is formed in a tapered shape, but it may be formed in a surface perpendicular to the axis 0 instead of the tapered shape. The reduced diameter portion 14 of the insulator 10 is provided on the distal end side with respect to the reduced diameter portion 28 of the center electrode 20k. The outer periphery of the tip small-diameter portion 27 of the center electrode 20k and the inner surface of the leg long portion 13 of the insulator 10 are separated by a distance Dp. The annular groove having a width of the distance Dp corresponds to a second cavity CV2 described below.
 キャビティCVは、中心電極20kの表面20sと、絶縁体10の内面10inと、オリフィス電極30の内面30inとによって囲まれる空間である。但し、キャビティCVは、オリフィス電極30の貫通孔31の部分を含んでおらず、貫通孔31が無いと仮定したときのオリフィス電極30の内面30inの内側の空間を意味している。なお、中心電極20kの脚部22の外周面と絶縁体10の内面との間には、両者の組み付けのために微少な隙間(0.06mm未満)が形成されている。隙間が0.06mm未満の空間は微少であり、プラズマが発生しないので、キャビティCVの一部として機能しない。本明細書において、「キャビティ」とは、プラズマが生成される空間を意味し、隙間が0.06mm以上の空間を意味する。より具体的に言えば、図21の第11実施形態における「キャビティ」は、絶縁体10の先端部分の内面10inと、中心電極20kの先端部分の表面と、オリフィス電極30の内面30inとの間に形成される空間のうち、隙間が0.06mm以上の空間を意味し、隙間が0.06mm未満の空間を含まない。なお、キャビティCVは、以下の2つに区分できる。
(a)第1キャビティ部CV1:絶縁体10の縮径部14の後端14eよりも先端側に存在するキャビティ部分。
(b)第2キャビティ部CV2:絶縁体10の縮径部14の後端14eよりも後端側に存在するキャビティ部分。
The cavity CV is a space surrounded by the surface 20s of the center electrode 20k, the inner surface 10in of the insulator 10, and the inner surface 30in of the orifice electrode 30. However, the cavity CV does not include the portion of the through hole 31 of the orifice electrode 30, and means a space inside the inner surface 30in of the orifice electrode 30 when it is assumed that there is no through hole 31. Note that a minute gap (less than 0.06 mm) is formed between the outer peripheral surface of the leg portion 22 of the center electrode 20k and the inner surface of the insulator 10 for assembly of both. A space with a gap of less than 0.06 mm is very small and plasma is not generated, so it does not function as a part of the cavity CV. In this specification, the “cavity” means a space where plasma is generated, and means a space having a gap of 0.06 mm or more. More specifically, the “cavity” in the eleventh embodiment of FIG. 21 is defined between the inner surface 10 in of the tip portion of the insulator 10, the surface of the tip portion of the center electrode 20 k, and the inner surface 30 in of the orifice electrode 30. Means a space with a gap of 0.06 mm or more, and does not include a space with a gap of less than 0.06 mm. The cavity CV can be classified into the following two.
(A) 1st cavity part CV1: The cavity part which exists in the front end side rather than the rear end 14e of the diameter reducing part 14 of the insulator 10.
(B) 2nd cavity part CV2: The cavity part which exists in the rear end side rather than the rear end 14e of the diameter reducing part 14 of the insulator 10.
 図21では、更に、以下の寸法を示している。
(1)Dp:中心電極20kの先端小径部27の外周と、絶縁体10の脚長部13との間の距離(「径方向空間距離Dp」と呼ぶ)。径方向空間距離Dpは、第2キャビティ部CV2の幅に相当する。
(2)Dq:中心電極20kの縮径部28の後端28eと、絶縁体10の縮径部14の後端14eとの間の距離。この距離Dqは、第2キャビティ部CV2の軸線方向の深さに相当する。
(3)Dr:中心電極20kの先端縁20cと、絶縁体10の内面10inとの間の最短距離。なお、「最短距離」は、中心電極20kの先端縁20cから任意の方向に向けて絶縁体10の内面10inまでの距離を測ったときの最小値を意味する。
(4)Ds:絶縁体10の拡大内径部16の内半径と脚長部13の内半径との差分。この差分Dsは、絶縁体10の拡大内径部16の内半径と、中心電極20kの脚部22の外半径との差分に相当する。
(5)D27:中心電極20kの先端小径部27の外径。
(6)D22:中心電極20kの脚部22の外径。
(7)E:オリフィス電極30の貫通孔31の内径。
(8)G:オリフィス電極30の内面30inと、中心電極20kの先端面20tとの間の軸線方向の距離。この距離Gを「気中ギャップG」とも呼ぶ。
(9)Z:オリフィス電極30の内面30inと、絶縁体10の縮径部14の後端14eとの間の距離。この距離Zは、第1キャビティ部CV1の軸線方向の深さに相当する。
FIG. 21 further shows the following dimensions.
(1) Dp: A distance between the outer periphery of the tip small-diameter portion 27 of the center electrode 20k and the leg long portion 13 of the insulator 10 (referred to as “radial direction spatial distance Dp”). The radial space distance Dp corresponds to the width of the second cavity portion CV2.
(2) Dq: distance between the rear end 28e of the reduced diameter portion 28 of the center electrode 20k and the rear end 14e of the reduced diameter portion 14 of the insulator 10. This distance Dq corresponds to the axial depth of the second cavity CV2.
(3) Dr: the shortest distance between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10. The “shortest distance” means the minimum value when the distance from the tip edge 20c of the center electrode 20k to the inner surface 10in of the insulator 10 is measured in an arbitrary direction.
(4) Ds: difference between the inner radius of the enlarged inner diameter portion 16 of the insulator 10 and the inner radius of the leg length portion 13. This difference Ds corresponds to the difference between the inner radius of the enlarged inner diameter portion 16 of the insulator 10 and the outer radius of the leg portion 22 of the center electrode 20k.
(5) D27: The outer diameter of the tip small diameter portion 27 of the center electrode 20k.
(6) D22: The outer diameter of the leg portion 22 of the center electrode 20k.
(7) E: Inner diameter of the through hole 31 of the orifice electrode 30.
(8) G: A distance in the axial direction between the inner surface 30in of the orifice electrode 30 and the tip surface 20t of the center electrode 20k. This distance G is also referred to as “air gap G”.
(9) Z: Distance between the inner surface 30 in of the orifice electrode 30 and the rear end 14 e of the reduced diameter portion 14 of the insulator 10. This distance Z corresponds to the axial depth of the first cavity CV1.
 なお、オリフィス電極30の貫通孔31の内径Eは、中心電極20kの先端小径部27の外径D27よりも小さいことが好ましい。これは、気中ギャップGにおいて気中放電を生じ易くするためである。 It should be noted that the inner diameter E of the through hole 31 of the orifice electrode 30 is preferably smaller than the outer diameter D27 of the tip small diameter portion 27 of the center electrode 20k. This is to facilitate air discharge in the air gap G.
 図22は、第12実施形態におけるプラズマジェットプラグ100mの先端部分の断面の拡大図である。このプラズマジェットプラグ100mの中心電極20mは、図21のプラズマジェットプラグ100kの中心電極20kが有していた先端小径部27を有しておらず、脚部22がそのまま先端まで延長された形状を有している。従って、図21のプラズマジェットプラグ100kに存在する第2キャビティ部CV2は、図22のプラズマジェットプラグ100mでは存在しない。 FIG. 22 is an enlarged view of a cross section of the tip portion of the plasma jet plug 100m in the twelfth embodiment. The center electrode 20m of the plasma jet plug 100m does not have the tip small-diameter portion 27 that the center electrode 20k of the plasma jet plug 100k in FIG. 21 has, and the leg portion 22 is extended to the tip as it is. Have. Therefore, the second cavity CV2 existing in the plasma jet plug 100k of FIG. 21 does not exist in the plasma jet plug 100m of FIG.
 図22のような第2キャビティ部CV2を有さないプラズマジェットプラグ100mにおいても、中心電極20mの先端縁20cと絶縁体10の内面10inとの間の最短距離Drを十分に大きくとることによって、沿面放電が発生し難くし、安定して気中放電を行わせることができる。但し、図21のように第2キャビティ部CV2を設けるようにすれば、中心電極20mの先端縁20cと絶縁体10の内面10inとの間の最短距離Drを大きくできるので、沿面放電が発生を抑制することが可能であり、また、キャビティCV全体の容積を小さく抑えてプラズマを噴出し易くすることができる。 Even in the plasma jet plug 100m that does not have the second cavity portion CV2 as shown in FIG. 22, the shortest distance Dr between the tip edge 20c of the center electrode 20m and the inner surface 10in of the insulator 10 is sufficiently large. Creeping discharge hardly occurs and air discharge can be stably performed. However, if the second cavity portion CV2 is provided as shown in FIG. 21, the shortest distance Dr between the tip edge 20c of the center electrode 20m and the inner surface 10in of the insulator 10 can be increased, so that creeping discharge occurs. In addition, the volume of the entire cavity CV can be suppressed to be small, and plasma can be easily ejected.
 以下では、図21及び図22に示したプラズマジェットプラグに関する寸法をパラメータとして行ったいくつかの試験結果について順次説明する。 Hereinafter, several test results performed using the dimensions related to the plasma jet plug shown in FIGS. 21 and 22 as parameters will be sequentially described.
 図23は、中心電極20nの先端縁20cと絶縁体10の内面10inとの間の最短距離Drと、気中ギャップGとの関係についての放電経路確認試験の結果を示している。ここでは、図23(A)は、放電経路確認試験用のプラズマジェットプラグ100nの縦断面図を示し、図23(B)はその平面図を示している。このプラズマジェットプラグ100nは、図22に示した第2キャビティ部CV2の無いプラズマジェットプラグ100mのオリフィス電極30を、棒状の電極30barに置き換えた構成を有している。この理由は、オリフィス電極30の貫通孔31(図22)からキャビティCVの内部を撮影するのが困難だからである。放電経路確認試験では、圧力チャンバ内にプラズマジェットプラグ100nを取り付け、圧力チャンバ内を1.0MPa(大気)に加圧した状態で100回の放電を行った。この際、高速度カメラを用いてキャビティCV内の放電経路を撮影し、100回の放電のうちで沿面放電が生じた回数の割合を測定した。 FIG. 23 shows the result of the discharge path confirmation test regarding the relationship between the shortest distance Dr between the tip edge 20c of the center electrode 20n and the inner surface 10in of the insulator 10 and the air gap G. Here, FIG. 23A shows a longitudinal sectional view of a plasma jet plug 100n for a discharge path confirmation test, and FIG. 23B shows a plan view thereof. The plasma jet plug 100n has a configuration in which the orifice electrode 30 of the plasma jet plug 100m without the second cavity portion CV2 shown in FIG. 22 is replaced with a rod-shaped electrode 30bar. This is because it is difficult to photograph the inside of the cavity CV from the through hole 31 (FIG. 22) of the orifice electrode 30. In the discharge path confirmation test, the plasma jet plug 100n was attached in the pressure chamber, and discharge was performed 100 times in a state where the pressure chamber was pressurized to 1.0 MPa (atmosphere). At this time, the discharge path in the cavity CV was photographed using a high-speed camera, and the ratio of the number of occurrences of creeping discharge out of 100 discharges was measured.
 図23(C)は、中心電極20nの先端縁20cと絶縁体10の内面10inとの間の最短距離Drと、気中ギャップGとの比Dr/Gの値をパラメータとしたサンプルS101~S104の各種の寸法を示している。これらのサンプルS101~S104は、第2キャビティ部CV2が無いので、第2キャビティ部CV2に関連する寸法Dp,Dqはゼロであり、また、Dr=Dsである。また、この試験では、気中ギャップGは0.5mmで一定とし、最短距離Drの値を0.25mm~1.00mmの範囲で変更した4つのサンプルS101~S104を用いた。 FIG. 23C shows samples S101 to S104 in which the value of the ratio Dr / G between the shortest distance Dr between the tip edge 20c of the center electrode 20n and the inner surface 10in of the insulator 10 and the air gap G is used as a parameter. Various dimensions are shown. Since these samples S101 to S104 do not have the second cavity portion CV2, the dimensions Dp and Dq related to the second cavity portion CV2 are zero, and Dr = Ds. In this test, four samples S101 to S104 were used in which the air gap G was constant at 0.5 mm and the value of the shortest distance Dr was changed in the range of 0.25 mm to 1.00 mm.
 図23(D)は、放電経路確認試験で得られた沿面放電割合を示している。この試験結果によれば、Dr/Gの値が増加するに従って沿面放電割合が減少し、Dr/Gが1.5以上になると沿面放電が発生せずにすべて気中放電となった。この結果を考慮すれば、気中ギャップGに対する最短距離Drの比の値Dr/Gは大きいほど好ましく、特に、以下の関係を満たすことが好ましい。
 1.5×G≦Dr       …(1)
 この(1)式を満足すれば、中心電極20nの先端縁20cと絶縁体10の内面10inとの間の最短距離Drが、気中ギャップGに比べて十分に大きいので、沿面放電が発生し難くなり、安定して気中放電を行わせることができる。この結果、チャンネリングの発生を抑制できる。
FIG. 23 (D) shows the creeping discharge ratio obtained in the discharge path confirmation test. According to this test result, the creeping discharge rate decreased as the value of Dr / G increased, and when Dr / G was 1.5 or more, the creeping discharge did not occur and all became air discharge. Considering this result, the value Dr / G of the ratio of the shortest distance Dr to the air gap G is preferably as large as possible, and it is particularly preferable that the following relationship is satisfied.
1.5 × G ≦ Dr (1)
If this equation (1) is satisfied, the shortest distance Dr between the tip edge 20c of the center electrode 20n and the inner surface 10in of the insulator 10 is sufficiently larger than the air gap G, so that creeping discharge occurs. It becomes difficult, and air discharge can be performed stably. As a result, the occurrence of channeling can be suppressed.
 なお、上記(1)式の関係は、図22に示したような第2キャビティ部CV2の無いプラズマジェットプラグ100mに限らず、図21に示したような第2キャビティ部CV2の有るプラズマジェットプラグ100kにも同様に適用できると推定される。この理由は、第2キャビティ部CV2が有る場合にも、上記(1)式を満足すれば最短距離Drが気中ギャップGに比べて十分に大きくなるので沿面放電が発生し難くなり、安定して気中放電が発生すると期待されるからである。 The relationship of the above formula (1) is not limited to the plasma jet plug 100m without the second cavity portion CV2 as shown in FIG. 22, but the plasma jet plug with the second cavity portion CV2 as shown in FIG. It is estimated that the same applies to 100k. The reason for this is that even when the second cavity portion CV2 is present, if the above formula (1) is satisfied, the shortest distance Dr becomes sufficiently larger than the air gap G, and therefore it is difficult for creeping discharges to occur and is stable. This is because air discharge is expected to occur.
 ところで、沿面放電よりも気中放電を発生し易くするという意味からは、上記(1)式を満たすようにDrの値を設定することが好ましいが、一方で、Drの値は、キャビティCVの容積が過度に大きくならない程度の範囲に収めることが好ましい。この理由は、キャビティCVの容積が過度に大きくなると、プラズマの噴出性能が悪化する可能性があるからである。この意味では、Drの値として、例えば2mm以下とすることが好ましく、1.5mm以下とすることが更に好ましく、1mm以下とすることが最も好ましい。 By the way, it is preferable to set the value of Dr so as to satisfy the above formula (1) from the viewpoint of facilitating the generation of air discharge rather than creeping discharge. On the other hand, the value of Dr is the value of the cavity CV. It is preferable to keep the volume within a range that does not become excessively large. This is because if the volume of the cavity CV becomes excessively large, the plasma ejection performance may deteriorate. In this sense, the value of Dr is, for example, preferably 2 mm or less, more preferably 1.5 mm or less, and most preferably 1 mm or less.
 図24は、第2キャビティ部CV2の径方向空間距離Dpについての放電試験結果を示す説明図である。図24(A)は試験装置の模式的な平面図であり、図24(B)はそのB-B断面図である。この試験では、圧力チャンバ300内に第1電極210を設置し、第1電極210の上表面の凹部に直方形状の絶縁体220を嵌め込み、絶縁体220の上に円柱状の第2電極230を設置した。第1電極210の一端には、鉛直上方に立ち上がる壁部212を形成し、この壁部212と絶縁体220の間に空間距離Dpを設定した。また、第2電極230の側面から第1電極210の壁部212に向かう沿面経路のうち、絶縁体220上の沿面距離を0.5mmに設定した。更に、絶縁体220の厚みをいくつかの値に変えることによって、第1電極210の上表面と絶縁体220の上表面との間の距離Dqを変更した。また、この距離Dqと空間距離Dpとが等しくなるように空間距離Dpを調節した。第1電極210の壁部212は、図21における中心電極20kを模擬しており、第1電極210の壁部212と絶縁体220との間の溝部GVは図21における第2キャビティ部CV2を模擬している。すなわち、図24(B)の空間距離Dpは、第2キャビティ部CV2(図21)の径方向空間距離Dpを模擬しており、図24(B)の距離Dqは、第2キャビティ部CV2の深さDqを模擬している。 FIG. 24 is an explanatory diagram showing a discharge test result with respect to the radial space distance Dp of the second cavity portion CV2. FIG. 24A is a schematic plan view of the test apparatus, and FIG. 24B is a cross-sectional view taken along the line BB. In this test, the first electrode 210 is installed in the pressure chamber 300, the rectangular insulator 220 is fitted into the recess on the upper surface of the first electrode 210, and the cylindrical second electrode 230 is placed on the insulator 220. installed. At one end of the first electrode 210, a wall portion 212 rising vertically upward was formed, and a spatial distance Dp was set between the wall portion 212 and the insulator 220. In addition, the creepage distance on the insulator 220 in the creeping path from the side surface of the second electrode 230 toward the wall portion 212 of the first electrode 210 was set to 0.5 mm. Furthermore, the distance Dq between the upper surface of the first electrode 210 and the upper surface of the insulator 220 was changed by changing the thickness of the insulator 220 to several values. Further, the spatial distance Dp was adjusted so that the distance Dq and the spatial distance Dp were equal. The wall portion 212 of the first electrode 210 simulates the center electrode 20k in FIG. 21, and the groove portion GV between the wall portion 212 of the first electrode 210 and the insulator 220 forms the second cavity portion CV2 in FIG. Mock up. That is, the spatial distance Dp in FIG. 24 (B) simulates the radial spatial distance Dp of the second cavity portion CV2 (FIG. 21), and the distance Dq in FIG. 24 (B) is equal to the second cavity portion CV2. Depth Dq is simulated.
 この放電試験では、圧力チャンバ内を0.2MPa,0.6MPa,1.0MPa(いずれも大気)に加圧した状態でそれぞれ100回の放電を行った。そして、高速度カメラを用いて放電経路を撮影し、100回の放電のうちで気中放電が生じた回数の割合を測定した。ここで、「気中放電」とは絶縁体220の表面に沿った沿面経路を通らない放電を意味し、「沿面放電」とは絶縁体220の表面に沿った沿面経路を通る放電を意味する。 In this discharge test, discharge was performed 100 times in a state where the pressure chamber was pressurized to 0.2 MPa, 0.6 MPa, and 1.0 MPa (all in the atmosphere). And the discharge path | route was image | photographed using the high speed camera, and the ratio of the frequency | count that the air discharge generate | occur | produced among 100 discharges was measured. Here, “air discharge” means discharge that does not pass along the creeping path along the surface of the insulator 220, and “creeping discharge” means discharge that passes along the creeping path along the surface of the insulator 220. .
 図24(C)は、空間距離Dpと気中放電割合との関係を示している。この試験結果によれば、空間距離Dpの値が増加するに従って気中放電割合が減少し、空間距離Dpが0.1mm以上になると気中放電が発生せず、すべて沿面放電となった。この結果は、次のように理解することができる。すなわち、図24(B)の空間距離Dpが大きくなると、第1電極210の壁部212の表面から気中を介して横方向に第2電極230に到達する気中放電が発生し難くなる。これを図21のプラズマジェットプラグ100kに当てはめて考えると、第2キャビティ部CV2の径方向空間距離Dpが大きくなると、中心電極20kの側面から気中を介して第2キャビティ部CV2の溝部を飛び越した後に絶縁体10の内面の沿面経路に沿って放電が発生し難くなるものと推定できる。従って、図21のように第2キャビティ部CV2を有するプラズマジェットプラグ100kにおいて沿面放電を抑制するためには、第2キャビティ部CV2の径方向空間距離Dpを大きくすることが好ましく、特に0.1mm以上とすることが好ましい。こうすれば、沿面放電の発生を抑制して、安定して気中放電を行わせることができる。 FIG. 24 (C) shows the relationship between the spatial distance Dp and the air discharge rate. According to this test result, the air discharge rate decreased as the value of the space distance Dp increased, and when the space distance Dp was 0.1 mm or more, no air discharge was generated, and all were creeping discharges. This result can be understood as follows. That is, when the spatial distance Dp in FIG. 24B increases, an air discharge that reaches the second electrode 230 in the lateral direction from the surface of the wall portion 212 of the first electrode 210 through the air becomes difficult to occur. When this is applied to the plasma jet plug 100k of FIG. 21, when the radial space distance Dp of the second cavity portion CV2 increases, the groove portion of the second cavity portion CV2 jumps from the side surface of the center electrode 20k through the air. After that, it can be presumed that the discharge hardly occurs along the creeping path on the inner surface of the insulator 10. Therefore, in order to suppress creeping discharge in the plasma jet plug 100k having the second cavity portion CV2 as shown in FIG. 21, it is preferable to increase the radial space distance Dp of the second cavity portion CV2, particularly 0.1 mm. The above is preferable. If it carries out like this, generation | occurrence | production of creeping discharge can be suppressed and air discharge can be performed stably.
 ところで、沿面放電よりも気中放電を発生し易くするという意味からは、第2キャビティ部CV2の径方向空間距離Dpを0.1mm以上とすることが好ましいが、一方で、Dpの値は、第2キャビティ部CV2の容積が過度に大きくならない程度の範囲に収めることが好ましい。この意味では、Dpの値として、例えば1mm以下とすることが好ましく、0.7mm以下とすることが更に好ましく、0.5mm以下とすることが最も好ましい。 By the way, in terms of facilitating the generation of air discharge rather than creeping discharge, the radial space distance Dp of the second cavity portion CV2 is preferably set to 0.1 mm or more. On the other hand, the value of Dp is It is preferable that the volume of the second cavity portion CV2 is within a range that does not become excessively large. In this sense, the value of Dp is preferably, for example, 1 mm or less, more preferably 0.7 mm or less, and most preferably 0.5 mm or less.
 図25は、第2キャビティ部CV2の深さDqと径方向空間距離Dpの比Dq/Dpについての試験結果を示している。この試験では、圧力チャンバ内にプラズマジェットプラグ100kを取り付け、圧力チャンバ内を1.0MPa(大気)に加圧した状態で100回の放電を行い、放電電圧を測定した。ここで、「放電電圧」とは、高電圧を印加して絶縁破壊が生じた際の電圧を意味する。 FIG. 25 shows the test results for the ratio Dq / Dp between the depth Dq of the second cavity CV2 and the radial space distance Dp. In this test, a plasma jet plug 100k was attached in the pressure chamber, and discharge was performed 100 times in a state where the pressure chamber was pressurized to 1.0 MPa (atmosphere), and the discharge voltage was measured. Here, the “discharge voltage” means a voltage when a dielectric breakdown occurs by applying a high voltage.
 図25(A)には、サンプルS201~S216の寸法を示している。サンプルS201は、第2キャビティ部CV2の無い図22の形状のプラグである。サンプルS202~S206は、第2キャビティ部CV2の径方向空間距離Dpを0.1mmの一定値とし、第2キャビティ部CV2の深さDqを変えたサンプルである。サンプルS207~S211は、第2キャビティ部CV2の径方向空間距離Dpを0.3mmの一定値とし、第2キャビティ部CV2の深さDqを変えたサンプルである。サンプルS212~S215は、第2キャビティ部CV2の径方向空間距離Dpを0.5mmの一定値とし、第2キャビティ部CV2の深さDqを変えたサンプルである。なお、3つのサンプル群S202~S206,S207~S211,S212~S216における径方向空間距離Dpの違いは、中心電極20kの先端小径部27の外径D27を変更することによって調整した。この試験では、すべてのサンプルS201~S216において、オリフィス電極30の貫通孔31の内径Eを2.5mmと、通常の値(約1.0mm)に比べて過大な値に設定した。この理由は、中心電極20kからオリフィス電極30への気中放電が発生せずに、必ず沿面放電が生じるようにするためである。 FIG. 25 (A) shows the dimensions of samples S201 to S216. Sample S201 is a plug having the shape of FIG. 22 without the second cavity CV2. Samples S202 to S206 are samples in which the radial space distance Dp of the second cavity part CV2 is set to a constant value of 0.1 mm and the depth Dq of the second cavity part CV2 is changed. Samples S207 to S211 are samples in which the radial space distance Dp of the second cavity part CV2 is set to a constant value of 0.3 mm and the depth Dq of the second cavity part CV2 is changed. Samples S212 to S215 are samples in which the radial space distance Dp of the second cavity part CV2 is set to a constant value of 0.5 mm, and the depth Dq of the second cavity part CV2 is changed. The difference in the radial space distance Dp among the three sample groups S202 to S206, S207 to S211, and S212 to S216 was adjusted by changing the outer diameter D27 of the tip small diameter portion 27 of the center electrode 20k. In this test, in all the samples S201 to S216, the inner diameter E of the through hole 31 of the orifice electrode 30 was set to 2.5 mm, which was an excessive value compared to a normal value (about 1.0 mm). The reason for this is to ensure that a creeping discharge occurs without causing an air discharge from the center electrode 20k to the orifice electrode 30.
 図25(B)は、Dq/Dpの値と放電電圧との関係を示している。この結果から理解できるように、Dq/Dpの値が大きくなるほど放電電圧が高くなる傾向にある。なお、上述したように、この試験のサンプルは、中心電極20kからオリフィス電極30への気中放電が発生せずに必ず沿面放電が生じる形状としているので、図25(B)の放電電圧が高いほど、実際のプラズマジェットプラグ100kでは中心電極20kからオリフィス電極30への気中放電が発生し易くなる。従って、この試験による放電電圧が高い方が、気中放電が発生し易く沿面放電が発生し難くなる点で好ましい。具体的には、第2キャビティ部CV2の深さDqと径方向空間距離Dpの比Dq/Dpの値が0を超えること(すなわち、第2キャビティ部CV2が存在すること)が好ましい。また、Dq/Dpの値が3以上となっても放電電圧はそれ以上増大しないので、Dq/Dpの値は3以下で十分である。 FIG. 25B shows the relationship between the value of Dq / Dp and the discharge voltage. As can be understood from this result, the discharge voltage tends to increase as the value of Dq / Dp increases. Note that, as described above, the test sample has a shape in which creeping discharge is always generated without generating an air discharge from the center electrode 20k to the orifice electrode 30, and therefore, the discharge voltage in FIG. 25B is high. In fact, in the actual plasma jet plug 100k, air discharge from the center electrode 20k to the orifice electrode 30 is likely to occur. Therefore, a higher discharge voltage in this test is preferable because air discharge is likely to occur and creeping discharge is less likely to occur. Specifically, the value of the ratio Dq / Dp between the depth Dq of the second cavity part CV2 and the radial space distance Dp exceeds 0 (that is, the second cavity part CV2 exists). In addition, even if the value of Dq / Dp becomes 3 or more, the discharge voltage does not increase any more, so that the value of Dq / Dp is 3 or less.
 図26は、第2キャビティ部CV2の深さDqと径方向空間距離Dpの比Dq/Dpについてのプラズマ噴出試験の結果を示している。この試験では、圧力チャンバ内を0.6MPa(大気)に加圧した状態でプラズマジェットプラグ100kを放電させ、オリフィス電極30の貫通孔31から噴出されたプラズマを側方から撮影してシュリーレン画像を取得した。そして、シュリーレン画像を二値化して、高密度部分を表す画素と低密度部分を表す画素とに分類し、高密度部分を表す画素の個数を、噴出されたプラズマのサイズとして算出した。なお、サンプルごとに10回のシュリーレン撮影を実行し、10回の撮影により算出されたプラズマの画素数の平均値を噴出面積とした。 FIG. 26 shows the result of the plasma ejection test for the ratio Dq / Dp of the depth Dq of the second cavity CV2 and the radial space distance Dp. In this test, the plasma jet plug 100k was discharged in a state where the pressure chamber was pressurized to 0.6 MPa (atmosphere), and the plasma ejected from the through hole 31 of the orifice electrode 30 was photographed from the side to obtain a Schlieren image. I got it. Then, the Schlieren image was binarized and classified into pixels representing a high-density portion and pixels representing a low-density portion, and the number of pixels representing the high-density portion was calculated as the size of the ejected plasma. In addition, 10 schlieren imaging | photography was performed for every sample, and the average value of the pixel number of the plasma calculated by 10 imaging | photography was made into the ejection area.
 図26(A)には、サンプルS302~S316の寸法を示している。サンプルS302~S316の寸法は、オリフィス電極30の貫通孔31の内径Eを1.0mm(通常値)とした点以外は図25(A)に示したサンプルS202~S216と同じである。図26(A)のサンプルS302~S316でオリフィス電極30の貫通孔31の内径Eを1.0mmとした理由は、中心電極20kとオリフィス電極30との間の気中ギャップGで気中放電を発生させるためでる。 FIG. 26 (A) shows the dimensions of samples S302 to S316. The dimensions of the samples S302 to S316 are the same as the samples S202 to S216 shown in FIG. 25A except that the inner diameter E of the through hole 31 of the orifice electrode 30 is 1.0 mm (normal value). The reason why the inner diameter E of the through hole 31 of the orifice electrode 30 is 1.0 mm in the samples S302 to S316 in FIG. 26A is that the air discharge is caused by the air gap G between the center electrode 20k and the orifice electrode 30. To generate.
 図26(B)は、Dq/Dpの値とプラズマの噴出面積との関係を示している。この試験結果から理解できるように、Dq/Dpの値が大きくなるほどプラズマの噴出面積が小さくなる傾向にある。従って、図26(B)の結果からは、第2キャビティ部CV2の深さDqと径方向空間距離Dpの比Dq/Dpの値は小さいことが好ましい。但し、Dq/Dpの値が3より小さくなってもプラズマの噴出面積はそれほど増大しないので、Dq/Dpの値は3以下とすれば十分である。 FIG. 26B shows the relationship between the value of Dq / Dp and the plasma ejection area. As can be understood from the test results, the plasma ejection area tends to decrease as the value of Dq / Dp increases. Therefore, from the result of FIG. 26B, it is preferable that the value of the ratio Dq / Dp between the depth Dq of the second cavity portion CV2 and the radial space distance Dp is small. However, even if the value of Dq / Dp is smaller than 3, the plasma ejection area does not increase so much, so it is sufficient that the value of Dq / Dp is 3 or less.
 上述した図25及び図26の結果を考慮すると、第2キャビティ部CV2の径方向空間距離Dpと深さDqは、以下の関係を満たすことが好ましい。
 0<Dq≦3×Dp     …(2)
 第2キャビティ部CV2の深さDqを(2)式の範囲に設定すれば、沿面放電よりも気中放電が発生し易くなる傾向を高めることができる(図25(B))。また、第2キャビティ部の容積が過度に大きくなることを防止して、プラズマを噴出し易くすることができる(図26(B))。
Considering the results of FIGS. 25 and 26 described above, it is preferable that the radial space distance Dp and the depth Dq of the second cavity portion CV2 satisfy the following relationship.
0 <Dq ≦ 3 × Dp (2)
If the depth Dq of the second cavity portion CV2 is set within the range of the expression (2), the tendency of generating air discharge more easily than creeping discharge can be increased (FIG. 25B). In addition, it is possible to prevent the volume of the second cavity portion from becoming excessively large, and to facilitate the ejection of plasma (FIG. 26B).
 図27は、第2キャビティ部CV2の径方向空間距離Dpと、中心電極20kの先端縁20cと絶縁体10の内面10inとの間の最短距離Drとの比Dp/Drについてのプラズマ噴出試験の結果を示している。このプラズマ噴出試験は、サンプルの形状以外は図26と同じ条件で行った。 FIG. 27 shows the plasma ejection test for the ratio Dp / Dr between the radial space distance Dp of the second cavity CV2 and the shortest distance Dr between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10. Results are shown. This plasma ejection test was performed under the same conditions as in FIG. 26 except for the shape of the sample.
 図27(A)には、サンプルS401~S405の寸法を示している。これらのサンプルS401~S405では、中心電極20kの脚部22の外径D22を変えることによって、第2キャビティ部CV2の径方向空間距離Dpを変更した。但し、中心電極20kの先端縁20cと絶縁体10の内面10inとの間の最短距離Drが一定値(1.0mm)となるように、絶縁体10の拡大内径部16の内半径と脚長部13の内半径との差分Dsを調整した。 FIG. 27 (A) shows the dimensions of samples S401 to S405. In these samples S401 to S405, the radial distance Dp of the second cavity portion CV2 was changed by changing the outer diameter D22 of the leg portion 22 of the center electrode 20k. However, the inner radius and leg length of the enlarged inner diameter portion 16 of the insulator 10 are set so that the shortest distance Dr between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10 becomes a constant value (1.0 mm). The difference Ds from the inner radius of 13 was adjusted.
 図27(B)は、Dp/Drの値とプラズマの噴出面積との関係を示している。この結果から理解できるように、Dp/Drの値が大きくなるほどプラズマの噴出面積が小さくなる傾向にある。従って、図27(B)の結果からは、Dp/Drの値は小さいことが好ましい。但し、Dq/Dpの値が0.5より小さくなってもプラズマの噴出面積はそれ以上増大しないので、Dq/Dpの値は0.5以下とすれば十分である。なお、図21の構造において、Dpは、中心電極20kの側面(外周面)から第2キャビティ部CV2の外周を構成する絶縁体10の壁面までの距離である。また、Drは、中心電極20kの先端縁20cから第1キャビティ部CV1の外周を構成する絶縁体10の内面10inまでの最短距離である。図27(B)の結果は、これらの距離の比Dp/Drの値が0.5を超えると、プラズマが第2キャビティ部CV2の奥まで広がりやすくなるため、オリフィス電極30の貫通孔31から外部にプラズマが噴出する噴出力が低下するものと理解することが可能である。 FIG. 27 (B) shows the relationship between the Dp / Dr value and the plasma ejection area. As can be understood from this result, the plasma ejection area tends to decrease as the value of Dp / Dr increases. Therefore, from the result of FIG. 27B, it is preferable that the value of Dp / Dr is small. However, even if the value of Dq / Dp is smaller than 0.5, the plasma ejection area does not increase any more, so it is sufficient that the value of Dq / Dp is 0.5 or less. In the structure of FIG. 21, Dp is the distance from the side surface (outer peripheral surface) of the center electrode 20k to the wall surface of the insulator 10 constituting the outer periphery of the second cavity portion CV2. Dr is the shortest distance from the tip edge 20c of the center electrode 20k to the inner surface 10in of the insulator 10 constituting the outer periphery of the first cavity portion CV1. The result of FIG. 27B shows that when the value of the ratio Dp / Dr of these distances exceeds 0.5, the plasma easily spreads to the back of the second cavity portion CV2, so that the through hole 31 of the orifice electrode 30 It can be understood that the jet power at which plasma is ejected to the outside decreases.
 図27(B)の試験結果を考慮すると、第2キャビティ部CV2の径方向空間距離Dpと、中心電極20kの先端縁20cと絶縁体10の内面10inとの間の最短距離Drとの関係が、以下の関係を満たすことが好ましい。
 (Dp/Dr)≦0.5    …(3)
 この(3)式を満足するようにDp/Drを設定すれば、プラズマをより噴出し易くすることが可能である。
Considering the test result of FIG. 27B, the relationship between the radial space distance Dp of the second cavity portion CV2 and the shortest distance Dr between the tip edge 20c of the center electrode 20k and the inner surface 10in of the insulator 10 is as follows. The following relationship is preferably satisfied.
(Dp / Dr) ≦ 0.5 (3)
If Dp / Dr is set so as to satisfy this equation (3), it is possible to make it easier to eject plasma.
・変形例
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
Modification Examples The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the scope of the invention.
・変形例1:
 図4~図19で説明した構造的な特徴と、図21~図27で説明した構造的な特徴は、それらを同時に採用することが可能であり、また、個別に採用することも可能である。
・ Modification 1:
The structural features described in FIGS. 4 to 19 and the structural features described in FIGS. 21 to 27 can be employed at the same time, or can be employed individually. .
・変形例2:
 プラズマジェットプラグの構成としては、図4~図9,図14~図17,図21~図22に示した構成以外の種々の構成を採用可能である。例えば、中心電極20の先端付近の形状が単純な円柱形でなく、表面に凹凸を設けてもよい。
Modification 2
As the configuration of the plasma jet plug, various configurations other than the configurations shown in FIGS. 4 to 9, 14 to 17, and 21 to 22 can be adopted. For example, the shape near the tip of the center electrode 20 may not be a simple cylindrical shape, but may be provided with irregularities on the surface.
 また、中心電極20の先端は、鋭角なエッジ状ではなく、R面取りやC面取りなどの面取りが施されていてもよい。こうすれば、電界集中が生じ難いので、プラズマの熱による中心電極20の消耗を更に抑制することが可能である。 Further, the tip of the center electrode 20 is not an acute edge, and may be chamfered such as R chamfering or C chamfering. In this way, since electric field concentration is unlikely to occur, it is possible to further suppress the consumption of the center electrode 20 due to the heat of the plasma.
  4…シール体
  5…ガスケット
  6…リング部材
  9…タルク
  10…絶縁体
  10z…絶縁体の縮内径部
  10in…絶縁体の内面
  12…絶縁体の軸孔
  13…絶縁体の脚長部(小内径部)
  13c,13d,13e…第1部材
  14…絶縁体の縮径部
  15…絶縁体の電極収容部
  16…絶縁体の拡大内径部
  16c~16j…絶縁体の第2部材
  16p…絶縁体の先端開口部
  17…絶縁体の先端側胴部
  18…絶縁体の後端側胴部
  19…絶縁体の鍔部
  20,20k~20n…中心電極
  20f…中心電極の側面
  20s…中心電極の表面
  20t…中心電極の先端面
  21…中心電極の頭部
  22…中心電極の脚部
  30…オリフィス電極
  30in…オリフィス電極の内面
  31…オリフィス電極の貫通孔
  32…オリフィス電極の露出面
  32e…オリフィス電極の露出面の最外周位置
  40…端子金具
  50…主体金具
  51…主体金具の工具係合部
  52…主体金具のねじ部
  53…主体金具の加締部
  54…主体金具の鍔部
  55…主体金具の座面
  56…主体金具の係止部
  57…主体金具の先端部
  57A…主体金具の先端部の凹部
  80…パッキン
  100,100a~100n,100r…プラズマジェットプラグ
  120…点火装置
  130…制御回路部
  140…火花放電回路部
  160…プラズマ放電回路部
  161…高電圧発生回路
  162…コンデンサ
  210…絶縁体
  210s…絶縁体の上表面
  212…絶縁体の溝部
  220…第1電極
  230…第2電極
DESCRIPTION OF SYMBOLS 4 ... Sealing body 5 ... Gasket 6 ... Ring member 9 ... Talc 10 ... Insulator 10z ... Reduced inner diameter part of the insulator 10in ... Inner surface of the insulator 12 ... Shaft hole of the insulator 13 ... Leg long part of the insulator (small inner diameter part) )
13c, 13d, 13e ... first member 14 ... reduced diameter portion of insulator 15 ... electrode housing portion of insulator 16 ... enlarged inner diameter portion of insulator 16c-16j ... second member of insulator 16p ... opening of tip of insulator Part 17: Insulator front end side body part 18 ... Insulator rear end side body part 19 ... Insulator flange 20, 20k to 20n ... Center electrode 20f ... Side face of center electrode 20s ... Surface of center electrode 20t ... Center Electrode tip surface 21 ... Head of center electrode 22 ... Leg portion of center electrode 30 ... Orifice electrode 30in ... Inner surface of orifice electrode 31 ... Through hole of orifice electrode 32 ... Exposed surface of orifice electrode 32e ... Exposed surface of orifice electrode Outermost peripheral position 40 ... Terminal fitting 50 ... Metal fitting 51 ... Tool engagement portion 52 of metal fitting 52 ... Threaded portion of metal fitting 53 ... Clamping portion 54 of metal fitting 54 ... Hard part of metal fitting 55 ... Seat of metal shell 56 ... Locking portion of metal shell 57 ... Tip portion of metal shell 57A ... Concavity at tip of metal shell 80 ... Packing 100, 100a to 100n, 100r ... Plasma jet plug 120 ... Ignition device 130 ... Control circuit section 140 ... Spark discharge circuit section 160 ... Plasma discharge circuit section 161 ... High voltage generation circuit 162 ... Capacitor 210 ... Insulator 210s ... Upper surface of the insulator 212 ... Insulator groove 220 ... First electrode 230 ... Second electrode

Claims (15)

  1.  軸線方向に沿って延びる軸孔を有する筒状の絶縁体と、前記軸孔の内部に配置された中心電極と、前記絶縁体の外周に配置された主体金具と、前記主体金具に電気的に接続され前記絶縁体の先端側に配置されたオリフィス電極と、を備え、前記中心電極の表面と前記絶縁体の内面と前記オリフィス電極の内面とによってプラズマ生成用のキャビティが形成されたプラズマジェットプラグにおいて、
     前記キャビティ内において前記中心電極の表面から前記絶縁体の内面を経由して前記オリフィス電極の内面に至る沿面経路の最短の経路長D1が、前記中心電極と前記オリフィス電極の間の最短距離である気中ギャップGの5倍以上あることを特徴とするプラズマジェットプラグ。
    A cylindrical insulator having an axial hole extending along the axial direction, a central electrode disposed inside the axial hole, a metal shell disposed on the outer periphery of the insulator, and the metal shell electrically A plasma jet plug having a plasma generating cavity formed by the surface of the central electrode, the inner surface of the insulator, and the inner surface of the orifice electrode. In
    In the cavity, the shortest path length D1 of the creeping path from the surface of the center electrode through the inner surface of the insulator to the inner surface of the orifice electrode is the shortest distance between the center electrode and the orifice electrode. A plasma jet plug characterized by being 5 times or more the air gap G.
  2.  請求項1に記載のプラズマジェットプラグであって、
     前記絶縁体の内面は、前記沿面経路において凹状経路を形成する1つ以上の溝部を有し、
     前記溝部の溝幅が0.1mm以上であることを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 1,
    The inner surface of the insulator has one or more grooves forming a concave path in the creeping path;
    A plasma jet plug, wherein the groove has a groove width of 0.1 mm or more.
  3.  請求項2に記載のプラズマジェットプラグであって、
     前記溝部の深さが前記溝幅の3倍以下であることを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 2,
    The plasma jet plug according to claim 1, wherein a depth of the groove portion is three times or less of the groove width.
  4.  請求項1~3のいずれか一項に記載のプラズマジェットプラグであって、
     前記キャビティに面する前記中心電極の側面の表面積が、20mm2以下であることを特徴とするプラズマジェットプラグ。
    A plasma jet plug according to any one of claims 1 to 3,
    The plasma jet plug according to claim 1, wherein a surface area of a side surface of the center electrode facing the cavity is 20 mm 2 or less.
  5.  請求項2~4のいずれか一項に記載のプラズマジェットプラグであって、
     前記キャビティに面する前記絶縁体が複数の部材から構成されていることを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to any one of claims 2 to 4,
    The plasma jet plug, wherein the insulator facing the cavity is composed of a plurality of members.
  6.  請求項5に記載のプラズマジェットプラグであって、
     前記絶縁体の前記複数の部材は、前記中心電極の外周側に設けられた第1部材と、前記第1部材の外周側に設けられた第2部材とを含み、
     前記第1部材は、前記第2部材よりも熱伝導率が高い第1の絶縁材料で形成されており、前記第2部材は、前記第1部材よりも耐電圧が高い第2の絶縁材料で形成されていることを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 5,
    The plurality of members of the insulator include a first member provided on the outer peripheral side of the center electrode and a second member provided on the outer peripheral side of the first member;
    The first member is made of a first insulating material having a higher thermal conductivity than the second member, and the second member is made of a second insulating material having a higher withstand voltage than the first member. A plasma jet plug characterized by being formed.
  7.  請求項1~6のいずれか一項に記載のプラズマジェットプラグであって、
     前記キャビティ内における前記中心電極の側面が絶縁材料で覆われており、
     前記中心電極の側面に設けられた前記絶縁材料の先端から前記中心電極の先端までの距離Lが、0.4mm以下であることを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to any one of claims 1 to 6,
    A side surface of the central electrode in the cavity is covered with an insulating material;
    The plasma jet plug according to claim 1, wherein a distance L from a tip of the insulating material provided on a side surface of the center electrode to a tip of the center electrode is 0.4 mm or less.
  8.  請求項7に記載のプラズマジェットプラグであって、
     前記軸線方向と垂直な方向に沿って測ったときの前記中心電極の側面と前記キャビティの内壁面との間の距離Hが、前記気中ギャップGよりも大きいことを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 7,
    A plasma jet plug, wherein a distance H between a side surface of the center electrode and an inner wall surface of the cavity when measured along a direction perpendicular to the axial direction is larger than the air gap G.
  9.  請求項7又は8に記載のプラズマジェットプラグであって、
     前記オリフィス電極の貫通孔の周囲における前記オリフィス電極の内面が、前記貫通孔に隣接する露出面を残して絶縁材料で覆われており、
     前記軸線方向と垂直な方向に沿って測ったときの前記露出面の最外周位置と前記中心電極の側面との間の距離Jが、前記距離Hよりも小さいことを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 7 or 8,
    The inner surface of the orifice electrode around the through hole of the orifice electrode is covered with an insulating material leaving an exposed surface adjacent to the through hole;
    A plasma jet plug characterized in that a distance J between an outermost peripheral position of the exposed surface and a side surface of the central electrode when measured along a direction perpendicular to the axial direction is smaller than the distance H.
  10.  請求項9に記載のプラズマジェットプラグであって、
     前記露出面の最外周位置と前記中心電極の先端との間の距離Kが、前記気中ギャップGよりも大きいことを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 9, wherein
    A plasma jet plug characterized in that a distance K between the outermost peripheral position of the exposed surface and the tip of the center electrode is larger than the air gap G.
  11.  請求項1~10のいずれか一項に記載のプラズマジェットプラグであって、
     前記気中ギャップGと、前記中心電極の先端縁と前記絶縁体の内面との間の最短距離Drとの関係が、1.5×G≦Drを満たすことを特徴とするプラズマジェットプラグ。
    A plasma jet plug according to any one of claims 1 to 10,
    The plasma jet plug characterized in that the relationship between the air gap G and the shortest distance Dr between the leading edge of the center electrode and the inner surface of the insulator satisfies 1.5 × G ≦ Dr.
  12.  請求項11に記載のプラズマジェットプラグであって、
     前記キャビティに面する前記絶縁体の内面は、前記絶縁体の後端側に向かって前記絶縁体の内面が縮径するように設けられた縮径部を有し、
     前記キャビティは、前記絶縁体の前記縮径部の後端よりも先端側の第1キャビティ部と、前記縮径部の後端よりも後端側の第2キャビティ部とを有することを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 11,
    The inner surface of the insulator facing the cavity has a reduced diameter portion provided such that the inner surface of the insulator is reduced in diameter toward the rear end side of the insulator,
    The cavity has a first cavity portion on the front end side of the rear end of the reduced diameter portion of the insulator, and a second cavity portion on the rear end side of the rear end of the reduced diameter portion. Plasma jet plug to be used.
  13.  請求項12に記載のプラズマジェットプラグであって、
     前記第2キャビティ部において前記中心電極の表面と前記絶縁体の内面との間を前記軸線方向に垂直な径方向に測った距離である径方向空間距離Dpが、0.1mm以上であることを特徴とするプラズマジェットプラグ。
    A plasma jet plug according to claim 12,
    A radial space distance Dp, which is a distance measured in a radial direction perpendicular to the axial direction between the surface of the center electrode and the inner surface of the insulator in the second cavity portion, is 0.1 mm or more. Characteristic plasma jet plug.
  14.  請求項13に記載のプラズマジェットプラグであって、
     前記軸線方向に沿って測った前記第2キャビティ部の深さDqが、0<Dq≦3×Dpを満たすことを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 13,
    A plasma jet plug characterized in that a depth Dq of the second cavity portion measured along the axial direction satisfies 0 <Dq ≦ 3 × Dp.
  15.  請求項14に記載のプラズマジェットプラグであって、
     前記第2キャビティ部の前記径方向空間距離Dpと、前記中心電極の先端縁と前記絶縁体の内面との間の前記最短距離Drとの関係が、Dp/Dr≦0.5を満たすことを特徴とするプラズマジェットプラグ。
    The plasma jet plug according to claim 14,
    The relationship between the radial space distance Dp of the second cavity portion and the shortest distance Dr between the tip edge of the center electrode and the inner surface of the insulator satisfies Dp / Dr ≦ 0.5. Characteristic plasma jet plug.
PCT/JP2016/000563 2015-02-26 2016-02-03 Plasma jet plug WO2016136149A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16754905.4A EP3264545A4 (en) 2015-02-26 2016-02-03 Plasma jet plug
US15/552,205 US20180038337A1 (en) 2015-02-26 2016-02-03 Plasma jet plug

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-036010 2015-02-26
JP2015036010A JP6067043B2 (en) 2015-02-26 2015-02-26 Plasma jet plug
JP2015-075551 2015-04-02
JP2015075551 2015-04-02
JP2015105326A JP6153965B2 (en) 2015-04-02 2015-05-25 Plasma jet plug
JP2015-105326 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016136149A1 true WO2016136149A1 (en) 2016-09-01

Family

ID=56789543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000563 WO2016136149A1 (en) 2015-02-26 2016-02-03 Plasma jet plug

Country Status (1)

Country Link
WO (1) WO2016136149A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635793U (en) * 1979-08-27 1981-04-07
JPS5638988U (en) * 1979-09-04 1981-04-11
JPS59188696U (en) * 1983-06-01 1984-12-14 三菱電機株式会社 plasma spark plug
JPH0272577A (en) * 1988-09-06 1990-03-12 Honda Motor Co Ltd Ignition plug of internal combustion engine
JPH04286890A (en) * 1991-03-15 1992-10-12 Ngk Spark Plug Co Ltd Speak plug for internal combustion engine
JP2007134127A (en) * 2005-11-09 2007-05-31 Denso Corp Spark plug and igniter
JP2011210709A (en) * 2010-03-09 2011-10-20 Ngk Spark Plug Co Ltd Plasma-jet ignition plug and ignition system
JP2013098112A (en) * 2011-11-04 2013-05-20 Ngk Spark Plug Co Ltd Plasma jet spark plug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635793U (en) * 1979-08-27 1981-04-07
JPS5638988U (en) * 1979-09-04 1981-04-11
JPS59188696U (en) * 1983-06-01 1984-12-14 三菱電機株式会社 plasma spark plug
JPH0272577A (en) * 1988-09-06 1990-03-12 Honda Motor Co Ltd Ignition plug of internal combustion engine
JPH04286890A (en) * 1991-03-15 1992-10-12 Ngk Spark Plug Co Ltd Speak plug for internal combustion engine
JP2007134127A (en) * 2005-11-09 2007-05-31 Denso Corp Spark plug and igniter
JP2011210709A (en) * 2010-03-09 2011-10-20 Ngk Spark Plug Co Ltd Plasma-jet ignition plug and ignition system
JP2013098112A (en) * 2011-11-04 2013-05-20 Ngk Spark Plug Co Ltd Plasma jet spark plug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264545A4 *

Similar Documents

Publication Publication Date Title
US8082897B2 (en) Plasma jet ignition plug and ignition device for the same
KR101190480B1 (en) Plasma jet ignition plug
US9843166B2 (en) Spark plug and method for manufacturing spark plug
EP2365594B1 (en) Plasma-jet spark plug and ignition system
JP4685608B2 (en) Plasma jet ignition plug
US8981633B2 (en) Spark plug and production method therefor
JP6034199B2 (en) Plasma jet ignition plug
US20180038337A1 (en) Plasma jet plug
JP5227466B2 (en) Plasma jet ignition plug
JP6071955B2 (en) Plasma jet plug
JP6153965B2 (en) Plasma jet plug
US8558442B2 (en) Plasma jet ignition plug
WO2016136149A1 (en) Plasma jet plug
US20120212131A1 (en) Plasma jet spark plug and ignition system
JP6067043B2 (en) Plasma jet plug
JP6018990B2 (en) Plasma jet ignition plug
JP6055399B2 (en) Plasma jet plug
JP6045466B2 (en) Plasma jet plug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552205

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016754905

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE