WO2016136099A1 - Resin-coated metal plate, method for producing resin-coated metal plate, and metal container - Google Patents

Resin-coated metal plate, method for producing resin-coated metal plate, and metal container Download PDF

Info

Publication number
WO2016136099A1
WO2016136099A1 PCT/JP2015/085028 JP2015085028W WO2016136099A1 WO 2016136099 A1 WO2016136099 A1 WO 2016136099A1 JP 2015085028 W JP2015085028 W JP 2015085028W WO 2016136099 A1 WO2016136099 A1 WO 2016136099A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal plate
amount
coating layer
phr
Prior art date
Application number
PCT/JP2015/085028
Other languages
French (fr)
Japanese (ja)
Inventor
安秀 大島
北川 淳一
克己 小島
中村 紀彦
裕樹 中丸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016534749A priority Critical patent/JPWO2016136099A1/en
Publication of WO2016136099A1 publication Critical patent/WO2016136099A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical

Definitions

  • the present invention relates to a resin-coated metal plate provided with a resin film layer on both surfaces of the metal plate, a method for producing the resin-coated metal plate, and a metal container.
  • a two-piece can is a metal container composed of two parts, a can body integrated with a can bottom and a lid.
  • a three-piece can is a metal container composed of three parts: a can body, an upper lid, and a bottom lid.
  • a two-piece can body has a beautiful appearance because it does not have a seam portion (welded portion), but is manufactured by a drawing method or the like, and therefore generally requires a high degree of processing.
  • the can body of the three-piece can has a seam portion, so that the appearance is inferior to that of the two-piece can body, but a high degree of processing is not necessary.
  • the degree of processing increases as the capacity of the metal container increases, so generally two-piece cans are used for small-capacity metal containers and three-piece for large-capacity metal containers. Cans tend to be used.
  • the inventors of the present invention use a resin-coated metal plate to form a two-piece can body having a high degree of processing, the adhesion between the processed resin film layer and the metal plate, and the inner surface of the metal container after the forming process.
  • heat treatment for the purpose of improving the covering property of the resin coating layer located on the side and the design property of the resin coating layer on the outer surface side of the metal container after the molding process, forming into the resin coating layer on the surface side It has been found that defects in appearance due to scratches and micro unevenness occur. For this reason, in order to manufacture a two-piece can body having a high degree of processing using a resin-coated metal plate, it is necessary to prevent appearance defects from being caused by molding and heat treatment.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a resin-coated metal plate, a method for producing a resin-coated metal plate, and a metal that can suppress appearance defects due to molding and heat treatment. To provide a container.
  • the inventors of the present invention have intensively studied, and as a result, have found that molding flaws are caused by insufficient slidability between the tool and the resin coating layer during molding.
  • defects in appearance caused by heat treatment are caused by the residual stress in the resin coating layer generated during the molding process being relaxed by the heat treatment, causing the resin coating layer to deform non-uniformly, resulting in non-uniform pigment formation. It was found that this occurs because the distribution is formed.
  • the inventors of the present invention have suppressed molding flaws by adding wax to the resin coating layer, and the micro unevenness after heat treatment has a specific resin composition.
  • the inventors have come up with a technical idea that the resin film layer can be controlled by reducing the residual stress of the resin film layer after molding by controlling the crystallinity of the resin film layer.
  • the resin-coated metal plate according to the present invention is a resin-coated metal plate provided with a resin film layer on both surfaces of the metal plate, and the resin film layer located on the outer surface side of the container after molding processing has an ethylene terephthalate unit of 97 mol% or more. 1J in terms of the difference between the amount of heat of crystallization and the amount of heat of fusion after being coated on a metal plate, containing a wax component in the range of 0.05 PHR to 5 PHR, based on resin. / G or more and 20 J / g or less.
  • the resin coating layer located on the outer surface side of the container after the molding process contains 5 PHR or more and 30 PHR or less of titanium oxide.
  • the resin coating layer located on the outer surface side of the container after molding has a structure of two or more layers, and the resin coating layers of each layer are mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and from 1 ⁇ m to 5 ⁇ m from the outermost surface. It has a layer containing the following wax components, and the amount of wax relative to the amount of resin in the layer containing wax and the amount of wax relative to the resin amount of the entire resin coating layer are both in the range of 0.05 PHR to 5 PHR.
  • the difference between the heat of crystallization and the heat of fusion of the resin film layer after being coated on the metal plate is preferably in the range of 1 J / g or more and 20 J / g or less in terms of unit weight.
  • the resin coating layer located on the outer surface side of the container after molding has a structure of two or more layers, and the resin coating layers of each layer are mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and from 1 ⁇ m to 5 ⁇ m from the outermost surface. It has a layer containing the following wax components, and the amount of wax relative to the amount of resin in the outermost surface layer containing wax and the amount of wax relative to the amount of resin in the entire resin coating layer are both in the range of 0.05 PHR to 5 PHR.
  • the amount of titanium oxide with respect to the resin amount of the entire resin coating layer is in the range of 5 PHR to 30 PHR, and at least at a depth of 1 ⁇ m from the outermost surface, the amount of titanium oxide is in the range of 2 PHR or less,
  • the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the plate is in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is preferred that in.
  • the resin coating layer located on the outer surface side of the container after molding has a structure of three or more layers consisting of an outermost surface layer, at least one intermediate layer, and the lowermost layer, and each resin coating layer is 97 mol of ethylene terephthalate unit.
  • the amount of wax relative to the amount of resin is in the range of 0.05 PHR to 5 PHR, and the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is 1J in terms of unit weight. / G or more and 20 J / g or less is preferable.
  • the amount of titanium oxide with respect to the resin amount of the entire resin coating layer is in the range of 5 PHR to 30 PHR, and the amount of titanium oxide in the range of at least 1 ⁇ m from the outermost surface and 1 ⁇ m from the lowermost surface is 2 PHR or less. It is preferable to be within.
  • the difference between the amount of heat of crystallization and the amount of heat of fusion after the resin coating layer located on the inner surface side of the container after molding is coated on the metal plate is in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is preferable that it is formed of the resin material inside.
  • the resin coating layer located on the inner surface side of the container after the molding process is formed of a resin material having an ethylene terephthalate unit of 97 mol% or more.
  • the contact angle with water of the resin coating layer located on the outer surface side of the container after the molding process is in the range of 82 ° to 100 ° after the molding process.
  • a biaxially stretched film is used to form a resin-coated layer, and the film is heat-sealed on both sides of a metal plate heated to the melting point of the resin or higher. It is characterized by. It is more preferable that the heating temperature of the metal plate is (melting point of resin + 50 ° C.) or less.
  • the metal container according to the present invention is a metal container formed by molding the resin-coated metal plate according to the present invention, and the contact angle with water of the resin film layer located on the outer surface side of the metal container is 82. It is in the range of not less than 100 ° and not more than 100 °.
  • the molding flaw and the residual stress of the resin film layer located on the outer surface side of the container can be reduced after the molding process. It is possible to suppress appearance defects from occurring due to the heat treatment.
  • FIG. 1 is a cross-sectional view showing a configuration of a resin-coated metal plate according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a resin-coated metal plate according to an embodiment of the present invention.
  • a resin coated metal plate 1 according to an embodiment of the present invention includes a metal plate 2, a resin coated layer 3 formed on one surface side of the metal plate 2, and the other of the metal plate 2. And a resin coating layer 4 formed on the surface side.
  • the resin coating layer 3 and the resin coating layer 4 are respectively positioned on the outer surface side and the inner surface side of the metal container after the molding process.
  • the metal plate 2 is formed of a steel plate such as tinplate or tin-free steel.
  • tinplate one having a tin plating amount of 0.5 to 15 g / m 2 is preferably used.
  • Tin-free steel a metal layer of chromium coating weight 50 ⁇ 200 mg / m 2, may deposition amount of chromium metal converted to its upper layer and a 3-chromium oxide layer of 30 mg / m 2.
  • the type of steel plate is not particularly limited as long as it can be formed into a desired shape, but the following components and manufacturing methods are preferable.
  • DR Double Reduced
  • IF Interstitial Free
  • the mechanical properties of the steel sheet are not particularly limited as long as they can be formed into a desired shape, but the yield strength YP is about 220 MPa or more and 580 MPa or less in order to maintain sufficient can body strength without impairing workability. It is desirable to use one. It is desirable that Rankford (r value), which is an index of plastic anisotropy, is 0.8 or more, and the in-plane anisotropy ⁇ r of r value has an absolute value of 0.7 or less. desirable.
  • the plate thickness of the steel plate can be set as appropriate from the shape of the target can and the required strength of the can. From the viewpoint of suppressing an increase in the cost of the steel sheet itself and the can body, it is desirable to use a sheet having a thickness of about 0.15 to 0.4 mm.
  • the component of steel for achieving said characteristic is not specifically limited, For example, what is necessary is just to contain components, such as Si, Mn, P, S, Al, N, and the content of Si is Within 0.001 to 0.1%, Mn content within 0.01 to 0.6%, P content within 0.002 to 0.05%, S content Is in the range of 0.002 to 0.05%, the Al content is in the range of 0.005 to 0.100%, and the N content is in the range of 0.0005 to 0.020%. preferable.
  • other components such as B, Cu, Ni, Cr, Mo, and V, may be contained, the content of these other components is 0.02% or less in total from the viewpoint of ensuring corrosion resistance and the like. It is desirable to be.
  • the resin coating layer 3 is formed of a resin material having an ethylene terephthalate unit of 97 mol% or more, preferably 98 mol% or more.
  • the resin is softened by heat generated by sliding with the tool during molding, so that molding flaws are likely to occur and surface irregularities after heat treatment are likely to occur.
  • the resin coating layer 3 may be a single layer or a structure of two or more layers, but the resin in each layer is such that the ethylene terephthalate unit is 97 mol% or more.
  • the resin coating layer 4 Since the resin coating layer 4 is bonded to both surfaces of the resin coating layer 3 and the metal plate 2, it is easy to manufacture when melted at a temperature close to the resin of the resin coating layer 3, and therefore the melting point equivalent to the resin of the resin coating layer 3 It is preferable that the ethylene terephthalate unit is 97 mol% or more.
  • the resin coating layer 4 may also be a single layer or a structure having two or more layers, but the resin in each layer preferably has 97 mol% or more of ethylene terephthalate units.
  • the resin in the resin coating layers 3 and 4 may be copolymerized with other dicarboxylic acid components and glycol components as long as the heat resistance and workability are not impaired.
  • the resin coating layer 3 it shall be in the range of less than 3 mol% in resin.
  • the resin film layer 4 it is preferable to set it in the range of less than 3 mol% in resin.
  • dicarboxylic acid component examples include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, aromatic dicarboxylic acid such as phthalic acid, oxalic acid, succinic acid, Examples thereof include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid, alicyclic carboxylic acids such as cyclohexanedicarboxylic acid, and oxycarboxylic acids such as p-oxybenzoic acid.
  • glycol components include aliphatic glycols such as propanediol, butanediol, pentanediol, hexanediol, and neopentylglycol, alicyclic glycols such as cyclohexanedimethanol, aromatic glycols such as bisphenol A and bisphenol S, and diethylene glycol. It can be illustrated. These dicarboxylic acid components and glycol components may be used in combination of two or more.
  • the resin material for forming the resin coating layers 3 and 4 is not limited by the manufacturing method.
  • a resin material can be formed by utilizing a method in which a copolymer component is subjected to a transesterification reaction and then a reaction product obtained is subjected to a polycondensation reaction to obtain a copolymer polyester.
  • ethylene terephthalate resin and butylene terephthalate resin may be mixed to form a resin material.
  • additives such as a fluorescent brightener, an antioxidant, a heat stabilizer, an ultraviolet absorber, and an antistatic agent may be added as necessary. Addition of a fluorescent brightening agent is effective for improving the whiteness. It is preferable to use a biaxially stretched film produced by melt-extruding a resin having such a composition from a T-die and forming it into a thin film and then stretching it in the longitudinal and transverse directions.
  • the pressurizing pressure at the time of coating is not particularly limited, but the surface pressure is preferably in the range of 9.8 to 294 N (1 to 30 kgf / cm 2 ).
  • the surface pressure is smaller than this range, even if the temperature at the interface between the metal plate 2 and the resin coating layers 3 and 4 is equal to or higher than the melting point, the time for which the temperature is equal to or higher than the melting point is short, the resin coating layer The melting of 3 and 4 becomes insufficient, and sufficient adhesion between the resin coating layers 3 and 4 and the metal plate 2 may not be obtained.
  • the surface pressure is larger than this range, the resin coating layers 3 and 4 may melt and adhere to the roll.
  • the resin coating layer 3 on the outer surface side of the container has a difference between the heat of crystallization and the heat of fusion after coating on the metal plate 2 of 1 J / g or more and 20 J / g or less, preferably 1 J / g in terms of unit weight. g or more and 15 J / g or less, more preferably 3 J / g or more and 10 J / g or less.
  • the heat of crystallization and the heat of fusion can be measured using a differential scanning calorimeter (Differential Scanning Calorimetry: DSC).
  • DSC differential Scanning Calorimetry
  • the difference between the amount of heat of crystallization and the amount of heat of fusion of the resin coating layer 3 is less than 1 J / g, the residual stress after molding is reduced, but the impact resistance is reduced, and when a certain level of impact is applied, Resin film cracking occurs.
  • the difference between the amount of heat of crystallization and the amount of heat of fusion is greater than 20 J / g, the degree of crystallinity of the resin coating layer 3 is increased, and the residual stress after molding is increased. Will occur. From the above, the difference between the heat of crystallization and the heat of fusion of the resin coating layer 3 on the outer surface side of the container is 1 J / g or more and 20 J / g or less.
  • the resin coating layer 4 on the inner surface side of the container has a difference between the heat of crystallization and the heat of fusion after being coated on the metal plate 2 in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is desirable that it be formed of a resin material. When the difference between the amount of heat of crystallization and the amount of heat of fusion is less than 1 J / g, the impact resistance after the molding process decreases, and when an impact of a certain level or more is applied, a resin film crack may occur.
  • the degree of crystallinity of the resin coating layers 3 and 4 is the orientation degree and melting point of the resin coating layers 3 and 4 before coating, and coating conditions (steel plate heating temperature, surface pressure during coating, time to cooling after coating, after coating Can be controlled by adjusting the cooling temperature and the line speed.
  • the crystallinity of the resin coating layers 3 and 4 can be lowered by increasing the heating temperature of the metal plate 2 during coating.
  • the heating temperature of the metal plate 2 is higher than the melting point of the resin coating layers 3 and 4, but is preferably about 10 to 50 ° C.
  • the crystallinity degree of the resin film layers 3 and 4 can be made low by reducing a surface pressure and making the cooling effect of the resin film layers 3 and 4 by the pressurization at the time of covering small.
  • the crystallization degree of the resin coating layers 3 and 4 is reduced by shortening the time until the cooling starts after coating and suppressing the crystallization of the resin coating layers 3 and 4 in the cooling process after coating. Can do.
  • the time until the start of cooling after coating is in the range of 0.5 to 10 seconds, depending on the length of the line and the line speed.
  • the crystallinity of the resin coating layers 3 and 4 can be lowered even under the same heating temperature. This is because the influence of cooling or the like from heating to coating is reduced.
  • the melting point of the resin coating layer 3 is in the range of 250 ° C. or more and 265 ° C. or less.
  • the melting point difference between the layers is preferably 10 ° C. or less. More preferably, it is 6 ° C. or less, and further preferably 3 ° C. or less.
  • the melting point of the resin coating layer 3 is less than 250 ° C., the resin coating layer 3 is easily softened due to surface sliding during processing, processing heat generated by the metal plate 2, etc., and molding scratches are generated on the surface of the resin coating layer 3. Or may lead to resin breakage.
  • the melting point of the resin coating layer 3 is higher than 265 ° C.
  • the crystallinity of the resin coating layer 3 is high, and there is a possibility that the processing with a high degree of processing cannot be followed.
  • the difference in melting point of each layer is larger than 10 ° C., the melting state of each layer by heat treatment is greatly different, so that defects in appearance are likely to occur due to non-uniform displacement (flow).
  • the melting point of the resin coating layer 4 is also in the range of 250 ° C. or more and 265 ° C. or less from the viewpoint of bonding with the resin coating layer 3, and when the resin coating layer 4 has a structure of two or more layers,
  • the melting point difference between the resin coating layer 3 and the resin is desirably 10 ° C. or less, more desirably 6 ° C. or less, and further desirably 3 ° C. or less.
  • the melting point difference between each layer and the resin coating layer 3 is greater than 10 ° C., the melting state of each layer and the resin coating layer 3 due to the heat treatment is greatly different, so that defects are likely to occur due to non-uniform displacement (flow). Become.
  • a wax component is added to the resin coating layer 3 in order to suppress the occurrence of molding flaws in the resin coating layer 3 when a molding process with a high degree of processing is performed.
  • the wax component to be added is not particularly limited, but an organic lubricant is preferable, and fatty acids such as stearic acid, stearic acid ester, palmitic acid, palmitic acid ester, fatty acid ester, paraffin, polyethylene, etc., which have good compatibility with the polyester resin.
  • chain aliphatics can be used, it is particularly desirable to use carnauba wax having good compatibility with the polyester resin and a high melting point.
  • the amount of wax component added is in the range of 0.05 PHR to 5 PHR.
  • the added amount of the wax component is less than 0.05 PHR, the effect of lubrication is small, and the effect of suppressing appearance defects due to molding flaws cannot be obtained.
  • the added amount of the wax component is more than 5 PHR, there is a problem that the transfer of the wax component occurs when the resin coating layer 3 is wound in a roll shape, and the printability may be deteriorated.
  • the amount of the wax component added is preferably in the range of 0.10 PHR to 3 PHR, more preferably in the range of 0.20 PHR to 2 PHR.
  • the wax component tends to precipitate on the surface and the slidability tends to improve.
  • the added amount of the wax component is 0.05 PHR to 5 PHR
  • the position of the wax component in the thickness direction of the resin coating layer 3 is not limited, but it is added to the outermost surface layer of the resin coating layer 3.
  • the outermost surface layer is preferably 1 ⁇ m or more and 5 ⁇ m or less from the outermost surface.
  • the wax component of the outermost surface layer has a high effect of improving the slidability, and when added to the outermost surface layer, the effect of improving the slidability is enhanced even if the addition amount of the wax component is small.
  • the lowest layer of the resin film layer 3 it is preferable to add to the lowest layer of the resin film layer 3, and it is preferable that the lowest layer in that case is 1 micrometer or more and 5 micrometers or less from the lowest surface.
  • the lowermost wax component has an effect of improving the resin adhesion at the time of molding by relaxing the stress generated at the interface between the resin layer and the metal plate during processing.
  • the film thickness of the outermost surface layer and the lowermost layer to which the wax component is added is smaller than 1 ⁇ m, the molding damage of the resin coating layer 3 may not be sufficiently suppressed or the resin adhesion during molding may be inferior. In some cases, the gloss of the surface of the resin coating layer 3 cannot be sufficiently secured.
  • the film thickness of the outermost surface layer and the lowermost layer to which the wax component is added may be larger than 5 ⁇ m. However, since the improvement effect is further reduced, it is preferably 5 ⁇ m or less.
  • the contact angle with water of the resin film layer 3 located on the outer surface side of the metal container is in the range of 82 ° to 100 °. Preferably, it is more preferably in the range of 85 ° to 95 °.
  • the wax component is often present in the initially added layer, but in the container molding process, the resin film layer 3 is When a thermal history is received by molding or painting baking, the wax component tends to precipitate on the surface and improve the slidability.
  • the resin film layer 3 located on the outer surface side of the metal container and the water
  • the contact angle is in the range of 82 ° to 100 °, indicating that suitable molding has been performed.
  • the conditions of the heat history are not particularly limited, but it is preferable to hold at a temperature of melting point ⁇ 50 ° C. or higher and melting point + 30 ° C. or lower for 30 seconds or longer.
  • the contact angle with water after heating to reach 240 ° C. in 90 seconds and forcibly cooling with cold air is a resin located on the outer surface side of the molded container It was confirmed that there was a good correlation with the contact angle of the coating layer 3 with water.
  • the optimum contact angle range with water is 27 to 33 mN / m in terms of the optimum surface free energy range.
  • a wax component may be added to the resin in the same manner as the resin coating layer 3.
  • the addition amount of the wax component is also preferably in the range of 0.05 PHR to 5 PHR.
  • the resin coating layer 3 may be required to be white so that a process for improving design properties such as a printing process is possible. Therefore, the resin coating layer 3 desirably contains titanium oxide within a range of 5 PHR to 30 PHR, preferably 10 PHR to 25 PHR, more preferably 12 PHR to 20 PHR. When the content of titanium oxide is less than 5 PHR, sufficient whiteness may not be ensured after processing. On the other hand, when the content of titanium oxide is more than 30 PHR, the adhesiveness and workability between the metal plate 2 and the resin coating layer 3 may become a problem when a forming process with a high workability is performed.
  • the amount of titanium oxide with respect to the resin amount of the entire resin coating layer 3 is in the range of 5 PHR to 30 PHR, and the film thickness is 10 ⁇ m or more. Further, when the amount of titanium oxide in the vicinity of the outermost surface is high, it is easy to detach from the surface after molding. Therefore, the amount of titanium oxide at a position from the outermost surface of the resin coating layer 3 to at least 1 ⁇ m is preferably 2 PHR or less. . In addition, when the amount of titanium oxide in the vicinity of the lowermost surface is high, the adhesion with the base metal tends to be lowered. Therefore, the amount of titanium oxide in the range from the lowermost surface to at least 1 ⁇ m is more preferably 2 PHR or less.
  • the titanium oxide added to the resin coating layer 3 is not particularly limited, but it is preferable to use a rutile-type titanium oxide having a content of 90% or more. When the rutile type titanium oxide is lower than 90%, the dispersibility of the titanium oxide is not good when mixed with the resin material, and the molecular weight of the resin material may be lowered. In Examples and Comparative Examples of the present application, rutile type titanium oxide was used. As a method for adding titanium oxide, various methods as shown in the following (1) to (3) can be used. In addition, when adding titanium oxide using method (1), it is desirable to add titanium oxide to the reaction system as a slurry in which glycol is dispersed.
  • the thickness of the resin coating layer 3 to which titanium oxide is added is desirably in the range of 10 to 40 ⁇ m, preferably 12 to 35 ⁇ m, more preferably 15 to 25 ⁇ m in order to ensure the whiteness after processing. .
  • the thickness of the resin coating layer 3 is less than 10 ⁇ m, the resin coating layer 3 is easily cracked during processing.
  • the thickness of the resin coating layer 3 is larger than 40 ⁇ m, the residual stress due to molding becomes too large and the adhesion may be inferior.
  • the surface of the titanium oxide in order to improve the adhesion between the titanium oxide and the film resin, it is preferable to treat the surface of the titanium oxide with silica, alumina or the like.
  • the resin coating layers 3 and 4 may be a single layer having the same composition or a multilayer structure. Further, the resin coating layers 3 and 4 are preferably in the range of 10 ⁇ m or more and 40 ⁇ m or less in the case of a single layer or multiple layers. If it is less than 10 ⁇ m, the resin coating layer 3 may be cracked during processing and the coverage may be inferior, and if it exceeds 40 ⁇ m, the residual stress due to molding becomes too large and the adhesion may be inferior. In addition, as long as the resin coating layers 3 and 4 have a predetermined configuration, the layer forming method is not limited.
  • a plurality of films having different components may be laminated, or a plurality of components may be formed on the film by a melt extrusion method.
  • the thickness of each layer is preferably 1 ⁇ m or more from the viewpoint of adhesion and the like.
  • a film-like resin coating layer produced by a biaxial stretching method using a nip roll is thermocompression bonded to the metal plate, Subsequently, the resin film layer was coat
  • a resin coating layer (outer surface resin layer) with and without titanium oxide is positioned on the inner surface side of the container after molding processing. The other surface side of the metal plate was coated with a resin coating layer (inner surface resin layer) not containing titanium oxide.
  • the heat of crystallization was calculated from the area of the exothermic peak observed between 100 to 200 ° C.
  • the heat of fusion was calculated from the area of the endothermic peak observed between 200 ° C. and 280 ° C.
  • the amount of crystallization heat and the amount of heat of fusion per unit weight of the resin were calculated using the weight excluding the titanium oxide content as the amount of resin.
  • the whiteness of the resin coating layer 3 of the resin-coated metal plate was evaluated by the method shown in JIS Z 8722.
  • the measurement area was 30 mm ⁇
  • the measurement light source was the C condition
  • the L value of the Hunter Lab value measured under the observation condition of the 2 ° visual field with respect to the measurement light source was defined as whiteness.
  • L value is 75 or more, it is suitable as a white film.
  • the outer surface resin layer has an ethylene terephthalate unit of 97 mol% or more and a wax component in the range of 0.05 PHR to 5 PHR.
  • the difference between the amount of heat of crystallization and the amount of heat of fusion after being coated on the metal plate is formed of a resin material of 1 J / g or more and 20 J / g or less in terms of unit weight.
  • either the resin composition, the wax component, or the difference between the heat of crystallization and the heat of fusion of the outer surface resin layer is different.
  • the outer surface resin layer is formed of a resin material having a difference between the amount of heat of crystallization and the amount of heat of fusion of 0 J / g in terms of unit weight.
  • Score “ ⁇ ” When a film molding flaw occurs at a height within 1 mm from the can flange. Score “ ⁇ ”: When a film molding flaw occurs at a height position within 3 mm exceeding 1 mm from the can flange portion. Score “ ⁇ ”: When a film forming defect occurs at a height position exceeding 3 mm and within 5 mm from the can flange portion. Score “ ⁇ ”: When a film molding flaw occurs at a height position of more than 5 mm and within 10 mm from the can flange portion. Score “X”: When a film molding flaw occurs up to a height position exceeding 10 mm from the can flange portion.
  • Score “ ⁇ ” When a surface irregularity defect occurs at a height position within 2 mm exceeding 1 mm from the can flange portion. Score “ ⁇ ”: When a surface irregularity defect occurs at a height of 3 mm or more exceeding 2 mm from the can flange portion. Rating “ ⁇ ”: When a surface irregularity defect occurs at a height position within 3 mm exceeding 3 mm from the can flange portion. Score “X”: When a surface irregularity defect occurs at a height position exceeding 5 mm from the can flange portion.
  • a sample for peel test (width 15 mm ⁇ length 120 mm) was cut out from the can body of the deep-drawn can formed in the appearance evaluation.
  • the resin film layer on the outer surface of the can is partly peeled off from the long side end of the cut sample, and the peeled resin film layer is opened in the direction opposite to the metal plate from which the resin film layer has been peeled (angle: 180 degrees).
  • a peel test was conducted at a tensile speed of 30 mm / min, and the adhesion per 15 mm width was evaluated according to the following criteria.
  • T3CA JIS G 3303
  • TFS Tin Free Steel, metal Cr layer: 120 mg / m 2
  • Cr oxide layer 10 mg / m 2 in terms of metal Cr
  • film heat Resin coating layers of Examples 101 to 141 and Comparative Examples 101 to 112 shown in Tables 3A to 3D below were formed on both surfaces of a metal plate by using a pressure bonding method.
  • two or three resin coating layers shown in Tables 3A to 3D are laminated as a film, and the metal plate is the melting point of the resin coating layer (if each layer has a different melting point, the melting point of the highest layer is used).
  • a film-like resin coating layer produced by a biaxial stretching method using a nip roll is thermocompression bonded to a metal plate, and then cooled by water cooling within 5 seconds, The resin film layer was coat
  • a resin coating layer (outer surface resin layer) with and without titanium oxide is positioned on the inner surface side of the container after molding processing. The other surface side of the metal plate was coated with a resin coating layer (inner surface resin layer) not containing titanium oxide.
  • the outer surface resin layer has a structure of two or more layers, and the film thickness of the outermost surface layer is 1 ⁇ m or more.
  • Each of the resin coating layers is 97 mol% or more of ethylene terephthalate unit
  • the outermost surface layer contains a wax component in the range of 0.05 PHR or more and 5 PHR or less, and the amount of the wax component is based on the resin amount of the entire resin coating When converted, it is 0.05 PHR or more and 5 PHR or less
  • the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is a range of 1 J / g or more and 20 J / g or less in terms of unit weight.
  • the outer resin layer is formed of a resin material having a difference between the amount of crystallization heat and the heat of fusion converted to 0 J / g per unit weight.
  • a resin film layer formed on the both sides of the metal plate is obtained by thermocompression bonding the film-like resin film layer produced by the biaxial stretching method using a nip roll to a metal plate and then cooling with water cooling within 5 seconds.
  • a resin coating layer (outer surface resin layer) with or without titanium oxide was coated on the back surface side.
  • the outer resin layer has a three-layer structure including an outermost surface layer, an intermediate layer, and a lowermost layer.
  • Each of the coating layers has an ethylene terephthalate unit of 97 mol% or more, has a layer containing a wax component of 1 ⁇ m or more and 5 ⁇ m or less from the outermost surface and the lowermost surface, respectively, and the amount of wax relative to the amount of resin in the layer containing wax
  • the amount of wax relative to the amount of resin in the entire resin coating layer is in the range of 0.05 PHR to 5 PHR, and the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is per unit weight.
  • the resin material is in the range of 1 J / g or more and 20 J / g or less.
  • either the resin composition, the wax component, or the difference between the heat amount of crystallization and the heat of fusion of the outer surface resin layer is different, and the resin film of Comparative Example 211 is used.
  • the outer surface resin layer is formed of a resin material having a difference between the amount of heat of crystallization and the amount of heat of fusion of 0 J / g in terms of unit weight.
  • the present invention it is possible to provide a resin-coated metal plate, a method for producing a resin-coated metal plate, and a metal container that can suppress appearance defects due to molding and heat treatment.

Abstract

This resin-coated metal plate is provided with a resin coating layer on both surfaces of a metal plate, and is characterized in that a resin coating layer, which is positioned on the outer surface side of a container after shaping, is formed of a resin material that has an ethylene terephthalate unit of 97 mol% or more and contains a wax component within the range of from 0.05 PHR to 5 PHR (inclusive), while having a difference between the crystallization enthalpy and the melting enthalpy within the range of from 1 J/g to 20 J/g (inclusive) per unit weight after being provided on the metal plate.

Description

樹脂被膜金属板、樹脂被膜金属板の製造方法、及び金属容器Resin-coated metal plate, method for producing resin-coated metal plate, and metal container
 本発明は、金属板の両面に樹脂被膜層を備える樹脂被膜金属板、樹脂被膜金属板の製造方法、及び金属容器に関する。 The present invention relates to a resin-coated metal plate provided with a resin film layer on both surfaces of the metal plate, a method for producing the resin-coated metal plate, and a metal container.
 一般に、金属容器は2ピース缶と3ピース缶とに大別される。2ピース缶とは、缶底と一体になった缶体と蓋との2つの部分によって構成される金属容器である。3ピース缶とは、缶胴、上蓋、及び底蓋の3つの部分によって構成される金属容器である。2ピース缶の缶体は、シーム部(溶接部)を有さないために外観が美麗である反面、絞り加工法等で製造されるため、一般に高い加工度が要求される。これに対して、3ピース缶の缶胴は、シーム部を有するために2ピース缶の缶体と比較すると外観が劣るが、高い加工度は必要ではない。2ピース缶の加工においては、金属容器の容量が大きくなるほど加工度が高くなるため、一般に小容量の金属容器に対しては2ピース缶が使用され、大容量の金属容器に対しては3ピース缶が使用される傾向がある。 Generally, metal containers are roughly divided into 2-piece cans and 3-piece cans. A two-piece can is a metal container composed of two parts, a can body integrated with a can bottom and a lid. A three-piece can is a metal container composed of three parts: a can body, an upper lid, and a bottom lid. A two-piece can body has a beautiful appearance because it does not have a seam portion (welded portion), but is manufactured by a drawing method or the like, and therefore generally requires a high degree of processing. In contrast, the can body of the three-piece can has a seam portion, so that the appearance is inferior to that of the two-piece can body, but a high degree of processing is not necessary. In the processing of two-piece cans, the degree of processing increases as the capacity of the metal container increases, so generally two-piece cans are used for small-capacity metal containers and three-piece for large-capacity metal containers. Cans tend to be used.
 2ピース缶の素材としては、金属板の両面に樹脂被膜層を備える樹脂被膜金属板を素材として、絞り加工法やDI(Draw & Ironing)加工法によって缶体を製造する技術が提案されている(特許文献1~3参照)。また、このような樹脂被膜金属板を成形した缶体の意匠性を高めるため、印刷処理等が可能なように成形加工後に金属容器の外面側に位置する樹脂被膜層に白色顔料を添加する技術も提案されている(特許文献4,5参照)。しかしながら、これらは、比較的加工度の低い食缶等の用途に限られており、2ピース缶の中でも、エアゾール缶等のように缶サイズが大きくて絞りの加工度が高く、缶の高さ方向の延伸度が大きい2ピース缶、すなわち加工度が高い2ピース缶における成形では、被覆した樹脂に成形傷や凹凸等の欠陥が出やすく適用が困難であった。特に意匠性向上のために白色顔料を添加した樹脂を被覆した金属板を成形した缶体においては、外観欠陥が発生しやすく意匠性が大きく低下するため、加工度の高い用途には使用できなかった。このような加工度の高い2ピース缶用材料として、樹脂被膜層の結晶化度を制御することによって成形加工後の熱処理による外観欠陥を抑制する技術が提案されている(特許文献6参照)。 As a material for two-piece cans, a technology has been proposed in which a can body is manufactured by a drawing method or DI (Draw & Ironing) processing method using a resin-coated metal plate having a resin coating layer on both sides of the metal plate. (See Patent Documents 1 to 3). In addition, in order to enhance the design of the can body formed with such a resin-coated metal plate, a technique of adding a white pigment to the resin film layer located on the outer surface side of the metal container after the molding process so that printing processing and the like are possible Has also been proposed (see Patent Documents 4 and 5). However, these are limited to applications such as food cans with a relatively low degree of processing, and among the two-piece cans, the can size is large and the drawing processing degree is high, such as an aerosol can, and the height of the can In the molding of a two-piece can having a high degree of stretching in the direction, that is, a two-piece can having a high degree of processing, it is difficult to apply defects such as molding scratches and irregularities in the coated resin. Especially for cans molded with a metal plate coated with a resin with a white pigment added to improve design, appearance defects tend to occur and the design is greatly reduced, so it cannot be used for high processing applications. It was. As such a two-piece can material having a high degree of processing, a technique has been proposed in which appearance defects due to heat treatment after molding are suppressed by controlling the crystallinity of the resin coating layer (see Patent Document 6).
特公平7-106394号公報Japanese Examined Patent Publication No. 7-106394 特許第2526725号公報Japanese Patent No. 2526725 特開2004-148324号公報JP 2004-148324 A 特開平8-169098号公報Japanese Patent Laid-Open No. 8-169098 特開2004-130536号公報JP 2004-130536 A 国際公開第2013/030972号International Publication No. 2013/030972
 本発明の発明者らは、樹脂被膜金属板を用いて加工度が高い2ピース缶の缶体に成形し、加工後の樹脂被膜層と金属板との密着性、成形加工後に金属容器の内面側に位置する樹脂被膜層の被覆性、及び成形加工後に金属容器の外面側に位置する表面側の樹脂被膜層の意匠性を高める目的で熱処理を行った結果、表面側の樹脂被膜層に成形傷や微小凹凸等に起因する外観上の欠陥が発生することを知見した。このため、樹脂被膜金属板を用いて加工度が高い2ピース缶の缶体を製造するためには、成形及び熱処理によって外観上の欠陥が発生しないようにする必要がある。 The inventors of the present invention use a resin-coated metal plate to form a two-piece can body having a high degree of processing, the adhesion between the processed resin film layer and the metal plate, and the inner surface of the metal container after the forming process. As a result of heat treatment for the purpose of improving the covering property of the resin coating layer located on the side and the design property of the resin coating layer on the outer surface side of the metal container after the molding process, forming into the resin coating layer on the surface side It has been found that defects in appearance due to scratches and micro unevenness occur. For this reason, in order to manufacture a two-piece can body having a high degree of processing using a resin-coated metal plate, it is necessary to prevent appearance defects from being caused by molding and heat treatment.
 本発明は、上記に鑑みてなされたものであって、その目的は、成形及び熱処理によって外観上の欠陥が発生することを抑制可能な樹脂被膜金属板、樹脂被膜金属板の製造方法、及び金属容器を提供することにある。 The present invention has been made in view of the above, and an object of the present invention is to provide a resin-coated metal plate, a method for producing a resin-coated metal plate, and a metal that can suppress appearance defects due to molding and heat treatment. To provide a container.
 本発明の発明者らは、鋭意研究を重ねてきた結果、成形傷は成形時における工具と樹脂被膜層との間の摺動性不足に起因するものであることを知見した。また、熱処理によって発生する外観上の欠陥は、成形加工の際に発生した樹脂被膜層内の残留応力が熱処理によって緩和されることにより、樹脂被膜層が不均一に変形し、不均一な顔料の分布が形成されるために発生することを知見した。そして、本発明の発明者らは、この知見に基づきさらに研究を重ねた結果、成形傷は樹脂被膜層中にワックスを添加することにより抑制され、また熱処理後の微小凹凸は特定の樹脂組成の樹脂被膜層において結晶化度を制御することにより成形加工後の樹脂被膜層の残留応力を低減することで抑制できるという技術思想を想到するに至った。 The inventors of the present invention have intensively studied, and as a result, have found that molding flaws are caused by insufficient slidability between the tool and the resin coating layer during molding. In addition, defects in appearance caused by heat treatment are caused by the residual stress in the resin coating layer generated during the molding process being relaxed by the heat treatment, causing the resin coating layer to deform non-uniformly, resulting in non-uniform pigment formation. It was found that this occurs because the distribution is formed. As a result of further research based on this finding, the inventors of the present invention have suppressed molding flaws by adding wax to the resin coating layer, and the micro unevenness after heat treatment has a specific resin composition. The inventors have come up with a technical idea that the resin film layer can be controlled by reducing the residual stress of the resin film layer after molding by controlling the crystallinity of the resin film layer.
 本発明に係る樹脂被膜金属板は、金属板の両面に樹脂被膜層を備える樹脂被膜金属板であって、成形加工後に容器の外面側に位置する樹脂被膜層が、エチレンテレフタレート単位97mol%以上の樹脂を主成分とし、且つ、0.05PHR以上5PHR以下の範囲内のワックス成分を含有し、金属板に被覆された後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることを特徴とする。 The resin-coated metal plate according to the present invention is a resin-coated metal plate provided with a resin film layer on both surfaces of the metal plate, and the resin film layer located on the outer surface side of the container after molding processing has an ethylene terephthalate unit of 97 mol% or more. 1J in terms of the difference between the amount of heat of crystallization and the amount of heat of fusion after being coated on a metal plate, containing a wax component in the range of 0.05 PHR to 5 PHR, based on resin. / G or more and 20 J / g or less.
 成形加工後に容器の外面側に位置する樹脂被膜層が5PHR以上30PHR以下の酸化チタンを含有していることが好ましい。 It is preferable that the resin coating layer located on the outer surface side of the container after the molding process contains 5 PHR or more and 30 PHR or less of titanium oxide.
 成形加工後に容器の外面側に位置する樹脂被膜層が2層以上の構造を有し、各層の樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、最表面から1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内にあり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることが好ましい。 The resin coating layer located on the outer surface side of the container after molding has a structure of two or more layers, and the resin coating layers of each layer are mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and from 1 μm to 5 μm from the outermost surface. It has a layer containing the following wax components, and the amount of wax relative to the amount of resin in the layer containing wax and the amount of wax relative to the resin amount of the entire resin coating layer are both in the range of 0.05 PHR to 5 PHR. The difference between the heat of crystallization and the heat of fusion of the resin film layer after being coated on the metal plate is preferably in the range of 1 J / g or more and 20 J / g or less in terms of unit weight.
 成形加工後に容器の外面側に位置する樹脂被膜層が2層以上の構造を有し、各層の樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、最表面から1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している最表面層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内にあり、樹脂被膜層全体の樹脂量に対する酸化チタン量が5PHR以上30PHR以下の範囲内にあり、且つ、少なくとも最表面から1μmの深さまでは、酸化チタン量が2PHR以下の範囲内にあり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることが好ましい。 The resin coating layer located on the outer surface side of the container after molding has a structure of two or more layers, and the resin coating layers of each layer are mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and from 1 μm to 5 μm from the outermost surface. It has a layer containing the following wax components, and the amount of wax relative to the amount of resin in the outermost surface layer containing wax and the amount of wax relative to the amount of resin in the entire resin coating layer are both in the range of 0.05 PHR to 5 PHR. The amount of titanium oxide with respect to the resin amount of the entire resin coating layer is in the range of 5 PHR to 30 PHR, and at least at a depth of 1 μm from the outermost surface, the amount of titanium oxide is in the range of 2 PHR or less, The difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the plate is in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is preferred that in.
 成形加工後に容器の外面側に位置する樹脂被膜層が最表面層、少なくとも1層の中間層、及び最下層からなる3層以上の構造を有し、各樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、最表面及び最下面からそれぞれ1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内にあり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることが好ましい。 The resin coating layer located on the outer surface side of the container after molding has a structure of three or more layers consisting of an outermost surface layer, at least one intermediate layer, and the lowermost layer, and each resin coating layer is 97 mol of ethylene terephthalate unit. % Of the resin as a main component and a layer containing a wax component of 1 μm or more and 5 μm or less from the outermost surface and the lowermost surface, respectively, and the amount of wax relative to the amount of resin in the layer containing wax and the entire resin coating layer The amount of wax relative to the amount of resin is in the range of 0.05 PHR to 5 PHR, and the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is 1J in terms of unit weight. / G or more and 20 J / g or less is preferable.
 前記樹脂被膜層全体の樹脂量に対する酸化チタン量が5PHR以上30PHR以下の範囲内にあり、且つ、少なくとも最表面から1μmまでと、最下面から1μmまでの範囲での酸化チタン量が2PHR以下の範囲内にあることが好ましい。 The amount of titanium oxide with respect to the resin amount of the entire resin coating layer is in the range of 5 PHR to 30 PHR, and the amount of titanium oxide in the range of at least 1 μm from the outermost surface and 1 μm from the lowermost surface is 2 PHR or less. It is preferable to be within.
 成形加工後に容器の内面側に位置する樹脂被膜層が、金属板に被覆された後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にある樹脂材料によって形成されていることが好ましい。 The difference between the amount of heat of crystallization and the amount of heat of fusion after the resin coating layer located on the inner surface side of the container after molding is coated on the metal plate is in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is preferable that it is formed of the resin material inside.
 成形加工後に容器の内面側に位置する樹脂被膜層が、エチレンテレフタレート単位97mol%以上である樹脂材料によって形成されていることが好ましい。 It is preferable that the resin coating layer located on the inner surface side of the container after the molding process is formed of a resin material having an ethylene terephthalate unit of 97 mol% or more.
 成形加工後に容器の外面側に位置する樹脂被膜層の水との接触角が、成形加工後に82°以上100°以下の範囲内にあることが好ましい。 It is preferable that the contact angle with water of the resin coating layer located on the outer surface side of the container after the molding process is in the range of 82 ° to 100 ° after the molding process.
 本発明に係る樹脂被膜金属板の製造方法は、樹脂被膜層を形成するために、二軸延伸フィルムを使用して、樹脂の融点以上に加熱した金属板の両面にフィルムを熱融着させることを特徴とする。金属板の加熱温度を(樹脂の融点+50℃)以下にするとさらに好ましい。 In the method for producing a resin-coated metal plate according to the present invention, a biaxially stretched film is used to form a resin-coated layer, and the film is heat-sealed on both sides of a metal plate heated to the melting point of the resin or higher. It is characterized by. It is more preferable that the heating temperature of the metal plate is (melting point of resin + 50 ° C.) or less.
 本発明に係る金属容器は、本発明に係る樹脂被膜金属板を成形加工することによって形成された金属容器であって、金属容器の外面側に位置する樹脂被膜層の水との接触角が82°以上100°以下の範囲内にあることを特徴とする。 The metal container according to the present invention is a metal container formed by molding the resin-coated metal plate according to the present invention, and the contact angle with water of the resin film layer located on the outer surface side of the metal container is 82. It is in the range of not less than 100 ° and not more than 100 °.
 本発明に係る樹脂被膜金属板、樹脂被膜金属板の製造方法、及び金属容器によれば、成形加工後に容器の外面側に位置する樹脂被膜層の成形傷及び残留応力を低減できるので、成形及び熱処理によって外観上の欠陥が発生することを抑制できる。 According to the resin-coated metal plate, the method for producing a resin-coated metal plate, and the metal container according to the present invention, the molding flaw and the residual stress of the resin film layer located on the outer surface side of the container can be reduced after the molding process. It is possible to suppress appearance defects from occurring due to the heat treatment.
図1は、本発明の一実施形態である樹脂被膜金属板の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a resin-coated metal plate according to an embodiment of the present invention.
 以下、図面を参照して、本発明の一実施形態である樹脂被膜金属板について説明する。 Hereinafter, a resin-coated metal plate according to an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態である樹脂被膜金属板の構成を示す断面図である。図1に示すように、本発明の一実施形態である樹脂被膜金属板1は、金属板2と、金属板2の一方の面側に形成された樹脂被膜層3と、金属板2の他方の面側に形成された樹脂被膜層4と、を備えている。樹脂被膜層3及び樹脂被膜層4はそれぞれ、成形加工後に金属容器の外面側及び内面側に位置する。 FIG. 1 is a cross-sectional view showing a configuration of a resin-coated metal plate according to an embodiment of the present invention. As shown in FIG. 1, a resin coated metal plate 1 according to an embodiment of the present invention includes a metal plate 2, a resin coated layer 3 formed on one surface side of the metal plate 2, and the other of the metal plate 2. And a resin coating layer 4 formed on the surface side. The resin coating layer 3 and the resin coating layer 4 are respectively positioned on the outer surface side and the inner surface side of the metal container after the molding process.
 金属板2は、ぶりきやティンフリースチール等の鋼板によって形成されている。ぶりきとしては、0.5~15g/mの錫めっき量を有するものを用いるとよい。ティンフリースチールは、付着量50~200mg/mの金属クロム層と、その上層に金属クロム換算の付着量が3~30mg/mのクロム酸化物層とを有するとよい。鋼板は、目的の形状に成形できるものであれば特にその種類を問わないが、以下に示すような成分や製法のものが望ましい。 The metal plate 2 is formed of a steel plate such as tinplate or tin-free steel. As the tinplate, one having a tin plating amount of 0.5 to 15 g / m 2 is preferably used. Tin-free steel, a metal layer of chromium coating weight 50 ~ 200 mg / m 2, may deposition amount of chromium metal converted to its upper layer and a 3-chromium oxide layer of 30 mg / m 2. The type of steel plate is not particularly limited as long as it can be formed into a desired shape, but the following components and manufacturing methods are preferable.
(1)C(カーボン)量が0.01~0.10%程度の低炭素鋼を用い、箱焼鈍で再結晶焼鈍したもの。
(2)C量が0.01~0.10%程度の低炭素鋼を用い、連続焼鈍で再結晶焼鈍したもの。
(3)C量が0.01~0.10%程度の低炭素鋼を用い、連続焼鈍で再結晶焼鈍及び過時効処理したもの。
(4)C量が0.01~0.10%程度の低炭素鋼を用い、箱焼鈍又は連続焼鈍で再結晶焼鈍した後、2次冷間圧延(DR(Double Reduced)圧延)したもの。
(5)C量が概ね0.003%以下程度の極低炭素鋼にNb,Ti等の固溶したCを固定する元素を添加したIF(Interstitial Free)鋼を用い、連続焼鈍で再結晶焼鈍したもの。
(1) Recrystallized annealed by box annealing using low carbon steel with C (carbon) content of about 0.01-0.10%.
(2) A low-carbon steel having a C content of about 0.01 to 0.10% and recrystallized by continuous annealing.
(3) Low carbon steel with a C content of about 0.01 to 0.10%, recrystallized and overaged by continuous annealing.
(4) A low carbon steel having a C content of about 0.01 to 0.10%, which is subjected to secondary cold rolling (DR (Double Reduced) rolling) after recrystallization annealing by box annealing or continuous annealing.
(5) Recrystallization annealing by continuous annealing using IF (Interstitial Free) steel to which elements that fix solute C such as Nb and Ti are added to ultra low carbon steel with C content of about 0.003% or less What you did.
 鋼板の機械的特性は、目的の形状に成形できるものであれば特に限定されないが、加工性を損なわず、且つ、十分な缶体強度を保つために、降伏強度YPが220MPa以上580MPa以下程度のものを用いることが望ましい。塑性異方性の指標であるランクフォード(r値)については0.8以上であるものが望ましく、r値の面内異方性Δrについては、その絶対値が0.7以下であるものが望ましい。鋼板の板厚は、目的の缶の形状や必要となる缶体強度から適宜設定できる。鋼板自体及び缶体のコスト上昇を抑制する観点から、概ね0.15~0.4mm程度の板厚のものを用いることが望ましい。 The mechanical properties of the steel sheet are not particularly limited as long as they can be formed into a desired shape, but the yield strength YP is about 220 MPa or more and 580 MPa or less in order to maintain sufficient can body strength without impairing workability. It is desirable to use one. It is desirable that Rankford (r value), which is an index of plastic anisotropy, is 0.8 or more, and the in-plane anisotropy Δr of r value has an absolute value of 0.7 or less. desirable. The plate thickness of the steel plate can be set as appropriate from the shape of the target can and the required strength of the can. From the viewpoint of suppressing an increase in the cost of the steel sheet itself and the can body, it is desirable to use a sheet having a thickness of about 0.15 to 0.4 mm.
 なお、上記の特性を達成するための鋼の成分は特に限定されるものではないが、例えば、Si,Mn,P,S,Al,N等の成分を含有すればよく、Siの含有量は0.001~0.1%の範囲内、Mnの含有量は0.01~0.6%の範囲内、Pの含有量は0.002~0.05%の範囲内、Sの含有量は0.002~0.05%の範囲内、Alの含有量は0.005~0.100%の範囲内、Nの含有量は0.0005~0.020%の範囲内にあることが好ましい。また、B,Cu,Ni,Cr,Mo,V等の他の成分を含有してもよいが、耐食性等を確保する観点から、これら他の成分の含有量は総量で0.02%以下であることが望ましい。 In addition, although the component of steel for achieving said characteristic is not specifically limited, For example, what is necessary is just to contain components, such as Si, Mn, P, S, Al, N, and the content of Si is Within 0.001 to 0.1%, Mn content within 0.01 to 0.6%, P content within 0.002 to 0.05%, S content Is in the range of 0.002 to 0.05%, the Al content is in the range of 0.005 to 0.100%, and the N content is in the range of 0.0005 to 0.020%. preferable. Moreover, although other components, such as B, Cu, Ni, Cr, Mo, and V, may be contained, the content of these other components is 0.02% or less in total from the viewpoint of ensuring corrosion resistance and the like. It is desirable to be.
 樹脂被膜層3は、エチレンテレフタレート単位が97mol%以上、好ましくは98mol%以上の樹脂材料によって形成されている。エチレンテレフタレート単位が97mol%未満である場合、成形時の工具との摺動で発生する熱により樹脂が軟化するため成形傷が発生しやすくなると共に、熱処理後の表面凹凸が発生しやすくなる。また、樹脂被膜層3は、単層でも2層以上の構造になっていてもよいが、各層中の樹脂はそれぞれエチレンテレフタレート単位が97mol%以上となるようにする。 The resin coating layer 3 is formed of a resin material having an ethylene terephthalate unit of 97 mol% or more, preferably 98 mol% or more. When the ethylene terephthalate unit is less than 97 mol%, the resin is softened by heat generated by sliding with the tool during molding, so that molding flaws are likely to occur and surface irregularities after heat treatment are likely to occur. The resin coating layer 3 may be a single layer or a structure of two or more layers, but the resin in each layer is such that the ethylene terephthalate unit is 97 mol% or more.
 樹脂被膜層4は、樹脂被膜層3と金属板2の両面にそれぞれ貼り合わせることから、樹脂被膜層3の樹脂と近い温度で溶融すると製造しやすいため、樹脂被膜層3の樹脂と同等の融点であることが好ましく、エチレンテレフタレート単位が97mol%以上であることが好ましい。また、樹脂被膜層4も、単層でも2層以上の構造になっていてもよいが、各層中の樹脂はそれぞれエチレンテレフタレート単位が97mol%以上であることが好ましい。 Since the resin coating layer 4 is bonded to both surfaces of the resin coating layer 3 and the metal plate 2, it is easy to manufacture when melted at a temperature close to the resin of the resin coating layer 3, and therefore the melting point equivalent to the resin of the resin coating layer 3 It is preferable that the ethylene terephthalate unit is 97 mol% or more. The resin coating layer 4 may also be a single layer or a structure having two or more layers, but the resin in each layer preferably has 97 mol% or more of ethylene terephthalate units.
 樹脂被膜層3,4中の樹脂は、耐熱性や加工性を損なわない範囲で他のジカルボン酸成分、グリコール成分を共重合させてもよい。ここで、樹脂被膜層3の場合は、樹脂中の3mol%未満の範囲内とする。また、樹脂被膜層4の場合も樹脂中の3mol%未満の範囲内とすることが好ましい。ジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸、フタル酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族カルボン酸、p-オキシ安息香酸等のオキシカルボン酸等を例示できる。グリコール成分としては、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA、ビスフェノールS等の芳香族グリコール、ジエチレングリコール等を例示できる。なお、これらのジカルボン酸成分及びグリコール成分は2種以上を併用してもよい。 The resin in the resin coating layers 3 and 4 may be copolymerized with other dicarboxylic acid components and glycol components as long as the heat resistance and workability are not impaired. Here, in the case of the resin coating layer 3, it shall be in the range of less than 3 mol% in resin. Moreover, also in the case of the resin film layer 4, it is preferable to set it in the range of less than 3 mol% in resin. Examples of the dicarboxylic acid component include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, aromatic dicarboxylic acid such as phthalic acid, oxalic acid, succinic acid, Examples thereof include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid, alicyclic carboxylic acids such as cyclohexanedicarboxylic acid, and oxycarboxylic acids such as p-oxybenzoic acid. Examples of glycol components include aliphatic glycols such as propanediol, butanediol, pentanediol, hexanediol, and neopentylglycol, alicyclic glycols such as cyclohexanedimethanol, aromatic glycols such as bisphenol A and bisphenol S, and diethylene glycol. It can be illustrated. These dicarboxylic acid components and glycol components may be used in combination of two or more.
 樹脂被膜層3,4を形成する樹脂材料は、その製法によって限定されることはない。例えば、(1)テレフタル酸、エチレングリコール、及び共重合成分をエステル化反応させ、次いで得られる反応生成物を重縮合反応させて共重合ポリエステルとする方法や、(2)ジメチルテレフタレート、エチレングリコール、及び共重合成分をエステル交換反応させ、次いで得られる反応生成物を重縮合反応させて共重合ポリエステルとする方法等を利用して、樹脂材料を形成することができる。また、エチレンテレフタレート樹脂とブチレンテレフタレート樹脂等の他の樹脂を混合して樹脂材料を形成してもよい。共重合ポリエステルの製造においては、必要に応じて、蛍光増白剤、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤等の添加物を添加してもよい。白色度を向上させる場合には、蛍光増白剤の添加は有効である。このような組成の樹脂をTダイから溶融押出しして薄膜に成形した後に縦方向及び横方向に延伸して製造する二軸延伸フィルムを用いることが好ましい。 The resin material for forming the resin coating layers 3 and 4 is not limited by the manufacturing method. For example, (1) a method in which terephthalic acid, ethylene glycol, and a copolymer component are esterified and then a reaction product obtained is subjected to a polycondensation reaction to form a copolymer polyester, or (2) dimethyl terephthalate, ethylene glycol, A resin material can be formed by utilizing a method in which a copolymer component is subjected to a transesterification reaction and then a reaction product obtained is subjected to a polycondensation reaction to obtain a copolymer polyester. Further, another resin such as ethylene terephthalate resin and butylene terephthalate resin may be mixed to form a resin material. In the production of the copolyester, additives such as a fluorescent brightener, an antioxidant, a heat stabilizer, an ultraviolet absorber, and an antistatic agent may be added as necessary. Addition of a fluorescent brightening agent is effective for improving the whiteness. It is preferable to use a biaxially stretched film produced by melt-extruding a resin having such a composition from a T-die and forming it into a thin film and then stretching it in the longitudinal and transverse directions.
 金属板2への被覆時に樹脂被膜層3,4をその融点以上の温度とする時間は1~30msecの範囲内にすることが望ましい。被覆時の加圧圧力は、特に限定されないが、面圧を9.8~294N(1~30kgf/cm)の範囲内にすることが望ましい。面圧がこの範囲より小さい場合、金属板2と樹脂被膜層3,4との界面の温度が融点以上であっても、融点以上の温度になっている時間が短時間であるため樹脂被膜層3,4の溶融が不十分となり、樹脂被膜層3,4と金属板2との十分な密着性を得られないことがある。一方、面圧がこの範囲より大きい場合、樹脂被膜層3,4が溶融してロールに接着する溶着が発生することがある。 It is desirable that the time during which the resin coating layers 3 and 4 are heated to the melting point or higher when coating the metal plate 2 is in the range of 1 to 30 msec. The pressurizing pressure at the time of coating is not particularly limited, but the surface pressure is preferably in the range of 9.8 to 294 N (1 to 30 kgf / cm 2 ). When the surface pressure is smaller than this range, even if the temperature at the interface between the metal plate 2 and the resin coating layers 3 and 4 is equal to or higher than the melting point, the time for which the temperature is equal to or higher than the melting point is short, the resin coating layer The melting of 3 and 4 becomes insufficient, and sufficient adhesion between the resin coating layers 3 and 4 and the metal plate 2 may not be obtained. On the other hand, when the surface pressure is larger than this range, the resin coating layers 3 and 4 may melt and adhere to the roll.
 容器の外面側となる樹脂被膜層3は、金属板2に被覆した後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下、好ましくは1J/g以上15J/g以下、より好ましくは3J/g以上10J/g以下の範囲内にある樹脂材料によって形成されている。結晶化熱量と融解熱量とは、示差走査熱量測定装置(Differential Scanning Calorimetry : DSC)を用いて測定することができる。結晶化熱量と融解熱量との差は被覆後の樹脂被膜層3の結晶化度の指標となるものである。樹脂被膜層3の結晶化熱量と融解熱量との差が1J/g未満である場合、成形加工後の残留応力は低減するものの、耐衝撃性が低下し、一定以上の衝撃が加わった場合、樹脂被膜割れが発生する。一方、結晶化熱量と融解熱量との差が20J/gより大きい場合には、樹脂被膜層3の結晶化度が高くなり、成形加工後の残留応力が大きくなるため、熱処理によって外観上の欠陥が発生する。以上のことより、容器の外面側となる樹脂被膜層3の結晶化熱量と融解熱量との差は、1J/g以上20J/g以下とする。 The resin coating layer 3 on the outer surface side of the container has a difference between the heat of crystallization and the heat of fusion after coating on the metal plate 2 of 1 J / g or more and 20 J / g or less, preferably 1 J / g in terms of unit weight. g or more and 15 J / g or less, more preferably 3 J / g or more and 10 J / g or less. The heat of crystallization and the heat of fusion can be measured using a differential scanning calorimeter (Differential Scanning Calorimetry: DSC). The difference between the heat of crystallization and the heat of fusion serves as an index of the crystallinity of the resin coating layer 3 after coating. When the difference between the amount of heat of crystallization and the amount of heat of fusion of the resin coating layer 3 is less than 1 J / g, the residual stress after molding is reduced, but the impact resistance is reduced, and when a certain level of impact is applied, Resin film cracking occurs. On the other hand, if the difference between the amount of heat of crystallization and the amount of heat of fusion is greater than 20 J / g, the degree of crystallinity of the resin coating layer 3 is increased, and the residual stress after molding is increased. Will occur. From the above, the difference between the heat of crystallization and the heat of fusion of the resin coating layer 3 on the outer surface side of the container is 1 J / g or more and 20 J / g or less.
 容器の内面側となる樹脂被膜層4は、金属板2に被覆した後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にある樹脂材料によって形成されていることが望ましい。結晶化熱量と融解熱量との差が1J/g未満である場合、成形加工後の耐衝撃性が低下し、一定以上の衝撃が加わった場合、樹脂被膜割れが発生する場合がある。一方、結晶化熱量と融解熱量との差が20J/gより大きい場合には、樹脂被膜層4の結晶化度が高くなり、成形加工後の残留応力が大きくなる。このため、樹脂被膜層4の割れが発生することによって耐食性が悪化する場合がある。 The resin coating layer 4 on the inner surface side of the container has a difference between the heat of crystallization and the heat of fusion after being coated on the metal plate 2 in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is desirable that it be formed of a resin material. When the difference between the amount of heat of crystallization and the amount of heat of fusion is less than 1 J / g, the impact resistance after the molding process decreases, and when an impact of a certain level or more is applied, a resin film crack may occur. On the other hand, when the difference between the heat of crystallization and the heat of fusion is greater than 20 J / g, the degree of crystallinity of the resin coating layer 4 increases, and the residual stress after molding increases. For this reason, corrosion resistance may deteriorate due to the occurrence of cracks in the resin coating layer 4.
 樹脂被膜層3,4の結晶化度は、被覆前の樹脂被膜層3,4の配向度や融点、及び被覆条件(鋼板加熱温度、被覆時面圧、被覆後の冷却までの時間、被覆後の冷却温度、ライン速度)を調整することによって制御できる。例えば、被覆時の金属板2の加熱温度を高くすることによって、樹脂被膜層3,4の結晶化度を低くすることができる。なお、金属板2の加熱温度は、樹脂被膜層3,4の融点より高くするが、10~50℃程度高くすることが好ましい。また、面圧を低下させ、被覆時の加圧による樹脂被膜層3,4の冷却効果を小さくすることにより、樹脂被膜層3,4の結晶化度を低くすることができる。また、被覆後の冷却開始までの時間を短くして、被覆後の冷却過程における樹脂被膜層3,4の結晶化を抑制することにより、樹脂被膜層3,4の結晶化度を低くすることができる。なお、被覆後の冷却開始までの時間は、ラインの長さやライン速度にもよるが、0.5秒~10秒の範囲である。また、ライン速度を上げることによって、加熱温度が同条件でも樹脂被膜層3,4の結晶化度を低くすることができる。これは、加熱されてから被覆されるまでの放冷等の影響が少なくなるためである。 The degree of crystallinity of the resin coating layers 3 and 4 is the orientation degree and melting point of the resin coating layers 3 and 4 before coating, and coating conditions (steel plate heating temperature, surface pressure during coating, time to cooling after coating, after coating Can be controlled by adjusting the cooling temperature and the line speed. For example, the crystallinity of the resin coating layers 3 and 4 can be lowered by increasing the heating temperature of the metal plate 2 during coating. The heating temperature of the metal plate 2 is higher than the melting point of the resin coating layers 3 and 4, but is preferably about 10 to 50 ° C. Moreover, the crystallinity degree of the resin film layers 3 and 4 can be made low by reducing a surface pressure and making the cooling effect of the resin film layers 3 and 4 by the pressurization at the time of covering small. In addition, the crystallization degree of the resin coating layers 3 and 4 is reduced by shortening the time until the cooling starts after coating and suppressing the crystallization of the resin coating layers 3 and 4 in the cooling process after coating. Can do. The time until the start of cooling after coating is in the range of 0.5 to 10 seconds, depending on the length of the line and the line speed. Further, by increasing the line speed, the crystallinity of the resin coating layers 3 and 4 can be lowered even under the same heating temperature. This is because the influence of cooling or the like from heating to coating is reduced.
 樹脂被膜層3の融点は、250℃以上265℃以下の範囲内にあり、樹脂被膜層3が2層以上の構造になっている場合は、各層の融点差は10℃以下であることが望ましく、6℃以下であることがより望ましく、3℃以下であることがさらに望ましい。樹脂被膜層3の融点が250℃未満である場合、加工時の表面摺動や金属板2の加工発熱等によって樹脂被膜層3が軟化しやすくなり、樹脂被膜層3の表面に成形傷が発生したり、樹脂破断に至ったりする場合がある。一方、樹脂被膜層3の融点が265℃より大きい場合には、樹脂被膜層3の結晶性が高くなり、加工度の高い加工に追随できない可能性がある。また、各層の融点差が10℃より大きい場合、熱処理による各層の溶融状態が大きく異なるため、不均一な変位(流動)によって外観上の欠陥が発生しやすくなる。 The melting point of the resin coating layer 3 is in the range of 250 ° C. or more and 265 ° C. or less. When the resin coating layer 3 has a structure of two or more layers, the melting point difference between the layers is preferably 10 ° C. or less. More preferably, it is 6 ° C. or less, and further preferably 3 ° C. or less. When the melting point of the resin coating layer 3 is less than 250 ° C., the resin coating layer 3 is easily softened due to surface sliding during processing, processing heat generated by the metal plate 2, etc., and molding scratches are generated on the surface of the resin coating layer 3. Or may lead to resin breakage. On the other hand, when the melting point of the resin coating layer 3 is higher than 265 ° C., the crystallinity of the resin coating layer 3 is high, and there is a possibility that the processing with a high degree of processing cannot be followed. Further, when the difference in melting point of each layer is larger than 10 ° C., the melting state of each layer by heat treatment is greatly different, so that defects in appearance are likely to occur due to non-uniform displacement (flow).
 樹脂被膜層4の融点も樹脂被膜層3との貼り合わせという点から、250℃以上265℃以下の範囲内にあり、樹脂被膜層4が2層以上の構造になっている場合は、各層及び樹脂被膜層3の樹脂との融点差は10℃以下であることが望ましく、6℃以下であることがより望ましく、3℃以下であることがさらに望ましい。また、各層及び樹脂被膜層3の樹脂との融点差が10℃より大きい場合、熱処理による各層及び樹脂被膜層3の溶融状態が大きく異なるため、不均一な変位(流動)によって欠陥が発生しやすくなる。 The melting point of the resin coating layer 4 is also in the range of 250 ° C. or more and 265 ° C. or less from the viewpoint of bonding with the resin coating layer 3, and when the resin coating layer 4 has a structure of two or more layers, The melting point difference between the resin coating layer 3 and the resin is desirably 10 ° C. or less, more desirably 6 ° C. or less, and further desirably 3 ° C. or less. Further, when the melting point difference between each layer and the resin coating layer 3 is greater than 10 ° C., the melting state of each layer and the resin coating layer 3 due to the heat treatment is greatly different, so that defects are likely to occur due to non-uniform displacement (flow). Become.
 加工度が高い成形加工を行った際に樹脂被膜層3に成形傷が発生することを抑制するために、樹脂被膜層3にはワックス成分が添加されている。添加するワックス成分は特に限定されないが、有機滑剤が好ましく、ポリエステル樹脂との相溶性が良好なステアリン酸、ステアリン酸エステル、パルミチン酸、パルミチン酸エステル等の脂肪酸や脂肪酸エステル、パラフィン、ポリエチレン等の直鎖脂肪族等が使用可能であるが、特にポリエステル樹脂との相溶性が良好で高融点であるカルナウバワックスを用いることが望ましい。 A wax component is added to the resin coating layer 3 in order to suppress the occurrence of molding flaws in the resin coating layer 3 when a molding process with a high degree of processing is performed. The wax component to be added is not particularly limited, but an organic lubricant is preferable, and fatty acids such as stearic acid, stearic acid ester, palmitic acid, palmitic acid ester, fatty acid ester, paraffin, polyethylene, etc., which have good compatibility with the polyester resin. Although chain aliphatics can be used, it is particularly desirable to use carnauba wax having good compatibility with the polyester resin and a high melting point.
 ワックス成分の添加量は0.05PHR~5PHRの範囲内とする。ワックス成分の添加量が0.05PHRより少ない場合、潤滑の効果が小さく、成形傷に起因する外観欠陥抑制効果が得られない。一方、ワックス成分の添加量が5PHRより多い場合には、樹脂被膜層3をロール状に巻いた時にワックス成分の転写等が発生して問題となる他、印刷性が劣化する可能性がある。ワックス成分の添加量は、好ましくは0.10PHR~3PHRの範囲内、より好ましくは0.20PHR~2PHRの範囲内である。 The amount of wax component added is in the range of 0.05 PHR to 5 PHR. When the added amount of the wax component is less than 0.05 PHR, the effect of lubrication is small, and the effect of suppressing appearance defects due to molding flaws cannot be obtained. On the other hand, when the added amount of the wax component is more than 5 PHR, there is a problem that the transfer of the wax component occurs when the resin coating layer 3 is wound in a roll shape, and the printability may be deteriorated. The amount of the wax component added is preferably in the range of 0.10 PHR to 3 PHR, more preferably in the range of 0.20 PHR to 2 PHR.
 容器成形加工工程において、樹脂被膜層3が、成形加工や塗装の焼付等で熱履歴を受けると、ワックス成分は表面に析出して摺動性が向上する傾向になるため、樹脂被膜層3全体に対するワックス成分の添加量が0.05PHR~5PHRであれば、樹脂被膜層3の膜厚方向でのワックス成分の存在位置は限定するものではないが、樹脂被膜層3の最表面層に添加することが好ましく、その場合の最表面層は最表面から1μm以上5μm以下であることが好ましい。最表面層のワックス成分は摺動性を向上させる効果が高く、最表面層に添加した方がワックス成分の添加量が少なくても摺動性向上効果が高くなる。また、樹脂被膜層3の最下層に添加することが好ましく、その場合の最下層は最下面から1μm以上5μm以下であることが好ましい。最下層のワックス成分は加工時に樹脂層と金属板との間の界面で発生する応力を緩和することにより、成形時の樹脂密着性を向上させる効果がある。ワックス成分が添加された最表面層及び最下層の膜厚が1μmより小さい場合、樹脂被膜層3の成形傷が十分抑制できない場合や成形時の樹脂密着性に劣る場合があり、製造方法によっては樹脂被膜層3の表面の光沢を十分に確保できなくなったりする場合がある。一方、ワックス成分が添加された最表面層及び最下層の膜厚は5μmより大きくてもよいが、それ以上の改善効果が少なくなってくるため、5μm以下とすることが好ましい。 In the container molding process, when the resin coating layer 3 is subjected to a thermal history by molding processing or painting baking, the wax component tends to precipitate on the surface and the slidability tends to improve. If the added amount of the wax component is 0.05 PHR to 5 PHR, the position of the wax component in the thickness direction of the resin coating layer 3 is not limited, but it is added to the outermost surface layer of the resin coating layer 3. In this case, the outermost surface layer is preferably 1 μm or more and 5 μm or less from the outermost surface. The wax component of the outermost surface layer has a high effect of improving the slidability, and when added to the outermost surface layer, the effect of improving the slidability is enhanced even if the addition amount of the wax component is small. Moreover, it is preferable to add to the lowest layer of the resin film layer 3, and it is preferable that the lowest layer in that case is 1 micrometer or more and 5 micrometers or less from the lowest surface. The lowermost wax component has an effect of improving the resin adhesion at the time of molding by relaxing the stress generated at the interface between the resin layer and the metal plate during processing. When the film thickness of the outermost surface layer and the lowermost layer to which the wax component is added is smaller than 1 μm, the molding damage of the resin coating layer 3 may not be sufficiently suppressed or the resin adhesion during molding may be inferior. In some cases, the gloss of the surface of the resin coating layer 3 cannot be sufficiently secured. On the other hand, the film thickness of the outermost surface layer and the lowermost layer to which the wax component is added may be larger than 5 μm. However, since the improvement effect is further reduced, it is preferably 5 μm or less.
 本発明に係る樹脂被膜金属板を成形加工することによって形成された金属容器では、金属容器の外面側に位置する樹脂被膜層3の水との接触角が82°~100°の範囲内にあることが好ましく、85°~95°の範囲内にあることがさらに好ましい。樹脂被膜金属板の製造直後では、通常、加熱時間が短時間であるため、ワックス成分は、当初添加した層に存在している場合が多いが、容器成形加工工程において、樹脂被膜層3が、成形加工や塗装の焼付等で熱履歴を受けると、ワックス成分は表面に析出して摺動性が向上する傾向になる。本発明に規定するワックス成分の添加を行うことにより、本発明に係る樹脂被膜金属板を成形加工することによって形成された金属容器では、金属容器の外面側に位置する樹脂被膜層3の水との接触角が82°~100°の範囲内になっており、好適な成形が行われたことがわかる。なお、容器成形前に容器成形後の樹脂被膜層3の水との接触角を推定評価するためには、樹脂被膜層3に熱履歴を与えて冷却後に水との接触角を評価するとよい。熱履歴の条件は特に限定するものではないが、融点-50℃以上融点+30℃以下の温度で30秒以上保持するとよい。例えば、本発明では、熱風乾燥炉を用い、90秒で240℃に到達するように加熱し、冷風にて強制冷却した後の水との接触角は、成形加工した容器外面側に位置する樹脂被覆層3の水との接触角とよく相関があることを確認した。また、この最適な水との接触角範囲を表面自由エネルギーの最適範囲で示すと、27~33mN/mである。 In the metal container formed by molding the resin-coated metal plate according to the present invention, the contact angle with water of the resin film layer 3 located on the outer surface side of the metal container is in the range of 82 ° to 100 °. Preferably, it is more preferably in the range of 85 ° to 95 °. Immediately after the production of the resin-coated metal plate, since the heating time is usually short, the wax component is often present in the initially added layer, but in the container molding process, the resin film layer 3 is When a thermal history is received by molding or painting baking, the wax component tends to precipitate on the surface and improve the slidability. In the metal container formed by molding the resin-coated metal plate according to the present invention by adding the wax component defined in the present invention, the resin film layer 3 located on the outer surface side of the metal container and the water The contact angle is in the range of 82 ° to 100 °, indicating that suitable molding has been performed. In addition, in order to estimate and evaluate the contact angle with water of the resin coating layer 3 after container molding before container molding, it is preferable to give a thermal history to the resin coating layer 3 and evaluate the contact angle with water after cooling. The conditions of the heat history are not particularly limited, but it is preferable to hold at a temperature of melting point −50 ° C. or higher and melting point + 30 ° C. or lower for 30 seconds or longer. For example, in the present invention, using a hot air drying furnace, the contact angle with water after heating to reach 240 ° C. in 90 seconds and forcibly cooling with cold air is a resin located on the outer surface side of the molded container It was confirmed that there was a good correlation with the contact angle of the coating layer 3 with water. The optimum contact angle range with water is 27 to 33 mN / m in terms of the optimum surface free energy range.
 樹脂被膜層4の傷つき防止のために、樹脂被膜層3と同様に樹脂中にワックス成分を添加しても構わない。その場合のワックス成分の添加量も、0.05PHR~5PHRの範囲内とすることが望ましい。 In order to prevent the resin coating layer 4 from being damaged, a wax component may be added to the resin in the same manner as the resin coating layer 3. In this case, the addition amount of the wax component is also preferably in the range of 0.05 PHR to 5 PHR.
 樹脂被膜層3は、印刷処理等の意匠性を高めるための処理が可能なように、白色であることが求められる場合がある。このため、樹脂被膜層3は、5PHR以上30PHR以下、好ましくは10PHR以上25PHR以下、より好ましくは12PHR以上20PHR以下の範囲内で酸化チタンを含有していることが望ましい。酸化チタンの含有量が5PHR未満である場合、加工後に十分な白色度が確保できない場合がある。一方、酸化チタンの含有量が30PHRより多い場合には、加工度が高い成形加工を行った際、金属板2と樹脂被膜層3との密着性や加工性が問題となる場合がある。 The resin coating layer 3 may be required to be white so that a process for improving design properties such as a printing process is possible. Therefore, the resin coating layer 3 desirably contains titanium oxide within a range of 5 PHR to 30 PHR, preferably 10 PHR to 25 PHR, more preferably 12 PHR to 20 PHR. When the content of titanium oxide is less than 5 PHR, sufficient whiteness may not be ensured after processing. On the other hand, when the content of titanium oxide is more than 30 PHR, the adhesiveness and workability between the metal plate 2 and the resin coating layer 3 may become a problem when a forming process with a high workability is performed.
 白色度を確保するためには、樹脂被膜層3全体の樹脂量に対する酸化チタン量が5PHR以上30PHR以下の範囲内であり、膜厚が10μm以上であることが好ましい。また、最表面付近の酸化チタン量が高い場合、成形後の表面から脱離しやすくなるため、樹脂被膜層3の最表面から少なくとも1μmまでの位置での酸化チタン量は2PHR以下とすることが好ましい。また、最下面付近の酸化チタン量が高い場合、下地金属との密着性が低下しやすくなるため、最下面から少なくとも1μmまでの範囲内での酸化チタン量も2PHR以下とすることがさらに好ましい。 In order to ensure whiteness, it is preferable that the amount of titanium oxide with respect to the resin amount of the entire resin coating layer 3 is in the range of 5 PHR to 30 PHR, and the film thickness is 10 μm or more. Further, when the amount of titanium oxide in the vicinity of the outermost surface is high, it is easy to detach from the surface after molding. Therefore, the amount of titanium oxide at a position from the outermost surface of the resin coating layer 3 to at least 1 μm is preferably 2 PHR or less. . In addition, when the amount of titanium oxide in the vicinity of the lowermost surface is high, the adhesion with the base metal tends to be lowered. Therefore, the amount of titanium oxide in the range from the lowermost surface to at least 1 μm is more preferably 2 PHR or less.
 樹脂被膜層3に添加する酸化チタンとしては、特に限定されないが、ルチル型酸化チタンが90%以上のものを用いることが好ましい。ルチル型酸化チタンが90%より低い場合、樹脂材料との混合時に酸化チタンの分散性が良くなく、また、樹脂材料の分子量低下を招くことがある。なお、本願実施例及び比較例では、ルチル型酸化チタンを使用した。酸化チタンの添加方法としては、以下の(1)~(3)に示すような各種方法を用いることができる。なお、方法(1)を利用して酸化チタンを添加する場合には、酸化チタンをグリコールに分散したスラリーとして反応系に添加することが望ましい。また、酸化チタンを添加した樹脂被膜層3の厚みは、加工後の白色度を確保するために、10~40μm、好ましくは12~35μm、より好ましくは15~25μmの範囲内にすることが望ましい。樹脂被膜層3の厚みが10μm未満である場合、加工時に樹脂被膜層3の割れが生じやすくなる。一方、樹脂被膜層3の厚みが40μmより大きい場合には、成形による残留応力が大きくなりすぎて密着性が劣る場合があるためである。 The titanium oxide added to the resin coating layer 3 is not particularly limited, but it is preferable to use a rutile-type titanium oxide having a content of 90% or more. When the rutile type titanium oxide is lower than 90%, the dispersibility of the titanium oxide is not good when mixed with the resin material, and the molecular weight of the resin material may be lowered. In Examples and Comparative Examples of the present application, rutile type titanium oxide was used. As a method for adding titanium oxide, various methods as shown in the following (1) to (3) can be used. In addition, when adding titanium oxide using method (1), it is desirable to add titanium oxide to the reaction system as a slurry in which glycol is dispersed. In addition, the thickness of the resin coating layer 3 to which titanium oxide is added is desirably in the range of 10 to 40 μm, preferably 12 to 35 μm, more preferably 15 to 25 μm in order to ensure the whiteness after processing. . When the thickness of the resin coating layer 3 is less than 10 μm, the resin coating layer 3 is easily cracked during processing. On the other hand, when the thickness of the resin coating layer 3 is larger than 40 μm, the residual stress due to molding becomes too large and the adhesion may be inferior.
(1)共重合ポリエステル合成時のエステル交換又はエステル化反応の終了前、若しくは重縮合反応開始前に酸化チタンを添加する方法
(2)共重合ポリエステルに添加し、溶融混練する方法
(3)方法(1),(2)において、酸化チタンを多量に添加したマスターペレットを製造し、粒子を含有しない共重合ポリエステルと混練し、所定量の酸化チタンを含有させる方法
(1) Method of adding titanium oxide before transesterification or esterification reaction at the time of synthesis of copolymerized polyester or before the start of polycondensation reaction (2) Method of adding to copolymerized polyester and melt-kneading (3) Method In (1) and (2), a method for producing a master pellet to which a large amount of titanium oxide is added, kneading with a copolymerized polyester not containing particles, and containing a predetermined amount of titanium oxide
 また、酸化チタンとフィルム樹脂との間の密着性を良くするため、酸化チタン表面をシリカやアルミナ等で表面処理することが好ましい。 Also, in order to improve the adhesion between the titanium oxide and the film resin, it is preferable to treat the surface of the titanium oxide with silica, alumina or the like.
 前述したように、樹脂被膜層3,4は、全体が同じ組成である単層でもよく、複層構造であってもよい。また、樹脂被膜層3,4は、単層の場合でも複層の場合でも、合計が10μm以上40μm以下の範囲内であることが好ましい。10μm未満であると、加工時に樹脂被膜層3に割れが生じて被覆性が劣る場合があり、40μm超の場合、成形による残留応力が大きくなりすぎて密着性が劣る場合があるためである。また、樹脂被膜層3,4が所定の構成になっていれば、層の形成方法は限定するものではない。例えば、複数の成分の異なるフィルムを積層してもよいし、複数成分を溶融押し出し法でフィルムに形成してもよい。なお、複数の成分の異なるフィルムをそれぞれ形成してから積層してフィルムを形成する場合は、密着性等の観点から各層の厚みは1μm以上であることが好ましいが、フィルムに塗装等の方法で層を形成したり、溶融押し出し等で同時に複数層を形成する場合は、各層の厚みはさらに薄くしてもよく、また、層が明確に分かれていなくてもよい。 As described above, the resin coating layers 3 and 4 may be a single layer having the same composition or a multilayer structure. Further, the resin coating layers 3 and 4 are preferably in the range of 10 μm or more and 40 μm or less in the case of a single layer or multiple layers. If it is less than 10 μm, the resin coating layer 3 may be cracked during processing and the coverage may be inferior, and if it exceeds 40 μm, the residual stress due to molding becomes too large and the adhesion may be inferior. In addition, as long as the resin coating layers 3 and 4 have a predetermined configuration, the layer forming method is not limited. For example, a plurality of films having different components may be laminated, or a plurality of components may be formed on the film by a melt extrusion method. In addition, when forming a film by laminating a film having a plurality of components different from each other, the thickness of each layer is preferably 1 μm or more from the viewpoint of adhesion and the like. When forming a plurality of layers simultaneously by forming a layer or by melt extrusion, the thickness of each layer may be further reduced, and the layers may not be clearly separated.
 金属板として厚さ0.23mmのT3CA(JIS G 3303)、TFS(Tin Free Steel、金属Cr層:120mg/m、Cr酸化物層:金属Cr換算で10mg/m)を用い、フィルム熱圧着法を用いて金属板の両面に以下の表1A,1Bに示す実施例1~38及び比較例1~12の樹脂被膜層を形成した。具体的には、金属板を樹脂被膜層の融点より20℃高い温度まで加熱した状態で、ニップロールを利用して二軸延伸法で作製したフィルム状の樹脂被膜層を金属板に熱圧着し、次いで5秒以内の水冷によって冷却することにより、金属板の両面に樹脂被膜層を被覆した。なお、成形加工後に容器の外面側に位置する金属板の一方の面側には酸化チタンを含む場合と含まない場合の樹脂被膜層(外面樹脂層)、成形加工後に容器の内面側に位置する金属板のもう一方の面側には酸化チタンを含まない樹脂被膜層(内面樹脂層)を被覆した。また、得られた樹脂被膜金属板について、以下に示す方法を利用して、樹脂被膜層の融点、樹脂被膜層の結晶化熱量、及び樹脂被膜層の融解熱量を測定した。また、外面樹脂層については、その白色度及び熱処理後の水との接触角を測定した。測定結果を以下の表1A,1Bに示す。 Using T3CA (JIS G 3303) having a thickness of 0.23 mm, TFS (Tin Free Steel, metal Cr layer: 120 mg / m 2 , Cr oxide layer: 10 mg / m 2 in terms of metal Cr) as the metal plate, film heat The resin coating layers of Examples 1 to 38 and Comparative Examples 1 to 12 shown in Tables 1A and 1B below were formed on both surfaces of the metal plate using a pressure bonding method. Specifically, in a state where the metal plate is heated to a temperature 20 ° C. higher than the melting point of the resin coating layer, a film-like resin coating layer produced by a biaxial stretching method using a nip roll is thermocompression bonded to the metal plate, Subsequently, the resin film layer was coat | covered on both surfaces of the metal plate by cooling by water cooling within 5 second. In addition, on one surface side of the metal plate located on the outer surface side of the container after molding processing, a resin coating layer (outer surface resin layer) with and without titanium oxide is positioned on the inner surface side of the container after molding processing. The other surface side of the metal plate was coated with a resin coating layer (inner surface resin layer) not containing titanium oxide. Moreover, about the obtained resin film metal plate, melting | fusing point of the resin film layer, the crystallization heat amount of the resin film layer, and the heat of fusion of the resin film layer were measured using the method shown below. Moreover, about the outer surface resin layer, the contact angle with the whiteness and the water after heat processing was measured. The measurement results are shown in Tables 1A and 1B below.
(1)樹脂被膜層の融点
 示差走査熱量測定装置を用いて10℃/分の昇温速度、窒素ガス流量50ml/分で、室温から290℃まで被覆前の樹脂被膜層を昇温したときの吸熱ピークを測定し、200~280℃の間で測定された吸熱ピークのピーク温度を樹脂被膜層の融点とした。
(1) Melting point of resin coating layer When the temperature of the resin coating layer before coating is increased from room temperature to 290 ° C. at a rate of temperature increase of 10 ° C./min and a flow rate of nitrogen gas of 50 ml / min using a differential scanning calorimeter. The endothermic peak was measured, and the peak temperature of the endothermic peak measured between 200 and 280 ° C. was defined as the melting point of the resin coating layer.
(2)結晶化熱量及び融解熱量
 希釈した塩酸により樹脂被膜金属板の金属表面を溶解して樹脂被膜層を剥離し、剥離した樹脂被膜層を十分に蒸留水で洗浄して乾燥させた。なお、以後、剥離した樹脂被膜層での評価が必要な場合は、本方法を用いた。そして、示差走査熱量測定装置を用いて、10℃/分の昇温速度、窒素ガス流量50ml/分で-50℃から290℃まで樹脂被膜層を昇温したときの発熱ピーク及び吸熱ピークを測定し、100~200℃の間で観測された発熱ピークの面積から結晶化熱量を算出し、200℃~280℃の間で観測された吸熱ピークの面積から融解熱量を算出した。なお、外面樹脂層については、酸化チタンの含有量を除いた重量を樹脂量として、樹脂単位重量当たりの結晶化熱量及び融解熱量を算出した。
(2) Heat of crystallization and heat of fusion The metal surface of the resin-coated metal plate was dissolved with diluted hydrochloric acid to peel off the resin coating layer, and the peeled resin coating layer was sufficiently washed with distilled water and dried. Hereafter, this method was used when it was necessary to evaluate the peeled resin coating layer. Then, using a differential scanning calorimeter, an exothermic peak and an endothermic peak are measured when the temperature of the resin coating layer is increased from −50 ° C. to 290 ° C. at a rate of temperature increase of 10 ° C./min and a flow rate of nitrogen gas of 50 ml / min. Then, the heat of crystallization was calculated from the area of the exothermic peak observed between 100 to 200 ° C., and the heat of fusion was calculated from the area of the endothermic peak observed between 200 ° C. and 280 ° C. For the outer surface resin layer, the amount of crystallization heat and the amount of heat of fusion per unit weight of the resin were calculated using the weight excluding the titanium oxide content as the amount of resin.
(3)白色度
 分光色差計を用いて樹脂被膜金属板の樹脂被膜層3の白色度をJIS Z 8722に示される方法で評価した。測定面積は30mmφ、測定光源をC条件、測定光源に対して2°視野の観察条件で測定したハンター(Hunter)Lab値のL値を白色度とした。なお、L値が75以上の場合に白色被膜として好適である。
(3) Whiteness Using a spectral color difference meter, the whiteness of the resin coating layer 3 of the resin-coated metal plate was evaluated by the method shown in JIS Z 8722. The measurement area was 30 mmφ, the measurement light source was the C condition, and the L value of the Hunter Lab value measured under the observation condition of the 2 ° visual field with respect to the measurement light source was defined as whiteness. In addition, when L value is 75 or more, it is suitable as a white film.
(4)熱処理後の水との接触角
 熱風乾燥炉を用いて、金属板温度が240℃になるまで90秒で加熱して、冷風にて強制冷却した後に、接触角計(協和界面科学(株)製CA-DT型)を用いて、水の樹脂被膜層3に対する静的接触角を測定した。
(4) Contact angle with water after heat treatment Using a hot air drying furnace, the metal plate was heated in 90 seconds until the temperature reached 240 ° C. and forcedly cooled with cold air, and then contact angle meter (Kyowa Interface Science ( The static contact angle of water with respect to the resin coating layer 3 was measured using a CA-DT type).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔評価〕
 表1A,1Bに記載の樹脂被膜金属板について、以下に示す方法を利用してその成形性、外観、耐食性、加工後密着性、及び耐衝撃性を評価した。評価結果を以下の表2に示す。表2に示すように、実施例1~38の樹脂被膜金属板では、成形性及び外観の評点は「◎◎◎」「◎◎」「◎」又は「○」であったのに対して、比較例1~11の樹脂被膜金属板では、成形性及び外観の評点は「△」「×」であった。ここで、表1A,1Bを参照すると、実施例1~38の樹脂被膜金属板では、外面樹脂層がエチレンテレフタレート単位97mol%以上であり、且つ、0.05PHR以上5PHR以下の範囲内のワックス成分を含有し、金属板に被覆された後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の樹脂材料によって形成されている。これに対して、比較例1~11の樹脂被膜金属板では、樹脂組成、ワックス成分、又は外面樹脂層の結晶化熱量と融解熱量との差のいずれかが異なり、また比較例12の樹脂被膜金属板では、外面樹脂層は結晶化熱量と融解熱量との差が単位重量当たりに換算して0J/gの樹脂材料によって形成されている。
[Evaluation]
The resin-coated metal plates described in Tables 1A and 1B were evaluated for formability, appearance, corrosion resistance, post-processing adhesion, and impact resistance using the methods described below. The evaluation results are shown in Table 2 below. As shown in Table 2, in the resin-coated metal plates of Examples 1 to 38, the moldability and appearance scores were “◎◎◎”, “◎◎”, “◎”, or “○”, In the resin-coated metal plates of Comparative Examples 1 to 11, the formability and appearance scores were “Δ” and “X”. Here, referring to Tables 1A and 1B, in the resin-coated metal plates of Examples 1 to 38, the outer surface resin layer has an ethylene terephthalate unit of 97 mol% or more and a wax component in the range of 0.05 PHR to 5 PHR. The difference between the amount of heat of crystallization and the amount of heat of fusion after being coated on the metal plate is formed of a resin material of 1 J / g or more and 20 J / g or less in terms of unit weight. In contrast, in the resin-coated metal plates of Comparative Examples 1 to 11, either the resin composition, the wax component, or the difference between the heat of crystallization and the heat of fusion of the outer surface resin layer is different. In the metal plate, the outer surface resin layer is formed of a resin material having a difference between the amount of heat of crystallization and the amount of heat of fusion of 0 J / g in terms of unit weight.
(1)成形性
 表1A,1Bに記載の樹脂被膜金属板に直径123mmの円板を打ち抜き、絞り比1.7で浅絞り缶を成形した。次に、この浅絞り缶に対し、絞り比1.4で再絞り加工及びDI加工を行い、深絞り缶を成形した。このようにして得られた深絞り缶を、その後の印刷、焼き付けの熱履歴を模擬するために、熱風乾燥炉を用いて缶体温度が250℃になるまで2分間で加熱した後、冷風にて強制冷却した。そして、成形後に樹脂被膜表面の成形傷を目視で観察し、以下に示す基準に従って評点をつけた。
評点「◎◎◎」:フィルムの成形傷が全く観察されない場合。
評点「◎◎」:フィルムの成形傷が缶フランジ部分から1mm以内の高さ位置に発生した場合。
評点「◎」:フィルムの成形傷が缶フランジ部分から1mmを超えて3mm以内の高さ位置に発生した場合。
評点「○」:フィルムの成形傷が缶フランジ部分から3mmを超えて5mm以内の高さ位置に発生した場合。
評点「△」:フィルムの成形傷が缶フランジ部分から5mmを超えて10mm以内の高さ位置に発生した場合。
評点「×」:フィルムの成形傷が缶フランジ部分から10mmを超えた高さ位置まで発生した場合。
(1) Formability A 123 mm diameter disc was punched into the resin-coated metal plate described in Tables 1A and 1B, and a shallow drawn can was formed at a drawing ratio of 1.7. Next, redrawing and DI processing were performed on the shallow drawn can with a drawing ratio of 1.4 to form a deep drawn can. The deep drawn can thus obtained was heated in a hot air drying oven for 2 minutes until the can body temperature reached 250 ° C. in order to simulate the thermal history of subsequent printing and baking, and then cooled to cold air. Forced cooling. And the molding flaw on the surface of the resin film was visually observed after molding, and a score was given according to the following criteria.
Rating "◎◎◎": No film forming flaws are observed.
Rating “◎◎”: When a film molding flaw occurs at a height within 1 mm from the can flange.
Score “◎”: When a film molding flaw occurs at a height position within 3 mm exceeding 1 mm from the can flange portion.
Score “◯”: When a film forming defect occurs at a height position exceeding 3 mm and within 5 mm from the can flange portion.
Score “Δ”: When a film molding flaw occurs at a height position of more than 5 mm and within 10 mm from the can flange portion.
Score “X”: When a film molding flaw occurs up to a height position exceeding 10 mm from the can flange portion.
(2)外観
 表1A,1Bに記載の樹脂被膜金属板に、直径158mmの円板を打ち抜き、絞り比1.7で浅絞り缶を得た。次いで、この浅絞り缶に対し、絞り比1.5で再絞り加工を行い、深絞り缶を成形した。このようにして得られた深絞り缶を、その後の印刷、焼き付けの熱履歴を模擬するために、熱風乾燥炉を用いて缶体温度が250℃になるまで2分間で加熱した後、冷風にて強制冷却した。冷却後の外面フィルムの状態を目視で観察し、以下に示す基準に従って評点をつけた。
評点「◎◎◎」:表面凹凸の欠陥が全く観察されない場合。
評点「◎◎」:表面凹凸の欠陥が缶フランジ部分から1mm以内の高さ位置に発生した場合。
評点「◎」:表面凹凸の欠陥が缶フランジ部分から1mmを超えて2mm以内の高さ位置に発生した場合。
評点「○」:表面凹凸の欠陥が缶フランジ部分から2mmを超えて3mm以内の高さ位置に発生した場合。
評点「△」:表面凹凸の欠陥が缶フランジ部分から3mmを超えて5mm以内の高さ位置に発生した場合。
評点「×」:表面凹凸の欠陥が缶フランジ部分から5mmを超えた高さ位置で発生した場合。
(2) Appearance A 158 mm diameter disc was punched into the resin-coated metal plate described in Tables 1A and 1B to obtain a shallow drawn can with a drawing ratio of 1.7. Next, the shallow drawn can was redrawn at a drawing ratio of 1.5 to form a deep drawn can. The deep drawn can thus obtained was heated in a hot air drying oven for 2 minutes until the can body temperature reached 250 ° C. in order to simulate the thermal history of subsequent printing and baking, and then cooled to cold air. Forced cooling. The state of the outer surface film after cooling was visually observed and scored according to the following criteria.
Rating "◎◎◎": When surface irregularities are not observed at all.
Score “◎◎”: When surface irregularities occur at a height within 1 mm from the can flange.
Score “◎”: When a surface irregularity defect occurs at a height position within 2 mm exceeding 1 mm from the can flange portion.
Score “◯”: When a surface irregularity defect occurs at a height of 3 mm or more exceeding 2 mm from the can flange portion.
Rating “Δ”: When a surface irregularity defect occurs at a height position within 3 mm exceeding 3 mm from the can flange portion.
Score “X”: When a surface irregularity defect occurs at a height position exceeding 5 mm from the can flange portion.
(3)耐食性
 外観評価において成形及び熱処理を行った深絞り缶の缶フランジ部の樹脂被膜層を削り金属板を露出させた。その後、缶内に5%の食塩水を注入し、これに白金電極を浸漬させ(浸漬させた位置は缶中央部)、白金電極及び缶のフランジ部(鋼板露出部)をそれぞれ陰極及び陽極として電極間に6Vの電圧をかけ、4秒後の電流値を読み取った。そして、10缶測定後の電流値の平均値を求め、以下に示す基準に従って評点をつけた。
評点「◎◎」:電流値0.001mA未満
評点「◎」:電流値0.001mA以上、0.01mA未満
評点「○」:電流値0.01mA以上、0.1mA未満
評点「△」:電流値0.1mA以上、1.0mA未満
評点「×」:電流値1.0mA以上
(3) Corrosion resistance The resin film layer of the can flange part of the deep drawn can which was molded and heat-treated in appearance evaluation was shaved to expose the metal plate. Thereafter, 5% saline solution is poured into the can, and the platinum electrode is immersed therein (the position where the immersion is performed is the center of the can), and the platinum electrode and the flange portion of the can (exposed portion of the steel plate) are used as a cathode and an anode, respectively. A voltage of 6 V was applied between the electrodes, and the current value after 4 seconds was read. And the average value of the electric current value after 10 cans measurement was calculated | required, and the score was attached according to the reference | standard shown below.
Rating “◎◎”: Current value less than 0.001 mA Rating “◎”: Current value 0.001 mA or more, less than 0.01 mA Rating “◯”: Current value 0.01 mA or more, less than 0.1 mA Rating “△”: Current Value 0.1 mA or more, less than 1.0 mA Rating “×”: Current value 1.0 mA or more
(4)加工後密着性
 外観評価において成形した深絞り缶の缶胴部からピール試験用のサンプル(幅15mm×長さ120mm)を切り出した。切り出したサンプルの長辺側端部から缶外面側の樹脂被膜層を一部剥離し、剥離した樹脂被膜層を樹脂被膜層が剥離された金属板とは反対方向(角度:180度)に開き、引張速度30mm/minでピール試験を行い、以下に示す基準に従って幅15mmあたりの密着力を評価した。
評点「◎」:3.0N/15mm以上
評点「○」:2.0N/15mm以上、3.0N/15mm未満
評点「△」:1.0N/15mm以上、2.0N/15mm未満
評点「×」:1.0N/15mm未満
(4) Adhesiveness after processing A sample for peel test (width 15 mm × length 120 mm) was cut out from the can body of the deep-drawn can formed in the appearance evaluation. The resin film layer on the outer surface of the can is partly peeled off from the long side end of the cut sample, and the peeled resin film layer is opened in the direction opposite to the metal plate from which the resin film layer has been peeled (angle: 180 degrees). A peel test was conducted at a tensile speed of 30 mm / min, and the adhesion per 15 mm width was evaluated according to the following criteria.
Score “◎”: 3.0 N / 15 mm or more Score “◯”: 2.0 N / 15 mm or more, less than 3.0 N / 15 mm “Δ”: 1.0 N / 15 mm or more, less than 2.0 N / 15 mm “×” ": Less than 1.0N / 15mm
(5)耐衝撃性
 外観評価において成形及び熱処理を行った深絞り缶の缶胴部から衝撃試験用のサンプル(幅80mm×長さ80mm)を切り出し、缶外面側が凸になるようにして、先端半径6.35mm、荷重300g、高さ100mmのデュポン衝撃試験を行った(JIS K 5600準拠)。そして、凸部側(缶外面側)の衝撃部に5%の食塩水を浸したスポンジを当て、これに白金電極を当てた。白金電極及び衝撃試験サンプル端(鋼板露出部)をそれぞれ陰極及び陽極として電極間に6.2Vの電圧をかけて4秒後の電流値を読み取り、10缶測定後の平均値を求めた。
評点「◎」:電流値0.05mA未満
評点「○」:電流値0.05mA以上、0.5mA未満
評点「△」:電流値0.5mA以上、5mA未満
評点「×」:電流値5mA以上
(5) Impact resistance A sample for impact test (width 80 mm x length 80 mm) was cut out from the can body of a deep-drawn can that was molded and heat-treated in appearance evaluation, and the outer surface side of the can became convex, and the tip A DuPont impact test with a radius of 6.35 mm, a load of 300 g, and a height of 100 mm was performed (based on JIS K 5600). Then, a sponge dipped in 5% saline was applied to the impact portion on the convex portion side (can outer surface side), and a platinum electrode was applied thereto. Using the platinum electrode and impact test sample end (steel plate exposed portion) as the cathode and anode, respectively, a voltage of 6.2 V was applied between the electrodes, the current value after 4 seconds was read, and the average value after 10 cans was measured.
Rating “◎”: Current value less than 0.05 mA Rating “◯”: Current value 0.05 mA or more, less than 0.5 mA Rating “Δ”: Current value 0.5 mA or more Rating less than 5 mA “X”: Current value 5 mA or more
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 金属板として厚さ0.23mmのT3CA(JIS G 3303)、TFS(Tin Free Steel、金属Cr層:120mg/m、Cr酸化物層:金属Cr換算で10mg/m)を用い、フィルム熱圧着法を用いて金属板の両面に以下の表3A~3Dに示す実施例101~141及び比較例101~112の樹脂被膜層を形成した。具体的には、表3A~3Dに示す2層または3層の樹脂被膜層をフィルムとして積層し、金属板を樹脂被膜層の融点(各層の融点が異なる場合は、最も高い層の融点とする)より20℃高い温度まで加熱した状態で、ニップロールを利用して二軸延伸法で作製したフィルム状の樹脂被膜層を金属板に熱圧着し、次いで5秒以内の水冷によって冷却することにより、金属板の両面に樹脂被膜層を被覆した。なお、成形加工後に容器の外面側に位置する金属板の一方の面側には酸化チタンを含む場合と含まない場合の樹脂被膜層(外面樹脂層)、成形加工後に容器の内面側に位置する金属板のもう一方の面側には酸化チタンを含まない樹脂被膜層(内面樹脂層)を被覆した。また、得られた樹脂被膜金属板について、上記[実施例1]と同じ方法を利用して樹脂被膜層の融点、樹脂被膜層の結晶化熱量、及び樹脂被膜層の融解熱量を測定した。また、外面樹脂層については、その白色度及び熱処理後の水との接触角を測定した。測定結果を以下の表3A~3Dに示す。 Using T3CA (JIS G 3303) having a thickness of 0.23 mm, TFS (Tin Free Steel, metal Cr layer: 120 mg / m 2 , Cr oxide layer: 10 mg / m 2 in terms of metal Cr) as the metal plate, film heat Resin coating layers of Examples 101 to 141 and Comparative Examples 101 to 112 shown in Tables 3A to 3D below were formed on both surfaces of a metal plate by using a pressure bonding method. Specifically, two or three resin coating layers shown in Tables 3A to 3D are laminated as a film, and the metal plate is the melting point of the resin coating layer (if each layer has a different melting point, the melting point of the highest layer is used). ) In a state heated to a temperature higher by 20 ° C., a film-like resin coating layer produced by a biaxial stretching method using a nip roll is thermocompression bonded to a metal plate, and then cooled by water cooling within 5 seconds, The resin film layer was coat | covered on both surfaces of the metal plate. In addition, on one surface side of the metal plate located on the outer surface side of the container after molding processing, a resin coating layer (outer surface resin layer) with and without titanium oxide is positioned on the inner surface side of the container after molding processing. The other surface side of the metal plate was coated with a resin coating layer (inner surface resin layer) not containing titanium oxide. Moreover, about the obtained resin film metal plate, the melting | fusing point of the resin film layer, the crystallization heat amount of the resin film layer, and the heat of fusion of the resin film layer were measured using the same method as the above [Example 1]. Moreover, about the outer surface resin layer, the contact angle with the whiteness and the water after heat processing was measured. The measurement results are shown in Tables 3A to 3D below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔評価〕
 上記表3A~3Dに記載の樹脂被膜金属板について、上記[実施例1]と同じ方法を利用してその成形性、外観、耐食性、加工後密着性、及び耐衝撃性を評価した。評価結果を以下の表4に示す。表4に示すように、実施例101~141の樹脂被膜金属板では、成形性及び外観の評点は「◎◎◎」「◎◎」「◎」又は「○」であったのに対して、比較例101~110,112の樹脂被膜金属板では、成形性及び外観の評点は「○」「△」「×」であった。ここで、表3A~3Dを参照すると、実施例101~141の樹脂被膜金属板では、外面樹脂層が2層以上の構造を有し、最表面層の膜厚が1μm以上であり、各層の樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上であり、最表面層が0.05PHR以上5PHR以下の範囲内のワックス成分を含有し、且つ、ワックス成分量を樹脂被膜全体の樹脂量に対して換算すると0.05PHR以上5PHR以下であり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にある樹脂材料によって形成されている。これに対して、比較例101~110,112の樹脂被膜金属板では、樹脂組成、ワックス成分、又は外面樹脂層の結晶化熱量と融解熱量との差のいずれかが異なり、また比較例111の樹脂被膜金属板では、外面樹脂層は結晶化熱量と融解熱量との差が単位重量当たりに換算して0J/gの樹脂材料によって形成されている。
[Evaluation]
For the resin-coated metal plates described in Tables 3A to 3D, the formability, appearance, corrosion resistance, post-processing adhesion, and impact resistance were evaluated using the same methods as in [Example 1] above. The evaluation results are shown in Table 4 below. As shown in Table 4, in the resin-coated metal plates of Examples 101 to 141, the score of formability and appearance was “◎◎◎”, “◎◎”, “◎”, or “○”, In the resin-coated metal plates of Comparative Examples 101 to 110, 112, the formability and appearance scores were “◯”, “Δ”, and “X”. Here, referring to Tables 3A to 3D, in the resin-coated metal plates of Examples 101 to 141, the outer surface resin layer has a structure of two or more layers, and the film thickness of the outermost surface layer is 1 μm or more. Each of the resin coating layers is 97 mol% or more of ethylene terephthalate unit, the outermost surface layer contains a wax component in the range of 0.05 PHR or more and 5 PHR or less, and the amount of the wax component is based on the resin amount of the entire resin coating When converted, it is 0.05 PHR or more and 5 PHR or less, and the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is a range of 1 J / g or more and 20 J / g or less in terms of unit weight. It is formed by the resin material inside. In contrast, in the resin-coated metal plates of Comparative Examples 101 to 110, 112, either the resin composition, the wax component, or the difference between the heat of crystallization and the heat of fusion of the outer resin layer is different. In the resin-coated metal plate, the outer resin layer is formed of a resin material having a difference between the amount of crystallization heat and the heat of fusion converted to 0 J / g per unit weight.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 金属板として厚さ0.23mmのT3CA(JIS G 3303)、TFS(Tin Free Steel、金属Cr層:120mg/m、Cr酸化物層:金属Cr換算で10mg/m)を用い、フィルム熱圧着法を用いて金属板の両面に以下の表5A~5Eに示す実施例201~237及び比較例201~211の樹脂被膜層を形成した。具体的には、表5A~5Eに示す構成にフィルムを積層し、金属板を樹脂被膜層の融点(各層の融点が異なる場合は、最も高い層の融点とする)より20℃高い温度まで加熱した状態で、ニップロールを利用して二軸延伸法で作製したフィルム状の樹脂被膜層を金属板に熱圧着し、次いで5秒以内の水冷によって冷却することにより、金属板の両面に樹脂被膜層を被覆した。なお、成形加工後に容器の外面側に位置する金属板の表面側には酸化チタンを含む場合と含まない場合の樹脂被膜層(外面樹脂層)、成形加工後に容器の内面側に位置する金属板の裏面側には酸化チタンを含まない樹脂被膜層(内面樹脂層)を被覆した。また、得られた樹脂被膜金属板について、上記[実施例1]及び[実施例2]と同じ方法を利用して樹脂被膜層の融点、樹脂被膜層の結晶化熱量、及び樹脂被膜層の融解熱量を測定した。また、外面樹脂層については、その白色度及び熱処理後の水との接触角を測定した。測定結果を以下の表5A~5Eに示す。 Using T3CA (JIS G 3303) having a thickness of 0.23 mm, TFS (Tin Free Steel, metal Cr layer: 120 mg / m 2 , Cr oxide layer: 10 mg / m 2 in terms of metal Cr) as the metal plate, film heat The resin coating layers of Examples 201 to 237 and Comparative Examples 201 to 211 shown in Tables 5A to 5E below were formed on both surfaces of a metal plate by using a pressure bonding method. Specifically, the films are laminated in the configurations shown in Tables 5A to 5E, and the metal plate is heated to a temperature 20 ° C. higher than the melting point of the resin coating layer (if each layer has a different melting point, the melting point of the highest layer). In this state, a resin film layer formed on the both sides of the metal plate is obtained by thermocompression bonding the film-like resin film layer produced by the biaxial stretching method using a nip roll to a metal plate and then cooling with water cooling within 5 seconds. Was coated. In addition, on the surface side of the metal plate located on the outer surface side of the container after the molding process, a resin coating layer (outer surface resin layer) with or without titanium oxide, the metal plate positioned on the inner surface side of the container after the molding process A resin coating layer (inner surface resin layer) that does not contain titanium oxide was coated on the back surface side. Moreover, about the obtained resin film metal plate, melting | fusing point of a resin film layer, the crystallization calorie | heat amount of a resin film layer, and melting | fusing of a resin film layer using the same method as said [Example 1] and [Example 2]. The amount of heat was measured. Moreover, about the outer surface resin layer, the contact angle with the whiteness and the water after heat processing was measured. The measurement results are shown in Tables 5A to 5E below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
〔評価〕
 上記表5A~5Eに記載の樹脂被膜金属板について、上記[実施例1]及び[実施例2]と同じ方法を利用してその成形性、外観、耐食性、加工後密着性、及び耐衝撃性を評価した。評価結果を以下の表6に示す。表6に示すように、実施例201~237の樹脂被膜金属板では、成形性及び外観の評点は「◎◎◎」「◎◎」「◎」又は「○」であったのに対して、比較例201~210の樹脂被膜金属板では、成形性及び外観の評点は「◎」「○」「△」「×」であった。ここで、表5A~5Eを参照すると、実施例201~237の樹脂被膜金属板では、外面樹脂層が最表面層、中間層、及び最下層からなる3層構造を有し、3層の樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上であり、最表面及び最下面からそれぞれ1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内であり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にある樹脂材料によって形成されている。これに対して、比較例201~210の樹脂被膜金属板では、樹脂組成、ワックス成分、又は外面樹脂層の結晶化熱量と融解熱量との差のいずれかが異なり、また比較例211の樹脂被膜金属板では、外面樹脂層は結晶化熱量と融解熱量との差が単位重量当たりに換算して0J/gの樹脂材料によって形成されている。
[Evaluation]
For the resin-coated metal plates described in Tables 5A to 5E, the moldability, appearance, corrosion resistance, post-processing adhesion, and impact resistance are obtained using the same methods as in [Example 1] and [Example 2]. Evaluated. The evaluation results are shown in Table 6 below. As shown in Table 6, in the resin-coated metal plates of Examples 201 to 237, the moldability and appearance scores were “◎◎◎”, “◎◎”, “◎”, or “○”, In the resin-coated metal plates of Comparative Examples 201 to 210, the scores of formability and appearance were “◎”, “◯”, “Δ”, and “×”. Here, referring to Tables 5A to 5E, in the resin-coated metal plates of Examples 201 to 237, the outer resin layer has a three-layer structure including an outermost surface layer, an intermediate layer, and a lowermost layer. Each of the coating layers has an ethylene terephthalate unit of 97 mol% or more, has a layer containing a wax component of 1 μm or more and 5 μm or less from the outermost surface and the lowermost surface, respectively, and the amount of wax relative to the amount of resin in the layer containing wax The amount of wax relative to the amount of resin in the entire resin coating layer is in the range of 0.05 PHR to 5 PHR, and the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is per unit weight. The resin material is in the range of 1 J / g or more and 20 J / g or less. In contrast, in the resin-coated metal plates of Comparative Examples 201 to 210, either the resin composition, the wax component, or the difference between the heat amount of crystallization and the heat of fusion of the outer surface resin layer is different, and the resin film of Comparative Example 211 is used. In the metal plate, the outer surface resin layer is formed of a resin material having a difference between the amount of heat of crystallization and the amount of heat of fusion of 0 J / g in terms of unit weight.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明によれば、成形及び熱処理によって外観上の欠陥が発生することを抑制可能な樹脂被膜金属板、樹脂被膜金属板の製造方法、及び金属容器を提供することができる。 According to the present invention, it is possible to provide a resin-coated metal plate, a method for producing a resin-coated metal plate, and a metal container that can suppress appearance defects due to molding and heat treatment.
 1 樹脂被膜金属板
 2 金属板
 3,4 樹脂被膜層
1 resin-coated metal plate 2 metal plate 3,4 resin-coated layer

Claims (11)

  1.  金属板の両面に樹脂被膜層を備える樹脂被膜金属板であって、成形加工後に容器の外面側に位置する樹脂被膜層がエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、且つ、0.05PHR以上5PHR以下の範囲内のワックス成分を含有し、金属板に被覆された後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることを特徴とする樹脂被膜金属板。 A resin-coated metal plate provided with a resin film layer on both surfaces of the metal plate, the resin film layer located on the outer surface side of the container after the molding processing is mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and 0.05 PHR The wax component in the range of 5 PHR or less is contained, and the difference between the heat of crystallization and the heat of fusion after being coated on the metal plate is within the range of 1 J / g or more and 20 J / g or less in terms of unit weight. A resin-coated metal plate characterized by being.
  2.  成形加工後に容器の外面側に位置する樹脂被膜層が5PHR以上30PHR以下の酸化チタンを含有することを特徴とする請求項1に記載の樹脂被膜金属板。 2. The resin-coated metal sheet according to claim 1, wherein the resin coating layer located on the outer surface side of the container after molding processing contains 5 PHR or more and 30 PHR or less of titanium oxide.
  3.  成形加工後に容器の外面側に位置する樹脂被膜層が2層以上の構造を有し、各層の樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、最表面から1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内にあり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にある樹脂材料によって形成されていることを特徴とする請求項1に記載の樹脂被膜金属板。 The resin coating layer located on the outer surface side of the container after molding has a structure of two or more layers, and the resin coating layers of each layer are mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and from 1 μm to 5 μm from the outermost surface. It has a layer containing the following wax components, and the amount of wax relative to the amount of resin in the layer containing wax and the amount of wax relative to the resin amount of the entire resin coating layer are both in the range of 0.05 PHR to 5 PHR. The resin film layer after being coated on the metal plate is formed of a resin material in which the difference between the heat of crystallization and the heat of fusion is within a range of 1 J / g or more and 20 J / g or less in terms of unit weight. The resin-coated metal plate according to claim 1.
  4.  成形加工後に容器の外面側に位置する樹脂被膜層が2層以上の構造を有し、各層の樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、最表面から1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している最表面層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内にあり、樹脂被膜層全体の樹脂量に対する酸化チタン量が5PHR以上30PHR以下の範囲内にあり、且つ、少なくとも最表面から1μmの深さまでは、酸化チタン量が2PHR以下の範囲内にあり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることを特徴とする請求項1~3のうち、いずれか1項に記載の樹脂被膜金属板。 The resin coating layer located on the outer surface side of the container after molding has a structure of two or more layers, and the resin coating layers of each layer are mainly composed of a resin having an ethylene terephthalate unit of 97 mol% or more, and from 1 μm to 5 μm from the outermost surface. It has a layer containing the following wax components, and the amount of wax relative to the amount of resin in the outermost surface layer containing wax and the amount of wax relative to the amount of resin in the entire resin coating layer are both in the range of 0.05 PHR to 5 PHR. The amount of titanium oxide with respect to the resin amount of the entire resin coating layer is in the range of 5 PHR to 30 PHR, and at least at a depth of 1 μm from the outermost surface, the amount of titanium oxide is in the range of 2 PHR or less, The difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the plate is in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. Of claims 1 to 3, characterized in that the resin coating the metal plate according to any one.
  5.  成形加工後に容器の外面側に位置する樹脂被膜層が最表面層、少なくとも1層の中間層、及び最下層からなる3層以上の構造を有し、各樹脂被膜層がいずれもエチレンテレフタレート単位97mol%以上の樹脂を主成分とし、最表面及び最下面からそれぞれ1μm以上5μm以下のワックス成分を含有する層を有し、ワックスを含有している層での樹脂量に対するワックス量及び樹脂被膜層全体の樹脂量に対するワックス量が共に0.05PHR以上5PHR以下の範囲内にあり、金属板に被覆された後の樹脂被膜層の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にあることを特徴とする請求項1又は3に記載の樹脂被膜金属板。 The resin coating layer located on the outer surface side of the container after molding has a structure of three or more layers consisting of an outermost surface layer, at least one intermediate layer, and the lowermost layer, and each resin coating layer is 97 mol of ethylene terephthalate unit. % Of the resin as a main component and a layer containing a wax component of 1 μm or more and 5 μm or less from the outermost surface and the lowermost surface, respectively, and the amount of wax relative to the amount of resin in the layer containing wax and the entire resin coating layer The amount of wax relative to the amount of resin is in the range of 0.05 PHR to 5 PHR, and the difference between the heat of crystallization and the heat of fusion of the resin coating layer after being coated on the metal plate is 1J in terms of unit weight. The resin-coated metal plate according to claim 1 or 3, wherein the resin-coated metal plate is in a range of not less than / g and not more than 20 J / g.
  6.  前記樹脂被膜層全体の樹脂量に対する酸化チタン量が5PHR以上30PHR以下の範囲内にあり、且つ、少なくとも最表面から1μmまでと、最下面から1μmまでの範囲での酸化チタン量が2PHR以下の範囲内にあることを特徴とする請求項1~5のうち、いずれか1項に記載の樹脂被膜金属板。 The amount of titanium oxide with respect to the resin amount of the entire resin coating layer is in the range of 5 PHR to 30 PHR, and the amount of titanium oxide in the range of at least 1 μm from the outermost surface and 1 μm from the lowermost surface is 2 PHR or less. 6. The resin-coated metal plate according to claim 1, wherein the resin-coated metal plate is in the interior.
  7.  成形加工後に容器の内面側に位置する樹脂被膜層が、金属板に被覆された後の結晶化熱量と融解熱量との差が単位重量当たりに換算して1J/g以上20J/g以下の範囲内にある樹脂材料によって形成されていることを特徴とする請求項1~6のうち、いずれか1項に記載の樹脂被膜金属板。 The difference between the amount of heat of crystallization and the amount of heat of fusion after the resin coating layer located on the inner surface side of the container after molding is coated on the metal plate is in the range of 1 J / g or more and 20 J / g or less in terms of unit weight. The resin-coated metal plate according to any one of claims 1 to 6, wherein the resin-coated metal plate is formed of an internal resin material.
  8.  成形加工後に容器の内面側に位置する樹脂被膜層が、エチレンテレフタレート単位97mol%以上である樹脂材料によって形成されていることを特徴とする請求項1~7のうち、いずれか1項に記載の樹脂被膜金属板。 The resin coating layer located on the inner surface side of the container after the molding process is formed of a resin material having an ethylene terephthalate unit of 97 mol% or more, according to any one of claims 1 to 7. Resin coated metal plate.
  9.  成形加工後に容器の外面側に位置する樹脂被膜層の水との接触角が、成形加工後に82°以上100°以下の範囲内にあることを特徴とする請求項1~8のうち、いずれか1項に記載の樹脂被膜金属板。 9. The contact angle with water of the resin coating layer located on the outer surface side of the container after the molding process is in the range of 82 ° to 100 ° after the molding process. 2. The resin-coated metal plate according to item 1.
  10.  請求項1~9のうち、いずれか1項に記載の樹脂被膜金属板の製造方法であって、二軸延伸フィルムを、樹脂の融点以上に加熱した金属板の両面に熱融着させることを特徴とする樹脂被膜金属板の製造方法。 The method for producing a resin-coated metal plate according to any one of claims 1 to 9, wherein the biaxially stretched film is heat-sealed to both surfaces of the metal plate heated to the melting point of the resin or higher. A method for producing a resin-coated metal sheet.
  11.  請求項1~9のうち、いずれか1項に記載の樹脂被膜金属板を成形加工することによって形成された金属容器であって、金属容器の外面側に位置する樹脂被膜層の水との接触角が82°以上100°以下の範囲内にあることを特徴とする金属容器。 A metal container formed by molding the resin-coated metal plate according to any one of claims 1 to 9, wherein the resin film layer located on the outer surface side of the metal container is in contact with water. A metal container having an angle in the range of 82 ° to 100 °.
PCT/JP2015/085028 2015-02-27 2015-12-15 Resin-coated metal plate, method for producing resin-coated metal plate, and metal container WO2016136099A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534749A JPWO2016136099A1 (en) 2015-02-27 2015-12-15 Resin-coated metal plate, method for producing resin-coated metal plate, and metal container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015037571 2015-02-27
JP2015-037571 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136099A1 true WO2016136099A1 (en) 2016-09-01

Family

ID=56789204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085028 WO2016136099A1 (en) 2015-02-27 2015-12-15 Resin-coated metal plate, method for producing resin-coated metal plate, and metal container

Country Status (2)

Country Link
JP (1) JPWO2016136099A1 (en)
WO (1) WO2016136099A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072149B2 (en) * 2017-12-15 2021-07-27 Toyobo Co., Ltd. Biaxially drawn colored polyester film for laminating metal sheet
JPWO2021182256A1 (en) * 2020-03-11 2021-09-16

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220453A (en) * 1999-12-03 2001-08-14 Toray Ind Inc Biaxially oriented polyester film for molding processing
JP2002264258A (en) * 2001-03-14 2002-09-18 Nkk Corp Film-laminated metal sheet for container
JP2004168365A (en) * 2002-11-20 2004-06-17 Nippon Steel Corp Metal sheet for container and method for manufacturing the same
WO2013030972A1 (en) * 2011-08-31 2013-03-07 Jfeスチール株式会社 Resin coated metal sheet
JP2014008739A (en) * 2012-07-02 2014-01-20 Jfe Steel Corp Resin coating metal plate
JP2014144576A (en) * 2013-01-29 2014-08-14 Jfe Steel Corp Resin-coated metal sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220453A (en) * 1999-12-03 2001-08-14 Toray Ind Inc Biaxially oriented polyester film for molding processing
JP2002264258A (en) * 2001-03-14 2002-09-18 Nkk Corp Film-laminated metal sheet for container
JP2004168365A (en) * 2002-11-20 2004-06-17 Nippon Steel Corp Metal sheet for container and method for manufacturing the same
WO2013030972A1 (en) * 2011-08-31 2013-03-07 Jfeスチール株式会社 Resin coated metal sheet
JP2014008739A (en) * 2012-07-02 2014-01-20 Jfe Steel Corp Resin coating metal plate
JP2014144576A (en) * 2013-01-29 2014-08-14 Jfe Steel Corp Resin-coated metal sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072149B2 (en) * 2017-12-15 2021-07-27 Toyobo Co., Ltd. Biaxially drawn colored polyester film for laminating metal sheet
JPWO2021182256A1 (en) * 2020-03-11 2021-09-16
WO2021182256A1 (en) * 2020-03-11 2021-09-16 Jfeスチール株式会社 Resin-coated metal plate for containers
CN115210071A (en) * 2020-03-11 2022-10-18 杰富意钢铁株式会社 Resin-coated metal sheet for container
JP7226555B2 (en) 2020-03-11 2023-02-21 Jfeスチール株式会社 Resin-coated metal plates for containers

Also Published As

Publication number Publication date
JPWO2016136099A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5733405B2 (en) Resin coated metal plate
US8828512B2 (en) Laminated metal sheet for two-piece can body and two-piece laminated can body
JP5800112B1 (en) Laminated metal plate for containers, method for producing metal can, and method for evaluating formability of metal plate
JP6642762B2 (en) Resin-coated metal plate for containers
JP6380280B2 (en) Resin-coated metal plate for containers
JP6309741B2 (en) Resin-coated metal plate and seamless can
JP6753512B2 (en) Resin-coated metal plate for containers
JP6683260B2 (en) Resin-coated metal plate for containers
JP6019823B2 (en) Resin coated metal plate
JP5186772B2 (en) Two-piece can manufacturing method and two-piece laminated can
WO2016136099A1 (en) Resin-coated metal plate, method for producing resin-coated metal plate, and metal container
JP5786873B2 (en) Resin coated metal plate
JP7226555B2 (en) Resin-coated metal plates for containers
JP3807037B2 (en) Extrusion laminating method and can manufacturing laminate obtained by this method
JP4445787B2 (en) Polyester resin film coated metal plate and polyester resin film coated metal can
JP5867422B2 (en) Resin coated metal plate
WO2024053203A1 (en) Resin-coated metal plate for container, and method for manufacturing same
JP2001353811A (en) Resin-coated seamless can

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016534749

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883389

Country of ref document: EP

Kind code of ref document: A1