WO2016135965A1 - Beam dump device, laser device provided with same, and extreme ultraviolet light generation device - Google Patents

Beam dump device, laser device provided with same, and extreme ultraviolet light generation device Download PDF

Info

Publication number
WO2016135965A1
WO2016135965A1 PCT/JP2015/055930 JP2015055930W WO2016135965A1 WO 2016135965 A1 WO2016135965 A1 WO 2016135965A1 JP 2015055930 W JP2015055930 W JP 2015055930W WO 2016135965 A1 WO2016135965 A1 WO 2016135965A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
module
stage
beam dump
damper
Prior art date
Application number
PCT/JP2015/055930
Other languages
French (fr)
Japanese (ja)
Inventor
義明 黒澤
崇 菅沼
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2017501807A priority Critical patent/JP6587676B2/en
Priority to PCT/JP2015/055930 priority patent/WO2016135965A1/en
Publication of WO2016135965A1 publication Critical patent/WO2016135965A1/en
Priority to US15/642,745 priority patent/US10401615B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/023Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light comprising movable attenuating elements, e.g. neutral density filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present disclosure relates to a beam dump device, a laser device including the beam dump device, and an extreme ultraviolet (EUV) light generation device.
  • EUV extreme ultraviolet
  • the EUV light generation apparatus includes an LPP (Laser Produced Plasma) system using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge.
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • Three types of devices have been proposed: a device of the system and a device of SR (Synchrotron Radiation) method using orbital radiation.
  • a beam dump device includes an attenuator module, a beam dump module, the attenuator module, and a laser control unit that controls the beam dump module, and the attenuator module is configured with respect to an optical axis of laser light.
  • a first beam splitter disposed at a first angle with respect to the optical axis, a second beam splitter disposed at a second angle with the same absolute value as the first angle and an opposite sign with respect to the optical axis,
  • a first beam damper arranged to receive the laser beam reflected by one beam splitter; a second beam damper arranged to receive the laser beam reflected by the second beam splitter;
  • the second beam splitter is inserted into or retracted from the optical path of the laser beam.
  • the beam dump module includes a mirror disposed to be inclined with respect to an optical axis of laser light, and a third beam damper disposed so that the laser light reflected by the mirror is incident thereon, A second stage for inserting or retracting the mirror with respect to the optical path, and the laser control unit selects the first and second beam splitters with respect to the optical path by controlling the first stage.
  • the mirror may be selectively inserted into or retracted from the optical path by controlling or inserting the second stage.
  • a laser device may include a master oscillator that outputs laser light, an amplifier that amplifies the laser light, and the beam dump device that is disposed on an optical path of the laser light. .
  • An extreme ultraviolet light generation apparatus is an extreme ultraviolet light generation apparatus that generates extreme ultraviolet light by irradiating a target material supplied to a plasma generation region with laser light, the laser light being The laser device for outputting, a chamber in which the plasma generation region is set, a condensing optical system for condensing the laser light in the vicinity of the plasma generation region, and supplying the target material in the vicinity of the plasma generation region A target supply device that collects the extreme ultraviolet light emitted from the plasma generated from the target material by being irradiated with the laser light.
  • FIG. 1 is a diagram schematically showing a configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of an EUV light generation apparatus according to a comparative example.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration example of a laser apparatus including the beam dump device according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating a schematic configuration example of the attenuator module according to the first embodiment.
  • FIG. 5 is another schematic diagram illustrating a schematic configuration example of the attenuator module according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration example of the beam dump module according to the first embodiment.
  • FIG. 7 is another schematic diagram illustrating a schematic configuration example of the beam dump module according to the first embodiment.
  • FIG. 8 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment.
  • FIG. 9 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment.
  • FIG. 10 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment.
  • FIG. 11 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment.
  • FIG. 12 is a schematic diagram illustrating a schematic configuration example when the number of stages of the attenuator module according to the first embodiment is four.
  • FIG. 13 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the second embodiment.
  • FIG. 14 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the second embodiment.
  • FIG. 15 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the second embodiment.
  • FIG. 16 is a schematic diagram illustrating a schematic configuration example of an attenuator module according to the third embodiment.
  • FIG. 17 is another schematic diagram illustrating a schematic configuration example of the attenuator module according to the third embodiment.
  • FIG. 18 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the third embodiment.
  • FIG. 19 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the third embodiment.
  • FIG. 20 is a schematic diagram illustrating a schematic configuration example of the laser apparatus according to the fourth embodiment.
  • FIG. 20 is a schematic diagram illustrating a schematic configuration example of the laser apparatus according to the fourth embodiment.
  • FIG. 21 is a schematic diagram illustrating a schematic configuration example of the beam damper device according to the fifth embodiment.
  • FIG. 22 is a schematic diagram illustrating a schematic configuration example of a frame according to the fifth embodiment.
  • FIG. 23 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the first modification of the fifth embodiment.
  • FIG. 24 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the second modification of the fifth embodiment.
  • FIG. 25 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the sixth embodiment.
  • FIG. 26 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to a modification of the sixth embodiment.
  • FIG. 27 is a diagram illustrating an example of a cross-sectional profile image according to the sixth embodiment.
  • Embodiment 1 5.1 Schematic Configuration of Beam Dump Device 5.2 Configuration of Attenuator Module 5.3 Operation of Attenuator Module 5.4 Configuration of Beam Dump Module 5.5 Operation of Beam Dump Module 5.6 Detailed Configuration Example of Beam Dump Device 5 5.7 Operation of the beam dump device: When the laser beam is cut off 5.8 Operation of the beam dump device: During laser beam output 5.9 Operation of the beam dump device: During laser beam path adjustment 5.10 Operation of the beam dump device: Laser beam output 5.11 Effect 5.12 Modification of Embodiment 1 5.12.1 Other Configuration of Beam Dump Device 5.12.2 Other Configuration of Beam Dump Device: Operation Embodiment 2 6.1 Configuration 6.2 Operation Embodiment 3 7.1 Configuration
  • Embodiment 4 8.1 Configuration 8.2 Operation 8.3 Effect 9. Embodiment 5 9.1 Configuration 9.2 Operation 9.3 Effect 9.4 Modification 1 of Embodiment 5 9.4.1 Configuration 9.4.2 Effects 9.5 Modification 2 of Embodiment 5 9.5.1 Configuration 9.5.2 Effects 10.
  • Embodiment 6 10.1 Configuration 10.2 Operation 10.3 Effect 10.4 Modification of Embodiment 6 10.4.1 Configuration 10.4.2 Operation 10.4.3 Effect
  • Outline Embodiments of the present disclosure may relate to a beam dump device used in an EUV light generation device, a laser device including the beam dump device, and an EUV light generation device.
  • a “droplet” may be a melted droplet of target material.
  • the shape may be substantially spherical.
  • the “plasma generation region” may be a three-dimensional space preset as a space where plasma is generated.
  • the “upstream” of the laser beam may be the target position in the traveling path of the laser beam or the side closer to the light source. Further, the “downstream” of the laser beam may be a side farther from the light source than the target position in the traveling path of the laser beam.
  • FIG. 1 schematically shows a configuration of an exemplary LPP EUV light generation system.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26.
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example.
  • the material of the target substance supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed.
  • the EUV collector mirror 23 is preferably arranged such that, for example, the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located at the intermediate focal point (IF) 292.
  • a through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
  • the EUV light generation apparatus 1 may include an EUV light generation control apparatus 5, a target sensor 4, and the like.
  • the target sensor 4 may have an imaging function and may be configured to detect the presence, trajectory, position, speed, and the like of the target 27.
  • the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other.
  • a wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser beam traveling direction control unit 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enters the chamber 2. May be.
  • the pulse laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
  • the target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulsed laser light is turned into plasma, and radiation light 251 can be emitted from the plasma.
  • the EUV light 252 included in the radiation light 251 may be selectively reflected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation control device 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4. Further, the EUV light generation control device 5 may be configured to control the timing at which the target 27 is output, the output direction of the target 27, and the like. Further, the EUV light generation control device 5 may be configured to control, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser light 32, the condensing position of the pulse laser light 33, and the like.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of an EUV light generation apparatus according to a comparative example.
  • the EUV light generation apparatus illustrated in FIG. 2 includes a chamber 2, a laser apparatus 3, a laser light traveling direction control unit 34, and an EUV light generation control apparatus 5 in the same manner as the EUV light generation apparatus 1 illustrated in FIG. May be included.
  • the laser device 3 may include a master oscillator MO, one or more amplifiers PA1 to PA3, a laser control unit 41, and a beam dump device 1000.
  • the amplifiers PA1 to PA3 may be arranged on the optical path of the laser beam 31 output from the master oscillator MO.
  • the master oscillator MO and the amplifiers PA1 to PA3 may be connected to the laser control unit 41.
  • the laser control unit 41 may be connected to the EUV light generation control device 5.
  • the beam dump device 1000 may be disposed so as to be movable between a blocking position where the laser beam 31 is blocked and a retracted position where the laser beam 31 is not blocked.
  • the beam dump device 1000 may be connected to the cooling device 190.
  • the cooling device 190 may lower the temperature of the cooling medium.
  • the cooled cooling medium may circulate between the beam dump device 1000 and the cooling device 190.
  • the chamber 2 may include a target supply unit 26, a target sensor 4, a window 21, a laser focusing optical system 50, a plate 54, an EUV focusing mirror 23, and a target recovery unit 28.
  • the laser beam 32 output from the laser beam traveling direction control unit 34 may be input to the laser focusing optical system 50 via the window 21.
  • the laser focusing optical system 50 may be configured and arranged to focus the laser beam 33 on the plasma generation region 25.
  • the laser focusing optical system 50 may include a laser beam focusing mirror 22.
  • the laser beam condensing mirror 22 may be an off-axis parabolic mirror.
  • the laser focusing optical system 50 may further include a convex mirror 51 facing the laser beam focusing mirror 22.
  • the convex mirror 51 may be an elliptical mirror.
  • the laser focusing optical system 50 may be fixed to the moving plate 52.
  • a laser beam manipulator 53 may be connected to the moving plate 52.
  • the laser beam manipulator 53 can move the moving plate 52 in the X-axis, Y-axis, and Z-axis directions so that the condensing position of the laser beam 33 can be moved to the position designated by the EUV light generation controller 5. Good.
  • the damper mirror 57 may be disposed on the laser light path downstream of the plasma generation region 25.
  • the damper mirror 57 may be configured to reflect the laser beam 33 that has passed through the plasma generation region 25 toward the beam dump device 5000.
  • the damper mirror 57 may collimate the incident laser beam 33.
  • the damper mirror 57 may be an off-axis parabolic mirror.
  • the damper mirror 57 may include a heater that heats the reflecting surface to the melting point of the target material.
  • the beam dump device 5000 may be disposed at a position where the laser beam 60 reflected by the damper mirror 57 is incident.
  • the laser beam 60 may be incident on the beam dump device 5000 through a damper window 58 disposed on the chamber wall.
  • the beam dump device 5000 may be connected to the cooling device 590.
  • the cooling device 590 may have the same configuration as the cooling device 190. Further, instead of arranging the cooling device 590, the cooling device 190 may be shared by the beam dump device 5000 and the beam dump device 1000.
  • the EUV light generation control device 5 may cause the target supply unit 26 to output the target 27 in accordance with an EUV light output command from the exposure device 6. At this time, the beam dump device 1000 may be retracted to the retracted position.
  • the target sensor 4 may detect the target 27 and output the detection signal to the EUV light generation controller 5.
  • the target detection signal may indicate the timing at which the target 27 has passed a predetermined position.
  • the EUV light generation controller 5 may output a light emission trigger delayed by a predetermined delay time with respect to the target detection signal to the laser controller 41 of the laser device 3.
  • the laser control unit 41 may output a laser output signal to the master oscillator MO when a light emission trigger is input. At this time, the laser control unit 41 may stand by in a state where the amplifiers PA1 to PA3 can be amplified.
  • the master oscillator MO may output the laser beam 31 in synchronization with the laser output signal.
  • the output laser light 31 may be amplified by the amplifiers PA1 to PA3, and then may pass through the laser light traveling direction control unit 34 and the window 21 and enter the chamber 2.
  • the power of the laser beam 31 output from the laser device 3 may be several kW (kilowatt) to several tens kW.
  • the laser beam 32 incident on the chamber 2 may be collected by the laser focusing optical system 50.
  • the focused laser beam 33 may be applied to the target 27 that has reached the plasma generation region 25.
  • EUV light 251 may be emitted from the plasma generated by irradiating the target 27 with the laser light 33.
  • the EUV light generation control device 5 may adjust the irradiation position of the laser light 33 by controlling the laser light manipulator 53. Further, the EUV light generation controller 5 may change the delay time from the target detection signal to the light emission trigger.
  • the irradiation diameter of the laser beam 33 on the target 27 may be larger than the diameter of the target 27. In that case, a part of the laser beam 33 may be incident on the damper mirror 57 without being irradiated on the target 27.
  • the laser beam 60 reflected by the damper mirror 57 may be absorbed by the beam dump device 5000 via the damper window 58.
  • the absorbed laser light 60 may be converted into heat.
  • the heat generated thereby may be discharged to the outside by the cooling device 590.
  • the target 27 is not irradiated with the laser beam 33.
  • the supply of the target 27 is stopped while the output of the laser beam 31 is continued, or the laser to the target 27 is intentionally changed by changing the delay time.
  • the laser beam 33 can enter the damper mirror 57 while maintaining the power without being irradiated to the target 27.
  • the beam dump apparatus 1000 may be positioned at the blocking position.
  • the power of the laser beam 31 output from the laser device 3 may be reduced to about several W for safety.
  • the laser control unit 41 may control the master oscillator MO and the amplifiers PA1 to PA3 so that the power of the laser beam 31 output from the laser device 3 is about several W.
  • adjustment of the laser beam traveling direction control unit 34 and the laser focusing optical system 50 is referred to as laser beam path adjustment.
  • the heat load on the optical components in the laser device 3 is changed to pulse energy. Can vary depending on. That is, the characteristic change of the optical component due to heat can be different between the laser light path adjustment and the EUV light output. Therefore, the beam divergence and the cross-sectional intensity distribution of the laser light 31 may be different between the laser light path adjustment and the EUV light output. It can be estimated that this is because the thermal lens effect of the optical component depends on the thermal load.
  • the target may not be irradiated with the laser beam 33 at the time of EUV light output. Therefore, a configuration capable of adjusting the laser beam path using the laser beam 31 having the same beam divergence and cross-sectional intensity distribution as that during EUV light output is required.
  • the output of the EUV light 252 In order to improve the throughput of the exposure apparatus 6, it is required to increase the output of the EUV light 252. In order to increase the output of the EUV light 252, it is necessary to increase the output of the laser beam 31. When the output of the laser beam 31 is increased, the capacity expansion of the beam dump device 1000 that receives the laser beam 31 and the beam dump device 5000 that receives the laser beam 33 may be required.
  • the high-capacity beam dump device 1000/5000 may be exclusively developed and produced, but this may lead to an increase in device cost.
  • the beam dump device 5000 can be attached to the outer wall of the chamber 2.
  • many devices such as various measuring devices can be attached to the outer wall of the chamber 2.
  • the area of the outer wall of the chamber 2 is finite. Therefore, when the beam dump device 5000 is increased in size with an increase in capacity, it may be difficult to attach a device including the beam dump device 5000 to the outer wall of the chamber 2.
  • a beam dump device that makes it possible to perform laser optical path adjustment using a laser beam having a beam divergence and cross-sectional intensity distribution equivalent to that at the time of EUV light output, a laser device including the beam dump device, and an EUV 1 illustrates a light generation device. Further, in the following embodiment, a beam dump device that can be easily attached to the outer wall of the chamber 2 even when the capacity is increased will be exemplified.
  • Embodiment 1 First, a beam dump device according to a first embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration example of a laser device including the beam dump device according to the first embodiment.
  • the laser device 3 may include a beam dump device 100 and a cooling device 190 in addition to the laser control unit 41, the master oscillator MO, and the amplifiers PA1 to PA3.
  • the beam dump device 100 may include one or more attenuator modules 110 and 120 and a beam dump module 130.
  • the attenuator modules 110 and 120 and the beam dump module 130 may be connected to the cooling device 190 so that a cooling medium such as water supplied from the cooling device 190 can circulate.
  • the laser control unit 41 may be connected to the attenuator modules 110 and 120 and the beam dump module 130, respectively. Specifically, the laser control unit 41 may be connected to the uniaxial stage of each module. The single axis stage will be described later.
  • FIG. 4 and FIG. 5 are schematic views showing a schematic configuration example of each attenuator module.
  • FIG. 4 shows a case where the moving plate of each attenuator module is in the low output arrangement (first position)
  • FIG. 5 shows a case where the moving plate is in the high output arrangement (second position).
  • the attenuator module 110/120 includes an even number of beam splitters 102A and 102B, a plurality of beam dampers 104A and 104B, a moving plate 105A, a base plate 107A, and a single-axis stage 106A. May be.
  • the even-numbered beam splitters 102A and 102B may be arranged so that the incident angles of the laser light 30 are opposite to each other. For example, when the incident angle ⁇ 1 of the beam splitter 102A is 45 °, the beam splitter 102B may be arranged so that the incident angle ⁇ 2 is ⁇ 45 °.
  • Each of the beam splitters 102A and 102B may be made of a substrate such as zinc selenide (ZnSe) or diamond.
  • the surface of the substrate on which the laser beam 30 is incident may be provided with a coating having an appropriate reflectance.
  • an antireflection film may be coated on the surface from which the laser beam 30 is emitted.
  • the coating may be a multilayer film.
  • the substrate may be a parallel plane substrate or a wedge substrate.
  • the beam splitters 102A and 102B may be held by splitter holders 103A and 103B, respectively. Each splitter holder 103A and 103B may be fixed to each of the beam splitters 102A and 102B with respect to the moving plate 105A so that the inclination with respect to the traveling direction of the laser beam 30 is maintained. Inside each of the splitter holders 103A and 103B, flow paths 103a and 103b through which the cooling medium supplied from the cooling device 190 passes may be provided inside each of the splitter holders 103A and 103B.
  • the beam dampers 104A and 104B may be arranged at positions where the reflected lights 30a and 30b reflected by the beam splitters 102A and 102B respectively enter. Commercially available beam dampers may be used for the beam dampers 104A and 104B.
  • a cone portion 104c and a pleated portion 104b may be provided in each of the beam dampers 104A and 104B.
  • the cone part 104c may be a conical part.
  • the cone portion 104c may have a shape that absorbs part of the incident laser light 30a / 30b and diffuses part of the laser light 30a / 30b around.
  • the pleated portion 104b may have a shape that prevents the laser light 30a / 30b diffused by the cone portion 104c from diffusing out of the beam damper 104A / 104b.
  • the pleated portion 104b may absorb the laser light 30a / 30b diffused by the cone portion 104c.
  • Each of the beam dampers 104A and 104B may be provided with a flow path 104a through which the cooling medium supplied from the cooling device 190 passes.
  • the channel 104a may be provided close to the surface of the cone portion 104c and the pleated portion 104b.
  • the channel 104a may communicate with the channel 103a / 103b inside the splitter holder 103A / 103B.
  • the single axis stage 106A may be fixed to the base plate 107A.
  • the single-axis stage 106A may be capable of moving the moving plate 105A with respect to the base plate 107A.
  • the single-axis stage 106A may be configured by combining a ball screw and a motor, or may be configured by an extendable air cylinder or the like.
  • Each of the beam splitters 102A and 102B and each of the beam dampers 104A and 104B may be cooled by circulating the cooling medium supplied from the cooling device 190.
  • the single-axis stage 106A may move the moving plate 105A in accordance with a signal from the laser control unit 41.
  • the position of the moving plate 105A may include the low output arrangement (first position) shown in FIG. 4 and the high output arrangement (second position) shown in FIG.
  • beam splitters 102A and 102B may be arranged on the optical path of the laser light 30.
  • Each of the beam splitters 102A and 102B may transmit a part of the laser light 30 and reflect a part thereof as reflected light 30a and 30b.
  • the laser beam 30 with reduced energy may be output from each attenuator module 110 or 120.
  • the reflected lights 30a and 30b may be incident on the beam dampers 104A and 104B.
  • Each of the beam dampers 104A and 104B may convert the incident reflected light 30a and 30b into heat.
  • the heat generated in each of the beam dampers 104A and 104B may be exhausted by the cooling device 190 using a cooling medium.
  • the beam splitters 102 ⁇ / b> A and 102 ⁇ / b> B may be retracted from the optical path of the laser light 30.
  • the laser beam 30 may be output from each attenuator module 110 or 120 without energy reduction.
  • FIGS. 6 and 7 are schematic diagrams illustrating an example of a schematic configuration of the beam dump module.
  • FIG. 6 shows a case where the moving plate of the beam dump module is in the laser light blocking arrangement (third position)
  • FIG. 7 shows a case where the moving plate is in the laser light output arrangement (fourth position).
  • the beam dump module 130 may include a high reflection mirror 102C, a beam damper 104C, a moving plate 105C, a base plate 107C, and a uniaxial stage 106C.
  • the high reflection mirror 102C may be a copper substrate coated with gold or a silicon substrate coated with a highly reflective multilayer film.
  • the high reflection mirror 102C may be held by a mirror holder 103C.
  • the mirror holder 103C may have the same configuration as the splitter holders 103A and 103B.
  • the mirror holder 103C may hold the high reflection mirror 102C so that the reflected light 30c enters the beam damper 104C.
  • the mirror holder 103C may be fixed to the moving plate 105C.
  • beam dump module 130 may be the same as those of the attenuator modules 110 and 120.
  • the single-axis stage 106 ⁇ / b> C may move the moving plate 105 ⁇ / b> C according to a signal from the laser control unit.
  • the position of the moving plate 105C may include the laser light blocking arrangement (third position) shown in FIG. 6 and the laser light output arrangement (fourth position) shown in FIG.
  • the high reflection mirror 102 ⁇ / b> C may be arranged on the optical path of the laser beam 30.
  • the reflected light 30c from the high reflection mirror 102C may be incident on the beam damper 104C.
  • the laser beam 30 may be blocked and the laser beam 31 may not be output from the beam dump module 130.
  • the high reflection mirror 102 ⁇ / b> C may be retracted from the optical path of the laser light 30.
  • the laser beam 30 may be output from the beam dump module 130 as the laser beam 31 without being blocked.
  • FIGS. 8 to 11 are schematic views showing a schematic configuration example of the beam dump device 100 shown in FIG.
  • the beam dump device 100 may include attenuator modules 110 and 120 (see FIGS. 4 and 5) and a beam dump module 130 (see FIGS. 6 and 7).
  • the attenuator modules 110 and 120 may have the same configuration.
  • a commercial product having a capacity of 10 kW or 1 kW may be used for each of the beam dampers 104A to 104C.
  • FIG. 8 is a schematic diagram illustrating an arrangement example in each module when the laser beam is blocked.
  • the laser control unit 41 may receive a laser light cutoff signal from the EUV light generation control device 5, for example.
  • the laser light cutoff signal may be a signal instructing to stop the output of the laser light 31 from the laser device 3.
  • the laser control unit 41 may set the attenuator modules 110 and 120 to a low output arrangement and the beam dump module 130 to a laser light cutoff arrangement as shown in FIG. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
  • the laser beam 30 can be incident on the beam splitters 102A and 102B of the attenuator modules 110 and 120 and the high reflection mirror 102C. At that time, the laser beam 30 can be attenuated by the beam splitters 102A and 102B of the attenuator modules 110 and 120, respectively. Thereafter, the laser beam 30 output from the attenuator module 120 can be diverted from the optical path for output by the high reflection mirror 120C.
  • Reflected light 30a to 30c by the beam splitters 102A and 102B and the high reflection mirror 102C can enter the beam dampers 104A to 104C, respectively.
  • each of the beam dampers 104A to 104C can be as follows.
  • the beam dump device 100 can block the 20 kW laser beam.
  • FIG. 9 is a schematic diagram showing an arrangement example in each module when laser light is output (for example, during EUV light output).
  • the laser control unit 41 may receive a laser light output signal from the EUV light generation control device 5, for example.
  • the laser beam output signal may be a signal that instructs the output of the laser beam 31 from the laser device 3.
  • the laser controller 41 may set the attenuator modules 110 and 120 to a high output arrangement and the beam dump module 130 to a laser light output arrangement as shown in FIG. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
  • the laser beam 30 may be output from the beam dump device 100 without entering the beam splitters 102A and 102B and the high reflection mirror 104C.
  • the 20 kW laser beam 30 can be directly output from the beam dump device 100 as the 20 kW laser beam 31.
  • FIG. 10 is a schematic diagram illustrating an arrangement example in each module during laser optical path adjustment.
  • the laser controller 41 may receive a laser beam path adjustment signal from the EUV light generation controller 5, for example.
  • the laser optical path adjustment signal may be a signal for instructing or notifying execution of laser optical path adjustment.
  • the laser control unit 41 may set the attenuator modules 110 and 120 to a low output arrangement and the beam dump module 130 to a laser light output arrangement. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
  • the laser beam 30 can be attenuated by the beam splitters 102A and 102B of the attenuator modules 110 and 120.
  • the dimmed laser beam 30 can be incident on a subsequent beam delivery system 34 as a laser beam 31.
  • the power of the laser beam 31 output from the beam dump device 100 can be 6.7 W.
  • the 20 kW laser beam 30 can be output from the beam dump device 100 as the 6.7 W laser beam 31.
  • FIG. 11 is a schematic diagram illustrating an arrangement example in each module when the power of the laser light is adjusted using the beam dump device.
  • the laser control unit 41 may receive a laser light output adjustment signal from the EUV light generation control device 5, for example.
  • the laser light output adjustment signal may be a signal that instructs adjustment (reduction) of the power of the laser light 31 output from the laser device 3.
  • the adjusted power may be a predetermined power instructed by the EUV light generation controller 5, for example.
  • the predetermined power instructed by the EUV light generation controller 5 may be, for example, 6.7 kW.
  • the laser controller 41 may set the attenuator module 110 to a low output arrangement, the attenuator module 120 to a high output arrangement, and the beam dump module 130 to a laser light output arrangement. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
  • the laser beam 30 can be attenuated by the beam splitters 102A and 102B of the attenuator module 110.
  • the dimmed laser beam 30 can be incident on a subsequent beam delivery system 34 as a laser beam 31.
  • the 20 kW laser beam 30 can be output from the beam dump device 100 as the 6.7 kW laser beam 31.
  • the laser light 30 is dimmed by the plurality of beam splitters 102A and 102B of the attenuator modules 110 and 120, and a plurality of unnecessary reflected lights generated due to the dimming are generated. Can be distributed to the beam dampers. Therefore, the capacity of each of the beam dampers 104A to 104C that receives the reflected lights 30a to 30c by the respective beam splitters 102A and 102B and the high reflection mirror 102C can be reduced. Accordingly, for example, commercially available beam dampers can be used as the beam dampers 104A to 104C.
  • the even-numbered beam splitters 102A and 102B may be arranged such that the incident angles of the laser light 30 are opposite to each other. In that case, it is possible to suppress a deviation between the optical axis of the laser light 30 incident on the attenuator modules 110 and 120 and the optical axis of the laser light 30 emitted from the attenuator modules 110 and 120. As a result, attenuator modules can be easily arranged in multiple stages, so that an arbitrary dimming rate can be easily realized.
  • the individual attenuator modules 110 and 120 can select a high output arrangement (no attenuation) and a low output arrangement (with attenuation). Therefore, the power of the laser beam 31 output from the laser device 3 can be adjusted to a desired power by controlling the arrangement state of the attenuator modules 110 and 120. For example, the laser light 30 of several tens kW output from the amplifier PA3 in the final stage can be attenuated to the laser light 31 of several W and output.
  • the output of the master oscillator MO and the amplifiers PA1 to PA3 can be used as the output when the EUV light is output even when the laser light path is adjusted. Therefore, the thermal load of the optical elements from the master oscillator MO to the amplifier PA3 in the laser device 3 can be the same as that at the time of EUV light output. As a result, the beam divergence and cross-sectional intensity distribution of the laser light 31 at the time of laser light path adjustment can be substantially the same as those at the time of EUV light output. Thereby, since the optical path of the laser beam 32 and the like can be adjusted appropriately when EUV light is output, the irradiation of the laser beam 33 onto the target 27 can be stabilized.
  • the energy of the reflected light 30c incident on the beam damper 104C of the beam dump module 130 can be reduced.
  • a beam damper having a relatively small capacity can be used for the beam damper 104C.
  • a commercially available beam damper can be used.
  • each attenuator module 110 and 120 can output 6.7 kW of laser light 30 to 20 kW of laser light 30, but the present invention is not limited to this example. That is, the reflectance of each beam splitter 102A and 102B of each attenuator module 110 and 120 can be selected as appropriate. Further, the number of stages of the attenuator modules 110 and 120 is not limited to two in the above example. That is, three or more attenuator modules may be mounted.
  • the beam dump device may be configured to be able to output laser light 31 with several stages of energy by adjusting the number of stages of the attenuator module and the reflectivity of each of the beam splitters 102A and 102B.
  • FIG. 12 is a schematic diagram illustrating a schematic configuration example when the number of stages of the attenuator module is four.
  • the reflectivity of each beam splitter 102A and 102B in each attenuator module 110, 120, 140 and 150 may be determined according to a plurality of power values required for the laser light 31. .
  • any of the beam dampers 104A to 104C in each module can be replaced with a beam profiler equipped with a power meter or a condensing optical system.
  • the beam damper 104B of the attenuator module 110 may be replaced with a power meter 104D.
  • the beam damper 104B of the attenuator module 150 may be replaced with the beam profiler 104E.
  • the power meter 104D and the beam profiler 104E may be connected to the laser control unit 41 and the like, respectively.
  • the laser control unit 41 may control the uniaxial stage 106A of each attenuator module 110, 120, 140, and 150. Thereby, laser beams 31 with various powers may be output from the beam dump device 100.
  • output signals of the power meter 104D and the beam profiler 104E may be input to the laser control unit 41.
  • the laser control unit 41 may present the power value of the laser beam 31 to the operator when adjusting the laser beam path or blocking the laser beam.
  • the presented power value may be calculated by the laser control unit 41 based on the output signal from the power meter 104D.
  • the laser control unit 41 may calculate the power value using the dimming rates of the beam splitters 102A and 102B.
  • the laser control unit 41 may present the profile of the laser beam 31 to the operator when adjusting the laser beam path or blocking the laser beam.
  • the presented profile may be calculated by the laser control unit 41 based on the output signal of the beam profiler 104E.
  • the operator may adjust the laser beam path of the laser beam 31 based on the presented power value and profile.
  • the laser control unit 41 may include a display for presenting power values and profiles.
  • the laser apparatus 3 may be provided with a mechanism for adjusting the position, posture, and the like of optical elements arranged on the optical path of the laser light 30 from the master oscillator MO to the amplifier PA3.
  • the laser control unit 41 may control the position, posture, and the like of the optical element based on output signals from the power meter 104D and the beam profiler 104E when adjusting the laser beam path or blocking the laser beam.
  • Embodiment 2 Next, a beam dump device according to a second embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings.
  • symbol is attached
  • FIGS. 13 to 15 are schematic diagrams illustrating a schematic configuration example of the beam dump device according to the second embodiment.
  • FIG. 13 is a top view of the beam dump device 200.
  • 14 and 15 are side views of the beam dump device 200.
  • FIG. FIG. 13 and FIG. 14 are schematic views showing an arrangement example in each module when the laser beam 30 is blocked.
  • FIG. 15 is a schematic diagram illustrating an arrangement example in each module when laser light is output (for example, when EUV light is output).
  • the beam dump device 200 may include one or more attenuator modules 210 and 220 and a beam dump module 230.
  • the single-axis stages 206A and 206C of each module may be fixed to the base plate 107A or 107C, respectively.
  • Each uniaxial stage 206A and 206C may move the moving plate 105A or 105C in a direction different from that of the first embodiment with respect to the base plate 107A or 107C.
  • the uniaxial stages 206A and 206C may move the moving plates 105A and 105C in the moving direction orthogonal to the optical element mounting surfaces of the base plates 107A and 107C, respectively.
  • This moving direction may be the direction of gravity.
  • the moving plates 105A and 105C may be guided by linear guides 206a and 206c parallel to the moving direction of the uniaxial stages 206A and 206C.
  • the laser control unit 41 sets the moving plate 105A of each attenuator module 210 and 220 to a low output arrangement (first position) as shown in FIGS.
  • the moving plate 105B may be arranged so as to block the laser beam (third position).
  • the laser control unit 41 places the moving plate 105A of each attenuator module 210 and 220 in a high output arrangement (second position) and moves the moving plate 105C of the beam dump module 230 as shown in FIG.
  • a laser light output arrangement (fourth position) may be used.
  • the linear guides 206a and 206c of each module may regulate the movement of the moving plates 105A and 105C so that the moving plates 105A and 105C are translated in the moving direction. Thereby, the angles of the optical element mounting surfaces of the moving plates 105A and 105C with respect to the optical element mounting surfaces of the base plates 107A and 107C may be maintained before and after the movement of the moving plates 105A and 105C.
  • Embodiment 3 a beam dump device according to a third embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings.
  • symbol is attached
  • FIGS. 16 and 17 are schematic diagrams illustrating a schematic configuration example of an attenuator module according to the third embodiment. At least one of the plurality of attenuator modules mounted on the beam dump device 100 may be replaced with the attenuator module 310 in FIG. The attenuator module 310 may be able to continuously change the power of the laser beam 30 to be output.
  • the attenuator module 310 includes two inner rotation stages 311A and 311B and two outer rotation stages 312A and 312B in addition to the beam splitters 102A and 102B and the beam dampers 104A and 104B. May be.
  • the inner rotary stages 311A and 311B and the outer rotary stages 312A and 312B may be mounted on the moving plate 105A.
  • the moving plate 105A may be movable between the low output arrangement (first position) and the high output arrangement (second position) by the single-axis stage 106A similar to the first embodiment. However, the movement of the moving plate 105A may be guided by a linear guide 306a parallel to the moving direction of the uniaxial stage 106A.
  • the inner rotation stage 311A may be rotatable with an axis passing through the center as a rotation axis.
  • the beam splitter 102A may be fixed to the inner rotary stage 311A using the splitter holder 103A. At this time, the beam splitter 102A may be fixed to the inner rotary stage 311A so that the rotation axis of the inner rotary stage 311A is positioned on the surface on which the laser beam 30 is incident.
  • Such a configuration may be the same for the beam splitter 102B and the inner rotary stage 311B.
  • the outer rotation stage 312A may be rotatable about the same axis as the inner rotation stage 311A.
  • the outer rotary stage 312 may have a disk shape or a donut shape.
  • the inner rotary stage 311A may be rotatably accommodated in the central circular hole of the outer rotary stage 312.
  • the beam damper 104A may be fixed at a position outside the inner rotary stage 311A in the outer rotary stage 312A. Such a configuration may be the same for the beam damper 104B and the outer rotary stage 312B.
  • the inner rotary stages 311A and 311B and the outer rotary stages 312A and 312B may be connected to the laser control unit 41, respectively.
  • the outer rotary stage 312A may be configured to rotate at a rotation angle 2 ⁇ that is twice the rotation angle ⁇ of the inner rotation stage 311A. This may be realized by control by the laser control unit 41, or may be realized by a gear ratio between a gear that rotates the inner rotary stage 311A and a gear that rotates the outer rotary stage 312A. Such a configuration may be the same for the inner rotary stage 311B and the outer rotary stage 312B.
  • the inner rotary stage 311B may be configured to rotate in reverse to the rotation of the inner rotary stage 311A.
  • the inner rotary stage 311B may rotate by an angle ⁇ .
  • This may be realized by control by the laser control unit 41, or may be realized by a gear that rotates the inner rotary stage 311A and a gear that rotates the inner rotary stage 311B.
  • the laser control unit 41 may place the moving plate 105A of the attenuator module 310 in a low output arrangement (first position) as shown in FIG.
  • the laser control unit 41 may control the inner rotation stages 311A and 311B to change the incident angle of the laser light 30 to the beam splitters 102A and 102B.
  • the beam splitter 102A may rotate by the rotation angle ⁇
  • the beam splitter 102B may rotate by the rotation angle ⁇ .
  • the outer rotation stages 312A and 312B may rotate twice the rotation angles 2 ⁇ and ⁇ 2 ⁇ .
  • the arrangement of the beam dampers 104A and 104B may be changed so that the reflected lights 30a and 30b reflected by the beam splitters 102A and 102B are incident on the beam dampers 104A and 104B, respectively.
  • At least one of a plurality of attenuator modules (for example, the attenuator module 120) mounted on the beam dump device 100 may be replaced with the attenuator module 310 as shown in FIGS. Good.
  • the laser control unit 41 sets the moving plate 105A of each attenuator module 110 and 310 to a low output arrangement (first position) and moves the moving plate 105B of the beam dump module 130 as shown in FIG. May be a laser light blocking arrangement (third position).
  • the laser control unit 41 places the moving plate 105A of each attenuator module 110 and 310 in a high output arrangement (second position) and moves the moving plate 105C of the beam dump module 130 as shown in FIG.
  • a laser light output arrangement (fourth position) may be used.
  • the attenuator module 310 is placed in a low output arrangement, and the incident angles ⁇ and ⁇ of the beam splitters 102A and 102B with respect to the laser beam 30 are adjusted as shown in FIG. May be. Thereby, the power of the laser beam 30 output from the beam dump device 300 can be changed continuously and arbitrarily.
  • Embodiment 4 a beam dump device according to a fourth embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings.
  • symbol is attached
  • FIG. 20 is a schematic diagram illustrating a schematic configuration example of a laser apparatus according to the fourth embodiment.
  • the arrangement location of the attenuator module and the beam dump module exemplified in the above embodiment is not limited to the output stage of the laser device 3. That is, one or more attenuator modules 140 and / or beam dump modules 150 may be arranged on the optical path between the master oscillator MO and PA3.
  • an attenuator module 160 and a beam dump module 170 may be arranged between the master oscillator MO and the amplifier PA1.
  • the one or more attenuator modules to be arranged may be any of the attenuator modules 110/120, 210/220 and 310 described above.
  • the laser control unit 41 places the moving plate 105 ⁇ / b> A of the attenuator module 160 in a high output arrangement (second position), and moves the moving plate 105 ⁇ / b> C of the beam dump module 170.
  • a laser light output arrangement (fourth position) may be used.
  • the laser control unit 41 adjusts the rotation angle of each rotation plate while placing the moving plate 105A in a low output arrangement (first position), so that the laser device 3 May be adjusted.
  • the laser control unit 41 sets the moving plate 105A of the attenuator module 160 to the low output arrangement (first position) and sets the moving plate 105C of the beam dump module 170 to the laser beam blocking arrangement (third position). Also good.
  • the thermal load of the semiconductor laser may fluctuate if the output energy of the master oscillator MO is changed. Thereby, the oscillation wavelength of the master oscillator MO can be changed.
  • the master oscillator MO can always be oscillated with a constant energy, fluctuations in the oscillation wavelength of the master oscillator MO can be suppressed.
  • Embodiment 5 a beam dump device according to a fifth embodiment, and a chamber device and an EUV light generation device including the beam dump device will be described in detail with reference to the drawings.
  • a beam dump device attached to the chamber 2 of FIG. 2 is exemplified.
  • symbol is attached
  • FIG. 21 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to the fifth embodiment.
  • the beam dump device 500 may include one or more beam dump modules 510 to 530.
  • the beam dump device 500 may further include a termination module 540.
  • Each of the beam dump modules 510 to 530 may include a frame 501, a beam splitter 502, and a beam damper 104.
  • the frame 501 may be a cheese tubular member made of metal or the like.
  • the frame 501 may include a connection flange 501a at each of the three open ends.
  • the sizes of the connection flanges 501a at the three open ends may be the same or different. However, even when the sizes are different, each connection flange 501a is preferably the same size as any one of the connection flanges 501a in the other frame 501.
  • connection flange 501a may include a plurality of bolt holes.
  • the bolt hole diameter and the hole pitch may be common.
  • connection flange 501a may be a conflat flange. Con-flat flanges can be connected using metal packing. Therefore, airtightness in the beam dump device 500 can be ensured by using a conflat flange as the connection flange 501a. In that case, the chamber 2 may not include the damper window 58.
  • the three connection flanges 501a may each define an opening through which the laser beam 60 can enter and exit.
  • One of the three openings may be used as an entrance through which the laser beam 60 enters the beam dump module 510/520/530.
  • the other one may be used as an exit from which the laser beam 60 exits from the beam dump module 510/520/530.
  • the remaining one may be used as an attachment port to which the beam damper 104 is attached.
  • a splitter holder 503 that holds the beam splitter 502 may be provided inside the frame 501. Inside the splitter holder 503, a flow path through which the cooling medium flows may be provided.
  • the splitter holder 503 has a position and an angle at which the reflected light 60a of the laser beam 60 incident from the incident port proceeds to the attachment port or the emission port, and the laser beam 60 transmitted through the beam splitter 502 proceeds to the emission port or the attachment port.
  • the beam splitter 502 may be held.
  • FIG. 21 illustrates a configuration in which the reflected light 60a travels to the attachment opening, and the laser light 60 transmitted through the beam splitter 502 travels to the exit opening.
  • an optical substrate exhibiting a high transmittance at the wavelength of the laser beam output from the CO 2 laser may be used.
  • the surface of the optical substrate may be provided with a coating for adjusting the reflectance.
  • the beam splitter 502 may be an uncoated parallel plane substrate made of ZnSe. In that case, the reflectance when the laser beam output from the CO 2 laser is incident at an incident angle of 45 ° can be about 20%.
  • the beam damper 104 may be the same as the beam dampers 104A to 104C described above. Therefore, a commercially available beam damper may be used for the beam damper 104. In that case, a dedicated or appropriate adapter may be used to attach the beam damper 104 to the connection flange 501a. Further, the flow path in the beam damper 104 may be connected to the cooling device 590.
  • the termination module 540 may be the beam damper 104.
  • a dedicated or suitable adapter may be used to attach the end module 540 to the connection flange 501a.
  • a beam damper different from the beam damper 104 may be used as the termination module 540.
  • the termination module 540 may be a lid-like member that closes the exit of the frame 501 instead of the beam damper 104.
  • the reflectivity of the beam splitter 502 in the beam dump module 530 to which the termination module 540 is connected may be about 100%.
  • the beam splitter 502 in the frame 501 may be omitted.
  • the one or more beam damper modules 510 to 530 may be connected in a straight line.
  • the beam dump module 510 located at one end of them may be connected to the chamber 2.
  • the above-described termination module 540 may be connected to the beam dump module 530 located at the other end.
  • the beam dump modules 510 to 530 connected in a row may be arranged so that the connection flanges 501a used as attachment ports alternately face the opposite side.
  • the connection between the beam dump modules 510 and 520/520 and 530 and the connection between the beam dump module 530 and the termination module 540 may be fastening with bolts and nuts.
  • the specifications of the beam splitter 102 and the beam damper 104 of each of the beam dump modules 510 to 530 and the specifications of the beam damper 104 constituting the termination module 540 are used. May have the following specifications.
  • the energy of the laser beam 60 / 60a absorbed by each beam damper 104 can be estimated as follows.
  • -Beam damper 104 of the beam dump module 510 2.50 kW -Beam damper 104 of the beam dump module 520: 2.47 kW -Beam damper 104 of the beam dump module 530: 2.51 kW -Beam damper 104 of termination module 540: 2.51 kW
  • the four beam dampers 104 can absorb almost equal energy.
  • a beam damper having a common specification can be used for each beam damper 104 by appropriately selecting the reflectance of the beam splitter 102.
  • the reflectance of the beam splitter 102 may be higher as the beam splitter 102 located downstream in the traveling path of the laser beam 60.
  • the laser beam 60 reflected by the damper mirror 57 in the chamber 2 may enter the beam dump module 510 at the first stage of the beam dump device 500 via the damper window 58.
  • a part of the laser light 60 incident on the beam dump module 510 may be reflected as reflected light 60 a by the beam splitter 502.
  • the reflected light 60a may be incident on the beam damper 104 attached to the connection flange 501a of the attachment port.
  • a part of the reflected light 60a incident on the beam damper 104 may be absorbed by the cone part 104c (see FIG. 4 and the like), and the remaining part may be diffused and absorbed by the pleated part 104b.
  • the laser beam 60 attenuated when passing through the beam splitter 102 may enter the beam dump module 520 at the next stage through the exit port of the beam dump module 510.
  • the laser beam 60 may be attenuated by sequentially passing through the beam dump modules 510 to 530. Further, the laser beam 60 emitted from the exit of the beam dump module 530 at the final stage can enter the termination module 540 and be absorbed by the cone portion 104c and the pleated portion 104b.
  • the beam dump device 500 can be attached to the chamber 2 by securing an area equivalent to one beam dump module on the outer wall of the chamber 2. Also, a large capacity beam dump device 500 can be easily realized. That is, it is easy to add a beam dump module according to the energy of the laser beam 60.
  • a beam damper having a common specification can be used in a plurality of beam dump modules by appropriately selecting the reflectivity of the beam splitter in each beam dump module. This suggests that a commercially available beam damper can be used. As a result, the cost for developing and producing a large-capacity beam dump device 1000/5000 can be saved, so that an increase in device cost can be suppressed.
  • the overall dimensions of the beam dump device 500 can be reduced by arranging the mounting ports so as to alternately face the opposite side. Furthermore, with such an arrangement, the optical path shift of the laser beam 60 inside the beam dump device 500 can be suppressed, so that the addition of the beam dump module is facilitated.
  • the laser light 60 scattered by each part in the beam dump device 500 can be absorbed by the inner wall of the frame 501, external leakage can be suppressed.
  • each beam damper 104 and each beam splitter 102 are directly or indirectly cooled, damage can be suppressed over a long period of time.
  • FIG. 23 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to the first modification.
  • the beam dump device 500A may further include beam dump modules 550 and 560 in addition to the same configuration as the beam dump device 500. That is, the beam dump device 500A may have a configuration in which two beam dump modules 550 and 560 are added to the beam dump device 500.
  • the beam dampers 104 of the beam dump modules 510 to 530, 550, and 560 do not have to have a common specification. For example, the capacity of the beam damper 104 of the subsequent beam dump module may be increased. Therefore, assuming that the energy of the laser beam 60 incident on the beam dump device 500A is 20 kW, the specifications of the beam splitter 502 and the beam damper 104 of each of the beam dump modules 510 to 530, 550 and 560 and the specifications of the beam damper 104 constituting the termination module 540 are provided. May have the following specifications.
  • the energy of the laser beam 60 / 60a absorbed by each beam damper 104 can be estimated as follows.
  • the specifications of the beam damper 104 may be shared by the two beam damper modules 510 and 520 in the previous stage.
  • the specifications of the beam damper 104 may be shared by the four beam damper modules 530, 550, and 560 in the subsequent stage.
  • a commercially available beam damper can be used as the beam damper 104 having a capacity of 3 kW and a capacity of 5 kW. In this way, the beam damper 104 having a larger capacity may be used as the beam damper 104 located downstream in the traveling path of the laser light 60.
  • the capacity of the beam damper 104 positioned upstream in the traveling path of the laser light 60 may be smaller.
  • FIG. 24 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to the second modification.
  • the beam dump device 500B may include beam dump modules 510 to 530 and a termination module 540, like the beam dump device 500.
  • the beam dump modules 510 to 530 may be bent and arranged in an L shape.
  • connection flanges 501a of the beam dump modules 510 to 530 may all have the same size and the same specification (arrangement of bolt holes, diameter, etc.).
  • the plurality of beam dump modules can be connected in various arrangements, not limited to a linear arrangement. At that time, by making all the connection flanges 501a of the respective frames 501 common, the degree of freedom of arrangement of the beam dump modules can be further increased.
  • the beam dump device 500 may be required to be arranged avoiding auxiliary equipment.
  • the beam dump device 500B can be easily changed to the chamber 2 by appropriately changing the arrangement of the beam dump module as illustrated in the second modification. Can be installed.
  • Embodiment 6 In the beam dump device 500 illustrated in the fifth embodiment, the beam damper 104 of each module can be replaced with a laser light measuring instrument such as a power meter or a beam profiler. Therefore, in the sixth embodiment, a case where a power meter is used instead of the beam damper 104 of the termination module 540 is illustrated.
  • FIG. 25 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to a sixth embodiment.
  • the beam dump device 600 may include beam dump modules 510 and 520 and a power meter 610 as a termination module.
  • the beam dump modules 510 and 520 may be similar to the beam dump modules 510 and 520 described above.
  • the power meter 610 may be connected to the laser control unit 41. Further, the power meter 610 may be connected to the cooling device 590.
  • the power meter 610 can measure the power of the incident laser beam 60.
  • the power meter 610 may input the measured power of the laser beam 60 to the laser control unit 41.
  • the laser control unit 41 may hold the reflectance of the beam splitter 102 of each beam dump module 510 and 520.
  • the laser control unit 41 may calculate a dimming rate of the laser light 60 incident on the power meter 610 with respect to the laser light 60 incident on the beam dump device 600 based on the reflectance value of each beam splitter 102.
  • the laser control unit 41 calculates the power of the laser light 60 incident on the beam dump device 600 (referred to as incident power) from the energy of the laser light 60 detected by the power meter 610 based on the calculated dimming rate. May be.
  • the calculated incident power of the laser beam 60 may be used as parameters for various controls by the laser control unit 41.
  • the laser control unit 41 may operate the laser light manipulator 53 based on the calculated incident power of the laser light 60. Thereby, the irradiation state of the laser beam to the target 27 may be controlled.
  • the laser beam 33 can be irradiated with a larger diameter than the target 27. Therefore, the laser beam 33 that has passed around the target 27 can also enter the beam dump device 600. By measuring the power of the laser beam 33, the irradiation state of the laser beam 33 onto the target 27 can be estimated. Further, by operating the laser light manipulator 53 based on the estimated irradiation state, the irradiation state of the laser light 33 on the target 27 can be properly maintained.
  • FIG. 26 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to a modification.
  • the beam dump device 600A may include beam dump modules 510 to 530 and a beam profiler 620 as a termination module.
  • the beam dump modules 510 to 530 may be the same as the beam dump modules 510 to 530 described above. However, the arrangement may be bent in an L shape.
  • the laser beam 60 incident on the beam profiler 620 may be condensed by the condensing optical system 621.
  • the condensing optical system 621 may be designed according to the damper mirror 57 (see FIG. 2) so as to transfer the image of the laser beam 33 in the vicinity of the plasma generation region 25 to the light receiving surface 622 of the beam profiler 620.
  • the beam profiler 620 can measure a cross-sectional profile image of the incident laser beam 60.
  • the cross-sectional profile image may be a cross-sectional profile image of the laser beam 33 irradiated on the target 27 in the plasma generation region 25.
  • the image data of the measured cross-sectional profile image may be input to the EUV light generation control device 5.
  • the EUV light generation controller 5 may use image data as various control parameters. For example, the EUV light generation controller 5 may determine the irradiation state of the laser beam 33 on the target 27 based on the image data.
  • the EUV light generation controller 5 determines whether or not the distance D between the center position O33 of the laser beam 33 and the center position O27 of the shadow 27S of the target 27 is within an allowable range in the cross-sectional profile image shown in FIG. May be.
  • the EUV light generation control device 5 may operate the laser light manipulator 53 so that the distance D becomes smaller when the distance D is not within the allowable range. Further, the EUV light generation controller 5 may control the delay time from the input of the target detection signal to the output of the light emission trigger so that the distance D becomes small.
  • Linear guide 311A, 311B ... Inner rotary stage, 312A, 312B ... outer rotary stage, 501 ... frame, 501a ... connection flange, 510, 520, 530, 550, 560 ... beam dump module, 540 ... termination module, MO ... ma Data oscillator, PA1 ⁇ PA3 ... amplifier

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Lasers (AREA)

Abstract

A beam dump device according to one embodiment of the present disclosure is provided with an attenuator module, a beam dump module, and a control unit for controlling the attenuator module and the beam dump module. The attenuator module includes the following: a first beam splitter which is disposed inclined, with respect to the light axis, at a first angle; a second beam splitter which is disposed inclined, with respect to the light axis, at a second angle which has an absolute value equal to the first angle and has a sign opposite thereto; a first beam damper on which the laser light reflected by the first beam splitter is incident; a second beam damper on which the laser light reflected by the second beam splitter is incident; and a first stage on which the first and second beam splitters are inserted into or retracted from the light path of the laser light. The beam dump module may include the following: a mirror which is disposed inclined with respect to the light axis of the laser light; a third beam damper on which the laser light reflected by the mirror is incident; and a second stage on which the mirror is inserted into or retracted from the light path.

Description

ビームダンプ装置、それを備えたレーザ装置および極端紫外光生成装置Beam dump device, laser device including the same, and extreme ultraviolet light generation device
 本開示は、ビームダンプ装置、それを備えたレーザ装置および極端紫外(EUV)光生成装置に関する。 The present disclosure relates to a beam dump device, a laser device including the beam dump device, and an extreme ultraviolet (EUV) light generation device.
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系(reduced projection reflective optics)とを組み合わせた露光装置の開発が期待されている。 In recent years, along with miniaturization of semiconductor processes, miniaturization of transfer patterns in optical lithography of semiconductor processes has been progressing rapidly. In the next generation, fine processing of 70 nm to 45 nm and further fine processing of 32 nm or less will be required. For this reason, for example, an exposure apparatus combining an apparatus for generating extreme ultraviolet (EUV) light having a wavelength of about 13 nm and a reduced projection reflective optical system to meet the demand for fine processing of 32 nm or less. Development is expected.
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。 The EUV light generation apparatus includes an LPP (Laser Produced Plasma) system using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge. Three types of devices have been proposed: a device of the system and a device of SR (Synchrotron Radiation) method using orbital radiation.
実開平2-140501号公報Japanese Utility Model Publication No. 2-140501 特開平4-17992号公報JP-A-4-17992 特開平10-326931号公報Japanese Patent Laid-Open No. 10-326931 特開2004-25293号公報JP 2004-25293 A 特開2013-12465号公報JP 2013-12465 A 特開2013-179330号公報JP 2013-179330 A
概要Overview
 本開示の一態様によるビームダンプ装置は、アッテネータモジュールと、ビームダンプモジュールと前記アッテネータモジュールおよび前記ビームダンプモジュールを制御するレーザ制御部と、を備え、前記アッテネータモジュールは、レーザ光の光軸に対して第1角度傾いて配置された第1ビームスプリッタと、前記光軸に対して前記第1角度と絶対値が等しく且つ反対符号の第2角度傾いて配置された第2ビームスプリッタと、前記第1ビームスプリッタによって反射された前記レーザ光が入射するよう配置された第1ビームダンパと、前記第2ビームスプリッタによって反射された前記レーザ光が入射するよう配置された第2ビームダンパと、前記第1および第2ビームスプリッタを前記レーザ光の光路に対して挿入または退避する第1ステージと、を含み、前記ビームダンプモジュールは、レーザ光の光軸に対して傾いて配置されたミラーと、前記ミラーによって反射された前記レーザ光が入射するよう配置された第3ビームダンパと、前記ミラーを前記光路に対して挿入または退避する第2ステージと、を含み、前記レーザ制御部は、前記第1ステージを制御することで前記第1および第2ビームスプリッタを前記光路に対して選択的に挿入または退避し、前記第2ステージを制御することで前記ミラーを前記光路に対して選択的に挿入または退避してもよい。 A beam dump device according to an aspect of the present disclosure includes an attenuator module, a beam dump module, the attenuator module, and a laser control unit that controls the beam dump module, and the attenuator module is configured with respect to an optical axis of laser light. A first beam splitter disposed at a first angle with respect to the optical axis, a second beam splitter disposed at a second angle with the same absolute value as the first angle and an opposite sign with respect to the optical axis, A first beam damper arranged to receive the laser beam reflected by one beam splitter; a second beam damper arranged to receive the laser beam reflected by the second beam splitter; The second beam splitter is inserted into or retracted from the optical path of the laser beam. The beam dump module includes a mirror disposed to be inclined with respect to an optical axis of laser light, and a third beam damper disposed so that the laser light reflected by the mirror is incident thereon, A second stage for inserting or retracting the mirror with respect to the optical path, and the laser control unit selects the first and second beam splitters with respect to the optical path by controlling the first stage. The mirror may be selectively inserted into or retracted from the optical path by controlling or inserting the second stage.
 本開示の他の態様によるレーザ装置は、レーザ光を出力するマスタオシレータと、前記レーザ光を増幅する増幅器と、前記レーザ光の光路上に配置された上記ビームダンプ装置と、を備えてもよい。 A laser device according to another aspect of the present disclosure may include a master oscillator that outputs laser light, an amplifier that amplifies the laser light, and the beam dump device that is disposed on an optical path of the laser light. .
 本開示のさらに他の態様による極端紫外光生成装置は、プラズマ生成領域に供給されたターゲット物質にレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、前記レーザ光を出力する上記レーザ装置と、内部に前記プラズマ生成領域が設定されたチャンバと、前記プラズマ生成領域付近に前記レーザ光を集光する集光光学系と、前記プラズマ生成領域付近に前記ターゲット物質を供給するターゲット供給装置と、前記レーザ光によって照射されることで前記ターゲット物質から発生したプラズマから放射した極端紫外光を集光する集光ミラーと、を備えてもよい。 An extreme ultraviolet light generation apparatus according to still another aspect of the present disclosure is an extreme ultraviolet light generation apparatus that generates extreme ultraviolet light by irradiating a target material supplied to a plasma generation region with laser light, the laser light being The laser device for outputting, a chamber in which the plasma generation region is set, a condensing optical system for condensing the laser light in the vicinity of the plasma generation region, and supplying the target material in the vicinity of the plasma generation region A target supply device that collects the extreme ultraviolet light emitted from the plasma generated from the target material by being irradiated with the laser light.
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成システムの構成を概略的に示す図である。 図2は、比較例に係るEUV光生成装置の概略構成を示す模式図である。 図3は、実施形態1にかかるビームダンプ装置を含むレーザ装置の概略構成例を示す模式図である。 図4は、実施形態1にかかるアッテネータモジュールの概略構成例を示す模式図である。 図5は、実施形態1にかかるアッテネータモジュールの概略構成例を示す他の模式図である。 図6は、実施形態1にかかるビームダンプモジュールの概略構成例を示す模式図である。 図7は、実施形態1にかかるビームダンプモジュールの概略構成例を示す他の模式図である。 図8は、実施形態1にかかるビームダンプ装置の概略構成例を示す模式図である。 図9は、実施形態1にかかるビームダンプ装置の概略構成例を示す他の模式図である。 図10は、実施形態1にかかるビームダンプ装置の概略構成例を示す他の模式図である。 図11は、実施形態1にかかるビームダンプ装置の概略構成例を示す他の模式図である。 図12は、実施形態1にかかるアッテネータモジュールの段数を4とした場合の概略構成例を示す模式図である。 図13は、実施形態2にかかるビームダンプ装置の概略構成例を示す模式図である。 図14は、実施形態2にかかるビームダンプ装置の概略構成例を示す他の模式図である。 図15は、実施形態2にかかるビームダンプ装置の概略構成例を示す他の模式図である。 図16は、実施形態3にかかるアッテネータモジュールの概略構成例を示す模式図である。 図17は、実施形態3にかかるアッテネータモジュールの概略構成例を示す他の模式図である。 図18は、実施形態3にかかるビームダンプ装置の概略構成例を示す模式図である。 図19は、実施形態3にかかるビームダンプ装置の概略構成例を示す他の模式図である。 図20は、実施形態4にかかるレーザ装置の概略構成例を示す模式図である。 図21は、実施形態5にかかるビームダンパ装置の概略構成例を示す模式図である。 図22は、実施形態5にかかるフレームの概略構成例を示す模式図である。 図23は、実施形態5の変形例1にかかるビームダンプ装置の概略構成例を示す模式図である。 図24は、実施形態5の変形例2にかかるビームダンプ装置の概略構成例を示す模式図である。 図25は、実施形態6にかかるビームダンプ装置の概略構成例を示す模式図である。 図26は、実施形態6の変形例にかかるビームダンプ装置の概略構成例を示す模式図である。 図27は、実施形態6にかかる断面プロファイル画像の一例を示す図である。
Several embodiments of the present disclosure are described below by way of example only and with reference to the accompanying drawings.
FIG. 1 is a diagram schematically showing a configuration of an exemplary LPP type EUV light generation system. FIG. 2 is a schematic diagram illustrating a schematic configuration of an EUV light generation apparatus according to a comparative example. FIG. 3 is a schematic diagram illustrating a schematic configuration example of a laser apparatus including the beam dump device according to the first embodiment. FIG. 4 is a schematic diagram illustrating a schematic configuration example of the attenuator module according to the first embodiment. FIG. 5 is another schematic diagram illustrating a schematic configuration example of the attenuator module according to the first embodiment. FIG. 6 is a schematic diagram illustrating a schematic configuration example of the beam dump module according to the first embodiment. FIG. 7 is another schematic diagram illustrating a schematic configuration example of the beam dump module according to the first embodiment. FIG. 8 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment. FIG. 9 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment. FIG. 10 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment. FIG. 11 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the first embodiment. FIG. 12 is a schematic diagram illustrating a schematic configuration example when the number of stages of the attenuator module according to the first embodiment is four. FIG. 13 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the second embodiment. FIG. 14 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the second embodiment. FIG. 15 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the second embodiment. FIG. 16 is a schematic diagram illustrating a schematic configuration example of an attenuator module according to the third embodiment. FIG. 17 is another schematic diagram illustrating a schematic configuration example of the attenuator module according to the third embodiment. FIG. 18 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the third embodiment. FIG. 19 is another schematic diagram illustrating a schematic configuration example of the beam dump device according to the third embodiment. FIG. 20 is a schematic diagram illustrating a schematic configuration example of the laser apparatus according to the fourth embodiment. FIG. 21 is a schematic diagram illustrating a schematic configuration example of the beam damper device according to the fifth embodiment. FIG. 22 is a schematic diagram illustrating a schematic configuration example of a frame according to the fifth embodiment. FIG. 23 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the first modification of the fifth embodiment. FIG. 24 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the second modification of the fifth embodiment. FIG. 25 is a schematic diagram illustrating a schematic configuration example of the beam dump device according to the sixth embodiment. FIG. 26 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to a modification of the sixth embodiment. FIG. 27 is a diagram illustrating an example of a cross-sectional profile image according to the sixth embodiment.
実施形態Embodiment
内容
1.概要
2.用語の説明
3.EUV光生成システムの全体説明
 3.1 構成
 3.2 動作
4.ビームダンプ装置を備えた極端紫外光生成装置:比較例
 4.1 構成
 4.2 動作
 4.4 課題
5.実施形態1
 5.1 ビームダンプ装置の概略構成
 5.2 アッテネータモジュールの構成
 5.3 アッテネータモジュールの動作
 5.4 ビームダンプモジュールの構成
 5.5 ビームダンプモジュールの動作
 5.6 ビームダンプ装置の詳細構成例
 5.7 ビームダンプ装置の動作:レーザ光遮断時
 5.8 ビームダンプ装置の動作:レーザ光出力時
 5.9 ビームダンプ装置の動作:レーザ光路調整時
 5.10 ビームダンプ装置の動作:レーザ光出力調整時
 5.11 効果
 5.12 実施形態1の変形例
  5.12.1 ビームダンプ装置の他の構成
  5.12.2 ビームダンプ装置の他の構成:動作
6.実施形態2
 6.1 構成
 6.2 動作
7.実施形態3
 7.1 構成
 7.2 動作
 7.3 効果
8.実施形態4
 8.1 構成
 8.2 動作
 8.3 効果
9.実施形態5
 9.1 構成
 9.2 動作
 9.3 効果
 9.4 実施形態5の変形例1
  9.4.1 構成
  9.4.2 効果
 9.5 実施形態5の変形例2
  9.5.1 構成
  9.5.2 効果
10.実施形態6
 10.1 構成
 10.2 動作
 10.3 効果
 10.4 実施形態6の変形例
  10.4.1 構成
  10.4.2 動作
  10.4.3 効果
Contents 1. Outline 2. 2. Explanation of terms 3. Overview of EUV light generation system 3.1 Configuration 3.2 Operation 4. Extreme Ultraviolet Light Generation Device with Beam Dump Device: Comparative Example 4.1 Configuration 4.2 Operation 4.4 Problem 5. Embodiment 1
5.1 Schematic Configuration of Beam Dump Device 5.2 Configuration of Attenuator Module 5.3 Operation of Attenuator Module 5.4 Configuration of Beam Dump Module 5.5 Operation of Beam Dump Module 5.6 Detailed Configuration Example of Beam Dump Device 5 5.7 Operation of the beam dump device: When the laser beam is cut off 5.8 Operation of the beam dump device: During laser beam output 5.9 Operation of the beam dump device: During laser beam path adjustment 5.10 Operation of the beam dump device: Laser beam output 5.11 Effect 5.12 Modification of Embodiment 1 5.12.1 Other Configuration of Beam Dump Device 5.12.2 Other Configuration of Beam Dump Device: Operation Embodiment 2
6.1 Configuration 6.2 Operation Embodiment 3
7.1 Configuration 7.2 Operation 7.3 Effect 8. Embodiment 4
8.1 Configuration 8.2 Operation 8.3 Effect 9. Embodiment 5
9.1 Configuration 9.2 Operation 9.3 Effect 9.4 Modification 1 of Embodiment 5
9.4.1 Configuration 9.4.2 Effects 9.5 Modification 2 of Embodiment 5
9.5.1 Configuration 9.5.2 Effects 10. Embodiment 6
10.1 Configuration 10.2 Operation 10.3 Effect 10.4 Modification of Embodiment 6 10.4.1 Configuration 10.4.2 Operation 10.4.3 Effect
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Embodiment described below shows some examples of this indication, and does not limit the contents of this indication. In addition, all the configurations and operations described in the embodiments are not necessarily essential as the configurations and operations of the present disclosure. In addition, the same referential mark is attached | subjected to the same component and the overlapping description is abbreviate | omitted.
1.概要
 本開示の実施形態は、EUV光生成装置に用いられるビームダンプ装置、それを備えたレーザ装置およびEUV光生成装置に関するものであってよい。
1. Outline Embodiments of the present disclosure may relate to a beam dump device used in an EUV light generation device, a laser device including the beam dump device, and an EUV light generation device.
2.用語の説明
 本開示において使用される用語について、以下のように定義する。
 「ドロップレット」とは、融解したターゲット材料の液滴であってもよい。その形状は、略球形であってもよい。
 「プラズマ生成領域」とは、プラズマが生成される空間として予め設定された3次元空間であってもよい。
 レーザ光の「上流」とは、そのレーザ光の進行経路において対象の位置おりも光源に近い側であってもよい。また、レーザ光の「下流」とは、そのレーザ光の進行経路において対象の位置よりも光源から遠い側であってもよい。
2. Explanation of Terms Terms used in the present disclosure are defined as follows.
A “droplet” may be a melted droplet of target material. The shape may be substantially spherical.
The “plasma generation region” may be a three-dimensional space preset as a space where plasma is generated.
The “upstream” of the laser beam may be the target position in the traveling path of the laser beam or the side closer to the light source. Further, the “downstream” of the laser beam may be a side farther from the light source than the target position in the traveling path of the laser beam.
3.EUV光生成システムの全体説明
3.1 構成
 図1に、例示的なLPP方式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給部26から供給されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
3. General Description of EUV Light Generation System 3.1 Configuration FIG. 1 schematically shows a configuration of an exemplary LPP EUV light generation system. The EUV light generation apparatus 1 may be used together with at least one laser apparatus 3. In the present application, a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11. As shown in FIG. 1 and described in detail below, the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26. The chamber 2 may be sealable. The target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example. The material of the target substance supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられていてもよい。その貫通孔には、ウインドウ21が設けられてもよく、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には貫通孔24が設けられていてもよく、貫通孔24をパルスレーザ光33が通過してもよい。 The wall of the chamber 2 may be provided with at least one through hole. A window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21. In the chamber 2, for example, an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed. The EUV collector mirror 23 may have first and second focal points. On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed. The EUV collector mirror 23 is preferably arranged such that, for example, the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located at the intermediate focal point (IF) 292. A through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
 EUV光生成装置1は、EUV光生成制御装置5、ターゲットセンサ4等を含んでもよい。ターゲットセンサ4は、撮像機能を有してもよく、ターゲット27の存在、軌跡、位置、速度等を検出するよう構成されてもよい。 The EUV light generation apparatus 1 may include an EUV light generation control apparatus 5, a target sensor 4, and the like. The target sensor 4 may have an imaging function and may be configured to detect the presence, trajectory, position, speed, and the like of the target 27.
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含んでもよい。接続部29内部には、アパーチャ293が形成された壁291が設けられてもよい。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置されてもよい。 Further, the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other. A wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29. The wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
 さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えてもよい。 Furthermore, the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like. The laser beam traveling direction control unit 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
3.2 動作
 図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
3.2 Operation Referring to FIG. 1, the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enters the chamber 2. May be. The pulse laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射され得る。放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。 The target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2. The target 27 may be irradiated with at least one pulse included in the pulse laser beam 33. The target 27 irradiated with the pulsed laser light is turned into plasma, and radiation light 251 can be emitted from the plasma. The EUV light 252 included in the radiation light 251 may be selectively reflected by the EUV collector mirror 23. The EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6. A single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
 EUV光生成制御装置5は、EUV光生成システム11全体の制御を統括するよう構成されてもよい。EUV光生成制御装置5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理するよう構成されてもよい。また、EUV光生成制御装置5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御するよう構成されてもよい。さらに、EUV光生成制御装置5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。 The EUV light generation control device 5 may be configured to control the entire EUV light generation system 11. The EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4. Further, the EUV light generation control device 5 may be configured to control the timing at which the target 27 is output, the output direction of the target 27, and the like. Further, the EUV light generation control device 5 may be configured to control, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser light 32, the condensing position of the pulse laser light 33, and the like. The various controls described above are merely examples, and other controls may be added as necessary.
4.ビームダンプ装置を備えた極端紫外光生成装置:比較例
 つぎに、比較例に係るEUV光生成装置について、図面を用いて詳細に説明する。
4). Extreme Ultraviolet Light Generation Device Equipped with Beam Dump Device: Comparative Example Next, an EUV light generation device according to a comparative example will be described in detail with reference to the drawings.
4.1 構成
 図2は、比較例に係るEUV光生成装置の概略構成を示す模式図である。図2に例示するEUV光生成装置は、図1に示すEUV光生成装置1と同様に、チャンバ2と、レーザ装置3と、レーザ光進行方向制御部34と、EUV光生成制御装置5とを含んでもよい。
4.1 Configuration FIG. 2 is a schematic diagram illustrating a schematic configuration of an EUV light generation apparatus according to a comparative example. The EUV light generation apparatus illustrated in FIG. 2 includes a chamber 2, a laser apparatus 3, a laser light traveling direction control unit 34, and an EUV light generation control apparatus 5 in the same manner as the EUV light generation apparatus 1 illustrated in FIG. May be included.
 レーザ装置3は、マスタオシレータMOと、1つ以上の増幅器PA1~PA3と、レーザ制御部41と、ビームダンプ装置1000とを含んでよい。増幅器PA1~PA3は、マスタオシレータMOが出力するレーザ光31の光路上に配置されてよい。マスタオシレータMOと増幅器PA1~PA3とは、レーザ制御部41に接続されてもよい。レーザ制御部41は、EUV光生成制御装置5に接続されてもよい。 The laser device 3 may include a master oscillator MO, one or more amplifiers PA1 to PA3, a laser control unit 41, and a beam dump device 1000. The amplifiers PA1 to PA3 may be arranged on the optical path of the laser beam 31 output from the master oscillator MO. The master oscillator MO and the amplifiers PA1 to PA3 may be connected to the laser control unit 41. The laser control unit 41 may be connected to the EUV light generation control device 5.
 ビームダンプ装置1000は、レーザ光31を遮断する遮断位置と、レーザ光31を遮断しない退避位置との間で移動可能に配置されてもよい。ビームダンプ装置1000は、冷却装置190に接続されてもよい。 The beam dump device 1000 may be disposed so as to be movable between a blocking position where the laser beam 31 is blocked and a retracted position where the laser beam 31 is not blocked. The beam dump device 1000 may be connected to the cooling device 190.
 冷却装置190は、冷却媒体の温度を下げてもよい。冷却された冷却媒体は、ビームダンプ装置1000と冷却装置190との間を循環してもよい。 The cooling device 190 may lower the temperature of the cooling medium. The cooled cooling medium may circulate between the beam dump device 1000 and the cooling device 190.
 チャンバ2は、ターゲット供給部26と、ターゲットセンサ4と、ウインドウ21と、レーザ集光光学系50と、プレート54と、EUV集光ミラー23と、ターゲット回収部28とを含んでもよい。 The chamber 2 may include a target supply unit 26, a target sensor 4, a window 21, a laser focusing optical system 50, a plate 54, an EUV focusing mirror 23, and a target recovery unit 28.
 レーザ光進行方向制御部34から出力されるレーザ光32は、ウインドウ21を介してレーザ集光光学系50に入力されてもよい。レーザ集光光学系50は、プラズマ生成領域25にレーザ光33を集光するよう構成、配置されてもよい。レーザ集光光学系50は、レーザ光集光ミラー22を含んでもよい。レーザ光集光ミラー22は、軸外放物面ミラーであってもよい。レーザ集光光学系50はさらに、レーザ光集光ミラー22に対向した凸面ミラー51を含んでもよい。凸面ミラー51は、楕円ミラーであってもよい。レーザ集光光学系50は、移動プレート52に固定されてもよい。移動プレート52には、レーザ光マニュピレータ53が接続されてもよい。 The laser beam 32 output from the laser beam traveling direction control unit 34 may be input to the laser focusing optical system 50 via the window 21. The laser focusing optical system 50 may be configured and arranged to focus the laser beam 33 on the plasma generation region 25. The laser focusing optical system 50 may include a laser beam focusing mirror 22. The laser beam condensing mirror 22 may be an off-axis parabolic mirror. The laser focusing optical system 50 may further include a convex mirror 51 facing the laser beam focusing mirror 22. The convex mirror 51 may be an elliptical mirror. The laser focusing optical system 50 may be fixed to the moving plate 52. A laser beam manipulator 53 may be connected to the moving plate 52.
 レーザ光マニュピレータ53は、EUV光生成制御装置5から指定された位置にレーザ光33の集光位置を移動できるよう、X軸、Y軸およびZ軸方向に移動プレート52を移動可能であってもよい。 Even if the laser beam manipulator 53 can move the moving plate 52 in the X-axis, Y-axis, and Z-axis directions so that the condensing position of the laser beam 33 can be moved to the position designated by the EUV light generation controller 5. Good.
 ダンパミラー57は、プラズマ生成領域25の下流におけるレーザ光路上に配置されてもよい。このダンパミラー57は、プラズマ生成領域25を通過したレーザ光33をビームダンプ装置5000に向けて反射するよう構成されていてもよい。ダンパミラー57は、入射するレーザ光33を平行光化してもよい。このダンパミラー57は、軸外放物面ミラーであってもよい。ダンパミラー57は、その反射面をターゲット物質の融点以上に加熱するヒータを備えてもよい。 The damper mirror 57 may be disposed on the laser light path downstream of the plasma generation region 25. The damper mirror 57 may be configured to reflect the laser beam 33 that has passed through the plasma generation region 25 toward the beam dump device 5000. The damper mirror 57 may collimate the incident laser beam 33. The damper mirror 57 may be an off-axis parabolic mirror. The damper mirror 57 may include a heater that heats the reflecting surface to the melting point of the target material.
 ビームダンプ装置5000は、ダンパミラー57で反射されたレーザ光60が入射する位置に配置されてもよい。レーザ光60は、チャンバ壁に配置されたダンパウインドウ58を介してビームダンプ装置5000に入射してもよい。ビームダンプ装置5000は、冷却装置590に接続されてもよい。 The beam dump device 5000 may be disposed at a position where the laser beam 60 reflected by the damper mirror 57 is incident. The laser beam 60 may be incident on the beam dump device 5000 through a damper window 58 disposed on the chamber wall. The beam dump device 5000 may be connected to the cooling device 590.
 冷却装置590は、冷却装置190と同様の構成であってもよい。また、冷却装置590を配置する代わりに、冷却装置190をビームダンプ装置5000とビームダンプ装置1000とで共用するようにしてもよい。 The cooling device 590 may have the same configuration as the cooling device 190. Further, instead of arranging the cooling device 590, the cooling device 190 may be shared by the beam dump device 5000 and the beam dump device 1000.
4.2 動作
 つづいて、図2に示すEUV光生成装置の動作例について説明する。EUV光を出力する場合、EUV光生成制御装置5は、露光装置6からのEUV光出力指令に従って、ターゲット供給部26にターゲット27を出力させてもよい。この時、ビームダンプ装置1000は退避位置に退避していてもよい。
4.2 Operation Next, an operation example of the EUV light generation apparatus shown in FIG. 2 will be described. When outputting EUV light, the EUV light generation control device 5 may cause the target supply unit 26 to output the target 27 in accordance with an EUV light output command from the exposure device 6. At this time, the beam dump device 1000 may be retracted to the retracted position.
 ターゲットセンサ4は、ターゲット27を検出し、その検出信号をEUV光生成制御装置5に出力してもよい。ターゲット検出信号は、ターゲット27が所定の位置を通過したタイミングを示してもよい。 The target sensor 4 may detect the target 27 and output the detection signal to the EUV light generation controller 5. The target detection signal may indicate the timing at which the target 27 has passed a predetermined position.
 EUV光生成制御装置5は、ターゲット検出信号に対して所定の遅延時間遅れた発光トリガをレーザ装置3のレーザ制御部41に出力してもよい。 The EUV light generation controller 5 may output a light emission trigger delayed by a predetermined delay time with respect to the target detection signal to the laser controller 41 of the laser device 3.
 レーザ制御部41は、発光トリガが入力されると、マスタオシレータMOにレーザ出力信号を出力してもよい。この時、レーザ制御部41は、増幅器PA1~PA3を増幅可能な状態にスタンバイしてもよい。マスタオシレータMOは、レーザ出力信号に同期してレーザ光31を出力してもよい。出力されたレーザ光31は、増幅器PA1~PA3によって増幅された後、レーザ光進行方向制御部34およびウインドウ21を通過して、チャンバ2に入射してもよい。レーザ装置3から出力されたレーザ光31のパワーは、数kW(キロワット)~数十kWであってもよい。 The laser control unit 41 may output a laser output signal to the master oscillator MO when a light emission trigger is input. At this time, the laser control unit 41 may stand by in a state where the amplifiers PA1 to PA3 can be amplified. The master oscillator MO may output the laser beam 31 in synchronization with the laser output signal. The output laser light 31 may be amplified by the amplifiers PA1 to PA3, and then may pass through the laser light traveling direction control unit 34 and the window 21 and enter the chamber 2. The power of the laser beam 31 output from the laser device 3 may be several kW (kilowatt) to several tens kW.
 チャンバ2に入射したレーザ光32は、レーザ集光光学系50によって集光されてもよい。集光されたレーザ光33は、プラズマ生成領域25に到達したターゲット27に照射されてもよい。ターゲット27にレーザ光33が照射されることで発生したプラズマからは、EUV光251が放射してもよい。 The laser beam 32 incident on the chamber 2 may be collected by the laser focusing optical system 50. The focused laser beam 33 may be applied to the target 27 that has reached the plasma generation region 25. EUV light 251 may be emitted from the plasma generated by irradiating the target 27 with the laser light 33.
 EUV光生成制御装置5は、レーザ光マニュピレータ53を制御することで、レーザ光33の照射位置を調整してもよい。また、EUV光生成制御装置5は、ターゲット検出信号から発光トリガまでの遅延時間を変更してもよい。 The EUV light generation control device 5 may adjust the irradiation position of the laser light 33 by controlling the laser light manipulator 53. Further, the EUV light generation controller 5 may change the delay time from the target detection signal to the light emission trigger.
 ターゲット27に対するレーザ光33の照射径は、ターゲット27の直径より大きくてもよい。その場合、レーザ光33の一部は、ターゲット27に照射されずにダンパミラー57に入射してもよい。 The irradiation diameter of the laser beam 33 on the target 27 may be larger than the diameter of the target 27. In that case, a part of the laser beam 33 may be incident on the damper mirror 57 without being irradiated on the target 27.
 ダンパミラー57によって反射されたレーザ光60は、ダンパウインドウ58を介してビームダンプ装置5000で吸収されてもよい。吸収されたレーザ光60は、熱に変換されてもよい。これによって発生した熱は、冷却装置590によって外部に排出されてもよい。 The laser beam 60 reflected by the damper mirror 57 may be absorbed by the beam dump device 5000 via the damper window 58. The absorbed laser light 60 may be converted into heat. The heat generated thereby may be discharged to the outside by the cooling device 590.
 ターゲット27にレーザ光33を照射しない場合が存在し得る。例えば、レーザ装置3の出力安定化や光路調整を行うにあたって、レーザ光31の出力を継続しつつ、ターゲット27の供給を停止する、もしくは、遅延時間を変更して意図的にターゲット27へのレーザ光33の照射を回避する場合が存在する。このような場合、レーザ光33は、ターゲット27に照射されずにパワーを維持したままダンパミラー57に入射し得る。 There may be a case where the target 27 is not irradiated with the laser beam 33. For example, when the output of the laser device 3 is stabilized or the optical path is adjusted, the supply of the target 27 is stopped while the output of the laser beam 31 is continued, or the laser to the target 27 is intentionally changed by changing the delay time. There is a case where irradiation of the light 33 is avoided. In such a case, the laser beam 33 can enter the damper mirror 57 while maintaining the power without being irradiated to the target 27.
 EUV光生成装置を長時間停止する場合やメンテナンスの際には、ビームダンプ装置1000は、遮断位置に位置されてもよい。 When the EUV light generation apparatus is stopped for a long time or during maintenance, the beam dump apparatus 1000 may be positioned at the blocking position.
 レーザ光進行方向制御部34やレーザ集光光学系50を調整する際、安全のためレーザ装置3から出力されるレーザ光31のパワーを数W程度に減じる場合がある。その場合、レーザ制御部41は、レーザ装置3から出力されるレーザ光31のパワーが数W程度となるよう、マスタオシレータMOおよび増幅器PA1~PA3を制御してもよい。本開示では、レーザ光進行方向制御部34やレーザ集光光学系50の調整をレーザ光路調整と称する。 When adjusting the laser beam traveling direction control unit 34 and the laser focusing optical system 50, the power of the laser beam 31 output from the laser device 3 may be reduced to about several W for safety. In that case, the laser control unit 41 may control the master oscillator MO and the amplifiers PA1 to PA3 so that the power of the laser beam 31 output from the laser device 3 is about several W. In the present disclosure, adjustment of the laser beam traveling direction control unit 34 and the laser focusing optical system 50 is referred to as laser beam path adjustment.
4.4 課題
 比較例のレーザ装置3のように、レーザ光路調整時とEUV光出力時とで異なるパワーのレーザ光31を出力する場合、レーザ装置3内の光学部品に対する熱負荷がパルスエネルギーに応じて異なり得る。すなわち、熱による光学部品の特性変化が、レーザ光路調整時とEUV光出力時とで異なり得る。そのため、レーザ光路調整時とEUV光出力時とでは、レーザ光31のビームダイバージェンスや断面強度分布が異なり得る。これは、光学部品の熱レンズ効果が熱負荷に依存するためと推定できる。
4.4 Problem When the laser light 31 having different power is output when the laser light path is adjusted and when the EUV light is output, as in the laser device 3 of the comparative example, the heat load on the optical components in the laser device 3 is changed to pulse energy. Can vary depending on. That is, the characteristic change of the optical component due to heat can be different between the laser light path adjustment and the EUV light output. Therefore, the beam divergence and the cross-sectional intensity distribution of the laser light 31 may be different between the laser light path adjustment and the EUV light output. It can be estimated that this is because the thermal lens effect of the optical component depends on the thermal load.
 レーザ光路調整時に調整されたビームダイバージェンスや断面強度分布がEUV光出力時に変動してしまうと、EUV光出力時にレーザ光33がターゲットに適切に照射されない可能性がある。そのため、EUV光出力時と同等のビームダイバージェンスや断面強度分布を備えたレーザ光31を用いてレーザ光路調整を行うことが可能な構成が求められる。 If the beam divergence and the cross-sectional intensity distribution adjusted at the time of adjusting the laser beam path fluctuate at the time of EUV light output, the target may not be irradiated with the laser beam 33 at the time of EUV light output. Therefore, a configuration capable of adjusting the laser beam path using the laser beam 31 having the same beam divergence and cross-sectional intensity distribution as that during EUV light output is required.
 また、露光装置6のスループットを向上させるためには、EUV光252の高出力化が要求され得る。EUV光252の高出力化にあたっては、レーザ光31の高出力化が要求され得る。レーザ光31が高出力化された場合、レーザ光31を受けるビームダンプ装置1000およびレーザ光33を受けるビームダンプ装置5000の容量拡大が求められる場合がある。 Further, in order to improve the throughput of the exposure apparatus 6, it is required to increase the output of the EUV light 252. In order to increase the output of the EUV light 252, it is necessary to increase the output of the laser beam 31. When the output of the laser beam 31 is increased, the capacity expansion of the beam dump device 1000 that receives the laser beam 31 and the beam dump device 5000 that receives the laser beam 33 may be required.
 しかしながら、レーザ光31/33の出力エネルギーによっては市販のビームダンパが使用できない場合がある。そのような場合、大容量のビームダンプ装置1000/5000が専用に開発および制作されてもよいが、これは装置コストの上昇を招き得る。 However, a commercially available beam damper may not be used depending on the output energy of the laser beam 31/33. In such a case, the high-capacity beam dump device 1000/5000 may be exclusively developed and produced, but this may lead to an increase in device cost.
 また、図2に示すように、ビームダンプ装置5000は、チャンバ2の外壁に取り付けられ得る。チャンバ2の外壁には、ビームダンプ装置5000の他、各種計測装置などの多数の機器が取り付けられ得る。ただし、チャンバ2外壁の面積は有限である。そのため、ビームダンプ装置5000が大容量化に伴い大型化すると、ビームダンプ装置5000を含む機器のチャンバ2外壁への取り付けが困難になる場合がある。 Further, as shown in FIG. 2, the beam dump device 5000 can be attached to the outer wall of the chamber 2. In addition to the beam dump device 5000, many devices such as various measuring devices can be attached to the outer wall of the chamber 2. However, the area of the outer wall of the chamber 2 is finite. Therefore, when the beam dump device 5000 is increased in size with an increase in capacity, it may be difficult to attach a device including the beam dump device 5000 to the outer wall of the chamber 2.
 そこで以下の実施形態では、EUV光出力時と同等のビームダイバージェンスや断面強度分布を備えたレーザ光を用いてレーザ光路調整を行うことを可能にするビームダンプ装置、それを備えたレーザ装置およびEUV光生成装置を例示する。また、以下の実施形態では、大容量化してもチャンバ2外壁への取り付けが容易なビームダンプ装置についても例示する。 Therefore, in the following embodiments, a beam dump device that makes it possible to perform laser optical path adjustment using a laser beam having a beam divergence and cross-sectional intensity distribution equivalent to that at the time of EUV light output, a laser device including the beam dump device, and an EUV 1 illustrates a light generation device. Further, in the following embodiment, a beam dump device that can be easily attached to the outer wall of the chamber 2 even when the capacity is increased will be exemplified.
5.実施形態1
 まず、実施形態1にかかるビームダンプ装置、それを備えたレーザ装置およびEUV光生成装置を、図面を用いて詳細に説明する。
5. Embodiment 1
First, a beam dump device according to a first embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings.
5.1 ビームダンプ装置の概略構成
 図3は、実施形態1にかかるビームダンプ装置を含むレーザ装置の概略構成例を示す模式図である。図3に示すように、レーザ装置3は、レーザ制御部41と、マスタオシレータMOおよび増幅器PA1~PA3の他に、ビームダンプ装置100と、冷却装置190とを備えてもよい。
5.1 Schematic Configuration of Beam Dump Device FIG. 3 is a schematic diagram illustrating a schematic configuration example of a laser device including the beam dump device according to the first embodiment. As shown in FIG. 3, the laser device 3 may include a beam dump device 100 and a cooling device 190 in addition to the laser control unit 41, the master oscillator MO, and the amplifiers PA1 to PA3.
 ビームダンプ装置100は、1つ以上のアッテネータモジュール110および120と、ビームダンプモジュール130とを含んでもよい。 The beam dump device 100 may include one or more attenuator modules 110 and 120 and a beam dump module 130.
 アッテネータモジュール110および120とビームダンプモジュール130とは、冷却装置190から供給された水等の冷却媒体が循環可能に、冷却装置190に接続されてもよい。 The attenuator modules 110 and 120 and the beam dump module 130 may be connected to the cooling device 190 so that a cooling medium such as water supplied from the cooling device 190 can circulate.
 レーザ制御部41は、アッテネータモジュール110および120とビームダンプモジュール130とにそれぞれ接続されてよい。具体的には、レーザ制御部41は、各モジュールの1軸ステージに接続されてよい。1軸ステージについては、後述する。 The laser control unit 41 may be connected to the attenuator modules 110 and 120 and the beam dump module 130, respectively. Specifically, the laser control unit 41 may be connected to the uniaxial stage of each module. The single axis stage will be described later.
5.2 アッテネータモジュールの構成
 図4および図5は、各アッテネータモジュールの概略構成例を示す模式図である。図4は、各アッテネータモジュールの移動プレートが低出力配置(第1位置)にある場合を示し、図5は、移動プレートが高出力配置(第2位置)にある場合を示している。
5.2 Configuration of Attenuator Module FIG. 4 and FIG. 5 are schematic views showing a schematic configuration example of each attenuator module. FIG. 4 shows a case where the moving plate of each attenuator module is in the low output arrangement (first position), and FIG. 5 shows a case where the moving plate is in the high output arrangement (second position).
 図4および図5に示すように、アッテネータモジュール110/120は、偶数のビームスプリッタ102Aおよび102Bと、複数のビームダンパ104Aおよび104Bと、移動プレート105Aと、ベースプレート107Aと、1軸ステージ106Aとを備えてもよい。 As shown in FIGS. 4 and 5, the attenuator module 110/120 includes an even number of beam splitters 102A and 102B, a plurality of beam dampers 104A and 104B, a moving plate 105A, a base plate 107A, and a single-axis stage 106A. May be.
 偶数のビームスプリッタ102Aおよび102Bは、レーザ光30の入射角が互いに相反するように配置されてもよい。たとえばビームスプリッタ102Aの入射角θ1が45°である場合、ビームスプリッタ102Bの入射角θ2が-45°となるように、それぞれ配置されてもよい。 The even-numbered beam splitters 102A and 102B may be arranged so that the incident angles of the laser light 30 are opposite to each other. For example, when the incident angle θ1 of the beam splitter 102A is 45 °, the beam splitter 102B may be arranged so that the incident angle θ2 is −45 °.
 各ビームスプリッタ102Aおよび102Bは、セレン化亜鉛(ZnSe)やダイヤモンド等の基板で構成されていてもよい。この基板におけるレーザ光30が入射する面には、適当な反射率を有するコーティングが施されていてもよい。一方、レーザ光30が出射する面には、反射防止膜がコーティングされていてもよい。コーティングは、多層膜であってもよい。また、基板は、平行平面基板であってもよいし、ウエッジ基板であってもよい。 Each of the beam splitters 102A and 102B may be made of a substrate such as zinc selenide (ZnSe) or diamond. The surface of the substrate on which the laser beam 30 is incident may be provided with a coating having an appropriate reflectance. On the other hand, an antireflection film may be coated on the surface from which the laser beam 30 is emitted. The coating may be a multilayer film. Further, the substrate may be a parallel plane substrate or a wedge substrate.
 各ビームスプリッタ102Aおよび102Bは、各々スプリッタホルダ103Aおよび103Bによって保持されてもよい。各スプリッタホルダ103Aおよび103Bは、レーザ光30の進行方向に対する傾きが維持されるよう、移動プレート105Aに対して各ビームスプリッタ102Aおよび102Bが固定されてもよい。各スプリッタホルダ103Aおよび103Bの内部には、冷却装置190から供給された冷却媒体が通過する流路103aおよび103bが各々設けられていてもよい。 The beam splitters 102A and 102B may be held by splitter holders 103A and 103B, respectively. Each splitter holder 103A and 103B may be fixed to each of the beam splitters 102A and 102B with respect to the moving plate 105A so that the inclination with respect to the traveling direction of the laser beam 30 is maintained. Inside each of the splitter holders 103A and 103B, flow paths 103a and 103b through which the cooling medium supplied from the cooling device 190 passes may be provided.
 各ビームダンパ104Aおよび104Bは、ビームスプリッタ102Aおよび102Bで各々反射された反射光30aおよび30bが各々入射する位置に配置されてもよい。各ビームダンパ104Aおよび104Bには、市販のビームダンパが用いられてもよい。 The beam dampers 104A and 104B may be arranged at positions where the reflected lights 30a and 30b reflected by the beam splitters 102A and 102B respectively enter. Commercially available beam dampers may be used for the beam dampers 104A and 104B.
 各ビームダンパ104Aおよび104Bの内部には、コーン部104cと、ひだ状部104bとが設けられていてもよい。コーン部104cは、円錐状の部位であってよい。コーン部104cは、入射したレーザ光30a/30bの一部を吸収し、一部を周囲に拡散するような形状であってもよい。ひだ状部104bは、コーン部104cで拡散されたレーザ光30a/30bがビームダンパ104A/104b外に拡散するのを抑制する形状であってもよい。ひだ状部104bは、コーン部104cで拡散されたレーザ光30a/30bを吸収してもよい。 In each of the beam dampers 104A and 104B, a cone portion 104c and a pleated portion 104b may be provided. The cone part 104c may be a conical part. The cone portion 104c may have a shape that absorbs part of the incident laser light 30a / 30b and diffuses part of the laser light 30a / 30b around. The pleated portion 104b may have a shape that prevents the laser light 30a / 30b diffused by the cone portion 104c from diffusing out of the beam damper 104A / 104b. The pleated portion 104b may absorb the laser light 30a / 30b diffused by the cone portion 104c.
 各ビームダンパ104Aおよび104Bの内部には、冷却装置190から供給された冷却媒体が通過する流路104aが各々設けられていてもよい。流路104aは、コーン部104cおよびひだ状部104bの表面下に近接して設けられていてもよい。流路104aは、スプリッタホルダ103A/103B内部の流路103a/103bと連通していてもよい。 Each of the beam dampers 104A and 104B may be provided with a flow path 104a through which the cooling medium supplied from the cooling device 190 passes. The channel 104a may be provided close to the surface of the cone portion 104c and the pleated portion 104b. The channel 104a may communicate with the channel 103a / 103b inside the splitter holder 103A / 103B.
 1軸ステージ106Aは、ベースプレート107Aに固定されてもよい。1軸ステージ106Aは、ベースプレート107Aに対して移動プレート105Aを移動可能であってもよい。1軸ステージ106Aは、ボールスクリューとモータを組み合わせて構成されてもよいし、伸縮可能なエアシリンダ等によって構成されてもよい。 The single axis stage 106A may be fixed to the base plate 107A. The single-axis stage 106A may be capable of moving the moving plate 105A with respect to the base plate 107A. The single-axis stage 106A may be configured by combining a ball screw and a motor, or may be configured by an extendable air cylinder or the like.
5.3 アッテネータモジュールの動作
 各ビームスプリッタ102Aおよび102Bと各ビームダンパ104Aおよび104Bとは、冷却装置190から供給された冷却媒体が循環することで冷却されてもよい。
5.3 Operation of Attenuator Module Each of the beam splitters 102A and 102B and each of the beam dampers 104A and 104B may be cooled by circulating the cooling medium supplied from the cooling device 190.
 1軸ステージ106Aは、レーザ制御部41からの信号に従って移動プレート105Aを移動してもよい。移動プレート105Aの位置は、図4に示す低出力配置(第1位置)と、図5に示す高出力配置(第2位置)とを含んでもよい。 The single-axis stage 106A may move the moving plate 105A in accordance with a signal from the laser control unit 41. The position of the moving plate 105A may include the low output arrangement (first position) shown in FIG. 4 and the high output arrangement (second position) shown in FIG.
 図4に示すように、移動プレート105Aが低出力配置にある場合、レーザ光30の光路上にビームスプリッタ102Aおよび102Bが配置されてもよい。各ビームスプリッタ102Aおよび102Bは、レーザ光30の一部を透過し、一部を反射光30aおよび30bとして反射してもよい。その結果、エネルギーが低減されたレーザ光30が、各アッテネータモジュール110または120から出力されてもよい。 As shown in FIG. 4, when the moving plate 105A is in a low output arrangement, beam splitters 102A and 102B may be arranged on the optical path of the laser light 30. Each of the beam splitters 102A and 102B may transmit a part of the laser light 30 and reflect a part thereof as reflected light 30a and 30b. As a result, the laser beam 30 with reduced energy may be output from each attenuator module 110 or 120.
 反射光30aおよび30bは、各ビームダンパ104Aおよび104Bに入射してもよい。各ビームダンパ104Aおよび104Bは、入射した反射光30aおよび30bを熱に変換してもよい。各ビームダンパ104Aおよび104Bで発生した熱は、冷却媒体を用いて冷却装置190で排出されてもよい。 The reflected lights 30a and 30b may be incident on the beam dampers 104A and 104B. Each of the beam dampers 104A and 104B may convert the incident reflected light 30a and 30b into heat. The heat generated in each of the beam dampers 104A and 104B may be exhausted by the cooling device 190 using a cooling medium.
 また、図5に示すように、移動プレート105Aが高出力配置にある場合、ビームスプリッタ102Aおよび102Bがレーザ光30の光路から退避されてもよい。その結果、レーザ光30は、エネルギーが低減されることなく各アッテネータモジュール110または120から出力されてもよい。 As shown in FIG. 5, when the moving plate 105 </ b> A is in a high output arrangement, the beam splitters 102 </ b> A and 102 </ b> B may be retracted from the optical path of the laser light 30. As a result, the laser beam 30 may be output from each attenuator module 110 or 120 without energy reduction.
5.4 ビームダンプモジュールの構成
 図6および図7は、ビームダンプモジュールの概略構成例を示す模式図である。図6は、ビームダンプモジュールの移動プレートがレーザ光遮断配置(第3位置)にある場合を示し、図7は、移動プレートがレーザ光出力配置(第4位置)にある場合を示している。
5.4 Configuration of Beam Dump Module FIGS. 6 and 7 are schematic diagrams illustrating an example of a schematic configuration of the beam dump module. FIG. 6 shows a case where the moving plate of the beam dump module is in the laser light blocking arrangement (third position), and FIG. 7 shows a case where the moving plate is in the laser light output arrangement (fourth position).
 図6および図7に示すように、ビームダンプモジュール130は、高反射ミラー102Cと、ビームダンパ104Cと、移動プレート105Cと、ベースプレート107Cと、1軸ステージ106Cとを備えてもよい。 6 and 7, the beam dump module 130 may include a high reflection mirror 102C, a beam damper 104C, a moving plate 105C, a base plate 107C, and a uniaxial stage 106C.
 高反射ミラー102Cは、金コートが施された銅基板であってもよいし、高反射多層膜でコーティングされたシリコン基板であってもよい。 The high reflection mirror 102C may be a copper substrate coated with gold or a silicon substrate coated with a highly reflective multilayer film.
 高反射ミラー102Cは、ミラーホルダ103Cによって保持されてもよい。ミラーホルダ103Cは、スプリッタホルダ103Aおよび103Bと同様の構成を備えてもよい。ミラーホルダ103Cは、その反射光30cがビームダンパ104Cに入射するように、高反射ミラー102Cを保持してもよい。ミラーホルダ103Cは、移動プレート105Cに固定されてもよい。 The high reflection mirror 102C may be held by a mirror holder 103C. The mirror holder 103C may have the same configuration as the splitter holders 103A and 103B. The mirror holder 103C may hold the high reflection mirror 102C so that the reflected light 30c enters the beam damper 104C. The mirror holder 103C may be fixed to the moving plate 105C.
 ビームダンプモジュール130の他の構成は、アッテネータモジュール110および120と同様であってもよい。 Other configurations of the beam dump module 130 may be the same as those of the attenuator modules 110 and 120.
5.5 ビームダンプモジュールの動作
 1軸ステージ106Cは、レーザ制御部からの信号に従って移動プレート105Cを移動してもよい。移動プレート105Cの位置は、図6に示すレーザ光遮断配置(第3位置)と、図7に示すレーザ光出力配置(第4位置)とを含んでもよい。
5.5 Operation of Beam Dump Module The single-axis stage 106 </ b> C may move the moving plate 105 </ b> C according to a signal from the laser control unit. The position of the moving plate 105C may include the laser light blocking arrangement (third position) shown in FIG. 6 and the laser light output arrangement (fourth position) shown in FIG.
 図6に示すように、移動プレート105Cがレーザ光遮断配置にある場合、レーザ光30の光路上に高反射ミラー102Cが配置されてもよい。高反射ミラー102Cでの反射光30cは、ビームダンパ104Cに入射してもよい。その結果、レーザ光30が遮断され、ビームダンプモジュール130からレーザ光31が出力されなくてもよい。 As shown in FIG. 6, when the moving plate 105 </ b> C is in the laser beam blocking arrangement, the high reflection mirror 102 </ b> C may be arranged on the optical path of the laser beam 30. The reflected light 30c from the high reflection mirror 102C may be incident on the beam damper 104C. As a result, the laser beam 30 may be blocked and the laser beam 31 may not be output from the beam dump module 130.
 また、図7に示すように、移動プレート105cがレーザ光出力配置にある場合、高反射ミラー102Cがレーザ光30の光路から退避されてもよい。その結果、レーザ光30が遮断されることなく、レーザ光31としてビームダンプモジュール130から出力されてもよい。 As shown in FIG. 7, when the moving plate 105 c is in the laser light output arrangement, the high reflection mirror 102 </ b> C may be retracted from the optical path of the laser light 30. As a result, the laser beam 30 may be output from the beam dump module 130 as the laser beam 31 without being blocked.
5.6 ビームダンプ装置の詳細構成例
 図8~図11は、図3に示すビームダンプ装置100の概略構成例を示す模式図である。図8~図11に示すように、ビームダンプ装置100は、アッテネータモジュール110および120(図4および図5参照)と、ビームダンプモジュール130(図6および図7参照)とを備えてもよい。
5.6 Detailed Configuration Example of Beam Dump Device FIGS. 8 to 11 are schematic views showing a schematic configuration example of the beam dump device 100 shown in FIG. As shown in FIGS. 8 to 11, the beam dump device 100 may include attenuator modules 110 and 120 (see FIGS. 4 and 5) and a beam dump module 130 (see FIGS. 6 and 7).
 ここで、レーザ装置3の出力が20kWである場合の、各モジュールにおけるビームスプリッタ102Aおよび102Bとビームダンパ104A~104Cとの一仕様を例示する。なお、アッテネータモジュール110および120は、同様の構成であってもよい。 Here, one specification of the beam splitters 102A and 102B and the beam dampers 104A to 104C in each module when the output of the laser device 3 is 20 kW is exemplified. The attenuator modules 110 and 120 may have the same configuration.
 この場合では、以下のような仕様としてもよい。
・アッテネータモジュール110
・・ビームスプリッタ102Aの反射率=33%、透過率=67%
・・ビームスプリッタ102Bの反射率=50%、透過率=50%
・・ビームダンパ104Aの容量=10kW
・・ビームダンパ104Bの容量=10kW
・アッテネータモジュール120
・・ビームスプリッタ102Aの反射率=99%、透過率=1%
・・ビームスプリッタ102Bの反射率=90%、透過率=10%
・・ビームダンパ104Aの容量=10kW
・・ビームダンパ104Bの容量=1kW
・ビームダンプモジュール130
・・高反射ミラー102Cの反射率=99%以上
・・ビームダンパ104Cの容量=1kW
In this case, the following specifications may be used.
Attenuator module 110
..Reflectance of beam splitter 102A = 33%, transmittance = 67%
..Reflectance of beam splitter 102B = 50%, transmittance = 50%
..Capacity of beam damper 104A = 10 kW
..Capacity of beam damper 104B = 10 kW
Attenuator module 120
..Reflectance of beam splitter 102A = 99%, transmittance = 1%
..Reflectance of beam splitter 102B = 90%, transmittance = 10%
..Capacity of beam damper 104A = 10 kW
..Capacity of beam damper 104B = 1 kW
Beam dump module 130
・ ・ Reflectance of high reflection mirror 102C = 99% or more ・ Capacity of beam damper 104C = 1 kW
 このような仕様とした場合、各ビームダンパ104A~104Cには、10kW容量または1kW容量の市販品が利用されてもよい。 In such a specification, a commercial product having a capacity of 10 kW or 1 kW may be used for each of the beam dampers 104A to 104C.
5.7 ビームダンプ装置の動作:レーザ光遮断時
 つづいて、ビームダンプ装置100の動作について、図面を参照して詳細に説明する。図8は、レーザ光を遮断する際の各モジュール内の配置例を示す模式図である。
5.7 Operation of Beam Dump Device: When Laser Light is Cut Next, the operation of the beam dump device 100 will be described in detail with reference to the drawings. FIG. 8 is a schematic diagram illustrating an arrangement example in each module when the laser beam is blocked.
 本動作では、レーザ制御部41は、たとえばEUV光生成制御装置5からレーザ光遮断信号を受信してもよい。レーザ光遮断信号とは、レーザ装置3からのレーザ光31の出力停止を指示する信号であってもよい。 In this operation, the laser control unit 41 may receive a laser light cutoff signal from the EUV light generation control device 5, for example. The laser light cutoff signal may be a signal instructing to stop the output of the laser light 31 from the laser device 3.
 レーザ光遮断信号に対して、レーザ制御部41は、図8に示すように、アッテネータモジュール110および120を低出力配置とし、ビームダンプモジュール130をレーザ光遮断配置としてもよい。そのために、レーザ制御部41は、各モジュールの1軸ステージ106Aおよび106Cを制御してもよい。 As shown in FIG. 8, the laser control unit 41 may set the attenuator modules 110 and 120 to a low output arrangement and the beam dump module 130 to a laser light cutoff arrangement as shown in FIG. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
 このような配置とすることで、レーザ光30は、各アッテネータモジュール110および120のビームスプリッタ102Aおよび102Bと、高反射ミラー102Cとに入射し得る。その際、レーザ光30は、各アッテネータモジュール110および120のビームスプリッタ102Aおよび102Bで減光され得る。その後、アッテネータモジュール120から出力されたレーザ光30は、高反射ミラー120Cによって、出力用の光路からそらされ得る。 With this arrangement, the laser beam 30 can be incident on the beam splitters 102A and 102B of the attenuator modules 110 and 120 and the high reflection mirror 102C. At that time, the laser beam 30 can be attenuated by the beam splitters 102A and 102B of the attenuator modules 110 and 120, respectively. Thereafter, the laser beam 30 output from the attenuator module 120 can be diverted from the optical path for output by the high reflection mirror 120C.
 ビームスプリッタ102A、102Bおよび高反射ミラー102Cによる反射光30a~30cは、それぞれビームダンパ104A~104Cに入射し得る。 Reflected light 30a to 30c by the beam splitters 102A and 102B and the high reflection mirror 102C can enter the beam dampers 104A to 104C, respectively.
 ビームダンプ装置100に20kWのレーザ光30が入射した場合、各ビームダンパ104A~104Cに入射するエネルギーは、以下のようになり得る。
・アッテネータモジュール110
・・ビームダンパ104A:6.6kW
・・ビームダンパ104B:6.7kW
・アッテネータモジュール120
・・ビームダンパ104A:6.6kW
・・ビームダンパ104B:60W
・ビームダンプモジュール130
・・ビームダンパ104C:6.7W
When the 20 kW laser beam 30 is incident on the beam dump device 100, the energy incident on each of the beam dampers 104A to 104C can be as follows.
Attenuator module 110
..Beam damper 104A: 6.6kW
..Beam damper 104B: 6.7kW
Attenuator module 120
..Beam damper 104A: 6.6kW
..Beam damper 104B: 60W
Beam dump module 130
..Beam damper 104C: 6.7W
 この場合、各ビームダンパ104A~104Cに10kW容量または1kW容量の市販品を使用したとしても、それぞれに入射する反射光30a~30cのエネルギーは、それぞれの容量以下となり得る。その結果、ビームダンプ装置100は、20kWのレーザ光を遮断し得る。 In this case, even if a commercial product having a capacity of 10 kW or 1 kW is used for each of the beam dampers 104A to 104C, the energy of the reflected light 30a to 30c incident on each of the beam dampers 104A to 104C can be less than the respective capacity. As a result, the beam dump device 100 can block the 20 kW laser beam.
5.8 ビームダンプ装置の動作:レーザ光出力時
 図9は、レーザ光を出力する際(たとえばEUV光出力時)の各モジュール内の配置例を示す模式図である。
5.8 Operation of Beam Dump Device: During Laser Light Output FIG. 9 is a schematic diagram showing an arrangement example in each module when laser light is output (for example, during EUV light output).
 本動作では、レーザ制御部41は、たとえばEUV光生成制御装置5からレーザ光出力信号を受信してもよい。レーザ光出力信号とは、レーザ装置3からのレーザ光31の出力を指示する信号であってもよい。 In this operation, the laser control unit 41 may receive a laser light output signal from the EUV light generation control device 5, for example. The laser beam output signal may be a signal that instructs the output of the laser beam 31 from the laser device 3.
 レーザ光出力信号に対して、レーザ制御部41は、図9に示すように、アッテネータモジュール110および120を高出力配置とし、ビームダンプモジュール130をレーザ光出力配置としてもよい。そのために、レーザ制御部41は、各モジュールの1軸ステージ106Aおよび106Cを制御してもよい。 Referring to the laser light output signal, the laser controller 41 may set the attenuator modules 110 and 120 to a high output arrangement and the beam dump module 130 to a laser light output arrangement as shown in FIG. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
 このような配置とすることで、レーザ光30は、ビームスプリッタ102A、102Bおよび高反射ミラー104Cに入射することなく、ビームダンプ装置100から出力されてもよい。 With this arrangement, the laser beam 30 may be output from the beam dump device 100 without entering the beam splitters 102A and 102B and the high reflection mirror 104C.
 このように、レーザ光出力時には、たとえば20kWのレーザ光30がそのまま20kWのレーザ光31として、ビームダンプ装置100から出力され得る。 Thus, at the time of laser beam output, for example, the 20 kW laser beam 30 can be directly output from the beam dump device 100 as the 20 kW laser beam 31.
5.9 ビームダンプ装置の動作:レーザ光路調整時
 図10は、レーザ光路調整時の各モジュール内の配置例を示す模式図である。
5.9 Operation of Beam Dump Device: During Laser Optical Path Adjustment FIG. 10 is a schematic diagram illustrating an arrangement example in each module during laser optical path adjustment.
 本動作では、レーザ制御部41は、たとえばEUV光生成制御装置5からレーザ光路調整信号を受信してもよい。レーザ光路調整信号とは、レーザ光路調整の実行を指示または通知する信号であってもよい。 In this operation, the laser controller 41 may receive a laser beam path adjustment signal from the EUV light generation controller 5, for example. The laser optical path adjustment signal may be a signal for instructing or notifying execution of laser optical path adjustment.
 本動作では、レーザ制御部41は、図10に示すように、アッテネータモジュール110および120を低出力配置とし、ビームダンプモジュール130をレーザ光出力配置としてもよい。そのために、レーザ制御部41は、各モジュールの1軸ステージ106Aおよび106Cを制御してもよい。 In this operation, as shown in FIG. 10, the laser control unit 41 may set the attenuator modules 110 and 120 to a low output arrangement and the beam dump module 130 to a laser light output arrangement. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
 このような配置とすることで、レーザ光30は、アッテネータモジュール110および120のビームスプリッタ102Aおよび102Bによって減光され得る。この減光されたレーザ光30は、レーザ光31として、後段のビームデリバリシステム34に入射し得る。 With this arrangement, the laser beam 30 can be attenuated by the beam splitters 102A and 102B of the attenuator modules 110 and 120. The dimmed laser beam 30 can be incident on a subsequent beam delivery system 34 as a laser beam 31.
 たとえばアッテネータモジュール110および120が上述において例示した仕様である場合、ビームダンプ装置100から出力されるレーザ光31のパワーは、6.7Wとなり得る。 For example, when the attenuator modules 110 and 120 have the specifications exemplified above, the power of the laser beam 31 output from the beam dump device 100 can be 6.7 W.
 このように、レーザ光路調整時には、たとえば20kWのレーザ光30が6.7Wのレーザ光31として、ビームダンプ装置100から出力され得る。 Thus, at the time of adjusting the laser beam path, for example, the 20 kW laser beam 30 can be output from the beam dump device 100 as the 6.7 W laser beam 31.
5.10 ビームダンプ装置の動作:レーザ光出力調整時
 図11は、レーザ光のパワーをビームダンプ装置を用いて調整する際の各モジュール内の配置例を示す模式図である。
5.10 Operation of Beam Dump Device: During Adjustment of Laser Light Output FIG. 11 is a schematic diagram illustrating an arrangement example in each module when the power of the laser light is adjusted using the beam dump device.
 本動作では、レーザ制御部41は、たとえばEUV光生成制御装置5からレーザ光出力調整信号を受信してもよい。レーザ光出力調整信号とは、レーザ装置3が出力するレーザ光31パワーの調整(低減)を指示する信号であってもよい。調整後のパワーは、たとえばEUV光生成制御装置5によって指示された所定のパワーであってもよい。EUV光生成制御装置5によって指示された所定のパワーは、たとえば6.7kWであってもよい。 In this operation, the laser control unit 41 may receive a laser light output adjustment signal from the EUV light generation control device 5, for example. The laser light output adjustment signal may be a signal that instructs adjustment (reduction) of the power of the laser light 31 output from the laser device 3. The adjusted power may be a predetermined power instructed by the EUV light generation controller 5, for example. The predetermined power instructed by the EUV light generation controller 5 may be, for example, 6.7 kW.
 本動作では、レーザ制御部41は、図11に示すように、たとえばアッテネータモジュール110を低出力配置とし、アッテネータモジュール120を高出力配置とし、ビームダンプモジュール130をレーザ光出力配置としてもよい。そのために、レーザ制御部41は、各モジュールの1軸ステージ106Aおよび106Cを制御してもよい。 In this operation, as shown in FIG. 11, for example, the laser controller 41 may set the attenuator module 110 to a low output arrangement, the attenuator module 120 to a high output arrangement, and the beam dump module 130 to a laser light output arrangement. Therefore, the laser control unit 41 may control the uniaxial stages 106A and 106C of each module.
 このような配置とすることで、レーザ光30は、アッテネータモジュール110のビームスプリッタ102Aおよび102Bによって減光され得る。この減光されたレーザ光30は、レーザ光31として、後段のビームデリバリシステム34に入射し得る。 With this arrangement, the laser beam 30 can be attenuated by the beam splitters 102A and 102B of the attenuator module 110. The dimmed laser beam 30 can be incident on a subsequent beam delivery system 34 as a laser beam 31.
 このように、レーザ光出力調整時には、たとえば20kWのレーザ光30が6.7kWのレーザ光31として、ビームダンプ装置100から出力され得る。 Thus, at the time of adjusting the laser beam output, for example, the 20 kW laser beam 30 can be output from the beam dump device 100 as the 6.7 kW laser beam 31.
5.11 効果
 以上のように、実施形態1では、レーザ光30は、各アッテネータモジュール110および120の複数のビームスプリッタ102Aおよび102Bによって減光され、減光に伴って生じる不要な反射光を複数のビームダンパに分配し得る。そのため、各ビームスプリッタ102A、102Bおよび高反射ミラー102Cによる反射光30a~30cを受ける各ビームダンパ104A~104Cの容量を小さくできる。それにより、各ビームダンパ104A~104Cとして、たとえば市販のビームダンパの利用が可能となる。
5.11 Effect As described above, in the first embodiment, the laser light 30 is dimmed by the plurality of beam splitters 102A and 102B of the attenuator modules 110 and 120, and a plurality of unnecessary reflected lights generated due to the dimming are generated. Can be distributed to the beam dampers. Therefore, the capacity of each of the beam dampers 104A to 104C that receives the reflected lights 30a to 30c by the respective beam splitters 102A and 102B and the high reflection mirror 102C can be reduced. Accordingly, for example, commercially available beam dampers can be used as the beam dampers 104A to 104C.
 また、各アッテネータモジュール110および120において、偶数のビームスプリッタ102Aおよび102Bは、レーザ光30の入射角が互いに相反するように配置されてもよい。その場合、各アッテネータモジュール110および120に入射するレーザ光30の光軸と、各アッテネータモジュール110および120から出射するレーザ光30の光軸とのずれを抑制し得る。これにより、アッテネータモジュールを容易に多段配置できるので任意の減光率を簡単に実現し得る。 Further, in each attenuator module 110 and 120, the even-numbered beam splitters 102A and 102B may be arranged such that the incident angles of the laser light 30 are opposite to each other. In that case, it is possible to suppress a deviation between the optical axis of the laser light 30 incident on the attenuator modules 110 and 120 and the optical axis of the laser light 30 emitted from the attenuator modules 110 and 120. As a result, attenuator modules can be easily arranged in multiple stages, so that an arbitrary dimming rate can be easily realized.
 また、個々のアッテネータモジュール110および120は、高出力配置(減衰無し)と低出力配置(減衰あり)とを選択し得る。そのため、各アッテネータモジュール110および120の配置状態を制御することで、レーザ装置3から出力されるレーザ光31のパワーを所望のパワーに調整し得る。たとえば、最終段の増幅器PA3から出力された数十kWのレーザ光30を数Wのレーザ光31に減衰して出力し得る。 Also, the individual attenuator modules 110 and 120 can select a high output arrangement (no attenuation) and a low output arrangement (with attenuation). Therefore, the power of the laser beam 31 output from the laser device 3 can be adjusted to a desired power by controlling the arrangement state of the attenuator modules 110 and 120. For example, the laser light 30 of several tens kW output from the amplifier PA3 in the final stage can be attenuated to the laser light 31 of several W and output.
 また、実施形態1では、レーザ光路調整時であっても、マスタオシレータMOおよび増幅器PA1~PA3の出力をEUV光出力時の出力とし得る。そのため、レーザ装置3内のマスタオシレータMOから増幅器PA3までの光学素子の熱負荷が、EUV光出力時と同等の熱負荷となり得る。その結果、レーザ光路調整時のレーザ光31のビームダイバージェンスや断面強度分布がEUV光出力時のそれらと略同等となり得る。それにより、EUV光出力時にレーザ光32の光路等を適切に調整し得るため、レーザ光33のターゲット27への照射を安定化させ得る。 In the first embodiment, the output of the master oscillator MO and the amplifiers PA1 to PA3 can be used as the output when the EUV light is output even when the laser light path is adjusted. Therefore, the thermal load of the optical elements from the master oscillator MO to the amplifier PA3 in the laser device 3 can be the same as that at the time of EUV light output. As a result, the beam divergence and cross-sectional intensity distribution of the laser light 31 at the time of laser light path adjustment can be substantially the same as those at the time of EUV light output. Thereby, since the optical path of the laser beam 32 and the like can be adjusted appropriately when EUV light is output, the irradiation of the laser beam 33 onto the target 27 can be stabilized.
 また、アッテネータモジュール110および120とビームダンプモジュール130とを組み合わせることで、ビームダンプモジュール130のビームダンパ104Cに入射する反射光30cのエネルギーを低減し得る。それにより、最終段の増幅器PA3から数十kW程度の比較的高いエネルギーのレーザ光30が出力される場合でも、ビームダンパ104Cに比較的容量の小さいビームダンパを使用し得る。その結果、市販のビームダンパが利用できる。さらに、アッテネータモジュールの配置数に制限がないため、レーザ装置3の高出力化に対しても容易に対応することが可能である。その際にも、各ビームダンパ104A~104Cに市販のビームダンパを利用できるため、高出力化に対して安価に対応することができる。 Also, by combining the attenuator modules 110 and 120 and the beam dump module 130, the energy of the reflected light 30c incident on the beam damper 104C of the beam dump module 130 can be reduced. Thereby, even when the laser beam 30 having a relatively high energy of about several tens of kW is output from the final stage amplifier PA3, a beam damper having a relatively small capacity can be used for the beam damper 104C. As a result, a commercially available beam damper can be used. Furthermore, since there is no limit to the number of attenuator modules, it is possible to easily cope with higher output of the laser device 3. Also in this case, since commercially available beam dampers can be used for the beam dampers 104A to 104C, it is possible to cope with high output at low cost.
5.12 実施形態1の変形例
 なお、上述の例では、各アッテネータモジュール110および120が20kWのレーザ光30に対して6.7kWのレーザ光30を出力し得るが、この例に限定されない。すなわち、各アッテネータモジュール110および120の各ビームスプリッタ102Aおよび102Bの反射率は適宜選択可能である。さらに、アッテネータモジュール110および120の段数についても、上述の例における2段に限定されない。すなわち、3段以上のアッテネータモジュールが搭載されてもよい。ビームダンプ装置は、アッテネータモジュールの段数および各ビームスプリッタ102Aおよび102Bの反射率を調整することで、数段階のエネルギーのレーザ光31を出力可能に構成されてもよい。
5.12 Modification of Embodiment 1 In the above example, each attenuator module 110 and 120 can output 6.7 kW of laser light 30 to 20 kW of laser light 30, but the present invention is not limited to this example. That is, the reflectance of each beam splitter 102A and 102B of each attenuator module 110 and 120 can be selected as appropriate. Further, the number of stages of the attenuator modules 110 and 120 is not limited to two in the above example. That is, three or more attenuator modules may be mounted. The beam dump device may be configured to be able to output laser light 31 with several stages of energy by adjusting the number of stages of the attenuator module and the reflectivity of each of the beam splitters 102A and 102B.
5.12.1 ビームダンプ装置の他の構成
 図12は、アッテネータモジュールの段数を4とした場合の概略構成例を示す模式図である。図12に示す構成では、各アッテネータモジュール110、120、140および150における各ビームスプリッタ102Aおよび102Bの反射率が、レーザ光31に対して要求する複数のパワーの値に応じて決定されてもよい。
5.12.1 Other Configuration of Beam Dump Device FIG. 12 is a schematic diagram illustrating a schematic configuration example when the number of stages of the attenuator module is four. In the configuration shown in FIG. 12, the reflectivity of each beam splitter 102A and 102B in each attenuator module 110, 120, 140 and 150 may be determined according to a plurality of power values required for the laser light 31. .
 また、各モジュールにおけるビームダンパ104A~104Cのいずれかは、パワーメータや集光光学系を備えたビームプロファイラ等に置き換えられ得る。図12に示す例では、アッテネータモジュール110のビームダンパ104Bがパワーメータ104Dに置き換えられてもよい。また、アッテネータモジュール150のビームダンパ104Bがビームプロファイラ104Eに置き換えられてもよい。パワーメータ104Dおよびビームプロファイラ104Eは、それぞれレーザ制御部41等に接続されてもよい。 Also, any of the beam dampers 104A to 104C in each module can be replaced with a beam profiler equipped with a power meter or a condensing optical system. In the example shown in FIG. 12, the beam damper 104B of the attenuator module 110 may be replaced with a power meter 104D. Further, the beam damper 104B of the attenuator module 150 may be replaced with the beam profiler 104E. The power meter 104D and the beam profiler 104E may be connected to the laser control unit 41 and the like, respectively.
5.12.2 ビームダンプ装置の他の構成の動作
 図12において、レーザ制御部41は、各アッテネータモジュール110、120、140および150の1軸ステージ106Aを制御してもよい。それにより、様々なパワーのレーザ光31がビームダンプ装置100から出力されてもよい。
5.12.2 Operation of Other Configuration of Beam Dump Device In FIG. 12, the laser control unit 41 may control the uniaxial stage 106A of each attenuator module 110, 120, 140, and 150. Thereby, laser beams 31 with various powers may be output from the beam dump device 100.
 また、パワーメータ104Dおよびビームプロファイラ104Eの出力信号は、レーザ制御部41に入力されてもよい。レーザ制御部41は、レーザ光路調整時やレーザ光遮断時に、レーザ光31のパワー値をオペレータに提示してもよい。提示されるパワー値は、パワーメータ104Dからの出力信号に基づいて、レーザ制御部41が計算してもよい。その際、レーザ制御部41は、ビームスプリッタ102Aおよび102Bの減光率を用いてパワー値を計算してもよい。 Further, output signals of the power meter 104D and the beam profiler 104E may be input to the laser control unit 41. The laser control unit 41 may present the power value of the laser beam 31 to the operator when adjusting the laser beam path or blocking the laser beam. The presented power value may be calculated by the laser control unit 41 based on the output signal from the power meter 104D. At that time, the laser control unit 41 may calculate the power value using the dimming rates of the beam splitters 102A and 102B.
 さらに、レーザ制御部41は、レーザ光路調整時やレーザ光遮断時に、レーザ光31のプロファイルをオペレータに提示してもよい。提示されるプロファイルは、ビームプロファイラ104Eの出力信号に基づいて、レーザ制御部41が計算してもよい。 Furthermore, the laser control unit 41 may present the profile of the laser beam 31 to the operator when adjusting the laser beam path or blocking the laser beam. The presented profile may be calculated by the laser control unit 41 based on the output signal of the beam profiler 104E.
 オペレータは、提示されたパワー値やプロファイルに基づいて、レーザ光31のレーザ光路調整を行ってもよい。なお、レーザ制御部41は、パワー値やプロファイルを提示するためのディスプレイを備えてもよい。 The operator may adjust the laser beam path of the laser beam 31 based on the presented power value and profile. The laser control unit 41 may include a display for presenting power values and profiles.
 レーザ装置3は、マスタオシレータMO~増幅器PA3までのレーザ光30の光路上に配置された光学素子の位置や姿勢等を調整する機構を備えてもよい。その場合、レーザ制御部41は、レーザ光路調整時やレーザ光遮断時に、パワーメータ104Dやビームプロファイラ104Eからの出力信号に基づいて、上記光学素子の位置や姿勢等を制御してもよい。 The laser apparatus 3 may be provided with a mechanism for adjusting the position, posture, and the like of optical elements arranged on the optical path of the laser light 30 from the master oscillator MO to the amplifier PA3. In this case, the laser control unit 41 may control the position, posture, and the like of the optical element based on output signals from the power meter 104D and the beam profiler 104E when adjusting the laser beam path or blocking the laser beam.
6.実施形態2
 つぎに、実施形態2にかかるビームダンプ装置、それを備えたレーザ装置およびEUV光生成装置を、図面を用いて詳細に説明する。以下の説明において、上述した実施形態と同様の構成については、同一の符号を付す。
6). Embodiment 2
Next, a beam dump device according to a second embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings. In the following description, the same code | symbol is attached | subjected about the structure similar to embodiment mentioned above.
6.1 構成
 図13~図15は、実施形態2にかかるビームダンプ装置の概略構成例を示す模式図である。図13は、ビームダンプ装置200の上視図である。図14および図15は、ビームダンプ装置200の側視図である。なお、図13および図14は、レーザ光30を遮断する際の各モジュール内の配置例を示す模式図である。図15は、レーザ光を出力する際(たとえばEUV光出力時)の各モジュール内の配置例を示す模式図である。
6.1 Configuration FIGS. 13 to 15 are schematic diagrams illustrating a schematic configuration example of the beam dump device according to the second embodiment. FIG. 13 is a top view of the beam dump device 200. 14 and 15 are side views of the beam dump device 200. FIG. FIG. 13 and FIG. 14 are schematic views showing an arrangement example in each module when the laser beam 30 is blocked. FIG. 15 is a schematic diagram illustrating an arrangement example in each module when laser light is output (for example, when EUV light is output).
 図13~図15に示すように、ビームダンプ装置200は、1つ以上のアッテネータモジュール210および220と、ビームダンプモジュール230とを含んでもよい。 As shown in FIGS. 13 to 15, the beam dump device 200 may include one or more attenuator modules 210 and 220 and a beam dump module 230.
 各モジュールの1軸ステージ206Aおよび206Cは、それぞれベースプレート107Aまたは107Cに固定されてもよい。各1軸ステージ206Aおよび206Cは、ベースプレート107Aまたは107Cに対し、実施形態1とは異なる方向に移動プレート105Aまたは105Cを移動してもよい。たとえば図14および図15に示すように、1軸ステージ206Aおよび206Cは、ベースプレート107Aおよび107Cの光学素子載置面に対して直交する移動方向に、移動プレート105Aおよび105Cをそれぞれ移動してもよい。この移動方向は、重力方向であってもよい。 The single- axis stages 206A and 206C of each module may be fixed to the base plate 107A or 107C, respectively. Each uniaxial stage 206A and 206C may move the moving plate 105A or 105C in a direction different from that of the first embodiment with respect to the base plate 107A or 107C. For example, as shown in FIGS. 14 and 15, the uniaxial stages 206A and 206C may move the moving plates 105A and 105C in the moving direction orthogonal to the optical element mounting surfaces of the base plates 107A and 107C, respectively. . This moving direction may be the direction of gravity.
 各移動プレート105Aおよび105Cは、1軸ステージ206Aおよび206Cの移動方向に平行なリニアガイド206aおよび206cによってガイドされてもよい。 The moving plates 105A and 105C may be guided by linear guides 206a and 206c parallel to the moving direction of the uniaxial stages 206A and 206C.
6.2 動作
 レーザ光遮断時、レーザ制御部41は、図13および図14に示すように、各アッテネータモジュール210および220の移動プレート105Aを低出力配置(第1位置)とし、ビームダンプモジュール230の移動プレート105Bをレーザ光遮断配置(第3位置)としてもよい。
6.2 Operation When the laser beam is cut off, the laser control unit 41 sets the moving plate 105A of each attenuator module 210 and 220 to a low output arrangement (first position) as shown in FIGS. The moving plate 105B may be arranged so as to block the laser beam (third position).
 また、レーザ光出力時、レーザ制御部41は、図15に示すように、各アッテネータモジュール210および220の移動プレート105Aを高出力配置(第2位置)とし、ビームダンプモジュール230の移動プレート105Cをレーザ光出力配置(第4位置)としてもよい。 Further, at the time of laser beam output, the laser control unit 41 places the moving plate 105A of each attenuator module 210 and 220 in a high output arrangement (second position) and moves the moving plate 105C of the beam dump module 230 as shown in FIG. A laser light output arrangement (fourth position) may be used.
 各モジュールのリニアガイド206aおよび206cは、移動プレート105Aおよび105Cが移動方向に平行移動するように、移動プレート105Aおよび105Cの移動を規制してもよい。それにより、ベースプレート107Aおよび107Cの光学素子搭載面に対する移動プレート105Aおよび105Cの光学素子搭載面の角度が、移動プレート105Aおよび105Cの移動の前後において維持されてもよい。 The linear guides 206a and 206c of each module may regulate the movement of the moving plates 105A and 105C so that the moving plates 105A and 105C are translated in the moving direction. Thereby, the angles of the optical element mounting surfaces of the moving plates 105A and 105C with respect to the optical element mounting surfaces of the base plates 107A and 107C may be maintained before and after the movement of the moving plates 105A and 105C.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
7.実施形態3
 つぎに、実施形態3にかかるビームダンプ装置、それを備えたレーザ装置およびEUV光生成装置を、図面を用いて詳細に説明する。以下の説明において、上述した実施形態と同様の構成については、同一の符号を付す。
7). Embodiment 3
Next, a beam dump device according to a third embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings. In the following description, the same code | symbol is attached | subjected about the structure similar to embodiment mentioned above.
7.1 構成
 図16および図17は、実施形態3にかかるアッテネータモジュールの概略構成例を示す模式図である。ビームダンプ装置100に搭載される複数のアッテネータモジュールのうち少なくとも1つは、図16にアッテネータモジュール310に置き換えられてもよい。アッテネータモジュール310は、出力するレーザ光30のパワーを連続的に変更できてもよい。
7.1 Configuration FIGS. 16 and 17 are schematic diagrams illustrating a schematic configuration example of an attenuator module according to the third embodiment. At least one of the plurality of attenuator modules mounted on the beam dump device 100 may be replaced with the attenuator module 310 in FIG. The attenuator module 310 may be able to continuously change the power of the laser beam 30 to be output.
 図16および図17に示すように、アッテネータモジュール310は、ビームスプリッタ102Aおよび102Bとビームダンパ104Aおよび104Bの他に、2つの内側回転ステージ311Aおよび311Bと、2つの外側回転ステージ312Aおよび312Bとを備えてもよい。内側回転ステージ311Aおよび311Bと外側回転ステージ312Aおよび312Bとは、移動プレート105Aに搭載されてもよい。移動プレート105Aは、実施形態1と同様の1軸ステージ106Aによって、低出力配置(第1位置)と高出力配置(第2位置)との間で移動可能であってもよい。ただし、移動プレート105Aの移動は、1軸ステージ106Aの移動方向に平行なリニアガイド306aによってガイドされてもよい。 As shown in FIGS. 16 and 17, the attenuator module 310 includes two inner rotation stages 311A and 311B and two outer rotation stages 312A and 312B in addition to the beam splitters 102A and 102B and the beam dampers 104A and 104B. May be. The inner rotary stages 311A and 311B and the outer rotary stages 312A and 312B may be mounted on the moving plate 105A. The moving plate 105A may be movable between the low output arrangement (first position) and the high output arrangement (second position) by the single-axis stage 106A similar to the first embodiment. However, the movement of the moving plate 105A may be guided by a linear guide 306a parallel to the moving direction of the uniaxial stage 106A.
 内側回転ステージ311Aは、中心を通る軸を回転軸として回転可能であってもよい。ビームスプリッタ102Aは、スプリッタホルダ103Aを用いて、内側回転ステージ311Aに固定されてもよい。その際、ビームスプリッタ102Aは、レーザ光30が入射する面に内側回転ステージ311Aの回転軸が位置するように、内側回転ステージ311Aに固定されてもよい。このような構成は、ビームスプリッタ102Bおよび内側回転ステージ311Bに対しても同様であってもよい。 The inner rotation stage 311A may be rotatable with an axis passing through the center as a rotation axis. The beam splitter 102A may be fixed to the inner rotary stage 311A using the splitter holder 103A. At this time, the beam splitter 102A may be fixed to the inner rotary stage 311A so that the rotation axis of the inner rotary stage 311A is positioned on the surface on which the laser beam 30 is incident. Such a configuration may be the same for the beam splitter 102B and the inner rotary stage 311B.
 外側回転ステージ312Aは、内側回転ステージ311Aと同じ軸を回転軸として回転可能であってもよい。外側回転ステージ312は、円盤形状であってもよいし、ドーナツ形状であってもよい。ドーナツ形状の場合、外側回転ステージ312の中央の丸穴に内側回転ステージ311Aが回転可能に収まっていてもよい。ビームダンパ104Aは、外側回転ステージ312Aにおける内側回転ステージ311Aよりも外側の位置に固定されてもよい。このような構成は、ビームダンパ104Bおよび外側回転ステージ312Bに対しても同様であってもよい。 The outer rotation stage 312A may be rotatable about the same axis as the inner rotation stage 311A. The outer rotary stage 312 may have a disk shape or a donut shape. In the case of a donut shape, the inner rotary stage 311A may be rotatably accommodated in the central circular hole of the outer rotary stage 312. The beam damper 104A may be fixed at a position outside the inner rotary stage 311A in the outer rotary stage 312A. Such a configuration may be the same for the beam damper 104B and the outer rotary stage 312B.
 各内側回転ステージ311Aおよび311Bと各外側回転ステージ312Aおよび312Bとは、それぞれレーザ制御部41に接続されてもよい。 The inner rotary stages 311A and 311B and the outer rotary stages 312A and 312B may be connected to the laser control unit 41, respectively.
 図17に示すように、外側回転ステージ312Aは、内側回転ステージ311Aの回転角Φに対して2倍の回転角2Φ回転するように構成されてもよい。これは、レーザ制御部41による制御で実現されてもよいし、内側回転ステージ311Aを回転させるギアと外側回転ステージ312Aを回転させるギアとのギア比によって実現されてもよい。このような構成は、内側回転ステージ311Bおよび外側回転ステージ312Bに対しても同様であってもよい。 As shown in FIG. 17, the outer rotary stage 312A may be configured to rotate at a rotation angle 2Φ that is twice the rotation angle Φ of the inner rotation stage 311A. This may be realized by control by the laser control unit 41, or may be realized by a gear ratio between a gear that rotates the inner rotary stage 311A and a gear that rotates the outer rotary stage 312A. Such a configuration may be the same for the inner rotary stage 311B and the outer rotary stage 312B.
 また、内側回転ステージ311Bは、内側回転ステージ311Aの回転に対して逆回転するように構成されていてもよい。たとえば内側回転ステージ311Aが角度Φ回転した場合、内側回転ステージ311Bは、角度-Φ回転してもよい。これは、レーザ制御部41による制御で実現されてもよいし、内側回転ステージ311Aを回転させるギアと内側回転ステージ311Bを回転させるギアとによって実現されてもよい。 Further, the inner rotary stage 311B may be configured to rotate in reverse to the rotation of the inner rotary stage 311A. For example, when the inner rotary stage 311A rotates by an angle Φ, the inner rotary stage 311B may rotate by an angle −Φ. This may be realized by control by the laser control unit 41, or may be realized by a gear that rotates the inner rotary stage 311A and a gear that rotates the inner rotary stage 311B.
7.2 動作
 レーザ光路調整時およびレーザ光出力調整時、レーザ制御部41は、図16に示すように、アッテネータモジュール310の移動プレート105Aを低出力配置(第1位置)としてよい。
7.2 Operation During laser beam path adjustment and laser beam output adjustment, the laser control unit 41 may place the moving plate 105A of the attenuator module 310 in a low output arrangement (first position) as shown in FIG.
 また、レーザ制御部41は、図17に示すように、内側回転ステージ311Aおよび311Bを制御して、各ビームスプリッタ102Aおよび102Bへのレーザ光30の入射角を変更してもよい。その際、ビームスプリッタ102Aは回転角Φ回転し、ビームスプリッタ102Bは回転角-Φ回転してもよい。各ビームスプリッタ102Aおよび102Bへのレーザ光30の入射角を変更することで、各ビームスプリッタ102Aおよび102Bでの反射率および透過率が変更され得る。 Further, as shown in FIG. 17, the laser control unit 41 may control the inner rotation stages 311A and 311B to change the incident angle of the laser light 30 to the beam splitters 102A and 102B. At that time, the beam splitter 102A may rotate by the rotation angle Φ, and the beam splitter 102B may rotate by the rotation angle −Φ. By changing the incident angle of the laser beam 30 to each of the beam splitters 102A and 102B, the reflectance and transmittance at each of the beam splitters 102A and 102B can be changed.
 また、内側回転ステージ311Aおよび311Bの回転に伴い、外側回転ステージ312Aおよび312Bが2倍の回転角2Φおよび-2Φ回転してもよい。それにより、各ビームスプリッタ102Aおよび102Bで反射した反射光30aおよび30bがそれぞれビームダンパ104Aおよび104Bに入射するよう、各ビームダンパ104Aおよび104Bの配置が変更されてもよい。 Further, as the inner rotation stages 311A and 311B rotate, the outer rotation stages 312A and 312B may rotate twice the rotation angles 2Φ and −2Φ. Thereby, the arrangement of the beam dampers 104A and 104B may be changed so that the reflected lights 30a and 30b reflected by the beam splitters 102A and 102B are incident on the beam dampers 104A and 104B, respectively.
7.3 効果
 以上のような構成を備えることで、アッテネータモジュール310から出力されるレーザ光30のパワーを連続的かつ任意に変更し得る。それにより、レーザ装置3の出力を連続的かつ任意に変更し得る。
7.3 Effect With the above-described configuration, the power of the laser beam 30 output from the attenuator module 310 can be continuously and arbitrarily changed. Thereby, the output of the laser apparatus 3 can be changed continuously and arbitrarily.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
 また、上述したように、ビームダンプ装置100に搭載される複数のアッテネータモジュールのうち少なくとも1つ(たとえばアッテネータモジュール120)は、図18および図19に示すように、アッテネータモジュール310に置き換えられてもよい。 Further, as described above, at least one of a plurality of attenuator modules (for example, the attenuator module 120) mounted on the beam dump device 100 may be replaced with the attenuator module 310 as shown in FIGS. Good.
 その場合、レーザ光遮断時、レーザ制御部41は、図18に示すように、各アッテネータモジュール110および310の移動プレート105Aを低出力配置(第1位置)とし、ビームダンプモジュール130の移動プレート105Bをレーザ光遮断配置(第3位置)としてもよい。 In this case, when the laser beam is cut off, the laser control unit 41 sets the moving plate 105A of each attenuator module 110 and 310 to a low output arrangement (first position) and moves the moving plate 105B of the beam dump module 130 as shown in FIG. May be a laser light blocking arrangement (third position).
 また、レーザ光出力時、レーザ制御部41は、図19に示すように、各アッテネータモジュール110および310の移動プレート105Aを高出力配置(第2位置)とし、ビームダンプモジュール130の移動プレート105Cをレーザ光出力配置(第4位置)としてもよい。 At the time of laser beam output, the laser control unit 41 places the moving plate 105A of each attenuator module 110 and 310 in a high output arrangement (second position) and moves the moving plate 105C of the beam dump module 130 as shown in FIG. A laser light output arrangement (fourth position) may be used.
 なお、レーザ光路調整時およびレーザ光出力調整時には、アッテネータモジュール310を低出力配置として、図17に示したように、各ビームスプリッタ102Aおよび102Bのレーザ光30に対する入射角Φおよび-Φを調整してもよい。それにより、ビームダンプ装置300から出力されるレーザ光30のパワーが連続的かつ任意に変更され得る。 At the time of laser beam path adjustment and laser beam output adjustment, the attenuator module 310 is placed in a low output arrangement, and the incident angles Φ and −Φ of the beam splitters 102A and 102B with respect to the laser beam 30 are adjusted as shown in FIG. May be. Thereby, the power of the laser beam 30 output from the beam dump device 300 can be changed continuously and arbitrarily.
8.実施形態4
 つぎに、実施形態4にかかるビームダンプ装置、それを備えたレーザ装置およびEUV光生成装置を、図面を用いて詳細に説明する。以下の説明において、上述した実施形態と同様の構成については、同一の符号を付す。
8). Embodiment 4
Next, a beam dump device according to a fourth embodiment, a laser device including the beam dump device, and an EUV light generation device will be described in detail with reference to the drawings. In the following description, the same code | symbol is attached | subjected about the structure similar to embodiment mentioned above.
8.1 構成
 図20は、実施形態4にかかるレーザ装置の概略構成例を示す模式図である。上述の実施形態において例示したアッテネータモジュールおよびビームダンプモジュールの配置場所は、レーザ装置3の出力段に限られない。すなわち、マスタオシレータMOからPA3までの間の光路上に、1つ以上のアッテネータモジュール140および/またはビームダンプモジュール150が配置されてもよい。たとえば図20に示すように、マスタオシレータMOと増幅器PA1との間に、アッテネータモジュール160とビームダンプモジュール170とが配置されてもよい。また、配置される1つ以上のアッテネータモジュールは、上述したアッテネータモジュール110/120,210/220および310のいずれであってもよい。
8.1 Configuration FIG. 20 is a schematic diagram illustrating a schematic configuration example of a laser apparatus according to the fourth embodiment. The arrangement location of the attenuator module and the beam dump module exemplified in the above embodiment is not limited to the output stage of the laser device 3. That is, one or more attenuator modules 140 and / or beam dump modules 150 may be arranged on the optical path between the master oscillator MO and PA3. For example, as shown in FIG. 20, an attenuator module 160 and a beam dump module 170 may be arranged between the master oscillator MO and the amplifier PA1. Further, the one or more attenuator modules to be arranged may be any of the attenuator modules 110/120, 210/220 and 310 described above.
8.2 動作
 図20に例示した構成では、レーザ光出力時、レーザ制御部41は、アッテネータモジュール160の移動プレート105Aを高出力配置(第2位置)とし、ビームダンプモジュール170の移動プレート105Cをレーザ光出力配置(第4位置)としてもよい。ただし、アッテネータモジュール160としてアッテネータモジュール310を用いた場合、レーザ制御部41は、移動プレート105Aを低出力配置(第1位置)としつつ各回転プレートの回転角を調整することで、レーザ装置3からの出力を調整してもよい。
8.2 Operation In the configuration illustrated in FIG. 20, at the time of laser light output, the laser control unit 41 places the moving plate 105 </ b> A of the attenuator module 160 in a high output arrangement (second position), and moves the moving plate 105 </ b> C of the beam dump module 170. A laser light output arrangement (fourth position) may be used. However, when the attenuator module 310 is used as the attenuator module 160, the laser control unit 41 adjusts the rotation angle of each rotation plate while placing the moving plate 105A in a low output arrangement (first position), so that the laser device 3 May be adjusted.
 また、レーザ光遮断時、レーザ制御部41は、アッテネータモジュール160の移動プレート105Aを低出力配置(第1位置)とし、ビームダンプモジュール170の移動プレート105Cをレーザ光遮断配置(第3位置)としてもよい。 When the laser beam is cut off, the laser control unit 41 sets the moving plate 105A of the attenuator module 160 to the low output arrangement (first position) and sets the moving plate 105C of the beam dump module 170 to the laser beam blocking arrangement (third position). Also good.
8.3 効果
 たとえばマスタオシレータMOに量子カスケードレーザ(QCL)等の半導体レーザを用いる場合、マスタオシレータMOの出力エネルギーを変更すると、半導体レーザの熱負荷が変動し得る。それにより、マスタオシレータMOの発振波長が変化し得る。それに対し、実施形態4の構成によれば、マスタオシレータMOを常に一定のエネルギーで発振させることができるため、マスタオシレータMOの発振波長の変動を抑制し得る。
8.3 Effect For example, when a semiconductor laser such as a quantum cascade laser (QCL) is used for the master oscillator MO, the thermal load of the semiconductor laser may fluctuate if the output energy of the master oscillator MO is changed. Thereby, the oscillation wavelength of the master oscillator MO can be changed. On the other hand, according to the configuration of the fourth embodiment, since the master oscillator MO can always be oscillated with a constant energy, fluctuations in the oscillation wavelength of the master oscillator MO can be suppressed.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
9.実施形態5
 つぎに、実施形態5にかかるビームダンプ装置、およびそれを備えたチャンバ装置およびEUV光生成装置を、図面を用いて詳細に説明する。実施形態5では、図2のチャンバ2に取り付けられるビームダンプ装置を例示する。以下の説明において、上述した実施形態と同様の構成については、同一の符号を付す。
9. Embodiment 5
Next, a beam dump device according to a fifth embodiment, and a chamber device and an EUV light generation device including the beam dump device will be described in detail with reference to the drawings. In the fifth embodiment, a beam dump device attached to the chamber 2 of FIG. 2 is exemplified. In the following description, the same code | symbol is attached | subjected about the structure similar to embodiment mentioned above.
9.1 構成
 図21は、実施形態5にかかるビームダンプ装置の概略構成例を示す模式図である。図21に示すように、ビームダンプ装置500は、1つ以上のビームダンプモジュール510~530を備えてもよい。ビームダンプ装置500は、終端モジュール540をさらに備えてもよい。
9.1 Configuration FIG. 21 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to the fifth embodiment. As shown in FIG. 21, the beam dump device 500 may include one or more beam dump modules 510 to 530. The beam dump device 500 may further include a termination module 540.
 各ビームダンプモジュール510~530は、フレーム501と、ビームスプリッタ502と、ビームダンパ104とを備えてもよい。 Each of the beam dump modules 510 to 530 may include a frame 501, a beam splitter 502, and a beam damper 104.
 図22に示すように、フレーム501は、金属等で構成されたチーズ管状の部材であってもよい。フレーム501は、3つの開口端それぞれに接続フランジ501aを備えてもよい。3つの開口端それぞれの接続フランジ501aのサイズは、同一であってもよいし、異なっていてもよい。ただし、サイズが異なる場合でも、各接続フランジ501aは、他のフレーム501におけるいずれかの接続フランジ501aと同サイズであるとよい。 As shown in FIG. 22, the frame 501 may be a cheese tubular member made of metal or the like. The frame 501 may include a connection flange 501a at each of the three open ends. The sizes of the connection flanges 501a at the three open ends may be the same or different. However, even when the sizes are different, each connection flange 501a is preferably the same size as any one of the connection flanges 501a in the other frame 501.
 各接続フランジ501aは、複数のボルト穴を備えてもよい。同サイズの接続フランジ501aでは、ボルト孔径および孔ピッチが共通であってもよい。 Each connection flange 501a may include a plurality of bolt holes. In the connection flange 501a of the same size, the bolt hole diameter and the hole pitch may be common.
 各接続フランジ501aは、コンフラットフランジであってもよい。コンフラットフランジ同士は、メタルパッキンを用いた接続が可能である。そのため、接続フランジ501aにコンフラットフランジを用いることで、ビームダンプ装置500内の気密性を確保し得る。その場合、チャンバ2は、ダンパウインドウ58を備えなくてもよい。 Each connection flange 501a may be a conflat flange. Con-flat flanges can be connected using metal packing. Therefore, airtightness in the beam dump device 500 can be ensured by using a conflat flange as the connection flange 501a. In that case, the chamber 2 may not include the damper window 58.
 3つの接続フランジ501aは、それぞれレーザ光60が入出射可能な開口を画定してもよい。3つの開口のうち1つは、レーザ光60がビームダンプモジュール510/520/530内に入射する入射口として用いられてもよい。他の1つは、レーザ光60がビームダンプモジュール510/520/530から出射する出射口として用いられてもよい。残りの1つは、ビームダンパ104が取り付けられる取付け口として用いられてもよい。 The three connection flanges 501a may each define an opening through which the laser beam 60 can enter and exit. One of the three openings may be used as an entrance through which the laser beam 60 enters the beam dump module 510/520/530. The other one may be used as an exit from which the laser beam 60 exits from the beam dump module 510/520/530. The remaining one may be used as an attachment port to which the beam damper 104 is attached.
 フレーム501の内部には、ビームスプリッタ502を保持するスプリッタホルダ503が設けられてもよい。スプリッタホルダ503の内部には、冷却媒体が流れる流路が設けられてもよい。 A splitter holder 503 that holds the beam splitter 502 may be provided inside the frame 501. Inside the splitter holder 503, a flow path through which the cooling medium flows may be provided.
 スプリッタホルダ503は、入射口から入射したレーザ光60の反射光60aが取付け口または出射口へ進行し、ビームスプリッタ502を透過したレーザ光60が出射口または取付け口へ進行するような位置および角度でビームスプリッタ502を保持してもよい。図21では、反射光60aが取付け口へ進行し、ビームスプリッタ502を透過したレーザ光60が出射口へ進行する構成を例示している。 The splitter holder 503 has a position and an angle at which the reflected light 60a of the laser beam 60 incident from the incident port proceeds to the attachment port or the emission port, and the laser beam 60 transmitted through the beam splitter 502 proceeds to the emission port or the attachment port. The beam splitter 502 may be held. FIG. 21 illustrates a configuration in which the reflected light 60a travels to the attachment opening, and the laser light 60 transmitted through the beam splitter 502 travels to the exit opening.
 ビームスプリッタ502には、COレーザから出力されたレーザ光の波長に高い透過率を示す光学基板が用いられてもよい。この光学基板の表面には、反射率を調整するためのコーティングが施されていてもよい。あるいはビームスプリッタ502は、コーティングされていないZnSe製の平行平面基板であってもよい。その場合、COレーザから出力されたレーザ光が45°の入射角で入射した場合の反射率が約20%となり得る。 For the beam splitter 502, an optical substrate exhibiting a high transmittance at the wavelength of the laser beam output from the CO 2 laser may be used. The surface of the optical substrate may be provided with a coating for adjusting the reflectance. Alternatively, the beam splitter 502 may be an uncoated parallel plane substrate made of ZnSe. In that case, the reflectance when the laser beam output from the CO 2 laser is incident at an incident angle of 45 ° can be about 20%.
 ビームダンパ104は、上述したビームダンパ104A~104Cと同様であってもよい。したがって、ビームダンパ104には、市販のビームダンパが用いられてもよい。その場合、ビームダンパ104の接続フランジ501aへの取り付けに、専用または適切なアダプタが用いられてもよい。また、ビームダンパ104内の流路は、冷却装置590に接続されてもよい。 The beam damper 104 may be the same as the beam dampers 104A to 104C described above. Therefore, a commercially available beam damper may be used for the beam damper 104. In that case, a dedicated or appropriate adapter may be used to attach the beam damper 104 to the connection flange 501a. Further, the flow path in the beam damper 104 may be connected to the cooling device 590.
 終端モジュール540は、ビームダンパ104であってもよい。終端モジュール540の接続フランジ501aへの取り付けには、専用または適切なアダプタが用いられてもよい。ただし、ビームダンパ104とは異なるビームダンパが終端モジュール540として用いられてもよい。 The termination module 540 may be the beam damper 104. A dedicated or suitable adapter may be used to attach the end module 540 to the connection flange 501a. However, a beam damper different from the beam damper 104 may be used as the termination module 540.
 また、終端モジュール540は、ビームダンパ104の代わりに、フレーム501の出射口を閉塞する蓋状部材であってもよい。その場合、図21に示す例では、終端モジュール540が接続されるビームダンプモジュール530におけるビームスプリッタ502の反射率が約100%であってもよい。ただし、図21のビームダンプモジュール530におけるビームダンパ104と終端モジュール540(蓋状部材)との取り付け位置が入れ替わる場合、フレーム501内のビームスプリッタ502が省略されてもよい。 Further, the termination module 540 may be a lid-like member that closes the exit of the frame 501 instead of the beam damper 104. In that case, in the example shown in FIG. 21, the reflectivity of the beam splitter 502 in the beam dump module 530 to which the termination module 540 is connected may be about 100%. However, when the mounting positions of the beam damper 104 and the termination module 540 (lid member) in the beam dump module 530 of FIG. 21 are switched, the beam splitter 502 in the frame 501 may be omitted.
 1つ以上のビームダンパモジュール510~530は、直線的に一列に接続されてもよい。それらのうちの一方の端に位置するビームダンプモジュール510は、チャンバ2に接続されてもよい。他方の端に位置するビームダンプモジュール530には、上述した終端モジュール540が接続されてもよい。また、一列に接続されたビームダンプモジュール510~530は、取付け口として使用される接続フランジ501aが交互に反対側を向くように配置されてもよい。ビームダンプモジュール510および520/520および530同士の接続と、ビームダンプモジュール530および終端モジュール540の接続とは、ボルトおよびナットによる締結であってもよい。 The one or more beam damper modules 510 to 530 may be connected in a straight line. The beam dump module 510 located at one end of them may be connected to the chamber 2. The above-described termination module 540 may be connected to the beam dump module 530 located at the other end. Further, the beam dump modules 510 to 530 connected in a row may be arranged so that the connection flanges 501a used as attachment ports alternately face the opposite side. The connection between the beam dump modules 510 and 520/520 and 530 and the connection between the beam dump module 530 and the termination module 540 may be fastening with bolts and nuts.
 ここで、たとえばビームダンプ装置500に入射するレーザ光60のエネルギーが10kWであった場合、各ビームダンプモジュール510~530のビームスプリッタ102およびビームダンパ104の仕様ならびに終端モジュール540を構成するビームダンパ104の仕様は、各々以下の仕様であってもよい。
・ビームダンプモジュール510
・・ビームスプリッタ102の反射率=25%
・・ビームダンパ104の容量=3kW
・ビームダンプモジュール520
・・ビームスプリッタ102の反射率=33%
・・ビームダンパ104の容量=3kW
・ビームダンプモジュール530
・・ビームスプリッタ102の反射率=50%
・・ビームダンパ104の容量=3kW
・終端モジュール540
・・ビームダンパ104の容量=3kW
Here, for example, when the energy of the laser beam 60 incident on the beam dump device 500 is 10 kW, the specifications of the beam splitter 102 and the beam damper 104 of each of the beam dump modules 510 to 530 and the specifications of the beam damper 104 constituting the termination module 540 are used. May have the following specifications.
Beam dump module 510
..Reflectance of beam splitter 102 = 25%
..Capacity of beam damper 104 = 3 kW
Beam dump module 520
..Reflectance of beam splitter 102 = 33%
..Capacity of beam damper 104 = 3 kW
Beam dump module 530
..Reflectance of beam splitter 102 = 50%
..Capacity of beam damper 104 = 3 kW
Termination module 540
..Capacity of beam damper 104 = 3 kW
 以上のような仕様とした場合、各ビームダンパ104において吸収されるレーザ光60/60aのエネルギーは、以下のように見積もられ得る。
・ビームダンプモジュール510のビームダンパ104:2.50kW
・ビームダンプモジュール520のビームダンパ104:2.47kW
・ビームダンプモジュール530のビームダンパ104:2.51kW
・終端モジュール540のビームダンパ104:2.51kW
In the case of the above specifications, the energy of the laser beam 60 / 60a absorbed by each beam damper 104 can be estimated as follows.
-Beam damper 104 of the beam dump module 510: 2.50 kW
-Beam damper 104 of the beam dump module 520: 2.47 kW
-Beam damper 104 of the beam dump module 530: 2.51 kW
-Beam damper 104 of termination module 540: 2.51 kW
 このように、4つのビームダンパ104にほぼ等しいエネルギーを吸収させ得る。なお、上記した仕様は一例であるが、ビームスプリッタ102の反射率を適宜選択することで、各ビームダンパ104に共通の仕様のビームダンパを使用できる。また、ビームスプリッタ102の反射率は、レーザ光60の進行経路において下流に位置するビームスプリッタ102ほど高い反射率を備えてもよい。 Thus, the four beam dampers 104 can absorb almost equal energy. Although the above-described specification is an example, a beam damper having a common specification can be used for each beam damper 104 by appropriately selecting the reflectance of the beam splitter 102. Further, the reflectance of the beam splitter 102 may be higher as the beam splitter 102 located downstream in the traveling path of the laser beam 60.
9.2 動作
 チャンバ2内のダンパミラー57で反射したレーザ光60は、ダンパウインドウ58を介して、ビームダンプ装置500の初段のビームダンプモジュール510に入射してもよい。
9.2 Operation The laser beam 60 reflected by the damper mirror 57 in the chamber 2 may enter the beam dump module 510 at the first stage of the beam dump device 500 via the damper window 58.
 ビームダンプモジュール510に入射したレーザ光60の一部は、ビームスプリッタ502によって反射光60aとして反射されてもよい。この反射光60aは、取付け口の接続フランジ501aに取り付けられたビームダンパ104に入射してもよい。ビームダンパ104に入射した反射光60aの一部は、コーン部104c(図4等参照)で吸収され、残りの一部は拡散されてひだ状部104bで吸収されてもよい。 A part of the laser light 60 incident on the beam dump module 510 may be reflected as reflected light 60 a by the beam splitter 502. The reflected light 60a may be incident on the beam damper 104 attached to the connection flange 501a of the attachment port. A part of the reflected light 60a incident on the beam damper 104 may be absorbed by the cone part 104c (see FIG. 4 and the like), and the remaining part may be diffused and absorbed by the pleated part 104b.
 一方、ビームスプリッタ102を透過した際に減光されたレーザ光60は、ビームダンプモジュール510の出射口を介して、次段のビームダンプモジュール520に入射してもよい。 On the other hand, the laser beam 60 attenuated when passing through the beam splitter 102 may enter the beam dump module 520 at the next stage through the exit port of the beam dump module 510.
 以上のようにして順々にビームダンプモジュール510~530を通過することで、レーザ光60が減光されてもよい。また、最終段のビームダンプモジュール530の出射口から出射したレーザ光60は、終端モジュール540に入射し、そのコーン部104cおよびひだ状部104bで吸収され得る。 As described above, the laser beam 60 may be attenuated by sequentially passing through the beam dump modules 510 to 530. Further, the laser beam 60 emitted from the exit of the beam dump module 530 at the final stage can enter the termination module 540 and be absorbed by the cone portion 104c and the pleated portion 104b.
9.3 効果
 実施形態5によれば、ビームダンプモジュール1つ分の面積をチャンバ2の外壁に確保することで、ビームダンプ装置500をチャンバ2へ取り付けることができる。また、大容量のビームダンプ装置500を容易に実現できる。すなわち、レーザ光60のエネルギーに応じてビームダンプモジュールを増設することも容易である。
9.3 Effects According to the fifth embodiment, the beam dump device 500 can be attached to the chamber 2 by securing an area equivalent to one beam dump module on the outer wall of the chamber 2. Also, a large capacity beam dump device 500 can be easily realized. That is, it is easy to add a beam dump module according to the energy of the laser beam 60.
 さらに、各ビームダンプモジュールにおけるビームスプリッタの反射率を適宜選択することで、複数のビームダンプモジュールで共通仕様のビームダンパを利用できる。これは、市販のビームダンパを利用できることを示唆している。それにより、大容量のビームダンプ装置1000/5000を専用に開発および制作するコストを省けるため、装置コストの上昇を抑制し得る。 Furthermore, a beam damper having a common specification can be used in a plurality of beam dump modules by appropriately selecting the reflectivity of the beam splitter in each beam dump module. This suggests that a commercially available beam damper can be used. As a result, the cost for developing and producing a large-capacity beam dump device 1000/5000 can be saved, so that an increase in device cost can be suppressed.
 さらにまた、複数のビームダンプモジュールを直列に配列する場合、それらの取付け口が交互に反対側を向くように配置することで、ビームダンプ装置500の全体寸法を低減し得る。さらにまた、このような配置によって、ビームダンプ装置500の内部でのレーザ光60の光路シフトを抑制できるため、ビームダンプモジュールの増設も容易となる。 Furthermore, when a plurality of beam dump modules are arranged in series, the overall dimensions of the beam dump device 500 can be reduced by arranging the mounting ports so as to alternately face the opposite side. Furthermore, with such an arrangement, the optical path shift of the laser beam 60 inside the beam dump device 500 can be suppressed, so that the addition of the beam dump module is facilitated.
 なお、ビームダンプ装置500内の各部で散乱されたレーザ光60は、フレーム501の内壁に吸収され得るため、外部の漏れ出しが抑制され得る。 In addition, since the laser light 60 scattered by each part in the beam dump device 500 can be absorbed by the inner wall of the frame 501, external leakage can be suppressed.
 また、各ビームダンパ104および各ビームスプリッタ102は直接的あるいは間接的に冷却されるため、長期に渡って破損が抑制され得る。 Further, since each beam damper 104 and each beam splitter 102 are directly or indirectly cooled, damage can be suppressed over a long period of time.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
9.4 実施形態5の変形例1
 上述の実施形態5では、ビームダンプ装置500に入射するレーザ光60のエネルギーが10kWである場合を例示した。これに対し、変形例1では、ビームダンプ装置に入射するレーザ光60のエネルギーが20kWである場合を例示する。
9.4 Modification 1 of Embodiment 5
In the above-described fifth embodiment, the case where the energy of the laser beam 60 incident on the beam dump device 500 is 10 kW is exemplified. On the other hand, in the modification 1, the case where the energy of the laser beam 60 incident on the beam dump device is 20 kW is illustrated.
9.4.1 構成
 図23は、変形例1にかかるビームダンプ装置の概略構成例を示す模式図である。図23に示すように、ビームダンプ装置500Aは、ビームダンプ装置500と同様の構成に加え、ビームダンプモジュール550および560をさらに備えてもよい。すなわち、ビームダンプ装置500Aは、ビームダンプ装置500に2つのビームダンプモジュール550および560が増設された構成を備えてもよい。
9.4.1 Configuration FIG. 23 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to the first modification. As shown in FIG. 23, the beam dump device 500A may further include beam dump modules 550 and 560 in addition to the same configuration as the beam dump device 500. That is, the beam dump device 500A may have a configuration in which two beam dump modules 550 and 560 are added to the beam dump device 500.
 各ビームダンプモジュール510~530、550および560のビームダンパ104は、共通仕様でなくてもよい。たとえば、後段のビームダンプモジュールのビームダンパ104の容量を大きくしてもよい。そこで、ビームダンプ装置500Aに入射するレーザ光60のエネルギーを20kWとすると、各ビームダンプモジュール510~530、550および560のビームスプリッタ502およびビームダンパ104の仕様ならびに終端モジュール540を構成するビームダンパ104の仕様は、各々以下の仕様であってもよい。
・ビームダンプモジュール510
・・ビームスプリッタ102の反射率=12%
・・ビームダンパ104の容量=3kW
・ビームダンプモジュール520
・・ビームスプリッタ102の反射率=15%
・・ビームダンパ104の容量=3kW
・ビームダンプモジュール530
・・ビームスプリッタ102の反射率=25%
・・ビームダンパ104の容量=5kW
・ビームダンプモジュール550
・・ビームスプリッタ102の反射率=33%
・・ビームダンパ104の容量=5kW
・ビームダンプモジュール560
・・ビームスプリッタ102の反射率=50%
・・ビームダンパ104の容量=5kW
・終端モジュール540
・・ビームダンパ104の容量=5kW
The beam dampers 104 of the beam dump modules 510 to 530, 550, and 560 do not have to have a common specification. For example, the capacity of the beam damper 104 of the subsequent beam dump module may be increased. Therefore, assuming that the energy of the laser beam 60 incident on the beam dump device 500A is 20 kW, the specifications of the beam splitter 502 and the beam damper 104 of each of the beam dump modules 510 to 530, 550 and 560 and the specifications of the beam damper 104 constituting the termination module 540 are provided. May have the following specifications.
Beam dump module 510
..Reflectance of beam splitter 102 = 12%
..Capacity of beam damper 104 = 3 kW
Beam dump module 520
..Reflectance of beam splitter 102 = 15%
..Capacity of beam damper 104 = 3 kW
Beam dump module 530
..Reflectance of beam splitter 102 = 25%
..Capacity of beam damper 104 = 5 kW
Beam dump module 550
..Reflectance of beam splitter 102 = 33%
..Capacity of beam damper 104 = 5 kW
Beam dump module 560
..Reflectance of beam splitter 102 = 50%
..Capacity of beam damper 104 = 5 kW
Termination module 540
..Capacity of beam damper 104 = 5 kW
 以上のような仕様とした場合、各ビームダンパ104において吸収されるレーザ光60/60aのエネルギーは、以下のように見積もられ得る。
・ビームダンプモジュール510のビームダンパ104:2.40kW
・ビームダンプモジュール520のビームダンパ104:2.64kW
・ビームダンプモジュール530のビームダンパ104:3.74kW
・ビームダンプモジュール550のビームダンパ104:3.70kW
・ビームダンプモジュール560のビームダンパ104:2.51kW
・終端モジュール540のビームダンパ104:2.51kW
In the case of the above specifications, the energy of the laser beam 60 / 60a absorbed by each beam damper 104 can be estimated as follows.
-Beam damper 104 of the beam dump module 510: 2.40 kW
-Beam damper 104 of the beam dump module 520: 2.64 kW
-Beam damper 104 of the beam dump module 530: 3.74 kW
-Beam damper 104 of the beam dump module 550: 3.70 kW
-Beam damper 104 of the beam dump module 560: 2.51 kW
-Beam damper 104 of termination module 540: 2.51 kW
 このように、前段の2つのビームダンパモジュール510および520で、ビームダンパ104の仕様が共通化されてもよい。また、後段の4つのビームダンパモジュール530、550および560で、ビームダンパ104の仕様が共通化されてもよい。なお、3kW容量および5kW容量のビームダンパ104には、市販のビームダンパを利用可能である。このように、レーザ光60の進行経路において下流に位置するビームダンパ104ほど大きな容量のビームダンパとしてもよい。また、レーザ光60の進行経路において上流に位置するビームダンパ104ほど小さな容量としてもよい。 In this way, the specifications of the beam damper 104 may be shared by the two beam damper modules 510 and 520 in the previous stage. The specifications of the beam damper 104 may be shared by the four beam damper modules 530, 550, and 560 in the subsequent stage. A commercially available beam damper can be used as the beam damper 104 having a capacity of 3 kW and a capacity of 5 kW. In this way, the beam damper 104 having a larger capacity may be used as the beam damper 104 located downstream in the traveling path of the laser light 60. The capacity of the beam damper 104 positioned upstream in the traveling path of the laser light 60 may be smaller.
9.4.2 効果
 以上のように、レーザ光60の進行経路において下流に位置するビームダンパ104ほど大きな容量のビームダンパとすることで、チャンバ2へのビームダンプ装置500Aの設置面積を増加させることなく、ビームダンプ装置500Aを大容量化できる。また、レーザ光60の進行経路において上流に位置するビームダンパ104ほど小さな容量のビームダンパとすることで、チャンバ2近傍でビームダンプ装置500Aが占有する空間を縮小させ得る。
9.4.2 Effect As described above, by setting the beam damper having a larger capacity as the beam damper 104 located downstream in the traveling path of the laser light 60, the installation area of the beam dump device 500A in the chamber 2 is not increased. The capacity of the beam dump device 500A can be increased. Further, by using a beam damper having a smaller capacity as the beam damper 104 located upstream in the traveling path of the laser beam 60, the space occupied by the beam dump device 500A in the vicinity of the chamber 2 can be reduced.
9.5 実施形態5の変形例2
 上述の実施形態5では、ビームダンプモジュール510~530が直列に配置された場合を例示した。これに対し、変形例2では、ビームダンプモジュール51~530の他の配置を例示する。
9.5 Modification 2 of Embodiment 5
In the fifth embodiment, the case where the beam dump modules 510 to 530 are arranged in series is illustrated. On the other hand, in the second modification, another arrangement of the beam dump modules 51 to 530 is illustrated.
9.5.1 構成
 図24は、変形例2にかかるビームダンプ装置の概略構成例を示す模式図である。図24に示すように、ビームダンプ装置500Bは、ビームダンプ装置500と同様、ビームダンプモジュール510~530と、終端モジュール540とを備えてもよい。ただし、ビームダンプ装置500Bは、ビームダンプモジュール510~530がL字型に折り曲がって配列してもよい。
9.5.1 Configuration FIG. 24 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to the second modification. As shown in FIG. 24, the beam dump device 500B may include beam dump modules 510 to 530 and a termination module 540, like the beam dump device 500. However, in the beam dump device 500B, the beam dump modules 510 to 530 may be bent and arranged in an L shape.
 また、各ビームダンプモジュール510~530の複数の接続フランジ501aは、すべて同じサイズおよび同じ仕様(ボルト孔の配置、径等)であってもよい。 Further, the plurality of connection flanges 501a of the beam dump modules 510 to 530 may all have the same size and the same specification (arrangement of bolt holes, diameter, etc.).
9.5.2 効果
 以上のように、複数のビームダンプモジュールは、直線的な配列に限らず、様々な配列で接続され得る。その際、各フレーム501の接続フランジ501aをすべて共通化することで、ビームダンプモジュールの配列自由度がより高められ得る。
9.5.2 Effects As described above, the plurality of beam dump modules can be connected in various arrangements, not limited to a linear arrangement. At that time, by making all the connection flanges 501a of the respective frames 501 common, the degree of freedom of arrangement of the beam dump modules can be further increased.
 たとえば、チャンバ2周辺には、真空ポンプ、各種制御装置、各種電源装置等の補機類が配置され得る。そのため、ビームダンプ装置500には、補機類を避けて配置すること求められ得る。このように、ビームダンプ装置500のチャンバからの突出形状に制限がある場合、変形例2で例示したようにビームダンプモジュールの配置を適宜変更することで、ビームダンプ装置500Bを容易にチャンバ2に設置し得る。 For example, auxiliary equipment such as a vacuum pump, various control devices, and various power supply devices can be arranged around the chamber 2. Therefore, the beam dump device 500 may be required to be arranged avoiding auxiliary equipment. As described above, when the shape of the beam dump device 500 protruding from the chamber is limited, the beam dump device 500B can be easily changed to the chamber 2 by appropriately changing the arrangement of the beam dump module as illustrated in the second modification. Can be installed.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
10.実施形態6
 実施形態5において例示したビームダンプ装置500において、各モジュールのビームダンパ104は、パワーメータやビームプロファイラ等のレーザ光計測器に置き換えられ得る。そこで実施形態6では、終端モジュール540のビームダンパ104の代わりに、パワーメータが用いられた場合を例示する。
10. Embodiment 6
In the beam dump device 500 illustrated in the fifth embodiment, the beam damper 104 of each module can be replaced with a laser light measuring instrument such as a power meter or a beam profiler. Therefore, in the sixth embodiment, a case where a power meter is used instead of the beam damper 104 of the termination module 540 is illustrated.
10.1 構成
 図25は、実施形態6にかかるビームダンプ装置の概略構成例を示す模式図である。図25に示すように、ビームダンプ装置600は、ビームダンプモジュール510および520と、終端モジュールとしてのパワーメータ610とを備えてもよい。ビームダンプモジュール510および520は、上述したビームダンプモジュール510および520と同様であってもよい。
10.1 Configuration FIG. 25 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to a sixth embodiment. As shown in FIG. 25, the beam dump device 600 may include beam dump modules 510 and 520 and a power meter 610 as a termination module. The beam dump modules 510 and 520 may be similar to the beam dump modules 510 and 520 described above.
 パワーメータ610は、レーザ制御部41に接続されてもよい。また、パワーメータ610は、冷却装置590に接続されてもよい。 The power meter 610 may be connected to the laser control unit 41. Further, the power meter 610 may be connected to the cooling device 590.
10.2 動作
 パワーメータ610は、入射したレーザ光60のパワーを計測し得る。パワーメータ610は、計測されたレーザ光60のパワーをレーザ制御部41に入力してもよい。
10.2 Operation The power meter 610 can measure the power of the incident laser beam 60. The power meter 610 may input the measured power of the laser beam 60 to the laser control unit 41.
 レーザ制御部41は、各ビームダンプモジュール510および520のビームスプリッタ102の反射率を保持していてもよい。レーザ制御部41は、各ビームスプリッタ102の反射率の値に基づいて、ビームダンプ装置600に入射したレーザ光60に対するパワーメータ610に入射したレーザ光60の減光率を計算してもよい。 The laser control unit 41 may hold the reflectance of the beam splitter 102 of each beam dump module 510 and 520. The laser control unit 41 may calculate a dimming rate of the laser light 60 incident on the power meter 610 with respect to the laser light 60 incident on the beam dump device 600 based on the reflectance value of each beam splitter 102.
 また、レーザ制御部41は、算出した減光率に基づいて、パワーメータ610で検出されたレーザ光60のエネルギーからビームダンプ装置600に入射したレーザ光60のパワー(入射パワーという)を計算してもよい。 Further, the laser control unit 41 calculates the power of the laser light 60 incident on the beam dump device 600 (referred to as incident power) from the energy of the laser light 60 detected by the power meter 610 based on the calculated dimming rate. May be.
 算出されたレーザ光60の入射パワーは、レーザ制御部41による各種制御のパラメータとして利用されてもよい。たとえば、レーザ制御部41は、算出されたレーザ光60の入射パワーに基づいて、レーザ光マニュピレータ53を動作させてもよい。これにより、ターゲット27へのレーザ光の照射状態が制御されてもよい。 The calculated incident power of the laser beam 60 may be used as parameters for various controls by the laser control unit 41. For example, the laser control unit 41 may operate the laser light manipulator 53 based on the calculated incident power of the laser light 60. Thereby, the irradiation state of the laser beam to the target 27 may be controlled.
10.3 効果
 レーザ光33は、ターゲット27よりも大きな径で照射され得る。そのため、ビームダンプ装置600には、ターゲット27の周辺を通過したレーザ光33も入射し得る。このレーザ光33のパワーを計測することで、レーザ光33のターゲット27への照射状態を推定し得る。また、推定した照射状態に基づいてレーザ光マニュピレータ53を動作させることで、ターゲット27へのレーザ光33の照射状態を適正に維持し得る。
10.3 Effect The laser beam 33 can be irradiated with a larger diameter than the target 27. Therefore, the laser beam 33 that has passed around the target 27 can also enter the beam dump device 600. By measuring the power of the laser beam 33, the irradiation state of the laser beam 33 onto the target 27 can be estimated. Further, by operating the laser light manipulator 53 based on the estimated irradiation state, the irradiation state of the laser light 33 on the target 27 can be properly maintained.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
10.4 実施形態6の変形例
 また、変形例では、終端モジュール540のビームダンパ104の代わりに、ビームプロファイラが用いられた場合を例示する。
10.4 Modification of Embodiment 6 In the modification, a case where a beam profiler is used instead of the beam damper 104 of the termination module 540 is illustrated.
10.4.1 構成
 図26は、変形例にかかるビームダンプ装置の概略構成例を示す模式図である。図26に示すように、ビームダンプ装置600Aは、ビームダンプモジュール510~530と、終端モジュールとしてのビームプロファイラ620とを備えてもよい。ビームダンプモジュール510~530は、上述したビームダンプモジュール510~530と同様であってもよい。ただし、その配置は、L字状に折れ曲がっていてもよい。
10.4.1 Configuration FIG. 26 is a schematic diagram illustrating a schematic configuration example of a beam dump device according to a modification. As shown in FIG. 26, the beam dump device 600A may include beam dump modules 510 to 530 and a beam profiler 620 as a termination module. The beam dump modules 510 to 530 may be the same as the beam dump modules 510 to 530 described above. However, the arrangement may be bent in an L shape.
 ビームプロファイラ620に入射するレーザ光60は、集光光学系621によって集光されてもよい。集光光学系621は、プラズマ生成領域25付近のレーザ光33の画像をビームプロファイラ620の受光面622に転写するように、ダンパミラー57(図2参照)に合わせて設計されていてもよい。 The laser beam 60 incident on the beam profiler 620 may be condensed by the condensing optical system 621. The condensing optical system 621 may be designed according to the damper mirror 57 (see FIG. 2) so as to transfer the image of the laser beam 33 in the vicinity of the plasma generation region 25 to the light receiving surface 622 of the beam profiler 620.
10.4.2 動作
 ビームプロファイラ620は、入射したレーザ光60の断面プロファイル画像を計測し得る。断面プロファイル画像は、プラズマ生成領域25においてターゲット27に照射されたレーザ光33の断面プロファイル画像であってもよい。
10.4.2 Operation The beam profiler 620 can measure a cross-sectional profile image of the incident laser beam 60. The cross-sectional profile image may be a cross-sectional profile image of the laser beam 33 irradiated on the target 27 in the plasma generation region 25.
 計測された断面プロファイル画像の画像データは、EUV光生成制御装置5に入力されてもよい。EUV光生成制御装置5は、画像データを各種制御のパラメータとして利用してもよい。たとえばEUV光生成制御装置5は、画像データに基づいてターゲット27へのレーザ光33の照射状態を判定してもよい。 The image data of the measured cross-sectional profile image may be input to the EUV light generation control device 5. The EUV light generation controller 5 may use image data as various control parameters. For example, the EUV light generation controller 5 may determine the irradiation state of the laser beam 33 on the target 27 based on the image data.
 断面プロファイル画像の一例を図27に示す。EUV光生成制御装置5は、図27に示す断面プロファイル画像において、たとえばレーザ光33の中心位置O33とターゲット27の影27Sの中心位置O27との距離Dが許容範囲内であるか否か判定してもよい。 An example of a cross-sectional profile image is shown in FIG. The EUV light generation controller 5 determines whether or not the distance D between the center position O33 of the laser beam 33 and the center position O27 of the shadow 27S of the target 27 is within an allowable range in the cross-sectional profile image shown in FIG. May be.
 EUV光生成制御装置5は、距離Dが許容範囲内でない場合、距離Dが小さくなるよう、レーザ光マニュピレータ53を動作させてもよい。また、EUV光生成制御装置5は、距離Dが小さくなるよう、ターゲット検出信号の入力から発光トリガの出力までの遅延時間を制御してもよい。 The EUV light generation control device 5 may operate the laser light manipulator 53 so that the distance D becomes smaller when the distance D is not within the allowable range. Further, the EUV light generation controller 5 may control the delay time from the input of the target detection signal to the output of the light emission trigger so that the distance D becomes small.
10.4.3 効果
 以上のような構成とすることで、減光されたレーザ光60を用いて、レーザ光33のターゲット27への照射状態を適正に維持し得る。
10.4.3 Effect With the above-described configuration, the irradiation state of the laser beam 33 onto the target 27 can be properly maintained using the dimmed laser beam 60.
 その他の構成、動作および効果は、上述した実施形態と同様であってもよい。 Other configurations, operations, and effects may be the same as those in the above-described embodiment.
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。 The above description is intended to be illustrative only and not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the embodiments of the present disclosure without departing from the scope of the appended claims.
 本明細書及び添付の請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。 Terms used throughout this specification and the appended claims should be construed as “non-limiting” terms. For example, the terms “include” or “included” should be interpreted as “not limited to those described as included”. The term “comprising” should be interpreted as “not limited to what is described as having”. Also, the indefinite article “a” or “an” in the specification and the appended claims should be interpreted to mean “at least one” or “one or more”.
 2…チャンバ、3…レーザ装置、4…ターゲットセンサ、5…EUV光生成制御装置、21…ウインドウ、25…プラズマ生成領域、27…ターゲット、30,31,32,33,60…レーザ光、30a,30b,30c,60a…反射光、41…レーザ制御部、50…レーザ集光光学系、51…凸面ミラー、52…移動プレート、53…レーザ光マニュピレータ、57…ダンパミラー、58…ダンパウインドウ、100,200,300,500,500A,500B,600,600A…ビームダンパ装置、102,102A,102B…ビームスプリッタ、102C…高反射ミラー、103A,103B…スプリッタホルダ、103C…ミラーホルダ、103a,103b,103c,104a…流路、104,104A,104B,104C…ビームダンパ、104D,610…パワーメータ、104E,620…ビームプロファイラ、104b…ひだ状部、104c…コーン部、105A,105C…移動プレート、106A,106C,206A,206C…1軸ステージ、107A,107C…ベースプレート、110,120,140,150,210,220,310…アッテネータモジュール、130,230…ビームダンプモジュール、190,590…冷却装置、206a,206c,306a…リニアガイド、311A,311B…内側回転ステージ、312A,312B…外側回転ステージ、501…フレーム、501a…接続フランジ、510,520,530,550,560…ビームダンプモジュール、540…終端モジュール、MO…マスタオシレータ、PA1~PA3…増幅器 2 ... chamber, 3 ... laser device, 4 ... target sensor, 5 ... EUV light generation control device, 21 ... window, 25 ... plasma generation region, 27 ... target, 30, 31, 32, 33, 60 ... laser light, 30a , 30b, 30c, 60a ... reflected light, 41 ... laser control unit, 50 ... laser focusing optical system, 51 ... convex mirror, 52 ... moving plate, 53 ... laser light manipulator, 57 ... damper mirror, 58 ... damper window, 100, 200, 300, 500, 500A, 500B, 600, 600A ... Beam damper device, 102, 102A, 102B ... Beam splitter, 102C ... High reflection mirror, 103A, 103B ... Splitter holder, 103C ... Mirror holder, 103a, 103b, 103c, 104a ... flow path, 104, 104A, 104 104C, beam damper, 104D, 610, power meter, 104E, 620, beam profiler, 104b, pleated portion, 104c, cone portion, 105A, 105C, moving plate, 106A, 106C, 206A, 206C, single axis stage, 107A 107C ... Base plate, 110, 120, 140, 150, 210, 220, 310 ... Attenuator module, 130, 230 ... Beam dump module, 190, 590 ... Cooling device, 206a, 206c, 306a ... Linear guide, 311A, 311B ... Inner rotary stage, 312A, 312B ... outer rotary stage, 501 ... frame, 501a ... connection flange, 510, 520, 530, 550, 560 ... beam dump module, 540 ... termination module, MO ... ma Data oscillator, PA1 ~ PA3 ... amplifier

Claims (8)

  1.  アッテネータモジュールと、
     ビームダンプモジュールと
     前記アッテネータモジュールおよび前記ビームダンプモジュールを制御するレーザ制御部と、
     を備え、
     前記アッテネータモジュールは、
      レーザ光の光軸に対して第1角度傾いて配置された第1ビームスプリッタと、
      前記光軸に対して前記第1角度と絶対値が等しく且つ反対符号の第2角度傾いて配置された第2ビームスプリッタと、
      前記第1ビームスプリッタによって反射された前記レーザ光が入射するよう配置された第1ビームダンパと、
      前記第2ビームスプリッタによって反射された前記レーザ光が入射するよう配置された第2ビームダンパと、
      前記第1および第2ビームスプリッタを前記レーザ光の光路に対して挿入または退避する第1ステージと、
     を含み、
     前記ビームダンプモジュールは、
      レーザ光の光軸に対して傾いて配置されたミラーと、
      前記ミラーによって反射された前記レーザ光が入射するよう配置された第3ビームダンパと、
      前記ミラーを前記光路に対して挿入または退避する第2ステージと、
     を含み、
     前記レーザ制御部は、前記第1ステージを制御することで前記第1および第2ビームスプリッタを前記光路に対して選択的に挿入または退避し、前記第2ステージを制御することで前記ミラーを前記光路に対して選択的に挿入または退避する、
     ビームダンプ装置。
    An attenuator module;
    A beam dump module, a laser control unit for controlling the attenuator module and the beam dump module;
    With
    The attenuator module is
    A first beam splitter disposed at a first angle with respect to the optical axis of the laser beam;
    A second beam splitter disposed with an absolute value equal to the first angle with respect to the optical axis and inclined at a second angle of opposite sign;
    A first beam damper disposed so that the laser beam reflected by the first beam splitter is incident thereon;
    A second beam damper disposed so that the laser beam reflected by the second beam splitter is incident thereon;
    A first stage for inserting or retracting the first and second beam splitters with respect to the optical path of the laser beam;
    Including
    The beam dump module is
    A mirror disposed to be inclined with respect to the optical axis of the laser beam;
    A third beam damper disposed so that the laser beam reflected by the mirror is incident thereon;
    A second stage for inserting or retracting the mirror with respect to the optical path;
    Including
    The laser control unit selectively inserts or retracts the first and second beam splitters with respect to the optical path by controlling the first stage, and controls the second stage to control the mirror. Selectively insert into or retract from the optical path,
    Beam dump device.
  2.  前記第1ステージは、前記第1および第2ビームスプリッタを前記光軸と垂直な方向へ平行移動し、
     前記第2ステージは、前記ミラーを前記光軸と垂直な方向へ平行移動する、
     請求項1に記載のビームダンプ装置。
    The first stage translates the first and second beam splitters in a direction perpendicular to the optical axis;
    The second stage translates the mirror in a direction perpendicular to the optical axis;
    The beam dump device according to claim 1.
  3.  前記レーザ制御部は、前記第1および第2ビームスプリッタを前記光路に挿入した状態で前記ミラーを前記光路から退避させる制御を行う、請求項1に記載のビームダンプ装置。 The beam dump device according to claim 1, wherein the laser control unit performs control to retract the mirror from the optical path in a state where the first and second beam splitters are inserted into the optical path.
  4.  前記アッテネータモジュールは、
      前記第1ステージに配置され、前記第1ビームスプリッタを載置する第1回転ステージと、
      前記第1ステージに配置され、前記第1ビームダンパを載置する第2回転ステージと、
      前記第1ステージに配置され、前記第2ビームスプリッタを載置する第3回転ステージと、
      前記第1ステージに配置され、前記第2ビームダンパを載置する第4回転ステージと、
     をさらに含み、
     前記レーザ制御部は、前記第1から第4回転ステージの回転を制御し、前記第1回転ステージを第3角度回転させた場合、前記第2回転ステージを前記第3角度の2倍である第4角度回転させ、前記第3回転ステージを前記第3角度と絶対値が等しく且つ反対符号の第5角度回転させ、且つ、前記第4回転ステージを前記第5角度の2倍である第6角度回転させるよう制御する、
     請求項1に記載のビームダンプ装置。
    The attenuator module is
    A first rotating stage disposed on the first stage and mounting the first beam splitter;
    A second rotary stage disposed on the first stage and mounting the first beam damper;
    A third rotating stage disposed on the first stage and mounting the second beam splitter;
    A fourth rotating stage disposed on the first stage and mounting the second beam damper;
    Further including
    The laser control unit controls rotation of the first to fourth rotation stages, and when the first rotation stage is rotated by a third angle, the second rotation stage is twice the third angle. A fourth angle is rotated, the third rotation stage is rotated by a fifth angle having the same absolute value as the third angle and an opposite sign, and the fourth rotation stage is twice the fifth angle. Control to rotate,
    The beam dump device according to claim 1.
  5.  前記第1および第2ビームスプリッタ、前記ミラーおよび前記第1~第3ビームダンパのうち少なくとも1つを冷却する冷却機構をさらに備えた、請求項1に記載のビームダンプ装置。 2. The beam dump device according to claim 1, further comprising a cooling mechanism that cools at least one of the first and second beam splitters, the mirror, and the first to third beam dampers.
  6.  レーザ光を出力するマスタオシレータと、
     前記レーザ光を増幅する増幅器と、
     前記レーザ光の光路上に配置された請求項5に記載のビームダンプ装置と、
     を備えた、レーザ装置。
    A master oscillator that outputs laser light;
    An amplifier for amplifying the laser beam;
    The beam dump device according to claim 5 disposed on an optical path of the laser beam;
    A laser device comprising:
  7.  プラズマ生成領域に供給されたターゲット物質にレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、
     前記レーザ光を出力する請求項6に記載のレーザ装置と、
     内部に前記プラズマ生成領域が設定されたチャンバと、
     前記プラズマ生成領域付近に前記レーザ光を集光する集光光学系と、
     前記プラズマ生成領域付近に前記ターゲット物質を供給するターゲット供給装置と、
     前記レーザ光によって照射されることで前記ターゲット物質から発生したプラズマから放射した極端紫外光を集光する集光ミラーと、
     を備えた極端紫外光生成装置。
    An extreme ultraviolet light generation device that generates extreme ultraviolet light by irradiating a target material supplied to a plasma generation region with laser light,
    The laser apparatus according to claim 6, which outputs the laser light;
    A chamber in which the plasma generation region is set;
    A condensing optical system for condensing the laser light in the vicinity of the plasma generation region;
    A target supply device for supplying the target material in the vicinity of the plasma generation region;
    A condensing mirror that condenses extreme ultraviolet light emitted from plasma generated from the target material by being irradiated with the laser light;
    Extreme ultraviolet light generator equipped with.
  8.  1つ以上のビームダンプモジュールであって、入射口と他のビームダンプモジュールの入射口と接続可能に構成された出射口と取付け口を備えたフレームと、前記フレームの内部に保持され、前記フレームの前記入射口を介して入射した第1レーザ光を前記出射口へ進行する第2レーザ光と前記取付け口へ進行する第3レーザ光とに分岐するビームスプリッタと、前記取付け口に取り付けられたビームダンパとを含むビームダンプモジュールと、
     前記ビームダンプモジュールの前記出射口と接続可能に構成された終端モジュールと、
     を備えたビームダンプ装置。
    One or more beam dump modules, a frame having an exit port and an attachment port configured to be connectable to an incident port and an incident port of another beam dump module, and held in the frame, the frame A beam splitter for branching the first laser beam incident through the incident port into a second laser beam that travels to the exit port and a third laser beam that travels to the mounting port; and the beam splitter attached to the mounting port A beam dump module including a beam damper; and
    A termination module configured to be connectable to the exit of the beam dump module;
    Beam dump device with
PCT/JP2015/055930 2015-02-27 2015-02-27 Beam dump device, laser device provided with same, and extreme ultraviolet light generation device WO2016135965A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017501807A JP6587676B2 (en) 2015-02-27 2015-02-27 Beam dump device, laser device including the same, and extreme ultraviolet light generation device
PCT/JP2015/055930 WO2016135965A1 (en) 2015-02-27 2015-02-27 Beam dump device, laser device provided with same, and extreme ultraviolet light generation device
US15/642,745 US10401615B2 (en) 2015-02-27 2017-07-06 Beam dump apparatus, laser apparatus equipped with the beam dump apparatus, and extreme ultraviolet light generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055930 WO2016135965A1 (en) 2015-02-27 2015-02-27 Beam dump device, laser device provided with same, and extreme ultraviolet light generation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/642,745 Continuation US10401615B2 (en) 2015-02-27 2017-07-06 Beam dump apparatus, laser apparatus equipped with the beam dump apparatus, and extreme ultraviolet light generating apparatus

Publications (1)

Publication Number Publication Date
WO2016135965A1 true WO2016135965A1 (en) 2016-09-01

Family

ID=56788020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055930 WO2016135965A1 (en) 2015-02-27 2015-02-27 Beam dump device, laser device provided with same, and extreme ultraviolet light generation device

Country Status (3)

Country Link
US (1) US10401615B2 (en)
JP (1) JP6587676B2 (en)
WO (1) WO2016135965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018613B1 (en) * 2018-04-04 2019-09-06 주식회사 이오테크닉스 Acoustic-optic deflection system, laser processing apparatus including the same and method for blocking beams of acoustic-optic deflection system
US11003085B2 (en) 2017-08-29 2021-05-11 Gigaphoton Inc. Extreme ultraviolet light generating apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016151682A1 (en) * 2015-03-20 2018-01-18 国立大学法人 東京大学 Reflectance measuring device for spheroid mirror for EUV light
US10429729B2 (en) 2017-04-28 2019-10-01 Taiwan Semiconductor Manufacturing Co., Ltd. EUV radiation modification methods and systems
US10473828B2 (en) * 2018-04-13 2019-11-12 Raytheon Company Beam dumps having tailored absorbing surfaces
KR20220022472A (en) 2019-04-04 2022-02-25 에이에스엠엘 네델란즈 비.브이. laser focusing module
US11133640B2 (en) * 2019-06-06 2021-09-28 Raytheon Company Integrated beam scraper and power dump
KR20210089949A (en) * 2020-01-09 2021-07-19 삼성전자주식회사 Laser beam delivery system for extreme ultra violet light source
WO2021194594A2 (en) 2020-02-28 2021-09-30 Massachusetts Institute Of Technology High-power light absorbers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261076A (en) * 1999-03-05 2000-09-22 Fuji Electric Co Ltd Laser output adjusting device
JP2004173774A (en) * 2002-11-25 2004-06-24 Nidek Co Ltd Laser treatment apparatus
JP2010226096A (en) * 2009-02-27 2010-10-07 Komatsu Ltd Laser device and extreme ultraviolet light source device
JP2013098239A (en) * 2011-10-28 2013-05-20 Gigaphoton Inc Laser device
JP2013524512A (en) * 2010-04-02 2013-06-17 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド A method for achieving fast intensity changes of a polarized output laser beam.
JP2014221486A (en) * 2013-05-14 2014-11-27 株式会社アマダミヤチ Optical passage branch mirror unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8412832D0 (en) * 1984-05-18 1984-06-27 Weerasinghe V M Power meters for electromagnetic radiation
JPS6285212A (en) * 1985-10-09 1987-04-18 Fuji Photo Optical Co Ltd Refraction type projection lens
US4778263A (en) * 1987-05-29 1988-10-18 The United States Of America As Respresented By The Department Of Energy Variable laser attenuator
JPH02140501U (en) 1989-04-28 1990-11-26
JPH0417992A (en) 1990-05-12 1992-01-22 Sumitomo Electric Ind Ltd Power damper
JP2956759B2 (en) 1997-05-23 1999-10-04 日本電気株式会社 Laser beam damper
JP4074486B2 (en) 2002-06-28 2008-04-09 住友重機械工業株式会社 Laser processing method and apparatus
JP4904673B2 (en) * 2004-02-09 2012-03-28 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
CN101795235B (en) * 2010-03-18 2014-03-19 中兴通讯股份有限公司 Route map treatment method and operator edge device
JP5856898B2 (en) * 2011-06-02 2016-02-10 ギガフォトン株式会社 Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation method
JP2013179330A (en) 2013-04-25 2013-09-09 Gigaphoton Inc Extreme ultraviolet light source device
GB201316815D0 (en) * 2013-09-23 2013-11-06 Renishaw Plc Additive manufacturing apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261076A (en) * 1999-03-05 2000-09-22 Fuji Electric Co Ltd Laser output adjusting device
JP2004173774A (en) * 2002-11-25 2004-06-24 Nidek Co Ltd Laser treatment apparatus
JP2010226096A (en) * 2009-02-27 2010-10-07 Komatsu Ltd Laser device and extreme ultraviolet light source device
JP2013524512A (en) * 2010-04-02 2013-06-17 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド A method for achieving fast intensity changes of a polarized output laser beam.
JP2013098239A (en) * 2011-10-28 2013-05-20 Gigaphoton Inc Laser device
JP2014221486A (en) * 2013-05-14 2014-11-27 株式会社アマダミヤチ Optical passage branch mirror unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11003085B2 (en) 2017-08-29 2021-05-11 Gigaphoton Inc. Extreme ultraviolet light generating apparatus
KR102018613B1 (en) * 2018-04-04 2019-09-06 주식회사 이오테크닉스 Acoustic-optic deflection system, laser processing apparatus including the same and method for blocking beams of acoustic-optic deflection system

Also Published As

Publication number Publication date
JPWO2016135965A1 (en) 2018-01-18
US10401615B2 (en) 2019-09-03
JP6587676B2 (en) 2019-10-09
US20170299857A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6587676B2 (en) Beam dump device, laser device including the same, and extreme ultraviolet light generation device
JP5833806B2 (en) Extreme ultraviolet light source device, laser light source device for extreme ultraviolet light source device, and adjustment method of laser light source for extreme ultraviolet light source device
US8283643B2 (en) Systems and methods for drive laser beam delivery in an EUV light source
US9362703B2 (en) Optical device, laser apparatus, and extreme ultraviolet light generation system
TWI519209B (en) Extreme ultraviolet light system and method of generating an extreme ultraviolet light
JP5759023B2 (en) Drive laser delivery system for EUV light source
JP5846572B2 (en) Chamber apparatus, extreme ultraviolet light generation apparatus, and control method of extreme ultraviolet light generation apparatus
JP5301165B2 (en) Laser generated plasma EUV light source
US8477412B2 (en) Collector mirror exchanging apparatus and method for extreme ultraviolet light source apparatus
US9894743B2 (en) Extreme ultraviolet light generation apparatus
US20140203194A1 (en) System and method for generating extreme ultra violet light
JP5658012B2 (en) Extreme ultraviolet light generator
US10194515B2 (en) Beam delivery system and control method therefor
US10374381B2 (en) Extreme ultraviolet light generating apparatus
WO2015111510A1 (en) Laser device and euv-light generation system
US10490313B2 (en) Method of controlling debris in an EUV light source
WO2017017834A1 (en) Euv light generation device
JP6779301B2 (en) Laser device and extreme ultraviolet light generation system
JP5914742B2 (en) Laser light source device for extreme ultraviolet light source device and laser light source device
WO2017103991A1 (en) Extreme ultraviolet light generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883259

Country of ref document: EP

Kind code of ref document: A1