WO2016135867A1 - X-ray fluoroscopic imaging apparatus - Google Patents

X-ray fluoroscopic imaging apparatus Download PDF

Info

Publication number
WO2016135867A1
WO2016135867A1 PCT/JP2015/055288 JP2015055288W WO2016135867A1 WO 2016135867 A1 WO2016135867 A1 WO 2016135867A1 JP 2015055288 W JP2015055288 W JP 2015055288W WO 2016135867 A1 WO2016135867 A1 WO 2016135867A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
region
image
luminance value
interest
Prior art date
Application number
PCT/JP2015/055288
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 坂本
清水 達也
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201580076899.8A priority Critical patent/CN107405125B/en
Priority to PCT/JP2015/055288 priority patent/WO2016135867A1/en
Priority to JP2017501613A priority patent/JP6583649B2/en
Publication of WO2016135867A1 publication Critical patent/WO2016135867A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment

Definitions

  • the present invention relates to an X-ray fluoroscopic apparatus that acquires an X-ray image by irradiating a subject with X-rays, and particularly relates to a technique for determining an X-ray irradiation condition capable of capturing a suitable X-ray image.
  • the conventional X-ray fluoroscopic apparatus 101 includes a top plate 103, an X-ray tube 105, an X-ray detector 107, an image generation unit 109, an image display unit 111, and X-ray irradiation control. Part 113.
  • the top plate 103 places the subject M in a horizontal posture.
  • the X-ray tube 105 irradiates the subject M with X-rays 105a.
  • the X-ray tube 105 and the X-ray detector 107 are disposed to face each other with the top plate 103 interposed therebetween.
  • the X-ray detector 107 detects the X-ray 105a irradiated to and transmitted through the subject M from the X-ray tube 105, converts it into an electrical signal, and outputs it as an X-ray detection signal.
  • the X-ray tube 105 and the X-ray detector 107 constitute an imaging system.
  • the image generation unit 109 is provided after the X-ray detector 107 and generates an X-ray image in which an image of the subject M is projected based on the output X-ray detection signal.
  • the X-ray image generated by the image generation unit 109 is displayed on the image display unit 111.
  • the X-ray irradiation control unit 113 is connected to the X-ray tube 105, and controls the tube voltage and tube current of the X-ray tube 105, thereby irradiating the X-ray dose from the X-ray tube 105 and the timing of irradiating X-rays. Control etc.
  • the various conditions under which the X-ray tube 105 irradiates the X-ray 105a controlled by the X-ray irradiation control unit 113 are hereinafter referred to as “X-ray irradiation conditions”.
  • the subject is continuously irradiated with a smaller dose of X-rays than in the case of X-ray imaging for capturing a still image, and the generated X-ray image is continuously displayed on the image display unit 111.
  • X-ray fluoroscopy is performed for display and observation.
  • X-ray fluoroscopy is effective in that real-time information of a region of interest can be acquired as an X-ray fluoroscopic image while the surgical procedure is in progress.
  • the body thickness of the subject M when the body thickness of the subject M (subject thickness) increases even if the X-ray irradiation conditions are constant, the X-ray dose that passes through the subject M decreases and the subject thickness decreases. The transmitted X-ray dose increases.
  • an irradiation condition calculation unit 115 is provided after the image generation unit 109.
  • the irradiation condition calculation unit 115 detects the luminance of the X-ray image generated by the image generation unit 109.
  • the irradiation condition calculation unit 115 compares a predetermined value (ideal luminance value) determined in advance with the luminance value of the X-ray image.
  • a corrected X-ray irradiation condition that is an X-ray irradiation condition that can make the luminance value of the X-ray image the ideal luminance value is calculated.
  • the corrected X-ray irradiation conditions calculated by the irradiation condition calculation unit 115 are fed back to the X-ray irradiation control unit 113, and the X-ray tube 105 performs X-ray irradiation based on the corrected X-ray irradiation conditions.
  • the luminance value of the X-ray image generated by the image generation unit 109 becomes an ideal luminance value.
  • the ideal luminance value By setting the ideal luminance value to a luminance value with high visibility, it is possible to perform automatic luminance adjustment with high visibility for an X-ray image generated intermittently by X-ray fluoroscopy.
  • the reference region R is previously provided in the vicinity of the center of the image field V of the X-ray image. And calculating the average value of the luminance of the X-ray image in the reference region R.
  • the area for detecting the brightness is limited to the inside of the reference area R. Therefore, by positioning the region of interest W of the subject M shown in FIG. 7A within the range of the reference region R, the brightness of the X-ray image can be automatically adjusted according to the luminance of the region of interest W. (Refer FIG.7 (b)).
  • the conventional example having such a configuration has the following problems. That is, at the start of fluoroscopy, the position of the region of interest W may be out of the range of the reference region R as shown in FIG. In this case, since the correction X-ray irradiation condition is calculated based on the luminance information of the region other than the region of interest W, the luminance of the region of interest W is not appropriately adjusted. As a result, the visibility of the X-ray image at the site of interest W is reduced. Therefore, in the X-ray fluoroscopic apparatus according to the conventional example, the region of interest W is moved to the inside of the reference region R located at the center of the image visual field V as shown in FIG. Work to align.
  • the region of interest W When positioning the region of interest W while performing fluoroscopy, the amount of exposure of the subject increases because it takes time to make fine adjustments.
  • the positional relationship between the site of interest W and the reference region R cannot be confirmed on the image display unit 111 while the fluoroscopy is interrupted. Therefore, at the time of resuming X-ray fluoroscopy, the region of interest W may deviate from the reference region R again. As a result, there is a concern that the work time will be prolonged.
  • the present invention has been made in view of such circumstances, and X-ray fluoroscopy can quickly adjust the brightness of an X-ray image so as to obtain an X-ray image with high visibility of a region of interest.
  • An object is to provide a photographing apparatus.
  • an X-ray fluoroscopic apparatus includes an X-ray source that irradiates a subject with X-rays, and an X-ray detection unit that detects X-rays irradiated from the X-ray source and transmitted through the subject.
  • An image generation unit that generates an X-ray image using a detection signal output from the X-ray detection unit, an irradiation control unit that controls an X-ray irradiation condition of the X-ray source, and an X generated by the image generation unit
  • Image display means for displaying a line image
  • reference area setting means for arbitrarily setting one or more areas in the X-ray image as a reference area on a display screen of the image display means, and within the reference area
  • a luminance value calculating means for extracting a luminance value of each pixel and calculating an image luminance value corresponding to the X-ray image based on the extracted luminance value; and a luminance value of the pixel in the reference region is a predetermined value
  • X-ray irradiation Irradiation condition calculation means for calculating a correction irradiation condition as a condition based on the image luminance value and the predetermined value, and the irradiation control means is configured to apply the correction i
  • the X-ray fluoroscopic apparatus includes reference area setting means for arbitrarily setting one or more areas in the X-ray image as reference areas on the display screen of the image display means.
  • the operator visually confirms the display screen of the image display means and confirms the position of the region of interest of the subject.
  • the reference region is arbitrarily set on the display screen so as to include the region of interest inside using the reference region setting means.
  • the operator can easily visually recognize the exact position and shape of the site of interest on the display screen, it is possible to quickly and surely set the reference region that includes the site of interest. Further, when setting the reference area, the operator does not have to move the line of sight other than the display screen of the image display means, so the burden on the operator such as fatigue is further reduced.
  • the luminance value calculation means extracts the luminance value of each pixel in the reference area, and calculates an image luminance value corresponding to the X-ray image based on the extracted luminance value.
  • the irradiation condition calculation means calculates the corrected irradiation condition based on information on the image luminance value and the predetermined value.
  • the corrected irradiation condition is an X-ray irradiation condition such that the luminance value of the pixel in the reference area becomes a predetermined value.
  • the irradiation control means controls the X-ray irradiation conditions of the X-ray source according to the information on the correction irradiation conditions.
  • the irradiation condition calculation means can appropriately recognize the region of interest.
  • An X-ray irradiation condition with a brightness that can be calculated can be calculated as a correction irradiation condition.
  • the X-ray fluoroscopic apparatus according to the present invention includes the reference region setting means, it is possible to quickly and surely set the reference region that includes the region of interest. Therefore, it is possible to quickly and surely acquire an X-ray image that allows the operator to visually recognize the region of interest while reducing the burden on the operator.
  • the display screen of the image display unit is divided into a plurality of regions, and the reference region setting unit includes one or more of the plurality of regions.
  • the reference area is set by selecting as the reference area.
  • the display screen of the image display means is divided into a plurality of areas, and the reference area setting means selects one or more areas from among the plurality of areas. Set the reference area.
  • the operator visually recognizes the image display means, and manually selects a region that includes the region of interest among a plurality of regions that divide the display screen, whereby a new reference region is set on the display screen.
  • the operator can easily and reliably confirm the region including the region of interest. Accordingly, it is possible to execute the setting of the reference region that includes the region of interest inside more quickly and reliably.
  • the X-ray fluoroscopic apparatus includes a divided region changing unit that changes at least one of the number and shape of the plurality of regions that divide the display screen of the image display unit, and the divided region changing unit.
  • Divided area storage means for storing the number and shape of the plurality of changed areas, and the image display means reads out information related to the number and shape of the plurality of areas stored in the divided area storage means to display a display screen. Preferably displayed above.
  • the number and the shape of the area dividing the display screen of the image display means can be changed by the divided area changing means. Therefore, the number and shape of the divided regions can be changed according to the size and shape of the region of interest, and the divided region set as the reference region can more suitably include the region of interest. Further, the changed number and shape of the divided areas are stored in the divided area storage means, and the image display means reads out information on the number and shapes of the areas stored in the divided area storage means and displays them on the display screen. In this case, information on the number and shape of the changed divided areas is stored and can be read out. Accordingly, since it is not necessary to change the number of divided areas and the information of the shape again after the change once, it is possible to avoid a complicated work process.
  • the reference area setting means sets the reference area by drawing an arbitrary area on the display screen of the image display means as the reference area. .
  • the reference area setting means sets the reference area by drawing an arbitrary area on the display screen of the image display means as the reference area.
  • the operator visually recognizes the image display means, and draws a region including the region of interest on the display screen, whereby a new reference region is set.
  • the operator can set a reference area having an arbitrary shape at an arbitrary position. Therefore, a reference region having a suitable shape can be newly set so as to exclude a region other than the region of interest as much as possible according to the position / shape of the region of interest.
  • the image luminance value calculated by the luminance value calculating means is closer to the luminance value of the region of interest, and thus an X-ray image with higher visibility of the region of interest can be generated.
  • the luminance value calculation means calculates the luminance value included between a predetermined upper limit value and a predetermined lower limit value among the luminance values of the pixels in the reference region. It is preferable to extract and calculate an image luminance value corresponding to the X-ray image based on the extracted luminance value.
  • the luminance value calculating means extracts a luminance value included between a predetermined upper limit value and a predetermined lower limit value among the luminance values of the pixels in the reference region. That is, extreme numerical brightness values such as a brightness value exceeding the upper limit value and a brightness value falling below the lower limit value are excluded from the extraction target of the brightness value calculating means. Therefore, even when an X-ray image having an extreme luminance value such as a metal piece is reflected in the reference region, it is possible to avoid an X-ray image showing an extremely high luminance value from affecting the image luminance value. As a result, a situation in which the brightness of the X-ray image rapidly changes due to an X-ray image having an excessively high brightness value such as a metal piece being reflected in the reference region can be suitably avoided.
  • the X-ray fluoroscopic apparatus preferably includes a luminance adjustment switching unit that fixes the corrected irradiation condition calculated by the irradiation condition calculation unit to the corrected irradiation condition calculated most recently.
  • the brightness adjustment switching unit fixes the correction irradiation condition calculated by the irradiation condition calculation unit to the correction irradiation condition calculated most recently.
  • the corrected irradiation condition is fixed under the most recently calculated condition and is no longer updated.
  • the operator uses the reference area setting means to set the reference area range on the display screen according to the position of the region of interest. Then, after the brightness of the X-ray image in the region of interest is adjusted to a brightness value that can be suitably viewed in accordance with the corrected irradiation condition, the brightness adjustment switching unit switches the automatic brightness adjustment function to an off state. In this case, since the correction irradiation condition is fixed, the brightness of the X-ray fluoroscopic image is always maintained at a brightness value at which the region of interest can be suitably viewed.
  • the brightness of the X-ray image changes abruptly due to an X-ray image having an excessively high brightness value, such as a metal piece, appearing in the reference region.
  • the situation can be suitably avoided.
  • the image display means is a touch panel
  • the reference area setting means is a position input device provided on a surface of the image display means.
  • the image display means is a touch panel
  • the reference area setting means is a position input device provided on the surface of the image display means.
  • the operator sets a reference area of an arbitrary shape at an arbitrary position on the display image of the image display means by directly touching a position input device provided on the surface of the image display means with a finger or a touch pen. it can. Therefore, a reference region having a suitable shape can be newly set so as to exclude a region other than the region of interest as much as possible according to the position / shape of the region of interest.
  • the reference region is set by directly contacting the image display means for displaying the region of interest, the reference region can be quickly set so that the position and shape of the region of interest can be traced more accurately.
  • the image luminance value calculated by the luminance value calculating means is closer to the appropriate luminance value of the region of interest, and thus an X-ray image with higher visibility of the region of interest can be generated.
  • the X-ray fluoroscopic apparatus includes reference area setting means for arbitrarily setting one or more areas in the X-ray image as reference areas on the display screen of the image display means.
  • the operator visually confirms the display screen of the image display means and confirms the position of the region of interest of the subject.
  • the reference region is arbitrarily set on the display screen so as to include the region of interest inside using the reference region setting means.
  • the operator can easily visually recognize the exact position and shape of the site of interest on the display screen, it is possible to quickly and surely set the reference region that includes the site of interest. Further, when setting the reference area, the operator does not have to move the line of sight other than the display screen of the image display means, so the burden on the operator such as fatigue is further reduced.
  • the luminance value calculation means extracts the luminance value of each pixel in the reference area, and calculates an image luminance value corresponding to the X-ray image based on the extracted luminance value.
  • the irradiation condition calculation means calculates the corrected irradiation condition based on information on the image luminance value and the predetermined value.
  • the corrected irradiation condition is an X-ray irradiation condition such that the luminance value of the pixel in the reference area becomes a predetermined value.
  • the irradiation control means controls the X-ray irradiation conditions of the X-ray source according to the information on the correction irradiation conditions.
  • the irradiation condition calculation means can appropriately recognize the region of interest.
  • An X-ray irradiation condition with a brightness that can be calculated can be calculated as a correction irradiation condition.
  • the X-ray fluoroscopic apparatus according to the present invention includes the reference region setting means, it is possible to quickly and surely set the reference region that includes the region of interest. Therefore, it is possible to quickly and surely acquire an X-ray image that allows the operator to visually recognize the region of interest while reducing the burden on the operator.
  • FIG. 1 is a functional block diagram illustrating a configuration of an X-ray fluoroscopic apparatus according to Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating a configuration for setting a reference area in the first embodiment.
  • A is a figure which shows the state from which the position of the reference
  • (b) is a figure which shows the state which selects the area
  • (c) is a diagram showing a state in which two or more adjacent regions are newly set as reference regions
  • and (d) is a diagram showing a state in which two or more regions that are not adjacent are newly set as reference regions. .
  • FIG. 10 is a diagram illustrating a configuration for setting a reference area in the second embodiment.
  • A) is a figure which shows the state from which the position of the reference
  • (b) is a figure which shows the state which newly sets a reference
  • (c) is a touch pen It is a figure which shows the state which sets a reference area newly using.
  • it is a figure explaining the structure which aligns a reference
  • (A) is a figure which shows the position of the region of interest in a subject
  • (b) is a figure which shows the range of the reference area in an initial setting state
  • (c) is a figure which shows the range of the reference area after a setting change. It is. It is a functional block diagram explaining the structure of the X-ray fluoroscopic apparatus which concerns on a prior art example. It is a figure explaining the structure which performs position alignment with a reference
  • (A) is a figure which shows the position of the region of interest in a subject
  • (b) is a figure which shows the state in which the region of interest is located in a reference
  • (c) is a figure which has removed the region of interest from the reference
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • the X-ray fluoroscopic apparatus 1 includes a top plate 3 on which a subject M in a horizontal posture is placed, and an X-ray tube that irradiates the subject M with X-rays 5a. 5 and an X-ray detector 7 for detecting X-rays that have been irradiated and transmitted through the subject M.
  • the X-ray tube 5 and the X-ray detector 7 constitute an imaging system, and are opposed to each other with the top plate 3 interposed therebetween.
  • the X-ray tube 5 is provided with a collimator 9 that limits the X-rays 5a irradiated from the X-ray tube 5 to a cone shape.
  • the configuration in which the collimator 9 restricts the X-ray 5a is not limited to a conical shape, and may be appropriately changed such as a pyramid shape.
  • the X-ray detector 7 detects the X-ray 5a irradiated from the X-ray tube 5 and transmitted through the subject M, converts it to an electrical signal, and outputs it as an X-ray detection signal.
  • an image intensifier (II), a flat panel detector (FPD), or the like is used as an example of the X-ray detector 7.
  • the X-ray tube 5 corresponds to the X-ray source in the present invention
  • the X-ray detector 7 corresponds to the X-ray detection means in the present invention.
  • the X-ray fluoroscopic apparatus 1 includes an input unit 11, an X-ray irradiation control unit 13, an image generation unit 15, a monitor 17, a reference area setting unit 19, a luminance value extraction unit 21, and an irradiation condition calculation unit. 23, a storage unit 25, and a main control unit 27.
  • the input unit 11 is used to input an operator's instruction, and examples thereof include a mouse input type panel and a touch input type panel.
  • the X-ray irradiation control unit 13 is connected to the X-ray tube 5 and controls X-ray irradiation conditions.
  • the X-ray irradiation conditions include tube voltage and tube current values, X-ray 5a irradiation time, and the like. That is, the X-ray irradiation control unit 13 controls the tube voltage and tube current of the X-ray tube 5, so that the dose of the X-ray 5 a irradiated from the X-ray tube 5 and the X-ray tube 5 irradiate the X-ray 5 a. Timing etc. are controlled.
  • the X-ray irradiation control unit 13 corresponds to the irradiation control means in the present invention.
  • the image generation unit 15 is provided at the subsequent stage of the X-ray detector 7 and generates an X-ray image based on the X-ray detection signal output from the X-ray detector 7.
  • the monitor 17 displays a reference area together with the X-ray image generated by the image generation unit 15, and is configured by a liquid crystal display as an example.
  • the image field area of the X-ray image displayed on the monitor 17 is divided into a plurality of areas. Each of the number and shape of regions that divide the image field region of the X-ray image can be changed by an instruction input to the input unit 11.
  • the input unit 11 corresponds to a divided area changing unit in the present invention.
  • the image generation unit 15 corresponds to the image generation means in the present invention.
  • the monitor 17 corresponds to the image display means in the present invention.
  • the reference area setting unit 19 sets a reference area on the X-ray image generated by the image generation unit 15. Examples of the configuration of the reference area setting unit 19 include a mouse, a joystick, and a touch pad.
  • the reference area setting unit 19 is configured so that a reference area can be set for the X-ray image displayed on the monitor 17. It is more preferable that the reference area setting unit 19 is provided at or near the monitor 17 so that the reference area setting unit 19 can be operated while viewing the monitor 17.
  • the reference area setting unit 19 corresponds to the reference area setting means in the present invention.
  • the luminance value extraction unit 21 is provided in the subsequent stage of the image generation unit 15 and extracts the luminance value of each pixel located in the reference area from the X-ray image generated by the image generation unit 15. Then, the luminance value extracting unit 21 calculates an image luminance value corresponding to the X-ray image based on the extracted luminance value in the reference area.
  • a method for calculating the image luminance value there is a method for obtaining the average of the luminance values of the respective pixels located in the reference region, but is not limited thereto.
  • the irradiation condition calculation unit 23 calculates the correction irradiation condition based on the image luminance value calculated by the luminance value extraction unit 21, and outputs the calculated correction irradiation condition to the X-ray irradiation control unit 13.
  • the irradiation condition calculation unit 23 compares the ideal luminance value determined in advance with the image luminance value to calculate a difference. Then, based on the X-ray irradiation condition relating to the X-ray image used for calculating the image luminance value and the difference calculated by the irradiation condition calculation unit 23, the X-ray whose image luminance value is the ideal luminance value An irradiation condition, that is, a corrected irradiation condition is calculated.
  • the luminance value extraction unit 21 corresponds to the luminance value calculation unit in the present invention
  • the irradiation condition calculation unit 23 corresponds to the irradiation condition calculation unit in the present invention.
  • the storage unit 25 includes an X-ray image generated by the image generation unit 15, a reference region set by the reference region setting unit 19, an ideal luminance value used by the irradiation condition calculation unit 23, and a corrected irradiation condition calculated by the irradiation condition calculation unit 23. Various information such as is stored. In addition, the storage unit 25 stores information such as the shape and number of regions for dividing the image field region of the X-ray image.
  • the main control unit 27 controls the X-ray irradiation control unit 13, the image generation unit 15, the monitor 17, the reference region setting unit 19, the luminance value extraction unit 21, the irradiation condition calculation unit 23, and the storage unit 25. Control.
  • the storage unit 25 corresponds to the divided area storage means in the present invention.
  • the reference area setting unit 19 sets the reference area on the display screen for the X-ray image.
  • the X-ray image generated by the image generation unit 15 is displayed on the monitor 17.
  • the image field area V of the X-ray image projected on the monitor 17 is configured to be divided into a plurality of rectangular areas E by a boundary line indicated by a two-dot chain line.
  • a boundary line indicated by a two-dot chain line is displayed so as to be visible.
  • the reference area is an area indicating a range of pixels used for calculation of an image luminance value, which will be described later, and the reference area is set for one or more areas E in the first embodiment.
  • the reference region R is set to a region E located near the center of the image visual field region V as an example (FIG. 2A).
  • the shape of the region E that divides the image visual field region V is not limited to a rectangle, and may be an arbitrary shape. Further, instead of the image viewing area V, the entire screen of the monitor 17 may be divided into a plurality of areas.
  • the preset range of the reference region R deviates from the position of the region of interest W of the subject M.
  • the operator operates the reference area setting unit 19, that is, the mouse constituting the input unit 11, and selects the area E including the region of interest W by clicking the cursor F.
  • the area E selected by the reference area setting unit 19 is set as a new reference area R as shown in FIG.
  • the position and range of the reference area R are changed.
  • the luminance value extraction unit 21 extracts the luminance value of each pixel located in the newly set reference region R.
  • the operator refers to the X-ray image displayed on the screen of the monitor 17 and sets a new reference region R on the display screen of the monitor 17, so that the exact position of the region of interest W displayed on the display screen is determined. Easy to select. Therefore, the reference region R can be set quickly and accurately so that the region of interest W is within the range of the reference region R during the fluoroscopy.
  • the reference area R that can be set by the reference area setting unit 19 is not limited to one area E.
  • the region of interest W is projected over a plurality of regions E, for example, by clicking and selecting a predetermined region E, the adjacent region E is moved to the reference region R by dragging.
  • two or more regions E that are not adjacent to each other can be set as the reference region R as shown in FIG. Therefore, even when the range of the region of interest W is wide or there are a plurality of regions of interest W, the region of interest W can be accurately and quickly included in the range of the reference region R.
  • the monitor 17 may be a touch panel. That is, the monitor 17 has a panel-like position input device on the surface for detecting the touched position and inputting information on the position.
  • the operator sets the touched area E as a new reference area R by touching the position input device of a part that reflects the arbitrary area E with a finger or a touch pen.
  • the reference area setting unit 19 corresponds to a position input device provided in the monitor 17.
  • the operator can view only the monitor 17 and accurately select the region E including the region of interest W as the new reference region R. Therefore, the reference region R can be set on the display screen more quickly and reliably.
  • As the position input device a known method such as a resistive film method or a capacitance method may be appropriately used.
  • the settings relating to the number and shape of the areas E can be changed as appropriate by operating the input unit 11.
  • information on the number and shape of the regions E after the change is transmitted to the storage unit 25 and stored.
  • arbitrary information regarding the number and shape of the areas E is read by the main control unit 27.
  • the read information is transmitted to the monitor 17 and displayed in the image visual field region V.
  • FIG. 3 is a flowchart for explaining the operation of the X-ray fluoroscopic apparatus according to the first embodiment.
  • Step S1 (Generation of X-ray fluoroscopic image) First, an X-ray fluoroscopic image that is an X-ray image by X-ray fluoroscopy is generated. That is, after the subject M is placed on the top 3, the collimator 9 is controlled to set the X-ray irradiation field. Then, the operator operates the input unit 11 to input an instruction to irradiate the subject M with the X-ray 5a from the X-ray tube 5 by X-ray fluoroscopy. The main control unit 27 outputs a control signal to the X-ray irradiation control unit 13 in accordance with the input instruction. The X-ray irradiation control unit 13 controls the X-ray irradiation condition to a predetermined value according to the control signal.
  • the X-ray tube 5 irradiates the subject M intermittently with conical X-rays 5a under controlled X-ray irradiation conditions.
  • the X-ray detector 7 detects the X-ray 5a that passes through the subject M, and outputs an X-ray detection signal based on the detected X-ray.
  • the image generation unit 15 intermittently generates an X-ray fluoroscopic image of the subject M based on the X-ray detection signal.
  • the generated X-ray fluoroscopic image is displayed on the monitor 17.
  • information on the luminance value at each pixel of the fluoroscopic image is transmitted from the image generation unit 15 to the luminance value calculation unit 21.
  • the operator observes the image visual field region V of the X-ray fluoroscopic image displayed on the monitor 17 and determines whether or not the region of interest W of the subject M is located within the preset reference region R. To branch the process. If it is determined that the region of interest W is located within the range of the reference region R, the process related to step S2 is omitted, and the process proceeds to step S3. If it is determined that the region of interest W is not located within the reference region R, the process proceeds to step S2.
  • Step S2 (reference area setting)
  • the processes after step S3 are performed based on the luminance value of the region other than the region of interest W, and the X-ray irradiation conditions are changed. Therefore, the visibility of the X-ray fluoroscopic image at the site of interest W is reduced. Therefore, the operator confirms the position of the region of interest W displayed on the monitor 17 and sets the reference region on the display screen of the monitor 17.
  • the positional relationship between the reference region R and the region of interest W in the X-ray fluoroscopic image is as shown in FIG.
  • the region E where the region of interest W is located is deviated to the upper left from the region E in which the reference region R is preset.
  • the operator selects the region E including the region of interest W by operating the reference region setting unit 19 while referring to the position of the boundary line dividing the image visual field region V into each region E.
  • the reference area setting unit 19 is configured with a mouse. The operator operates the mouse to move the cursor F to the region E including the region of interest W and click to select it.
  • the reference region setting unit 19 sets the selected region, that is, the region E including the region of interest W as a new reference region R.
  • the set reference area R is displayed on the monitor 17. Further, the position information of the reference region R newly set in the X-ray fluoroscopic image is transmitted to the luminance value calculation unit 21.
  • Step S3 (calculation of image luminance value)
  • the luminance value calculation unit 21 calculates the luminance value of each pixel located within the range of the reference region R in the X-ray fluoroscopic image based on the luminance information of each pixel in the X-ray fluoroscopic image and the position information of the reference region R, respectively. Extract. Then, the luminance value extraction unit 21 calculates an image luminance value corresponding to the X-ray fluoroscopic image based on the extracted luminance value in the reference region.
  • the calculation method of the image luminance value may be changed as appropriate, but in the first embodiment, an average value of luminance values extracted from each pixel located in the reference region is set as the image luminance value.
  • step S2 the reference region R is set according to the position of the region of interest W. Therefore, the image luminance value calculated by the luminance value extraction unit 21 is close to the luminance value of the region of interest W. Information on the image luminance value calculated by the luminance value extraction unit 21 is transmitted from the luminance value extraction unit 21 to the irradiation condition calculation unit 23.
  • Step S4 (calculation of corrected irradiation conditions)
  • the irradiation condition calculation unit 23 calculates a correction irradiation condition based on the information on the image luminance value.
  • Information on the ideal luminance value is stored in advance in the storage unit 25, and the information on the ideal luminance value is transmitted from the storage unit 25 to the irradiation condition calculation unit 23.
  • As the ideal luminance value a luminance value of an X-ray fluoroscopic image that can be suitably viewed by the operator is used.
  • the irradiation condition calculation unit 23 compares the ideal luminance value determined in advance with the image luminance value to calculate a difference.
  • the irradiation condition calculation unit 23 corrects based on the X-ray irradiation condition at the time of generating the X-ray fluoroscopic image for which the image luminance value is calculated and the difference between the ideal luminance value calculated by the irradiation condition calculation unit 23 and the image luminance value. Irradiation conditions are calculated.
  • the corrected irradiation condition is an X-ray irradiation condition in which the image luminance value of the X-ray image becomes an ideal luminance value.
  • Information on the corrected irradiation condition is transmitted from the irradiation condition calculation unit 23 to the X-ray irradiation control unit 13. Note that the correction irradiation condition calculation method described here is an example, and a known method may be used as appropriate.
  • Step S5 Generation of X-ray image under corrected irradiation conditions
  • the X-ray irradiation control unit 13 controls the X-ray irradiation conditions again according to the information on the correction irradiation conditions. That is, the X-ray irradiation control unit 13 controls the tube voltage and tube current of the X-ray tube 5 and various conditions such as X-ray irradiation to values according to the correction irradiation conditions.
  • the X-ray irradiation control unit 13 controls the X-ray irradiation conditions again, so that the dose of the X-rays 5a irradiated from the X-ray tube 5, the timing at which the X-ray tube 5 irradiates the X-rays 5a, etc. are corrected irradiation conditions. Will be changed according to the information.
  • the X-ray tube 5 irradiates the subject M with a dose of X-rays based on the corrected irradiation conditions in accordance with a control signal from the X-ray irradiation control unit 13.
  • the image luminance value of the region of interest W of the X-ray fluoroscopic image generated again by the image generation unit 15 becomes an ideal luminance value. That is, in the X-ray fluoroscopic image, the luminance value of the reference region including the region of interest W is adjusted to an ideal luminance value that can be suitably viewed.
  • the X-ray fluoroscopic image displayed again on the monitor 17 is an image with high visibility of the region of interest W.
  • the operation of the X-ray fluoroscopic apparatus according to the first embodiment is completed. That is, the operator proceeds with the surgical procedure or diagnoses the subject M based on an X-ray fluoroscopic image in which the region of interest W can be suitably viewed.
  • the imaging system and the top plate are moved. Then, the X-ray irradiation condition is corrected according to the luminance of the region of interest by moving the region of interest of the subject shown in the X-ray fluoroscopic image into the range of the reference region previously set in the X-ray fluoroscopic image. .
  • the brightness of the X-ray fluoroscopic image is adjusted so that the visibility of the region of interest is high.
  • the reference region and the region of interest cannot be aligned unless hardware such as an imaging system or a top plate is moved.
  • hardware such as an imaging system or a top plate
  • the operator repeats fine adjustment of the position of the imaging system and the like in order to align the reference region and the region of interest.
  • the exposure dose received by the subject increases and the time required to acquire an X-ray image that allows the region of interest to be viewed appropriately.
  • the operator needs to constantly check the input unit for performing operations such as the imaging system and the monitor on which the region of interest and the reference region are displayed. As a result, the line of sight is repeatedly moved with respect to the input unit and the monitor, which increases the burden on the operator.
  • the fluoroscopic imaging apparatus 1 includes a reference area setting unit 19 that sets a reference area on the display screen of the monitor 17 that displays an X-ray image.
  • the image viewing area V of the X-ray fluoroscopic image is divided into a plurality of areas E in advance, and an area E selected by the mouse or touch pen as the reference area setting unit 19 is newly set as the reference area R.
  • the operator visually recognizes the monitor 17 and confirms the positional relationship between the region of interest W and the reference region R.
  • a new reference region R is set on the display screen by manually selecting a region E that includes the region of interest W using the reference region setting unit 19. Since the boundary line of the region E is visible on the display screen, the operator can easily and reliably confirm the region E including the region of interest W. Therefore, it is possible to quickly and reliably execute the setting of the reference region R that includes the region of interest W inside. Further, when the reference region R is newly set, the operator does not need to move his / her line of sight other than the monitor 17, so that the burden on the operator such as fatigue is further reduced.
  • the luminance value calculation unit 21 extracts the luminance value of each pixel located within the range of the reference region R, and calculates the image luminance value based on the luminance value in the reference region.
  • the irradiation condition calculation unit 23 calculates the corrected irradiation condition based on the information on the image luminance value.
  • the X-ray irradiation control unit 13 controls the X-ray irradiation conditions again according to the information on the correction irradiation conditions.
  • the corrected irradiation condition is an X-ray irradiation condition in which the image luminance value of the X-ray image is an ideal luminance value, that is, a luminance value that can be suitably viewed by the operator.
  • the reference region R is set so as to surely include the region of interest W.
  • the image luminance value calculated by the luminance value extraction unit 21 is closer to the luminance value of the region of interest W. Since the correction irradiation condition is calculated based on the image luminance value close to the luminance value of the region of interest W, the fluoroscopic image generated based on the correction irradiation condition is an image that allows the operator to visually recognize the region of interest W suitably. It becomes. Therefore, it is possible to accurately advance the surgical procedure while referring to an X-ray fluoroscopic image that allows the region of interest W to be suitably viewed.
  • the setting change of the reference region R by the reference region setting unit 19 can be performed during the execution of X-ray fluoroscopy. That is, even if it is found that the range of the reference region R is out of the position of the region of interest W after the start of fluoroscopy, the position of the reference region R can be quickly changed on the display screen of the monitor 17. Therefore, it is possible to change the setting of the reference region quickly so as to flexibly cope with a change in the status of the surgical procedure during the fluoroscopy, and to advance the surgical procedure more suitably.
  • Embodiment 2 of the present invention will be described with reference to the drawings.
  • the overall configuration of the X-ray fluoroscopic apparatus according to the second embodiment is the same as that of the X-ray fluoroscopic apparatus according to the first embodiment.
  • the operation process of the X-ray fluoroscopic apparatus according to the second embodiment is the same as the operation process of the X-ray fluoroscopic apparatus according to the first embodiment.
  • the image field area V of the X-ray image displayed on the monitor 17 is configured to be divided into a plurality of areas in advance.
  • the X-ray fluoroscopic apparatus according to the second embodiment has a configuration in which the reference region can be set without dividing the image visual field region V in advance.
  • the configuration for setting the reference region which is characteristic of the second embodiment, will be described with reference to FIG.
  • the reference area setting unit 19 selects an arbitrary position on the display screen of the monitor 17, and sets the reference area R at the selected position. It has a configuration to do.
  • 4A is the same as FIG. 2A in the first embodiment, in the X-ray fluoroscopic image displayed on the monitor 17, the range of the reference region R set in advance of the subject M from the position of the region of interest W. It shows a state of being detached.
  • the reference region setting unit 19 sets a new reference region R around the selected position on the display screen of the monitor 17.
  • Examples of the configuration of the reference area setting unit 19 that selects the reference area on the display screen include a mouse pointer and a keyboard. It is more preferable that the reference area setting unit 19 is provided at or near the monitor 17 so that the reference area setting unit 19 can be operated while viewing the monitor 17.
  • the operator refers to the monitor 17 and clicks the cursor F at the position of the region of interest W shown in the X-ray image.
  • a reference region R having a predetermined shape is set around the position selected by clicking.
  • the shape of the reference region R can be changed as appropriate by an icon 17a on the screen of the monitor 17.
  • the shape of the reference region R to be set can be changed from a rectangular shape to a circular shape by selecting the circular icon 17a from the state in which the rectangular icon 17a is initially selected (FIG. 4A) ( FIG. 4 (b)).
  • the size of the reference region R can be appropriately changed by an operation of selecting and dragging the boundary line of the reference region R.
  • the reference region R can be set without dividing the image field region V in advance. Further, since the position serving as the center of the reference region R can be arbitrarily selected, the reference region R can be set at a more appropriate position according to the position of the region of interest W displayed on the monitor 17. Further, the configuration illustrated in FIG. 4B is not limited to the configuration in which the shape of the reference region R is changed with the icon 17a. That is, a configuration in which a pointer such as the cursor F is operated using a pointing device such as a mouse to draw the outline of the reference region R on the display screen of the monitor 17 may be adopted. In this case, since the position and shape of the reference region R can be arbitrarily set, the reference region R having a more preferable shape can be newly set.
  • FIG. 4C shows a modification of the X-ray fluoroscopic apparatus according to the second embodiment.
  • the monitor 17 is configured by a touch panel. That is, the monitor 17 has a panel-like position input device on the surface for detecting the touched position. The operator touches the position input device using a finger or a touch pen T and directly draws an area to be a reference area, thereby setting the range of the reference area R on the display screen of the monitor 17.
  • the position input device constituting the monitor 17 corresponds to the reference region setting unit 19 which is a reference region setting means.
  • the operator can set the reference area R having an arbitrary shape at an arbitrary position. Therefore, a reference region R having a suitable shape can be newly set so as to exclude a region other than the region of interest W as much as possible according to the position / shape of the region of interest W. As a result, the image luminance value calculated by the luminance value calculation unit 21 is closer to the luminance value of the region of interest W, and thus it is possible to generate an X-ray fluoroscopic image with higher visibility of the region of interest W.
  • the reference region setting unit 19 sets a new reference region R on the display screen as in the first embodiment. That is, in the second embodiment, as in the first embodiment, the operator can quickly set the reference region R manually without moving the line of sight other than the monitor 17. As a result, it is possible to more quickly obtain an X-ray fluoroscopic image that allows the operator to visually recognize the site of interest W while reducing the burden on the operator.
  • the reference field R is set on the display screen without dividing the image viewing field V and the screen of the monitor 17 into a plurality of areas E in advance. Therefore, the technique according to the present invention can be applied to the monitor 17 having a configuration that is not divided into a plurality of regions E, and thus the versatility of the X-ray fluoroscopic apparatus can be enhanced. In addition, since the step of dividing the image visual field region V or the like into a plurality of regions in advance can be omitted, it is possible to avoid spending time for setting work.
  • the position and shape of the reference region R can be changed more flexibly according to the region of interest W shown on the monitor 17 without being affected by the shape of the region E that divides the image viewing region V or the like. That is, a more preferable range of the reference region R can be newly set so that the region other than the region of interest W is out of the range as much as possible according to the shape of the region of interest W or the like. As a result, the image luminance value calculated by the luminance value calculation unit 21 is closer to the luminance value of the region of interest W. Therefore, the visibility of the region of interest W can be further improved in the fluoroscopic image generated based on the corrected irradiation condition.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the irradiation condition fixing unit 29 (not shown) may be further provided.
  • the irradiation condition fixing unit is, for example, a button or a switch provided in the input unit 11.
  • at least the calculation of the image luminance value performed by the luminance value calculation unit 21 and the calculation of the correction irradiation condition performed by the irradiation condition calculation unit 23 are performed by turning on the irradiation condition fixing unit.
  • One is configured to stop.
  • the corrected irradiation condition is fixed under the most recently calculated condition and is no longer updated.
  • the irradiation condition fixing unit corresponds to the luminance adjustment switching means in the present invention.
  • the operator uses the reference region setting unit 19 to set the range of the reference region R according to the position of the region of interest W. Then, after the X-ray fluoroscopic image displayed on the monitor 17 is adjusted to a luminance that allows the region of interest W to be suitably viewed, the irradiation condition fixing unit is operated to be turned on. In this case, since the correction irradiation condition is fixed, the luminance of the X-ray fluoroscopic image is always in a state where the region of interest W can be suitably viewed.
  • the luminance value is generally excessively high in a pixel in which the metal is reflected. Therefore, in the configuration in which the correction irradiation condition is always calculated based on the luminance value in the reference region, when a metal piece is newly reflected in the reference region R, the luminance value calculation unit 21 is affected by the luminance of the metal piece, A higher value of the image luminance value is calculated. As a result, the brightness of the X-ray fluoroscopic image generated based on the corrected irradiation condition is drastically reduced, so that the visibility of the region of interest W is lowered.
  • the irradiation condition fixing unit is turned on, so that the correction irradiation condition is not changed even when the luminance in the reference region changes. That is, even when a metal piece such as a scalpel or scissors is newly reflected within the range of the reference region R due to the progress of the surgical procedure, the luminance of the X-ray fluoroscopic image does not change, and the region of interest W can be suitably viewed. State is maintained. Therefore, a situation in which the brightness of the X-ray fluoroscopic image rapidly decreases as a result of the brightness value in the pixels that show the metal piece having an influence on the correction irradiation condition due to the metal piece appearing in the reference region R can be preferably avoided.
  • the luminance value calculation unit 21 extracts all the luminance values of each pixel located in the reference region, and calculates the image luminance value based on the extracted luminance value in the reference region.
  • the upper limit luminance value and the lower limit luminance value are set in advance and stored in the storage unit 25, and the luminance value calculation unit 21 calculates the luminance value from the lower limit luminance value to the upper limit luminance value among the luminance values of each pixel located in the reference area.
  • the configuration may be such that only the luminance value between the values is extracted to calculate the image luminance value.
  • an X-ray image showing an extreme luminance value such as a luminance value exceeding the upper limit luminance value or a luminance value falling below the lower limit luminance value.
  • an extreme luminance value such as a luminance value exceeding the upper limit luminance value or a luminance value falling below the lower limit luminance value.
  • the luminance value is higher than the upper limit luminance value
  • a metal piece such as the above-described knife or fixing bolt is reflected in the reference region. Therefore, when an X-ray image of a metal piece or the like is reflected in the reference area, the high luminance value indicated by the metal piece affects the image luminance value and the correction irradiation condition, and the luminance of the X-ray fluoroscopic image sharply decreases. Is concerned.
  • an example of a case where the luminance value is lower than the lower limit luminance value is a case where X-rays are detected by the X-ray detector without passing through the subject M. That is, when the region of interest W has a complicated shape such as a finger of the subject M, X-rays directly enter the X-ray detector without passing through the subject M in a part of the reference region R. As a result, since the luminance value is extremely low in a pixel to which X-rays are directly incident, the extremely low luminance value affects the image luminance value and the correction irradiation condition, and the luminance of the X-ray fluoroscopic image becomes excessively high. Therefore, there is a concern that the visibility of the site of interest is reduced.
  • the luminance value calculation unit 21 determines the luminance value of the pixel that indicates a luminance value higher than the upper limit luminance value and the pixel that indicates a luminance value lower than the lower limit value. Excluded from extraction.
  • the brightness value calculation unit 21 automatically excludes pixels that show extreme brightness values, such as pixels that directly receive X-rays or pixels that project metal pieces, and calculates image brightness values. Therefore, it is possible to suitably avoid a situation in which the visibility of the region of interest is lowered as a result of pixels that exhibit an extreme luminance value affecting the correction irradiation condition and the luminance of the fluoroscopic image changes excessively.
  • the setting of the reference area performed on the display screen may be executed before the X-ray fluoroscopy is started.
  • Examples of setting the reference area before fluoroscopy include the following cases. That is, when the positional relationship between the X-ray irradiation field B confirmed with visible light or the like and the region of interest W in the subject M placed on the top 3 is as shown in FIG. It is easily expected to appear below the image viewing area.
  • the operator changes the setting of the reference region R initially set in the center of the screen (FIG. 5B) to the lower side of the screen of the monitor 17 and then starts X-ray irradiation by X-ray fluoroscopy ( FIG. 5 (c)). Since the reference region R is set according to the position of the region of interest W from the beginning of X-ray fluoroscopy, it is possible to shorten the time until the luminance of the X-ray fluoroscopic image is adjusted. As a result, the exposure dose received by the subject M in the brightness adjustment of the X-ray fluoroscopic image can be reduced.
  • a reference region is set on the display screen for the X-ray fluoroscopic image, and the X-ray fluoroscopic image can be suitably visually recognized based on the set range of the reference region.
  • the X-ray image for setting the reference area may be an X-ray image.
  • the X-ray irradiation condition of the X-ray image may be calculated as the correction irradiation condition based on the range of the reference region.
  • the irradiation condition calculation unit 23 corrects the irradiation condition in the X-ray imaging that captures a still image based on the luminance value of the pixel in the reference region that is preferably set according to the position of the region of interest W. Is calculated.
  • the corrected irradiation condition calculated by the irradiation condition calculation unit 23 is an X-ray irradiation condition for generating an X-ray image having a luminance value that allows the region of interest to be suitably viewed. Therefore, the X-ray irradiation control unit 13 can acquire an X-ray image that can suitably visually recognize the region of interest by controlling the X-ray tube 5 based on the corrected irradiation condition.
  • the X-ray image is generated for the subject M in the supine posture.
  • the present invention is not limited to this, and the configuration of the X-ray fluoroscopic apparatus according to the embodiment is established.
  • the present invention can also be applied to the subject M taking a posture.
  • the x direction that is, the body axis direction of the subject M is parallel to the vertical direction.
  • X-ray fluoroscopic apparatus 5 ... X-ray tube (X-ray source) 7 ... X-ray detector (X-ray detection means) 11: Input section (division area changing means) 13 ... X-ray irradiation control unit (irradiation control means) 15 Image generating unit (image generating means) 17 ... Monitor (image display means) 19: Reference area setting section (reference area setting means) 21 ... Luminance value calculation unit (luminance value calculation means) 23 ... Irradiation condition calculation unit (irradiation condition calculation means) 25 ... Storage unit (divided area storage means) 27 ... Main control section

Abstract

This X-ray fluoroscopic imaging apparatus comprises a reference region setting unit 19 with which a reference region is manually set on a display screen. An operator visibly confirms the position of a region of interest of a subject shown on a monitor 17 and, using the reference region setting unit 19, sets a new reference region on the display screen so as to include the region of interest therein. This allows rapid and reliable setting of the reference region that includes the region of interest therein. Additionally, in setting the reference region, burden on the operator is reduced because there is no need for the operator to look at places other than the monitor 17. A luminance value calculation unit 21 calculates an image luminance value on the basis of a luminance value of each pixel positioned within the range of the reference region, and an irradiation condition calculation unit 23 calculates a corrected irradiation condition on the basis of the image luminance value. An X-ray irradiation control unit 13 is capable of acquiring an X-ray image in which the operator can suitably view the region of interest by controlling an X-ray tube 5 on the basis of the corrected irradiation condition.

Description

X線透視撮影装置X-ray fluoroscopic equipment
 本発明は、被検体にX線を照射することによりX線画像を取得するX線透視撮影装置に係り、特に好適なX線画像を撮影できるX線照射条件を決定する技術に関する。 The present invention relates to an X-ray fluoroscopic apparatus that acquires an X-ray image by irradiating a subject with X-rays, and particularly relates to a technique for determining an X-ray irradiation condition capable of capturing a suitable X-ray image.
 医療現場において、X線を被検体に照射することによって被検体のX線画像を撮影するX線透視撮影装置が用いられている。従来のX線透視撮影装置101は図6に示すように、天板103と、X線管105と、X線検出器107と、画像生成部109と、画像表示部111と、X線照射制御部113とを備えている。 In a medical field, an X-ray fluoroscopic apparatus that captures an X-ray image of a subject by irradiating the subject with X-rays is used. As shown in FIG. 6, the conventional X-ray fluoroscopic apparatus 101 includes a top plate 103, an X-ray tube 105, an X-ray detector 107, an image generation unit 109, an image display unit 111, and X-ray irradiation control. Part 113.
 天板103は水平姿勢をとる被検体Mを載置させる。X線管105は被検体Mに対してX線105aを照射する。X線管105とX線検出器107とは天板103を挟んで対向配置されている。X線検出器107はX線管105から被検体Mに照射されて透過したX線105aを検出して電気信号に変換させ、X線検出信号として出力させる。X線管105とX線検出器107とは撮像系を構成している。 The top plate 103 places the subject M in a horizontal posture. The X-ray tube 105 irradiates the subject M with X-rays 105a. The X-ray tube 105 and the X-ray detector 107 are disposed to face each other with the top plate 103 interposed therebetween. The X-ray detector 107 detects the X-ray 105a irradiated to and transmitted through the subject M from the X-ray tube 105, converts it into an electrical signal, and outputs it as an X-ray detection signal. The X-ray tube 105 and the X-ray detector 107 constitute an imaging system.
 画像生成部109はX線検出器107の後段に設けられており、出力されたX線検出信号に基づいて、被検体Mの像が映し出されたX線画像を生成する。画像生成部109が生成するX線画像は、画像表示部111に表示される。X線照射制御部113はX線管105に接続されており、X線管105の管電圧や管電流を制御することによって、X線管105から照射させるX線量、およびX線を照射させるタイミングなどを制御する。なお、X線照射制御部113が制御する、X線管105がX線105aを照射する各種の条件について、以下「X線照射条件」とする。 The image generation unit 109 is provided after the X-ray detector 107 and generates an X-ray image in which an image of the subject M is projected based on the output X-ray detection signal. The X-ray image generated by the image generation unit 109 is displayed on the image display unit 111. The X-ray irradiation control unit 113 is connected to the X-ray tube 105, and controls the tube voltage and tube current of the X-ray tube 105, thereby irradiating the X-ray dose from the X-ray tube 105 and the timing of irradiating X-rays. Control etc. The various conditions under which the X-ray tube 105 irradiates the X-ray 105a controlled by the X-ray irradiation control unit 113 are hereinafter referred to as “X-ray irradiation conditions”.
 このようなX線透視撮影装置では、静止画を撮影するX線撮影の場合より小さい線量のX線を被検体に連続して照射し、生成されるX線画像を画像表示部111に連続して表示して観察する、X線透視が行われる。X線透視は術式の進行中などにおいて、関心部位のリアルタイム情報をX線透視画像として取得できる点で有効である。X線透視においては、X線照射条件が一定であっても被検体Mの体厚(被検体厚)が厚くなる場合は被検体Mを透過するX線量は減少し、被検体厚が薄くなると透過X線量は増大する。 In such an X-ray fluoroscopic apparatus, the subject is continuously irradiated with a smaller dose of X-rays than in the case of X-ray imaging for capturing a still image, and the generated X-ray image is continuously displayed on the image display unit 111. X-ray fluoroscopy is performed for display and observation. X-ray fluoroscopy is effective in that real-time information of a region of interest can be acquired as an X-ray fluoroscopic image while the surgical procedure is in progress. In X-ray fluoroscopy, when the body thickness of the subject M (subject thickness) increases even if the X-ray irradiation conditions are constant, the X-ray dose that passes through the subject M decreases and the subject thickness decreases. The transmitted X-ray dose increases.
 そのため被検体厚の変化によって、画像表示部111に表示されるX線画像の明るさ(輝度)が変化するので、術式を適切に進行できない場合がある。そこで、画像表示部111に表示されるX線画像の明るさを一定に維持するために、X線照射条件を被検体厚に応じて変更することによってX線量を調整する自動輝度調整機構が提案されている(例えば、特許文献1参照)。 Therefore, since the brightness (luminance) of the X-ray image displayed on the image display unit 111 changes due to the change in the subject thickness, there are cases where the surgical procedure cannot proceed appropriately. Therefore, in order to keep the brightness of the X-ray image displayed on the image display unit 111 constant, an automatic brightness adjustment mechanism that adjusts the X-ray dose by changing the X-ray irradiation condition according to the subject thickness is proposed. (For example, refer to Patent Document 1).
 ここで従来の装置において、自動輝度調整機構によってX線照射条件を調整する構成を説明する。従来のX線透視撮影装置101において、画像生成部109の後段に照射条件算出部115が設けられている。照射条件算出部115は、画像生成部109が生成するX線画像の輝度を検出する。次に照射条件算出部115はあらかじめ決定されている所定の値(理想輝度値)と、X線画像の輝度の値とを比較する。 Here, a configuration in which X-ray irradiation conditions are adjusted by an automatic brightness adjustment mechanism in a conventional apparatus will be described. In the conventional fluoroscopic imaging apparatus 101, an irradiation condition calculation unit 115 is provided after the image generation unit 109. The irradiation condition calculation unit 115 detects the luminance of the X-ray image generated by the image generation unit 109. Next, the irradiation condition calculation unit 115 compares a predetermined value (ideal luminance value) determined in advance with the luminance value of the X-ray image.
 そしてX線画像の生成時におけるX線照射条件に基づいて、X線画像の輝度値を理想輝度値にすることのできるX線照射条件である、補正X線照射条件を算出する。照射条件算出部115が算出する補正X線照射条件はX線照射制御部113にフィードバックされ、X線管105は補正X線照射条件に基づくX線照射を行う。補正X線照射条件に基づくX線照射の結果、画像生成部109が生成するX線画像の輝度値は理想輝度値となる。理想輝度値を視認性の高くなる輝度値とすることで、X線透視によって断続的に生成されるX線画像に対し、視認性が高くなるような自動輝度調整を実行できる。 Then, based on the X-ray irradiation condition at the time of generating the X-ray image, a corrected X-ray irradiation condition that is an X-ray irradiation condition that can make the luminance value of the X-ray image the ideal luminance value is calculated. The corrected X-ray irradiation conditions calculated by the irradiation condition calculation unit 115 are fed back to the X-ray irradiation control unit 113, and the X-ray tube 105 performs X-ray irradiation based on the corrected X-ray irradiation conditions. As a result of X-ray irradiation based on the corrected X-ray irradiation conditions, the luminance value of the X-ray image generated by the image generation unit 109 becomes an ideal luminance value. By setting the ideal luminance value to a luminance value with high visibility, it is possible to perform automatic luminance adjustment with high visibility for an X-ray image generated intermittently by X-ray fluoroscopy.
 従来の装置においてX線画像の輝度の値を検出する方法としては、X線画像全体の輝度の平均値を算出する方法の他に、あらかじめX線画像の画像視野Vの中心付近に基準領域Rを設定し、基準領域RにおけるX線画像の輝度の平均値を算出する方法が挙げられる。この場合、輝度を検出する領域は基準領域Rの内部に限定される。そのため図7(a)に示す被検体Mの関心部位Wを基準領域Rの範囲内に位置させることにより、関心部位Wの輝度に応じてX線画像の明るさを自動で調整することができる(図7(b)参照)。 As a method of detecting the luminance value of the X-ray image in the conventional apparatus, in addition to the method of calculating the average value of the luminance of the entire X-ray image, the reference region R is previously provided in the vicinity of the center of the image field V of the X-ray image. And calculating the average value of the luminance of the X-ray image in the reference region R. In this case, the area for detecting the brightness is limited to the inside of the reference area R. Therefore, by positioning the region of interest W of the subject M shown in FIG. 7A within the range of the reference region R, the brightness of the X-ray image can be automatically adjusted according to the luminance of the region of interest W. (Refer FIG.7 (b)).
特開2011-152199号公報JP 2011-152199 A
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 すなわちX線透視の開始時において、図7(c)に示すように、関心部位Wの位置が基準領域Rの範囲から外れている場合がある。この場合、関心部位W以外の領域の輝度情報に基づいて補正X線照射条件の算出が行われるので、関心部位Wの輝度が適切に調整されない。その結果、関心部位WにおけるX線画像の視認性が低下する。そこで従来例に係るX線透視撮影装置では撮像系や天板103を移動させることにより、図7(b)に示すように画像視野Vの中心に位置する基準領域Rの内部へ関心部位Wの位置を合わせる作業を行う。
However, the conventional example having such a configuration has the following problems.
That is, at the start of fluoroscopy, the position of the region of interest W may be out of the range of the reference region R as shown in FIG. In this case, since the correction X-ray irradiation condition is calculated based on the luminance information of the region other than the region of interest W, the luminance of the region of interest W is not appropriately adjusted. As a result, the visibility of the X-ray image at the site of interest W is reduced. Therefore, in the X-ray fluoroscopic apparatus according to the conventional example, the region of interest W is moved to the inside of the reference region R located at the center of the image visual field V as shown in FIG. Work to align.
 しかし撮像系や天板103などのハードウェアを移動させて位置合わせを行う場合、画像表示部111に映る関心部位Wと基準領域Rの位置関係を視認しても、撮像系などを移動させる距離を正確に認識することは困難である。そのため関心部位Wを基準領域R内へ移動させるために、撮像系などを操作する操作盤と、関心部位Wなどが表示される画像表示部111とを交互に注視しつつ、撮像系などの微調整を繰り返すこととなる。 However, when positioning is performed by moving hardware such as the imaging system or the top board 103, the distance by which the imaging system is moved even if the positional relationship between the region of interest W and the reference region R displayed on the image display unit 111 is visually confirmed. It is difficult to recognize correctly. Therefore, in order to move the region of interest W into the reference region R, the operation panel for operating the imaging system or the like and the image display unit 111 on which the region of interest W or the like is displayed are alternately watched while the imaging system or the like is finely tuned. The adjustment will be repeated.
 X線透視を行いながら関心部位Wのポジショニングを行う場合、微調整に時間がかかるので被検体の被曝量が増大する。一方、X線透視を中断してから関心部位Wのポジショニングを行う場合、X線透視を中断している間は関心部位Wと基準領域Rの位置関係を画像表示部111で確認できない。そのためX線透視の再開時において、関心部位Wが基準領域Rから再度外れていることがある。その結果、却って作業時間が長期化するという問題が懸念される。 When positioning the region of interest W while performing fluoroscopy, the amount of exposure of the subject increases because it takes time to make fine adjustments. On the other hand, when positioning the site of interest W after the fluoroscopy is interrupted, the positional relationship between the site of interest W and the reference region R cannot be confirmed on the image display unit 111 while the fluoroscopy is interrupted. Therefore, at the time of resuming X-ray fluoroscopy, the region of interest W may deviate from the reference region R again. As a result, there is a concern that the work time will be prolonged.
 本発明は、このような事情に鑑みてなされたものであって、関心部位の視認性が高いX線画像となるように、より速やかにX線画像の輝度を調整することのできるX線透視撮影装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and X-ray fluoroscopy can quickly adjust the brightness of an X-ray image so as to obtain an X-ray image with high visibility of a region of interest. An object is to provide a photographing apparatus.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明に係るX線透視撮影装置は、被検体にX線を照射するX線源と、前記X線源から照射され、前記被検体を透過したX線を検出するX線検出手段と、前記X線検出手段が出力する検出信号を用いてX線画像を生成する画像生成手段と、前記X線源のX線照射条件を制御する照射制御手段と、前記画像生成手段が生成するX線画像を表示する画像表示手段と、前記X線画像における1または2以上の領域を基準領域として、前記画像表示手段の表示画面上で任意に設定する基準領域設定手段と、前記基準領域内における画素の輝度値をそれぞれ抽出し、前記抽出された輝度値に基づいて前記X線画像に対応する画像輝度値を算出する輝度値算出手段と、前記基準領域内における画素の輝度値が所定の値になるような前記X線照射条件である補正照射条件を、前記画像輝度値と前記所定の値とに基づいて算出する照射条件算出手段とを備え、前記照射制御手段は、前記照射条件算出手段が算出する前記補正照射条件に基づいて、前記X線源のX線照射条件を制御することを特徴とするものである。
In order to achieve such an object, the present invention has the following configuration.
That is, an X-ray fluoroscopic apparatus according to the present invention includes an X-ray source that irradiates a subject with X-rays, and an X-ray detection unit that detects X-rays irradiated from the X-ray source and transmitted through the subject. , An image generation unit that generates an X-ray image using a detection signal output from the X-ray detection unit, an irradiation control unit that controls an X-ray irradiation condition of the X-ray source, and an X generated by the image generation unit Image display means for displaying a line image, reference area setting means for arbitrarily setting one or more areas in the X-ray image as a reference area on a display screen of the image display means, and within the reference area A luminance value calculating means for extracting a luminance value of each pixel and calculating an image luminance value corresponding to the X-ray image based on the extracted luminance value; and a luminance value of the pixel in the reference region is a predetermined value X-ray irradiation Irradiation condition calculation means for calculating a correction irradiation condition as a condition based on the image luminance value and the predetermined value, and the irradiation control means is configured to apply the correction irradiation condition to the correction irradiation condition calculated by the irradiation condition calculation means. Based on this, the X-ray irradiation conditions of the X-ray source are controlled.
 本発明に係るX線透視撮影装置によれば、X線画像における1または2以上の領域を基準領域として、画像表示手段の表示画面上で任意に設定する基準領域設定手段を備えている。この場合、操作者は画像表示手段の表示画面を視認して被検体の関心部位の位置を確認する。そして基準領域設定手段を用いて関心部位を内部に含むように、基準領域を表示画面上で任意に設定する。 The X-ray fluoroscopic apparatus according to the present invention includes reference area setting means for arbitrarily setting one or more areas in the X-ray image as reference areas on the display screen of the image display means. In this case, the operator visually confirms the display screen of the image display means and confirms the position of the region of interest of the subject. Then, the reference region is arbitrarily set on the display screen so as to include the region of interest inside using the reference region setting means.
 操作者は表示画面上において関心部位の正確な位置および形状を容易に視認できるので、関心部位を内部に含むような基準領域の設定を迅速かつ確実に実行することが可能となる。また基準領域を設定する際において、操作者は画像表示手段の表示画面以外に視線を移動させる必要がないので、操作者が受ける疲労などの負担がより軽減される。 Since the operator can easily visually recognize the exact position and shape of the site of interest on the display screen, it is possible to quickly and surely set the reference region that includes the site of interest. Further, when setting the reference area, the operator does not have to move the line of sight other than the display screen of the image display means, so the burden on the operator such as fatigue is further reduced.
 輝度値算出手段は基準領域内における画素の輝度値をそれぞれ抽出し、抽出された輝度値に基づいて、X線画像に対応する画像輝度値を算出する。照射条件算出手段は、画像輝度値と所定の値との情報に基づいて補正照射条件を算出する。補正照射条件は、基準領域内における画素の輝度値が所定の値になるようなX線照射条件である。照射制御手段は補正照射条件の情報に従って、X線源のX線照射条件を制御する。 The luminance value calculation means extracts the luminance value of each pixel in the reference area, and calculates an image luminance value corresponding to the X-ray image based on the extracted luminance value. The irradiation condition calculation means calculates the corrected irradiation condition based on information on the image luminance value and the predetermined value. The corrected irradiation condition is an X-ray irradiation condition such that the luminance value of the pixel in the reference area becomes a predetermined value. The irradiation control means controls the X-ray irradiation conditions of the X-ray source according to the information on the correction irradiation conditions.
 すなわち、操作者が関心部位を好適に視認できる輝度値に所定の値を設定するとともに、関心部位を正確に含むように基準領域を設定することにより、照射条件算出手段は関心部位が好適に視認できる輝度となるX線照射条件を補正照射条件として算出できる。その結果、関心部位を好適に視認できる輝度のX線画像を取得できる。本発明に係るX線透視撮影装置は基準領域設定手段を備えることにより、関心部位を内部に含むような基準領域の設定を迅速かつ確実に実行できる。従って、操作者が受ける負担を軽減しつつ、関心部位を好適に視認できるX線画像を迅速かつ確実に取得することが可能となる。 That is, by setting a predetermined value for the luminance value that allows the operator to visually recognize the region of interest appropriately, and setting the reference region so as to accurately include the region of interest, the irradiation condition calculation means can appropriately recognize the region of interest. An X-ray irradiation condition with a brightness that can be calculated can be calculated as a correction irradiation condition. As a result, it is possible to acquire an X-ray image having a luminance that allows the region of interest to be viewed appropriately. Since the X-ray fluoroscopic apparatus according to the present invention includes the reference region setting means, it is possible to quickly and surely set the reference region that includes the region of interest. Therefore, it is possible to quickly and surely acquire an X-ray image that allows the operator to visually recognize the region of interest while reducing the burden on the operator.
 また、本発明に係るX線透視撮影装置において、前記画像表示手段の表示画面は複数の領域に分割されており、前記基準領域設定手段は、前記複数の領域のうち1または2以上の領域を前記基準領域として選択することによって前記基準領域を設定することが好ましい。 In the X-ray fluoroscopic apparatus according to the present invention, the display screen of the image display unit is divided into a plurality of regions, and the reference region setting unit includes one or more of the plurality of regions. Preferably, the reference area is set by selecting as the reference area.
 本発明に係るX線透視撮影装置によれば、画像表示手段の表示画面は複数の領域に分割されており、基準領域設定手段は複数の領域のうち1または2以上の領域を選択することによって基準領域を設定する。操作者は画像表示手段を視認し、表示画面を分割する複数の領域のうち、関心部位を内部に含む領域を手動で選択することにより、新たな基準領域が表示画面上で設定される。操作者は関心部位が含まれる領域を容易かつ確実に確認できる。従って、関心部位を内部に含むような基準領域の設定をより迅速かつ確実に実行することが可能となる。 According to the fluoroscopic imaging apparatus according to the present invention, the display screen of the image display means is divided into a plurality of areas, and the reference area setting means selects one or more areas from among the plurality of areas. Set the reference area. The operator visually recognizes the image display means, and manually selects a region that includes the region of interest among a plurality of regions that divide the display screen, whereby a new reference region is set on the display screen. The operator can easily and reliably confirm the region including the region of interest. Accordingly, it is possible to execute the setting of the reference region that includes the region of interest inside more quickly and reliably.
 また、本発明に係るX線透視撮影装置は、前記画像表示手段の表示画面を分割する前記複数の領域の数および形状のうち少なくとも一方を変更する分割領域変更手段と、前記分割領域変更手段によって変更された前記複数の領域の数および形状を記憶する分割領域記憶手段とを備え、前記画像表示手段は前記分割領域記憶手段が記憶した前記複数の領域の数および形状に関する情報を読み出して表示画面上に表示することが好ましい。 The X-ray fluoroscopic apparatus according to the present invention includes a divided region changing unit that changes at least one of the number and shape of the plurality of regions that divide the display screen of the image display unit, and the divided region changing unit. Divided area storage means for storing the number and shape of the plurality of changed areas, and the image display means reads out information related to the number and shape of the plurality of areas stored in the divided area storage means to display a display screen. Preferably displayed above.
 本発明に係るX線透視撮影装置によれば、画像表示手段の表示画面を分割する領域の数および形状のうち少なくとも一方は分割領域変更手段によって変更可能である。そのため関心部位の大きさや形状に応じて分割領域の数および形状を変更し、基準領域として設定される分割領域が関心部位をより好適に含むようにすることができる。また変更された分割領域の数および形状は分割領域記憶手段に記憶され、画像表示手段は分割領域記憶手段が記憶した領域の数および形状に関する情報を読み出して表示画面上に表示する。この場合、変更した分割領域の数や形状の情報は記憶されて読み出し可能となる。従って、一度変更した後は分割領域の数や形状の情報を再度変更する必要がないので、作業工程が煩雑となることを回避できる。 According to the X-ray fluoroscopic apparatus according to the present invention, at least one of the number and the shape of the area dividing the display screen of the image display means can be changed by the divided area changing means. Therefore, the number and shape of the divided regions can be changed according to the size and shape of the region of interest, and the divided region set as the reference region can more suitably include the region of interest. Further, the changed number and shape of the divided areas are stored in the divided area storage means, and the image display means reads out information on the number and shapes of the areas stored in the divided area storage means and displays them on the display screen. In this case, information on the number and shape of the changed divided areas is stored and can be read out. Accordingly, since it is not necessary to change the number of divided areas and the information of the shape again after the change once, it is possible to avoid a complicated work process.
 また、本発明に係るX線透視撮影装置において、前記基準領域設定手段は前記画像表示手段の表示画面上における任意の領域を、前記基準領域として描画することによって前記基準領域を設定することが好ましい。 In the X-ray fluoroscopic apparatus according to the present invention, it is preferable that the reference area setting means sets the reference area by drawing an arbitrary area on the display screen of the image display means as the reference area. .
 本発明に係るX線透視撮影装置によれば、基準領域設定手段は画像表示手段の表示画面上における任意の領域を、基準領域として描画することによって基準領域を設定する。このような構成において、操作者は画像表示手段を視認し、関心部位を内部に含む領域を表示画面上で描画することにより、新たな基準領域が設定される。この場合、操作者は任意の位置に任意の形状の基準領域を設定できる。そのため関心部位の位置・形状に応じて、関心部位以外の領域を可能な限り除外するように、好適な形状の基準領域を新たに設定できる。その結果、輝度値算出手段が算出する画像輝度値は関心部位の輝度値により近い値となるので、より関心部位の視認性が高いX線画像を生成することが可能となる。 According to the X-ray fluoroscopic apparatus according to the present invention, the reference area setting means sets the reference area by drawing an arbitrary area on the display screen of the image display means as the reference area. In such a configuration, the operator visually recognizes the image display means, and draws a region including the region of interest on the display screen, whereby a new reference region is set. In this case, the operator can set a reference area having an arbitrary shape at an arbitrary position. Therefore, a reference region having a suitable shape can be newly set so as to exclude a region other than the region of interest as much as possible according to the position / shape of the region of interest. As a result, the image luminance value calculated by the luminance value calculating means is closer to the luminance value of the region of interest, and thus an X-ray image with higher visibility of the region of interest can be generated.
 また、本発明に係るX線透視撮影装置において、前記輝度値算出手段は前記基準領域内における画素の輝度値のうち、所定の上限値と所定の下限値との間に含まれる前記輝度値を抽出し、前記抽出された輝度値に基づいて前記X線画像に対応する画像輝度値を算出することが好ましい。 Further, in the X-ray fluoroscopic apparatus according to the present invention, the luminance value calculation means calculates the luminance value included between a predetermined upper limit value and a predetermined lower limit value among the luminance values of the pixels in the reference region. It is preferable to extract and calculate an image luminance value corresponding to the X-ray image based on the extracted luminance value.
 本発明に係るX線透視撮影装置によれば、輝度値算出手段は基準領域内における画素の輝度値のうち、所定の上限値と所定の下限値との間に含まれる輝度値を抽出する。すなわち上限値を超える輝度値や下限値を下回る輝度値などといった極端な数値の輝度値は輝度値算出手段の抽出対象から除外される。従って、金属片など輝度値の極端なX線像が基準領域に映る場合であっても、極端な数値の輝度値を示すX線像が画像輝度値に影響を与えることが回避される。その結果、金属片など過度に輝度値の高いX線像が基準領域に映ることに起因してX線画像の輝度が急激に変化するといった事態を好適に回避できる。 According to the X-ray fluoroscopic apparatus according to the present invention, the luminance value calculating means extracts a luminance value included between a predetermined upper limit value and a predetermined lower limit value among the luminance values of the pixels in the reference region. That is, extreme numerical brightness values such as a brightness value exceeding the upper limit value and a brightness value falling below the lower limit value are excluded from the extraction target of the brightness value calculating means. Therefore, even when an X-ray image having an extreme luminance value such as a metal piece is reflected in the reference region, it is possible to avoid an X-ray image showing an extremely high luminance value from affecting the image luminance value. As a result, a situation in which the brightness of the X-ray image rapidly changes due to an X-ray image having an excessively high brightness value such as a metal piece being reflected in the reference region can be suitably avoided.
 また、本発明に係るX線透視撮影装置は、前記照射条件算出手段が算出する補正照射条件を、直近に算出された前記補正照射条件に固定させる輝度調整切り替え手段を備えることが好ましい。 The X-ray fluoroscopic apparatus according to the present invention preferably includes a luminance adjustment switching unit that fixes the corrected irradiation condition calculated by the irradiation condition calculation unit to the corrected irradiation condition calculated most recently.
 本発明に係るX線透視撮影装置によれば、輝度調整切り替え手段は照射条件算出手段が算出する補正照射条件を、直近に算出された補正照射条件に固定させる。このような構成では、輝度調整切り替え手段によって、自動輝度調整機能がオフの状態となるので、補正照射条件は直近に算出された条件で固定され、それ以上更新されなくなる。 According to the X-ray fluoroscopic apparatus according to the present invention, the brightness adjustment switching unit fixes the correction irradiation condition calculated by the irradiation condition calculation unit to the correction irradiation condition calculated most recently. In such a configuration, since the automatic brightness adjustment function is turned off by the brightness adjustment switching means, the corrected irradiation condition is fixed under the most recently calculated condition and is no longer updated.
 操作者は基準領域設定手段を用いて基準領域の範囲を関心部位の位置に合わせて表示画面上で設定する。そして補正照射条件に従って、関心部位におけるX線画像の輝度が好適に視認できる輝度値に調整された後、輝度調整切り替え手段によって自動輝度調整機能がオフの状態に切り替える。この場合、補正照射条件が固定されるので、X線透視画像の輝度は常に関心部位を好適に視認できる輝度値に維持される。従って、関心部位におけるX線画像の輝度を好適に調整した後、金属片など過度に輝度値の高いX線像が基準領域に映ることに起因してX線画像の輝度が急激に変化するといった事態を好適に回避できる。 The operator uses the reference area setting means to set the reference area range on the display screen according to the position of the region of interest. Then, after the brightness of the X-ray image in the region of interest is adjusted to a brightness value that can be suitably viewed in accordance with the corrected irradiation condition, the brightness adjustment switching unit switches the automatic brightness adjustment function to an off state. In this case, since the correction irradiation condition is fixed, the brightness of the X-ray fluoroscopic image is always maintained at a brightness value at which the region of interest can be suitably viewed. Therefore, after suitably adjusting the brightness of the X-ray image in the region of interest, the brightness of the X-ray image changes abruptly due to an X-ray image having an excessively high brightness value, such as a metal piece, appearing in the reference region. The situation can be suitably avoided.
 また、本発明に係るX線透視撮影装置において、前記画像表示手段はタッチパネルであり、前記基準領域設定手段は前記画像表示手段の表面に設けられる位置入力装置であることが好ましい。 In the X-ray fluoroscopic apparatus according to the present invention, it is preferable that the image display means is a touch panel, and the reference area setting means is a position input device provided on a surface of the image display means.
 本発明に係るX線透視撮影装置によれば、画像表示手段はタッチパネルであり、基準領域設定手段は画像表示手段の表面に設けられる位置入力装置である。この場合、操作者は手指やタッチペンなどを用いて画像表示手段の表面に設けられる位置入力装置に直接触れることにより、画像表示手段の表示画像上における任意の位置に任意の形状の基準領域を設定できる。そのため関心部位の位置・形状に応じて、関心部位以外の領域を可能な限り除外するように、好適な形状の基準領域を新たに設定できる。 According to the X-ray fluoroscopic apparatus according to the present invention, the image display means is a touch panel, and the reference area setting means is a position input device provided on the surface of the image display means. In this case, the operator sets a reference area of an arbitrary shape at an arbitrary position on the display image of the image display means by directly touching a position input device provided on the surface of the image display means with a finger or a touch pen. it can. Therefore, a reference region having a suitable shape can be newly set so as to exclude a region other than the region of interest as much as possible according to the position / shape of the region of interest.
 また関心部位を表示する画像表示手段に直接接触して基準領域を設定するので、関心部位の位置・形状をより正確になぞるように基準領域を迅速に設定できる。その結果、輝度値算出手段が算出する画像輝度値は関心部位の適正輝度値により近い値となるので、より関心部位の視認性が高いX線画像を生成することが可能となる。 Also, since the reference region is set by directly contacting the image display means for displaying the region of interest, the reference region can be quickly set so that the position and shape of the region of interest can be traced more accurately. As a result, the image luminance value calculated by the luminance value calculating means is closer to the appropriate luminance value of the region of interest, and thus an X-ray image with higher visibility of the region of interest can be generated.
 本発明に係るX線透視撮影装置によれば、X線画像における1または2以上の領域を基準領域として、画像表示手段の表示画面上で任意に設定する基準領域設定手段を備えている。この場合、操作者は画像表示手段の表示画面を視認して被検体の関心部位の位置を確認する。そして基準領域設定手段を用いて関心部位を内部に含むように、基準領域を表示画面上で任意に設定する。 The X-ray fluoroscopic apparatus according to the present invention includes reference area setting means for arbitrarily setting one or more areas in the X-ray image as reference areas on the display screen of the image display means. In this case, the operator visually confirms the display screen of the image display means and confirms the position of the region of interest of the subject. Then, the reference region is arbitrarily set on the display screen so as to include the region of interest inside using the reference region setting means.
 操作者は表示画面上において関心部位の正確な位置および形状を容易に視認できるので、関心部位を内部に含むような基準領域の設定を迅速かつ確実に実行することが可能となる。また基準領域を設定する際において、操作者は画像表示手段の表示画面以外に視線を移動させる必要がないので、操作者が受ける疲労などの負担がより軽減される。 Since the operator can easily visually recognize the exact position and shape of the site of interest on the display screen, it is possible to quickly and surely set the reference region that includes the site of interest. Further, when setting the reference area, the operator does not have to move the line of sight other than the display screen of the image display means, so the burden on the operator such as fatigue is further reduced.
 輝度値算出手段は基準領域内における画素の輝度値をそれぞれ抽出し、抽出された輝度値に基づいて、X線画像に対応する画像輝度値を算出する。照射条件算出手段は、画像輝度値と所定の値との情報に基づいて補正照射条件を算出する。補正照射条件は、基準領域内における画素の輝度値が所定の値になるようなX線照射条件である。照射制御手段は補正照射条件の情報に従って、X線源のX線照射条件を制御する。 The luminance value calculation means extracts the luminance value of each pixel in the reference area, and calculates an image luminance value corresponding to the X-ray image based on the extracted luminance value. The irradiation condition calculation means calculates the corrected irradiation condition based on information on the image luminance value and the predetermined value. The corrected irradiation condition is an X-ray irradiation condition such that the luminance value of the pixel in the reference area becomes a predetermined value. The irradiation control means controls the X-ray irradiation conditions of the X-ray source according to the information on the correction irradiation conditions.
 すなわち、操作者が関心部位を好適に視認できる輝度値に所定の値を設定するとともに、関心部位を正確に含むように基準領域を設定することにより、照射条件算出手段は関心部位が好適に視認できる輝度となるX線照射条件を補正照射条件として算出できる。その結果、関心部位を好適に視認できる輝度のX線画像を取得できる。本発明に係るX線透視撮影装置は基準領域設定手段を備えることにより、関心部位を内部に含むような基準領域の設定を迅速かつ確実に実行できる。従って、操作者が受ける負担を軽減しつつ、関心部位を好適に視認できるX線画像を迅速かつ確実に取得することが可能となる。 That is, by setting a predetermined value for the luminance value that allows the operator to visually recognize the region of interest appropriately, and setting the reference region so as to accurately include the region of interest, the irradiation condition calculation means can appropriately recognize the region of interest. An X-ray irradiation condition with a brightness that can be calculated can be calculated as a correction irradiation condition. As a result, it is possible to acquire an X-ray image having a luminance that allows the region of interest to be viewed appropriately. Since the X-ray fluoroscopic apparatus according to the present invention includes the reference region setting means, it is possible to quickly and surely set the reference region that includes the region of interest. Therefore, it is possible to quickly and surely acquire an X-ray image that allows the operator to visually recognize the region of interest while reducing the burden on the operator.
実施例1に係るX線透視撮影装置の構成を説明する機能ブロック図である。1 is a functional block diagram illustrating a configuration of an X-ray fluoroscopic apparatus according to Embodiment 1. FIG. 実施例1において基準領域を設定する構成を説明する図である。(a)は基準領域の位置が関心部位から外れている状態を示す図であり、(b)は関心部位を含む領域を選択して基準領域を新たに設定する状態を示す図であり、(c)は隣接する2以上の領域を基準領域として新たに設定する状態を示す図であり、(d)は隣接しない離れた2以上の領域を基準領域として新たに設定する状態を示す図である。FIG. 6 is a diagram illustrating a configuration for setting a reference area in the first embodiment. (A) is a figure which shows the state from which the position of the reference | standard area | region has remove | deviated from the region of interest, (b) is a figure which shows the state which selects the area | region containing a region of interest and sets a reference area newly, (c) is a diagram showing a state in which two or more adjacent regions are newly set as reference regions, and (d) is a diagram showing a state in which two or more regions that are not adjacent are newly set as reference regions. . 実施例1に係るX線透視撮影装置の動作の工程を説明するフローチャートである。3 is a flowchart for explaining an operation process of the X-ray fluoroscopic apparatus according to Embodiment 1; 実施例2において基準領域を設定する構成を説明する図である。(a)は基準領域の位置が関心部位から外れている状態を示す図であり、(b)はマウスポインタを用いて基準領域を新たに設定する状態を示す図であり、(c)はタッチペンを用いて基準領域を新たに設定する状態を示す図である。FIG. 10 is a diagram illustrating a configuration for setting a reference area in the second embodiment. (A) is a figure which shows the state from which the position of the reference | standard area | region has remove | deviated from the region of interest, (b) is a figure which shows the state which newly sets a reference | standard area | region using a mouse pointer, (c) is a touch pen It is a figure which shows the state which sets a reference area newly using. 変形例において、X線透視の開始前に基準領域と関心部位との位置合わせを行う構成を説明する図である。(a)は被検体における関心部位の位置を示す図であり、(b)は初期設定状態における基準領域の範囲を示す図であり、(c)は設定変更後における基準領域の範囲を示す図である。In a modification, it is a figure explaining the structure which aligns a reference | standard area | region and a region of interest before the start of X-ray fluoroscopy. (A) is a figure which shows the position of the region of interest in a subject, (b) is a figure which shows the range of the reference area in an initial setting state, (c) is a figure which shows the range of the reference area after a setting change. It is. 従来例に係るX線透視撮影装置の構成を説明する機能ブロック図である。It is a functional block diagram explaining the structure of the X-ray fluoroscopic apparatus which concerns on a prior art example. 従来例において、基準領域と関心部位との位置合わせを行う構成を説明する図である。(a)は被検体における関心部位の位置を示す図であり、(b)は関心部位が基準領域内に位置する状態を示す図であり、(c)は関心部位が基準領域から外れている状態を示す図である。It is a figure explaining the structure which performs position alignment with a reference | standard area | region and a region of interest in a prior art example. (A) is a figure which shows the position of the region of interest in a subject, (b) is a figure which shows the state in which the region of interest is located in a reference | standard area | region, (c) is a figure which has removed the region of interest from the reference | standard area | region. It is a figure which shows a state.
 以下、図面を参照して本発明の実施例1を説明する。 Embodiment 1 of the present invention will be described below with reference to the drawings.
<全体構成の説明>
 実施例1に係るX線透視撮影装置1は図1に示すように、水平姿勢をとる被検体Mを載置させる天板3と、被検体Mに対してX線5aを照射するX線管5と、被検体Mに照射されて透過したX線を検出するX線検出器7とを備えている。X線管5とX線検出器7とは撮像系を構成しており、天板3を挟んで対向配置されている。X線管5には、X線管5から照射されるX線5aを円錐となっているコーン状に制限するコリメータ9が設けられている。コリメータ9がX線5aを制限する構成については円錐状に限られず、角錐状など適宜変更してよい。
<Description of overall configuration>
As shown in FIG. 1, the X-ray fluoroscopic apparatus 1 according to the first embodiment includes a top plate 3 on which a subject M in a horizontal posture is placed, and an X-ray tube that irradiates the subject M with X-rays 5a. 5 and an X-ray detector 7 for detecting X-rays that have been irradiated and transmitted through the subject M. The X-ray tube 5 and the X-ray detector 7 constitute an imaging system, and are opposed to each other with the top plate 3 interposed therebetween. The X-ray tube 5 is provided with a collimator 9 that limits the X-rays 5a irradiated from the X-ray tube 5 to a cone shape. The configuration in which the collimator 9 restricts the X-ray 5a is not limited to a conical shape, and may be appropriately changed such as a pyramid shape.
 X線検出器7は、X線管5から被検体Mに照射されて透過したX線5aを検出して電気信号に変換させ、X線検出信号として出力させる。X線検出器7の例としては、イメージインテンシファイア(I.I)や、フラットパネル型検出器(FPD)などが用いられる。X線管5は本発明におけるX線源に相当し、X線検出器7は本発明におけるX線検出手段に相当する。 The X-ray detector 7 detects the X-ray 5a irradiated from the X-ray tube 5 and transmitted through the subject M, converts it to an electrical signal, and outputs it as an X-ray detection signal. As an example of the X-ray detector 7, an image intensifier (II), a flat panel detector (FPD), or the like is used. The X-ray tube 5 corresponds to the X-ray source in the present invention, and the X-ray detector 7 corresponds to the X-ray detection means in the present invention.
 また、X線透視撮影装置1は入力部11と、X線照射制御部13と、画像生成部15と、モニタ17と、基準領域設定部19と、輝度値抽出部21と、照射条件算出部23と、記憶部25と、主制御部27とを備えている。入力部11は操作者の指示を入力するものであり、その一例としてマウス入力式のパネルや、タッチ入力式のパネルなどが挙げられる。 The X-ray fluoroscopic apparatus 1 includes an input unit 11, an X-ray irradiation control unit 13, an image generation unit 15, a monitor 17, a reference area setting unit 19, a luminance value extraction unit 21, and an irradiation condition calculation unit. 23, a storage unit 25, and a main control unit 27. The input unit 11 is used to input an operator's instruction, and examples thereof include a mouse input type panel and a touch input type panel.
 X線照射制御部13はX線管5に接続されており、X線照射条件を制御する。X線照射条件の例としては管電圧や管電流の値や、X線5aの照射時間などが挙げられる。すなわちX線照射制御部13がX線管5の管電圧や管電流を制御することにより、X線管5から照射されるX線5aの線量、およびX線管5がX線5aを照射させるタイミングなどが制御される。X線照射制御部13は本発明における照射制御手段に相当する。 The X-ray irradiation control unit 13 is connected to the X-ray tube 5 and controls X-ray irradiation conditions. Examples of the X-ray irradiation conditions include tube voltage and tube current values, X-ray 5a irradiation time, and the like. That is, the X-ray irradiation control unit 13 controls the tube voltage and tube current of the X-ray tube 5, so that the dose of the X-ray 5 a irradiated from the X-ray tube 5 and the X-ray tube 5 irradiate the X-ray 5 a. Timing etc. are controlled. The X-ray irradiation control unit 13 corresponds to the irradiation control means in the present invention.
 画像生成部15はX線検出器7の後段に設けられており、X線検出器7から出力されるX線検出信号に基づいてX線画像を生成する。モニタ17は画像生成部15が生成するX線画像とともに、基準領域を表示するものであり、一例として液晶ディスプレイなどで構成される。モニタ17が表示するX線画像の画像視野領域は複数の領域に分割されている。X線画像の画像視野領域を分割する領域の数および形状の各々は、入力部11に入力される指示によって変更可能に構成される。入力部11は本発明における分割領域変更手段に相当する。画像生成部15は本発明における画像生成手段に相当する。モニタ17は本発明における画像表示手段に相当する。 The image generation unit 15 is provided at the subsequent stage of the X-ray detector 7 and generates an X-ray image based on the X-ray detection signal output from the X-ray detector 7. The monitor 17 displays a reference area together with the X-ray image generated by the image generation unit 15, and is configured by a liquid crystal display as an example. The image field area of the X-ray image displayed on the monitor 17 is divided into a plurality of areas. Each of the number and shape of regions that divide the image field region of the X-ray image can be changed by an instruction input to the input unit 11. The input unit 11 corresponds to a divided area changing unit in the present invention. The image generation unit 15 corresponds to the image generation means in the present invention. The monitor 17 corresponds to the image display means in the present invention.
 基準領域設定部19は画像生成部15が生成するX線画像上に基準領域を設定する。基準領域設定部19の構成としては、例えばマウス、ジョイスティック、およびタッチパッドなどが挙げられる。また基準領域設定部19はモニタ17に表示されるX線画像に対して、基準領域の設定が可能となるように構成される。基準領域設定部19はモニタ17またはその近傍に設けられ、モニタ17を視認しつつ基準領域設定部19を操作できる構成であることがより好ましい。基準領域設定部19は本発明における基準領域設定手段に相当する。 The reference area setting unit 19 sets a reference area on the X-ray image generated by the image generation unit 15. Examples of the configuration of the reference area setting unit 19 include a mouse, a joystick, and a touch pad. The reference area setting unit 19 is configured so that a reference area can be set for the X-ray image displayed on the monitor 17. It is more preferable that the reference area setting unit 19 is provided at or near the monitor 17 so that the reference area setting unit 19 can be operated while viewing the monitor 17. The reference area setting unit 19 corresponds to the reference area setting means in the present invention.
 輝度値抽出部21は画像生成部15の後段に設けられており、画像生成部15が生成するX線画像について、基準領域内に位置する各画素の輝度値をそれぞれ抽出する。そして輝度値抽出部21は抽出された基準領域内の輝度値に基づいて、X線画像に対応する画像輝度値を算出する。画像輝度値を算出する方法としては基準領域内に位置する各画素の輝度値の平均を求める方法が挙げられるがこれに限られない。基準領域内に位置する各画素の輝度値の中間値をとる方法や、基準領域内に位置する各画素の輝度値ごとに適宜重み付け係数を乗じてから平均値を算出する方法など、基準領域内の輝度値を算出する任意の方法を用いてよい。 The luminance value extraction unit 21 is provided in the subsequent stage of the image generation unit 15 and extracts the luminance value of each pixel located in the reference area from the X-ray image generated by the image generation unit 15. Then, the luminance value extracting unit 21 calculates an image luminance value corresponding to the X-ray image based on the extracted luminance value in the reference area. As a method for calculating the image luminance value, there is a method for obtaining the average of the luminance values of the respective pixels located in the reference region, but is not limited thereto. In the reference area, such as taking the intermediate value of the luminance values of each pixel located in the reference area, or calculating the average value after multiplying the luminance value of each pixel located in the reference area by an appropriate weighting factor An arbitrary method for calculating the luminance value of may be used.
 照射条件算出部23は輝度値抽出部21が算出する画像輝度値に基づいて補正照射条件を算出し、算出された補正照射条件をX線照射制御部13へ出力する。照射条件算出部23は予め決定された理想輝度値と、画像輝度値とを比較して差分を算出する。そして画像輝度値の算出に用いられたX線画像に係るX線照射条件と、照射条件算出部23が算出した差分とに基づいて、X線画像の画像輝度値が理想輝度値となるX線照射条件、すなわち補正照射条件を算出する。輝度値抽出部21は本発明における輝度値算出手段に相当し、照射条件算出部23は本発明における照射条件算出手段に相当する。 The irradiation condition calculation unit 23 calculates the correction irradiation condition based on the image luminance value calculated by the luminance value extraction unit 21, and outputs the calculated correction irradiation condition to the X-ray irradiation control unit 13. The irradiation condition calculation unit 23 compares the ideal luminance value determined in advance with the image luminance value to calculate a difference. Then, based on the X-ray irradiation condition relating to the X-ray image used for calculating the image luminance value and the difference calculated by the irradiation condition calculation unit 23, the X-ray whose image luminance value is the ideal luminance value An irradiation condition, that is, a corrected irradiation condition is calculated. The luminance value extraction unit 21 corresponds to the luminance value calculation unit in the present invention, and the irradiation condition calculation unit 23 corresponds to the irradiation condition calculation unit in the present invention.
 記憶部25は、画像生成部15が生成するX線画像、基準領域設定部19が設定する基準領域、照射条件算出部23が用いる理想輝度値、および照射条件算出部23が算出する補正照射条件などの各種情報を記憶する。また記憶部25はX線画像の画像視野領域を分割する領域について、形状や数などの情報を記憶する。主制御部27はX線照射制御部13と、画像生成部15と、モニタ17と、基準領域設定部19と、輝度値抽出部21と、照射条件算出部23と、記憶部25とを統括制御する。記憶部25は本発明における分割領域記憶手段に相当する。 The storage unit 25 includes an X-ray image generated by the image generation unit 15, a reference region set by the reference region setting unit 19, an ideal luminance value used by the irradiation condition calculation unit 23, and a corrected irradiation condition calculated by the irradiation condition calculation unit 23. Various information such as is stored. In addition, the storage unit 25 stores information such as the shape and number of regions for dividing the image field region of the X-ray image. The main control unit 27 controls the X-ray irradiation control unit 13, the image generation unit 15, the monitor 17, the reference region setting unit 19, the luminance value extraction unit 21, the irradiation condition calculation unit 23, and the storage unit 25. Control. The storage unit 25 corresponds to the divided area storage means in the present invention.
<実施例1において基準領域を設定する構成の説明>
 ここで基準領域設定部19がX線画像に対し、表示画面上で基準領域を設定する構成について説明する。画像生成部15が生成するX線画像はモニタ17に映し出される。図2の各々に示すように、モニタ17に映し出されるX線画像の画像視野領域Vは二点鎖線で示す境界線により、複数の矩形の領域Eに分割されるように構成されている。二点鎖線で示す境界線は視認可能に表示されている。
<Description of Configuration for Setting Reference Area in Embodiment 1>
Here, a configuration in which the reference area setting unit 19 sets the reference area on the display screen for the X-ray image will be described. The X-ray image generated by the image generation unit 15 is displayed on the monitor 17. As shown in each of FIGS. 2A and 2B, the image field area V of the X-ray image projected on the monitor 17 is configured to be divided into a plurality of rectangular areas E by a boundary line indicated by a two-dot chain line. A boundary line indicated by a two-dot chain line is displayed so as to be visible.
 基準領域は後述する画像輝度値の算出に用いる画素の範囲を示す領域であり、実施例1において基準領域は1または2以上の領域Eに対して設定される。デフォルトの状態において、基準領域Rは一例として画像視野領域Vの中央付近に位置する領域Eに設定されている(図2(a))。画像視野領域Vを分割する領域Eの形状は矩形に限ることはなく、任意の形状でよい。また画像視野領域Vの代わりに、モニタ17の画面全体を複数の領域に分割する構成であってもよい。 The reference area is an area indicating a range of pixels used for calculation of an image luminance value, which will be described later, and the reference area is set for one or more areas E in the first embodiment. In the default state, the reference region R is set to a region E located near the center of the image visual field region V as an example (FIG. 2A). The shape of the region E that divides the image visual field region V is not limited to a rectangle, and may be an arbitrary shape. Further, instead of the image viewing area V, the entire screen of the monitor 17 may be divided into a plurality of areas.
 図2(a)に示すように、X線透視によって画像生成部15が生成するX線画像において、予め設定されている基準領域Rの範囲が、被検体Mの関心部位Wの位置から外れている場合がある。この場合、操作者は基準領域設定部19、すなわち入力部11を構成するマウスなどを操作し、関心部位Wを含む領域EにカーソルFを合わせてクリック選択する。基準領域設定部19によって選択された領域Eは、図2(b)に示すように、新たな基準領域Rとして設定される。このように、基準領域設定部19を用いて対象となる領域Eを選択することにより、基準領域Rの位置および範囲が変更される。 As shown in FIG. 2A, in the X-ray image generated by the image generation unit 15 by X-ray fluoroscopy, the preset range of the reference region R deviates from the position of the region of interest W of the subject M. There may be. In this case, the operator operates the reference area setting unit 19, that is, the mouse constituting the input unit 11, and selects the area E including the region of interest W by clicking the cursor F. The area E selected by the reference area setting unit 19 is set as a new reference area R as shown in FIG. Thus, by selecting the target area E using the reference area setting unit 19, the position and range of the reference area R are changed.
 基準領域設定部19によって新たに設定された基準領域Rの情報はモニタ17に表示されるとともに、輝度値抽出部21へ送信される。輝度値抽出部21は新たに設定された基準領域R内に位置する、各画素の輝度値をそれぞれ抽出する。このように、操作者はモニタ17の画面に映るX線画像を参照し、モニタ17の表示画面上で新たな基準領域Rを設定するので、表示画面上に映る関心部位Wの正確な位置を容易に選択できる。そのためX線透視の実行中において、関心部位Wが基準領域Rの範囲内となるように、基準領域Rの設定を迅速かつ正確に実行できる。 Information on the reference region R newly set by the reference region setting unit 19 is displayed on the monitor 17 and transmitted to the luminance value extracting unit 21. The luminance value extraction unit 21 extracts the luminance value of each pixel located in the newly set reference region R. In this way, the operator refers to the X-ray image displayed on the screen of the monitor 17 and sets a new reference region R on the display screen of the monitor 17, so that the exact position of the region of interest W displayed on the display screen is determined. Easy to select. Therefore, the reference region R can be set quickly and accurately so that the region of interest W is within the range of the reference region R during the fluoroscopy.
 なお、基準領域設定部19が設定できる基準領域Rは、一つの領域Eに限られない。図2(c)に示すように関心部位Wが複数の領域Eにまたがって映る場合、例えば所定の領域Eをクリック選択した後にドラッグ移動させることにより、隣接する2以上の領域Eを基準領域Rとして設定できる。さらに、シフトキーを押しながらクリック選択するなどの操作により、図2(d)で示すように隣接しない2以上の領域Eをそれぞれ基準領域Rとして設定することもできる。そのため、関心部位Wの範囲が広い場合や、関心部位Wが複数ある場合であっても、関心部位Wを正確かつ迅速に基準領域Rの範囲内に含めることができる。 The reference area R that can be set by the reference area setting unit 19 is not limited to one area E. As shown in FIG. 2C, when the region of interest W is projected over a plurality of regions E, for example, by clicking and selecting a predetermined region E, the adjacent region E is moved to the reference region R by dragging. Can be set as Further, two or more regions E that are not adjacent to each other can be set as the reference region R as shown in FIG. Therefore, even when the range of the region of interest W is wide or there are a plurality of regions of interest W, the region of interest W can be accurately and quickly included in the range of the reference region R.
 またモニタ17はタッチパネルであってもよい。すなわち、モニタ17は接触された位置を検知して当該位置の情報を入力する、パネル状の位置入力装置を表面に備えている。操作者は手指やタッチペンなどで任意の領域Eを映す部分の位置入力装置に接触することによって、接触された領域Eを新たな基準領域Rとして設定する。この場合、基準領域設定部19はモニタ17に設けられている位置入力装置に相当する。このような構成において、操作者はモニタ17のみを視認し、関心部位Wを含む領域Eを新たな基準領域Rとして正確に選択できる。そのため、より迅速かつ確実に基準領域Rを表示画面上で設定できる。位置入力装置の方式としては抵抗膜方式や静電容量方式など、公知の方式を適宜用いてよい。 The monitor 17 may be a touch panel. That is, the monitor 17 has a panel-like position input device on the surface for detecting the touched position and inputting information on the position. The operator sets the touched area E as a new reference area R by touching the position input device of a part that reflects the arbitrary area E with a finger or a touch pen. In this case, the reference area setting unit 19 corresponds to a position input device provided in the monitor 17. In such a configuration, the operator can view only the monitor 17 and accurately select the region E including the region of interest W as the new reference region R. Therefore, the reference region R can be set on the display screen more quickly and reliably. As the position input device, a known method such as a resistive film method or a capacitance method may be appropriately used.
 なお領域Eの数や形状などに関する設定は、入力部11を操作することによって適宜変更できるように構成される。その場合、変更後における領域Eの数や形状に関する情報は記憶部25に送信されて記憶される。そして入力部11に入力される指示の内容に従って、領域Eの数や形状に関する任意の情報は主制御部27によって読み出される。読み出された情報はモニタ17に送信され、画像視野領域Vに表示される。 It should be noted that the settings relating to the number and shape of the areas E can be changed as appropriate by operating the input unit 11. In that case, information on the number and shape of the regions E after the change is transmitted to the storage unit 25 and stored. Then, according to the content of the instruction input to the input unit 11, arbitrary information regarding the number and shape of the areas E is read by the main control unit 27. The read information is transmitted to the monitor 17 and displayed in the image visual field region V.
<動作の説明>
 次に、実施例1に係るX線透視撮影装置1を用いて自動輝度調整を行う動作について説明する。図3は実施例1に係るX線透視撮影装置の動作を説明するフローチャートである。
<Description of operation>
Next, an operation for performing automatic brightness adjustment using the X-ray fluoroscopic apparatus 1 according to the first embodiment will be described. FIG. 3 is a flowchart for explaining the operation of the X-ray fluoroscopic apparatus according to the first embodiment.
 ステップS1(X線透視画像の生成)
 まず、X線透視によるX線画像である、X線透視画像を生成する。すなわち被検体Mを天板3に載置させた後にコリメータ9を制御してX線照射野を設定する。そして操作者は入力部11を操作して、X線透視によってX線管5からX線5aを被検体Mへ照射させる指示を入力する。主制御部27は入力される指示に従って、X線照射制御部13へ制御信号を出力する。X線照射制御部13は制御信号に従って、X線照射条件を所定値に制御する。
Step S1 (Generation of X-ray fluoroscopic image)
First, an X-ray fluoroscopic image that is an X-ray image by X-ray fluoroscopy is generated. That is, after the subject M is placed on the top 3, the collimator 9 is controlled to set the X-ray irradiation field. Then, the operator operates the input unit 11 to input an instruction to irradiate the subject M with the X-ray 5a from the X-ray tube 5 by X-ray fluoroscopy. The main control unit 27 outputs a control signal to the X-ray irradiation control unit 13 in accordance with the input instruction. The X-ray irradiation control unit 13 controls the X-ray irradiation condition to a predetermined value according to the control signal.
 X線管5は制御されたX線照射条件の下で円錐状のX線5aを被検体Mへ断続的に照射させる。X線検出部7は被検体Mを透過するX線5aを検出し、検出したX線に基づいてX線検出信号を出力する。画像生成部15はX線検出信号に基づいて、被検体MのX線透視画像を断続的に生成する。生成されたX線透視画像はモニタ17に表示される。また、X線透視画像の各画素における輝度値の情報は、画像生成部15から輝度値算出部21へ送信される。 The X-ray tube 5 irradiates the subject M intermittently with conical X-rays 5a under controlled X-ray irradiation conditions. The X-ray detector 7 detects the X-ray 5a that passes through the subject M, and outputs an X-ray detection signal based on the detected X-ray. The image generation unit 15 intermittently generates an X-ray fluoroscopic image of the subject M based on the X-ray detection signal. The generated X-ray fluoroscopic image is displayed on the monitor 17. In addition, information on the luminance value at each pixel of the fluoroscopic image is transmitted from the image generation unit 15 to the luminance value calculation unit 21.
 ここで操作者はモニタ17に映るX線透視画像の画像視野領域Vを観察し、被検体Mの関心部位Wが予め設定されている基準領域Rの範囲内に位置しているか否かを判断して処理を分岐する。関心部位Wが基準領域Rの範囲内に位置していると判断される場合はステップS2に係る工程を省略し、ステップS3に進める。関心部位Wが基準領域Rの範囲内に位置していないと判断される場合はステップS2に進む。 Here, the operator observes the image visual field region V of the X-ray fluoroscopic image displayed on the monitor 17 and determines whether or not the region of interest W of the subject M is located within the preset reference region R. To branch the process. If it is determined that the region of interest W is located within the range of the reference region R, the process related to step S2 is omitted, and the process proceeds to step S3. If it is determined that the region of interest W is not located within the reference region R, the process proceeds to step S2.
 ステップS2(基準領域の設定)
 関心部位Wが基準領域Rの範囲内に位置していない場合、関心部位W以外の領域の輝度値に基づいてステップS3以降の工程が行われ、X線照射条件が変更される。そのため関心部位WにおけるX線透視画像の視認性が低下する。そこで操作者はモニタ17に映る関心部位Wの位置を確認し、モニタ17の表示画面において基準領域の設定を行う。なお実施例1において、X線透視画像における基準領域Rおよび関心部位Wの位置関係は図2(a)に示す通りとする。
Step S2 (reference area setting)
When the region of interest W is not located within the range of the reference region R, the processes after step S3 are performed based on the luminance value of the region other than the region of interest W, and the X-ray irradiation conditions are changed. Therefore, the visibility of the X-ray fluoroscopic image at the site of interest W is reduced. Therefore, the operator confirms the position of the region of interest W displayed on the monitor 17 and sets the reference region on the display screen of the monitor 17. In the first embodiment, the positional relationship between the reference region R and the region of interest W in the X-ray fluoroscopic image is as shown in FIG.
 この場合、関心部位Wが位置する領域Eは、基準領域Rが予め設定されている領域Eからは左上に外れている。操作者は画像視野領域Vを各々の領域Eに分割する境界線の位置を参照しつつ、基準領域設定部19を操作して関心領域Wを含む領域Eを選択する。実施例1において、基準領域設定部19はマウスで構成されるものとする。操作者はマウスを操作して関心領域Wを含む領域EにカーソルFを合わせ、クリック選択する。図2(b)に示すように、基準領域設定部19は選択された領域、すなわち関心部位Wを含む領域Eを、新たな基準領域Rとして設定する。設定された基準領域Rはモニタ17に表示される。またX線透視画像において新たに設定された基準領域Rの位置情報は、輝度値算出部21へ送信される。 In this case, the region E where the region of interest W is located is deviated to the upper left from the region E in which the reference region R is preset. The operator selects the region E including the region of interest W by operating the reference region setting unit 19 while referring to the position of the boundary line dividing the image visual field region V into each region E. In the first embodiment, the reference area setting unit 19 is configured with a mouse. The operator operates the mouse to move the cursor F to the region E including the region of interest W and click to select it. As shown in FIG. 2B, the reference region setting unit 19 sets the selected region, that is, the region E including the region of interest W as a new reference region R. The set reference area R is displayed on the monitor 17. Further, the position information of the reference region R newly set in the X-ray fluoroscopic image is transmitted to the luminance value calculation unit 21.
 ステップS3(画像輝度値の算出)
 基準領域Rが設定されることにより、画像輝度値の算出が行われる。輝度値算出部21はX線透視画像における各画素の輝度情報と、基準領域Rの位置情報とに基づいて、X線透視画像における基準領域Rの範囲内に位置する各画素の輝度値をそれぞれ抽出する。そして輝度値抽出部21は抽出された基準領域内の輝度値に基づいて、X線透視画像に対応する画像輝度値を算出する。画像輝度値の算出方法は適宜変更してよいが、実施例1では基準領域内に位置する各画素から抽出された輝度値の平均値を画像輝度値とする。
Step S3 (calculation of image luminance value)
By setting the reference region R, the image luminance value is calculated. The luminance value calculation unit 21 calculates the luminance value of each pixel located within the range of the reference region R in the X-ray fluoroscopic image based on the luminance information of each pixel in the X-ray fluoroscopic image and the position information of the reference region R, respectively. Extract. Then, the luminance value extraction unit 21 calculates an image luminance value corresponding to the X-ray fluoroscopic image based on the extracted luminance value in the reference region. The calculation method of the image luminance value may be changed as appropriate, but in the first embodiment, an average value of luminance values extracted from each pixel located in the reference region is set as the image luminance value.
 ステップS2において、基準領域Rは関心部位Wの位置に合わせて設定されている。そのため輝度値抽出部21が算出する画像輝度値は、関心部位Wの輝度値に近い値となる。輝度値抽出部21が算出した画像輝度値の情報は、輝度値抽出部21から照射条件算出部23へ送信される。 In step S2, the reference region R is set according to the position of the region of interest W. Therefore, the image luminance value calculated by the luminance value extraction unit 21 is close to the luminance value of the region of interest W. Information on the image luminance value calculated by the luminance value extraction unit 21 is transmitted from the luminance value extraction unit 21 to the irradiation condition calculation unit 23.
 ステップS4(補正照射条件の算出)
 照射条件算出部23は、画像輝度値の情報に基づいて補正照射条件の算出を行う。記憶部25には予め理想輝度値の情報が記憶されており、理想輝度値の情報は記憶部25から照射条件算出部23に送信される。理想輝度値は、操作者にとって好適に視認できるX線透視画像の輝度値が用いられる。照射条件算出部23は予め決定された理想輝度値と、画像輝度値とを比較して差分を算出する。
Step S4 (calculation of corrected irradiation conditions)
The irradiation condition calculation unit 23 calculates a correction irradiation condition based on the information on the image luminance value. Information on the ideal luminance value is stored in advance in the storage unit 25, and the information on the ideal luminance value is transmitted from the storage unit 25 to the irradiation condition calculation unit 23. As the ideal luminance value, a luminance value of an X-ray fluoroscopic image that can be suitably viewed by the operator is used. The irradiation condition calculation unit 23 compares the ideal luminance value determined in advance with the image luminance value to calculate a difference.
 そして画像輝度値を算出したX線透視画像の生成時におけるX線照射条件、および照射条件算出部23が算出した理想輝度値と画像輝度値との差分に基づいて、照射条件算出部23は補正照射条件を算出する。補正照射条件は、X線画像の画像輝度値が理想輝度値となるX線照射条件である。補正照射条件の情報は、照射条件算出部23からX線照射制御部13へ送信される。なお、ここで説明した補正照射条件の算出方法は一例であり、公知の方法を適宜用いてよい。 Then, the irradiation condition calculation unit 23 corrects based on the X-ray irradiation condition at the time of generating the X-ray fluoroscopic image for which the image luminance value is calculated and the difference between the ideal luminance value calculated by the irradiation condition calculation unit 23 and the image luminance value. Irradiation conditions are calculated. The corrected irradiation condition is an X-ray irradiation condition in which the image luminance value of the X-ray image becomes an ideal luminance value. Information on the corrected irradiation condition is transmitted from the irradiation condition calculation unit 23 to the X-ray irradiation control unit 13. Note that the correction irradiation condition calculation method described here is an example, and a known method may be used as appropriate.
 ステップS5(補正照射条件によるX線画像の生成)
 X線照射制御部13は、補正照射条件の情報に従ってX線照射条件を再度制御する。すなわちX線照射制御部13はX線管5の管電圧や管電流、およびX線照射などの諸条件を補正照射条件に応じた値に制御する。X線照射制御部13がX線照射条件を再度制御することにより、X線管5から照射されるX線5aの線量、およびX線管5がX線5aを照射させるタイミングなどは補正照射条件の情報に従って変更される。
Step S5 (Generation of X-ray image under corrected irradiation conditions)
The X-ray irradiation control unit 13 controls the X-ray irradiation conditions again according to the information on the correction irradiation conditions. That is, the X-ray irradiation control unit 13 controls the tube voltage and tube current of the X-ray tube 5 and various conditions such as X-ray irradiation to values according to the correction irradiation conditions. The X-ray irradiation control unit 13 controls the X-ray irradiation conditions again, so that the dose of the X-rays 5a irradiated from the X-ray tube 5, the timing at which the X-ray tube 5 irradiates the X-rays 5a, etc. are corrected irradiation conditions. Will be changed according to the information.
 X線管5はX線照射制御部13の制御信号に従って、補正照射条件に基づく線量のX線を被検体Mに照射する。補正照射条件に基づくX線照射条件でX線を照射することにより、画像生成部15が再度生成するX線透視画像の関心部位Wの画像輝度値は理想輝度値となる。すなわちX線透視画像において、関心部位Wが含まれている基準領域の輝度値は、好適に視認できる理想輝度値に調整される。その結果、再度モニタ17に表示されるX線透視画像は、関心部位Wの視認性が高い画像となる。補正照射条件に基づいてX線透視画像を生成することにより、実施例1に係るX線透視撮影装置の動作は終了する。すなわち操作者は関心部位Wを好適に視認できるX線透視画像に基づいて、術式の進行または被検体Mの診断などを行う。 The X-ray tube 5 irradiates the subject M with a dose of X-rays based on the corrected irradiation conditions in accordance with a control signal from the X-ray irradiation control unit 13. By irradiating X-rays under X-ray irradiation conditions based on the corrected irradiation conditions, the image luminance value of the region of interest W of the X-ray fluoroscopic image generated again by the image generation unit 15 becomes an ideal luminance value. That is, in the X-ray fluoroscopic image, the luminance value of the reference region including the region of interest W is adjusted to an ideal luminance value that can be suitably viewed. As a result, the X-ray fluoroscopic image displayed again on the monitor 17 is an image with high visibility of the region of interest W. By generating an X-ray fluoroscopic image based on the corrected irradiation condition, the operation of the X-ray fluoroscopic apparatus according to the first embodiment is completed. That is, the operator proceeds with the surgical procedure or diagnoses the subject M based on an X-ray fluoroscopic image in which the region of interest W can be suitably viewed.
<実施例1の構成による効果> 
 このように実施例1に係る構成を有することにより、関心部位の視認性が高いX線画像をより速やかに取得できる。ここで実施例1の構成に基づいて得られる効果について説明する。
<Effects of Configuration of Example 1>
Thus, by having the structure which concerns on Example 1, the X-ray image with high visibility of a region of interest can be acquired more rapidly. Here, effects obtained based on the configuration of the first embodiment will be described.
 従来例に係るX線透視撮影装置を用いる自動輝度調整では、モニタに表示されたX線透視画像において基準領域の範囲が関心部位から外れている場合、撮像系や天板を移動させる。そしてX線透視画像に映る被検体の関心部位を、予めX線透視画像に設定されている基準領域の範囲内へ移動させることによって、関心部位の輝度に応じてX線照射条件が補正される。補正後のX線照射条件でX線透視を再度行うことにより、関心部位の視認性が高くなるようにX線透視画像の輝度が調整される。 In the automatic brightness adjustment using the X-ray fluoroscopic apparatus according to the conventional example, when the range of the reference region is out of the region of interest in the X-ray fluoroscopic image displayed on the monitor, the imaging system and the top plate are moved. Then, the X-ray irradiation condition is corrected according to the luminance of the region of interest by moving the region of interest of the subject shown in the X-ray fluoroscopic image into the range of the reference region previously set in the X-ray fluoroscopic image. . By performing X-ray fluoroscopy again under the corrected X-ray irradiation conditions, the brightness of the X-ray fluoroscopic image is adjusted so that the visibility of the region of interest is high.
 しかしこのような従来例では撮像系や天板などのハードウェアを移動させなければ基準領域と関心部位との位置合わせを行うことができない。ハードウェア部品を制御して位置を合わせる場合、モニタに表示される基準領域と関心部位を視認しても、速やかに基準領域と関心部位と位置合わせを行うことは困難である。すなわちモニタに表示される基準領域と関心部位との距離に基づいて、位置合わせを行うために撮像系などを移動させるべき距離を正確に認識することは操作者にとって困難である。 However, in such a conventional example, the reference region and the region of interest cannot be aligned unless hardware such as an imaging system or a top plate is moved. When the position is adjusted by controlling hardware parts, it is difficult to quickly align the reference region and the region of interest even if the reference region and the region of interest displayed on the monitor are visually recognized. That is, it is difficult for the operator to accurately recognize the distance to move the imaging system or the like for alignment based on the distance between the reference region displayed on the monitor and the region of interest.
 そのため、操作者は基準領域と関心部位との位置合わせを行うために、撮像系などの位置を微調整することを繰り返すこととなる。その結果、被検体が受ける被曝量が増大するという問題や、関心部位を好適に視認できるX線画像の取得に要する時間が長期化するという問題が懸念されていた。また微調整を行う間、操作者は撮像系などの操作を行う入力部と、関心部位および基準領域が表示されるモニタとを常時確認する必要がある。その結果、入力部とモニタとに対して繰り返し視線を移動させるので、操作者が受ける負担が大きくなる。 Therefore, the operator repeats fine adjustment of the position of the imaging system and the like in order to align the reference region and the region of interest. As a result, there have been concerns about the problem that the exposure dose received by the subject increases and the time required to acquire an X-ray image that allows the region of interest to be viewed appropriately. Further, during fine adjustment, the operator needs to constantly check the input unit for performing operations such as the imaging system and the monitor on which the region of interest and the reference region are displayed. As a result, the line of sight is repeatedly moved with respect to the input unit and the monitor, which increases the burden on the operator.
 このような問題を解決すべく、実施例1に係るX線透視撮影装置1では、X線画像を表示するモニタ17の表示画面上で基準領域を設定する基準領域設定部19を備えている。X線透視画像の画像視野領域Vは予め複数の領域Eに分割されており、基準領域設定部19であるマウスやタッチペンなどで選択された領域Eが新たに基準領域Rとして設定される。 In order to solve such a problem, the fluoroscopic imaging apparatus 1 according to the first embodiment includes a reference area setting unit 19 that sets a reference area on the display screen of the monitor 17 that displays an X-ray image. The image viewing area V of the X-ray fluoroscopic image is divided into a plurality of areas E in advance, and an area E selected by the mouse or touch pen as the reference area setting unit 19 is newly set as the reference area R.
 このような構成において、操作者はモニタ17を視認して関心部位Wと基準領域Rとの位置関係を確認する。そして基準領域設定部19を用いて、関心部位Wを内部に含む領域Eを手動で選択することにより、新たな基準領域Rが表示画面上で設定される。表示画面上において領域Eの境界線は視認可能であるので、操作者は関心部位Wが含まれる領域Eを容易かつ確実に確認できる。従って、関心部位Wを内部に含むような基準領域Rの設定を迅速かつ確実に実行することが可能となる。また基準領域Rを新たに設定する際において、操作者はモニタ17以外に視線を移動させる必要がないので、操作者が受ける疲労などの負担がより軽減される。 In such a configuration, the operator visually recognizes the monitor 17 and confirms the positional relationship between the region of interest W and the reference region R. A new reference region R is set on the display screen by manually selecting a region E that includes the region of interest W using the reference region setting unit 19. Since the boundary line of the region E is visible on the display screen, the operator can easily and reliably confirm the region E including the region of interest W. Therefore, it is possible to quickly and reliably execute the setting of the reference region R that includes the region of interest W inside. Further, when the reference region R is newly set, the operator does not need to move his / her line of sight other than the monitor 17, so that the burden on the operator such as fatigue is further reduced.
 輝度値算出部21は基準領域Rの範囲内に位置する各画素の輝度値をそれぞれ抽出し、基準領域内の輝度値に基づいて画像輝度値を算出する。照射条件算出部23は、画像輝度値の情報に基づいて補正照射条件を算出する。X線照射制御部13は、補正照射条件の情報に従ってX線照射条件を再度制御する。補正照射条件は、X線画像の画像輝度値が理想輝度値、すなわち操作者が好適に視認できる輝度値、となるX線照射条件である。基準領域Rは関心部位Wを確実に含むように設定されている。 The luminance value calculation unit 21 extracts the luminance value of each pixel located within the range of the reference region R, and calculates the image luminance value based on the luminance value in the reference region. The irradiation condition calculation unit 23 calculates the corrected irradiation condition based on the information on the image luminance value. The X-ray irradiation control unit 13 controls the X-ray irradiation conditions again according to the information on the correction irradiation conditions. The corrected irradiation condition is an X-ray irradiation condition in which the image luminance value of the X-ray image is an ideal luminance value, that is, a luminance value that can be suitably viewed by the operator. The reference region R is set so as to surely include the region of interest W.
 そのため輝度値抽出部21が算出する画像輝度値は、関心部位Wの輝度値により近い値となる。関心部位Wの輝度値に近い画像輝度値に基づいて補正照射条件が算出されるので、補正照射条件に基づいて生成されるX線透視画像は、操作者にとって関心部位Wを好適に視認できる画像となる。従って、関心部位Wを好適に視認できるX線透視画像を参照しつつ、術式を的確に進行することが可能となる。 Therefore, the image luminance value calculated by the luminance value extraction unit 21 is closer to the luminance value of the region of interest W. Since the correction irradiation condition is calculated based on the image luminance value close to the luminance value of the region of interest W, the fluoroscopic image generated based on the correction irradiation condition is an image that allows the operator to visually recognize the region of interest W suitably. It becomes. Therefore, it is possible to accurately advance the surgical procedure while referring to an X-ray fluoroscopic image that allows the region of interest W to be suitably viewed.
 また基準領域設定部19による基準領域Rの設定変更は、X線透視の実行中に行うことができる。すなわちX線透視の開始後に基準領域Rの範囲が関心部位Wの位置から外れていることが判明した場合であっても、速やかに基準領域Rの位置をモニタ17の表示画面上で変更できる。そのため、X線透視の最中において術式の状況の変化に対して柔軟に対応できるように基準領域の設定を迅速に変更させ、術式をより好適に進行することが可能となる。 Further, the setting change of the reference region R by the reference region setting unit 19 can be performed during the execution of X-ray fluoroscopy. That is, even if it is found that the range of the reference region R is out of the position of the region of interest W after the start of fluoroscopy, the position of the reference region R can be quickly changed on the display screen of the monitor 17. Therefore, it is possible to change the setting of the reference region quickly so as to flexibly cope with a change in the status of the surgical procedure during the fluoroscopy, and to advance the surgical procedure more suitably.
 次に、図面を参照して本発明の実施例2に係るX線透視撮影装置について説明する。実施例2に係るX線透視撮影装置の全体構成は実施例1に係るX線透視撮影装置の全体構成と同様である。また、実施例2に係るX線透視撮影装置の動作の工程は、実施例1に係るX線透視撮影装置の動作の工程と共通する。 Next, an X-ray fluoroscopic apparatus according to Embodiment 2 of the present invention will be described with reference to the drawings. The overall configuration of the X-ray fluoroscopic apparatus according to the second embodiment is the same as that of the X-ray fluoroscopic apparatus according to the first embodiment. Further, the operation process of the X-ray fluoroscopic apparatus according to the second embodiment is the same as the operation process of the X-ray fluoroscopic apparatus according to the first embodiment.
 但し、実施例1において、モニタ17に映るX線画像の画像視野領域Vは予め複数の領域に分割されている構成をとっている。一方、実施例2係るX線透視撮影装置は、画像視野領域Vを予め分割することなく基準領域を設定できる構成を有している。以下、図4の各々を用いて、実施例2に特徴的な、基準領域を設定する構成について説明する。 However, in the first embodiment, the image field area V of the X-ray image displayed on the monitor 17 is configured to be divided into a plurality of areas in advance. On the other hand, the X-ray fluoroscopic apparatus according to the second embodiment has a configuration in which the reference region can be set without dividing the image visual field region V in advance. Hereinafter, the configuration for setting the reference region, which is characteristic of the second embodiment, will be described with reference to FIG.
<実施例2において基準領域を設定する構成の説明>
 実施例2では図4(b)または図4(c)に示すように、基準領域設定部19はモニタ17の表示画面上において任意の位置を選択し、選択された位置に基準領域Rを設定する構成を備えている。図4(a)は実施例1における図2(a)と同様に、モニタ17に映るX線透視画像において、被検体Mの予め設定されている基準領域Rの範囲が関心部位Wの位置から外れている状態を示している。
<Description of Configuration for Setting Reference Area in Embodiment 2>
In the second embodiment, as shown in FIG. 4B or 4C, the reference area setting unit 19 selects an arbitrary position on the display screen of the monitor 17, and sets the reference area R at the selected position. It has a configuration to do. 4A is the same as FIG. 2A in the first embodiment, in the X-ray fluoroscopic image displayed on the monitor 17, the range of the reference region R set in advance of the subject M from the position of the region of interest W. It shows a state of being detached.
 図4(b)に示すような実施例2に係るX線透視撮影装置において、基準領域設定部19はモニタ17の表示画面上において選択した位置を中心に、新たな基準領域Rを設定する構成を有している。表示画面上において基準領域を選択する基準領域設定部19の構成の例としては、マウスポインタやキーボードなどが挙げられる。基準領域設定部19はモニタ17またはその近傍に設けられ、モニタ17を視認しつつ基準領域設定部19を操作できる構成であることがより好ましい。 In the X-ray fluoroscopic apparatus according to the second embodiment as illustrated in FIG. 4B, the reference region setting unit 19 sets a new reference region R around the selected position on the display screen of the monitor 17. have. Examples of the configuration of the reference area setting unit 19 that selects the reference area on the display screen include a mouse pointer and a keyboard. It is more preferable that the reference area setting unit 19 is provided at or near the monitor 17 so that the reference area setting unit 19 can be operated while viewing the monitor 17.
 図4(b)に示す構成において、操作者はモニタ17を参照してX線画像に映る関心部位Wの位置にカーソルFを合わせてクリック選択する。選択操作により、クリック選択された位置を中心に、所定の形状を有する基準領域Rが設定される。基準領域Rの形状は、モニタ17の画面上のアイコン17aによって適宜変更できる。すなわち当初は矩形を示すアイコン17aが選択された状態(図4(a))から、円形を示すアイコン17aを選択することによって、設定する基準領域Rの形状を矩形状から円形状に変更できる(図4(b))。また基準領域Rの境界線を選択してドラッグ移動させる操作などによって、基準領域Rの大きさを適宜変更できる。 In the configuration shown in FIG. 4B, the operator refers to the monitor 17 and clicks the cursor F at the position of the region of interest W shown in the X-ray image. By the selection operation, a reference region R having a predetermined shape is set around the position selected by clicking. The shape of the reference region R can be changed as appropriate by an icon 17a on the screen of the monitor 17. In other words, the shape of the reference region R to be set can be changed from a rectangular shape to a circular shape by selecting the circular icon 17a from the state in which the rectangular icon 17a is initially selected (FIG. 4A) ( FIG. 4 (b)). Further, the size of the reference region R can be appropriately changed by an operation of selecting and dragging the boundary line of the reference region R.
 図4(b)に示す構成では、画像視野領域Vを予め分割することなく基準領域Rを設定できる。また基準領域Rの中心となる位置を任意に選択可能であるので、モニタ17に映る関心領域Wの位置に応じて、より適切な位置に基準領域Rを設定できる。また図4(b)に示す構成は、基準領域Rの形状をアイコン17aで変更する構成に限られない。すなわち、マウスなどのポインティングデバイスを用いてカーソルFなどのポインタを操作し、基準領域Rの輪郭をモニタ17の表示画面上に描画する構成であってもよい。この場合、基準領域Rの位置および形状を任意に設定できるので、より好適な形状の基準領域Rを新たに設定できる。 In the configuration shown in FIG. 4B, the reference region R can be set without dividing the image field region V in advance. Further, since the position serving as the center of the reference region R can be arbitrarily selected, the reference region R can be set at a more appropriate position according to the position of the region of interest W displayed on the monitor 17. Further, the configuration illustrated in FIG. 4B is not limited to the configuration in which the shape of the reference region R is changed with the icon 17a. That is, a configuration in which a pointer such as the cursor F is operated using a pointing device such as a mouse to draw the outline of the reference region R on the display screen of the monitor 17 may be adopted. In this case, since the position and shape of the reference region R can be arbitrarily set, the reference region R having a more preferable shape can be newly set.
 図4(c)は実施例2に係るX線透視撮影装置の変形例を示している。図4(c)に示すような実施例2に係るX線透視撮影装置において、モニタ17はタッチパネルで構成される。すなわち、モニタ17は接触された位置を検知する、パネル状の位置入力装置を表面に備えている。操作者は手指またはタッチペンTなどを用いて位置入力装置に接触し、基準領域とすべき領域を直接描画することにより、基準領域Rの範囲をモニタ17の表示画面上で設定する。このような構成において、モニタ17を構成する位置入力装置が基準領域設定手段である基準領域設定部19に相当する。 FIG. 4C shows a modification of the X-ray fluoroscopic apparatus according to the second embodiment. In the X-ray fluoroscopic apparatus according to the second embodiment as illustrated in FIG. 4C, the monitor 17 is configured by a touch panel. That is, the monitor 17 has a panel-like position input device on the surface for detecting the touched position. The operator touches the position input device using a finger or a touch pen T and directly draws an area to be a reference area, thereby setting the range of the reference area R on the display screen of the monitor 17. In such a configuration, the position input device constituting the monitor 17 corresponds to the reference region setting unit 19 which is a reference region setting means.
 基準領域Rをモニタ17に直接描画する構成の場合、操作者は任意の位置に任意の形状の基準領域Rを設定できる。そのため関心部位Wの位置・形状に応じて、関心部位W以外の領域を可能な限り除外するように、好適な形状の基準領域Rを新たに設定できる。その結果、輝度値算出部21が算出する画像輝度値は関心部位Wの輝度値により近い値となるので、より関心部位Wの視認性が高いX線透視画像を生成することが可能となる。 In the case of a configuration in which the reference area R is directly drawn on the monitor 17, the operator can set the reference area R having an arbitrary shape at an arbitrary position. Therefore, a reference region R having a suitable shape can be newly set so as to exclude a region other than the region of interest W as much as possible according to the position / shape of the region of interest W. As a result, the image luminance value calculated by the luminance value calculation unit 21 is closer to the luminance value of the region of interest W, and thus it is possible to generate an X-ray fluoroscopic image with higher visibility of the region of interest W.
 このように実施例2に係るX線透視撮影装置では、実施例1と同様に基準領域設定部19は表示画面上で新たな基準領域Rを設定する。すなわち実施例2では実施例1と同様に、操作者はモニタ17以外に視線を移動させることなく、手動で基準領域Rを速やかに設定できる。その結果、操作者が受ける負担を軽減しつつ、操作者にとって関心部位Wを好適に視認できるX線透視画像をより迅速に取得できる。 As described above, in the X-ray fluoroscopic apparatus according to the second embodiment, the reference region setting unit 19 sets a new reference region R on the display screen as in the first embodiment. That is, in the second embodiment, as in the first embodiment, the operator can quickly set the reference region R manually without moving the line of sight other than the monitor 17. As a result, it is possible to more quickly obtain an X-ray fluoroscopic image that allows the operator to visually recognize the site of interest W while reducing the burden on the operator.
 また実施例2では画像視野領域Vやモニタ17の画面などを予め複数の領域Eに分割することなく、表示画面上で基準領域Rを設定する。そのため複数の領域Eに分割されていない構成のモニタ17などについても本発明に係る技術を適用できるので、X線透視撮影装置の汎用性を高めることができる。また、画像視野領域Vなどを予め複数の領域に分割する工程を省略できるので、設定作業に時間を費やすことを回避できる。 In the second embodiment, the reference field R is set on the display screen without dividing the image viewing field V and the screen of the monitor 17 into a plurality of areas E in advance. Therefore, the technique according to the present invention can be applied to the monitor 17 having a configuration that is not divided into a plurality of regions E, and thus the versatility of the X-ray fluoroscopic apparatus can be enhanced. In addition, since the step of dividing the image visual field region V or the like into a plurality of regions in advance can be omitted, it is possible to avoid spending time for setting work.
 さらに実施例2では、画像視野領域Vなどを分割する領域Eの形状に影響されることなく、モニタ17に映る関心部位Wに応じて基準領域Rの位置および形状をより柔軟に変更できる。すなわち関心部位Wの形状などに応じて、関心部位W以外の領域を可能な限り範囲外とするように、より好適な基準領域Rの範囲を新たに設定できる。その結果、輝度値算出部21が算出する画像輝度値は関心部位Wの輝度値により近い値となる。従って、補正照射条件に基づいて生成されるX線透視画像において、関心部位Wの視認性をより高めることが可能となる。 Furthermore, in the second embodiment, the position and shape of the reference region R can be changed more flexibly according to the region of interest W shown on the monitor 17 without being affected by the shape of the region E that divides the image viewing region V or the like. That is, a more preferable range of the reference region R can be newly set so that the region other than the region of interest W is out of the range as much as possible according to the shape of the region of interest W or the like. As a result, the image luminance value calculated by the luminance value calculation unit 21 is closer to the luminance value of the region of interest W. Therefore, the visibility of the region of interest W can be further improved in the fluoroscopic image generated based on the corrected irradiation condition.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, and can be modified as follows.
 (1)上述した各実施例において、図示しない照射条件固定部29をさらに備える構成としてもよい。照射条件固定部は一例として入力部11に設けられるボタンまたはスイッチなどである。このような変形例では、照射条件固定部をオンの状態とすることにより、輝度値算出部21が実行する画像輝度値の算出、および照射条件算出部23が実行する補正照射条件の算出の少なくとも一方が停止するように構成される。その結果、自動輝度調整機能がオフの状態となるので補正照射条件は直近に算出された条件で固定され、それ以上更新されなくなる。照射条件固定部は本発明における輝度調整切り替え手段に相当する。 (1) In each of the above-described embodiments, the irradiation condition fixing unit 29 (not shown) may be further provided. The irradiation condition fixing unit is, for example, a button or a switch provided in the input unit 11. In such a modification, at least the calculation of the image luminance value performed by the luminance value calculation unit 21 and the calculation of the correction irradiation condition performed by the irradiation condition calculation unit 23 are performed by turning on the irradiation condition fixing unit. One is configured to stop. As a result, since the automatic brightness adjustment function is turned off, the corrected irradiation condition is fixed under the most recently calculated condition and is no longer updated. The irradiation condition fixing unit corresponds to the luminance adjustment switching means in the present invention.
 照射条件固定部を備えるX線透視撮影装置を用いる場合、操作者は基準領域設定部19を用いて基準領域Rの範囲を関心部位Wの位置に合わせて設定する。そしてモニタ17に映るX線透視画像が関心部位Wを好適に視認できる輝度に調整された後、照射条件固定部をオンの状態に操作する。この場合、補正照射条件が固定されるので、X線透視画像の輝度は常に関心部位Wを好適に視認できる状態となる。 When using an X-ray fluoroscopic apparatus including an irradiation condition fixing unit, the operator uses the reference region setting unit 19 to set the range of the reference region R according to the position of the region of interest W. Then, after the X-ray fluoroscopic image displayed on the monitor 17 is adjusted to a luminance that allows the region of interest W to be suitably viewed, the irradiation condition fixing unit is operated to be turned on. In this case, since the correction irradiation condition is fixed, the luminance of the X-ray fluoroscopic image is always in a state where the region of interest W can be suitably viewed.
 金属はX線吸収率が非常に高いので、一般的に金属が映る画素において輝度値は過度に高くなる。そのため基準領域内の輝度値に基づく補正照射条件の算出を常時行う構成では、新たに金属片が基準領域Rの範囲内に映る場合、輝度値算出部21は金属片の輝度に影響を受け、より高い値の画像輝度値を算出する。その結果、補正照射条件に基づいて生成されるX線透視画像の輝度が急激に低下するので、関心部位Wの視認性が低下する。 Since the metal has a very high X-ray absorption rate, the luminance value is generally excessively high in a pixel in which the metal is reflected. Therefore, in the configuration in which the correction irradiation condition is always calculated based on the luminance value in the reference region, when a metal piece is newly reflected in the reference region R, the luminance value calculation unit 21 is affected by the luminance of the metal piece, A higher value of the image luminance value is calculated. As a result, the brightness of the X-ray fluoroscopic image generated based on the corrected irradiation condition is drastically reduced, so that the visibility of the region of interest W is lowered.
 一方、変形例に係る構成では照射条件固定部をオンの状態とすることにより、基準領域内における輝度が変化しても補正照射条件は変更されない。すなわち術式の進行により、基準領域Rの範囲内にメスやハサミなどの金属片が新たに映る場合であっても、X線透視画像の輝度は変化せず、関心部位Wを好適に視認できる状態が維持される。従って、金属片が基準領域Rに映ることにより、金属片を映す画素における輝度値が補正照射条件に影響を与える結果、X線透視画像の輝度が急激に低下するという事態を好適に回避できる。 On the other hand, in the configuration according to the modification, the irradiation condition fixing unit is turned on, so that the correction irradiation condition is not changed even when the luminance in the reference region changes. That is, even when a metal piece such as a scalpel or scissors is newly reflected within the range of the reference region R due to the progress of the surgical procedure, the luminance of the X-ray fluoroscopic image does not change, and the region of interest W can be suitably viewed. State is maintained. Therefore, a situation in which the brightness of the X-ray fluoroscopic image rapidly decreases as a result of the brightness value in the pixels that show the metal piece having an influence on the correction irradiation condition due to the metal piece appearing in the reference region R can be preferably avoided.
 (2)上述した各実施例において、輝度値算出部21は基準領域内に位置する各画素の輝度値を全て抽出し、抽出された基準領域内の輝度値に基づいて画像輝度値を算出するとしたがこれに限られない。すなわち予め上限輝度値と下限輝度値とを設定して記憶部25に記憶し、輝度値算出部21は基準領域内に位置する各画素の輝度値のうち、下限輝度値から上限輝度値までの間の値の輝度値のみを抽出して画像輝度値を算出する構成であってもよい。 (2) In each of the above-described embodiments, the luminance value calculation unit 21 extracts all the luminance values of each pixel located in the reference region, and calculates the image luminance value based on the extracted luminance value in the reference region. However, it is not limited to this. That is, the upper limit luminance value and the lower limit luminance value are set in advance and stored in the storage unit 25, and the luminance value calculation unit 21 calculates the luminance value from the lower limit luminance value to the upper limit luminance value among the luminance values of each pixel located in the reference area. The configuration may be such that only the luminance value between the values is extracted to calculate the image luminance value.
 基準領域内において関心部位以外に、上限輝度値を超える輝度値、または下限輝度値を下回る輝度値などの極端な輝度値を示すX線像が映る場合がある。上限輝度値より高い輝度値となる場合の例としては、上述したメスや固定用のボルトなどの金属片が基準領域内に映る場合が挙げられる。そのため、金属片などのX線像が基準領域内に映る場合、金属片が示す高い輝度値が画像輝度値および補正照射条件に影響を与え、X線透視画像の輝度が急激に低下するという事態が懸念される。 In addition to the region of interest in the reference region, there may be an X-ray image showing an extreme luminance value such as a luminance value exceeding the upper limit luminance value or a luminance value falling below the lower limit luminance value. As an example of a case where the luminance value is higher than the upper limit luminance value, there is a case where a metal piece such as the above-described knife or fixing bolt is reflected in the reference region. Therefore, when an X-ray image of a metal piece or the like is reflected in the reference area, the high luminance value indicated by the metal piece affects the image luminance value and the correction irradiation condition, and the luminance of the X-ray fluoroscopic image sharply decreases. Is concerned.
 一方、下限輝度値より低い輝度値となる場合の例としては、X線が被検体Mを透過せずにX線検出器に検出される場合が挙げられる。すなわち関心部位Wが被検体Mの手指など複雑な形状である場合、基準領域Rの一部において、X線は被検体Mを透過することなくX線検出器に直接入射する。その結果、X線が直接入射する画素では輝度値が極端に低いので、極端に低い輝度値が画像輝度値および補正照射条件に影響を与え、X線透視画像の輝度が過度に高くなる。そのため関心部位の視認性が低下するという事態が懸念される。 On the other hand, an example of a case where the luminance value is lower than the lower limit luminance value is a case where X-rays are detected by the X-ray detector without passing through the subject M. That is, when the region of interest W has a complicated shape such as a finger of the subject M, X-rays directly enter the X-ray detector without passing through the subject M in a part of the reference region R. As a result, since the luminance value is extremely low in a pixel to which X-rays are directly incident, the extremely low luminance value affects the image luminance value and the correction irradiation condition, and the luminance of the X-ray fluoroscopic image becomes excessively high. Therefore, there is a concern that the visibility of the site of interest is reduced.
 このような変形例において、基準領域内に位置する各画素のうち、上限輝度値より高い輝度値を示す画素と、下限値より低い輝度値を示す画素は、輝度値算出部21が輝度値を抽出する対象から除外される。この場合、輝度値算出部21はX線が直接入射する画素や金属片などを映す画素といった、極端な値の輝度値を示す画素を自動的に除外して画像輝度値の算出を行う。従って、極端な輝度値を示す画素が補正照射条件に影響を与え、X線透視画像の輝度が過度に変化する結果、関心部位の視認性が低くなるという事態を好適に回避できる。 In such a modification, among the pixels located in the reference area, the luminance value calculation unit 21 determines the luminance value of the pixel that indicates a luminance value higher than the upper limit luminance value and the pixel that indicates a luminance value lower than the lower limit value. Excluded from extraction. In this case, the brightness value calculation unit 21 automatically excludes pixels that show extreme brightness values, such as pixels that directly receive X-rays or pixels that project metal pieces, and calculates image brightness values. Therefore, it is possible to suitably avoid a situation in which the visibility of the region of interest is lowered as a result of pixels that exhibit an extreme luminance value affecting the correction irradiation condition and the luminance of the fluoroscopic image changes excessively.
 (3)上述した各実施例では、X線透視を行う最中に表示画面上で基準領域を新たに設定する場合を例にとって説明したがこれに限られない。一例として、表示画面上で行う基準領域の設定は、X線透視を開始する前に実行してもよい。X線透視前に基準領域を設定する例としては、以下のような場合が挙げられる。すなわち可視光などで確認されるX線照射野Bと、天板3に載置される被検体Mにおける関心部位Wとの位置関係が図5(a)に示すような場合、関心部位Wは画像視野領域の下方に映ることが容易に予想される。 (3) In each of the above-described embodiments, the case where a reference area is newly set on the display screen during X-ray fluoroscopy has been described as an example, but the present invention is not limited thereto. As an example, the setting of the reference area performed on the display screen may be executed before the X-ray fluoroscopy is started. Examples of setting the reference area before fluoroscopy include the following cases. That is, when the positional relationship between the X-ray irradiation field B confirmed with visible light or the like and the region of interest W in the subject M placed on the top 3 is as shown in FIG. It is easily expected to appear below the image viewing area.
 そこで操作者は、画面中央に当初設定されていた基準領域Rの位置を(図5(b))、モニタ17の画面の下方に設定変更してからX線透視によるX線照射を開始する(図5(c))。基準領域RはX線透視の開始当初から関心部位Wの位置に合わせて設定されるので、X線透視画像の輝度を調整するまでの時間を短縮できる。その結果、X線透視画像の輝度調整において被検体Mが受ける被曝量を低減できる。 Therefore, the operator changes the setting of the reference region R initially set in the center of the screen (FIG. 5B) to the lower side of the screen of the monitor 17 and then starts X-ray irradiation by X-ray fluoroscopy ( FIG. 5 (c)). Since the reference region R is set according to the position of the region of interest W from the beginning of X-ray fluoroscopy, it is possible to shorten the time until the luminance of the X-ray fluoroscopic image is adjusted. As a result, the exposure dose received by the subject M in the brightness adjustment of the X-ray fluoroscopic image can be reduced.
 (4)上述した各実施例では、X線透視画像に対して表示画面上で基準領域を設定し、設定された基準領域の範囲に基づいて、関心部位を好適に視認できるX線透視画像のX線照射条件を補正照射条件として算出する構成としたがこれに限られない。基準領域を設定するX線画像はX線撮影画像であってもよい。また基準領域の範囲に基づいて、X線撮影画像のX線照射条件を補正照射条件として算出する構成としてもよい。 (4) In each of the above-described embodiments, a reference region is set on the display screen for the X-ray fluoroscopic image, and the X-ray fluoroscopic image can be suitably visually recognized based on the set range of the reference region. Although it was set as the structure which calculates X-ray irradiation conditions as correction | amendment irradiation conditions, it is not restricted to this. The X-ray image for setting the reference area may be an X-ray image. Further, the X-ray irradiation condition of the X-ray image may be calculated as the correction irradiation condition based on the range of the reference region.
 このような変形例において、照射条件算出部23は関心部位Wの位置に合わせて好適に設定された基準領域内の画素の輝度値に基づいて、静止画を撮影するX線撮影における補正照射条件を算出する。照射条件算出部23が算出する補正照射条件は、関心部位を好適に視認できる輝度値のX線撮影画像を生成するX線照射条件である。従って、X線照射制御部13は補正照射条件に基づいてX線管5を制御することにより、関心部位を好適に視認できるX線撮影画像を取得できる。 In such a modification, the irradiation condition calculation unit 23 corrects the irradiation condition in the X-ray imaging that captures a still image based on the luminance value of the pixel in the reference region that is preferably set according to the position of the region of interest W. Is calculated. The corrected irradiation condition calculated by the irradiation condition calculation unit 23 is an X-ray irradiation condition for generating an X-ray image having a luminance value that allows the region of interest to be suitably viewed. Therefore, the X-ray irradiation control unit 13 can acquire an X-ray image that can suitably visually recognize the region of interest by controlling the X-ray tube 5 based on the corrected irradiation condition.
 (5)上述した各実施例では、臥位姿勢をとる被検体Mに対してX線画像の生成を行ったがこれに限ることはなく、実施例に係るX線透視撮影装置の構成は立位体勢をとる被検体Mに対しても適用できる。この場合、x方向すなわち被検体Mの体軸方向は鉛直方向と平行になる。また、天板3を水平状態から鉛直状態へ変位できる構成、または天板3を省略する構成としてもよい。 (5) In each of the above-described embodiments, the X-ray image is generated for the subject M in the supine posture. However, the present invention is not limited to this, and the configuration of the X-ray fluoroscopic apparatus according to the embodiment is established. The present invention can also be applied to the subject M taking a posture. In this case, the x direction, that is, the body axis direction of the subject M is parallel to the vertical direction. Moreover, it is good also as a structure which can displace the top plate 3 from a horizontal state to a vertical state, or the structure which abbreviate | omits the top plate 3. FIG.
 1  …X線透視撮影装置 
 5  …X線管(X線源) 
 7  …X線検出器(X線検出手段) 
 11 …入力部(分割領域変更手段) 
 13 …X線照射制御部(照射制御手段) 
 15 …画像生成部(画像生成手段)
 17 …モニタ(画像表示手段) 
 19 …基準領域設定部(基準領域設定手段) 
 21 …輝度値算出部(輝度値算出手段)
 23 …照射条件算出部(照射条件算出手段) 
 25 …記憶部(分割領域記憶手段)
 27 …主制御部
1 X-ray fluoroscopic apparatus
5 ... X-ray tube (X-ray source)
7 ... X-ray detector (X-ray detection means)
11: Input section (division area changing means)
13 ... X-ray irradiation control unit (irradiation control means)
15 Image generating unit (image generating means)
17 ... Monitor (image display means)
19: Reference area setting section (reference area setting means)
21 ... Luminance value calculation unit (luminance value calculation means)
23 ... Irradiation condition calculation unit (irradiation condition calculation means)
25 ... Storage unit (divided area storage means)
27 ... Main control section

Claims (7)

  1.  被検体にX線を照射するX線源と、
     前記X線源から照射され、前記被検体を透過したX線を検出するX線検出手段と、
     前記X線検出手段が出力する検出信号を用いてX線画像を生成する画像生成手段と、
     前記X線源のX線照射条件を制御する照射制御手段と、
     前記画像生成手段が生成するX線画像を表示する画像表示手段と、
     前記X線画像における1または2以上の領域を基準領域として、前記画像表示手段の表示画面上で任意に設定する基準領域設定手段と、
     前記基準領域内における画素の輝度値をそれぞれ抽出し、前記抽出された輝度値に基づいて前記X線画像に対応する画像輝度値を算出する輝度値算出手段と、
     前記基準領域内における画素の輝度値が所定の値になるような前記X線照射条件である補正照射条件を、前記画像輝度値と前記所定の値とに基づいて算出する照射条件算出手段とを備え、
     前記照射制御手段は、前記照射条件算出手段が算出する前記補正照射条件に基づいて、前記X線源のX線照射条件を制御するX線透視撮影装置。
    An X-ray source for irradiating the subject with X-rays;
    X-ray detection means for detecting X-rays irradiated from the X-ray source and transmitted through the subject;
    Image generation means for generating an X-ray image using a detection signal output by the X-ray detection means;
    Irradiation control means for controlling the X-ray irradiation conditions of the X-ray source;
    Image display means for displaying an X-ray image generated by the image generation means;
    Reference area setting means for arbitrarily setting one or more areas in the X-ray image as a reference area on the display screen of the image display means;
    A luminance value calculating means for extracting a luminance value of each pixel in the reference region and calculating an image luminance value corresponding to the X-ray image based on the extracted luminance value;
    Irradiation condition calculation means for calculating a correction irradiation condition, which is the X-ray irradiation condition so that a luminance value of a pixel in the reference region becomes a predetermined value, based on the image luminance value and the predetermined value; Prepared,
    The X-ray fluoroscopic imaging apparatus, wherein the irradiation control unit controls an X-ray irradiation condition of the X-ray source based on the corrected irradiation condition calculated by the irradiation condition calculation unit.
  2.  請求項1に記載のX線透視撮影装置において、
     前記画像表示手段の表示画面は複数の領域に分割されており、
     前記基準領域設定手段は、前記複数の領域のうち1または2以上の領域を前記基準領域として選択することによって前記基準領域を設定するX線透視撮影装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The display screen of the image display means is divided into a plurality of areas,
    The X-ray fluoroscopic imaging apparatus, wherein the reference area setting means sets the reference area by selecting one or more areas among the plurality of areas as the reference area.
  3.  請求項2に記載のX線透視撮影装置において、
     前記画像表示手段の表示画面を分割する前記複数の領域の数および形状のうち少なくとも一方を変更する分割領域変更手段と、
     前記分割領域変更手段によって変更された前記複数の領域の数および形状を記憶する分割領域記憶手段とを備え、
     前記画像表示手段は前記分割領域記憶手段が記憶した前記複数の領域の数および形状に関する情報を読み出して表示画面上に表示するX線透視撮影装置。
    The X-ray fluoroscopic apparatus according to claim 2,
    Divided region changing means for changing at least one of the number and shape of the plurality of regions dividing the display screen of the image display means;
    A divided area storage means for storing the number and shape of the plurality of areas changed by the divided area changing means;
    The X-ray fluoroscopic apparatus, wherein the image display means reads out information on the number and shape of the plurality of areas stored by the divided area storage means and displays the information on a display screen.
  4.  請求項1に記載のX線透視撮影装置において、
     前記基準領域設定手段は前記画像表示手段の表示画面上における任意の領域を、前記基準領域として描画することによって前記基準領域を設定するX線透視撮影装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The X-ray fluoroscopic imaging apparatus, wherein the reference area setting means sets the reference area by drawing an arbitrary area on the display screen of the image display means as the reference area.
  5.  請求項1ないし請求項4のいずれかに記載のX線透視撮影装置において、
     前記輝度値算出手段は前記基準領域内における画素の輝度値のうち、所定の上限値と所定の下限値との間に含まれる前記輝度値を抽出し、前記抽出された輝度値に基づいて前記X線画像に対応する画像輝度値を算出するX線透視撮影装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The luminance value calculating means extracts the luminance value included between a predetermined upper limit value and a predetermined lower limit value among the luminance values of the pixels in the reference region, and based on the extracted luminance value An X-ray fluoroscopic apparatus that calculates an image luminance value corresponding to an X-ray image.
  6.  請求項1ないし請求項5のいずれかに記載のX線透視撮影装置において、
     前記照射条件算出手段が算出する補正照射条件を、直近に算出された前記補正照射条件に固定させる輝度調整切り替え手段を備えるX線透視撮影装置。
    In the X-ray fluoroscopic apparatus according to any one of claims 1 to 5,
    An X-ray fluoroscopic imaging apparatus comprising: a brightness adjustment switching unit that fixes the correction irradiation condition calculated by the irradiation condition calculation unit to the correction irradiation condition calculated most recently.
  7.  請求項1ないし請求項6のいずれかに記載のX線透視撮影装置において、
     前記画像表示手段はタッチパネルであり、
     前記基準領域設定手段は前記画像表示手段の表面に設けられる位置入力装置であるX線透視撮影装置。
    The X-ray fluoroscopic apparatus according to any one of claims 1 to 6,
    The image display means is a touch panel,
    The reference region setting means is an X-ray fluoroscopic apparatus that is a position input device provided on the surface of the image display means.
PCT/JP2015/055288 2015-02-24 2015-02-24 X-ray fluoroscopic imaging apparatus WO2016135867A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580076899.8A CN107405125B (en) 2015-02-24 2015-02-24 X-ray fluoroscopic photographing apparatus
PCT/JP2015/055288 WO2016135867A1 (en) 2015-02-24 2015-02-24 X-ray fluoroscopic imaging apparatus
JP2017501613A JP6583649B2 (en) 2015-02-24 2015-02-24 X-ray fluoroscopic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055288 WO2016135867A1 (en) 2015-02-24 2015-02-24 X-ray fluoroscopic imaging apparatus

Publications (1)

Publication Number Publication Date
WO2016135867A1 true WO2016135867A1 (en) 2016-09-01

Family

ID=56787982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055288 WO2016135867A1 (en) 2015-02-24 2015-02-24 X-ray fluoroscopic imaging apparatus

Country Status (3)

Country Link
JP (1) JP6583649B2 (en)
CN (1) CN107405125B (en)
WO (1) WO2016135867A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130334A (en) * 2017-02-15 2018-08-23 キヤノンメディカルシステムズ株式会社 X-ray diagnostic apparatus, control method of x-ray diagnostic apparatus, and image processing apparatus
CN109938758A (en) * 2017-12-20 2019-06-28 西门子医疗有限公司 For ensuring the method and apparatus being properly positioned for radiophotography record
CN110383051A (en) * 2017-04-11 2019-10-25 东芝It·控制系统株式会社 X ray checking device
CN111374686A (en) * 2018-12-28 2020-07-07 佳能株式会社 Radiographic imaging apparatus, control method therefor, and radiographic imaging system
CN111781633A (en) * 2019-04-03 2020-10-16 苏州博思得电气有限公司 Method, system, storage medium and device for automatically adjusting brightness of X-ray machine by utilizing correction
US11617553B2 (en) 2021-08-13 2023-04-04 GE Precision Healthcare LLC Local enhancement for a medical image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308899A (en) * 1997-05-09 1998-11-17 Hitachi Medical Corp X-ray system
JP2003284708A (en) * 2002-03-04 2003-10-07 Ge Medical Systems Global Technology Co Llc Automatic exposure control for digital image obtaining system
JP2005522237A (en) * 2001-11-07 2005-07-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray image enhancement
JP2007029161A (en) * 2005-07-22 2007-02-08 Toshiba Corp X-ray apparatus
JP2011098009A (en) * 2009-11-04 2011-05-19 Toshiba Corp X-ray diagnostic apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756838B2 (en) * 1986-12-10 1995-06-14 株式会社日立メディコ X-ray fluoroscope
JP2001098009A (en) * 1999-09-21 2001-04-10 Shipley Co Llc Method for refining phenolic compound having protected hydroxyl group and radiation sensitive composition using the product
JP2006247250A (en) * 2005-03-14 2006-09-21 Shimadzu Corp Fluoroscope
JP4829666B2 (en) * 2006-04-21 2011-12-07 カネソウ株式会社 Waterproof device
CN101588758B (en) * 2007-03-01 2011-05-18 株式会社岛津制作所 Radiographic imaging device
JP5523791B2 (en) * 2008-10-27 2014-06-18 株式会社東芝 X-ray diagnostic apparatus and image processing apparatus
JP2010273834A (en) * 2009-05-28 2010-12-09 Toshiba Corp X-ray image diagnostic apparatus
US9301728B2 (en) * 2010-05-26 2016-04-05 Shimadzu Corporation X-ray apparatus
US9072490B2 (en) * 2010-12-20 2015-07-07 Toshiba Medical Systems Corporation Image processing apparatus and image processing method
US9325913B2 (en) * 2011-12-28 2016-04-26 General Electric Company Radiation detector for use in sequential image acquisition
WO2014192111A1 (en) * 2013-05-30 2014-12-04 株式会社島津製作所 X-ray image capturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308899A (en) * 1997-05-09 1998-11-17 Hitachi Medical Corp X-ray system
JP2005522237A (en) * 2001-11-07 2005-07-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray image enhancement
JP2003284708A (en) * 2002-03-04 2003-10-07 Ge Medical Systems Global Technology Co Llc Automatic exposure control for digital image obtaining system
JP2007029161A (en) * 2005-07-22 2007-02-08 Toshiba Corp X-ray apparatus
JP2011098009A (en) * 2009-11-04 2011-05-19 Toshiba Corp X-ray diagnostic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130334A (en) * 2017-02-15 2018-08-23 キヤノンメディカルシステムズ株式会社 X-ray diagnostic apparatus, control method of x-ray diagnostic apparatus, and image processing apparatus
JP7015113B2 (en) 2017-02-15 2022-02-02 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device, control method of X-ray diagnostic device, and image processing device
CN110383051A (en) * 2017-04-11 2019-10-25 东芝It·控制系统株式会社 X ray checking device
CN110383051B (en) * 2017-04-11 2022-07-05 东芝It·控制系统株式会社 X-ray inspection apparatus
CN109938758A (en) * 2017-12-20 2019-06-28 西门子医疗有限公司 For ensuring the method and apparatus being properly positioned for radiophotography record
CN111374686A (en) * 2018-12-28 2020-07-07 佳能株式会社 Radiographic imaging apparatus, control method therefor, and radiographic imaging system
CN111781633A (en) * 2019-04-03 2020-10-16 苏州博思得电气有限公司 Method, system, storage medium and device for automatically adjusting brightness of X-ray machine by utilizing correction
CN111781633B (en) * 2019-04-03 2023-12-22 苏州博思得电气有限公司 Method, system, storage medium and apparatus for automatically adjusting brightness of X-ray machine using correction
US11617553B2 (en) 2021-08-13 2023-04-04 GE Precision Healthcare LLC Local enhancement for a medical image

Also Published As

Publication number Publication date
CN107405125A (en) 2017-11-28
JPWO2016135867A1 (en) 2017-10-12
CN107405125B (en) 2020-11-03
JP6583649B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6583649B2 (en) X-ray fluoroscopic equipment
US9888888B2 (en) X-ray diagnostic apparatus
US7881423B2 (en) X-ray CT apparatus and X-ray radiographic method
US20150327821A1 (en) Automatic collimator adjustment device with depth camera and method for medical treatment equipment
US9888899B2 (en) X-ray diagnostic apparatus
JP6139118B2 (en) X-ray diagnostic apparatus and control program
WO2013175712A1 (en) X-ray diagnostic device and x-ray diagnostic support method
US20130315370A1 (en) X-ray diagnosis apparatus and x-ray diagnosis assisting method
JP5955896B2 (en) X-ray imaging device
JP5573688B2 (en) Radiography equipment
JP2006334096A (en) Fluoroscopic equipment
JP6737337B2 (en) X-ray fluoroscope
US11324461B2 (en) X-ray imaging apparatus
US10987074B2 (en) Radiation image capturing apparatus
JP5333279B2 (en) Radiography equipment
JP2006271513A (en) X-ray tomographic apparatus
JP2010220838A (en) Radiographic apparatus
JP5880854B2 (en) Image processing apparatus and radiation imaging apparatus including the same
JP7098319B2 (en) X-ray diagnostic device
JP2018191983A (en) X-ray fluoroscopic device
WO2013175977A1 (en) Diagnostic x-ray apparatus
KR20220092436A (en) Radiation imaging device and radiation flux control method
JP6367420B2 (en) X-ray diagnostic equipment
JP6923287B2 (en) X-ray fluoroscopy equipment
JP2016041091A (en) X-ray diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883163

Country of ref document: EP

Kind code of ref document: A1