WO2016135802A1 - Air conditioning device and control method for air conditioning device - Google Patents

Air conditioning device and control method for air conditioning device Download PDF

Info

Publication number
WO2016135802A1
WO2016135802A1 PCT/JP2015/054923 JP2015054923W WO2016135802A1 WO 2016135802 A1 WO2016135802 A1 WO 2016135802A1 JP 2015054923 W JP2015054923 W JP 2015054923W WO 2016135802 A1 WO2016135802 A1 WO 2016135802A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
control
units
information
unit
Prior art date
Application number
PCT/JP2015/054923
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 河口
▲高▼田 茂生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1709238.8A priority Critical patent/GB2550697B/en
Priority to PCT/JP2015/054923 priority patent/WO2016135802A1/en
Priority to JP2017501558A priority patent/JP6305621B2/en
Publication of WO2016135802A1 publication Critical patent/WO2016135802A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to an air conditioner including a plurality of heat source units and a plurality of use side units, and a method for controlling the air conditioner.
  • the heat source unit exchanges heat between a primary side heat medium such as a refrigerant and a secondary side heat medium such as water. What conveys a medium to the utilization side heat exchanger of a utilization side unit is known.
  • a fan coil type air conditioner Such an air conditioner is referred to as a fan coil type air conditioner.
  • a conventional fan coil type air conditioner it is known to automatically control a plurality of heat source units in accordance with loads of a plurality of usage-side units in order to efficiently operate.
  • the air conditioning apparatus of Patent Document 1 groups a plurality of usage-side units according to a load pattern, and configures a piping system for each group.
  • the signal showing the operation state of a some use side unit is transmitted to the computer which performs centralized management, and the required number of operation
  • the manufacturer of the user side unit and the manufacturer of the heat source device may differ.
  • the number of usage-side units and heat source units, installation conditions (grouping), and the like vary depending on the configuration of the air conditioner.
  • the centralized management device is set for each air conditioner based on the configuration, number, installation conditions, and the like of the use side unit and the heat source unit There is a need to. Specifically, it is necessary to set, for each air conditioner, a control program for the use-side unit and the heat source unit in the centralized management device, a program for calculating the required number of operating heat source units, and the like.
  • the central control device is not provided, and the heat source unit and the use side unit are each provided with a control device.
  • a control device that controls the usage-side units according to the number and installation conditions of the usage-side units and the heat source units. It is necessary to individually set the operation control and the operation control of the control device that controls the heat source machine. In this case, the control system in the air conditioner is complicated.
  • the present invention has been made to solve the above-described problems, and performs integrated control of the use-side unit and the heat source unit, and prevents complication of setting according to the configuration of the air conditioner.
  • An object of the present invention is to provide an air conditioner and a control method capable of performing the above.
  • An air conditioner includes a plurality of heat source units connected in parallel, a plurality of use side units connected in parallel to the plurality of heat source units via a heat medium pipe, a plurality of heat source units, and a plurality of heat source units
  • An integrated management device that communicates with the use side unit, and each of the plurality of heat source machines includes a heat source side control device that performs operation control and transmits operation state information to the integrated management device.
  • Each of the usage-side units includes a usage-side control device that performs operation control and transmits operation state information to the integrated management device.
  • the integrated management device includes the operation state information and the plurality of usages of the plurality of heat source units. Based on the operation state information of the side unit, it has a control information generation unit that generates control information for each of the plurality of heat source machines, and the heat source side control device is generated by the control information generation unit And it performs the operation control according to your information.
  • An air conditioner control method includes: a plurality of heat source units connected in parallel; and a plurality of usage-side units connected in parallel to the plurality of heat source units via a heat medium pipe.
  • An apparatus control method wherein each of the plurality of heat source machines includes a heat source side control device that performs operation control, and each of the plurality of use side units includes a use side control device that performs operation control.
  • the control method of the air conditioner includes a step in which the heat source side control device transmits the operation state information of the heat source unit, a step in which the use side control device transmits the operation state information of the use side unit, and an operation state of the plurality of heat source units A step of generating control information for each of the plurality of heat source units based on the information and operation state information of the plurality of use side units; a step of the heat source side control device performing operation control of the heat source unit according to the control information; Including the.
  • the heat source side control device and the use side control device are installed in the plurality of heat source machines and the plurality of use side units, respectively, and each unit is controlled, and the integrated management device uses a plurality of uses. According to the operation state of the side unit, the operation control of the heat source machine can be performed in an integrated manner. Thereby, it is not necessary to set an integrated management apparatus individually according to the structure (installation number and installation conditions) of an air conditioning apparatus, and efficient operation can be performed.
  • FIG. 3 is a diagram illustrating a schematic configuration of a usage-side unit according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a control configuration of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 4 is a flowchart for explaining the operation of the remote controller in the first embodiment.
  • 5 is a flowchart for explaining the operation of the usage-side unit in the first embodiment.
  • 5 is a flowchart for explaining the operation of the overall management apparatus according to the first embodiment.
  • 3 is a flowchart for explaining the operation of the heat source device in the first embodiment.
  • FIG. 6 is a flowchart for explaining the operation of the heat source device according to the second embodiment.
  • 10 is a flowchart for explaining the operation of the heat source device according to the third embodiment.
  • 10 is a flowchart showing a flow of state sharing processing in the third embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air-conditioning apparatus 100 of the present embodiment includes a plurality of heat source units and a plurality of usage-side units.
  • the air conditioner 100 includes three heat source units 1a to 1c and six usage side units 3a to 3f, but the number of heat source units and usage side units is not limited to this.
  • the plurality of heat source units 1a to 1c are connected in parallel to the secondary side heat medium pipe 5 via the secondary side heat medium circulation pumps 2a to 2c, respectively.
  • the plurality of use side units 3a to 3f are connected in parallel to the secondary side heat medium pipe 5 via the on-off valves 4a to 4f, respectively.
  • the plurality of usage side units 3a to 3f are respectively provided with remote controllers 7a to 7f, and the usage side units 3a to 3f are individually operated by the remote controllers 7a to 7f.
  • an integrated management device 8 that controls the air conditioner 100 in an integrated manner is connected to the heat source devices 1a to 1c and the usage-side units 3a to 3f by communication transmission lines 6.
  • the primary side heat medium and the secondary side heat medium are heat-exchanged by the plurality of heat source units 1a to 1c, and pass through the pumps 2a to 2c and the secondary side heat medium pipe 5. Then, it is conveyed to a plurality of usage side units 3a to 3f. Then, the indoor air and the secondary heat medium are respectively subjected to heat exchange in the plurality of usage side units 3a to 3f, and the cooling operation or the heating operation is performed.
  • the secondary heat medium heat-exchanged with the indoor air by the plurality of usage-side units 3a to 3f passes through the secondary heat medium pipe 5 and again flows into the heat source units 1a to 1c.
  • the primary heat medium is, for example, an HFC refrigerant such as R410A, R407C, R404A, or R32, an HCFC refrigerant such as R22 or R134a, or a natural refrigerant such as hydrocarbon, helium, or propane.
  • the medium is, for example, water or antifreeze.
  • FIG. 2 is a diagram showing a schematic configuration of the heat source unit 1a in the present embodiment.
  • the heat source units 1a to 1c have the same configuration, and here, the heat source unit 1a will be described as a representative.
  • the heat source machine 1 a includes a compressor 10, a flow path switching device 11, a heat source side heat exchanger 12, a decompression device 13, and an intermediate heat exchanger 14 that are sequentially connected by piping.
  • a refrigerant circuit configured is provided.
  • the refrigerant as the primary heat medium circulates in the refrigerant circuit of the heat source unit 1a.
  • the heat source unit 1a includes a blower 15 that blows air to the heat source side heat exchanger 12 and a heat source side control device 50 that controls each part of the heat source unit 1a.
  • the compressor 10 compresses the refrigerant sucked from the suction side and discharges it from the discharge side as a high-temperature and high-pressure gas refrigerant.
  • the operating capacity of the compressor 10 is controlled by the heat source side control device 50.
  • the flow path switching device 11 includes, for example, a four-way valve that switches the direction in which the refrigerant flows. As shown by the solid line in FIG. 2, the flow path switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12 during the cooling operation and the defrosting operation, and at the suction side of the compressor 10. And the intermediate heat exchanger 14 are connected. In addition, the flow path switching device 11 connects the discharge side of the compressor 10 and the intermediate heat exchanger 14 as shown by the broken line in FIG. The exchange 12 is connected. Switching of the flow path by the flow path switching device 11 is controlled by the heat source side control device 50.
  • the heat source side heat exchanger 12 functions as a refrigerant condenser during cooling operation and defrosting operation, and functions as a refrigerant evaporator during heating operation.
  • the blower 15 is composed of, for example, a propeller fan that is driven by a fan motor (not shown). The blower 15 sucks outdoor air into the heat source unit 1a and uses the heat source side heat exchanger 12 to exchange the heat with the refrigerant. To discharge. The flow rate of the air supplied by the blower 15 is controlled by the heat source side control device 50.
  • the decompression device 13 is an expansion valve that decompresses and expands the refrigerant flowing in the refrigerant circuit.
  • the opening (throttle) of the decompression device 13 is controlled by the heat source side control device 50.
  • the intermediate heat exchanger 14 performs heat exchange between the primary side heat medium circulating in the refrigerant circuit of the heat source unit 1 a and the secondary side heat medium circulating in the secondary side heat medium pipe 5. During the cooling operation and the defrosting operation, the secondary heat medium is cooled in the intermediate heat exchanger 14, and during the heating operation, the secondary heat medium is heated.
  • a pump for circulating the secondary heat medium heated or cooled by the intermediate heat exchanger 14 to the secondary heat medium pipe 5 between the intermediate heat exchanger 14 and the secondary heat medium pipe 5. 2a is provided.
  • the flow rate of the secondary side heat medium by the pump 2 a is controlled by the heat source side control device 50.
  • FIG. 3 is a diagram showing a schematic configuration of the usage-side unit 3a in the present embodiment.
  • the use side units 3a to 3f have the same configuration, and the use side unit 3a will be described as a representative here.
  • the use side unit 3a is an indoor unit that is also referred to as a fan coil unit, which is installed in an indoor ceiling by being embedded or suspended.
  • the use side unit 3 a includes a use side heat exchanger 30, a blower 31, and a use side control device 60.
  • the use side heat exchanger 30 exchanges heat between the secondary side heat medium circulating in the secondary side heat medium pipe 5 and the indoor air blown by the blower 31.
  • the blower 31 is composed of, for example, a propeller fan driven by a fan motor (not shown). The blower 31 sucks outdoor air into the use side unit 3a and heats it between the two-dimensional side heat medium by the use side heat exchanger 30. Exhaust the exchanged air outside the room. The flow rate of the air supplied by the blower 31 is controlled by the use side control device 60.
  • an on-off valve that controls the flow of the secondary side heat medium flowing through the secondary side heat medium pipe 5 into the use side heat exchanger 30. 4a is provided. Opening and closing of the on-off valve 4 a is controlled by the use side control device 60.
  • FIG. 4 is a diagram illustrating a control configuration of the air conditioning apparatus 100. 4 shows a state in which only the heat source side control device 50 of the heat source unit 1a and the usage side control unit 60 of the usage side unit 3a are connected to the integrated management device 8, respectively. A plurality of heat source side control devices 50 corresponding to 1a to 1c and a plurality of usage side control devices 60 corresponding to the plurality of usage side units 3a to 3f are connected to the integrated management device 8.
  • the heat source side control device 50 provided in the heat source devices 1a to 1c performs the same operation, and here, the heat source side control device 50 of the heat source device 1a will be described as a representative.
  • the heat source side control device 50 is configured by a microcomputer, a DSP (Digital Signal Processor), or the like, and is connected to the integrated management device 8 via a communication transmission line 6.
  • the heat source side control device 50 includes a communication unit 51 that communicates with the integrated management device 8, a control unit 52 that controls each unit of the heat source unit 1 a, and information that acquires operation state information of the heat source unit 1 a. Acquisition unit 53.
  • Each of the above units is realized by executing a program by a CPU constituting the heat source side control device 50 as a functional unit realized by software, or a DSP, an ASIC (Application Specific IC), a PLD (Programmable Logic Device), or the like It is realized with an electronic circuit.
  • the information acquisition unit 53 acquires the operation state information of the heat source device 1a from the control unit 52.
  • the operation state information of the heat source unit 1a includes an operation or stop state of the heat source unit 1a, an operation mode (heating, cooling or defrosting), a heat exchange capacity, or an operation time of the compressor 10.
  • the operation state information of the heat source machine 1a is referred to as “heat source side information”.
  • the communication unit 51 transmits the heat source side information acquired by the information acquisition unit 53 to the integrated management device 8.
  • the communication unit 51 transmits the control information received from the integrated management device 8 to the control unit 52.
  • the controller 52 controls the amount of energy supplied from the heat source unit 1a to the secondary side heat medium according to the received control information.
  • the control unit 52 controls the operation capacity of the compressor 10, the air flow rate of the blower 15, the rotation speed of the pump 2a, and the like according to the control information.
  • the use side control device 60 provided in the use side units 3a to 3f performs the same operation, and here, the use side control device 60 of the use side unit 3a will be described as a representative.
  • the use side control device 60 is configured by a microcomputer or a DSP.
  • the usage-side control device 60 is connected to the integrated management device 8 via the communication transmission line 6 and is connected to the remote controller 7a so as to be capable of wireless communication.
  • the usage-side control device 60 includes a communication unit 61 that communicates with the integrated management device 8 and the remote controller 7a, a control unit 62 that controls each unit of the usage-side unit 3a, and operations of the usage-side unit 3a.
  • an information acquisition unit 63 that acquires state information.
  • Each of the above-described units is realized by executing a program by a CPU constituting the usage-side control device 60 as a functional unit realized by software, or is realized by an electronic circuit such as a DSP, ASIC, or PLD.
  • the communication unit 61 receives the instruction information from the remote controller 7a and transmits it to the control unit 62.
  • the control unit 62 that has received the instruction signal from the communication unit 61 controls driving or stopping of the blower 31 and opening / closing of the on-off valve 4a according to the instruction signal.
  • the information acquisition unit 63 acquires the operation state information of the usage-side unit 3a from the control unit 62 after the control by the control unit 62 is performed based on the instruction information from the remote controller 7a.
  • the operation state information of the use side unit 3a includes the operation or stop state of the use side unit 3a, the operation mode (heating operation or cooling operation), the indoor set temperature, and the like. In the following description, the operation state information of the use side unit 3a is referred to as “use side information”.
  • the communication unit 61 transmits the use side information acquired by the information acquisition unit 63 to the integrated management apparatus 8.
  • the integrated management device 8 is configured by a microcomputer or a DSP, and is connected to the heat source side control device 50 and the use side control device 60 via the communication transmission line 6. As shown in FIG. 4, the integrated management device 8 includes a communication unit 81 that communicates with the heat source side control device 50 and the use side control device 60, a storage unit 82 that stores heat source side information and use side information, and a storage unit 82. Calculated by the update unit 83 for updating the heat source side information and the use side information stored in the storage unit, the ability calculation unit 84 for calculating the total operating capacity of the use side units 3a to 3f from the use side information, and the ability calculation unit 84.
  • control information generation unit 85 that generates control information of the heat source units 1a to 1c from the total operating capacity.
  • Each of the above units is realized by executing a program by a CPU constituting the integrated management apparatus 8 as a functional unit realized by software, or realized by an electronic circuit such as a DSP, ASIC, or PLD.
  • the communication unit 81 receives the heat source side information of all the heat source machines 1a to 1c connected to the integrated management apparatus 8, and the usage side information of the usage side units 3a to 3f.
  • the storage unit 82 is, for example, a non-volatile memory, and stores the heat source side information of the heat source units 1a to 1c and the usage side information of the usage side units 3a to 3f received via the communication unit 81 as the transmission source heat source units 1a to 1c. And stored in association with each of the usage-side units 3a to 3f.
  • the update unit 83 updates the heat source side information and the use side information stored in the storage unit 82 when newly receiving the heat source side information and the use side information from the heat source devices 1a to 1c and the use side units 3a to 3f.
  • the capability calculation unit 84 selects the usage-side unit whose operation state is the operating state among the plurality of usage-side units 3a to 3f.
  • the operation capacity (cooling capacity or heating capacity) is totaled to calculate the total operation capacity.
  • the control information generation unit 85 controls the heat source units 1a to 1c based on the total operation capability calculated by the capability calculation unit 84 and the heat source side information of the plurality of heat source units 1a to 1c stored in the storage unit 82. Calculate driving capacity. Specifically, the control information generation unit 85 determines the control operation capacity of each heat source unit 1a to 1c by allocating the total operation capacity to each of the heat source units 1a to 1c based on the heat source side information.
  • any one of the heat source units 1a to 1c may be distributed including forced stop.
  • the total heating capacity of the heat source units 1a to 1c may satisfy the total operation capacity.
  • the heating capacity + defrosting capacity shared by the heat source unit 1a performing the defrosting operation is distributed to the other heat source units 1b or 1c.
  • the control information generation unit 85 calculates the total operation capacity. Then, the operation capability for control is obtained by apportioning to the heat source devices 1b and 1c whose operation mode is the heating operation.
  • the calculation method of the driving ability for control is not limited to the above.
  • the total operating capacity may be evenly distributed to the plurality of heat source units 1a to 1c. Further, the total operation capacity may be prorated according to the ratio according to the heat exchange capacity of each of the heat source units 1a to 1c. Further, the total operation capacity may be prorated according to the operation time of the compressor 10 of each of the heat source units 1a to 1c. In this case, the distribution of the heat source unit having a long operation time of the compressor 10 may be reduced or the operation may be stopped. Further, the total driving ability may be prorated according to an arbitrarily set weighting coefficient or the like.
  • the control operation capacity for each heat source unit 1a to 1c generated by the control information generation unit 85 is transmitted as control information to the heat source side control device 50 of each heat source unit 1a to 1c via the communication unit 81.
  • FIG. 5 is a flowchart for explaining the operation of the remote controller 7a.
  • the other remote controllers 7b to 7f perform the same operation as the remote controller 7a.
  • the operation mode of the use side unit 3a is set to a stopped state as an initial state (S1).
  • S2 operation which instruct
  • S2 NO
  • the remote controller 7a transmits the instruction information for instructing the stop to the user-side control device 60 (S3). Then, it returns to step S1 and the subsequent processes are repeated.
  • FIG. 6 is a flowchart for explaining the operation of the usage-side unit 3a.
  • the other usage side units 3b to 3f perform the same operation as the usage side unit 3a.
  • the communication unit 61 determines whether instruction information has been received from the remote controller 7a (S11).
  • the instruction information is not received from the remote controller 7a (S11: NO)
  • the instruction information is transmitted to the control unit 62.
  • the control unit 62 performs air volume control of the blower 31 and opening / closing control of the on-off valve 4a according to the instruction information (S12).
  • the usage side information of the current usage side unit 3a is acquired by the information acquisition unit 63 and transmitted to the integrated management apparatus 8 via the communication unit 61 (S13).
  • FIG. 7 is a flowchart for explaining the operation of the integrated management apparatus 8.
  • the communication unit 81 determines whether or not heat source side information has been received from the heat source side control device 50 of the heat source machines 1a to 1c (S21).
  • the process proceeds to step S23.
  • the update unit 83 stores the heat source side information of the heat source units 1a to 1c stored in the storage unit 82. Among them, the heat source side information of the transmission source heat source machine is updated (S22).
  • the communication unit 81 determines whether or not usage side information has been received from the usage side control device 60 of the usage side units 3a to 3f (S23).
  • the process returns to step S21.
  • the usage side information is received from the usage side control device 60 of the usage side units 3a to 3f (S23: YES)
  • the usage side of the usage side units 3a to 3f stored in the storage unit 82 by the updating unit 83 is used.
  • the usage-side information of the transmission-side usage-side unit is updated (S24).
  • the use state in which the operation state is the driving state among the plurality of use side units 3a to 3f.
  • a total driving ability which is a total value of the driving ability of the side unit is calculated (S25).
  • the control operating capacity of each heat source apparatus 1a to 1c is determined as control information. Calculated (S26).
  • control information is transmitted from the communication unit 81 to the heat source side control devices 50 of the heat source devices 1a to 1c (S27), and the process returns to step S21.
  • FIG. 8 is a flowchart for explaining the operation of the heat source device 1a.
  • the other heat source units 1b and 1c perform the same operation as the heat source unit 1a.
  • the communication unit 51 determines whether control information has been received from the integrated management device 8 (S31).
  • control information is not received from the integrated management apparatus 8 (S31: NO)
  • it waits until it receives.
  • the control unit 52 controls the operation capacity of the compressor 10, the air flow control of the blower 15, and the pump 2a according to the control information.
  • the rotational speed control and the like are performed (S32), and the process returns to step S31.
  • the information acquisition unit 53 acquires the heat source side information of the heat source device 1a and transmits it to the integrated management apparatus 8 via the communication unit 51 (S33). Then, a pause is performed for a preset time (S34), and the process returns to step S33.
  • a pause is performed for a preset time (S34), and the process returns to step S33.
  • the heat source side control device 50 and the use side control device 60 are installed in the heat source units 1a to 1c and the use side units 3a to 3f, respectively, and control of each part is performed.
  • the integrated management device 8 is configured to automatically control the operation of the heat source units 1a to 1c in accordance with the operating states of the plurality of use side units 3a to 3f.
  • the plurality of heat source units 1a to 1c and the use side units 3a to 3f are connected in parallel to the same pair of secondary side heat medium pipes 5, respectively.
  • the heat source side control device 50, the usage side control device 60, and the integrated management device 8 regardless of the number of connected heat source devices 1a to 1c and usage side units 3a to 3f of the air conditioner 100.
  • the same control can be performed, and there is no need to perform complicated settings such as individually changing the control program of the integrated management device 8 according to the configuration of the air conditioner.
  • it is not necessary to associate the plurality of heat source units 1a to 1c with the plurality of use side units 3a to 3f it is not necessary to set restrictions on the address setting of each device.
  • the heat source units 1a to 1c and the use side units 3a to 3f in the heat source side control device 50 and the use side control device 60 are easy to design a system similar to a conventional direct expansion type air conditioner. Can be realized. It is also possible to share and effectively use components such as remote controllers and centralized control devices that have been developed to support direct expansion type air conditioners, and to construct a mixed system of fan coil type and direct expansion type. It becomes easy. Further, by utilizing the heat source side control device 50 and the use side control device 60, the degree of freedom of selection of the heat source unit and the use side unit is improved, and it is easy to combine a device having a special shape or ability according to the property. It becomes.
  • the operating capacity required for the heat source unit may vary depending on the operating state of the plurality of usage side units.
  • the heat source apparatuses 1a to 1c can be efficiently operated by cooperatively controlling the plurality of heat source apparatuses 1a to 1c by the integrated management apparatus 8.
  • the control information based on the heat source side information of the heat source units 1a to 1c, it is possible to suppress the influence on the use side units 3a to 3f in the operation in which the air conditioning capability fluctuates such as the defrosting operation.
  • Embodiment 2 a second embodiment of the present invention will be described.
  • the integrated management device 8 is configured as a separate device from the heat source devices 1a to 1c and the use side units 3a to 3f.
  • each heat source device 1a to 1c are different from the first embodiment in that the heat source side control device 500 in which the function of the integrated management device 8 is incorporated.
  • Other configurations of the air conditioner 100A are the same as those in the first embodiment.
  • FIG. 9 is a diagram illustrating a control configuration of the air-conditioning apparatus 100A according to the present embodiment.
  • FIG. 9 shows a state where only the heat source side control device 500 of the heat source device 1a and the use side control device 60 of the use side unit 3a are connected via the transmission line 6, but actually a plurality of heat source devices.
  • a plurality of heat source side control devices 500 corresponding to 1a to 1c and a plurality of use side control devices 60 corresponding to the plurality of use side units 3a to 3f are connected via the transmission line 6.
  • the usage-side control device 60 of the present embodiment is the same as that of the first embodiment.
  • the heat source side control devices 500 included in the heat source devices 1a to 1c all perform the same operation, and here, the heat source side control device 500 of the heat source device 1a will be described as a representative.
  • the heat source side control device 500 is constituted by a microcomputer or a DSP, and the heat source side control device 500 of the heat source devices 1b and 1c and the usage side control devices of the plurality of usage side units 3a to 3f via the communication transmission line 6. 60.
  • the heat source side control device 500 includes a communication unit 501 that communicates with the heat source side control device 500 and the use side control device 60, a storage unit 502 that stores heat source side information and use side information, and a storage unit.
  • An update unit 503 that updates heat source side information and usage side information stored in 502, a capacity calculation unit 504 that calculates the total operating capacity of the usage side units 3a to 3f from the usage side information, and a capacity calculation unit 504.
  • the control information generation unit 505 that generates control information of the heat source units 1a to 1c from the total operating capacity, the control unit 506 that controls each unit of the heat source unit 1a, and the information acquisition unit 507 that acquires the heat source side information of the heat source unit 1a And having.
  • Each of the above units is realized by executing a program by a CPU constituting the heat source side control device 500 as a functional unit realized by software, or realized by an electronic circuit such as a DSP, ASIC, or PLD.
  • the communication unit 501 receives the heat source side information of the heat source devices 1b and 1c and the usage side information of the usage side units 3a to 3f.
  • the storage unit 502 is, for example, a nonvolatile memory, the heat source side information of the heat source unit 1a acquired by the information acquisition unit 507, the heat source side information of the heat source units 1b and 1c received via the communication unit 501, and the usage side unit 3a. ⁇ 3f usage side information is stored in association with the transmission source heat source units 1a to 1c and the usage side units 3a to 3f, respectively.
  • the update unit 503 updates the heat source side information and the use side information stored in the storage unit 502 when newly receiving the heat source side information and the use side information from the heat source devices 1a to 1c and the use side units 3a to 3f.
  • the capability calculation unit 504 selects the usage side unit of the usage side unit 3a to 3f whose operating state is the operating state.
  • the total driving ability which is the total value of the driving ability, is calculated.
  • the control information generation unit 505 uses the total operating capacity calculated by the capacity calculation unit 504 and the heat source side information of the plurality of heat source units 1a to 1c stored in the storage unit 502 as control information.
  • the control driving ability of 1c is calculated.
  • all of the heat source units 1a to 1c constituting the air conditioning apparatus 100A generate control information (control driving capability) using the same algorithm.
  • the method for calculating the driving ability for control in the control information generation unit 505 is the same as that of the control information generation unit 85 of the first embodiment.
  • the control unit 506 controls the amount of energy supplied from the heat source unit 1a to the secondary heat medium according to the control information generated by the control information generation unit 505. Specifically, the control unit 506 controls the operation capacity of the compressor 10, the air flow rate of the blower 15, the rotational speed of the pump 2 a, and the like according to the control information.
  • the information acquisition unit 507 acquires the heat source side information of the heat source device 1a.
  • the heat source side information includes the operation or stop state of the heat source unit 1a, the operation mode (heating, cooling or defrosting), the heat exchange capacity, the operation time of the compressor 10, and the like.
  • the heat source side information acquired by the information acquisition unit 507 is stored in the storage unit 502 and transmitted from the communication unit 501 to addresses indicating all devices that are constituent elements of the air conditioning apparatus 100A.
  • the purpose of transmitting to the addresses indicating all devices is to transmit the heat source side information to the heat source side control devices 500 of the other heat source machines 1b and 1c.
  • addresses indicating all devices may be transmitted by a method that can be received by the heat source side control devices 500 of the heat source devices 1b and 1c. For example, you may transmit with respect to the address which shows all the heat source side control apparatuses 500 defined beforehand. Further, instead of defining addresses indicating all devices or all heat source side control devices 500 in advance, they may be individually transmitted to all devices or individually transmitted to all heat source side control devices 500. May be. Further, the transmission destination may not be an address indicating the heat source side control device 500 as long as the heat source side control device 500 can acquire data addressed to other devices flowing through the communication line.
  • step S13 of FIG. 6 the usage side information of the current usage side unit is transmitted to the integrated management device 8, but in this embodiment, the configuration of the air conditioner 100A defined in advance Sent to an address indicating all devices as elements.
  • the purpose of transmitting to the addresses indicating all devices is to transmit the operation state information to the heat source side control devices 500 of all the heat source machines 1a to 1c. Therefore, the transmission is not limited to the address indicating all devices, and may be transmitted by a method that can be received by the heat source side control device 500 of the heat source devices 1a to 1c. The specific method is as described for the transmission of the heat source side information.
  • FIG. 10 is a flowchart for explaining the operation of the heat source device 1a in the present embodiment.
  • the other heat source units 1b and 1c perform the same operation as the heat source unit 1a.
  • the communication unit 501 determines whether or not heat source side information has been received from the heat source side control device 500 of the heat source machines 1a to 1c including itself (S41).
  • the process proceeds to step S43.
  • the update unit 503 among the heat source side information of the heat source units 1a to 1c stored in the storage unit 502 is the source heat source
  • the heat source side information of the machine is updated (S42).
  • the communication unit 501 determines whether usage side information has been received from the usage side control device 60 of the usage side units 3a to 3f (S43).
  • the process returns to step S41.
  • the usage side information is received from the usage side control device 60 of the usage side units 3a to 3f (S43: YES)
  • the usage side of the usage side units 3a to 3f stored in the storage unit 502 by the updating unit 503 is used.
  • the usage-side information of the transmission-side usage-side unit is updated (S44).
  • the usage state in which the operation state is the operating state among the plurality of usage side units 3a to 3f.
  • a total driving ability which is a total value of the driving ability of the side unit is calculated (S45).
  • the control operating capacity for each of the heat source units 1a to 1c is obtained as control information.
  • the control unit 506 performs the operation capacity control of the compressor 10, the air volume control of the blower 15, the rotational speed control of the pump 2a, and the like (S47), and returns to step S41. .
  • the information acquisition unit 507 acquires the heat source side information of the heat source unit 1a and transmits the information via the communication unit 501 (S48). Then, a pause is performed for a preset time (S49), and the process returns to step S48.
  • a pause is performed for a preset time (S49), and the process returns to step S48.
  • the heat source side information and the usage side information necessary for the calculation are transmitted from all the usage side control devices 60 and the heat source side control devices 500 to the respective heat source units 1a to 1c. Therefore, the calculation results of the control ability for the heat source devices 1a to 1c are the same. Therefore, unlike Embodiment 1, it is not necessary to transmit the calculation result to the other heat source devices 1b and 1c, and the object can be achieved only by controlling the heat source device 1a that is the control target. Furthermore, since the function of the integrated management device is distributed to each of the heat source units 1a to 1c, even if any one of the heat source units breaks down, the air conditioner 100A can be continuously operated. Further, in the description of the operation in the present embodiment, the flow in the case where each device spontaneously transmits information to the heat source side control device 500 is shown, but the heat source side control device 500 transmits information to each device as necessary. May be requested.
  • the heat source devices 1a to 1c are automatically selected in the heat source side control device 500 of the heat source devices 1a to 1c according to the operating states of the plurality of usage side units 3a to 3f.
  • the operation control is performed.
  • the plurality of heat source devices 1a to 1c and the use side units 3a to 3f are connected in parallel to the same pair of secondary heat medium pipes 5, respectively. Therefore, the same effect as the first embodiment can be obtained. Furthermore, since it is not necessary to provide the integrated management device 8 in the present embodiment, the number of parts and the product cost can be reduced.
  • Embodiment 3 FIG. Subsequently, Embodiment 3 of the present invention will be described.
  • the heat source unit 1a cannot temporarily receive the heat source side information of the other heat source units 1b and 1c and the usage side information of the usage side units 3a to 3f due to a communication abnormality or the like.
  • the control expected for the air conditioner 100 may not be performed because the calculated control driving ability is different from those of the other heat source devices 1b and 1c. Therefore, the third embodiment is different from the second embodiment in that a configuration is provided in which a state is shared among the plurality of heat source units 1a to 1c.
  • Other configurations of the air conditioner 100A are the same as those in the second embodiment.
  • the control configuration in the present embodiment is the same as that in the second embodiment shown in FIG.
  • the operations of the remote controllers 7a to 7f and the use side units 3a to 3f are the same as those in the second embodiment.
  • FIG. 11 is a flowchart showing the operation of the heat source unit 1a in the present embodiment.
  • the other heat source units 1b and 1c perform the same operation as the heat source unit 1a.
  • the information acquisition unit 507 determines whether or not the heat source side information of the heat source device 1a has been changed (S50). When there is no change in the heat source side information of the heat source device 1a (S50: NO), the process waits until there is a change. On the other hand, when there is a change in the heat source side information of the heat source unit 1a (S50: YES), the changed heat source side information is acquired and transmitted via the communication unit 501 (S51), and the process returns to step S50.
  • FIG. 12 is a flowchart showing the flow of the state sharing process.
  • the control information generated in step S46 is transmitted from the communication unit 501 in a manner that can be received by the other heat source devices 1b and 1c, similarly to the heat source side information (S53). And it is judged in the communication part 501 whether the control information was received from the other heat-source equipment 1b or 1c (S54).
  • control information generation part 505 determines whether the control information produced
  • each of the heat source machines 1b or 1c that is a transmission source via the communication unit 501 is used to generate control information.
  • the heat source side information and the use side information of the device are requested (S56).
  • the update unit 503 compares the heat source side information and the use side information received from the other heat source device 1 b or 1 c with the heat source side information and the use side information stored in the storage unit 502 and stores them in the storage unit 502. It is determined whether the heat source side information and the use side information to be updated are the latest (S57).
  • the updating unit 503 compares the identification number of the heat source side information and the usage side information stored in the storage unit 502 with the identification number of the heat source side information and the usage side information received from the other heat source unit 1b or 1c.
  • the identification number of the heat source side information and the usage side information stored in the storage unit 502 is newer than the received identification number of the heat source side information and the usage side information, the heat source side information and the usage side information stored in the storage unit 502 Is determined to be up-to-date.
  • storage part 502 are the newest (S57: YES), it progresses to step S61.
  • the update unit 503 updates the heat source side information and the use side information stored in the storage unit 502 to the heat source side information and the use side information received from the other heat source machine 1b or 1c (S58).
  • the total operating capacity is calculated based on the updated heat source side information and usage side information (S59), and control information is generated from the calculated total operating capacity (S60). .
  • the total driving ability and control information calculated and generated in steps S45 and S46 are updated with the total driving ability and control information calculated and generated in steps S59 and S60.
  • step S61 it is determined whether control information has been received from all the heat source devices 1b and 1c connected to the heat source device 1a (S61). And when control information is not received from all the heat source machines 1b and 1c, it returns to step S54. Then, the subsequent steps are repeated to compare with the control information of all the heat source devices 1b and 1c and share the state. And when control information is received from all the heat source machines 1b and 1c (S61: YES), this process is complete
  • step S54 determines whether or not a predetermined time has elapsed (S62), and until a predetermined time has elapsed (S62: NO), Wait for reception of control information. At this time, since the heat source unit 1a may have failed to receive the control information, the heat source unit 1b or 1c that has not received the control information may be requested to transmit the control information. If the predetermined time has elapsed (S62: YES), this process is terminated, and the process proceeds to step S47 in FIG. In this case, there is a possibility that the heat source unit that has not received the control information may be out of order.
  • control information of the heat source units other than the heat source unit that has not received the control information is compared and shared. (S55 to S60).
  • a warning for notifying a communication abnormality may be given and the process interrupted.
  • step S47 each part of the heat source unit 1a is controlled based on the control information generated in step S46 or the control information generated (updated) in step S60 (S47).
  • step S57 when it is determined that the heat source side information and the use side information stored in the storage unit 502 are the latest (S57: YES), or in step S62, the control information is not received and the predetermined information is received.
  • the time has elapsed S62: YES
  • the heat source device 1b or 1c may transmit the heat source side information and the use side information of itself (the heat source device 1a) to regenerate the control information.
  • the heat source side information and the use side information from the other heat source units 1b and 1c and the use side units 3a to 3f cannot be temporarily received due to a communication abnormality or the like.
  • the same control information control operation capability
  • the control expected as the air conditioner 100A can be performed. Further, the fault tolerance of the air conditioner 100A can be improved.
  • the heat source side control device 50, the use side control device 60, and the integrated management device 8 are configured to be connected via the transmission line 6, but are not limited thereto, and may be configured to perform wireless communication. Good.
  • the heat source units 1a to 1c are air-cooled heat pump chillers.
  • the configuration of the heat source units 1a to 1c is not limited to this.
  • the present invention can also be applied when the heat source devices 1a to 1c are water-cooled heat pump chillers or absorption refrigerators.
  • the use side units 3a to 3f the present invention can be applied to not only the 2-tube type but also the 4-pipe type.
  • the third embodiment is an example in which the heat source devices 1a to 1c transmit the heat source side information and the usage side information when the operation state of the transmission target changes, but the present invention is not limited to this. .
  • the heat source side information can be received within the period. If not, it may be determined that a communication error has occurred. In this case, an inquiry is made to any of the heat source devices 1a to 1c or the use side units 3a to 3f that have failed to receive the heat source side information and the use side information, and if there is no response to the inquiry, it is determined that the corresponding device has failed. Is done.
  • a request for heat source side information and user side information is made, and control information is generated based on the latest heat source side information and user side information.
  • control information is transmitted to the other heat source devices 1b and 1c in step S53.
  • the total operating capacity calculated in step S45 may be transmitted.
  • step S55 a comparison is made with the total operating capacity of the other heat source machines 1b or 1c, and the state is shared.

Abstract

This air conditioning device is provided with a plurality of heat-source devices connected in parallel with each other, a plurality of use-side units connected in parallel with the plurality of heat-source devices via heat-medium pipes, and an integrated management device that communicates with the plurality of heat-source devices and the plurality of use-side units. In addition, each of the plurality of heat-source devices is provided with a heat-source-side control device which performs operation control, and which transmits operation status information to the integrated management device, and each of the plurality of use-side units is provided with a use-side control device which performs operation control, and which transmits operation status information to the integrated management device. Still further, the integrated management device is provided with a control information generating unit which generates control information for each of the plurality of heat-source devices on the basis of the operation status information on the plurality of heat-source devices and the operation status information on the plurality of use-side units, and the heat-source-side control device performs operation control in accordance with the control information generated by the control information generating unit.

Description

空気調和装置および空気調和装置の制御方法Air conditioner and control method of air conditioner
 本発明は、複数の熱源機と複数の利用側ユニットとを備える空気調和装置および空気調和装置の制御方法に関するものである。 The present invention relates to an air conditioner including a plurality of heat source units and a plurality of use side units, and a method for controlling the air conditioner.
 従来、複数の熱源機と複数の利用側ユニットとを備える空気調和装置において、熱源機で冷媒などの1次側熱媒体と水などの2次側熱媒体とを熱交換させ、2次側熱媒体を利用側ユニットの利用側熱交換器に搬送するものが知られている。このような空気調和装置は、ファンコイル方式の空気調和装置と称される。 2. Description of the Related Art Conventionally, in an air conditioner that includes a plurality of heat source units and a plurality of usage side units, the heat source unit exchanges heat between a primary side heat medium such as a refrigerant and a secondary side heat medium such as water. What conveys a medium to the utilization side heat exchanger of a utilization side unit is known. Such an air conditioner is referred to as a fan coil type air conditioner.
 従来のファンコイル方式の空気調和装置において、効率良く運転を行うために、複数の利用側ユニットの負荷に応じて、複数の熱源機を自動的に制御することが知られている。例えば、特許文献1の空気調和装置は、複数の利用側ユニットを負荷パターンに応じてグループ分けし、グループ毎に配管系統を構成する。そして、複数の利用側ユニットの運転状態を表す信号が集中管理を行うコンピュータに送信され、コンピュータにおいて運転情報に基づいて熱源機の必要運転台数が算出される。また、特許文献1の空気調和装置では、複数の利用側ユニットの運転状態を表す信号だけでなく、熱源機、電動弁およびポンプなどの状態に関する情報がコンピュータに集約され、熱源機、利用側ユニット、電動弁およびポンプの制御が行われる構成となっている。 In a conventional fan coil type air conditioner, it is known to automatically control a plurality of heat source units in accordance with loads of a plurality of usage-side units in order to efficiently operate. For example, the air conditioning apparatus of Patent Document 1 groups a plurality of usage-side units according to a load pattern, and configures a piping system for each group. And the signal showing the operation state of a some use side unit is transmitted to the computer which performs centralized management, and the required number of operation | movement of a heat source machine is calculated in a computer based on operation information. Further, in the air conditioner of Patent Document 1, not only a signal indicating the operation state of a plurality of usage-side units but also information on the status of the heat source machine, the electric valve, the pump, and the like is collected in a computer. The motor valve and the pump are controlled.
特開平5-196277号公報JP-A-5-196277
 ファンコイル方式の空気調和装置において、利用側ユニットの提供メーカーと熱源機の提供メーカーとが異なる場合がある。また、空気調和装置の構成によって、利用側ユニットおよび熱源機の台数および設置条件(グループ分け)なども異なる。ここで、特許文献1のように、集中管理装置において各部の制御が行われる場合、空気調和装置毎に、利用側ユニットおよび熱源機の構成、台数および設置条件等に基づいて集中管理装置を設定する必要がある。具体的には、空気調和装置毎に、集中管理装置における利用側ユニットおよび熱源機の各制御プログラムおよび熱源機の必要運転台数を算出するプログラムなどを設定する必要がある。 In a fan coil type air conditioner, the manufacturer of the user side unit and the manufacturer of the heat source device may differ. In addition, the number of usage-side units and heat source units, installation conditions (grouping), and the like vary depending on the configuration of the air conditioner. Here, as in Patent Document 1, when each part is controlled in the centralized management device, the centralized management device is set for each air conditioner based on the configuration, number, installation conditions, and the like of the use side unit and the heat source unit There is a need to. Specifically, it is necessary to set, for each air conditioner, a control program for the use-side unit and the heat source unit in the centralized management device, a program for calculating the required number of operating heat source units, and the like.
 また、ファンコイル方式の空気調和装置において、集中管理装置を備えず、熱源機および利用側ユニットがそれぞれ制御装置を備える場合もある。このような空気調和装置において複数の利用側ユニットおよび熱源機を統合的に制御するためには、利用側ユニットおよび熱源機の台数および設置条件などに応じて、利用側ユニットを制御する制御装置の動作制御と、熱源機を制御する制御装置の動作制御とをそれぞれ個別に設定する必要がある。また、この場合は空気調和装置における制御系統が複雑になってしまう。 Also, in the fan coil type air conditioner, there are cases where the central control device is not provided, and the heat source unit and the use side unit are each provided with a control device. In order to integrally control a plurality of usage-side units and heat source units in such an air conditioner, a control device that controls the usage-side units according to the number and installation conditions of the usage-side units and the heat source units. It is necessary to individually set the operation control and the operation control of the control device that controls the heat source machine. In this case, the control system in the air conditioner is complicated.
 本発明は、上記のような課題を解決するためになされたものであり、利用側ユニットおよび熱源機の統合的な制御を行うとともに、空気調和装置の構成に応じた設定の煩雑化を防ぐことができる空気調和装置および制御方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and performs integrated control of the use-side unit and the heat source unit, and prevents complication of setting according to the configuration of the air conditioner. An object of the present invention is to provide an air conditioner and a control method capable of performing the above.
 本発明に係る空気調和装置は、並列に接続される複数の熱源機と、熱媒体配管を介して複数の熱源機に並列に接続される複数の利用側ユニットと、複数の熱源機および複数の利用側ユニットと通信する統合管理装置と、を備え、複数の熱源機の各々は、動作制御を行うとともに、動作状態情報を統合管理装置に送信する熱源側制御装置を備えるものであり、複数の利用側ユニットの各々は、動作制御を行うとともに、動作状態情報を統合管理装置に送信する利用側制御装置を備えるものであり、統合管理装置は、複数の熱源機の動作状態情報および複数の利用側ユニットの動作状態情報に基づき、複数の熱源機の各々に対する制御情報を生成する制御情報生成部を有するものであり、熱源側制御装置は、制御情報生成部によって生成された制御情報に従って動作制御を行うものである。 An air conditioner according to the present invention includes a plurality of heat source units connected in parallel, a plurality of use side units connected in parallel to the plurality of heat source units via a heat medium pipe, a plurality of heat source units, and a plurality of heat source units An integrated management device that communicates with the use side unit, and each of the plurality of heat source machines includes a heat source side control device that performs operation control and transmits operation state information to the integrated management device. Each of the usage-side units includes a usage-side control device that performs operation control and transmits operation state information to the integrated management device. The integrated management device includes the operation state information and the plurality of usages of the plurality of heat source units. Based on the operation state information of the side unit, it has a control information generation unit that generates control information for each of the plurality of heat source machines, and the heat source side control device is generated by the control information generation unit And it performs the operation control according to your information.
 本発明に係る空気調和装置の制御方法は、並列に接続される複数の熱源機と、熱媒体配管を介して複数の熱源機に並列に接続される複数の利用側ユニットと、を備える空気調和装置の制御方法であって、複数の熱源機の各々は、動作制御を行う熱源側制御装置を備え、複数の利用側ユニットの各々は、動作制御を行う利用側制御装置を備えるものであり、空気調和装置の制御方法は、熱源側制御装置が熱源機の動作状態情報を送信するステップと、利用側制御装置が利用側ユニットの動作状態情報を送信するステップと、複数の熱源機の動作状態情報および複数の利用側ユニットの動作状態情報に基づき、複数の熱源機の各々に対する制御情報を生成するステップと、熱源側制御装置が制御情報に従って熱源機の動作制御を行うステップと、を含む。 An air conditioner control method according to the present invention includes: a plurality of heat source units connected in parallel; and a plurality of usage-side units connected in parallel to the plurality of heat source units via a heat medium pipe. An apparatus control method, wherein each of the plurality of heat source machines includes a heat source side control device that performs operation control, and each of the plurality of use side units includes a use side control device that performs operation control. The control method of the air conditioner includes a step in which the heat source side control device transmits the operation state information of the heat source unit, a step in which the use side control device transmits the operation state information of the use side unit, and an operation state of the plurality of heat source units A step of generating control information for each of the plurality of heat source units based on the information and operation state information of the plurality of use side units; a step of the heat source side control device performing operation control of the heat source unit according to the control information; Including the.
本発明の空気調和装置によれば、複数の熱源機および複数の利用側ユニットにそれぞれ熱源側制御装置および利用側制御装置を設置し、各部の制御を行うとともに、統合管理装置で、複数の利用側ユニットの動作状態に応じて、統合的に熱源機の運転制御を行うことができる。これにより、空気調和装置の構成(設置台数や設置条件)に応じて統合管理装置を個別に設定する必要がなく、また効率の良い運転を行うことができる。 According to the air conditioner of the present invention, the heat source side control device and the use side control device are installed in the plurality of heat source machines and the plurality of use side units, respectively, and each unit is controlled, and the integrated management device uses a plurality of uses. According to the operation state of the side unit, the operation control of the heat source machine can be performed in an integrated manner. Thereby, it is not necessary to set an integrated management apparatus individually according to the structure (installation number and installation conditions) of an air conditioning apparatus, and efficient operation can be performed.
実施の形態1における空気調和装置の概略構成を示す図である。It is a figure which shows schematic structure of the air conditioning apparatus in Embodiment 1. FIG. 実施の形態1における熱源機の概略構成を示す図である。It is a figure which shows schematic structure of the heat source machine in Embodiment 1. FIG. 実施の形態1における利用側ユニットの概略構成を示す図である。3 is a diagram illustrating a schematic configuration of a usage-side unit according to Embodiment 1. FIG. 実施の形態1における空気調和装置の制御構成を示す図である。3 is a diagram illustrating a control configuration of the air-conditioning apparatus according to Embodiment 1. FIG. 実施の形態1におけるリモートコントローラーの動作を説明するフローチャートである。4 is a flowchart for explaining the operation of the remote controller in the first embodiment. 実施の形態1における利用側ユニットの動作を説明するフローチャートである。5 is a flowchart for explaining the operation of the usage-side unit in the first embodiment. 実施の形態1における統括管理装置の動作を説明するフローチャートである。5 is a flowchart for explaining the operation of the overall management apparatus according to the first embodiment. 実施の形態1における熱源機の動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the heat source device in the first embodiment. 実施の形態2における空気調和装置の制御構成を示す図である。It is a figure which shows the control structure of the air conditioning apparatus in Embodiment 2. FIG. 実施の形態2における熱源機の動作を説明するフローチャートである。6 is a flowchart for explaining the operation of the heat source device according to the second embodiment. 実施の形態3における熱源機の動作を説明するフローチャートである。10 is a flowchart for explaining the operation of the heat source device according to the third embodiment. 実施の形態3における状態共有処理の流れを示すフローチャートである。10 is a flowchart showing a flow of state sharing processing in the third embodiment.
 以下、本発明の空気調和装置について、図面を用いて説明する。なお、以下で説明する構成等は、一例であり、本発明の空気調和装置は、以下の構成に限定されるものではない。また、各図において、同一の部材には、同一の符号を付す。 Hereinafter, the air conditioner of the present invention will be described with reference to the drawings. In addition, the structure demonstrated below is an example and the air conditioning apparatus of this invention is not limited to the following structures. Moreover, in each figure, the same code | symbol is attached | subjected to the same member.
 実施の形態1.
 図1は、本発明の実施の形態1における空気調和装置100の概略構成を示す図である。図1に示すように、本実施の形態の空気調和装置100は、複数の熱源機と、複数の利用側ユニットとを備えている。図1の例では、空気調和装置100は、3台の熱源機1a~1cと6台の利用側ユニット3a~3fとを備えているが、熱源機および利用側ユニットの数はこれに限定されない。複数の熱源機1a~1cは、それぞれ2次側熱媒体循環用のポンプ2a~2cを介して、2次側熱媒体配管5に並列接続される。また、複数の利用側ユニット3a~3fは、それぞれ開閉弁4a~4fを介して、2次側熱媒体配管5に並列に接続される。また、複数の利用側ユニット3a~3fは、それぞれリモートコントローラー7a~7fを備え、各リモートコントローラー7a~7fによって各利用側ユニット3a~3fが個別に運転操作される。さらに、空気調和装置100を統合的に制御する統合管理装置8が、通信用の伝送線6で各熱源機1a~1cおよび各利用側ユニット3a~3fに接続されている。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a schematic configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air-conditioning apparatus 100 of the present embodiment includes a plurality of heat source units and a plurality of usage-side units. In the example of FIG. 1, the air conditioner 100 includes three heat source units 1a to 1c and six usage side units 3a to 3f, but the number of heat source units and usage side units is not limited to this. . The plurality of heat source units 1a to 1c are connected in parallel to the secondary side heat medium pipe 5 via the secondary side heat medium circulation pumps 2a to 2c, respectively. The plurality of use side units 3a to 3f are connected in parallel to the secondary side heat medium pipe 5 via the on-off valves 4a to 4f, respectively. The plurality of usage side units 3a to 3f are respectively provided with remote controllers 7a to 7f, and the usage side units 3a to 3f are individually operated by the remote controllers 7a to 7f. Further, an integrated management device 8 that controls the air conditioner 100 in an integrated manner is connected to the heat source devices 1a to 1c and the usage-side units 3a to 3f by communication transmission lines 6.
 本実施の形態の空気調和装置100では、複数の熱源機1a~1cで1次側熱媒体と2次側熱媒体とが熱交換され、ポンプ2a~2cおよび2次側熱媒体配管5を通って、複数の利用側ユニット3a~3fに搬送される。そして、複数の利用側ユニット3a~3fでそれぞれ室内空気と2次側熱媒体とが熱交換され、冷房運転または暖房運転が実施される。複数の利用側ユニット3a~3fで室内空気と熱交換された2次側熱媒体は、2次側熱媒体配管5を通って、熱源機1a~1cに再び流入する。ここで、1次側熱媒体は、例えばR410A、R407C、R404A、R32などのHFC冷媒、R22、R134aなどのHCFC冷媒、もしくは炭化水素、ヘリウム、プロパンのような自然冷媒であり、2次側熱媒体は、例えば水または不凍液などである。 In the air conditioner 100 of the present embodiment, the primary side heat medium and the secondary side heat medium are heat-exchanged by the plurality of heat source units 1a to 1c, and pass through the pumps 2a to 2c and the secondary side heat medium pipe 5. Then, it is conveyed to a plurality of usage side units 3a to 3f. Then, the indoor air and the secondary heat medium are respectively subjected to heat exchange in the plurality of usage side units 3a to 3f, and the cooling operation or the heating operation is performed. The secondary heat medium heat-exchanged with the indoor air by the plurality of usage-side units 3a to 3f passes through the secondary heat medium pipe 5 and again flows into the heat source units 1a to 1c. Here, the primary heat medium is, for example, an HFC refrigerant such as R410A, R407C, R404A, or R32, an HCFC refrigerant such as R22 or R134a, or a natural refrigerant such as hydrocarbon, helium, or propane. The medium is, for example, water or antifreeze.
 図2は、本実施の形態における熱源機1aの概略構成を示す図である。熱源機1a~1cは同様の構成を有しており、ここでは熱源機1aを代表として説明する。図2に示すように、熱源機1aは、圧縮機10と、流路切替装置11と、熱源側熱交換器12と、減圧装置13と、中間熱交換器14とが順次配管で接続されて構成される冷媒回路を備える。熱源機1aの冷媒回路を1次側熱媒体である冷媒が循環する。また、熱源機1aは、熱源側熱交換器12へ空気を送風する送風機15および熱源機1aの各部を制御する熱源側制御装置50を備える。 FIG. 2 is a diagram showing a schematic configuration of the heat source unit 1a in the present embodiment. The heat source units 1a to 1c have the same configuration, and here, the heat source unit 1a will be described as a representative. As shown in FIG. 2, the heat source machine 1 a includes a compressor 10, a flow path switching device 11, a heat source side heat exchanger 12, a decompression device 13, and an intermediate heat exchanger 14 that are sequentially connected by piping. A refrigerant circuit configured is provided. The refrigerant as the primary heat medium circulates in the refrigerant circuit of the heat source unit 1a. The heat source unit 1a includes a blower 15 that blows air to the heat source side heat exchanger 12 and a heat source side control device 50 that controls each part of the heat source unit 1a.
 圧縮機10は、吸入側から吸入された冷媒を圧縮し、高温高圧のガス冷媒として吐出側から吐出する。圧縮機10の運転容量は、熱源側制御装置50によって制御される。流路切替装置11は、例えば、冷媒の流れる方向を切り替える四方弁からなる。流路切替装置11は、冷房運転時および除霜運転時には、図2の実線で示すように、圧縮機10の吐出側と熱源側熱交換器12とを接続するとともに、圧縮機10の吸入側と中間熱交換器14とを接続する。また、流路切替装置11は、暖房運転時には、図2に破線で示すように、圧縮機10の吐出側と中間熱交換器14とを接続するとともに、圧縮機10の吸入側と熱源側熱交換器12とを接続する。流路切替装置11による流路の切り替えは、熱源側制御装置50によって制御される。 The compressor 10 compresses the refrigerant sucked from the suction side and discharges it from the discharge side as a high-temperature and high-pressure gas refrigerant. The operating capacity of the compressor 10 is controlled by the heat source side control device 50. The flow path switching device 11 includes, for example, a four-way valve that switches the direction in which the refrigerant flows. As shown by the solid line in FIG. 2, the flow path switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12 during the cooling operation and the defrosting operation, and at the suction side of the compressor 10. And the intermediate heat exchanger 14 are connected. In addition, the flow path switching device 11 connects the discharge side of the compressor 10 and the intermediate heat exchanger 14 as shown by the broken line in FIG. The exchange 12 is connected. Switching of the flow path by the flow path switching device 11 is controlled by the heat source side control device 50.
 熱源側熱交換器12は、冷房運転時および除霜運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。送風機15は、例えばファンモータ(図示せず)によって駆動されるプロペラファンからなり、熱源機1a内に室外空気を吸入し、熱源側熱交換器12により冷媒との間で熱交換した空気を室外に排出する。送風機15が供給する空気の流量は、熱源側制御装置50によって制御される。 The heat source side heat exchanger 12 functions as a refrigerant condenser during cooling operation and defrosting operation, and functions as a refrigerant evaporator during heating operation. The blower 15 is composed of, for example, a propeller fan that is driven by a fan motor (not shown). The blower 15 sucks outdoor air into the heat source unit 1a and uses the heat source side heat exchanger 12 to exchange the heat with the refrigerant. To discharge. The flow rate of the air supplied by the blower 15 is controlled by the heat source side control device 50.
 減圧装置13は、冷媒回路内を流れる冷媒を減圧および膨張させる膨張弁である。減圧装置13は、熱源側制御装置50によって開度(絞り)が制御される。中間熱交換器14は、熱源機1aの冷媒回路内を循環する1次側熱媒体と、2次側熱媒体配管5を循環する2次側熱媒体との熱交換を行う。冷房運転時および除霜運転時には中間熱交換器14において2次側熱媒体が冷却され、暖房運転時には2次側熱媒体が加熱される。 The decompression device 13 is an expansion valve that decompresses and expands the refrigerant flowing in the refrigerant circuit. The opening (throttle) of the decompression device 13 is controlled by the heat source side control device 50. The intermediate heat exchanger 14 performs heat exchange between the primary side heat medium circulating in the refrigerant circuit of the heat source unit 1 a and the secondary side heat medium circulating in the secondary side heat medium pipe 5. During the cooling operation and the defrosting operation, the secondary heat medium is cooled in the intermediate heat exchanger 14, and during the heating operation, the secondary heat medium is heated.
 中間熱交換器14と2次側熱媒体配管5との間には、中間熱交換器14で加熱または冷却された2次側熱媒体を、2次側熱媒体配管5に循環するためのポンプ2aが設けられる。ポンプ2aによる2次側熱媒体の流量は、熱源側制御装置50によって制御される。 A pump for circulating the secondary heat medium heated or cooled by the intermediate heat exchanger 14 to the secondary heat medium pipe 5 between the intermediate heat exchanger 14 and the secondary heat medium pipe 5. 2a is provided. The flow rate of the secondary side heat medium by the pump 2 a is controlled by the heat source side control device 50.
 図3は、本実施の形態における利用側ユニット3aの概略構成を示す図である。利用側ユニット3a~3fは同様の構成を有しており、ここでは利用側ユニット3aを代表として説明する。利用側ユニット3aは、屋内の天井に埋め込みや吊り下げ等により設置される、ファンコイルユニットとも称される室内機である。本実施の形態において、利用側ユニット3aは、利用側熱交換器30と、送風機31と、利用側制御装置60とを備えている。 FIG. 3 is a diagram showing a schematic configuration of the usage-side unit 3a in the present embodiment. The use side units 3a to 3f have the same configuration, and the use side unit 3a will be described as a representative here. The use side unit 3a is an indoor unit that is also referred to as a fan coil unit, which is installed in an indoor ceiling by being embedded or suspended. In the present embodiment, the use side unit 3 a includes a use side heat exchanger 30, a blower 31, and a use side control device 60.
 利用側熱交換器30は、2次側熱媒体配管5を循環する2次側熱媒体と、送風機31により送風される室内空気とを熱交換する。送風機31は、例えばファンモータ(図示せず)によって駆動されるプロペラファンからなり、利用側ユニット3a内に室外空気を吸入し、利用側熱交換器30によって2次元側熱媒体との間で熱交換した空気を室外に排出する。送風機31が供給する空気の流量は、利用側制御装置60によって制御される。 The use side heat exchanger 30 exchanges heat between the secondary side heat medium circulating in the secondary side heat medium pipe 5 and the indoor air blown by the blower 31. The blower 31 is composed of, for example, a propeller fan driven by a fan motor (not shown). The blower 31 sucks outdoor air into the use side unit 3a and heats it between the two-dimensional side heat medium by the use side heat exchanger 30. Exhaust the exchanged air outside the room. The flow rate of the air supplied by the blower 31 is controlled by the use side control device 60.
 利用側熱交換器30と2次側熱媒体配管5との間には、2次側熱媒体配管5を流れる2次側熱媒体の、利用側熱交換器30への流入を制御する開閉弁4aが設けられる。開閉弁4aの開閉は、利用側制御装置60によって制御される。 Between the use side heat exchanger 30 and the secondary side heat medium pipe 5, an on-off valve that controls the flow of the secondary side heat medium flowing through the secondary side heat medium pipe 5 into the use side heat exchanger 30. 4a is provided. Opening and closing of the on-off valve 4 a is controlled by the use side control device 60.
 次に、本実施の形態の空気調和装置100における制御構成について説明する。図4は、空気調和装置100の制御構成を示す図である。なお、図4では、統合管理装置8に熱源機1aの熱源側制御装置50および利用側ユニット3aの利用側制御装置60のみがそれぞれ接続されている状態を示すが、実際には複数の熱源機1a~1cに対応する複数の熱源側制御装置50および複数の利用側ユニット3a~3fに対応する複数の利用側制御装置60が統合管理装置8に接続される。 Next, a control configuration in the air conditioning apparatus 100 of the present embodiment will be described. FIG. 4 is a diagram illustrating a control configuration of the air conditioning apparatus 100. 4 shows a state in which only the heat source side control device 50 of the heat source unit 1a and the usage side control unit 60 of the usage side unit 3a are connected to the integrated management device 8, respectively. A plurality of heat source side control devices 50 corresponding to 1a to 1c and a plurality of usage side control devices 60 corresponding to the plurality of usage side units 3a to 3f are connected to the integrated management device 8.
 熱源機1a~1cが備える熱源側制御装置50は、同様の動作を行うものであり、ここでは熱源機1aの熱源側制御装置50を代表として説明する。熱源側制御装置50は、マイクロコンピュータまたはDSP(Digital Signal Processor)などで構成され、通信用の伝送線6を介して統合管理装置8に接続される。図4に示すように、熱源側制御装置50は、統合管理装置8と通信する通信部51と、熱源機1aの各部を制御する制御部52と、熱源機1aの動作状態情報を取得する情報取得部53と、を有する。上記各部は、ソフトウェアで実現される機能部として熱源側制御装置50を構成するCPUによってプログラムを実行することで実現されるか、またはDSP、ASIC(Application Specific IC)、PLD(Programmable Logic Device)などの電子回路で実現される。 The heat source side control device 50 provided in the heat source devices 1a to 1c performs the same operation, and here, the heat source side control device 50 of the heat source device 1a will be described as a representative. The heat source side control device 50 is configured by a microcomputer, a DSP (Digital Signal Processor), or the like, and is connected to the integrated management device 8 via a communication transmission line 6. As illustrated in FIG. 4, the heat source side control device 50 includes a communication unit 51 that communicates with the integrated management device 8, a control unit 52 that controls each unit of the heat source unit 1 a, and information that acquires operation state information of the heat source unit 1 a. Acquisition unit 53. Each of the above units is realized by executing a program by a CPU constituting the heat source side control device 50 as a functional unit realized by software, or a DSP, an ASIC (Application Specific IC), a PLD (Programmable Logic Device), or the like It is realized with an electronic circuit.
 情報取得部53は、制御部52から熱源機1aの動作状態情報を取得する。熱源機1aの動作状態情報は、熱源機1aの運転または停止状態、運転モード(暖房、冷房または除霜)、熱交容量、もしくは圧縮機10の運転時間などを含む。以降の説明において、熱源機1aの動作状態情報を「熱源側情報」という。通信部51は、情報取得部53によって取得された熱源側情報を、統合管理装置8に送信する。また、通信部51は、統合管理装置8から受信した制御情報を制御部52に送信する。制御部52は、受信した制御情報に応じて、熱源機1aから2次側熱媒体へ供給するエネルギー量の制御を実施する。具体的には、制御部52は、制御情報に応じて、圧縮機10の運転容量、送風機15の送風量、およびポンプ2aの回転数などを制御する。 The information acquisition unit 53 acquires the operation state information of the heat source device 1a from the control unit 52. The operation state information of the heat source unit 1a includes an operation or stop state of the heat source unit 1a, an operation mode (heating, cooling or defrosting), a heat exchange capacity, or an operation time of the compressor 10. In the following description, the operation state information of the heat source machine 1a is referred to as “heat source side information”. The communication unit 51 transmits the heat source side information acquired by the information acquisition unit 53 to the integrated management device 8. In addition, the communication unit 51 transmits the control information received from the integrated management device 8 to the control unit 52. The controller 52 controls the amount of energy supplied from the heat source unit 1a to the secondary side heat medium according to the received control information. Specifically, the control unit 52 controls the operation capacity of the compressor 10, the air flow rate of the blower 15, the rotation speed of the pump 2a, and the like according to the control information.
 利用側ユニット3a~3fが備える利用側制御装置60は、同様の動作を行うものであり、ここでは利用側ユニット3aの利用側制御装置60を代表として説明する。利用側制御装置60は、マイクロコンピュータまたはDSPなどで構成される。利用側制御装置60は、通信用の伝送線6を介して統合管理装置8に接続されるとともに、リモートコントローラー7aと無線通信可能に接続される。図4に示すように、利用側制御装置60は、統合管理装置8およびリモートコントローラー7aと通信する通信部61と、利用側ユニット3aの各部を制御する制御部62と、利用側ユニット3aの動作状態情報を取得する情報取得部63と、を有する。上記各部は、ソフトウェアで実現される機能部として利用側制御装置60を構成するCPUによってプログラムを実行することで実現されるか、またはDSP、ASIC、PLDなどの電子回路で実現される。 The use side control device 60 provided in the use side units 3a to 3f performs the same operation, and here, the use side control device 60 of the use side unit 3a will be described as a representative. The use side control device 60 is configured by a microcomputer or a DSP. The usage-side control device 60 is connected to the integrated management device 8 via the communication transmission line 6 and is connected to the remote controller 7a so as to be capable of wireless communication. As shown in FIG. 4, the usage-side control device 60 includes a communication unit 61 that communicates with the integrated management device 8 and the remote controller 7a, a control unit 62 that controls each unit of the usage-side unit 3a, and operations of the usage-side unit 3a. And an information acquisition unit 63 that acquires state information. Each of the above-described units is realized by executing a program by a CPU constituting the usage-side control device 60 as a functional unit realized by software, or is realized by an electronic circuit such as a DSP, ASIC, or PLD.
 通信部61は、リモートコントローラー7aから指示情報を受信し、制御部62へ送信する。通信部61から指示信号を受信した制御部62は、指示信号に従って、送風機31の駆動または停止、ならびに開閉弁4aの開閉を制御する。情報取得部63は、リモートコントローラー7aからの指示情報に基づいて、制御部62による制御が行われた後に、制御部62から利用側ユニット3aの動作状態情報を取得する。利用側ユニット3aの動作状態情報は、利用側ユニット3aの運転または停止状態、運転モード(暖房運転または冷房運転)もしくは室内設定温度などを含む。以降の説明において、利用側ユニット3aの動作状態情報を「利用側情報」という。通信部61は、情報取得部63によって取得された利用側情報を、統合管理装置8に送信する。 The communication unit 61 receives the instruction information from the remote controller 7a and transmits it to the control unit 62. The control unit 62 that has received the instruction signal from the communication unit 61 controls driving or stopping of the blower 31 and opening / closing of the on-off valve 4a according to the instruction signal. The information acquisition unit 63 acquires the operation state information of the usage-side unit 3a from the control unit 62 after the control by the control unit 62 is performed based on the instruction information from the remote controller 7a. The operation state information of the use side unit 3a includes the operation or stop state of the use side unit 3a, the operation mode (heating operation or cooling operation), the indoor set temperature, and the like. In the following description, the operation state information of the use side unit 3a is referred to as “use side information”. The communication unit 61 transmits the use side information acquired by the information acquisition unit 63 to the integrated management apparatus 8.
 統合管理装置8は、マイクロコンピュータまたはDSPなどで構成され、通信用の伝送線6を介して熱源側制御装置50および利用側制御装置60に接続される。図4に示すように、統合管理装置8は、熱源側制御装置50および利用側制御装置60と通信する通信部81と、熱源側情報および利用側情報を記憶する記憶部82と、記憶部82に記憶される熱源側情報および利用側情報を更新する更新部83と、利用側情報から利用側ユニット3a~3fの合計運転能力を算出する能力算出部84と、能力算出部84で算出された合計運転能力から熱源機1a~1cの制御情報を生成する制御情報生成部85と、を有する。上記各部は、ソフトウェアで実現される機能部として統合管理装置8を構成するCPUによってプログラムを実行することで実現されるか、またはDSP、ASIC、PLDなどの電子回路で実現される。 The integrated management device 8 is configured by a microcomputer or a DSP, and is connected to the heat source side control device 50 and the use side control device 60 via the communication transmission line 6. As shown in FIG. 4, the integrated management device 8 includes a communication unit 81 that communicates with the heat source side control device 50 and the use side control device 60, a storage unit 82 that stores heat source side information and use side information, and a storage unit 82. Calculated by the update unit 83 for updating the heat source side information and the use side information stored in the storage unit, the ability calculation unit 84 for calculating the total operating capacity of the use side units 3a to 3f from the use side information, and the ability calculation unit 84. And a control information generation unit 85 that generates control information of the heat source units 1a to 1c from the total operating capacity. Each of the above units is realized by executing a program by a CPU constituting the integrated management apparatus 8 as a functional unit realized by software, or realized by an electronic circuit such as a DSP, ASIC, or PLD.
 通信部81は、統合管理装置8に接続される全ての熱源機1a~1cの熱源側情報、および利用側ユニット3a~3fの利用側情報を受信する。記憶部82は、例えば不揮発性メモリであり、通信部81を介して受信した熱源機1a~1cの熱源側情報および利用側ユニット3a~3fの利用側情報を、送信元の熱源機1a~1cおよび利用側ユニット3a~3fとそれぞれ関連付けて記憶する。更新部83は、熱源機1a~1cおよび利用側ユニット3a~3fから熱源側情報および利用側情報を新たに受信した場合、記憶部82に記憶される熱源側情報および利用側情報を更新する。 The communication unit 81 receives the heat source side information of all the heat source machines 1a to 1c connected to the integrated management apparatus 8, and the usage side information of the usage side units 3a to 3f. The storage unit 82 is, for example, a non-volatile memory, and stores the heat source side information of the heat source units 1a to 1c and the usage side information of the usage side units 3a to 3f received via the communication unit 81 as the transmission source heat source units 1a to 1c. And stored in association with each of the usage-side units 3a to 3f. The update unit 83 updates the heat source side information and the use side information stored in the storage unit 82 when newly receiving the heat source side information and the use side information from the heat source devices 1a to 1c and the use side units 3a to 3f.
 能力算出部84は、記憶部82に記憶される複数の利用側ユニット3a~3fの利用側情報に基づき、複数の利用側ユニット3a~3fのうち、動作状態が運転状態である利用側ユニットの運転能力(冷房能力または暖房能力)を合計し、合計運転能力を算出する。 Based on the usage-side information of the plurality of usage-side units 3a to 3f stored in the storage unit 82, the capability calculation unit 84 selects the usage-side unit whose operation state is the operating state among the plurality of usage-side units 3a to 3f. The operation capacity (cooling capacity or heating capacity) is totaled to calculate the total operation capacity.
 制御情報生成部85は、能力算出部84にて算出された合計運転能力と記憶部82に記憶される複数の熱源機1a~1cの熱源側情報とに基づき、各熱源機1a~1cの制御用運転能力を算出する。詳しくは、制御情報生成部85は、熱源側情報に基づいて合計運転能力を各熱源機1a~1cに配分することで、各熱源機1a~1cの制御用運転能力を求める。ここで、熱源機1a~1cが極力効率良く運転できるように、熱源機1a~1cの何れかを強制停止することも含めて配分してもよい。例えば、空気調和装置100が暖房運転を行っている場合であって、熱源機1aが除霜運転を行っている場合、熱源機1a~1cの合計の暖房能力が、合計運転能力を充足するように、除霜運転を行っている熱源機1aが分担している暖房能力+除霜用能力を、他の熱源機1bまたは1cに配分する。具体的には、熱源側情報における運転モードが暖房運転である熱源機1bおよび1cと、運転モードが除霜運転である熱源機1aとがある場合、制御情報生成部85は、合計運転能力を、運転モードが暖房運転である熱源機1bおよび1cに按分して制御用運転能力を求める。 The control information generation unit 85 controls the heat source units 1a to 1c based on the total operation capability calculated by the capability calculation unit 84 and the heat source side information of the plurality of heat source units 1a to 1c stored in the storage unit 82. Calculate driving capacity. Specifically, the control information generation unit 85 determines the control operation capacity of each heat source unit 1a to 1c by allocating the total operation capacity to each of the heat source units 1a to 1c based on the heat source side information. Here, in order to operate the heat source units 1a to 1c as efficiently as possible, any one of the heat source units 1a to 1c may be distributed including forced stop. For example, when the air-conditioning apparatus 100 is performing the heating operation and the heat source unit 1a is performing the defrosting operation, the total heating capacity of the heat source units 1a to 1c may satisfy the total operation capacity. In addition, the heating capacity + defrosting capacity shared by the heat source unit 1a performing the defrosting operation is distributed to the other heat source units 1b or 1c. Specifically, when there are the heat source units 1b and 1c whose operation mode in the heat source side information is the heating operation and the heat source unit 1a whose operation mode is the defrosting operation, the control information generation unit 85 calculates the total operation capacity. Then, the operation capability for control is obtained by apportioning to the heat source devices 1b and 1c whose operation mode is the heating operation.
 なお、制御用運転能力の算出方法は、上記に限定されるものではない。例えば、合計運転能力を、複数の熱源機1a~1cに均等に配分してもよい。また、各熱源機1a~1cの熱交換容量などに応じた比率で、合計運転能力を按分してもよい。また、各熱源機1a~1cの圧縮機10の運転時間に応じて、合計運転能力を按分してもよい。この場合、圧縮機10の運転時間が長い熱源機の配分を少なくする、または運転を停止すればよい。また、任意に設定した重み付け係数などに応じて、合計運転能力を按分してもよい。制御情報生成部85によって生成された熱源機1a~1c毎の制御用運転能力は、制御情報として通信部81を介して各熱源機1a~1cの熱源側制御装置50に送信される。 In addition, the calculation method of the driving ability for control is not limited to the above. For example, the total operating capacity may be evenly distributed to the plurality of heat source units 1a to 1c. Further, the total operation capacity may be prorated according to the ratio according to the heat exchange capacity of each of the heat source units 1a to 1c. Further, the total operation capacity may be prorated according to the operation time of the compressor 10 of each of the heat source units 1a to 1c. In this case, the distribution of the heat source unit having a long operation time of the compressor 10 may be reduced or the operation may be stopped. Further, the total driving ability may be prorated according to an arbitrarily set weighting coefficient or the like. The control operation capacity for each heat source unit 1a to 1c generated by the control information generation unit 85 is transmitted as control information to the heat source side control device 50 of each heat source unit 1a to 1c via the communication unit 81.
 次に、本実施の形態の空気調和装置100における各機器の動作について説明する。
[リモートコントローラー7a~7f]
 図5は、リモートコントローラー7aの動作を説明するフローチャートである。その他のリモートコントローラー7b~7fは、リモートコントローラー7aと同様の動作を行う。まず、リモートコントローラー7aでは、利用側ユニット3aの運転モードが、初期状態として停止状態に設定される(S1)。そして、ユーザーによって運転を指示する操作がなされたか否かが判断される(S2)。ここで、ユーザーによって運転を指示する操作がなされていない場合は(S2:NO)、ステップS1へ戻る。
Next, operation | movement of each apparatus in the air conditioning apparatus 100 of this Embodiment is demonstrated.
[Remote controllers 7a-7f]
FIG. 5 is a flowchart for explaining the operation of the remote controller 7a. The other remote controllers 7b to 7f perform the same operation as the remote controller 7a. First, in the remote controller 7a, the operation mode of the use side unit 3a is set to a stopped state as an initial state (S1). And it is judged whether operation which instruct | indicated driving | operation was performed by the user (S2). Here, when the operation which instruct | indicates driving | operation is not made by the user (S2: NO), it returns to step S1.
 一方、ユーザーによって運転を指示する操作がなされた場合は(S2:YES)、リモートコントローラー7aから利用側制御装置60に対して、運転を指示する指示情報が送信され(S3)、運転モードが運転状態とされる(S4)。次に、ユーザーによって停止を指示する操作がなされたか否かが判断される(S5)。ここで、ユーザーによって停止を指示する操作がなされていない場合は(S5:NO)、停止の指示がなされるまで待機する。 On the other hand, when an operation for instructing driving is performed by the user (S2: YES), instruction information for instructing driving is transmitted from the remote controller 7a to the use side control device 60 (S3), and the driving mode is set to driving. A state is set (S4). Next, it is determined whether or not an operation for instructing stoppage has been performed by the user (S5). Here, when the user has not performed an operation for instructing to stop (S5: NO), the process waits until an instruction to stop is issued.
 一方、ユーザーによって停止を指示する操作がなされた場合は(S5:YES)、リモートコントローラー7aから利用側制御装置60に対して、停止を指示する指示情報が送信される(S3)。その後、ステップS1に戻り、以降の処理が繰り返される。 On the other hand, when the user performs an operation for instructing the stop (S5: YES), the remote controller 7a transmits the instruction information for instructing the stop to the user-side control device 60 (S3). Then, it returns to step S1 and the subsequent processes are repeated.
[利用側ユニット3a~3f]
 図6は、利用側ユニット3aの動作を説明するフローチャートである。その他の利用側ユニット3b~3fは、利用側ユニット3aと同様の動作を行う。まず、通信部61によって、リモートコントローラー7aから指示情報を受信したか否かが判断される(S11)。ここで、リモートコントローラー7aから指示情報を受信していない場合(S11:NO)、受信するまで待機する。一方、リモートコントローラー7aから指示情報を受信した場合(S11:YES)、指示情報が制御部62に送信される。そして、制御部62によって、指示情報に応じて、送風機31の風量制御および開閉弁4aの開閉制御が行われる(S12)。そして、情報取得部63にて現在の利用側ユニット3aの利用側情報が取得され、通信部61を介して統合管理装置8に送信される(S13)。
[Use side units 3a to 3f]
FIG. 6 is a flowchart for explaining the operation of the usage-side unit 3a. The other usage side units 3b to 3f perform the same operation as the usage side unit 3a. First, the communication unit 61 determines whether instruction information has been received from the remote controller 7a (S11). Here, when the instruction information is not received from the remote controller 7a (S11: NO), it waits until it is received. On the other hand, when the instruction information is received from the remote controller 7a (S11: YES), the instruction information is transmitted to the control unit 62. Then, the control unit 62 performs air volume control of the blower 31 and opening / closing control of the on-off valve 4a according to the instruction information (S12). Then, the usage side information of the current usage side unit 3a is acquired by the information acquisition unit 63 and transmitted to the integrated management apparatus 8 via the communication unit 61 (S13).
[統合管理装置8]
 図7は、統合管理装置8の動作を説明するフローチャートである。まず、通信部81にて、熱源機1a~1cの熱源側制御装置50から熱源側情報を受信したか否かが判断される(S21)。ここで、熱源機1a~1cの熱源側制御装置50から熱源側情報を受信していない場合は(S21:NO)、ステップS23へ進む。一方、熱源機1a~1cの熱源側制御装置50から熱源側情報を受信した場合は(S21:YES)、更新部83によって、記憶部82に記憶される熱源機1a~1cの熱源側情報のうち、送信元の熱源機の熱源側情報が更新される(S22)。
[Integrated management device 8]
FIG. 7 is a flowchart for explaining the operation of the integrated management apparatus 8. First, the communication unit 81 determines whether or not heat source side information has been received from the heat source side control device 50 of the heat source machines 1a to 1c (S21). Here, when the heat source side information is not received from the heat source side control device 50 of the heat source units 1a to 1c (S21: NO), the process proceeds to step S23. On the other hand, when the heat source side information is received from the heat source side control device 50 of the heat source units 1a to 1c (S21: YES), the update unit 83 stores the heat source side information of the heat source units 1a to 1c stored in the storage unit 82. Among them, the heat source side information of the transmission source heat source machine is updated (S22).
 続いて、通信部81にて、利用側ユニット3a~3fの利用側制御装置60から利用側情報を受信したか否かが判断される(S23)。ここで、利用側ユニット3a~3fの利用側制御装置60から利用側情報を受信していない場合は(S23:NO)、ステップS21に戻る。一方、利用側ユニット3a~3fの利用側制御装置60から利用側情報を受信した場合は(S23:YES)、更新部83によって、記憶部82に記憶される利用側ユニット3a~3fの利用側情報のうち、送信元の利用側ユニットの利用側情報が更新される(S24)。 Subsequently, the communication unit 81 determines whether or not usage side information has been received from the usage side control device 60 of the usage side units 3a to 3f (S23). Here, when the usage side information is not received from the usage side control device 60 of the usage side units 3a to 3f (S23: NO), the process returns to step S21. On the other hand, when the usage side information is received from the usage side control device 60 of the usage side units 3a to 3f (S23: YES), the usage side of the usage side units 3a to 3f stored in the storage unit 82 by the updating unit 83 is used. Of the information, the usage-side information of the transmission-side usage-side unit is updated (S24).
 次に、能力算出部84によって、記憶部82に記憶される複数の利用側ユニット3a~3fの利用側情報に基づき、複数の利用側ユニット3a~3fのうち、動作状態が運転状態である利用側ユニットの運転能力の合計値である合計運転能力が算出される(S25)。そして、制御情報生成部85によって、合計運転能力および記憶部82に記憶される複数の熱源機1a~1cの熱源側情報に基づき、制御情報として、各熱源機1a~1cの制御用運転能力が算出される(S26)。そして、通信部81から各熱源機1a~1cの熱源側制御装置50に対して制御情報が送信され(S27)、ステップS21に戻る。 Next, based on the use side information of the plurality of use side units 3a to 3f stored in the storage unit 82 by the ability calculation unit 84, the use state in which the operation state is the driving state among the plurality of use side units 3a to 3f. A total driving ability which is a total value of the driving ability of the side unit is calculated (S25). Then, based on the total operating capacity and the heat source side information of the plurality of heat source apparatuses 1a to 1c stored in the storage unit 82 by the control information generation unit 85, the control operating capacity of each heat source apparatus 1a to 1c is determined as control information. Calculated (S26). Then, control information is transmitted from the communication unit 81 to the heat source side control devices 50 of the heat source devices 1a to 1c (S27), and the process returns to step S21.
 [熱源機1a~1c]
 図8は、熱源機1aの動作を説明するフローチャートである。その他の熱源機1bおよび1cは、熱源機1aと同様の動作を行う。まず、通信部51にて、統合管理装置8から制御情報を受信したか否かが判断される(S31)。ここで、統合管理装置8から制御情報を受信していない場合は(S31:NO)、受信するまで待機する。一方、統合管理装置8から制御情報を受信した場合は(S31:YES)、制御部52によって、制御情報に応じて、圧縮機10の運転容量制御、送風機15の送風量制御、およびポンプ2aの回転数制御などが実施され(S32)、ステップS31へ戻る。
[Heat source machines 1a to 1c]
FIG. 8 is a flowchart for explaining the operation of the heat source device 1a. The other heat source units 1b and 1c perform the same operation as the heat source unit 1a. First, the communication unit 51 determines whether control information has been received from the integrated management device 8 (S31). Here, when control information is not received from the integrated management apparatus 8 (S31: NO), it waits until it receives. On the other hand, when the control information is received from the integrated management device 8 (S31: YES), the control unit 52 controls the operation capacity of the compressor 10, the air flow control of the blower 15, and the pump 2a according to the control information. The rotational speed control and the like are performed (S32), and the process returns to step S31.
 また、上記処理と並行して、情報取得部53によって、熱源機1aの熱源側情報が取得され、通信部51を介して統合管理装置8に送信される(S33)。そして、予め設定された時間だけ休止を行い(S34)、ステップS33に戻る。なお、ここでは、定期的に熱源側情報を送信する流れとなっているが、熱源機1aの動作状態が変化した場合にのみ熱源側情報を送信してもよい。 In parallel with the above processing, the information acquisition unit 53 acquires the heat source side information of the heat source device 1a and transmits it to the integrated management apparatus 8 via the communication unit 51 (S33). Then, a pause is performed for a preset time (S34), and the process returns to step S33. In addition, although it is the flow which transmits heat source side information regularly here, you may transmit heat source side information only when the operation state of the heat source machine 1a changes.
 以上のように、本実施の形態の空気調和装置100では、熱源機1a~1cおよび利用側ユニット3a~3fにそれぞれ熱源側制御装置50および利用側制御装置60を設置し、各部の制御を行うとともに、統合管理装置8で、複数の利用側ユニット3a~3fの動作状態に応じて、自動的に熱源機1a~1cの運転制御を行う構成となっている。また、複数の熱源機1a~1cおよび利用側ユニット3a~3fは、それぞれ同一の一対の2次側熱媒体配管5に並列に接続される構成となっている。これにより、空気調和装置100の熱源機1a~1cおよび利用側ユニット3a~3fの接続台数にかかわらず、リモートコントローラー7a~7f、熱源側制御装置50、利用側制御装置60および統合管理装置8において同じ制御を行うことができ、空気調和装置の構成に応じて統合管理装置8の制御プログラムを個別に変更するといった煩雑な設定を行う必要がない。また、複数の熱源機1a~1cと複数の利用側ユニット3a~3fとを対応付ける必要もないため、各機器のアドレス設定にも制約を設ける必要がない。 As described above, in the air conditioner 100 of the present embodiment, the heat source side control device 50 and the use side control device 60 are installed in the heat source units 1a to 1c and the use side units 3a to 3f, respectively, and control of each part is performed. At the same time, the integrated management device 8 is configured to automatically control the operation of the heat source units 1a to 1c in accordance with the operating states of the plurality of use side units 3a to 3f. The plurality of heat source units 1a to 1c and the use side units 3a to 3f are connected in parallel to the same pair of secondary side heat medium pipes 5, respectively. Accordingly, in the remote controllers 7a to 7f, the heat source side control device 50, the usage side control device 60, and the integrated management device 8, regardless of the number of connected heat source devices 1a to 1c and usage side units 3a to 3f of the air conditioner 100. The same control can be performed, and there is no need to perform complicated settings such as individually changing the control program of the integrated management device 8 according to the configuration of the air conditioner. In addition, since it is not necessary to associate the plurality of heat source units 1a to 1c with the plurality of use side units 3a to 3f, it is not necessary to set restrictions on the address setting of each device.
 また、熱源側制御装置50および利用側制御装置60において熱源機1a~1cおよび利用側ユニット3a~3fの制御をそれぞれ行うことで、従来の直膨式の空気調和装置と同様のシステム設計が容易に実現できる。また、直膨式の空気調和装置に対応するよう開発されたリモートコントローラーおよび集中管理装置などの部材の共用化および有効利用も可能になり、さらにファンコイル方式と直膨方式の混在システムの構築も容易になる。また、熱源側制御装置50および利用側制御装置60を活用することにより、熱源機および利用側ユニットの選定の自由度が向上し、物件に合わせた特殊な形状また能力の機器を組み合わせることも容易となる。 In addition, by controlling the heat source units 1a to 1c and the use side units 3a to 3f in the heat source side control device 50 and the use side control device 60, respectively, it is easy to design a system similar to a conventional direct expansion type air conditioner. Can be realized. It is also possible to share and effectively use components such as remote controllers and centralized control devices that have been developed to support direct expansion type air conditioners, and to construct a mixed system of fan coil type and direct expansion type. It becomes easy. Further, by utilizing the heat source side control device 50 and the use side control device 60, the degree of freedom of selection of the heat source unit and the use side unit is improved, and it is easy to combine a device having a special shape or ability according to the property. It becomes.
 また、従来の複数の熱源機および複数の利用側ユニットを備えた空気調和装置においては、複数の利用側ユニットの動作状態によって、熱源機に必要となる運転能力が変化する場合がある。このような場合、複数の熱源機の運転能力にアンバランスが生じ、システム全体としてのシステム効率が低下する、という問題点があった。これに対し、本実施の形態の空気調和装置100では、統合管理装置8によって複数の熱源機1a~1cを連携制御することで効率良く熱源機1a~1cを運転することができる。さらに、熱源機1a~1cの熱源側情報に基づいて制御情報を生成することで、除霜運転などの空調能力が変動する運転における利用側ユニット3a~3fへの影響を抑制することもできる。 Also, in an air conditioner equipped with a plurality of conventional heat source units and a plurality of usage side units, the operating capacity required for the heat source unit may vary depending on the operating state of the plurality of usage side units. In such a case, there has been a problem that the operation efficiency of the plurality of heat source units is unbalanced, and the system efficiency of the entire system is lowered. On the other hand, in the air conditioning apparatus 100 of the present embodiment, the heat source apparatuses 1a to 1c can be efficiently operated by cooperatively controlling the plurality of heat source apparatuses 1a to 1c by the integrated management apparatus 8. Furthermore, by generating the control information based on the heat source side information of the heat source units 1a to 1c, it is possible to suppress the influence on the use side units 3a to 3f in the operation in which the air conditioning capability fluctuates such as the defrosting operation.
 実施の形態2.
 続いて、本発明の実施の形態2について説明する。上記実施の形態1では、統合管理装置8を熱源機1a~1cおよび利用側ユニット3a~3fと別体の機器として備える構成としたが、実施の形態2の空気調和装置100Aでは、各熱源機1a~1cが統合管理装置8の機能が組み込まれた熱源側制御装置500を備える点において、実施の形態1と相違する。その他の空気調和装置100Aの構成については、実施の形態1と同様である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. In the first embodiment, the integrated management device 8 is configured as a separate device from the heat source devices 1a to 1c and the use side units 3a to 3f. However, in the air conditioner 100A of the second embodiment, each heat source device 1a to 1c are different from the first embodiment in that the heat source side control device 500 in which the function of the integrated management device 8 is incorporated. Other configurations of the air conditioner 100A are the same as those in the first embodiment.
 図9は、本実施の形態における空気調和装置100Aの制御構成を示す図である。なお、図9では、熱源機1aの熱源側制御装置500および利用側ユニット3aの利用側制御装置60のみが伝送線6を介して接続されている状態を示すが、実際には複数の熱源機1a~1cに対応する複数の熱源側制御装置500および複数の利用側ユニット3a~3fに対応する複数の利用側制御装置60が伝送線6を介して接続される。なお、本実施の形態の利用側制御装置60は、実施の形態1と同様である。 FIG. 9 is a diagram illustrating a control configuration of the air-conditioning apparatus 100A according to the present embodiment. FIG. 9 shows a state where only the heat source side control device 500 of the heat source device 1a and the use side control device 60 of the use side unit 3a are connected via the transmission line 6, but actually a plurality of heat source devices. A plurality of heat source side control devices 500 corresponding to 1a to 1c and a plurality of use side control devices 60 corresponding to the plurality of use side units 3a to 3f are connected via the transmission line 6. Note that the usage-side control device 60 of the present embodiment is the same as that of the first embodiment.
 熱源機1a~1cが備える熱源側制御装置500は、全て同様の動作を行うものであり、ここでは熱源機1aの熱源側制御装置500を代表として説明する。熱源側制御装置500は、マイクロコンピュータまたはDSPなどで構成され、通信用の伝送線6を介して熱源機1bおよび1cの熱源側制御装置500および複数の利用側ユニット3a~3fの利用側制御装置60に接続される。図9に示すように、熱源側制御装置500は、熱源側制御装置500および利用側制御装置60と通信する通信部501と、熱源側情報および利用側情報を記憶する記憶部502と、記憶部502に記憶される熱源側情報および利用側情報を更新する更新部503と、利用側情報から利用側ユニット3a~3fの合計運転能力を算出する能力算出部504と、能力算出部504で算出された合計運転能力から熱源機1a~1cの制御情報を生成する制御情報生成部505と、熱源機1aの各部を制御する制御部506と、熱源機1aの熱源側情報を取得する情報取得部507と、を有する。上記各部は、ソフトウェアで実現される機能部として熱源側制御装置500を構成するCPUによってプログラムを実行することで実現されるか、またはDSP、ASIC、PLDなどの電子回路で実現される。 The heat source side control devices 500 included in the heat source devices 1a to 1c all perform the same operation, and here, the heat source side control device 500 of the heat source device 1a will be described as a representative. The heat source side control device 500 is constituted by a microcomputer or a DSP, and the heat source side control device 500 of the heat source devices 1b and 1c and the usage side control devices of the plurality of usage side units 3a to 3f via the communication transmission line 6. 60. As illustrated in FIG. 9, the heat source side control device 500 includes a communication unit 501 that communicates with the heat source side control device 500 and the use side control device 60, a storage unit 502 that stores heat source side information and use side information, and a storage unit. An update unit 503 that updates heat source side information and usage side information stored in 502, a capacity calculation unit 504 that calculates the total operating capacity of the usage side units 3a to 3f from the usage side information, and a capacity calculation unit 504. The control information generation unit 505 that generates control information of the heat source units 1a to 1c from the total operating capacity, the control unit 506 that controls each unit of the heat source unit 1a, and the information acquisition unit 507 that acquires the heat source side information of the heat source unit 1a And having. Each of the above units is realized by executing a program by a CPU constituting the heat source side control device 500 as a functional unit realized by software, or realized by an electronic circuit such as a DSP, ASIC, or PLD.
 通信部501は、熱源機1bおよび1cの熱源側情報、ならびに利用側ユニット3a~3fの利用側情報を受信する。記憶部502は、例えば不揮発性メモリであり、情報取得部507によって取得された熱源機1aの熱源側情報、通信部501を介して受信した熱源機1bおよび1cの熱源側情報ならびに利用側ユニット3a~3fの利用側情報を、送信元の熱源機1a~1cおよび利用側ユニット3a~3fとそれぞれ関連付けて記憶する。更新部503は、熱源機1a~1cおよび利用側ユニット3a~3fから熱源側情報および利用側情報を新たに受信した場合、記憶部502に記憶される熱源側情報および利用側情報を更新する。 The communication unit 501 receives the heat source side information of the heat source devices 1b and 1c and the usage side information of the usage side units 3a to 3f. The storage unit 502 is, for example, a nonvolatile memory, the heat source side information of the heat source unit 1a acquired by the information acquisition unit 507, the heat source side information of the heat source units 1b and 1c received via the communication unit 501, and the usage side unit 3a. ˜3f usage side information is stored in association with the transmission source heat source units 1a to 1c and the usage side units 3a to 3f, respectively. The update unit 503 updates the heat source side information and the use side information stored in the storage unit 502 when newly receiving the heat source side information and the use side information from the heat source devices 1a to 1c and the use side units 3a to 3f.
 能力算出部504は、記憶部502に記憶される複数の利用側ユニット3a~3fの利用側情報に基づき、複数の利用側ユニット3a~3fのうち、動作状態が運転状態である利用側ユニットの運転能力の合計値である合計運転能力を算出する。制御情報生成部505は、能力算出部504にて算出された合計運転能力および記憶部502に記憶される複数の熱源機1a~1cの熱源側情報に基づき、制御情報として、各熱源機1a~1cの制御用運転能力を算出する。本実施の形態において、空気調和装置100Aを構成する全ての熱源機1a~1cは、同じアルゴリズムで制御情報(制御用運転能力)を生成する。制御情報生成部505における制御用運転能力の算出方法は、実施の形態1の制御情報生成部85と同様である。 Based on the usage side information of the plurality of usage side units 3a to 3f stored in the storage unit 502, the capability calculation unit 504 selects the usage side unit of the usage side unit 3a to 3f whose operating state is the operating state. The total driving ability, which is the total value of the driving ability, is calculated. The control information generation unit 505 uses the total operating capacity calculated by the capacity calculation unit 504 and the heat source side information of the plurality of heat source units 1a to 1c stored in the storage unit 502 as control information. The control driving ability of 1c is calculated. In the present embodiment, all of the heat source units 1a to 1c constituting the air conditioning apparatus 100A generate control information (control driving capability) using the same algorithm. The method for calculating the driving ability for control in the control information generation unit 505 is the same as that of the control information generation unit 85 of the first embodiment.
 制御部506は、制御情報生成部505によって生成された制御情報に応じて、熱源機1aから2次側熱媒体へ供給されるエネルギー量の制御を実施する。具体的には、制御部506は、制御情報に応じて、圧縮機10の運転容量、送風機15の送風量およびポンプ2aの回転数などを制御する。 The control unit 506 controls the amount of energy supplied from the heat source unit 1a to the secondary heat medium according to the control information generated by the control information generation unit 505. Specifically, the control unit 506 controls the operation capacity of the compressor 10, the air flow rate of the blower 15, the rotational speed of the pump 2 a, and the like according to the control information.
 情報取得部507は、熱源機1aの熱源側情報を取得する。熱源側情情報は、熱源機1aの運転または停止状態、運転モード(暖房、冷房または除霜)、熱交換容量、および圧縮機10の運転時間などを含む。情報取得部507で取得された熱源側情報は、記憶部502に記憶されるとともに、通信部501から空気調和装置100Aの構成要素である全ての機器を示すアドレスに対して送信される。ここで、全ての機器を示すアドレスに対して送信する目的は、他の熱源機1bおよび1cの熱源側制御装置500へ熱源側情報を送信するためである。そのため、全ての機器を示すアドレスに対して送信することに限定されず、熱源機1bおよび1cの熱源側制御装置500が受信できる方式で送信されればよい。例えば、予め定義した全ての熱源側制御装置500を示すアドレスに対して送信してもよい。また、予め全ての機器または全ての熱源側制御装置500を示すアドレスを定義する代わりに、全ての機器に対して個別に送信してもよいし、全ての熱源側制御装置500へ個別に送信してもよい。また、熱源側制御装置500が通信回線を流れる他の装置宛てのデータを取得することができるのであれば、送信先は熱源側制御装置500を示すアドレスでなくてもよい。 The information acquisition unit 507 acquires the heat source side information of the heat source device 1a. The heat source side information includes the operation or stop state of the heat source unit 1a, the operation mode (heating, cooling or defrosting), the heat exchange capacity, the operation time of the compressor 10, and the like. The heat source side information acquired by the information acquisition unit 507 is stored in the storage unit 502 and transmitted from the communication unit 501 to addresses indicating all devices that are constituent elements of the air conditioning apparatus 100A. Here, the purpose of transmitting to the addresses indicating all devices is to transmit the heat source side information to the heat source side control devices 500 of the other heat source machines 1b and 1c. Therefore, it is not limited to transmitting to addresses indicating all devices, and may be transmitted by a method that can be received by the heat source side control devices 500 of the heat source devices 1b and 1c. For example, you may transmit with respect to the address which shows all the heat source side control apparatuses 500 defined beforehand. Further, instead of defining addresses indicating all devices or all heat source side control devices 500 in advance, they may be individually transmitted to all devices or individually transmitted to all heat source side control devices 500. May be. Further, the transmission destination may not be an address indicating the heat source side control device 500 as long as the heat source side control device 500 can acquire data addressed to other devices flowing through the communication line.
 次に、本実施の形態の空気調和装置100Aにおける各機器の動作について説明する。
[リモートコントローラー7a~7f]
 本実施の形態のリモートコントローラー7a~7fの動作は、図5に示す実施の形態1の動作と同様である。
Next, the operation of each device in the air conditioner 100A of the present embodiment will be described.
[Remote controllers 7a-7f]
The operations of the remote controllers 7a to 7f of the present embodiment are the same as the operations of the first embodiment shown in FIG.
[利用側ユニット3a~3f]
 本実施の形態の利用側ユニット3a~3fの動作は、以下の点を除いて図6に示す実施の形態2の動作と同様である。実施の形態1では、図6のステップS13において、現在の利用側ユニットの利用側情報が統合管理装置8に送信されるが、本実施の形態では、予め定義されている空気調和装置100Aの構成要素である全ての機器を示すアドレスに対して送信される。ここで、全ての機器を示すアドレスに対して送信する目的は、全ての熱源機1a~1cの熱源側制御装置500へ動作状態情報を送信するためである。そのため、全ての機器を示すアドレスに対して送信することに限定されず、熱源機1a~1cの熱源側制御装置500が受信できる方式で送信されればよい。具体的な方法は、熱源側情報の送信について述べた通りである。
[Use side units 3a to 3f]
The operations of the use side units 3a to 3f of the present embodiment are the same as those of the second embodiment shown in FIG. 6 except for the following points. In the first embodiment, in step S13 of FIG. 6, the usage side information of the current usage side unit is transmitted to the integrated management device 8, but in this embodiment, the configuration of the air conditioner 100A defined in advance Sent to an address indicating all devices as elements. Here, the purpose of transmitting to the addresses indicating all devices is to transmit the operation state information to the heat source side control devices 500 of all the heat source machines 1a to 1c. Therefore, the transmission is not limited to the address indicating all devices, and may be transmitted by a method that can be received by the heat source side control device 500 of the heat source devices 1a to 1c. The specific method is as described for the transmission of the heat source side information.
[熱源機1a~1c]
 図10は、本実施の形態における熱源機1aの動作を説明するフローチャートである。その他の熱源機1bおよび1cは、熱源機1aと同様の動作を行う。まず、通信部501にて、自身を含む熱源機1a~1cの熱源側制御装置500から熱源側情報を受信したか否かが判断される(S41)。ここで、熱源機1a~1cから熱源側情報を受信していない場合は(S41:NO)、ステップS43へ進む。一方、熱源機1a~1cから熱源側情報を受信した場合は(S41:YES)、更新部503によって、記憶部502に記憶される熱源機1a~1cの熱源側情報のうち、送信元の熱源機の熱源側情報が更新される(S42)。
[Heat source machines 1a to 1c]
FIG. 10 is a flowchart for explaining the operation of the heat source device 1a in the present embodiment. The other heat source units 1b and 1c perform the same operation as the heat source unit 1a. First, the communication unit 501 determines whether or not heat source side information has been received from the heat source side control device 500 of the heat source machines 1a to 1c including itself (S41). Here, when the heat source side information is not received from the heat source machines 1a to 1c (S41: NO), the process proceeds to step S43. On the other hand, when the heat source side information is received from the heat source units 1a to 1c (S41: YES), the update unit 503 among the heat source side information of the heat source units 1a to 1c stored in the storage unit 502 is the source heat source The heat source side information of the machine is updated (S42).
 続いて、通信部501にて、利用側ユニット3a~3fの利用側制御装置60から利用側情報を受信したか否かが判断される(S43)。ここで、利用側ユニット3a~3fの利用側制御装置60から利用側情報を受信していない場合は(S43:NO)、ステップS41に戻る。一方、利用側ユニット3a~3fの利用側制御装置60から利用側情報を受信した場合は(S43:YES)、更新部503によって、記憶部502に記憶される利用側ユニット3a~3fの利用側情報のうち、送信元の利用側ユニットの利用側情報が更新される(S44)。 Subsequently, the communication unit 501 determines whether usage side information has been received from the usage side control device 60 of the usage side units 3a to 3f (S43). Here, when the usage side information is not received from the usage side control device 60 of the usage side units 3a to 3f (S43: NO), the process returns to step S41. On the other hand, when the usage side information is received from the usage side control device 60 of the usage side units 3a to 3f (S43: YES), the usage side of the usage side units 3a to 3f stored in the storage unit 502 by the updating unit 503 is used. Of the information, the usage-side information of the transmission-side usage-side unit is updated (S44).
 次に、能力算出部504によって、記憶部502に記憶される複数の利用側ユニット3a~3fの利用側情報に基づき、複数の利用側ユニット3a~3fのうち、動作状態が運転状態である利用側ユニットの運転能力の合計値である合計運転能力が算出される(S45)。そして、制御情報生成部505によって、合計運転能力および記憶部502に記憶される複数の熱源機1a~1cの熱源側情報に基づき、制御情報として、熱源機1a~1c毎の制御用運転能力が算出される(S46)。そして、制御部506によって、生成された制御情報に基づいて、圧縮機10の運転容量制御、送風機15の送風量制御、およびポンプ2aの回転数制御などが実施され(S47)、ステップS41に戻る。 Next, based on the usage side information of the plurality of usage side units 3a to 3f stored in the storage unit 502 by the capability calculation unit 504, the usage state in which the operation state is the operating state among the plurality of usage side units 3a to 3f. A total driving ability which is a total value of the driving ability of the side unit is calculated (S45). Based on the total operating capacity and the heat source side information of the plurality of heat source units 1a to 1c stored in the storage unit 502 by the control information generation unit 505, the control operating capacity for each of the heat source units 1a to 1c is obtained as control information. Calculated (S46). Then, based on the generated control information, the control unit 506 performs the operation capacity control of the compressor 10, the air volume control of the blower 15, the rotational speed control of the pump 2a, and the like (S47), and returns to step S41. .
 また、上記の処理と並行して、情報取得部507によって、熱源機1aの熱源側情報が取得され、通信部501を介して送信される(S48)。そして、予め設定された時間だけ休止を行い(S49)、ステップS48に戻る。なお、ここでは、定期的に熱源側情報を送信する流れとなっているが、熱源機1aの動作状態が変化した場合にのみ熱源側情報を送信してもよい。 In parallel with the above processing, the information acquisition unit 507 acquires the heat source side information of the heat source unit 1a and transmits the information via the communication unit 501 (S48). Then, a pause is performed for a preset time (S49), and the process returns to step S48. In addition, although it is the flow which transmits heat source side information regularly here, you may transmit heat source side information only when the operation state of the heat source machine 1a changes.
 以上のように、本実施の形態においては、各熱源機1a~1cには、全ての利用側制御装置60および熱源側制御装置500から、算出に必要な熱源側情報および利用側情報が送信されるため、各熱源機1a~1cに対する制御用能力の算出結果は同じになる。そのため、実施の形態1とは異なり、算出結果を他の熱源機1bおよび1cに送信する必要はなく、自身の制御対象である熱源機1aを制御するだけで目的を達成できる。さらに、各熱源機1a~1cに統合管理装置の機能を分散しているため、いずれかの熱源機が故障した場合も、空気調和装置100Aとして継続動作が可能である。また、本実施の形態における動作の説明では、各装置が自発的に熱源側制御装置500に情報を送信する場合のフローを示したが、熱源側制御装置500が必要に応じて各装置に情報を要求してもよい。 As described above, in the present embodiment, the heat source side information and the usage side information necessary for the calculation are transmitted from all the usage side control devices 60 and the heat source side control devices 500 to the respective heat source units 1a to 1c. Therefore, the calculation results of the control ability for the heat source devices 1a to 1c are the same. Therefore, unlike Embodiment 1, it is not necessary to transmit the calculation result to the other heat source devices 1b and 1c, and the object can be achieved only by controlling the heat source device 1a that is the control target. Furthermore, since the function of the integrated management device is distributed to each of the heat source units 1a to 1c, even if any one of the heat source units breaks down, the air conditioner 100A can be continuously operated. Further, in the description of the operation in the present embodiment, the flow in the case where each device spontaneously transmits information to the heat source side control device 500 is shown, but the heat source side control device 500 transmits information to each device as necessary. May be requested.
 また、本実施の形態の空気調和装置100Aにおいては、熱源機1a~1cの熱源側制御装置500において、複数の利用側ユニット3a~3fの動作状態に応じて、自動的に熱源機1a~1cの運転制御を行う構成となっている。また、複数の熱源機1a~1cおよび利用側ユニット3a~3fは、それぞれ同一の一対の2次側熱媒体配管5に並列に接続される。これにより、上記実施の形態1と同様の効果を得ることができる。さらに、本実施の形態では統合管理装置8を備える必要がないため、部品点数および製品コストの削減が可能となる。 Further, in the air conditioner 100A of the present embodiment, the heat source devices 1a to 1c are automatically selected in the heat source side control device 500 of the heat source devices 1a to 1c according to the operating states of the plurality of usage side units 3a to 3f. The operation control is performed. The plurality of heat source devices 1a to 1c and the use side units 3a to 3f are connected in parallel to the same pair of secondary heat medium pipes 5, respectively. Thereby, the same effect as the first embodiment can be obtained. Furthermore, since it is not necessary to provide the integrated management device 8 in the present embodiment, the number of parts and the product cost can be reduced.
 実施の形態3.
 続いて、本発明の実施の形態3について説明する。実施の形態2の空気調和装置100Aにおいて、例えば、熱源機1aが通信異常等により、一時的に他の熱源機1bおよび1cの熱源側情報ならびに利用側ユニット3a~3fの利用側情報を受信できないことがある。その場合、他の熱源機1bおよび1cと、算出した制御用運転能力が異なることで、空気調和装置100として期待された制御が行われない可能性がある。そこで、実施の形態3では、複数の熱源機1a~1cの間で状態を共有する構成を備える点において実施の形態2と相違する。その他の空気調和装置100Aの構成については、実施の形態2と同様である。
Embodiment 3 FIG.
Subsequently, Embodiment 3 of the present invention will be described. In the air conditioner 100A of the second embodiment, for example, the heat source unit 1a cannot temporarily receive the heat source side information of the other heat source units 1b and 1c and the usage side information of the usage side units 3a to 3f due to a communication abnormality or the like. Sometimes. In this case, the control expected for the air conditioner 100 may not be performed because the calculated control driving ability is different from those of the other heat source devices 1b and 1c. Therefore, the third embodiment is different from the second embodiment in that a configuration is provided in which a state is shared among the plurality of heat source units 1a to 1c. Other configurations of the air conditioner 100A are the same as those in the second embodiment.
 本実施の形態における制御構成は、図9に示す実施の形態2と同様である。また、リモートコントローラー7a~7fおよび利用側ユニット3a~3fの動作も実施の形態2と同様である。 The control configuration in the present embodiment is the same as that in the second embodiment shown in FIG. The operations of the remote controllers 7a to 7f and the use side units 3a to 3f are the same as those in the second embodiment.
[熱源機1a~1c]
 図11は、本実施の形態における熱源機1aの動作を示すフローチャートである。その他の熱源機1bおよび1cは、熱源機1aと同様の動作を行う。本実施の形態では、情報取得部507によって、熱源機1aの熱源側情報に変更があったか否かが判断される(S50)。熱源機1aの熱源側情報に変更がない場合は(S50:NO)、変更があるまで待機する。一方、熱源機1aの熱源側情報に変更があった場合は(S50:YES)、変更後の熱源側情報が取得され、通信部501を介して送信され(S51)、ステップS50に戻る。
[Heat source machines 1a to 1c]
FIG. 11 is a flowchart showing the operation of the heat source unit 1a in the present embodiment. The other heat source units 1b and 1c perform the same operation as the heat source unit 1a. In the present embodiment, the information acquisition unit 507 determines whether or not the heat source side information of the heat source device 1a has been changed (S50). When there is no change in the heat source side information of the heat source device 1a (S50: NO), the process waits until there is a change. On the other hand, when there is a change in the heat source side information of the heat source unit 1a (S50: YES), the changed heat source side information is acquired and transmitted via the communication unit 501 (S51), and the process returns to step S50.
 また、上記の処理と並行して、図10に示す実施の形態2と同様に、ステップS41からステップS46が実施される。そして、ステップS46にて制御情報が生成されると、状態共有処理が実行される(S52)。図12は、状態共有処理の流れを示すフローチャートである。本処理では、ステップS46で生成された制御情報が、熱源側情報と同様に他の熱源機1bおよび1cが受信できる方式で通信部501から送信される(S53)。そして、通信部501にて、他の熱源機1bまたは1cから制御情報を受信したか否かが判断される(S54)。そして、他の熱源機1bまたは1cから制御情報を受信した場合(S54:YES)、制御情報生成部505によって、自身で生成した制御情報と受信した制御情報とが一致するか否かが判断される(S55)。そして、受信した制御情報と、自身で生成した制御情報とが一致する場合は(S55:YES)、ステップS61に進む。 In parallel with the above processing, steps S41 to S46 are performed as in the second embodiment shown in FIG. And if control information is produced | generated in step S46, a state sharing process will be performed (S52). FIG. 12 is a flowchart showing the flow of the state sharing process. In this process, the control information generated in step S46 is transmitted from the communication unit 501 in a manner that can be received by the other heat source devices 1b and 1c, similarly to the heat source side information (S53). And it is judged in the communication part 501 whether the control information was received from the other heat-source equipment 1b or 1c (S54). And when control information is received from other heat-source equipment 1b or 1c (S54: YES), it is judged by the control information generation part 505 whether the control information produced | generated and the received control information correspond. (S55). If the received control information matches the control information generated by itself (S55: YES), the process proceeds to step S61.
 一方、受信した制御情報と自身で生成した制御情報とが一致しない場合(S55:NO)、通信部501を介して送信元である熱源機1bまたは1cに対し、制御情報の生成に使用した各機器の熱源側情報および利用側情報が要求される(S56)。そして、更新部503によって、他の熱源機1bまたは1cから受信した熱源側情報および利用側情報と、記憶部502に記憶される熱源側情報および利用側情報とが比較され、記憶部502に記憶される熱源側情報および利用側情報が最新であるか否かが判断される(S57)。 On the other hand, when the received control information and the control information generated by itself do not match (S55: NO), each of the heat source machines 1b or 1c that is a transmission source via the communication unit 501 is used to generate control information. The heat source side information and the use side information of the device are requested (S56). Then, the update unit 503 compares the heat source side information and the use side information received from the other heat source device 1 b or 1 c with the heat source side information and the use side information stored in the storage unit 502 and stores them in the storage unit 502. It is determined whether the heat source side information and the use side information to be updated are the latest (S57).
 ここで、本実施の形態においては、熱源機1a~1cおよび利用側ユニット3a~3fが、熱源側情報および利用側情報を送信する際、機器毎に連番の識別番号が一緒に送信される。そして、更新部503は、記憶部502に記憶される熱源側情報および利用側情報の識別番号と、他の熱源機1bまたは1cから受信した熱源側情報および利用側情報の識別番号とを比較し、記憶部502に記憶される熱源側情報および利用側情報の識別番号が受信した熱源側情報および利用側情報の識別番号よりも新しい場合、記憶部502に記憶される熱源側情報および利用側情報が最新であると判断する。そして、記憶部502に記憶される熱源側情報および利用側情報が最新である場合(S57:YES)、ステップS61に進む。 Here, in the present embodiment, when the heat source devices 1a to 1c and the use side units 3a to 3f transmit the heat source side information and the use side information, serial number identification numbers are transmitted together for each device. . Then, the updating unit 503 compares the identification number of the heat source side information and the usage side information stored in the storage unit 502 with the identification number of the heat source side information and the usage side information received from the other heat source unit 1b or 1c. When the identification number of the heat source side information and the usage side information stored in the storage unit 502 is newer than the received identification number of the heat source side information and the usage side information, the heat source side information and the usage side information stored in the storage unit 502 Is determined to be up-to-date. And when the heat-source side information and utilization side information which are memorize | stored in the memory | storage part 502 are the newest (S57: YES), it progresses to step S61.
 一方、記憶部502に記憶される熱源側情報および利用側情報が最新でない場合(S57:NO)、通信異常等により、一時的に他の熱源機1bまたは1c、もしくは利用側ユニット3a~3fからの熱源側情報および利用側情報を受信できなかったと判断される。そして、更新部503によって、記憶部502に記憶される熱源側情報および利用側情報が、他の熱源機1bまたは1cから受信した熱源側情報および利用側情報に更新される(S58)。そして、ステップS45およびS46と同様に、更新された熱源側情報および利用側情報に基づいて、合計運転能力が算出され(S59)、算出された合計運転能力から制御情報が生成される(S60)。ステップS59およびS60で算出および生成された合計運転能力および制御情報によって、ステップS45およびS46で算出および生成された合計運転能力および制御情報が更新される。 On the other hand, when the heat source side information and the use side information stored in the storage unit 502 are not the latest (S57: NO), due to a communication abnormality or the like, temporarily from another heat source machine 1b or 1c or the use side units 3a to 3f. It is determined that the heat source side information and the use side information of the user could not be received. Then, the update unit 503 updates the heat source side information and the use side information stored in the storage unit 502 to the heat source side information and the use side information received from the other heat source machine 1b or 1c (S58). Then, similarly to steps S45 and S46, the total operating capacity is calculated based on the updated heat source side information and usage side information (S59), and control information is generated from the calculated total operating capacity (S60). . The total driving ability and control information calculated and generated in steps S45 and S46 are updated with the total driving ability and control information calculated and generated in steps S59 and S60.
 そして、ステップS61では、熱源機1aに接続される全ての熱源機1bおよび1cから制御情報を受信したか否かが判断される(S61)。そして、全ての熱源機1bおよび1cから制御情報を受信していない場合は、ステップS54に戻る。そして、以降のステップを繰り返し、全ての熱源機1bおよび1cの制御情報との比較および状態の共有化を行う。そして、全ての熱源機1bおよび1cから制御情報を受信した場合(S61:YES)、本処理を終了し、図11のステップS47に進む。 In step S61, it is determined whether control information has been received from all the heat source devices 1b and 1c connected to the heat source device 1a (S61). And when control information is not received from all the heat source machines 1b and 1c, it returns to step S54. Then, the subsequent steps are repeated to compare with the control information of all the heat source devices 1b and 1c and share the state. And when control information is received from all the heat source machines 1b and 1c (S61: YES), this process is complete | finished and it progresses to step S47 of FIG.
 一方、ステップS54にて制御情報を受信していない場合は(S54:NO)、所定の時間が経過したか否かが判断され(S62)、所定の時間が経過するまで(S62:NO)、制御情報の受信を待機する。なお、このとき、熱源機1aが制御情報の受信に失敗した可能性があるため、制御情報を受信していない熱源機1bまたは1cに対して制御情報の送信を要求してもよい。そして、所定の時間が経過した場合(S62:YES)は、本処理を終了し、図11のステップS47に進む。この場合は、制御情報が受信されなかった熱源機が故障している可能性があるため、制御情報が受信されなかった熱源機を除く熱源機の制御情報を対象に比較と共有化が行われる(S55~S60)。なお、別の実施の形態では、図11のステップS47に進む替りに、通信異常を通知する警告を行い、処理を中断してもよい。 On the other hand, if control information has not been received in step S54 (S54: NO), it is determined whether or not a predetermined time has elapsed (S62), and until a predetermined time has elapsed (S62: NO), Wait for reception of control information. At this time, since the heat source unit 1a may have failed to receive the control information, the heat source unit 1b or 1c that has not received the control information may be requested to transmit the control information. If the predetermined time has elapsed (S62: YES), this process is terminated, and the process proceeds to step S47 in FIG. In this case, there is a possibility that the heat source unit that has not received the control information may be out of order. Therefore, the control information of the heat source units other than the heat source unit that has not received the control information is compared and shared. (S55 to S60). In another embodiment, instead of proceeding to step S47 in FIG. 11, a warning for notifying a communication abnormality may be given and the process interrupted.
 そして、図11に戻って、ステップS47では、ステップS46にて生成された制御情報またはステップS60で生成(更新)された制御情報に基づいて、熱源機1aの各部が制御される(S47)。 Returning to FIG. 11, in step S47, each part of the heat source unit 1a is controlled based on the control information generated in step S46 or the control information generated (updated) in step S60 (S47).
 なお、ステップS57にて、記憶部502に記憶される熱源側情報および利用側情報が最新であると判断された場合(S57:YES)、またはステップS62にて、制御情報が受信されないまま所定の時間が経過した場合(S62:YES)、熱源側情報および利用側情報の送信元である熱源機1bまたは1cに通信異常が発生し、利用側情報の受信に失敗した可能性があると判断し、熱源機1bまたは1cに自身(熱源機1a)の熱源側情報および利用側情報を送信し、制御情報の再生成を行わせてもよい。 In step S57, when it is determined that the heat source side information and the use side information stored in the storage unit 502 are the latest (S57: YES), or in step S62, the control information is not received and the predetermined information is received. When the time has elapsed (S62: YES), it is determined that there is a possibility that communication error has occurred in the heat source machine 1b or 1c, which is the transmission source of the heat source side information and the usage side information, and reception of the usage side information may have failed. The heat source device 1b or 1c may transmit the heat source side information and the use side information of itself (the heat source device 1a) to regenerate the control information.
 以上のように、本実施の形態においては、通信異常等により、一時的に他の熱源機1bおよび1cならびに利用側ユニット3a~3fからの熱源側情報および利用側情報を受信することができなかった場合にも、複数の熱源機1a~1cで同じ制御情報(制御用運転能力)を生成することができ、空気調和装置100Aとして期待された制御を行うことができる。また、空気調和装置100Aの対故障性の向上も図ることができる。 As described above, in the present embodiment, the heat source side information and the use side information from the other heat source units 1b and 1c and the use side units 3a to 3f cannot be temporarily received due to a communication abnormality or the like. In this case, the same control information (control operation capability) can be generated by the plurality of heat source devices 1a to 1c, and the control expected as the air conditioner 100A can be performed. Further, the fault tolerance of the air conditioner 100A can be improved.
 以上、本発明の実施の形態について図面に基づいて説明したが、具体的な構成は、これに限られるものでなく、発明の要旨を逸脱しない範囲で変更可能である。例えば、熱源側制御装置50、利用側制御装置60および統合管理装置8は、伝送線6を介して接続される構成としたが、これに限定されるものではなく、無線通信を行う構成としてもよい。また、上記実施の形態1の説明では、熱源機1a~1cが空冷式のヒートポンプチラーの場合を説明したが、熱源機1a~1cの構成はこれに限定されない。例えば、熱源機1a~1cが水冷式のヒートポンプチラーまたは吸収式冷凍機などの場合にも本発明を適用することが可能である。また、利用側ユニット3a~3fにおいて、2管式だけでなく4管式の場合でも本発明の適用が可能である。 The embodiment of the present invention has been described above with reference to the drawings. However, the specific configuration is not limited to this, and can be changed without departing from the gist of the invention. For example, the heat source side control device 50, the use side control device 60, and the integrated management device 8 are configured to be connected via the transmission line 6, but are not limited thereto, and may be configured to perform wireless communication. Good. In the description of the first embodiment, the case where the heat source units 1a to 1c are air-cooled heat pump chillers has been described. However, the configuration of the heat source units 1a to 1c is not limited to this. For example, the present invention can also be applied when the heat source devices 1a to 1c are water-cooled heat pump chillers or absorption refrigerators. In addition, in the use side units 3a to 3f, the present invention can be applied to not only the 2-tube type but also the 4-pipe type.
 また、上記実施の形態3は、熱源機1a~1cが送信対象の動作状態が変化した場合に熱源側情報および利用側情報を送信する場合の例であるが、これに限定されるものではない。例えば、実施の形態1および実施の形態2のように、熱源機1a~1cおよび利用側ユニット3a~3fが定期的に熱源側情報を送信する構成の場合、期間内に熱源側情報を受信できなかった場合に、通信異常が発生したと判断してもよい。この場合は、熱源側情報および利用側情報を受信できなかった熱源機1a~1cまたは利用側ユニット3a~3fの何れかに問い合わせを行い、問い合わせに対する応答がなかった場合は該当機器の故障と判断される。一方、応答があった場合は熱源側情報および利用側情報の要求を行い、最新の熱源側情報および利用側情報に基づいて制御情報が生成される。 The third embodiment is an example in which the heat source devices 1a to 1c transmit the heat source side information and the usage side information when the operation state of the transmission target changes, but the present invention is not limited to this. . For example, in the case where the heat source devices 1a to 1c and the use side units 3a to 3f regularly transmit the heat source side information as in the first embodiment and the second embodiment, the heat source side information can be received within the period. If not, it may be determined that a communication error has occurred. In this case, an inquiry is made to any of the heat source devices 1a to 1c or the use side units 3a to 3f that have failed to receive the heat source side information and the use side information, and if there is no response to the inquiry, it is determined that the corresponding device has failed. Is done. On the other hand, when there is a response, a request for heat source side information and user side information is made, and control information is generated based on the latest heat source side information and user side information.
 さらに、上記実施の形態3の状態共有処理において、ステップS53で他の熱源機1bおよび1cに制御情報を送信する構成としたが、ステップS45で算出された合計運転能力を送信する構成としてもよい。この場合は、ステップS55で、他の熱源機1bまたは1cの合計運転能力と比較を行い、状態の共有化が行われる。 Furthermore, in the state sharing process of the third embodiment, the control information is transmitted to the other heat source devices 1b and 1c in step S53. However, the total operating capacity calculated in step S45 may be transmitted. . In this case, in step S55, a comparison is made with the total operating capacity of the other heat source machines 1b or 1c, and the state is shared.
 1a~1c 熱源機、2a~2c ポンプ、3a~3f 利用側ユニット、4a~4f 開閉弁、5 2次側熱媒体配管、6 伝送線、7a~7f リモートコントローラー、8 統合管理装置、10 圧縮機、11 流路切替装置、12 熱源側熱交換器、13 減圧装置、14 中間熱交換器、15 送風機、30 利用側熱交換器、31 送風機、50 熱源側制御装置、51 通信部、52 制御部、53 情報取得部、60 利用側制御装置、61 通信部、62 制御部、63 情報取得部、81 通信部、82 記憶部、83 更新部、84 能力算出部、85 制御情報生成部、100、100A 空気調和装置、500 熱源側制御装置、501 通信部、502 記憶部、503 更新部、504 能力算出部、505 制御情報生成部、506 制御部、507 情報取得部。 1a to 1c heat source machine, 2a to 2c pump, 3a to 3f use side unit, 4a to 4f on / off valve, 5 secondary side heat medium piping, 6 transmission line, 7a to 7f remote controller, 8 integrated management device, 10 compressor , 11 Channel switching device, 12 Heat source side heat exchanger, 13 Depressurization device, 14 Intermediate heat exchanger, 15 Blower, 30 Usage side heat exchanger, 31 Blower, 50 Heat source side control device, 51 Communication unit, 52 Control unit 53, information acquisition unit, 60 use side control device, 61 communication unit, 62 control unit, 63 information acquisition unit, 81 communication unit, 82 storage unit, 83 update unit, 84 capacity calculation unit, 85 control information generation unit, 100, 100A air conditioner, 500 heat source side control device, 501 communication unit, 502 storage unit, 503 update unit, 504 capacity calculation unit, 50 Control information generating unit, 506 control unit, 507 information acquisition unit.

Claims (10)

  1.  並列に接続される複数の熱源機と、
     熱媒体配管を介して前記複数の熱源機に並列に接続される複数の利用側ユニットと、
     前記複数の熱源機および前記複数の利用側ユニットと通信する統合管理装置と、を備え、
     前記複数の熱源機の各々は、動作制御を行うとともに、動作状態情報を前記統合管理装置に送信する熱源側制御装置を備えるものであり、
     前記複数の利用側ユニットの各々は、動作制御を行うとともに、動作状態情報を前記統合管理装置に送信する利用側制御装置を備えるものであり、
     前記統合管理装置は、前記複数の熱源機の動作状態情報および前記複数の利用側ユニットの動作状態情報に基づき、前記複数の熱源機の各々に対する制御情報を生成する制御情報生成部を有するものであり、
     前記熱源側制御装置は、前記制御情報生成部によって生成された前記制御情報に従って前記動作制御を行うものである空気調和装置。
    A plurality of heat source devices connected in parallel;
    A plurality of usage-side units connected in parallel to the plurality of heat source units via a heat medium pipe;
    An integrated management device that communicates with the plurality of heat source units and the plurality of usage-side units,
    Each of the plurality of heat source machines includes a heat source side control device that performs operation control and transmits operation state information to the integrated management device,
    Each of the plurality of use side units includes a use side control device that performs operation control and transmits operation state information to the integrated management device,
    The integrated management device includes a control information generation unit that generates control information for each of the plurality of heat source units based on the operation state information of the plurality of heat source units and the operation state information of the plurality of usage-side units. Yes,
    The said heat source side control apparatus is an air conditioning apparatus which performs the said operation control according to the said control information produced | generated by the said control information production | generation part.
  2.  前記統合管理装置は、前記複数の利用側ユニットの動作状態情報に基づき、前記複数の利用側ユニットのうち、運転状態である利用側ユニットの運転能力を合計して合計運転能力を算出する能力算出部をさらに有するものであり、
     前記制御情報生成部は、前記能力算出部によって算出された前記合計運転能力と、前記複数の熱源機の動作状態情報と、に基づいて、前記複数の熱源機の各々の制御用運転能力を算出し、算出された前記制御用運転能力を前記制御情報とするものである請求項1に記載の空気調和装置。
    The integrated management device calculates the total driving capacity by summing the driving capacities of the usage-side units in the operating state among the plurality of usage-side units based on the operation status information of the plurality of usage-side units. Further having a part,
    The control information generation unit calculates a control operation capability of each of the plurality of heat source units based on the total operation capability calculated by the capability calculation unit and the operation state information of the plurality of heat source units. The air conditioning apparatus according to claim 1, wherein the calculated driving ability for control is used as the control information.
  3.  前記制御情報生成部は、前記能力算出部によって算出された前記合計運転能力を、前記複数の熱源機の動作状態情報に応じて分配することで、前記複数の熱源機の各々の制御用運転能力を算出するものである請求項2に記載の空気調和装置。 The control information generation unit distributes the total operation capability calculated by the capability calculation unit according to the operation state information of the plurality of heat source units, thereby controlling the operation capability for each of the plurality of heat source units. The air conditioning apparatus according to claim 2, wherein the air conditioner is calculated.
  4.  前記熱源機の動作状態情報は、前記熱源機の運転または停止状態、運転モード、熱交換容量、および圧縮機の運転時間の少なくとも何れかを含み、
     前記利用側ユニットの動作状態情報は、前記利用側ユニットの運転または停止状態、運転モードおよび設定温度の少なくとも何れかを含む請求項1~3の何れか一項に記載の空気調和装置。
    The operation state information of the heat source unit includes at least one of an operation or stop state of the heat source unit, an operation mode, a heat exchange capacity, and an operation time of the compressor,
    The air conditioner according to any one of claims 1 to 3, wherein the operation state information of the use side unit includes at least one of an operation or stop state of the use side unit, an operation mode, and a set temperature.
  5.  前記複数の利用側ユニットの各々は、前記利用側制御装置と通信するリモートコントローラーをさらに備えるものであり、
     前記リモートコントローラーは、前記利用側ユニットの動作状態を指示する指示情報を、前記利用側制御装置に送信するものであり、
     前記利用側制御装置は、前記リモートコントローラーから受信した指示情報に応じて前記動作制御を行い、前記動作制御後の動作状態情報を前記統合管理装置に送信するものである請求項1~4の何れか一項に記載の空気調和装置。
    Each of the plurality of usage-side units further includes a remote controller that communicates with the usage-side control device,
    The remote controller transmits instruction information for instructing an operation state of the usage-side unit to the usage-side control device,
    The user side control device performs the operation control according to the instruction information received from the remote controller, and transmits the operation state information after the operation control to the integrated management device. An air conditioner according to claim 1.
  6.  前記統合管理装置は、
     前記複数の熱源機の動作状態情報および前記複数の利用側ユニットの動作状態情報を記憶する記憶部と、
     前記記憶部に記憶される前記複数の熱源機の動作状態情報および前記複数の利用側ユニットの動作状態情報を更新する更新部と、をさらに備えるものである請求項1~5の何れか一項に記載の空気調和装置。
    The integrated management device includes:
    A storage unit that stores operation state information of the plurality of heat source units and operation state information of the plurality of usage-side units;
    The update unit that updates the operation state information of the plurality of heat source machines and the operation state information of the plurality of usage-side units stored in the storage unit. The air conditioning apparatus described in 1.
  7.  前記統合管理装置は、複数の熱源機の各々における熱源制御装置に備えられるものである請求項1~5の何れか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 5, wherein the integrated management device is provided in a heat source control device in each of a plurality of heat source machines.
  8.  前記熱源側制御装置は、
     前記制御情報生成部で生成された前記制御情報を前記複数の熱源機に送信し、前記複数の熱源機が生成した制御情報を受信する通信部をさらに有するものであり、
     前記制御情報生成部は、前記制御情報生成部で生成された前記制御情報と前記通信部によって受信された前記制御情報とが同一であるか否かを判断するものである請求項7に記載の空気調和装置。
    The heat source side control device
    The control information generated by the control information generator is transmitted to the plurality of heat source machines, and further includes a communication unit that receives the control information generated by the plurality of heat source machines,
    8. The control information generation unit according to claim 7, wherein the control information generation unit determines whether the control information generated by the control information generation unit and the control information received by the communication unit are the same. Air conditioner.
  9.  前記熱源側制御装置は、
     前記複数の熱源機の動作状態情報および前記複数の利用側ユニットの動作状態情報を記憶する記憶部と、
     前記制御情報生成部で生成された前記制御情報と前記通信部によって受信された前記制御情報とが同一でないと判断された場合に、前記記憶部に記憶される前記複数の熱源機の動作状態情報および前記複数の利用側ユニットの動作状態情報を更新する更新部と、をさらに有するものである請求項8に記載の空気調和装置。
    The heat source side control device
    A storage unit that stores operation state information of the plurality of heat source units and operation state information of the plurality of usage-side units;
    When it is determined that the control information generated by the control information generation unit and the control information received by the communication unit are not the same, the operation state information of the plurality of heat source units stored in the storage unit The air conditioner according to claim 8, further comprising: an update unit that updates operation state information of the plurality of usage-side units.
  10.  並列に接続される複数の熱源機と、熱媒体配管を介して前記複数の熱源機に並列に接続される複数の利用側ユニットと、を備える空気調和装置の制御方法であって、
     前記複数の熱源機の各々は、動作制御を行う熱源側制御装置を備え、
     前記複数の利用側ユニットの各々は、動作制御を行う利用側制御装置を備えるものであり、
     前記空気調和装置の制御方法は、
     前記熱源側制御装置が前記熱源機の動作状態情報を送信するステップと、
     前記利用側制御装置が前記利用側ユニットの動作状態情報を送信するステップと、
     前記複数の熱源機の動作状態情報および前記複数の利用側ユニットの動作状態情報に基づき、前記複数の熱源機の各々に対する制御情報を生成するステップと、
     前記熱源側制御装置が前記制御情報に従って前記熱源機の前記動作制御を行うステップと、を含む空気調和装置の制御方法。
     
    A control method of an air conditioner comprising: a plurality of heat source units connected in parallel; and a plurality of use side units connected in parallel to the plurality of heat source units via a heat medium pipe,
    Each of the plurality of heat source machines includes a heat source side control device that performs operation control,
    Each of the plurality of usage-side units includes a usage-side control device that performs operation control,
    The control method of the air conditioner is:
    The heat source side control device transmits operation state information of the heat source machine,
    The use-side control device transmitting operation state information of the use-side unit;
    Generating control information for each of the plurality of heat source units based on the operation state information of the plurality of heat source units and the operation state information of the plurality of use side units;
    A method of controlling the air conditioner, comprising: the heat source side control device performing the operation control of the heat source machine according to the control information.
PCT/JP2015/054923 2015-02-23 2015-02-23 Air conditioning device and control method for air conditioning device WO2016135802A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1709238.8A GB2550697B (en) 2015-02-23 2015-02-23 Air-conditioning apparatus and control method thereof
PCT/JP2015/054923 WO2016135802A1 (en) 2015-02-23 2015-02-23 Air conditioning device and control method for air conditioning device
JP2017501558A JP6305621B2 (en) 2015-02-23 2015-02-23 Air conditioner and control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054923 WO2016135802A1 (en) 2015-02-23 2015-02-23 Air conditioning device and control method for air conditioning device

Publications (1)

Publication Number Publication Date
WO2016135802A1 true WO2016135802A1 (en) 2016-09-01

Family

ID=56788059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054923 WO2016135802A1 (en) 2015-02-23 2015-02-23 Air conditioning device and control method for air conditioning device

Country Status (3)

Country Link
JP (1) JP6305621B2 (en)
GB (1) GB2550697B (en)
WO (1) WO2016135802A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066015A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air-conditioner
WO2020208751A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Air conditioning device
WO2024062529A1 (en) * 2022-09-20 2024-03-28 三菱重工サーマルシステムズ株式会社 Heat source system, air conditioning system, control method and control program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248876A (en) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd Maintenance system for air conditioner
EP1196002A2 (en) * 2000-10-05 2002-04-10 Carrier Corporation Method for wireless remote controlling of HVRAC appliances
US20080073440A1 (en) * 2005-02-23 2008-03-27 Butler William P Interactive control system for an hvac system
JP2008151443A (en) * 2006-12-19 2008-07-03 Sanyo Electric Co Ltd Air conditioning system and its control method
US20090261174A1 (en) * 2007-06-22 2009-10-22 Butler William P Control system protocol for an hvac system
JP2010255900A (en) * 2009-04-23 2010-11-11 Mitsubishi Electric Corp Air conditioning system
WO2011114368A1 (en) * 2010-03-16 2011-09-22 三菱電機株式会社 Air conditioning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248876A (en) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd Maintenance system for air conditioner
EP1196002A2 (en) * 2000-10-05 2002-04-10 Carrier Corporation Method for wireless remote controlling of HVRAC appliances
US20080073440A1 (en) * 2005-02-23 2008-03-27 Butler William P Interactive control system for an hvac system
JP2008151443A (en) * 2006-12-19 2008-07-03 Sanyo Electric Co Ltd Air conditioning system and its control method
US20090261174A1 (en) * 2007-06-22 2009-10-22 Butler William P Control system protocol for an hvac system
JP2010255900A (en) * 2009-04-23 2010-11-11 Mitsubishi Electric Corp Air conditioning system
WO2011114368A1 (en) * 2010-03-16 2011-09-22 三菱電機株式会社 Air conditioning device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066015A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air-conditioner
JPWO2020066015A1 (en) * 2018-09-28 2021-08-30 三菱電機株式会社 Air conditioner
JP7034319B2 (en) 2018-09-28 2022-03-11 三菱電機株式会社 Air conditioner
WO2020208751A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Air conditioning device
JPWO2020208751A1 (en) * 2019-04-10 2021-10-21 三菱電機冷熱応用システム株式会社 Air conditioner
JP7086276B2 (en) 2019-04-10 2022-06-17 三菱電機株式会社 Air conditioner
WO2024062529A1 (en) * 2022-09-20 2024-03-28 三菱重工サーマルシステムズ株式会社 Heat source system, air conditioning system, control method and control program

Also Published As

Publication number Publication date
GB2550697B (en) 2020-08-12
JP6305621B2 (en) 2018-04-04
GB201709238D0 (en) 2017-07-26
GB2550697A (en) 2017-11-29
JPWO2016135802A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US10488072B2 (en) Air conditioning system with leak protection control
CN101410675B (en) Control device and control method for multi-room air conditioner
AU2016346536B2 (en) Air conditioning apparatus
EP1672293A2 (en) Multi-air conditioner and group-unit control method thereof
JP5622859B2 (en) Heat source equipment
JP6305621B2 (en) Air conditioner and control method of air conditioner
JPWO2017138141A1 (en) Air conditioning control system and remote control device
CN102869926B (en) Outer gas disposal air conditioner and use its multistage air-conditioning system
JP6710313B2 (en) Air conditioning system
CN113587393A (en) Central air-conditioning control system
JP6079707B2 (en) air conditioner
JP2015025585A (en) Air conditioner
CN112368517B (en) Air conditioning system
US20160305679A1 (en) Air-conditioning system
KR20080028154A (en) Multi air-conditioner and controlling method for the same
JP6223592B2 (en) Control system for air conditioner and control method for air conditioner
CN106662357B (en) Air conditioning system
WO2017104059A1 (en) Refrigeration cycle system
JP5954995B2 (en) Air conditioner
WO2022024264A1 (en) Air-conditioning system
JP2020094739A (en) Air conditioner and control method therefor
JP5558890B2 (en) Air conditioner
KR20180028224A (en) Air conditioner and Method for controlling the same
WO2024062531A1 (en) Heat source system, air-conditioning system, control method, and program
KR102205165B1 (en) Air conditioner and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501558

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201709238

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150223

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883102

Country of ref document: EP

Kind code of ref document: A1