WO2016134678A1 - New influenza a virus mammalian cell adapted strain and preparation and use thereof - Google Patents

New influenza a virus mammalian cell adapted strain and preparation and use thereof Download PDF

Info

Publication number
WO2016134678A1
WO2016134678A1 PCT/CN2016/074850 CN2016074850W WO2016134678A1 WO 2016134678 A1 WO2016134678 A1 WO 2016134678A1 CN 2016074850 W CN2016074850 W CN 2016074850W WO 2016134678 A1 WO2016134678 A1 WO 2016134678A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
influenza
protein
seq
strain
Prior art date
Application number
PCT/CN2016/074850
Other languages
French (fr)
Chinese (zh)
Inventor
孙兵
徐可
张宏
Original Assignee
中国科学院上海巴斯德研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海巴斯德研究所 filed Critical 中国科学院上海巴斯德研究所
Publication of WO2016134678A1 publication Critical patent/WO2016134678A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/11Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a new influenza A virus mammalian cell adapted strain and a preparation and use thereof. In particular, the adapted strain mutates position 86 of an NS2 protein of a PR8 virus strain from K to R. The growth ability of the obtained virus strain to be grown on the Vero cells is enhanced, and the virulence of the adapted strain in vivo is not enhanced.

Description

新的甲型流感病毒哺乳动物细胞适应株及其制备和应用Novel influenza A virus mammalian cell adaptation strain and preparation and application thereof 技术领域Technical field
本发明属于生物技术和免疫学领域;更具体地,本发明涉及甲型流感病毒疫苗哺乳动物细胞适应株的获得方法和适应位点。The present invention belongs to the field of biotechnology and immunology; more specifically, the present invention relates to a method and an adaptation site for obtaining a mammalian cell adaptation strain of influenza A virus vaccine.
背景技术Background technique
流感是人类历史上最严重的传染病之一,其主要病原体是流感病毒。它的宿主范围广泛,包括野生鸟类、家禽、各种哺乳动物以及人类。它变异很快,能够改变抗原性以逃避宿主免疫系统的攻击,或者改变自身的药物靶点特征以获得抗药性。这些特点决定了流感病毒能够在人畜间广泛传播,难以控制。除了每年造成季节性流行(epidemic),还不定期造成大流行(pandemic),给人类社会带来巨大损失。近百年来,流感病毒有过四次大流行。其中1918年“西班牙”流感大流行,全世界致死2000万人。其后的1957年亚洲流感大流行和1968年的香港流感大流行均造成上百万人死亡和巨大经济损失。1997年高致病性禽流感病毒在东南亚的爆发,不但对养殖业危害巨大,而且对人类致死率极高(达60%),具有形成重大流行的潜在可能。2009年猪源甲型流感病毒大流行,也造成了世界范围内的恐慌和畜牧业的重大损失。据世界卫生组织(WHO)预测,全球每年平均有1/3的儿童和1/10的成人会感染流感。The flu is one of the most serious infectious diseases in human history, and its main pathogen is the influenza virus. It has a wide range of hosts, including wild birds, poultry, various mammals, and humans. It mutates rapidly, can alter antigenicity to evade attacks by the host immune system, or alter its own drug target characteristics to gain resistance. These characteristics determine that the flu virus can spread widely between humans and animals and is difficult to control. In addition to causing epidemicity every year, it also causes pandemic from time to time, causing huge losses to human society. In the past 100 years, the flu virus has had four major pandemics. Among them, the "Spanish" influenza pandemic in 1918 killed 20 million people worldwide. The subsequent 1957 Asian influenza pandemic and the 1968 Hong Kong influenza pandemic caused millions of deaths and huge economic losses. The outbreak of the highly pathogenic avian influenza virus in Southeast Asia in 1997 not only caused great harm to the aquaculture industry, but also had a very high mortality rate (up to 60%), which has the potential to form a major epidemic. The 2009 pandemic influenza A pandemic also caused worldwide panic and significant losses in the livestock industry. According to the World Health Organization (WHO), an average of one-third of children and one in ten adults worldwide are infected with the flu each year.
流感病毒属于正粘病毒科(orthomyxoviridae),根据其内部核蛋白(NP)和基质蛋白(M)的抗原性不同,分为A\B\C三型,其中A型是致人类和各种动物流感的主型。A型流感病毒是一种有包膜的单链负链RNA(-ssRNA)病毒,基因组由8条单链负链RNA组成,编码11种以上的蛋白质,包括HA,NA,PA,PB1,PB2,NP,M1,M2,NS1,NS2和PB1-F2等。其中血凝素(HA)和神经氨酸酶(NA)是主要的囊膜表面抗原蛋白,HA主要负责使病毒有效入侵细胞,NA主要负责切断出芽的新生病毒颗粒与细胞表面的连接使其顺利释放。PA,PB1,PB2组成聚合酶(RdRp),负责基因组的复制和转录。核蛋白(NP)与病毒基因组RNA结合,是构成病毒核糖核蛋白复合体(vRNP)的主要成分。基质蛋白(M1)位于囊膜和vRNP之间,负责形成病毒蛋白衣壳。基质蛋白M2形成质子 通道,在病毒入侵细胞时,调节内涵体PH值,使HA顺利被剪切。NS1是一个多功能非结构蛋白,在抵抗宿主免疫反应(抗干扰素)、调节宿主细胞周期等方面有重要作用。NS2又名出核转运蛋白(NEP),可引导vRNP出核。PB1-F2是一个小分子量的多功能非结构蛋白,能够诱导宿主细胞凋亡,影响病毒致病力。The influenza virus belongs to the family orthomyxoviridae. According to the antigenicity of its internal nuclear protein (NP) and matrix protein (M), it is divided into three types: A\B\C. Among them, type A is human and various animals. The main type of flu. Influenza A virus is an enveloped single-stranded minus-strand RNA (-ssRNA) virus. The genome consists of 8 single-stranded minus-strand RNAs encoding more than 11 proteins, including HA, NA, PA, PB1, PB2. , NP, M1, M2, NS1, NS2 and PB1-F2, and the like. Among them, hemagglutinin (HA) and neuraminidase (NA) are the main envelope antigen proteins. HA is mainly responsible for effectively invading cells. NA is mainly responsible for cutting off the connection between budding nascent virus particles and cell surface. freed. PA, PB1, and PB2 constitute a polymerase (RdRp) responsible for genome replication and transcription. Nucleoprotein (NP) binds to viral genomic RNA and is a major component of the viral ribonucleoprotein complex (vRNP). The matrix protein (M1) is located between the envelope and vRNP and is responsible for the formation of the viral protein capsid. Matrix protein M2 forms protons The channel, when the virus invades the cell, regulates the PH value of the endosomes, so that the HA is smoothly cut. NS1 is a multifunctional non-structural protein that plays an important role in resisting host immune responses (interferon-resistant) and regulating host cell cycle. NS2, also known as nuclear transporter (NEP), directs vRNP out of the nucleus. PB1-F2 is a small molecular weight multifunctional non-structural protein that induces apoptosis in host cells and affects viral pathogenicity.
抗击流感最有效的手段是接种流感疫苗。传统的流感疫苗采用鸡胚生产,技术已经相当成熟,而且所得疫苗安全、有效。但是,鸡胚生产疫苗有一些难以克服的缺点,比如:过程繁琐;需要大量的SPF鸡胚,这在流感大流行时难以保证供应;在表面抗原上容易发生突变,可能造成疫苗毒抗原性改变;含有卵清蛋白反应原等。发展哺乳动物二倍体传代细胞培养病毒来生产流感疫苗的技术,可以很好的解决以上问题,也是改进流感疫苗生产现状的重要发展方向。The most effective way to fight the flu is to get a flu shot. The traditional influenza vaccine is produced by chicken embryos, the technology is quite mature, and the vaccine obtained is safe and effective. However, chicken embryo production vaccines have some insurmountable shortcomings, such as: the process is cumbersome; a large number of SPF chicken embryos are needed, which is difficult to guarantee supply during the influenza pandemic; mutations are likely to occur on surface antigens, which may cause antigenic changes in vaccines. ; contains ovalbumin reaction and the like. The development of mammalian diploid cell culture virus to produce influenza vaccine technology can solve the above problems well, and is also an important development direction to improve the status of influenza vaccine production.
用于流感病毒疫苗生产研究的细胞系主要有MDCK、Vero、PER.C6等,并已有产品上市。但其中仍有不少问题亟待研究和解决,如:(1)细胞生产疫苗的产量有待提高,包括更加适合在细胞中复制的流感病毒株的开发,更加适宜的细胞培养条件和病毒收获条件的摸索等。(2)病毒在细胞中传代的抗原稳定性评价。(3)细胞生产疫苗的安全性评价。(4)其它可用于流感疫苗生产的细胞系开发。等等。The cell lines used for influenza virus vaccine production research mainly include MDCK, Vero, PER.C6, etc., and have been marketed. However, there are still many problems to be studied and solved, such as: (1) the production of vaccines for cell production needs to be improved, including the development of influenza virus strains more suitable for replication in cells, more suitable cell culture conditions and virus harvesting conditions. Explore and wait. (2) Evaluation of antigen stability in which cells are passaged in cells. (3) Safety evaluation of cell production vaccines. (4) Other cell lines that can be used for influenza vaccine production. and many more.
目前流感疫苗的通用骨架毒株是PR8,它是鸡胚适应株,在鸡胚中复制效率很高,能使与之重配得到的疫苗毒株获得在鸡胚中的高产特性。但PR8并不适合在哺乳动物细胞中扩增,因此有必要针对哺乳动物细胞生产平台开发新的骨架毒株。在WHO推荐的可用于流感病毒疫苗株培养的细胞中,Vero细胞已经被用于多种人用病毒疫苗包括狂犬病毒疫苗和脊髓灰质炎病毒疫苗的生产,培养条件和生产工艺都很成熟,同时已有研究证明Vero培养的流感病毒疫苗株可以激活和鸡胚培养的疫苗株等同的体液免疫反应甚至更高的细胞免疫反应。At present, the universal skeleton strain of influenza vaccine is PR8, which is a chicken embryo-adapted strain, which has high replication efficiency in chicken embryos, and enables the vaccine strain obtained by reassortment to obtain high-yield characteristics in chicken embryos. However, PR8 is not suitable for amplification in mammalian cells, so it is necessary to develop new skeleton strains for mammalian cell production platforms. Among the cells recommended by WHO for the cultivation of influenza virus vaccine strains, Vero cells have been used in the production of various human viral vaccines including rabies virus vaccine and poliovirus vaccine, and the culture conditions and production processes are mature. It has been demonstrated that Vero-cultured influenza virus vaccine strains can activate humoral immune responses and even higher cellular immune responses equivalent to those of chicken embryo cultured vaccine strains.
因此,本领域迫切需要开发一种适应于Vero细胞培养的流感病毒疫苗株。Therefore, there is an urgent need in the art to develop an influenza virus vaccine strain adapted to Vero cell culture.
发明内容Summary of the invention
本发明第一方面,提供了一种甲型流感病毒出核转运蛋白NS2的突变蛋白,其特征在于,所述的突变蛋白的第86位氨基酸由K突变为R。According to a first aspect of the present invention, a mutant protein of influenza A virus nucleus transporter NS2 is provided, wherein the 86th amino acid of the mutant protein is mutated from K to R.
在另一优选例中,所述的突变蛋白第1-85位与SEQ ID NO.:3所述蛋白的1-85位相同。 In another preferred embodiment, the 1-55th position of the mutein is the same as the 1-85 position of the protein of SEQ ID NO.: 3.
在另一优选例中,所述的突变蛋白第87-111位与SEQ ID NO.:3所述蛋白的87-111位相同。In another preferred embodiment, the mutein is at positions 87-111 identical to the 87-111 position of the protein of SEQ ID NO.: 3.
在另一优选例中,所述的突变蛋白的氨基酸序列如SEQ ID NO.:2所示。In another preferred embodiment, the amino acid sequence of the mutein is set forth in SEQ ID NO.: 2.
在另一优选例中,含有所述突变蛋白的甲型流感病毒株PR8较野生型PR8病毒株在哺乳动物细胞上的生长能力提高至少20倍,较佳地为至少50倍,更佳地为至少80-100倍。In another preferred embodiment, the influenza A virus strain PR8 containing the mutein is at least 20-fold, preferably at least 50-fold more preferred than the wild-type PR8 virus strain on mammalian cells, more preferably At least 80-100 times.
在另一优选例中,所述的突变蛋白还包括所基于所述突变蛋白进行改造而得到的衍生蛋白,其中,所述的衍生蛋白包括在所述突变蛋白的基础上经过一个或几个(通常为1-10个,较佳地为1-8个,更佳地为1-6个、1-5个、1-3个或1-2个)氨基酸的缺失、插入和/或取代后的含有NS2第86位氨基酸由K变为R突变的衍生蛋白。In another preferred embodiment, the mutein further comprises a derivative protein obtained by engineering based on the mutein, wherein the derivatized protein comprises one or more on the basis of the mutein ( Usually after 1-10, preferably 1-8, more preferably 1-6, 1-5, 1-3 or 1-2) amino acid deletions, insertions and/or substitutions A derivative protein containing the 86th amino acid of NS2 from K to the R mutation.
在另一优选例中,所述的衍生蛋白还包括在所述突变蛋白的C末端和/或N末端添加或缺失一个或几个(通常为1-10个,较佳地为1-8个,更佳地为1-6个、1-5个、1-3个或1-2个)氨基酸。In another preferred embodiment, the derived protein further comprises one or more additions (usually 1-10, preferably 1-8) at the C-terminus and/or N-terminus of the mutein. More preferably, it is 1-6, 1-5, 1-3 or 1-2) amino acids.
在另一优选例中,含有所述衍生蛋白的流感病毒株与含所述突变蛋白NS2的流感病毒株在哺乳动物细胞上具有相当的生长能力(即含有所述衍生蛋白的流感病毒株为含所述突变蛋白NS2的流感病毒株在哺乳动物细胞上的生长能力的90-100%)。In another preferred embodiment, the influenza virus strain containing the derivative protein and the influenza virus strain containing the mutant protein NS2 have comparable growth ability on mammalian cells (ie, the influenza virus strain containing the derivative protein is contained The influenza virus strain of the mutant protein NS2 is 90-100% of the growth ability on mammalian cells).
在另一优选例中,所述的哺乳动物细胞包括Vero细胞、MDCK细胞、PER.C6。In another preferred embodiment, the mammalian cells include Vero cells, MDCK cells, PER.C6.
本发明第二方面,提供了一种分离的多核苷酸,所述的多核苷酸编码权利要求1-2任一所述的突变蛋白。In a second aspect of the invention, an isolated polynucleotide encoding the mutein of any of claims 1-2 is provided.
在另一优选例中,所述的多核苷酸如SEQ ID NO.:1所示,其中编码NS2K86R的cDNA为1-27位连接500-838位。In another preferred embodiment, the polynucleotide is set forth in SEQ ID NO.: 1, wherein the cDNA encoding NS2 K86R is linked to positions 500-838 at positions 1-27.
本发明第三方面,提供了一种表达载体,所述的表达载体含有本发明第二方面所述的多核苷酸。In a third aspect of the invention, an expression vector comprising the polynucleotide of the second aspect of the invention is provided.
在另一优选例中,所述的表达载体为质粒、病毒载体。In another preferred embodiment, the expression vector is a plasmid or a viral vector.
在另一优选例中,所述的表达载体为pHW2000质粒。In another preferred embodiment, the expression vector is a pHW2000 plasmid.
本发明第四方面,提供了一种宿主细胞,所述的宿主细胞含有本发明第三方面所述的表达载体,或所述的宿主细胞的染色体整合有本发明第二方面所述的多核苷酸。According to a fourth aspect of the present invention, a host cell comprising the expression vector of the third aspect of the present invention, or the chromosomal of the host cell is integrated with the polynucleoside of the second aspect of the present invention acid.
在另一优选例中,所述的宿主细胞还含有能够表达野生型PR8甲型流感病毒 株(除NS2蛋白以外)蛋白的多个表达载体。In another preferred embodiment, the host cell further comprises a wild type PR8 influenza A virus Multiple expression vectors for strains (other than NS2 protein).
本发明第五方面,提供了一种重组型PR8甲型流感病毒株,所述PR8甲型流感病毒株NS2蛋白的第86位氨基酸突变由K突变为R。According to a fifth aspect of the present invention, a recombinant PR8 influenza A virus strain is provided, wherein the 86th amino acid mutation of the NS2 protein of the PR8 influenza A virus strain is mutated from K to R.
在另一优选例中,所述的重组型PR8甲型流感病毒株除了NS2蛋白第86位氨基酸外,其他蛋白的氨基酸序列与野生型PR8甲型流感病毒株相同或基本相同。In another preferred embodiment, the recombinant PR8 influenza A virus strain has the same or substantially the same amino acid sequence as the wild-type PR8 influenza A virus strain except for the 86th amino acid of the NS2 protein.
在另一优选例中,所述的重组型PR8甲型流感病毒株还包括其衍生毒株,且所述的衍生毒株在哺乳动物细胞上的生长能力为所述重组型PR8甲型流感病毒株在哺乳动物细胞上的生长能力的95-100%。In another preferred embodiment, the recombinant PR8 influenza A virus strain further comprises a derivative strain thereof, and the growth ability of the derived strain on mammalian cells is the recombinant PR8 influenza A virus. The strain has a growth capacity of 95-100% on mammalian cells.
在另一优选例中,所述重组型PR8甲型流感病毒株在哺乳动物细胞上的生长能力为野生型PR8甲型流感病毒株的至少20倍,较佳地为至少50倍,更佳地为至少80-100倍。In another preferred embodiment, the recombinant PR8 influenza A virus strain has a growth ability on mammalian cells that is at least 20 times, preferably at least 50 times, more preferably at least 50 times that of the wild type PR8 influenza A virus strain. At least 80-100 times.
本发明第六方面,提供了一种病毒拯救系统,所述病毒拯救系统含有表达甲型流感病毒出核转运蛋白NS2突变蛋白的表达载体。In a sixth aspect of the invention, there is provided a virus rescue system comprising an expression vector expressing an influenza A virus out nuclear transporter NS2 mutein.
在另一优选例中,所述的病毒拯救系统还含有一个或多个表达野生型PR8甲型流感病毒株所需蛋白的其他表达载体。In another preferred embodiment, the viral rescue system further comprises one or more additional expression vectors that express the protein required for the wild type PR8 influenza A strain.
在另一优选例中,所述一个或多个表达野生型PR8甲型流感病毒株所需蛋白的其他表达载体包括表达选自下组蛋白的载体:RNA多聚酶PB2(SEQ ID NO.:41)、RNA多聚酶PB1(SEQ ID NO.:42)、RNA多聚酶PA(SEQ ID NO.:43)、血凝素HA(SEQ ID NO.:44)、核外壳核蛋白NP(SEQ ID NO.:45)、神经酰胺酶NA(SEQ ID NO.:46)、基质蛋白M1(SEQ ID NO.:47)、非结构蛋白NS1(SEQ ID NO.:48)、和基质蛋白M2(SEQ ID NO.:49)。In another preferred embodiment, the one or more additional expression vectors expressing a protein required for a wild-type PR8 influenza A virus strain comprise expressing a vector selected from the group consisting of RNA polymerase PB2 (SEQ ID NO.: 41) RNA polymerase PB1 (SEQ ID NO.: 42), RNA polymerase PA (SEQ ID NO.: 43), hemagglutinin HA (SEQ ID NO.: 44), nuclear coat nucleoprotein NP (SEQ ID NO.: 45) , Ceramidease NA (SEQ ID NO.: 46), Matrix Protein M1 (SEQ ID NO.: 47), Nonstructural Protein NS1 (SEQ ID NO.: 48), and Matrix Protein M2 (SEQ ID NO.: 49).
在另一优选例中,所述的野生型PR8甲型流感病毒株的序列如SEQ ID NO.:50-57所示。In another preferred embodiment, the sequence of the wild type PR8 influenza A virus strain is set forth in SEQ ID NO.: 50-57.
在另一优选例中,所述的表达载体为质粒。In another preferred embodiment, the expression vector is a plasmid.
在另一优选例中,所述的病毒拯救系统含有表达SEQ ID NO.:2、和SEQ ID NOs.:41-49所示蛋白的表达载体。In another preferred embodiment, the viral rescue system comprises an expression vector expressing the proteins of SEQ ID NO.: 2, and SEQ ID NOs.: 41-49.
本发明第一方面所述突变蛋白或其编码基因、本发明第四方面所述表达载体或本发明第五方面所述宿主细胞、本发明第六方面所述宿主细胞的用途,用于制备本发明第六方面所述的重组型PR8病毒株。The use of the mutein or the coding gene thereof, the expression vector of the fourth aspect of the present invention or the host cell of the fifth aspect of the present invention, and the host cell of the sixth aspect of the present invention, for use in the preparation of the present invention The recombinant PR8 virus strain of the sixth aspect of the invention.
本发明第七方面,提供了一种制备本发明第五方面所述重组型PR8甲型流感病毒株的试剂盒,所述的试剂盒中含有本发明第六方面所述的病毒拯救系统。 According to a seventh aspect of the invention, the invention provides a kit for preparing a recombinant PR8 influenza A virus strain according to the fifth aspect of the invention, wherein the kit comprises the virus rescue system of the sixth aspect of the invention.
在另一优选例中,所述病毒拯救系统含有表达所述重组型PR8甲型流感病毒株所需的表达载体,其中,所述的表达载体中多核苷酸编码的NS2蛋白为突变蛋白。In another preferred embodiment, the viral rescue system comprises an expression vector required for expression of the recombinant PR8 influenza A virus strain, wherein the NS2 protein encoded by the polynucleotide in the expression vector is a mutant protein.
在另一优选例中,所述的表达载体中的多核苷酸还编码PR8甲型流感病毒株的其他蛋白。In another preferred embodiment, the polynucleotide in the expression vector also encodes other proteins of the PR8 influenza A virus strain.
本发明第八方面,提供了一种制备本发明第五方面所述重组型PR8甲型流感病毒株的方法,包括步骤:According to an eighth aspect of the present invention, a method for the preparation of the recombinant PR8 influenza A virus strain of the fifth aspect of the present invention, comprising the steps of:
(a)提供本发明第六方面所述的病毒拯救系统,其含有表达甲型流感病毒出核转运蛋白NS2突变蛋白的表达载体,和表达野生型PR8甲型流感病毒株所需蛋白的其他表达载体;所述野生型PR8甲型流感病毒株所需蛋白的其他表达载体包括表达选自下组蛋白的载体:RNA多聚酶PB2、RNA多聚酶PB1、RNA多聚酶PA、血凝素HA、核外壳核蛋白NP、神经酰胺酶NA、基质蛋白M1和M2、和非结构蛋白NS1;(a) Providing the virus rescue system of the sixth aspect of the present invention, comprising an expression vector expressing an influenza A virus out nuclear transporter NS2 mutein, and other expression of a protein required to express a wild type PR8 influenza A virus strain The vector; the other expression vector of the protein required for the wild-type PR8 influenza A virus strain comprises expressing a vector selected from the group consisting of RNA polymerase PB2, RNA polymerase PB1, RNA polymerase PA, hemagglutinin HA, nuclear coat protein NP, ceramidase NA, matrix proteins M1 and M2, and non-structural protein NS1;
(b)将步骤(a)中的病毒拯救系统转染宿主细胞,培养所述的宿主细胞,从而获得本发明第五方面所述的重组型PR8甲型流感病毒株。(b) transfecting the virus rescue system in the step (a) with a host cell, culturing the host cell, thereby obtaining the recombinant PR8 influenza A virus strain of the fifth aspect of the invention.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It is to be understood that within the scope of the present invention, the various technical features of the present invention and the various technical features specifically described hereinafter (as in the embodiments) may be combined with each other to constitute a new or preferred technical solution. Due to space limitations, we will not repeat them here.
附图说明DRAWINGS
图1显示了来自WSN病毒的NS基因能够促进PR8病毒在Vero细胞上的生长。(A)PR8同WSN病毒的重组病毒在Vero细胞上的空斑图。(B)PR8同WSN病毒的重组病毒在Vero细胞上的生长曲线。Figure 1 shows that the NS gene from the WSN virus is capable of promoting the growth of the PR8 virus on Vero cells. (A) A plaque map of the recombinant virus of PR8 and WSN virus on Vero cells. (B) Growth curve of recombinant virus of PR8 and WSN virus on Vero cells.
图2显示了携带单点突变的PR8病毒在Vero细胞上的生长。(A)WSN NS基因同PR8NS基因相比存在的不同突变位点。(B)携带不同NS突变位点的PR8病毒在Vero细胞上的生长曲线。Figure 2 shows the growth of PR8 virus carrying a single point mutation on Vero cells. (A) Different mutation sites of the WSN NS gene compared to the PR8NS gene. (B) Growth curve of PR8 virus carrying different NS mutation sites on Vero cells.
图3显示了NS2K86R突变促进了PR8病毒在Vero细胞上的生长。(A)PR8、WSN、PR8-WSN NS和PR8-NS2K86R病毒在Vero细胞上复制48小时产生的病毒滴度。(B)PR8、WSN、PR8-WSN NS和PR8-NS2K86R病毒在Vero细胞上的空斑图。 Figure 3 shows that the NS2K86R mutation promotes the growth of the PR8 virus on Vero cells. (A) Virus titers generated by PR8, WSN, PR8-WSN NS and PR8-NS2 K86R viruses replicated on Vero cells for 48 hours. (B) Plaque map of PR8, WSN, PR8-WSN NS and PR8-NS2 K86R viruses on Vero cells.
具体实施方式Detailed ways
本发明人经过广泛而深入的研究,首次获得了一个能够大幅提高甲型流感病毒株PR8在哺乳动物细胞(尤其是Vero细胞)上生长能力的PR8病毒株突变蛋白,其中将PR8病毒株的NS2蛋白第86位由K突变为R后,所获得的病毒株在Vero细胞上的生长能力较野生型PR8病毒株提高了20-100倍,且该适应株在活体上的致病力没有增强。因此,含有本发明突变蛋白的甲流病毒株能够作为在哺乳动物细胞上高产的疫苗种子株。在此基础上,完成了本发明。After extensive and intensive research, the present inventors obtained for the first time a mutant protein of PR8 virus strain capable of greatly increasing the growth ability of the influenza A virus strain PR8 on mammalian cells (especially Vero cells), wherein the NS2 of the PR8 virus strain was obtained. After the 86th mutation of the protein from K to R, the obtained virus strain has a 20-100-fold increase in growth ability on Vero cells compared with the wild-type PR8 virus strain, and the pathogenicity of the adapted strain in vivo is not enhanced. Therefore, the influenza A strain containing the mutein of the present invention can be used as a vaccine seed strain which is highly produced on mammalian cells. On the basis of this, the present invention has been completed.
NS2蛋白及其突变蛋白NS2 protein and its mutant protein
如本文所用,术语“出核转运蛋白NS2”、“NS2蛋白”可互换使用,均指甲型流感病毒野生型PR8病毒株的出核转运蛋白,其定义为本领域普通技术人员通常理解的含义。NS2蛋白主要介导流感病毒vRNP由细胞核输出到细胞质的过程;此外,NS2蛋白可以参与调控流感聚合酶的活性从而影响病毒的跨种传播能力。最近研究发现,NS2可以同宿主细胞膜上的蛋白F1Fo-ATPase相互作用来促进流感病毒生活周期的包装和释放过程。优选的,所述NS2蛋白的序列如SEQ ID NO.:3所示。As used herein, the terms "nuclear transporter NS2", "NS2 protein" are used interchangeably and are both nuclear exporters of the nail-type influenza virus wild-type PR8 strain, which are defined as commonly understood by one of ordinary skill in the art. . NS2 protein mainly mediates the process of influenza virus vRNP exporting from nucleus to cytoplasm; in addition, NS2 protein can participate in the regulation of influenza polymerase activity and affect the cross-species ability of virus transmission. Recent studies have found that NS2 interacts with the protein F1Fo-ATPase on the host cell membrane to promote the packaging and release process of the influenza virus life cycle. Preferably, the sequence of the NS2 protein is as shown in SEQ ID NO.: 3.
本发明提供了甲型流感病毒株PR8NS2蛋白的突变蛋白(或“本发明蛋白”、“突变型出核转运蛋白”),其中,所述的突变蛋白序列与NS2蛋白的氨基酸序列相比,第86位氨基酸由K突变为R。优选地,本发明突变蛋白如SEQ ID NO.:2所示。The present invention provides a mutant protein of the influenza A virus strain PR8NS2 protein (or "protein of the present invention", "mutant nuclear exporter"), wherein the mutant protein sequence is compared with the amino acid sequence of the NS2 protein. The amino acid at position 86 is mutated from K to R. Preferably, the mutein of the invention is represented by SEQ ID NO.: 2.
含有本发明突变蛋白的PR8病毒株具有在哺乳动物细胞上高速生长的活性特点。优选地,本发明蛋白还包括功能特性相同或相近的衍生蛋白。本领域技术人员可知,在多肽(蛋白)的某些区域,例如非重要区域改变少数氨基酸残基基本上不会改变生物活性,例如,适当替换某些氨基酸得到的序列并不会影响其活性(可参见Watson等,Molecular Biology of The Gene,第四版,1987,The Benjamin/Cummings Pub.Co.P224)。因此,本领域普通技术人员能够实施这种替换并且确保所得分子仍具有所需生物活性。The PR8 strain containing the mutein of the present invention has an activity characteristic of high-speed growth on mammalian cells. Preferably, the protein of the invention further comprises a derivative protein having the same or similar functional properties. It will be apparent to those skilled in the art that alteration of a minority amino acid residue in certain regions of a polypeptide (protein), such as a non-significant region, does not substantially alter biological activity, for example, the sequence obtained by appropriately replacing certain amino acids does not affect its activity ( See Watson et al, Molecular Biology of The Gene, Fourth Edition, 1987, The Benjamin/Cummings Pub. Co. P224). Thus, one of ordinary skill in the art would be able to implement such substitutions and ensure that the resulting molecules still possess the desired biological activity.
优选地,所述的衍生蛋白包括将所述突变蛋白经过一个或几个(通常为1-10个,较佳地为1-8个,更佳地为1-6个、1-5个、1-3个或1-2个)氨基酸的缺失、添加和/或取代后的衍生蛋白;和/或所述的衍生蛋白还包括在所述突变蛋白的C末端和/或N末端添加或缺失一个或几个(通常为1-10个,较佳地为1-8个,更佳 地为1-6个、1-5个、1-3个或1-2个)氨基酸;通常,这些衍生蛋白与本发明突变蛋白的序列相同性或同源性可以是90%以上,优选为95%-98%,更佳地为99%。其中,含有本发明衍生蛋白的重组型PR8病毒株,其也同样具有在哺乳动物细胞上高速生长的活性,例如与含有本发明突变蛋白的病毒株具有90-100%不如细胞动物上高速生长的活性(能力)。Preferably, the derivative protein comprises one or more of the mutant proteins (usually 1-10, preferably 1-8, more preferably 1-6, 1-5, 1-3 or 1-2) a derivative protein after deletion, addition and/or substitution of an amino acid; and/or said derived protein further comprises addition or deletion at the C-terminus and/or N-terminus of said mutant protein One or several (usually 1-10, preferably 1-8, better) 1-6, 1-5, 1-3 or 1-2) amino acids; in general, the sequence identity or homology of these derived proteins with the muteins of the invention may be 90% or more, preferably 95%-98%, more preferably 99%. Among them, the recombinant PR8 virus strain containing the derivative protein of the present invention also has a high-speed growth activity on mammalian cells, for example, 90-100% of the virus strain containing the mutant protein of the present invention is not as high-speed as that of the cell animal. Activity (ability).
在本发明中,所述的衍生蛋白中氨基酸残基的取代为保守性取代,优选地,这些保守性取代可以根据表1所示的氨基酸替换而产生:In the present invention, the substitution of the amino acid residues in the derived protein is a conservative substitution. Preferably, these conservative substitutions can be produced according to the amino acid substitutions shown in Table 1:
表1Table 1
初始残基Initial residue 代表性的取代残基Representative substituted residues 优选的取代残基Preferred substituted residue
Ala(A)Ala(A) Val;Leu;IleVal; Leu; Ile ValVal
Arg(R)Arg(R) Lys;Gln;AsnLys; Gln; Asn LysLys
Asn(N)Asn(N) Gln;His;Lys;ArgGln;His;Lys;Arg GlnGln
Asp(D)Asp(D) GluGlu GluGlu
Cys(C)Cys(C) SerSer SerSer
Gln(Q)Gln(Q) AsnAsn AsnAsn
Glu(E)Glu(E) AspAsp AspAsp
Gly(G)Gly(G) Pro;AlaPro; Ala AlaAla
His(H)His(H) Asn;Gln;Lys;ArgAsn; Gln; Lys; Arg ArgArg
Ile(I)Ile(I) Leu;Val;Met;Ala;PheLeu;Val;Met;Ala;Phe LeuLeu
Leu(L)Leu(L) Ile;Val;Met;Ala;PheIle;Val;Met;Ala;Phe IleIle
Lys(K)Lys(K) Arg;Gln;AsnArg; Gln; Asn ArgArg
Met(M)Met(M) Leu;Phe;IleLeu;Phe;Ile LeuLeu
Phe(F)Phe(F) Leu;Val;Ile;Ala;TyrLeu;Val;Ile;Ala;Tyr LeuLeu
Pro(P)Pro(P) AlaAla AlaAla
Ser(S)Ser(S) ThrThr ThrThr
Thr(T)Thr(T) SerSer SerSer
Trp(W)Trp(W) Tyr;PheTyr;Phe TyrTyr
Tyr(Y)Tyr(Y) Trp;Phe;Thr;SerTrp;Phe;Thr;Ser PhePhe
Val(V)Val(V) Ile;Leu;Met;Phe;AlaIle; Leu; Met; Phe; Ala LeuLeu
本发明还提供了编码本发明多肽的多核苷酸。术语“编码多肽的多核苷酸”可以是DNA形式或RNA形式。DNA可以是编码链或非编码链。编码成熟多肽的编码区序列可以与SEQ ID NO:2所示的编码区序列相同或者是简并的变异体。如本文所用,以SEQ ID NO:1为例,“简并的变异体”在本发明中是指编码具有SEQ ID NO:2序列的多肽,但与SEQ ID NO:1中相应编码区序列有差别的核酸序列。The invention also provides polynucleotides encoding the polypeptides of the invention. The term "polynucleotide encoding a polypeptide" can be in the form of DNA or RNA. The DNA can be a coding strand or a non-coding strand. The coding region sequence encoding the mature polypeptide may be identical to the coding region sequence shown in SEQ ID NO: 2 or may be a degenerate variant. As used herein, with SEQ ID NO: 1 as an example, a "degenerate variant" in the present invention refers to a polypeptide having the sequence of SEQ ID NO: 2, but with the corresponding coding region sequence of SEQ ID NO: 1. Differential nucleic acid sequences.
本发明的突变蛋白核苷酸全长序列或其片段通常可以用PCR扩增法、重组 法或人工合成的方法获得。目前,已经可以完全通过化学合成来得到编码本发明多肽(或其片段,或其衍生物)的DNA序列。然后可将该DNA序列引入本领域中已知的各种现有的DNA分子(或如载体)和细胞中。The full length sequence of the mutant protein of the present invention or a fragment thereof can generally be subjected to PCR amplification, recombination Obtained by method or synthetic method. At present, it has been possible to obtain a DNA sequence encoding a polypeptide of the present invention (or a fragment thereof, or a derivative thereof) completely by chemical synthesis. The DNA sequence can then be introduced into various existing DNA molecules (or vectors) and cells known in the art.
重组型PR8甲型流感病毒株Recombinant PR8 influenza A strain
本发明还提供了一种甲型流感的重组型PR8甲型流感病毒株(简称重组型PR8病毒株)。本发明重组型病毒株与野生型PR8病毒株的区别在于,所述病毒中的NS2蛋白为本发明突变蛋白,即第86位氨基酸由K突变为R,且所述的重组型PR8病毒株在哺乳动物细胞(如Vero细胞)上的生长能力较野生型毒株提高至少20倍,较佳为50-80倍,更佳地为100倍;而重组型PR8病毒株的除了该突变位点外,其他结构与野生型PR8病毒株相同或基本相同,即重组型PR8病毒株的其他蛋白与野生型相同,其中,所述其他蛋白包括RNA多聚酶PB2、RNA多聚酶PB1、RNA多聚酶PA、血凝素HA、核外壳核蛋白NP、神经酰胺酶NA、基质蛋白M1和M2、和非结构蛋白NS1。The present invention also provides a recombinant PR8 influenza A virus strain of influenza A (abbreviated as a recombinant PR8 virus strain). The recombinant virus strain of the present invention is different from the wild type PR8 virus strain in that the NS2 protein in the virus is a mutant protein of the present invention, that is, the 86th amino acid is mutated from K to R, and the recombinant PR8 virus strain is The growth ability on mammalian cells (such as Vero cells) is at least 20-fold, preferably 50-80-fold, and more preferably 100-fold higher than that of the wild-type strain; and the recombinant PR8 virus strain except for the mutation site The other structure is the same or substantially the same as the wild type PR8 virus strain, that is, the other proteins of the recombinant PR8 virus strain are the same as the wild type, wherein the other proteins include RNA polymerase PB2, RNA polymerase PB1, RNA polymerase PA, hemagglutinin HA, nuclear coat nucleoprotein NP, ceramidase NA, matrix proteins M1 and M2, and non-structural protein NS1.
应理解,当保留了NS2蛋白第86位的突变位点,重组型PR8病毒株的其他蛋白也可根据现有技术中保守性的位点替换(如根据表1)、添加和/或删除氨基酸,获得同样具有Vero细胞适应性(高生长速度特性)(如95%-100%适应性)的衍生毒株。It should be understood that when the mutation site of position 86 of the NS2 protein is retained, other proteins of the recombinant PR8 virus strain can also be replaced according to the conserved sites in the prior art (as according to Table 1), adding and/or deleting amino acids. Derived strains that also have Vero cell adaptability (high growth rate characteristics) (eg, 95%-100% adaptability) are obtained.
此外,在获得了本发明重组型PR8病毒株后,用于生产制造疫苗过程中合理传代次数后所获得的衍生毒株(如氨基酸序列未发生足以改变毒株性质的改变的衍生毒株)也应当在本发明的范围内。In addition, after obtaining the recombinant PR8 virus strain of the present invention, the derived strain obtained after the reasonable passage number in the process of producing the vaccine (for example, a derivative strain in which the amino acid sequence does not change enough to change the properties of the strain) is also It should be within the scope of the invention.
如本文所用,术语“野生型PR8甲型流感病毒株”或“野生型PR8病毒株”指的是目前市售可得的PR8毒株,或优选根据已知PR8的基因序列采用反向遗传学方法构建的病毒株。本发明采用的PR8病毒株由PR8病毒基因通过反向遗传学方法构建,其中,PR8病毒株的基因来自于Vaccine 20(2002)3165–3170作者赠送,具体序列信息见附件,野生型PR8病毒全基因序列如SEQ ID NO.:50-57所示,其中,SEQ ID NO.:50-55所示的基因编码SEQ ID NO.:41-46所示的蛋白,SEQ ID NO.:56编码SEQ ID NO.:47、49所示的蛋白,SEQ ID NO.:57编码SEQ ID NO.:48所示的蛋白。经鉴定,本发明突变蛋白除了编码野生型PR8病毒NS2蛋白第86位的核苷酸不同,其余基因序列均与野生型病毒株的基因相同。 As used herein, the term "wild-type PR8 influenza A virus strain" or "wild-type PR8 virus strain" refers to a currently commercially available PR8 strain, or preferably reverse genetics according to the known PR8 gene sequence. Method of constructing a virus strain. The PR8 virus strain used in the present invention is constructed by the reverse genetics method of the PR8 virus gene, wherein the gene of the PR8 virus strain is given by the author of Vaccine 20 (2002) 3165-3170, the specific sequence information is attached, and the wild type PR8 virus is full. The gene sequence is set forth in SEQ ID NO.: 50-57, wherein the genes set forth in SEQ ID NO.: 50-55 encode the protein set forth in SEQ ID NO.: 41-46, and the SEQ ID NO.: 56 encodes the SEQ. ID NO.: The protein represented by 47, 49, and SEQ ID NO.: 57 encodes the protein of SEQ ID NO.: 48. The mutant protein of the present invention was identified to have the same nucleotide sequence as that of the wild type virus strain except that the nucleotide of the 86th position of the wild type PR8 virus NS2 protein was different.
病毒拯救系统Virus rescue system
本发明还涉及一种重组的病毒拯救系统,该系统包含甲型流感病毒(如PR8病毒株)拯救所需的流感病毒拯救质粒,能实现流感病毒拯救。对于流感病毒拯救系统,本领域技术人员是了解的,其包括了一系列病毒拯救表达载体(例如质粒),所述病毒拯救质粒包含了可以实现流感病毒拯救的所有的元件(含病毒蛋白编码序列以及非编码序列),在转染细胞后可获得病毒蛋白相应的mRNA以及病毒RNA(vRNA),从而获得重组病毒。The present invention also relates to a recombinant virus rescue system comprising an influenza virus rescue plasmid required for rescue of an influenza A virus (such as a PR8 virus strain) to achieve influenza virus rescue. For influenza virus rescue systems, those skilled in the art are aware of a series of viral rescue expression vectors (e.g., plasmids) that contain all of the elements (including viral protein coding sequences) that can be rescued by influenza virus. And a non-coding sequence), after transfecting the cells, the corresponding mRNA of the viral protein and viral RNA (vRNA) are obtained, thereby obtaining a recombinant virus.
目前,已经有一些商品化的流感病毒拯救质粒,例如pHW2000质粒,其含有polI和polII双重启动子,可以同时实现vRNA转录和mRNA表达。一个完整的病毒拯救系统,通常包括多个病毒拯救质粒,每一质粒上含有至少一种Segment,所述Segment包含至少一种蛋白编码基因,以及用于同时转录出病毒mRNA及病毒RNA(vRNA)的元件。病毒拯救技术目前已经成熟地被应用,例如可参考Erich Hoffmann等,Vaccine 20(2002)3165-3170或Hoffmann,E.等,Proc Natl Acad Sci U S A(2000)97:6108-6113。Currently, there are a number of commercially available influenza virus rescue plasmids, such as the pHW2000 plasmid, which contains a polI and polII dual promoter that simultaneously enables vRNA transcription and mRNA expression. A complete viral rescue system, typically comprising a plurality of viral rescue plasmids, each plasmid containing at least one Segment, said Segment comprising at least one protein-coding gene, and for simultaneous transcription of viral mRNA and viral RNA (vRNA) Components. Viral rescue techniques are now well established, for example, see Erich Hoffmann et al, Vaccine 20 (2002) 3165-3170 or Hoffmann, E. et al, Proc Natl Acad Sci U S A (2000) 97: 6108-6113.
作为本发明的优选方式,所述的病毒拯救质粒是polI-polII转录/表达载体,较佳地是pHW2000质粒。病毒拯救技术(Virus Rescue)是一种本领域熟知的技术因此本领域技术人员熟悉哪些病毒拯救质粒是可用的。因此,尽管优选pHW2000质粒,但其它与具有类似元件及类似功能的病毒拯救质粒也可应用于本发明中,例如pHH21。As a preferred mode of the invention, the virus rescue plasmid is a polI-polII transcription/expression vector, preferably a pHW2000 plasmid. Virus Rescue is a technique well known in the art and those skilled in the art are familiar with which virus rescue plasmids are available. Therefore, although a pHW2000 plasmid is preferred, other viral rescue plasmids having similar elements and the like can be applied to the present invention, such as pHH21.
作为本发明的优选方式,病毒拯救系统包含有8种病毒拯救质粒,分别装载所述的Segment1~Segment8,其中,所述8种病毒拯救质粒中,表达NS2的质粒所含有的核苷酸能够编码本发明突变蛋白。当然,所述的病毒拯救系统还可以仅含有表达本发明突变蛋白的质粒,从而与其他商业化的表达PR8其他蛋白的质粒或载体共同使用。As a preferred mode of the present invention, the virus rescue system comprises eight virus rescue plasmids, respectively, which are loaded with the Segment1 to Segment8, wherein the nucleotides contained in the plasmid expressing the NS2 can be encoded in the eight virus rescue plasmids. The mutein of the invention. Of course, the viral rescue system may also contain only plasmids expressing the muteins of the invention for use with other commercially available plasmids or vectors expressing other PR8 proteins.
当将各病毒拯救质粒转染病毒包装细胞,培养经转染的病毒包装细胞,可获得重组流感病毒株。A recombinant influenza virus strain can be obtained by transfecting each virus rescue plasmid into a virus packaging cell and culturing the transfected virus packaging cell.
试剂盒Kit
本发明还包括用于制备重组流感病毒株的试剂盒,所述试剂盒中包括:病毒拯救系统,其包含流感病毒拯救所需的流感病毒拯救质粒,能实现流感病毒 拯救;所述的流感病毒拯救质粒中,出核转运蛋白NS2的编码基因是突变型基因,其编码突变型出核转运蛋白NS2,氨基酸序列第86位由K突变为R;作为本发明的优选方式,所述的试剂盒中,病毒拯救质粒是pHW系列质粒;更佳地,所述pHW系列质粒为pHW2000质粒,包括8个pHW2000质粒,分别装载所述的Segment1~Segment8。The invention also includes a kit for preparing a recombinant influenza virus strain, the kit comprising: a virus rescue system comprising an influenza virus rescue plasmid required for influenza virus rescue, capable of implementing influenza virus Rescue; in the influenza virus rescue plasmid, the gene encoding the nuclear transporter NS2 is a mutant gene encoding a mutant nuclear transporter NS2, and the 86th amino acid sequence is mutated from K to R; as a preferred embodiment of the present invention In the kit, the virus rescue plasmid is a pHW series plasmid; more preferably, the pHW series plasmid is a pHW2000 plasmid, including 8 pHW2000 plasmids, and the Segment1 to Segment8 are respectively loaded.
本领域技术人员在获得了所述的试剂盒后,可方便地通过病毒拯救技术,来制备获得重组流感病毒株,该重组流感病毒株是哺乳动物细胞适应性的。Those skilled in the art, after obtaining the kit, can conveniently prepare a recombinant influenza virus strain which is mammalian cell-adapted by virus rescue technology.
作为本发明的优选方式,所述的试剂盒还包括:病毒包装细胞,作为所述的病毒拯救质粒的受体细胞。较佳地,所述的病毒包装细胞是哺乳动物细胞,例如但不限于Vero细胞,293T细胞,MDCK细胞,COS-1细胞,PER.C6细胞等。最佳地,所述的细胞是Vero细胞。As a preferred mode of the present invention, the kit further comprises: a virus packaging cell as a recipient cell of the virus rescue plasmid. Preferably, the viral packaging cell is a mammalian cell such as, but not limited to, Vero cells, 293T cells, MDCK cells, COS-1 cells, PER.C6 cells, and the like. Most preferably, the cell is a Vero cell.
作为本发明的优选方式,所述的试剂盒还包括其它应用于进行病毒拯救的试剂以及周边试剂,例如但不限于基因转染试剂,PCR扩增试剂,质粒抽提试剂,病毒包装细胞的培养基等。更佳地,所述的试剂盒中还可包括说明使用方法和注意点的使用说明书。As a preferred mode of the present invention, the kit further includes other reagents for virus rescue and peripheral reagents such as, but not limited to, gene transfection reagents, PCR amplification reagents, plasmid extraction reagents, and culture of virus packaging cells. Base. More preferably, the kit may also include instructions for use indicating the method of use and points of attention.
本发明的主要优点在于:The main advantages of the invention are:
本发明通过一系列病毒重组和增殖实验确定,内部病毒基因编码的病毒蛋白上的一个氨基酸位点:NS2K86R贡献了流感病毒适应株的在哺乳动物细胞中的生长适应性。通过小鼠和鸡胚致病力实验证明,本发明涉及的位点突变不会增加病毒对小鼠或鸡胚的致死能力。本发明提供了一种高产、安全的Vero细胞适应的改良流感疫苗株,对流感疫苗研究和生产具有重要价值。The present invention determines, through a series of viral recombination and proliferation experiments, that an amino acid site on the viral protein encoded by the internal viral gene: NS2 K86R contributes to the growth adaptability of the influenza virus-adapted strain in mammalian cells. It has been demonstrated by mouse and chicken embryo virulence experiments that the site mutations involved in the present invention do not increase the lethal ability of the virus on mouse or chicken embryos. The invention provides a high-yield and safe Vero cell-adapted modified influenza vaccine strain, which is of great value for influenza vaccine research and production.
本发明涉及流感病毒(Influenza virus)疫苗株同其他流感病毒株重组,获得Vero细胞适应性毒株的方法和决定其获得适应性的一个病毒氨基酸位点。细胞介质培养流感病毒获得疫苗用毒株是流感疫苗生产的必然趋势,Vero细胞因其安全性和可靠性被WHO推荐为流感疫苗生产的备选细胞株,但是大多数流感病毒在该细胞中的扩增能力都有限,因此提高流感疫苗毒株在哺乳动物细胞培养体系中,特别是Vero细胞中的生长速度,将在流感病毒疫苗生产中起到重要作用。The present invention relates to a method for recombining an influenza virus (Influenza virus) vaccine strain with other influenza virus strains, obtaining a Vero cell-adapted strain, and a viral amino acid site determining its adaptability. Cell medium culture of influenza virus to obtain vaccine strain is an inevitable trend of influenza vaccine production. Vero cells are recommended by WHO as an alternative cell strain for influenza vaccine production because of their safety and reliability, but most influenza viruses are in this cell. The ability to expand is limited, so increasing the growth rate of influenza vaccine strains in mammalian cell culture systems, especially Vero cells, will play an important role in the production of influenza virus vaccines.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说 明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。The invention is further illustrated below in conjunction with specific embodiments. It should be understood that these embodiments are only used to say The invention is not intended to limit the scope of the invention. The experimental methods in the following examples which do not specify the specific conditions are usually prepared according to conventional conditions such as J. Sambrook et al., Molecular Cloning Experiment Guide, Science Press, 2002, or according to the manufacturer's recommended conditions. . Percentages and parts are by weight unless otherwise stated.
材料和方法Materials and Method
反向遗传学获得PR8病毒的方法Reverse genetics method for obtaining PR8 virus
以八质粒反向遗传学拯救流感病毒的方法(Hoffmann,E.等,2000.A DNA transfection system for generation of influenza A virus from eight plasmids.Proc Natl Acad Sci U S A 97:6108-6113)拯救PR8病毒。简要地说,提供分别包含8条PR8病毒基因的反向遗传学表达质粒pHW2000(获自圣犹达儿童研究医院,田纳西大学,美国),即质粒pHW2000-PR8-HA,pHW2000-PR8-NA,pHW2000-PR8-NS,pHW2000-PR8-M,pHW2000-PR8-NP,pHW2000-PR8-PB1,pHW2000-PR8-PB2,pHW2000-PR8-PA,各病毒基因插入pHW2000的BsmBI位点。8种质粒以等量混合,每种质粒1ug,以Lipofectamine2000(Invitrogen)试剂转染在6cm培养皿中长至约90%单层的293T细胞。转染48小时后收取上清,感染MDCK细胞,感染后48小时收取上清,在MDCK细胞(购自ATCC)上进行两轮空斑纯化,得到的纯化病毒即为PR8病毒。病毒扩增后,进一步鉴定基因型,确定拯救过程中没有多余突变。Rescue PR8 by means of eight-plasmid reverse genetics to rescue influenza virus (Hoffmann, E. et al., 2000. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97: 6108-6113) virus. Briefly, a reverse genetic expression plasmid pHW2000 (available from St. Jude Children's Research Hospital, University of Tennessee, USA) containing eight PR8 viral genes, plasmid pHW2000-PR8-HA, pHW2000-PR8-NA, was provided. pHW2000-PR8-NS, pHW2000-PR8-M, pHW2000-PR8-NP, pHW2000-PR8-PB1, pHW2000-PR8-PB2, pHW2000-PR8-PA, each viral gene was inserted into the BsmBI site of pHW2000. Eight plasmids were mixed in equal amounts, 1 ug of each plasmid, and transfected into 293T cells of about 90% monolayer in a 6 cm dish with Lipofectamine 2000 (Invitrogen) reagent. After 48 hours of transfection, the supernatant was collected, MDCK cells were infected, supernatant was collected 48 hours after infection, and two rounds of plaque purification were performed on MDCK cells (purchased from ATCC), and the obtained purified virus was PR8 virus. After the virus was amplified, the genotype was further identified and no additional mutations were identified during the rescue.
病毒空斑纯化、扩增和基因型鉴定Viral plaque purification, amplification and genotyping
分别将病毒按10倍稀释度以PBS溶液做梯度稀释,稀释液加入6孔板中长至100%的MDCK单层细胞,37℃感染1h,随后每孔加入3ml的overlay培养基(1.5ml 2×DMEM+1.5ml 1.8%Agar+1μg/ml TPCK trypsin),待overlay培养基凝固后,在37℃、5%CO2的培养箱中培养48-72小时至形成肉眼可见的空斑。用枪头挑取单个病毒空斑至1ml PBS中,4℃放置4小时。将此含有单克隆病毒的PBS同上按10倍稀释度做稀释,重复一轮空斑纯化,两轮空斑纯化后的病毒于75cm2细胞培养瓶中单层MDCK细胞以Infection Medium扩增。The virus was diluted with PBS solution at a 10-fold dilution. The dilution was added to 100% MDCK monolayer cells in a 6-well plate, infected at 37 ° C for 1 h, and then 3 ml of overlay medium (1.5 ml 2 ) was added to each well. × DMEM + 1.5 ml 1.8% Agar + 1 μg / ml TPCK trypsin), after the medium was solidified, it was cultured in a 37 ° C, 5% CO 2 incubator for 48-72 hours to form a visible plaque. A single virus plaque was picked with a pipette tip into 1 ml of PBS and allowed to stand at 4 ° C for 4 hours. The monoclonal virus-containing PBS was diluted as above with a 10-fold dilution, and one round of plaque purification was repeated. The virus after two rounds of plaque purification was amplified in Infection Medium in a single layer of MDCK cells in a 75 cm 2 cell culture flask.
收获的病毒以RNeasy RNA抽提试剂盒(Qiagen,Chatsworth,CA)抽提病毒RNA,方法见试剂盒说明书(Cat No.52904),以M-MLV反转录酶(Invitrogen)和流感病毒基因组特异性引物Uni 12(5’-AGCAAAAGCAGG-3’(SEQ ID NO.: 20))(Hoffmann,E.,J.Stech,Y.Guan,R.G.Webster,and D.R.Perez.2001.Universal primer set for the full-length amplification of all influenza A viruses.Arch Virol 146:2275-89.)反转录,所得病毒cDNA使用含有BsmBI(Bm)或BsaI(Ba)或AarI(Aar)位点的流感病毒片段特异性通用引物进行PCR获得8条病毒基因(Hoffmann,E.,J.Stech,Y.Guan,R.G.Webster,and D.R.Perez.2001.Universal primer set for the full-length ampl ification of all influenza A viruses.Arch Virol 146:2275-89),克隆至pHW2000载体,测序确定病毒基因序列。The harvested virus was extracted with RNeasy RNA extraction kit (Qiagen, Chatsworth, CA) by the kit instructions (Cat No. 52904), with M-MLV reverse transcriptase (Invitrogen) and influenza virus genome specific. Sex Primer Uni 12 (5'-AGCAAAAGCAGG-3' (SEQ ID NO.: 20)) (Hoffmann, E., J. Stech, Y. Guan, RG Webster, and DR Perez. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146: 2275-89.) Reverse transcription, the resulting viral cDNA was PCR-derived using a universal primer for influenza virus fragment containing BsmBI (Bm) or BsaI (Ba) or AarI (Aar) sites to obtain 8 viral genes (Hoffmann, E., J. Stech, Y. Guan, RG Webster, and DR Perez. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146: 2275-89), cloned into a pHW2000 vector, and sequenced to determine the viral gene sequence.
流感病毒片段特异性通用引物序列如下:Influenza virus fragment-specific universal primer sequences are as follows:
用于扩增PB2的引物:Primers used to amplify PB2:
Ba-PB2-F:TATTGGTCTCAGGGAGCGAAAGCAGGTC;(SEQ ID NO.:4)Ba-PB2-F: TATTGGTCTCAGGGAGCGAAAGCAGGTC; (SEQ ID NO.: 4)
Ba-PB2-R:ATATGGTCTCGTATTAGTAGAAACAAGGTCGTTT;(SEQ ID NO.:5)Ba-PB2-R: AATTGGTCTCGTATTAGTAGAAACAAGGTCGTTT; (SEQ ID NO.: 5)
用于扩增PB1的引物:Primers used to amplify PB1:
Aar-PB1-F:TATTCACCTGCTTTAGGGAGCGAAAGCAGGCA;(SEQ ID NO.:6)Aar-PB1-F: TATTCACCTGCTTTAGGGAGCGAAAGCAGGCA; (SEQ ID NO.: 6)
Aar-PB1-R:ATATCACCTGCTTTGTATTAGTAGAAACAAGGCATTT;(SEQ ID NO.:7)Aar-PB1-R: ATCACACCTGCTTTGTATTAGTAGAAACAAGGCATTT; (SEQ ID NO.: 7)
用于扩增PA的引物:Primers for amplifying PA:
Bm-PA-F:TATTCGTCTCAGGGAGCGAAAGCAGGTAC;(SEQ ID NO.:8)Bm-PA-F: TATTCGTCTCAGGGAGCGAAAGCAGGTAC; (SEQ ID NO.: 8)
Bm-PA-R:ATATCGTCTCGTATTAGTAGAAACAAGGTACTT;(SEQ ID NO.:9)Bm-PA-R: ATCCGTCTCGTATTAGTAGAAACAAGGTACTT; (SEQ ID NO.: 9)
用于扩增HA的引物:Primers for amplifying HA:
Bm-HA-F:TATTCGTCTCAGGGAGCGAAAGCAGGGG;(SEQ ID NO.:10)Bm-HA-F: TATTCGTCTCAGGGAGCGAAAGCAGGGG; (SEQ ID NO.: 10)
Bm-HA-R:ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTTT;(SEQ ID NO.:11)Bm-HA-R: ATCCGTCTCGTATTAGTAGAAACAAGGGTGTTTT; (SEQ ID NO.: 11)
用于扩增NP的引物:Primers used to amplify NP:
Ba-NP-F:TATTGGTCTCAGGGAGCGAAAGCAGGGTA;(SEQ ID NO.:12)Ba-NP-F: TATTGGTCTCAGGGAGCGAAAGCAGGGTA; (SEQ ID NO.: 12)
Ba-NP-R:ATATGGTCTCGTATTAGTAGAAACAAGGGTATTTTT;(SEQ ID NO.:13)Ba-NP-R: ATAGAGTCTCGTATTAGTAGAAACAAGGGTATTTTT; (SEQ ID NO.: 13)
用于扩增NA的引物:Primers for amplifying NA:
Ba-NA-F:TATTGGTCTCAGGGAGCGAAAGCAGGAGT;(SEQ ID NO.:14)Ba-NA-F: TATTGGTCTCAGGGAGCGAAAGCAGGAGT; (SEQ ID NO.: 14)
Ba-NA-R:ATATGGTCTCGTATTAGTAGAAACAAGGAGTTTTTT;(SEQ ID NO.:15)Ba-NA-R: AATTGGTCTCGTATTAGTAGAAACAAGGAGTTTTTT; (SEQ ID NO.: 15)
用于扩增M的引物:Primers used to amplify M:
Bm-M-F:TATTCGTCTCAGGGAGCGAAAGCAGGTAG;(SEQ ID NO.:16)Bm-M-F: TATTCGTCTCAGGGAGCGAAAGCAGGTAG; (SEQ ID NO.: 16)
Bm-M-R:ATATCGTCTCGTATTAGTAGAAACAAGGTAGTTTTT;(SEQ ID NO.:17)Bm-M-R: ATCCGTCTCGTATTAGTAGAAACAAGGTAGTTTTT; (SEQ ID NO.: 17)
用于扩增NS的引物: Primers used to amplify NS:
Bm-NS-F:TATTCGTCTCAGGGAGCGAAAGCAGGGTG;(SEQ ID NO.:18)Bm-NS-F: TATTCGTCTCAGGGAGCGAAAGCAGGGTG; (SEQ ID NO.: 18)
Bm-NS-R:ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTTT。(SEQ ID NO.:19)Bm-NS-R: ATCCGTCTCGTATTAGTAGAAACAAGGGTGTTTT. (SEQ ID NO.: 19)
RT-PCRRT-PCR
将提取的RNA中加入2μl 5μg/ml的Uni 12引物,混匀后70℃水浴5分钟。后将此混合物加入逆转录反应体系(M-MLV 5×Buffer 8μl,dNTP 10mM2μl,RNase 40U/μl 1μl,M-MLV 200U/μl 2μl),37℃水浴1-2小时,95℃10分钟,得到cDNA产物。2 μl of 5 μg/ml Uni 12 primer was added to the extracted RNA, and the mixture was mixed and then subjected to a water bath at 70 ° C for 5 minutes. Then, the mixture was added to a reverse transcription reaction system (M-MLVBuffer 8 μl, dNTP 10 mM 2 μl, RNase 40 U/μl 1 μl, M-MLV 200 U/μl 2 μl), and the mixture was immersed in a water bath at 37 ° C for 1-2 hours at 95 ° C for 10 minutes. cDNA product.
PCRPCR
将cDNA产物加入PCR反应体系(ddH2O 36μl,10×PCR Buffer 5μl,dNTP Mixture[2.5mM]4.0μl,primers[20μM]1.0μl/1.0μl,viral cDNA[100μg/ml]3.0μl,Fusion[FINNZYMES,Cat No.F530L]0.3μl)。按上述体系进行反应,先94℃变性2min,再按以下参数反应34个循环:94℃变性1min,55℃退火30sec,72℃延伸1min,最后72℃延伸7min。将PCR产物上样于DNA琼脂糖凝胶于紫外灯下割胶目的片段,使用胶回收试剂盒(AXYGEN,AxyPrep DNA Gel Extraction Kit,Cat No.AP-GX-250)得到病毒基因。The cDNA product was added to the PCR reaction system (ddH 2 O 36 μl, 10×PCR Buffer 5 μl, dNTP Mixture [2.5 mM] 4.0 μl, primers [20 μM] 1.0 μl/1.0 μl, viral cDNA [100 μg/ml] 3.0 μl, Fusion [ FINNZYMES, Cat No. F530L] 0.3 μl). The reaction was carried out according to the above system, first denatured at 94 ° C for 2 min, and then reacted for 34 cycles according to the following parameters: denaturation at 94 ° C for 1 min, annealing at 55 ° C for 30 sec, extension at 72 ° C for 1 min, and finally extension at 72 ° C for 7 min. The PCR product was applied to a DNA agarose gel under a UV lamp to fractionate the target fragment, and a viral gene was obtained using a gel recovery kit (AXYGEN, AxyPrep DNA Gel Extraction Kit, Cat No. AP-GX-250).
反向遗传学拯救PR8-WSN NS病毒Reverse genetics to rescue PR8-WSN NS virus
反向遗传学方法同前所述。以pHW2000-WSN-NS,pHW2000-PR8-HA,pHW2000-PR8-NA,pHW2000-PR8-M,pHW2000-PR8-NP,pHW2000-PR8-PB1,pHW2000-PR8-PB2,pHW2000-PR8-PA为转染质粒组合,以Lipofectamine2000(Invitrogen)试剂转染上述8条病毒基因(即WSN的基因NS,以及PR8的基因NP、HA、NA、M、PA、PB1、PB2)于6cm培养皿中长至约90%单层的293T细胞。转染48小时后收取上清,感染MDCK细胞,感染后48小时收取上清,在MDCK细胞上进行两轮空斑纯化,测序确定得到的纯化病毒即为PR8-WSN NS。病毒扩增后,进一步鉴定基因型,确定拯救过程中没有多余突变。The reverse genetics approach is as described above. With pHW2000-WSN-NS, pHW2000-PR8-HA, pHW2000-PR8-NA, pHW2000-PR8-M, pHW2000-PR8-NP, pHW2000-PR8-PB1, pHW2000-PR8-PB2, pHW2000-PR8-PA The plasmid was combined and transfected with Lipofectamine 2000 (Invitrogen) reagent into the above 8 viral genes (ie, the gene NS of WSN and the genes NP, HA, NA, M, PA, PB1, PB2 of PR8) in a 6 cm culture dish. 90% monolayer of 293T cells. After 48 hours of transfection, the supernatant was collected and infected with MDCK cells. The supernatant was collected 48 hours after infection, and two rounds of plaque purification were performed on MDCK cells. The purified virus obtained by sequencing was PR8-WSN NS. After the virus was amplified, the genotype was further identified and no additional mutations were identified during the rescue.
反向遗传学拯救PR8-WSN M病毒Reverse Genetics to Rescue PR8-WSN M Virus
反向遗传学方法同前所述。以pHW2000-WSN-M,pHW2000-PR8-HA,pHW2000-PR8-NA,pHW2000-PR8-NS,pHW2000-PR8-NP,pHW2000-PR8-PB1, pHW2000-PR8-PB2,pHW2000-PR8-PA为转染质粒组合,以Lipofectamine2000(Invitrogen)试剂转染上述8条病毒基因(也即,WSN的基因M,以及PR8的基因NS、HA、NA、NP、PA、PB1、PB2)于6cm培养皿中长至约90%单层的293T细胞。转染48小时后收取上清,感染MDCK细胞,感染后48小时收取上清,在MDCK细胞上进行两轮空斑纯化,测序确定得到的纯化病毒即为PR8-WSN M。病毒扩增后,进一步鉴定基因型,确定拯救过程中没有多余突变。The reverse genetics approach is as described above. With pHW2000-WSN-M, pHW2000-PR8-HA, pHW2000-PR8-NA, pHW2000-PR8-NS, pHW2000-PR8-NP, pHW2000-PR8-PB1, pHW2000-PR8-PB2, pHW2000-PR8-PA is a transfection plasmid combination, and the above eight viral genes are transfected with Lipofectamine2000 (Invitrogen) reagent (that is, the gene M of WSN, and the genes NS, HA, NA, NP of PR8) , PA, PB1, PB2) grew to approximately 90% monolayer of 293T cells in a 6 cm dish. After 48 hours of transfection, the supernatant was collected and infected with MDCK cells. The supernatant was collected 48 hours after infection, and two rounds of plaque purification were performed on MDCK cells. The purified virus obtained by sequencing was PR8-WSN M. After the virus was amplified, the genotype was further identified and no additional mutations were identified during the rescue.
反向遗传学拯救PR8-4P病毒Reverse genetics to rescue PR8-4P virus
反向遗传学方法同前所述。以pHW2000-WSN-PA,pHW2000-WSN-NP,pHW2000-WSN-PB1,pHW2000-WSN-PB2,pHW2000-PR8-HA,pHW2000-PR8-NA,pHW2000-PR8-NS,pHW2000-PR8-M,为转染质粒组合,以Lipofectamine2000(Invitrogen)试剂转染上述8条病毒基因(也即,WSN的基因PA、NP、PB1、PB2,以及PR8的基因HA、NA、M、NS)于6cm培养皿中长至约90%单层的293T细胞。转染48小时后收取上清,感染MDCK细胞,感染后48小时收取上清,在MDCK细胞上进行两轮空斑纯化,测序确定得到的纯化病毒即为PR8-WSN 4P。病毒扩增后,进一步鉴定基因型,确定拯救过程中没有多余突变。The reverse genetics approach is as described above. With pHW2000-WSN-PA, pHW2000-WSN-NP, pHW2000-WSN-PB1, pHW2000-WSN-PB2, pHW2000-PR8-HA, pHW2000-PR8-NA, pHW2000-PR8-NS, pHW2000-PR8-M, Transfection of plasmid combinations, transfection of the above 8 viral genes (ie, genes PA, NP, PB1, PB2, and PR8 genes HA, NA, M, NS) in a 6 cm culture dish with Lipofectamine 2000 (Invitrogen) reagent. Up to about 90% monolayer of 293T cells. After 48 hours of transfection, the supernatant was collected and infected with MDCK cells. The supernatant was collected 48 hours after infection, and two rounds of plaque purification were performed on MDCK cells. The purified virus obtained by sequencing was PR8-WSN 4P. After the virus was amplified, the genotype was further identified and no additional mutations were identified during the rescue.
反向遗传学拯救PR8-NS突变病毒Reverse genetics to rescue PR8-NS mutant virus
首先构建包含单个点突变NS1K55E、NS1D101H、NS1S103F,I106M、NS1A171D/NS2L14M、NS2E22G、NS1D189M/NS2M31I、NS2E63G、NS1E221K、NS2K86R和NS2H104Q的pHW2000-PR8-NS质粒,根据产品说明书(Cat No 200518)利用QuickChange试剂盒(Stratagene)构建突变。简要的说,先设计一对退火温度在78℃左右的包含突变位点的引物(在下方),然后直接使用此引物,以质粒pHW2000-PR8-NS作为模版进行PCR,所得到的产物用DpnI(NEB)酶切1小时,将PCR产物直接传化感受态细胞(DH-5α),所鉴定的阳性克隆既是含有突变后的质粒。突变引物:First, construct a pHW2000-PR8-NS plasmid containing a single point mutation NS1 K55E , NS1 D101H , NS1 S103F, I106M , NS1 A171D /NS2 L14M , NS2 E22G , NS1 D189M /NS2 M31I , NS2 E63G , NS1 E221K , NS2 K86R and NS2 H104Q Mutations were constructed using the QuickChange kit (Stratagene) according to the product specification (Cat No 200518). Briefly, a pair of primers containing a mutation site (below) with an annealing temperature of about 78 ° C was first designed, and then the primer was directly used, and PCR was carried out using the plasmid pHW2000-PR8-NS as a template, and the obtained product was DpnI. (NEB) was digested for 1 hour, and the PCR product was directly transferred into competent cells (DH-5α), and the positive clones identified were both plasmids containing the mutation. Mutant primers:
NS1K55ENS1 K55E :
正向:GGTCTGGACATCGAGACAGCCACACG(SEQ ID NO.:21)Forward: GGTCTGGACATCGAGACAGCCACACG (SEQ ID NO.: 21)
反向:CGTGTGGCTGTCTCGATGTCCAGACC(SEQ ID NO.:22)Reverse: CGTGTGGCTGTCTCGATGTCCAGACC (SEQ ID NO.: 22)
NS1D101HNS1 D101H :
正向:AGGAAATGTCAAGGCACTGGTCCATGCT(SEQ ID NO.:23)Forward: AGGAAATGTCAAGGCACTGGTCCATGCT (SEQ ID NO.: 23)
反向:AGCATGGACCAGTGCCTTGACATTTCCT(SEQ ID NO.:24) Reverse: AGCATGGACCAGTGCCTTGACATTTCCT (SEQ ID NO.: 24)
NS1S103F,I106MNS1 S103F, I106M :
正向:TCAAGGGACTGGTTCATGCTCATGCCCAAGCAGAAAG(SEQ ID NO.:25)Forward: TCAAGGGACTGGTTCATGCTCATGCCCAAGCAGAAAG (SEQ ID NO.: 25)
反向:CTTTCTGCTTGGGCATGAGCATGAACCAGTCCCTTGA(SEQ ID NO.:26)Reverse: CTTTCTGCTTGGGCATGAGCATGAACCAGTCCCTTGA (SEQ ID NO.: 26)
NS1A171D/NS2L14MNS1 A171D /NS2 L14M :
正向:CCAGGACATACTGATGAGGATGTCAAAAA(SEQ ID NO.:27)Forward: CCAGGACATACTGATGAGGATGTCAAAAA (SEQ ID NO.: 27)
反向:TTTTTGACATCCTCATCAGTATGTCCTGG(SEQ ID NO.:28)Reverse: TTTTTGACATCCTCATCAGTATGTCCTGG (SEQ ID NO.: 28)
NS2E22GNS2 E22G :
正向:AAAAATGCAGTTGGGGTCCTCATCGGAG(SEQ ID NO.:29)Forward: AAAAATGCAGTTGGGGTCCTCATCGGAG (SEQ ID NO.: 29)
反向:CTCCGATGAGGACCCCAACTGCATTTTT(SEQ ID NO.:30)Reverse: CTCCGATGAGGACCCCAACTGCATTTTT (SEQ ID NO.: 30)
NS1D189M/NS2M31INS1 D189M /NS2 M31I :
正向:GGACTTGAATGGAATAATAACACAGTTCGAG(SEQ ID NO.:31)Forward: GGACTTGAATGGAATAATAACACAGTTCGAG (SEQ ID NO.: 31)
反向:CTCGAACTGTGTTATTATTCCATTCAAGTCC(SEQ ID NO.:32)Reverse: CTCGAACTGTGTTATTATTCCATTCAAGTCC (SEQ ID NO.: 32)
NS2E63GNS2 E63G :
正向:CCAAAACAGAAACGGGAAATGGCGGGAA(SEQ ID NO.:33)Forward: CCAAAACAGAAACGGGAAATGGCGGGAA (SEQ ID NO.: 33)
反向:TTCCCGCCATTTCCCGTTTCTGTTTTGG(SEQ ID NO.:34)Reverse: TTCCCGCCATTTCCCGTTTCTGTTTTGG (SEQ ID NO.: 34)
NS1E221KNS1 E221K :
正向:CAAAACAGAAACGAAAAATGGCGGGAAC(SEQ ID NO.:35)Forward: CAAAACAGAAACGAAAAATGGCGGGAAC (SEQ ID NO.: 35)
反向:GTTCCCGCCATTTTTCGTTTCTGTTTTG(SEQ ID NO.:36)Reverse: GTTCCCGCCATTTTTCGTTTCTGTTTTG (SEQ ID NO.: 36)
NS2K86RNS2 K86R :
正向:GAAGAAGTGAGACACAGACTGAAGATAACAGAGAA(SEQ ID NO.:37)Forward: GAAGAAGTGAGACACAGACTGAAGATAACAGAGAA (SEQ ID NO.: 37)
反向:TTCTCTGTTATCTTCAGTCTGTGTCTCACTTCTTC(SEQ ID NO.:38)Reverse: TTCTCTGTTATCTTCAGTCTGTGTCTCACTTCTTC (SEQ ID NO.: 38)
NS2H104QNS2 H104Q :
正向:TATGCAAGCCTTACAACTATTGCTTGAAGTGG(SEQ ID NO.:39)Forward: TATGCAAGCCTTACAACTATTGCTTGAAGTGG (SEQ ID NO.: 39)
反向:CCACTTCAAGCAATAGTTGTAAGGCTTGCATA(SEQ ID NO.:40)Reverse: CCACTTCAAGCAATAGTTGTAAGGCTTGCATA (SEQ ID NO.: 40)
反向遗传学方法同前所述。以pHW2000-PR8-NSmut,pHW2000-PR8-HA,pHW2000-PR8-NA,pHW2000-PR8-PB1,pHW2000-PR8-M,pHW2000-PR8-NP,pHW2000-PR8-PB2,pHW2000-PR8-PA为转染质粒组合,以Lipofectamine2000(Invitrogen)试剂转染上述8条病毒基因(也即,PR8的基因NS含有上述突变,以及PR8的基因NP、HA、NA、M、PB1、PA、PB2)于6cm培养皿中长至约90%单层的293T细胞。转染48小时后收取上清,感染MDCK细胞,感染后48小时收取上清,在MDCK细胞上进行两轮空斑纯化,测序确定得到的纯化病毒即为 PR8-NS mut。病毒扩增后,进一步鉴定基因型,确定拯救过程中没有多余突变。The reverse genetics approach is as described above. With pHW2000-PR8-NSmut, pHW2000-PR8-HA, pHW2000-PR8-NA, pHW2000-PR8-PB1, pHW2000-PR8-M, pHW2000-PR8-NP, pHW2000-PR8-PB2, pHW2000-PR8-PA The plasmid was combined and the above eight viral genes were transfected with Lipofectamine 2000 (Invitrogen) reagent (that is, the gene NS of PR8 contained the above mutation, and the genes of NP, HA, NA, M, PB1, PA, PB2 of PR8) were cultured at 6 cm. Up to about 90% monolayer of 293T cells in the dish. After 48 hours of transfection, the supernatant was collected and infected with MDCK cells. The supernatant was collected 48 hours after infection, and two rounds of plaque purification were performed on MDCK cells. The purified virus obtained by sequencing was PR8-NS mut. After the virus was amplified, the genotype was further identified and no additional mutations were identified during the rescue.
空斑免疫染色Plaque immunostaining
病毒空斑免疫染色法依据文献(Matrosovich,M.等,New low-viscosity overlay medium for viral plaque assays.Virol J 3:63)操作。简要地说,Vero或者MDCK细胞在12孔板中培养至100%单层,吸出培养液,PBS洗一遍,将病毒按10倍稀释度做梯度稀释,每孔加入400μl病毒稀释液37℃感染30分钟。30分钟后,吸出病毒感染液,每孔加入2ml Overlay培养液(1:1体积比的2×DMEM[Gibco]:2.4%Avicel[FMC BioPolymer],以及终浓度1μg/ml TPCK-trypsin[Sigma]和50unit/ml青霉素[Invitrogen],50μg/ml链霉素[Invitrogen]),37℃、5%CO2的培养箱中培养48-72小时。取出12孔板,吸出Overlay培养液,PBS洗两遍,加入含有4%多聚甲醛的PBS溶液固定1小时后,吸出固定液,PBS洗三遍,每次5分钟。随后加入穿膜液(含有0.3%Tritian X-100的PBS),室温放置30分钟。吸出穿膜液,PBS洗三遍,每次5分钟,然后加入带有辣根过氧化物酶直标的抗NP蛋白的多抗(购自中国科学院上海生命科学研究院抗体中心),室温放置1小时。吸出抗体后用含有0.05%Tween-20的PBS洗三次,每次5分钟。最后加入True Blue底物(KPL)进行显色,空斑外围被感染的细胞为蓝色,拍照后用Photoshop软件将图片颜色调整为黑白两色。Viral plaque immunostaining is performed according to the literature (Matrosovich, M. et al., New low-viscosity overlay medium for viral plaque assays. Virol J 3: 63). Briefly, Vero or MDCK cells were cultured in a 12-well plate to a 100% monolayer, aspirate the culture, washed once with PBS, and the virus was serially diluted in 10-fold dilutions, and 400 μl of virus dilution was added to each well to infect at 37 °C. minute. After 30 minutes, the virus infection solution was aspirated, and 2 ml of Overlay medium was added to each well (1:1 volume ratio of 2×DMEM [Gibco]: 2.4% Avicel [FMC BioPolymer], and a final concentration of 1 μg/ml TPCK-trypsin [Sigma] And 50 units/ml penicillin [Invitrogen], 50 μg/ml streptomycin [Invitrogen]), cultured in an incubator at 37 ° C, 5% CO 2 for 48-72 hours. The 12-well plate was taken out, the Overlay culture solution was aspirated, washed twice with PBS, and fixed in a PBS solution containing 4% paraformaldehyde for 1 hour, and then the fixed solution was aspirated, and washed three times with PBS for 5 minutes each time. The permeabilizing solution (PBS containing 0.3% Tritian X-100) was then added and allowed to stand at room temperature for 30 minutes. Aspirate the transmembrane solution, wash it three times with PBS for 5 minutes, then add the anti-NP protein polyclonal antibody with horseradish peroxidase (purchased from the Shanghai Institute of Life Sciences, Chinese Academy of Sciences), and place at room temperature. hour. The antibody was aspirated and washed three times with PBS containing 0.05% Tween-20 for 5 minutes each time. Finally, the True Blue substrate (KPL) was added for color development, and the infected cells on the periphery of the plaque were blue. After photographing, the color of the picture was adjusted to black and white using Photoshop software.
病毒滴定Virus titration
以空斑免疫染色方法,计下空斑数目在10左右的孔中的空斑数目,根据该孔所对应的稀释浓度和感染量,计算得到每ml病毒液含有可形成空斑的病毒量(pfu/ml)。Using the plaque immunostaining method, the number of plaques in the wells with a number of plaques of about 10 is counted. According to the dilution concentration and the amount of infection corresponding to the wells, the amount of virus containing plaques per ml of virus solution is calculated ( Pfu/ml).
病毒在细胞中的生长曲线Growth curve of virus in cells
细胞在6cm培养皿中长至100%单层,以MOI=0.001接种病毒,37℃感染1小时,吸出感染液,加入4ml Infection Medium(DMEM[Gibco]+0.2%BSA+1μg/ml TPCK-trypsin[Sigma]),于37℃、5%CO2的培养箱中培养。在感染后2,24,48,72,96小时各收取含有病毒的细胞上清40μl置入-80℃冰箱中冻存。Vero细胞需要每24h补充加入1μg/ml TPCK-trypsin。病毒滴度在MDCK 细胞上滴定,结果按时间绘制成曲线。The cells were grown to a 100% monolayer in a 6 cm culture dish, inoculated with MOI=0.001, infected at 37 ° C for 1 hour, aspirate the infection solution, and added 4 ml of Infection Medium (DMEM [Gibco] + 0.2% BSA + 1 μg / ml TPCK-trypsin [Sigma]), cultured in an incubator at 37 ° C, 5% CO 2 . At the 2, 24, 48, 72, and 96 hours after infection, 40 μl of the supernatant containing the virus was collected and stored in a -80 ° C freezer. Vero cells need to be supplemented with 1 μg/ml TPCK-trypsin every 24 h. Viral titers were titrated on MDCK cells and the results were plotted as a function of time.
血凝抑制实验Hemagglutination inhibition experiment
小鼠血清取自PR8病毒免疫过的小鼠或者空白小鼠。0.1ml血清加0.4ml受体破坏酶(RDE,购自中国疾控中心),37℃过夜。56℃灭活30分钟,再加0.5ml PBS至终浓度为10-1稀释度。处理好的血清在96孔板中2倍梯度稀释,稀释度从2-1至2-10。病毒定量按照以下方法进行:病毒用1%的鸡红细胞按照标准步骤做HA滴定。能引起完全血凝的最高稀释度为滴定终点,此稀释度为1HA单位/50μl。此稀释度往前数3个稀释度即为4HA单位/25μl。每孔加入25μl包含4HA单位的指定病毒与稀释好的血清混合,37℃孵育1小时使其充分相互作用,每孔加入50μl 1%鸡红细胞,室温静置30分钟。血清的血凝抑制滴度是能够抑制红细胞凝集的最高稀释度的倒数(Kendal A,P.M.,&Skehel J.1982.Concepts and procedures for laboratory-based influenza surveillance..Geneva:World Health Organization.)。Mouse sera were obtained from PR8 virus-immunized mice or blank mice. 0.1 ml serum plus 0.4 ml receptor-destroying enzyme (RDE, purchased from China CDC), overnight at 37 °C. Inactivated at 56 ° C for 30 minutes, add 0.5 ml PBS to a final concentration of 10 -1 dilution. The treated serum was diluted 2-fold in 96-well plates at dilutions ranging from 2 -1 to 2 -10 . Viral quantification was performed as follows: The virus was titrated with 1% chicken red blood cells according to standard procedures. The highest dilution that can cause complete hemagglutination is the end point of the titration, which is 1 HA unit / 50 μl. This dilution is 3HA units/25 μl in the first 3 dilutions. 25 μl of the designated virus containing 4 HA units was added to each well and mixed with the diluted serum, and the cells were fully incubated by incubating at 37 ° C for 1 hour, and 50 μl of 1% chicken red blood cells were added to each well, and allowed to stand at room temperature for 30 minutes. The hemagglutination inhibition titer of serum is the reciprocal of the highest dilution capable of inhibiting red blood cell agglutination (Kendal A, PM, & Skehel J. 1982. Concepts and procedures for laboratory-based influenza surveillance.. Geneva: World Health Organization.).
鸡胚致死实验Chicken embryo lethal experiment
10日龄SPF级别鸡胚(购自山东SPF实验种鸡场),照蛋确定鸡胚活力,将100μl 10倍梯度稀释的病毒,106PFU/胚到102PFU/胚,接种至鸡胚尿囊腔,观察鸡胚存活至接种后48小时。ELD50按照Reed&Muench方法计算(Matsuoka,Y.等,2009.The mouse model for influenza.Curr Protoc Microbiol Chapter 15:Unit 15G 3)。10 day old SPF chicken embryos (purchased from Shandong SPF experimental chicken farm), the embryo activity was determined according to the eggs, 100 μl of 10-fold gradient virus, 10 6 PFU/embryo to 10 2 PFU/embryo, inoculated to chicken embryos The allantoic cavity was observed and the chick embryos were observed to survive 48 hours after inoculation. ELD50 was calculated according to the Reed & Muench method (Matsuoka, Y. et al., 2009. The mouse model for influenza. Curr Protoc Microbiol Chapter 15: Unit 15G 3).
小鼠实验Mouse experiment
病毒的小鼠半数致死量(MLD50)按照以下方法进行测定。6-8周龄SPF级别BALB/c雌性小鼠(购自上海斯莱克实验动物有限公司),每5只为一组,乙醚麻醉,再将10倍梯度稀释的病毒液50μl(含有1×104到1×101病毒)通过鼻腔接种滴入小鼠肺部,每天观察小鼠体重变化至感染后第14天。在此14天内,若当小鼠出现明显的病症,比如竖毛和蜷缩,体重下降又超过25%时,即判定小鼠死亡,并因人道主义因素对小鼠实行安乐死(先用乙醚麻醉小鼠后颈部脱臼致死)。MLD50按照Reed&Muench方法计算(Matsuoka,Y.,E.W.Lamirande,and K.Subbarao.2009.The mouse model for influenza.Curr Protoc  Microbiol Chapter 15:Unit 15G 3.)。The median lethal dose (MLD 50 ) of the virus was measured by the following method. 6-8 weeks old SPF BALB/c female mice (purchased from Shanghai Slack Laboratory Animal Co., Ltd.), each group of 5, anesthetized with ether, and then 10 times gradient diluted virus solution 50 μl (containing 1×10) 4 to 1 × 10 1 virus) was instilled into the lungs of mice by nasal inoculation, and the body weight of the mice was observed daily until the 14th day after infection. During the 14 days, if the mice developed obvious symptoms, such as vertical hair and contracture, and the weight loss exceeded 25%, the mice were judged to be dead, and the mice were euthanized due to humanitarian factors (first anesthetized with ether) The rat's neck is dislocated and killed.) MLD50 was calculated according to the Reed & Muench method (Matsuoka, Y., EWLamirande, and K. Subbarao. 2009. The mouse model for influenza. Curr Protoc Microbiol Chapter 15: Unit 15G 3.).
实施例1、来源于WSN毒株的NS基因可以促进PR8毒株在Vero细胞上的高速生长。Example 1. The NS gene derived from the WSN strain can promote the high-speed growth of the PR8 strain on Vero cells.
Vero细胞作为WHO推荐的疫苗生产的哺乳动物细胞系,其安全性已经得到了很好的证明,可是流感疫苗生产使用的骨架病毒株PR8是鸡胚的适应株,对于哺乳动物细胞系Vero的适应性不够好,不能够达到生产的要求。The safety of Vero cells as a mammalian cell line produced by WHO recommended vaccine has been well documented, but the skeletal strain PR8 used in the production of influenza vaccine is an adaptive strain of chicken embryo and adapts to the mammalian cell line Vero. The sex is not good enough to meet the production requirements.
因此,本发明人将PR8毒株同其他较为适应哺乳动物细胞系的毒株WSN进行重组,改善了PR8在Vero细胞上的适应性。利用反向遗传技术将PR8毒株的基因(除了HA、NA)同WSN进行替换,通过比较空斑大小,只有来自WSN的NS基因替换PR8的NS基因后,重组病毒PR8-WSN NS能够在Vero细胞上形成比PR8更大的空斑(图1A)。而重组病毒PR8-WSN M(来自WSN的M基因替换PR8的M基因)和PR8-WSN 4P(来自WSN聚合酶复合体基因PB1,PB2,PA和NP替换PR8聚合酶复合体基因PB1,PB2,PA和NP)只能形成和PR8类似的针尖样空斑(图1,A)。进一步的,以MOI=0.001接种病毒,感染Vero细胞,绘制病毒生长曲线,只有PR8-WSN NS病毒的生长速度病明显高于PR8病毒,并接近WSN病毒的生长速度(图1,B)。在感染后24h,PR8-WSN NS的病毒滴度要比PR8病毒高约128倍(PR8-WT和PR8-WSN NS的病毒滴度分别是2.9*10^3pfu/ml和3.7*10^5pfu/ml,)。在感染后48h,PR8-WSN NS的病毒滴度要比PR8病毒高约55倍(PR8-WT和PR8-WSN NS的病毒滴度分别是3.3*10^4pfu/ml和1.8*10^6pfu/ml)(图1,B)。Therefore, the inventors recombined the PR8 strain with other strains WSN which are more suitable for mammalian cell lines, and improved the adaptability of PR8 on Vero cells. Reverse genetics was used to replace the gene of PR8 strain (except HA, NA) with WSN. By comparing the plaque size, only the NS gene from WSN replaces the NS gene of PR8, and the recombinant virus PR8-WSN NS can be in Vero. A larger plaque than PR8 was formed on the cells (Fig. 1A). The recombinant virus PR8-WSN M (M gene from WSN replaces the M gene of PR8) and PR8-WSN 4P (from the WSN polymerase complex genes PB1, PB2, PA and NP replace the PR8 polymerase complex gene PB1, PB2, PA and NP) can only form needle-like plaques similar to PR8 (Fig. 1, A). Further, the virus was inoculated with MOI=0.001, infected with Vero cells, and the virus growth curve was drawn. Only the growth rate of PR8-WSN NS virus was significantly higher than that of PR8 virus and close to the growth rate of WSN virus (Fig. 1, B). At 24 h after infection, the virus titer of PR8-WSN NS was about 128 times higher than that of PR8 virus (the virus titers of PR8-WT and PR8-WSN NS were 2.9*10^3pfu/ml and 3.7*10^5pfu/, respectively). Ml,). At 48 h after infection, the virus titer of PR8-WSN NS was about 55 times higher than that of PR8 virus (the virus titers of PR8-WT and PR8-WSN NS were 3.3*10^4pfu/ml and 1.8*10^6pfu/, respectively). Ml) (Figure 1, B).
以上数据表明,来自WSN的NS基因能够使PR8在Vero细胞上的生长速度明显提高,改善了PR8在Vero细胞上的适应性。The above data indicates that the NS gene from WSN can significantly increase the growth rate of PR8 on Vero cells and improve the adaptability of PR8 on Vero cells.
实施例2、NS2K86R突变可以促进PR8在Vero上的高速生长。Example 2. The NS2 K86R mutation promotes high-speed growth of PR8 on Vero.
为了鉴定NS基因上促进PR8在Vero细胞上快速生长的位点,将PR8毒株的NS基因同WSN毒株的NS基因进行了序列比对。PR8的NS基因同WSN的NS基因在核苷酸序列上共有11个非同义突变,位于其核苷酸的第163,301,308,318,512,537,565,660,661,729,784位(图2,A)。由于NS基因在转录成mRNA的时候会发生选择性剪切,形成2种不同的mRNA,分别编码非结构蛋白NS1和出核转运蛋白NS2(NEP)两个蛋白。这11个核苷酸的突变导致了 NS1蛋白上的7个氨基酸突变和NS2蛋白上的6个氨基酸突变(图2,A)。In order to identify a site on the NS gene that promotes rapid growth of PR8 on Vero cells, the NS gene of the PR8 strain was sequence aligned with the NS gene of the WSN strain. The NS gene of PR8 shares a total of 11 non-synonymous mutations in the nucleotide sequence with the NS gene of WSN, located at positions 163, 301, 308, 318, 512, 537, 565, 660, 661, 729, 784 of the nucleotide (Fig. 2, A). Since the NS gene undergoes selective cleavage upon transcription into mRNA, two different mRNAs are formed, encoding two proteins, the non-structural protein NS1 and the nuclear transporter NS2 (NEP), respectively. This 11 nucleotide mutation resulted in 7 amino acid mutations on the NS1 protein and 6 amino acid mutations on the NS2 protein (Fig. 2, A).
同过反向遗传学的方法,拯救了以PR8为骨架的分别带有所有上述NS基因非同义突变的毒株(103F和106M因已知通过协同作用稳定NS1蛋白同宿主因子CPSF30的结合而同时突变)。以MOI=0.001接种病毒,感染Vero细胞,通过比较生长曲线,带有核苷酸163(即NS1K55E),301(即NS1D101H),565(即NS1D189M/NS2M31I),660(即NS2E63G)和729(即NS2K86R)位点突变的毒株在不同程度上促进了PR8在Vero上的生长效率,其中,以NS2K86R突变的促进作用最强(图2,B)。其他位点的突变对PR8在Vero上的生长并没有很明显的作用。由于在NS2K86R基础上增加其他有促进作用的突变并不能使得病毒滴度进一步提升,因此,NS2K86R是最主要的促进PR8病毒在Vero细胞中生长的突变。The reverse genetics method rescued the PR8-based strains with non-synonymous mutations of all of the above NS genes (103F and 106M are known to synergistically stabilize the binding of the NS1 protein to the host factor CPSF30). Simultaneous mutation). The virus was inoculated with MOI=0.001, infected with Vero cells, by comparing growth curves with nucleotides 163 (ie NS1 K55E ), 301 (ie NS1 D101H ), 565 (ie NS1 D189M / NS2 M31I ), 660 (ie NS2 E63G) The strains mutated with 729 (ie NS2 K86R ) site promoted the growth efficiency of PR8 on Vero to varying degrees, and the promotion of NS2 K86R mutation was the strongest (Fig. 2, B). Mutations at other sites did not have a significant effect on the growth of PR8 on Vero. Since the addition of other promoting mutations based on NS2 K86R does not further increase the virus titer, NS2 K86R is the most important mutation that promotes the growth of PR8 virus in Vero cells.
进一步分析了病毒在Vero细胞中的滴度,以MOI=0.001接种病毒,在感染Vero细胞后48小时,含有NS2K86R突变的PR8病毒(PR8-NS2K86R)能够得到较高的病毒滴度,是PR8病毒滴度的30倍(图3,A),空斑试验表明,NS2K86R单点突变已经能够使得PR8病毒产生和WSN类似的较大的明显空斑(图3,B)。The titer of the virus in Vero cells was further analyzed, and the virus was inoculated with MOI=0.001. The PR8 virus containing the NS2 K86R mutation (PR8-NS2 K86R ) was able to obtain a higher virus titer 48 hours after infection with Vero cells. 30 times the PR8 virus titer (Fig. 3, A), plaque assays showed that the NS2 K86R single point mutation has enabled the PR8 virus to produce a larger, distinct plaque similar to WSN (Fig. 3, B).
实施例3、NS2K86R的突变不改变PR8的抗原性,以及对小鼠和鸡胚的致病力。Example 3. Mutation of NS2 K86R did not alter the antigenicity of PR8, as well as pathogenicity to mouse and chicken embryos.
在哺乳动物细胞培养体系中,PR8高产株(PR8-NS2K86R)具有比PR8野生型病毒更快的生长速度,本发明人需要衡量它对哺乳动物和禽类的致病力是否也相应提高,这对疫苗安全生产具有重要意义。In a mammalian cell culture system, the PR8 high-yield strain (PR8-NS2 K86R ) has a faster growth rate than the PR8 wild-type virus, and the inventors need to measure whether the pathogenicity to mammals and birds is correspondingly increased. It is of great significance for the safe production of vaccines.
为了检测NS2K86R的突变是否会影响PR8骨架表达的HA的抗原性,本发明人使用针对PR8病毒HA蛋白的特异性抗血清进行PR8-NS2K86R高产株的血凝抑制实验,结果表明,NS2K86R的突变并不改变高产株HA的抗原特异性(表2)。为了衡量PR8高产株(PR8-NS2K86R)对鸡胚的致死力是否有变化,本发明人测定了PR8,PR8-NS2K86R两株病毒的鸡胚半数致死量(ELD50),结果表明两株病毒的ELD50没有显著差异(表1),这说明PR8高产株不会提高病毒对鸡胚的致病力。本发明人用6-8周龄的雌性BALB/c小鼠测定了PR8,PR8-NS2K86R两株病毒的株病毒的小鼠半数致死量(MLD50)(表1)。结果表明,两株病毒的MLD50差异不大。这说明PR8高产株不会提高病毒对哺乳动物的致病力。In order to examine whether the mutation of NS2K86R affects the antigenicity of HA expressed by the PR8 skeleton, the inventors performed a hemagglutination inhibition experiment of a PR8-NS2 K86R high-yield strain using a specific antiserum against the PR8 virus HA protein, and the results showed that NS2 K86R Mutation did not alter the antigen specificity of the high-yielding strain HA (Table 2). In order to measure whether the lethality of the PR8 high-yield strain (PR8-NS2 K86R ) changes to the chicken embryo, the inventors determined the half-lethal lethal dose (ELD50) of the PR8, PR8-NS2 K86R virus, and the results showed that the two viruses There was no significant difference in ELD50 (Table 1), indicating that the PR8 high-yield strain did not increase the virulence of the virus to chicken embryos. The present inventors measured the median lethal dose (MLD50) of the strains of the PR8, PR8-NS2 K86R strains of the strains of female BALB/c mice of 6-8 weeks old (Table 1). The results showed that the MLD50 of the two strains did not differ much. This indicates that the PR8 high-yield strain does not increase the virulence of the virus to mammals.
表2 Table 2
Figure PCTCN2016074850-appb-000001
Figure PCTCN2016074850-appb-000001
结论in conclusion
本发明通过将PR8毒株同WSN毒株重组,找到了提高病毒在哺乳动物细胞如Vero细胞培养体系中生长速度的一个氨基酸位点突变,即:NS2K86R。这个点突变可以大大提高PR8毒株在哺乳动物细胞培养体系中的产量,而不会提高其对哺乳动物和鸡胚的致病能力。本发明提供了一种高产、安全的,以哺乳动物细胞为培养介质的,适应性改良疫苗病毒株,对疫苗研究和生产具有重要价值。The present invention finds an amino acid site mutation that increases the growth rate of the virus in mammalian cells such as Vero cell culture system by recombining the PR8 strain with the WSN strain, namely: NS2 K86R . This point mutation can greatly increase the yield of the PR8 strain in mammalian cell culture systems without increasing its pathogenic ability to mammals and chicken embryos. The invention provides a high-yield and safe adaptable improved vaccine virus strain which uses mammalian cells as a culture medium, and has great value for vaccine research and production.
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。 All documents mentioned in the present application are hereby incorporated by reference in their entirety in their entireties in the the the the the the the the In addition, it should be understood that various modifications and changes may be made by those skilled in the art in the form of the appended claims.

Claims (15)

  1. 甲型流感病毒出核转运蛋白NS2的突变蛋白,其特征在于,所述的突变蛋白的第86位氨基酸由K突变为R。A mutant protein of the influenza A virus out nuclear transporter NS2, characterized in that the 86th amino acid of the mutant protein is mutated from K to R.
  2. 如权利要求1所述的突变蛋白,其特征在于,所述的突变蛋白的氨基酸序列如SEQ ID NO.:2所示。The mutein according to claim 1, wherein the amino acid sequence of the mutein is as shown in SEQ ID NO.: 2.
  3. 如权利要求1所述的突变蛋白,其特征在于,所述的突变蛋白还包括所基于所述突变蛋白进行改造而得到的衍生蛋白,其中,所述的衍生蛋白包括在所述突变蛋白的基础上经过一个或几个(通常为1-10个,较佳地为1-8个,更佳地为1-6个、1-5个、1-3个或1-2个)氨基酸的缺失、插入和/或取代后的含有NS2第86位氨基酸由K变为R突变的衍生蛋白。The mutein according to claim 1, wherein said mutein further comprises a derivative protein obtained by engineering based on said mutein, wherein said derivatized protein is included in the base of said mutein Substitution of one or more (usually 1-10, preferably 1-8, more preferably 1-6, 1-5, 1-3 or 1-2) amino acids A derivative protein containing an amino acid at position 86 of NS2 from K to an R mutation after insertion and/or substitution.
  4. 如权利要求1所述的突变蛋白,其特征在于,所述的衍生蛋白还包括在所述突变蛋白的C末端和/或N末端添加或缺失一个或几个(通常为1-10个,较佳地为1-8个,更佳地为1-6个、1-5个、1-3个或1-2个)氨基酸。The mutein according to claim 1, wherein said derivative protein further comprises one or more additions (usually 1-10) at the C-terminus and/or N-terminus of said mutein. Preferably, it is 1-8, more preferably 1-6, 1-5, 1-3 or 1-2) amino acids.
  5. 一种分离的多核苷酸,其特征在于,所述的多核苷酸编码权利要求1-4任一所述的突变蛋白。An isolated polynucleotide, characterized in that the polynucleotide encodes the mutein of any of claims 1-4.
  6. 一种表达载体,其特征在于,所述的表达载体含有权利要求5所述的多核苷酸。An expression vector comprising the polynucleotide of claim 5.
  7. 一种宿主细胞,其特征在于,所述的宿主细胞含有权利要求6所述的表达载体,或所述的宿主细胞的染色体整合有权利要求5所述的多核苷酸。A host cell comprising the expression vector of claim 6, or the host cell has a chromosomal integration of the polynucleotide of claim 5.
  8. 一种重组型PR8甲型流感病毒株,其特征在于,所述PR8甲型流感病毒株NS2蛋白的第86位氨基酸突变由K突变为R。A recombinant PR8 influenza A virus strain characterized in that the 86th amino acid mutation of the PR8 influenza A virus strain NS2 protein is mutated from K to R.
  9. 一种病毒拯救系统,其特征在于,所述病毒拯救系统含有表达甲型流感病毒出核转运蛋白NS2突变蛋白的表达载体。A virus rescue system characterized in that the viral rescue system comprises an expression vector expressing an influenza A virus out nuclear transporter NS2 mutein.
  10. 如权利要求9所述的病毒拯救系统,其特征在于,所述一个或多个表达野生型PR8甲型流感病毒株所需蛋白的其他表达载体包括表达选自下组蛋白的载体:RNA多聚酶PB2(SEQ ID NO.:41)、RNA多聚酶PB1(SEQ ID NO.:42)、RNA多聚酶PA(SEQ ID NO.:43)、血凝素HA(SEQ ID NO.:44)、核外壳核蛋白NP(SEQ ID NO.:45)、神经酰胺酶NA(SEQ ID NO.:46)、基质蛋白M1(SEQ ID NO.:47)、非结构蛋白NS1(SEQ ID NO.:48)、和基质蛋白M2(SEQ ID NO.:49)。The viral rescue system according to claim 9, wherein said one or more expression vectors expressing a protein required for a wild-type PR8 influenza A virus strain comprise a vector expressing a protein selected from the group consisting of RNA polymerase PB2. (SEQ ID NO.: 41), RNA polymerase PB1 (SEQ ID NO.: 42), RNA polymerase PA (SEQ ID NO.: 43), hemagglutinin HA (SEQ ID NO.: 44), nuclear coat nucleoprotein NP (SEQ ID NO.: 45), ceramidase NA (SEQ ID NO.: 46), matrix protein M1 (SEQ ID NO.: 47), non-structural protein NS1 (SEQ ID NO.: 48), and matrix Protein M2 (SEQ ID NO.: 49).
  11. 如权利要求10所述的病毒拯救系统,其特征在于,所述的野生型PR8 甲型流感病毒株的序列如SEQ ID NO.:50-57所示。A virus rescue system according to claim 10, wherein said wild type PR8 The sequence of the influenza A virus strain is shown in SEQ ID NO.: 50-57.
  12. 如权利要求9所述的病毒拯救系统,其特征在于,所述的病毒拯救系统含有表达SEQ ID NO.:2、和SEQ ID NOs.:41-49所示蛋白的表达载体。The viral rescue system according to claim 9, wherein said viral rescue system comprises an expression vector expressing the proteins of SEQ ID NO.: 2, and SEQ ID NOs.: 41-49.
  13. 权利要求1-4任一所述突变蛋白或其编码基因、权利要求6所述表达载体或权利要求7所述宿主细胞的用途,其特征在于,用于制备权利要求8所述的重组型PR8甲型流感病毒株。Use of the mutant protein of any one of claims 1 to 4, or a gene encoding the same, the expression vector of claim 6, or the host cell of claim 7, wherein the recombinant PR8 of claim 8 is prepared. Influenza A strain.
  14. 一种制备权利要求8所述重组型PR8甲型流感病毒株的试剂盒,其特征在于,所述的试剂盒中含有权利要求9所述的病毒拯救系统。A kit for producing the recombinant PR8 influenza A virus strain according to claim 8, wherein the kit comprises the virus rescue system according to claim 9.
  15. 一种制备权利要求8所述重组型PR8甲型流感病毒株的方法,其特征在于,包括步骤:A method for producing the recombinant PR8 influenza A virus strain according to claim 8, comprising the steps of:
    (a)提供权利要求9所述的病毒拯救系统,其含有表达甲型流感病毒出核转运蛋白NS2突变蛋白的表达载体,和表达野生型PR8甲型流感病毒株所需蛋白的其他表达载体;所述野生型PR8甲型流感病毒株所需蛋白的其他表达载体包括表达选自下组蛋白的载体:RNA多聚酶PB2、RNA多聚酶PB1、RNA多聚酶PA、血凝素HA、核外壳核蛋白NP、神经酰胺酶NA、基质蛋白M1和M2、和非结构蛋白NS1;(a) providing the virus rescue system of claim 9, comprising an expression vector expressing an influenza A virus out nuclear transporter NS2 mutein, and another expression vector expressing a protein required for a wild type PR8 influenza A virus strain; Other expression vectors for the protein required for the wild-type PR8 influenza A virus strain include a vector expressing a sub-histone: RNA polymerase PB2, RNA polymerase PB1, RNA polymerase PA, hemagglutinin HA, nuclear coat nucleoprotein NP, Ceramidease NA, matrix proteins M1 and M2, and non-structural protein NS1;
    (b)将步骤(a)中的病毒拯救系统转染宿主细胞,培养所述的宿主细胞,从而获得权利要求8所述的重组型PR8甲型流感病毒株。 (b) transfecting the virus rescue system in the step (a) with a host cell, culturing the host cell, thereby obtaining the recombinant PR8 influenza A virus strain of claim 8.
PCT/CN2016/074850 2015-02-28 2016-02-29 New influenza a virus mammalian cell adapted strain and preparation and use thereof WO2016134678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510091993.2A CN105985413A (en) 2015-02-28 2015-02-28 Novel influenza virus A mammalian cell adapted strain and preparation and application thereof
CN201510091993.2 2015-02-28

Publications (1)

Publication Number Publication Date
WO2016134678A1 true WO2016134678A1 (en) 2016-09-01

Family

ID=56787934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074850 WO2016134678A1 (en) 2015-02-28 2016-02-29 New influenza a virus mammalian cell adapted strain and preparation and use thereof

Country Status (2)

Country Link
CN (1) CN105985413A (en)
WO (1) WO2016134678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410305A (en) * 2020-11-26 2021-02-26 中国医学科学院病原生物学研究所 High-yield influenza virus preparation system and preparation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694874B (en) * 2019-03-13 2022-09-23 济宁学院 Cloning and application of wheat gene TaCPSF30 coding sequence
CN113069540B (en) * 2021-03-15 2022-02-22 广州恩宝生物医药科技有限公司 Novel coronavirus vaccine based on influenza virus vector and preparation method thereof
CN114438043B (en) * 2022-01-27 2023-12-15 浙江迪福润丝生物科技有限公司 Attenuated influenza virus vaccine strain and vaccine for distinguishing infection and immunity
CN114381440B (en) * 2022-01-27 2023-12-15 浙江迪福润丝生物科技有限公司 Group of influenza A virus attenuated strains based on synonymous mutation and/or deletion mutation, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976717A (en) * 2003-07-29 2007-06-06 辉瑞产品公司 Safe mutant viral vaccines
US20110081373A1 (en) * 2009-08-11 2011-04-07 Warf - Wisconsin Alumni Research Foundation Attenuating mutations in the influenza a virus nep(=ns2) protein
CN102304495A (en) * 2011-09-08 2012-01-04 中国农业科学院上海兽医研究所 Recombinant influenza virus capable of expressing HA (hemagglutinin) protein with high efficiency and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923886A (en) * 2013-01-11 2014-07-16 中国科学院微生物研究所 Screening of influenza virus temperature-sensitive strain key sites, and mutation strains and mechanism discussion thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1976717A (en) * 2003-07-29 2007-06-06 辉瑞产品公司 Safe mutant viral vaccines
US20110081373A1 (en) * 2009-08-11 2011-04-07 Warf - Wisconsin Alumni Research Foundation Attenuating mutations in the influenza a virus nep(=ns2) protein
CN102304495A (en) * 2011-09-08 2012-01-04 中国农业科学院上海兽医研究所 Recombinant influenza virus capable of expressing HA (hemagglutinin) protein with high efficiency and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410305A (en) * 2020-11-26 2021-02-26 中国医学科学院病原生物学研究所 High-yield influenza virus preparation system and preparation method

Also Published As

Publication number Publication date
CN105985413A (en) 2016-10-05

Similar Documents

Publication Publication Date Title
Chen et al. Advances in development and application of influenza vaccines
JP5845180B2 (en) Influenza viruses and their use
JP2020010711A (en) High titer recombinant influenza viruses with enhanced replication in mdck or vero cells or eggs
EP2010557B1 (en) High titer recombinant influenza viruses for vaccines
EP1631663B1 (en) High titer recombinant influenza viruses for vaccines and gene therapy
CN101365479B (en) Chimeric viruses presenting non-native surface proteins and uses thereof
JP6375329B2 (en) High-titer recombinant influenza virus with enhanced replication in Vero cells
WO2016134678A1 (en) New influenza a virus mammalian cell adapted strain and preparation and use thereof
EP2376628B1 (en) Production of influenza vaccines
EP2160198A2 (en) Influenza vaccines
JP2002517230A (en) Interferon-induced genetically engineered attenuated virus
KR100281676B1 (en) New flu vaccine virus
CN104073513B (en) The preparation method of influenza A virus vaccine mammalian cell adapted strain and adaptation site
JP2015501141A (en) Influenza hemagglutinin mutant
WO2015010073A1 (en) Attenuated influenza vaccines and uses thereof
US20220160863A1 (en) High growth influenza virus
KR102259392B1 (en) H5N8 recombinant influenza virus, a composition for preparing the same, and a vaccine composition containing the same
US20160038583A1 (en) Influenza hemagglutinin variants and uses therefor
CN101857872A (en) Replacement method of influenza A Virus antigenic determinant
KR101426407B1 (en) Recombinant expression vector for preparing highly productive, highly immunogenic and avirulent influenza virus, and use thereof
CN112522213B (en) Separated H3N2 influenza virus strain and application thereof
JP7122772B2 (en) H5N6 recombinant influenza virus, composition for producing the same, and vaccine composition containing the same
Pizzorno Mechanisms of resistance to neuraminidase inhibitors in influenza A viruses and evaluation of combined antiviral therapy
CN107151659B (en) Influenza virus strain and application thereof
KR20230100437A (en) Mammalian avirulent and embryonated egg highly replicative recombinant influenza virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754787

Country of ref document: EP

Kind code of ref document: A1