WO2016134570A1 - 一种电池组和控制电池组方法 - Google Patents
一种电池组和控制电池组方法 Download PDFInfo
- Publication number
- WO2016134570A1 WO2016134570A1 PCT/CN2015/081847 CN2015081847W WO2016134570A1 WO 2016134570 A1 WO2016134570 A1 WO 2016134570A1 CN 2015081847 W CN2015081847 W CN 2015081847W WO 2016134570 A1 WO2016134570 A1 WO 2016134570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- module
- unit
- processing
- determining
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- This document relates to battery technology, and more particularly to a battery pack and a method of controlling the battery pack.
- the backup battery unit BBU is usually used to supply power to the entire array system, and the memory data is flushed into the hard disk within a predetermined time to avoid data loss in the memory that is not brushed into the hard disk.
- the lithium iron phosphate battery is basically used in the battery unit BBU. Due to the characteristics of the battery core, the imbalance between the batteries occurs due to the use time, that is, if the battery core is not balanced. Or, if a battery fails, the entire battery unit BBU will not be able to supply power to the entire array system.
- Embodiments of the present invention provide a battery pack and a method of controlling a battery pack, which can satisfy the problem of supplying power to the entire array system.
- Embodiments of the present invention provide a battery pack including: a control module, a battery module, and a battery processing module, the battery module includes two or more battery units, and the battery processing module includes two or more battery processing units, each battery The unit is connected to only one battery processing unit, and the control module is respectively connected to each of the battery modules and each of the battery processing units;
- the battery processing unit is configured to perform a boosting operation on a voltage outputted by the battery unit connected to the battery processing unit, and perform a current sharing process on the current output by the battery unit and the current output by the other battery unit;
- the control module is configured to acquire system power-down information, and start the battery module to supply power to the system according to the system power-down information.
- control module is further configured to determine a status of the battery module, and determine if If there is an unhealthy battery unit, report the replacement of the unhealthy battery unit.
- control module is further configured to control the battery module to stop supplying power to the system when determining that the system is in a power supply state.
- control module is further configured to: after determining that all the battery units in the battery module are fully charged, control all battery units to turn off the charging function, so that the battery unit performs self-discharge, when determining the battery capacity of the battery unit When the preset value is less than or equal to, the battery unit is subjected to charging processing.
- control module is further configured to determine a capacity of the battery module, and determine that if the total capacity of the battery module cannot meet the system requirement, the information that the battery module needs to be replaced is sent.
- the embodiment of the invention further provides a method for controlling a battery pack, the battery pack being the battery pack as described above, the method comprising:
- the battery module is activated to supply power to the system.
- the method further includes:
- the method further includes:
- the battery module is controlled to stop supplying power to the system.
- the method further includes:
- the battery unit After determining that all the battery cells in the battery module are fully charged, turning off all the battery cell charging functions, so that the battery cells are self-discharged, and when it is determined that the battery capacity of the battery cells is less than or equal to a preset value, The battery unit performs charging processing.
- the method further includes:
- An embodiment of the present invention further provides a computer readable storage medium, where program instructions are stored, when The above method can be implemented when program instructions are executed.
- the solution of the embodiment of the invention realizes independent operation of each battery unit, and performs current sharing processing between the boosted battery modules according to the current demand condition of the system, and the plurality of battery units can be better through the boosting circuit.
- Group a battery pack By dynamically monitoring the status of all battery cells, the charging is managed separately, and the boosting process solves the problem that the voltages between different battery cells are different and cannot be directly connected in parallel.
- the battery unit is a detachable unit, and in the case of a single failure, the battery unit can be directly replaced without replacing the entire battery pack.
- FIG. 1 is a schematic structural view of a battery pack according to an embodiment of the present invention.
- FIG. 2 is a flow chart of a battery pack control method according to an embodiment of the present invention.
- the battery pack control method provided by the embodiment of the present invention can be applied to when the array system is powered when the disk array system is powered off.
- the battery pack control method provided in this embodiment may be performed by a battery pack, which may be integrated in an array system or may be independently configured.
- the system in the present invention may be an array system, and the battery pack may adopt software and / or hardware way to achieve.
- the battery pack and the method of controlling the battery pack provided in the present embodiment will be described in detail below.
- the battery pack of the embodiment of the present invention includes: a control module, a battery module, and a battery processing module, wherein the battery module includes two or more battery units, and the battery processing module includes two or more battery processing units, each battery The unit is connected to and only one battery processing unit, the control module and each battery unit in the battery module, and each battery in the battery processing module Processing unit connection;
- the battery processing unit is configured to perform a boosting operation on a voltage outputted by the battery unit connected to the battery processing unit, and perform a current sharing process on the current output by the battery unit and the current output by the other battery unit;
- the control module is configured to acquire system power-down information, and start the battery module to supply power to the system according to the system power-down information.
- Multiple battery processing modules interact to perform current sharing processing.
- control module further monitors the status of each battery unit, performs charge management (including how much the battery unit self-discharges, starts charging, determines that the battery unit is fully charged, turns off charging, controls the battery module to start sleeping, etc.) to avoid The battery floats to increase battery life.
- control module can also integrate the health status of all battery units (including whether the battery unit is faulty, whether it is unable to be charged, whether there is frequent charging, whether it is caused by aging, etc.) Too low, whether the total available capacity of the battery module meets the system power-off power supply requirements, etc., is reported to the host system for notification information.
- the battery pack of the present embodiment includes: a control module 11, a battery module 12, and a battery processing module 13, wherein:
- the battery module includes at least a first battery unit 121 and a second battery unit 122.
- the battery processing module includes at least a first battery processing unit 131 and a second battery processing unit 132, the first battery unit 121 and the first a battery processing unit 131 is connected, the second battery unit 122 is connected to the second battery processing unit 132; the control module 11 is respectively associated with each of the battery modules, and the battery processing module A battery processing unit is connected, configured to control each battery unit, and monitor each battery processing unit;
- the first battery processing unit 131 is configured to perform a boosting operation on the voltage output by the first battery unit 121, and perform current processing on the current output by the first battery unit 121 and the current output by other battery units. ;
- the second battery processing unit 132 is configured to output the electricity to the second battery unit 122 Pressurizing the boosting operation, and performing current sharing processing on the current output by the second battery unit 122 and the current output by the other battery cells;
- the control module 11 is configured to acquire system power-down information, and start the battery module to supply power to the system according to the system power-down information.
- the module division in the battery pack is only one implementation, and other division manners may be adopted in other embodiments.
- the voltage output by the first battery unit 121 is boosted by the first battery processing unit 131, and the current output by the first battery unit 121 and the current output by other battery units are performed.
- Current sharing processing; the second battery processing unit 132 performs a boosting operation on the voltage output by the second battery unit 122, and performs current processing on the current output by the second battery unit 122 and the current output by other battery units.
- the independent operation of each battery unit is realized, and at the same time, the plurality of battery units can be better combined into one battery group by the boosting circuit.
- the boosting operation and the current sharing processing of the battery unit by the battery processing unit are automatically performed when the battery pack is externally powered.
- each battery unit is a detachable unit, and in the case of a single failure, the battery unit can be directly replaced, and the entire battery pack does not need to be replaced, which increases flexibility.
- each of the battery cells in the battery module and each of the battery processing modules are respectively connected by the control module 11, and all the battery cells and all the battery processing units can be controlled. It is realized that a plurality of battery cells are combined into one battery pack, so that power supply to the entire array system can be satisfied, and at the same time, different numbers of battery cells can be combined to meet different power consumption requirements of different array systems.
- control module 11 is further configured to determine whether the state of the battery module is normal, that is, whether the battery unit is unhealthy, and if so, report the replacement of the unhealthy battery unit. Information or battery module status alarm information.
- the control module 11 is further configured to determine whether the state of the battery module is normal, that is, whether the battery unit is unhealthy, and if so, report the replacement of the unhealthy battery unit. Information or battery module status alarm information.
- control module 11 is further configured to: determine that the system is in a power supply state; and control the battery module to stop supplying power to the system. You can also set the battery module to go to sleep.
- control module 11 is further configured to repeatedly perform the following operations: after determining that all the battery units in the battery module are fully charged, controlling all the battery units to turn off the charging function, so that the battery unit performs Self-discharging to increase battery life, when it is determined that the battery capacity of the battery unit is less than or equal to a preset value, the battery unit is charged.
- control module 11 is further configured to determine a capacity of the battery module, if the total capacity of the battery module is available (the total output capacity of the battery module, that is, the sum of all battery unit capacities) If the system requirements cannot be met (for example, when the battery pack is degraded due to normal aging of the battery pack, or if some battery cells in the battery module are faulty, etc.), the battery module needs to be replaced.
- FIG. 2 is a flowchart of a method for controlling a battery pack according to an embodiment of the present invention.
- an execution body of this embodiment may enable a control module in a battery pack, such as an MCU, and the method includes the following steps:
- Step 201 Acquire system power-down information
- This embodiment is applicable to when the array system is powered off, the control module in the battery pack obtains the system power-down information.
- the power failure alarm signal After the system power is turned off, the power failure alarm signal will be output to the system.
- the system transmits the signal to the control unit of the battery. After receiving the signal, the corresponding action is performed to supply power.
- Step 202 Start a battery module to supply power to the system according to the system power-down information.
- the system power-down information is acquired, and according to the system power-down information, the battery module is activated to supply power to the system, thereby implementing power supply to the storage array system.
- a plurality of battery units are combined into one battery group, so that power supply to the entire array system can be satisfied, and at the same time, different numbers of battery units can be combined to meet different consumption of different array systems. Electrical requirements.
- the method may further include:
- the method may further include:
- the battery module is controlled to stop supplying power to the system.
- the method further includes:
- the unit After determining that all of the battery cells in the battery module are fully charged, turning off all of the battery cell charging functions to cause the battery cells to self-discharge, and when determining that the battery capacity of the battery cells is less than or equal to a preset value, The unit is charged. .
- the method further includes:
- the solution of the embodiment of the invention realizes independent operation of each battery unit, and at the same time, the plurality of battery units can be better combined into one battery group through the boosting circuit, and the voltages between different battery units are different and cannot be directly connected in parallel. problem.
- the battery unit is a detachable unit, and in the case of a single failure, the battery unit can be directly replaced without replacing the entire battery pack.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种电池组和控制电池组方法。所述电池组包括:控制模块、电池模块和电池处理模块,所述电池模块包括两个以上电池单元,所述电池处理模块包括两个以上电池处理单元,每个电池单元与且仅与一电池处理单元连接,所述控制模块分别与所述电池模块中每个电池单元,以及所述电池处理模块中每个电池处理单元连接;所述电池处理单元,设置为对与所述电池处理单元连接的电池单元输出的电压进行升压操作,以及对所述电池单元输出的电流和其他电池单元输出的电流进行均流处理;所述控制模块,设置为获取系统掉电信息,根据所述系统掉电信息,启动所述电池模块对系统进行供电。
Description
本文涉及电池技术,尤指一种电池组和控制电池组方法。
整个阵列的系统电源突然掉电时,通常使用备用电池单元BBU给整个阵列系统供电,并在规定时间内将内存数据刷入硬盘,以避免内存中未刷入硬盘的数据丢失。
相关技术中,电池单元BBU中基本采用磷酸铁锂电芯,由于该种电芯的特性,随着使用时间的推移,产生电芯之间的不均衡,也就是说,若电芯不均衡较大,或者某个电芯出现故障,整个电池单元BBU将无法满足对整个阵列系统的供电。
发明内容
本发明实施例提供了一种电池组和控制电池组方法,可满足对整个阵列系统供电的问题。
本发明实施例提供了一种电池组,包括:控制模块、电池模块和电池处理模块,所述电池模块包括两个以上电池单元,所述电池处理模块包括两个以上电池处理单元,每个电池单元与且仅与一电池处理单元连接,所述控制模块分别与所述电池模块中每个电池单元,以及所述电池处理模块中每个电池处理单元连接;
所述电池处理单元,设置为对与所述电池处理单元连接的电池单元输出的电压进行升压操作,以及对所述电池单元输出的电流和其他电池单元输出的电流进行均流处理;
所述控制模块,设置为获取系统掉电信息,根据所述系统掉电信息,启动所述电池模块对系统进行供电。
可选地,所述控制模块,还设置为确定所述电池模块的状态,判断如果
有电池单元出现不健康情况,上报对不健康的电池单元进行替换的信息。
可选地,所述控制模块,还设置为在确定系统处于供电状态时,控制所述电池模块停止对所述系统进行供电。
可选地,所述控制模块,还设置为在确定所述电池模块中所有电池单元充满电之后,控制所有电池单元关闭充电功能,以使电池单元进行自放电,当判断有电池单元的电池容量小于或等于预设值时,对所述电池单元进行充电处理。
可选地,所述控制模块,还设置为确定所述电池模块的容量,判断如果电池模块可用总容量无法满足系统要求,则发送电池模块需要更换的信息。
本发明实施例还提供了一种控制电池组方法,所述电池组为如上所述的电池组,所述方法包括:
获取系统掉电信息;
根据所述系统掉电信息,启动电池模块对系统进行供电。
可选地,所述方法还包括:
确定所述电池模块的状态,判断如果有电池单元出现不健康情况,上报对不健康的电池单元进行替换的信息。
可选地,所述方法还包括:
确定系统处于供电状态时,控制所述电池模块停止对所述系统进行供电。
可选地,所述方法还包括:
确定所述电池模块中所有电池单元充满电之后,关闭所述所有电池单元充电功能,以使所述电池单元进行自放电,当判断有电池单元的电池容量小于或等于预设值时,对所述电池单元进行充电处理。
可选地,所述方法还包括:
确定所述电池模块的容量,判断如果电池模块可用总容量无法满足系统要求,则发送电池模块需要更换的信息。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该
程序指令被执行时可实现上述方法。
本发明实施例方案实现了对每个电池单元的独立运行,根据系统的电流需求情况,对升压后的电池模块间进行均流处理,同时通过升压电路能较好的将多个电池单元组合成一个电池组。通过动态监控所有电池单元的状态,对充电进行单独管理,同时升压处理解决了不同电池单元之间电压不同而不能直接并联的问题。另外,电池单元为可拆卸单元,当出现单个故障的情况下,直接替换电池单元即可,无需替换整个电池组。
附图概述
图1为本发明实施例电池组的结构示意图;
图2为本发明实施例电池组控制方法流程图。
下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供的电池组控制方法可以应用于磁盘阵列系统停电时对阵列系统供电时。本实施例提供的电池组控制方法可以通过电池组来执行,该电池组可以集成在阵列系统中,也可以独立设置,其中,本发明中的系统可以是阵列系统,该电池组可以采用软件和/或硬件的方式来实现。以下对本实施例提供的电池组和控制电池组方法进行详细地说明。
本发明实施例所述电池组,包括:控制模块、电池模块和电池处理模块,其中,所述电池模块包括两个以上电池单元,所述电池处理模块包括两个以上电池处理单元,每个电池单元与且仅与一电池处理单元连接,所述控制模块分别与所述电池模块中每个电池单元,以及所述电池处理模块中每个电池
处理单元连接;
所述电池处理单元,设置为对与所述电池处理单元连接的电池单元输出的电压进行升压操作,以及对所述电池单元输出的电流和其他电池单元输出的电流进行均流处理;
所述控制模块,设置为获取系统掉电信息,根据所述系统掉电信息,启动所述电池模块对系统进行供电。
多个电池处理模块之间进行交互,以进行均流处理。
可选地,控制模块还监控每个电池单元的状态,进行充电管理(包括电池单元自放电到何种程度后启动充电、判定电池单元充满后关闭充电、控制电池模块启动休眠等),以避免电池浮冲,增加电池寿命,此外,控制模块还可以综合所有电池单元的健康状态(包括电池单元是否出现故障,是否有无法充电的情况,是否出现频繁充电的情况,是否因老化等原因导致容量过低,电池模块可用总容量是否满足系统掉电供电要求等),上报给主机系统相关通知信息。
下面分别进行说明。图1为本发明实施例电池组的结构示意图,如图1所示,本实施例的电池组,包括:控制模块11、电池模块12和电池处理模块13,其中:
所述电池模块至少包括第一电池单元121和第二电池单元122,所述电池处理模块至少包括第一电池处理单元131和第二电池处理单元132,所述第一电池单元121与所述第一电池处理单元131连接,所述第二电池单元122与所述第二电池处理单元132连接;所述控制模块11分别与所述电池模块中每个电池单元,以及所述电池处理模块中每个电池处理单元连接,设置为对每个电池单元进行控制,以及对每个电池处理单元进行监控;
其中,
所述第一电池处理单元131,设置为对所述第一电池单元121输出的电压进行升压操作,以及对所述第一电池单元121输出的电流和其他电池单元输出的电流进行均流处理;
所述第二电池处理单元132,设置为对所述第二电池单元122输出的电
压进行升压操作,以及对所述第二电池单元122输出的电流和其他电池单元输出的电流进行均流处理;
所述控制模块11,设置为获取系统掉电信息,根据所述系统掉电信息,启动电池模块对系统进行供电。
本实施例中对于电池组中模块划分仅为一种实现,在其他实施例中可以采用其他划分方式。
在本实施例中,通过第一电池处理单元131,对所述第一电池单元121输出的电压进行升压操作,以及对所述第一电池单元121输出的电流与其他电池单元输出的电流进行均流处理;第二电池处理单元132,对所述第二电池单元122输出的电压进行升压操作,以及对所述第二电池单元122输出的电流与其他电池单元输出的电流进行均流处理,实现了对每个电池单元的独立运行,同时通过升压电路能较好的将多个电池单元组合成一个电池组。电池处理单元对电池单元的升压操作和均流处理是在电池组对外进行供电时自动进行的。此外,每个电池单元为可拆卸单元,当出现单个故障的情况下,直接替换电池单元即可,无需替换整个电池组,增加了灵活性。
在本实施例中,通过控制模块11分别与所述电池模块中每个电池单元,以及所述电池处理模块中每个电池处理单元连接,可以对所有电池单元,以及所有电池处理单元进行控制,实现了将多个电池单元组合成一个电池组,从而可以满足对整个阵列系统的供电,同时,可以将不同数目的电池单元进行组合,以满足不同阵列系统的不同耗电要求。
可选地,在上述实施例的基础上,控制模块11,还设置为确定所述电池模块的状态是否正常,即判断是否有电池单元出现不健康情况,如果有,则上报对不健康电池单元进行替换的信息或电池模块状态报警信息。可选地,在判断电池模块正常后再执行所述根据所述系统掉电信息,启动电池模块对系统进行供电的步骤。
可选地,在上述实施例的基础上,所述控制模块11,还设置为在确定系统处于供电状态;控制所述电池模块停止对所述系统进行供电。还可设置电池模块进入休眠状态。
可选地,在上述实施例的基础上,所述控制模块11,还设置为重复执行以下操作:在确定电池模块中所有电池单元充满电之后,控制所有电池单元关闭充电功能,使电池单元进行自放电,以增加电池寿命,当判断有电池单元的电池容量小于或等于预设值时,对所述电池单元进行充电处理。
可选地,在上述实施例的基础上,所述控制模块11,还设置为确定所述电池模块的容量,如果电池模块可用总容量(电池模块总的输出容量也即所有电池单元容量之和)无法满足系统要求(例如由于电池组正常老化使得容量降低时,或者电池模块中若干电池单元出现故障等),则发送电池模块需要更换信息。
图2为本发明实施例控制电池组方法的流程图,如图2所示,本实施例的执行主体可以使电池组中的控制模块,如MCU,该方法包括如下步骤:
步骤201、获取系统掉电信息;
本实施例适用于阵列系统掉电时,电池组中的控制模块获取到系统掉电信息。
系统电源在掉电后会输出电源掉电告警信号给系统,系统把该信号传递给电池的控制单元,收到该信号后进行相应的动作以进行供电。
步骤202、根据所述系统掉电信息,启动电池模块对系统进行供电。
在本实施例中,获取系统掉电信息,根据所述系统掉电信息,启动电池模块对系统进行供电,实现了对存储阵列系统的供电。
在本发明实施例中,实现了将多个电池单元组合成一个电池组,从而可以满足对整个阵列系统的供电,同时,可以将不同数目的电池单元进行组合,以满足不同阵列系统的不同耗电要求。
可选地,在上述实施例的基础上,所述方法还可以包括:
确定所述电池模块的状态,判断如果有电池单元出现不健康情况,上报对不健康的电池单元进行替换的信息。
可选地,在上述实施例的基础上,所述方法还可以包括:
确定系统处于供电状态时,控制所述电池模块停止对所述系统进行供电。
可选地,在上述实施例的基础上,所述方法还包括:
确定电池模块中所有电池单元充满电之后,关闭所述所有电池单元充电功能,以使所述电池单元进行自放电,当判断有电池单元的电池容量小于或等于预设值时,对所述电池单元进行充电处理。。
本实施例中,通过对电池单元充电放电的循环操作,可以实现在系统遭遇掉电时,需要整个电池组进行供电的时候,启动放电模式。
可选地,在上述实施例的基础上,所述方法还包括:
确定所述电池模块的容量,判断如果电池模块可用总容量无法满足系统要求,则发送电池模块需要更换的信息。
上述可选的步骤可设置为在任何时候执行。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
本发明实施例方案实现了对每个电池单元的独立运行,同时通过升压电路能较好的将多个电池单元组合成一个电池组,解决了不同电池单元之间电压不同而不能直接并联的问题。另外,电池单元为可拆卸单元,当出现单个故障的情况下,直接替换电池单元即可,无需替换整个电池组。
Claims (11)
- 一种电池组,包括:控制模块、电池模块和电池处理模块,所述电池模块包括两个以上电池单元,所述电池处理模块包括两个以上电池处理单元,每个电池单元与且仅与一电池处理单元连接,所述控制模块分别与所述电池模块中每个电池单元,以及所述电池处理模块中每个电池处理单元连接;所述电池处理单元,设置为对与所述电池处理单元连接的电池单元输出的电压进行升压操作,以及对所述电池单元输出的电流和其他电池单元输出的电流进行均流处理;所述控制模块,设置为获取系统掉电信息,根据所述系统掉电信息,启动所述电池模块对系统进行供电。
- 根据权利要求1所述的电池组,所述控制模块,还设置为确定所述电池模块的状态,判断如果有电池单元出现不健康情况,上报对不健康的电池单元进行替换的信息。
- 根据权利要求1所述的电池组,所述控制模块,还设置为在确定系统处于供电状态时,控制所述电池模块停止对所述系统进行供电。
- 根据权利要求1所述的电池组,所述控制模块,还设置为在确定所述电池模块中所有电池单元充满电之后,控制所有电池单元关闭充电功能,以使电池单元进行自放电,当判断有电池单元的电池容量小于或等于预设值时,对所述电池单元进行充电处理。
- 根据权利要求1所述的电池组,所述控制模块,还设置为确定所述电池模块的容量,判断如果电池模块可用总容量无法满足系统要求,则发送电池模块需要更换的信息。
- 一种控制电池组方法,其特征在于,所述电池组为如权利要求1-5任一项所述的电池组,所述方法包括:获取系统掉电信息;根据所述系统掉电信息,启动电池模块对系统进行供电。
- 根据权利要求6所述的方法,所述方法还包括:确定所述电池模块的状态,判断如果有电池单元出现不健康情况,上报对不健康的电池单元进行替换的信息。
- 根据权利要求6所述的方法,所述方法还包括:确定系统处于供电状态时,控制所述电池模块停止对所述系统进行供电。
- 根据权利要求6所述的方法,所述方法还包括:确定所述电池模块中所有电池单元充满电之后,关闭所述所有电池单元充电功能,以使所述电池单元进行自放电,当判断有电池单元的电池容量小于或等于预设值时,对所述电池单元进行充电处理。
- 根据权利要求6所述的方法,所述方法还包括:确定所述电池模块的容量,判断如果电池模块可用总容量无法满足系统要求,则发送电池模块需要更换的信息。
- 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求6-10任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510090230.6 | 2015-02-27 | ||
CN201510090230.6A CN105990871A (zh) | 2015-02-27 | 2015-02-27 | 一种电池组和控制电池组方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016134570A1 true WO2016134570A1 (zh) | 2016-09-01 |
Family
ID=56787896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/081847 WO2016134570A1 (zh) | 2015-02-27 | 2015-06-18 | 一种电池组和控制电池组方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105990871A (zh) |
WO (1) | WO2016134570A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107579566A (zh) * | 2017-09-15 | 2018-01-12 | 青岛海信移动通信技术股份有限公司 | 电池充电电路及充电方法 |
CN116387652A (zh) * | 2023-06-05 | 2023-07-04 | 深圳和润达科技有限公司 | 化成/分容电源设备的在线维护系统及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110854939B (zh) * | 2018-08-20 | 2021-01-01 | 中兴通讯股份有限公司 | 双电池的充电方法、电子设备及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064592A (zh) * | 2011-01-21 | 2011-05-18 | 深圳市皓文电子有限公司 | 一种大功率电池装置 |
WO2014115547A1 (ja) * | 2013-01-24 | 2014-07-31 | パナソニック株式会社 | 電子機器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840523A (zh) * | 2014-03-07 | 2014-06-04 | 上海应用技术学院 | 多电池组的信息和能量分配扩展装置 |
CN103944238B (zh) * | 2014-04-30 | 2015-12-30 | 深圳市睿德电子实业有限公司 | 高稳定便于维护的大功率动力电池 |
-
2015
- 2015-02-27 CN CN201510090230.6A patent/CN105990871A/zh active Pending
- 2015-06-18 WO PCT/CN2015/081847 patent/WO2016134570A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064592A (zh) * | 2011-01-21 | 2011-05-18 | 深圳市皓文电子有限公司 | 一种大功率电池装置 |
WO2014115547A1 (ja) * | 2013-01-24 | 2014-07-31 | パナソニック株式会社 | 電子機器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107579566A (zh) * | 2017-09-15 | 2018-01-12 | 青岛海信移动通信技术股份有限公司 | 电池充电电路及充电方法 |
CN107579566B (zh) * | 2017-09-15 | 2020-03-27 | 青岛海信移动通信技术股份有限公司 | 电池充电电路及充电方法 |
CN116387652A (zh) * | 2023-06-05 | 2023-07-04 | 深圳和润达科技有限公司 | 化成/分容电源设备的在线维护系统及方法 |
CN116387652B (zh) * | 2023-06-05 | 2023-08-25 | 深圳和润达科技有限公司 | 化成/分容电源设备的在线维护系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105990871A (zh) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9524018B2 (en) | Adaptive integral battery pack and voltage regulator | |
US20100299548A1 (en) | Blade server | |
US8129947B2 (en) | Method and system for utilizing a memory control circuit for controlling data transfer to and from a memory system | |
US7560829B2 (en) | Power system using multiple battery pack types | |
JP7127248B2 (ja) | バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両 | |
CN114156971B (zh) | 储能充放电控制的方法、装置及设备、储能系统 | |
US20140132070A1 (en) | Rack and power control method thereof | |
WO2016134570A1 (zh) | 一种电池组和控制电池组方法 | |
US9787133B2 (en) | Hot-pluggable uninterruptible power supply module | |
WO2015112178A2 (en) | Voltage regulation for battery strings | |
US20130300373A1 (en) | Methods and Systems for Battery Management and Charger Control | |
TWM575779U (zh) | Vehicle low voltage electrical system | |
JP5613135B2 (ja) | 携帯端末装置の電池ユニットおよび電力の供給方法 | |
CN101702535A (zh) | 供电装置及供电方法 | |
KR20130020626A (ko) | 축전지 상태 및 부하 전력을 고려한 고전압 직류 전원 공급 장치 및 그 방법 | |
US10193358B2 (en) | Deep-charging power resources of power resource group having identifier corresponding to range within which modulo falls based on charging time | |
TW201546605A (zh) | 整合型不斷電供電系統與方法 | |
JP5689944B2 (ja) | 電気電子機器に電力を供給する電池ユニットおよび電力の供給方法 | |
JP2011010448A (ja) | 制御ユニット | |
US8595534B2 (en) | Method for system energy use management of current shared power supplies | |
WO2021056163A1 (zh) | 电池管理方法和无人机 | |
US20170250546A1 (en) | Power device, storage device and power device control method | |
CN108304059A (zh) | 一种计算机异常断电自动关机系统及方法 | |
CN105678198A (zh) | 一种电子设备及其控制方法 | |
CN102916817B (zh) | 数据中心管理接口的供电控制电路及模块化设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883008 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15883008 Country of ref document: EP Kind code of ref document: A1 |