WO2016133218A1 - Phospha-fluorescein compound or salt thereof, and fluorescent dye using same - Google Patents

Phospha-fluorescein compound or salt thereof, and fluorescent dye using same Download PDF

Info

Publication number
WO2016133218A1
WO2016133218A1 PCT/JP2016/054964 JP2016054964W WO2016133218A1 WO 2016133218 A1 WO2016133218 A1 WO 2016133218A1 JP 2016054964 W JP2016054964 W JP 2016054964W WO 2016133218 A1 WO2016133218 A1 WO 2016133218A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
salt
phosphafluorescein
general formula
Prior art date
Application number
PCT/JP2016/054964
Other languages
French (fr)
Japanese (ja)
Inventor
山口 茂弘
愛子 中
真司 須田
正泰 多喜
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017500770A priority Critical patent/JP6675758B2/en
Publication of WO2016133218A1 publication Critical patent/WO2016133218A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/28Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a phosphafluorescein compound or a salt thereof, or a fluorescent dye using the same.
  • a dye having absorption and fluorescence maximum wavelengths in this region (620 nm or more) has attracted attention in deep observation of living tissue.
  • the fluorescence quantum yield is increased while having a fluorescence maximum wavelength at a position of about 600 to 700 nm. It is preferable to improve.
  • fluorescent dyes exhibiting water solubility there are not so many dyes having a fluorescence maximum at 650 nm or more compared to green or yellow phosphors (dyes having a fluorescence maximum at 495 to 570 nm).
  • a fluorescein dye has an absorption maximum wavelength of 491 nm, a fluorescence maximum wavelength of 510 nm, and a quantum yield of 0.85 (Non-Patent Document 1). Since it is necessary to exhibit absorption and fluorescence with respect to the wavelength, there is a demand for a dye having an absorption maximum and a fluorescence maximum at a wavelength of about 600 to 700 nm.
  • Non-Patent Document 2 it is known that when the oxygen atom of the xanthene skeleton of this fluorescein dye is replaced with a silicon atom, the absorption maximum wavelength is 582 nm, the fluorescence maximum wavelength is 598 nm, and the quantum yield is 0.42, which can be shifted to the longer wavelength side.
  • Non-Patent Document 2 the effect is insufficient and further long wavelength shifts are necessary.
  • a dye having an absorption maximum and a fluorescence maximum in a long wavelength region has a low quantum yield and is difficult to sufficiently increase.
  • these fluorescent dyes have a high maximum occupied orbit (HOMO), and thus react with oxygen under light irradiation to give active oxygen species. Therefore, the stability to light is low.
  • HOMO maximum occupied orbit
  • the present invention provides a compound (fluorescent dye) capable of obtaining a sufficient quantum yield and sufficiently reducing HOMO while having an absorption maximum wavelength and a fluorescence maximum wavelength in the range of 600 to 700 nm. ).
  • the present inventors have developed a series of red fluorescent dyes (phosphafluorescein compounds) in which the oxygen atom at the 10-position of the xanthene ring portion of fluorescein is substituted with a phosphorus atom.
  • This compound is anionized under neutral or alkaline conditions, and has a sufficiently high fluorescence quantum yield even under physiological conditions while having an absorption maximum wavelength and a fluorescence maximum wavelength of 600 to 700 nm. We found that rate was obtained.
  • this compound lowered the HOMO level due to the electronic effect of the phosphorus substituent, a remarkable stabilizing effect against light irradiation was also observed.
  • the present invention has been completed by further research based on such knowledge. That is, the present invention includes the following configurations.
  • R 1 represents an optionally substituted aryl group.
  • R 2 represents a hydrogen atom or an organic group.
  • R is the general formula (1A) to (1C):
  • R 3 represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group.
  • R 4 represents a substituted group. Represents an alkyl group which may be substituted.) It is group represented by these. ] Or a salt, hydrate or solvate thereof.
  • Item 2 The phosphafluorescein compound according to item 1, or a salt, hydrate or solvate thereof, wherein in the general formula (1), R is a group represented by the general formula (1A).
  • Item 3 The phosphafluorescein compound according to Item 1 or 2, or a salt, hydrate, or solvate thereof, having an anion represented by:
  • Item 4 The phosphafluorescein compound or a salt, hydrate or solvate thereof according to any one of Items 1 to 3, which has a maximum absorption wavelength at 600 to 700 nm.
  • Item 5 The phosphafluorescein compound according to any one of Items 1 to 4, having a maximum absorption wavelength at 600 to 700 nm and a fluorescence quantum yield of 0.25 to 0.60, or a salt, hydrate or Solvate.
  • Item 6. A fluorescent dye containing the phosphafluorescein compound according to any one of Items 1 to 5 or a salt, hydrate or solvate thereof.
  • Item 7. The fluorescent dye according to Item 6, which is a fluorescent dye for bioimaging.
  • Item 8 The fluorescent dye according to Item 7, which is a fluorescent dye for cancer cell bioimaging.
  • Item 9. A cell detection agent comprising the fluorescent dye according to any one of Items 6 to 8.
  • Item 10 The cell detection agent according to Item 9, which is a cancer cell detection agent.
  • Item 11 A cell bioimaging method using the fluorescent dye according to any one of Items 6 to 8, or the cell detection agent according to Item 9 or 10.
  • Item 12. The bioimaging method according to Item 11, wherein the cell is a cancer cell.
  • the phosphafluorescein compound of the present invention or a salt, hydrate or solvate thereof has an absorption maximum wavelength and a fluorescence maximum wavelength of 600 to 700 nm because the oxygen atom at the 10-position of the xanthene ring portion of fluorescein is substituted with a phosphorus atom.
  • a sufficiently high fluorescence quantum yield can be obtained even under physiological conditions.
  • the absorption maximum wavelength of 627 nm in the examples is almost the same as the excitation wavelength of 633 nm of the HeNe laser normally provided in a laser microscope, so that the excitation efficiency as a fluorescent dye is extremely high.
  • the phosphafluorescein compound of the present invention or a salt thereof can reduce the HOMO level due to the electronic effect of the phosphorus substituent, and can dramatically improve the stability to light. It is possible to observe for a long time.
  • FIG. 3 is a result of X-ray crystal structure analysis of a phosphafluorescein compound (compound POF) obtained in Example 1.
  • FIG. 2 is an absorption spectrum and a fluorescence spectrum of the phosphafluorescein compound (compound POF) of the present invention when adjusted to pH 3, pH 7, and pH 9 prepared in Test Example 3.
  • FIG. It is an absorption spectrum (upper figure) of the phosphafluorocein compound (compound POF) of the present invention at each pH, and a graph (lower figure) showing the relationship between relative absorption at 627 nm and pH.
  • (A) is a graph showing the absorbance maintenance rate at the absorption maximum wavelength when the phosphafluorescein compound of the present invention and known fluorescein compounds (TokyoGreen and TokyoMagenta) are used.
  • (B) is a graph showing the absorbance maintenance rate at 630 nm of test solutions 7 to 10 prepared in Test Example 5.
  • FIG. 6 is a photograph showing the results of cell incubation and imaging in Test Example 6.
  • the left figure (a) is a Confocal fluorescence image obtained by excitation at 633 nm.
  • the middle figure (b) is a bright field image.
  • the right figure (c) is a merged image of (a) and (b). In the figure, the scale bar is 50 ⁇ m.
  • 6 is a graph showing the results of cytotoxicity in Test Example 6.
  • Phosphafluorescein compound or a salt, hydrate or solvate thereof has the general formula (1):
  • R 1 represents an optionally substituted aryl group.
  • R 2 represents a hydrogen atom or an organic group.
  • R is the general formula (1A) to (1C):
  • R 3 represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group.
  • R 4 represents a substituted group. Represents an alkyl group which may be substituted.) It is group represented by these. ] Or a salt thereof.
  • the phosphafluorescein compound represented by the general formula (1) or a salt thereof is a novel compound not described in any literature.
  • any of a monocyclic aryl group, a polycyclic aryl group, and a heteroaromatic ring group can be employed.
  • the substituent which the aryl group represented by R 1 may have is not particularly limited, and is a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group). Group, n-propyl group, etc.), formyl group, carboxyl group, ester group, amide group (amide group, methylamide group, dimethylamide group etc.), azido group (azidephenyl group etc.), alkynyl group (ethynyl group, propargyl group) Etc.), alkenyl groups (vinyl group, allyl group, etc.) and the like.
  • the number of such substituents is not particularly limited and is preferably 0 to 6, more preferably 0 to 3.
  • R 1 is preferably a substituted or unsubstituted monocyclic aryl group (substituted or unsubstituted phenyl group) from the viewpoint of further improving the fluorescence quantum yield and making it easier to recognize during bioimaging.
  • a substituted monocyclic aryl group having a substituent at the position (substituted phenyl group) is more preferred, and an o-tolyl group is more preferred.
  • the organic group represented by R 2 may be an alkyl group which may have a substituent, an acyl group which may have a substituent, or a substituent.
  • Good cyclic ether groups and the like can be mentioned.
  • alkyl group as the organic group represented by R 2 , both a linear alkyl group and a branched alkyl group can be employed.
  • a straight-chain alkyl group having 1 to 6 carbon atoms is preferable.
  • Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group.
  • branched alkyl group a branched alkyl group having 3 to 6 carbon atoms (particularly 3 to 5 carbon atoms) is preferable.
  • isopropyl group, isobutyl group, t-butyl group, s-butyl group, neopentyl group examples thereof include an isohexyl group and a 3-methylpentyl group.
  • the substituent that the alkyl group as the organic group represented by R 2 may have is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.). .
  • the number of such substituents is not particularly limited and is preferably 0 to 6, more preferably 0 to 3.
  • examples of the acyl group as the organic group represented by R 2 include a methanoyl group and an ethanoyl group.
  • examples of the cyclic ether group as the organic group represented by R 2 include a tetrahydropyranyl group and a tetrahydrofuranyl group.
  • the substituent that the cyclic ether as the organic group represented by R 2 may have is not particularly limited, and is a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), acyl group ( Methanoyl group, ethanoyl group, etc.), silyl group (trimethylsilyl group, triethylsilyl group, etc.) and the like.
  • the number of such substituents is not particularly limited, but is preferably 0 to 2, more preferably 0 to 1.
  • R 2 is preferably a hydrogen atom, an acyl group, or a substituted cyclic ether group, and more preferably a hydrogen atom, from the viewpoint of easy anionization and easy shift of the absorption maximum wavelength and the fluorescence maximum wavelength.
  • both a monocyclic aryl group and a polycyclic aryl group are employed.
  • examples thereof include a phenyl group, an oligoaryl group (naphthyl group, anthryl group, etc.), a biphenyl group, a terphenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group.
  • the substituent which the aryl group represented by R 3 may have is not particularly limited, and is a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group). Group, n-propyl group, etc.).
  • the number of such substituents is not particularly limited, but is preferably 0 to 6, more preferably 0 to 3.
  • a straight-chain alkyl group having 1 to 6 carbon atoms is preferable.
  • Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group.
  • branched alkyl group a branched alkyl group having 3 to 6 carbon atoms (particularly 3 to 5 carbon atoms) is preferable.
  • isopropyl group, isobutyl group, t-butyl group, s-butyl group, neopentyl group examples thereof include an isohexyl group and a 3-methylpentyl group.
  • the substituent that the alkyl group as the organic group represented by R 2 may have is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.). .
  • the number of such substituents is not particularly limited, but is preferably 0 to 6, more preferably 0 to 3.
  • examples of the alkenyl group represented by R 3 include a vinyl group and an allyl group.
  • examples of the alkynyl group represented by R 3 include an alkynyl group and a propargyl group.
  • the electronic structure can be finely adjusted and the physical properties (solubility, cell permeability, etc.) can be adjusted.
  • a straight-chain alkyl group having 1 to 6 carbon atoms is preferable.
  • Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group.
  • branched alkyl group a branched alkyl group having 3 to 6 carbon atoms (particularly 3 to 5 carbon atoms) is preferable.
  • isopropyl group, isobutyl group, t-butyl group, s-butyl group, neopentyl group examples thereof include an isohexyl group and a 3-methylpentyl group.
  • the substituent that the alkyl group as the organic group represented by R 2 may have is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.). .
  • the number of such substituents is not particularly limited, but is preferably 0 to 6, more preferably 0 to 3.
  • R has higher electron withdrawing properties, and it is easier to reduce the HOMO level (energy level of the highest occupied orbit) and LUMO level (energy level of the lowest unoccupied orbit). From the viewpoint of easily improving the stability, a group represented by the general formula (1A) is preferable.
  • Examples of the compound of the present invention that satisfies such conditions include, for example,
  • Ph represents a phenyl group. The same applies hereinafter.
  • a phosphafluorescein compound represented by the above, or a salt, hydrate or solvate thereof is preferred.
  • the compound of the present invention having such a structure has a high electron withdrawing property due to the presence of a phosphorus-containing group, and the HOMO level (energy level of the highest occupied orbit) and LUMO level (energy level of the lowest unoccupied orbit). ) Can be reduced.
  • the LUMO level can be effectively reduced compared to the HOMO level, so the HOMO-LUMO energy gap when changed to an anion type is reduced to 2.00-2.50 eV, especially 2.25-2.48 eV. (B3LYP / 6-31 + G value obtained by quantum chemistry calculations performed at the G level). For this reason, it is also possible to shift the absorption maximum wavelength and the fluorescence maximum wavelength by longer wavelengths.
  • HOMO and LUMO levels are measured by structural optimization using Gaussian 09 program.
  • a neutral compound (compound represented by the general formula (1)) can have a fluorescence maximum wavelength of about 600 to 650 nm, particularly 610 to 640 nm.
  • the salt form of the compound represented by the general formula (1) is anionized, the absorption maximum wavelength is shifted to a wavelength longer than 600 to 700 nm (particularly about 600 to 650 nm). It is also possible to further shift the fluorescence maximum wavelength (about 650 to 700 nm, particularly about 655 to 670 nm) and further improve the fluorescence quantum yield (about 0.25 to 0.60, especially 0.35 to 0.50).
  • the compound of the present invention is preferably a salt of the compound represented by the general formula (1), and the general formula (2):
  • R 1 and R are the same as those described above.
  • the compound of the present invention may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
  • the phosphafluorescein compound of the present invention or a salt, hydrate or solvate thereof is not particularly limited, and examples thereof include silicon-substituted fluorescein compounds. It can be synthesized according to the method already reported for the production method (Chem. Commun. 2011, 47, 4162.) (except for changing the raw material compound).
  • R and R 1 are the same as defined above.
  • R 5 and R 6 are the same or different and represent a protecting group.
  • X 1 and X 2 are the same or different and each represents a halogen atom.
  • the protecting group represented by R 5 and R 6 is not particularly limited as long as it is a group capable of protecting a hydroxyl group, and any group can be used.
  • an alkanoyl group (formyl group, C1-C4 alkanoyl groups such as acetyl group and propionyl), optionally substituted aralkyl groups (benzyl group, p-methoxybenzyl group, p-nitrobenzyl group, etc.), silyl groups (trimethylsilyl group, triethylsilyl group) Group, t-butyldimethylsilyl group, etc.), alkoxyalkyl group (methoxymethyl group etc.), tetrahydropyranyl (THP) group and the like.
  • a silyl group is preferable and a t-butyldimethylsilyl group is more preferable from the viewpoint of protecting the hydroxyl group and facilitating the progress of the nucleophilic addition
  • any of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom can be adopted, but from the viewpoint of easy progress of the cyclization reaction, a chlorine atom , A bromine atom, an iodine atom and the like are preferable, and a bromine atom is more preferable.
  • the compound (3) in the above reaction formula 1 can be a known or commercially available compound, or can be synthesized. In the case of synthesis, it can be synthesized by reacting 3-halogenated-N, N-diallylaniline obtained by reacting 3-halogenated aniline and allyl halide with formaldehyde.
  • the organic lithium compound is not particularly limited, and known compounds can be used.
  • Alkyl lithium such as lithium
  • cycloalkyl lithium such as cyclohexyl lithium
  • aryl lithium such as phenyl lithium; and the like.
  • alkyllithium is preferable and n-butyllithium is more preferable from the viewpoint of yield.
  • the organophosphorus compound is not particularly limited as long as a compound having a group represented by R can be obtained in this step, and known compounds can be used, for example, dihalogenated arylphosphine such as dichlorophenylphosphine and dibromophenylphosphine. Can be used.
  • the amount of the organolithium compound, organophosphorus compound and hydrogen peroxide used is not particularly limited, and from the viewpoint of yield and the like, 1 to 20 moles (especially 2 to 2 moles) of the organolithium compound per mole of the compound (3) It is preferable to use 0.1 to 10 mol (especially 0.5 to 5 mol) of the organic phosphorus compound. Further, it is preferable to use an excess amount of an aqueous solution of hydrogen peroxide.
  • the organic solvent that can be used in this step known ones can be adopted, and in this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable.
  • the reaction conditions are preferably such that the reaction proceeds sufficiently.
  • the reaction can be carried out at ⁇ 150 to 0 ° C., particularly ⁇ 100 to ⁇ 50 ° C. for 5 minutes to 12 hours, particularly 10 minutes to 6 hours.
  • the oxidizing agent is not particularly limited, and permanganate (such as potassium permanganate) can be used.
  • the amount of the oxidizing agent used is not particularly limited, and is preferably used in an amount of 1 to 10 mol (especially 2 to 5 mol) with respect to 1 mol of compound (4) from the viewpoint of yield and the like.
  • the organic solvent that can be used in this step a known one may be employed.
  • cyclic ethers such as tetrahydrofuran and dioxane are preferable.
  • the same solvent as the said cyclization process can be used.
  • the reaction conditions may be such that the reaction proceeds sufficiently.
  • the reaction conditions may be -50 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours.
  • the amount of the palladium catalyst and 1,3-dimethylbarbituric acid used is not particularly limited. From the viewpoint of yield and the like, 0.1 to 1 mol of palladium catalyst (especially 0.2 to 1 mol) per 1 mol of compound (5). 0.5 mol) and 2 to 50 mol (especially 5 to 30 mol) of 1,3-dimethylbarbituric acid are preferably used.
  • the organic solvent that can be used in this step a known one may be employed.
  • cyclic ethers such as tetrahydrofuran and dioxane are preferable.
  • the same solvent as the said cyclization process can be used.
  • the reaction conditions may be such that the reaction proceeds sufficiently.
  • the reaction conditions may be 1 to 96 hours, particularly 2 to 72 hours at 0 to 150 ° C., particularly 50 to 100 ° C.
  • nitrous acid or a salt thereof in addition to nitrous acid, nitrite (sodium nitrite) or the like can be adopted.
  • the amount of nitrous acid or a salt thereof used is not particularly limited, but from the viewpoint of yield and the like, it is preferable to use 1 to 10 mol (particularly 2 to 5 mol) with respect to 1 mol of compound (6). .
  • the organic solvent that can be used in this step known ones can be adopted, and in this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable.
  • the same solvent as the said cyclization process can be used.
  • the reaction conditions may be such that the reaction proceeds sufficiently, for example, 50 to 200 ° C., particularly 100 to 150 ° C., 5 minutes to 5 hours, particularly 10 minutes to 2 hours.
  • R 1 MgX 3 organic magnesium represented by R 1 MgX 3 (wherein R 1 is the same as above, X 3 represents a halogen atom). Compounds are preferred.
  • halogen atom represented by X 3 those described above can be adopted. The same applies to preferred embodiments.
  • Grignard reagents that satisfy these conditions include:
  • the amount of Grignard reagent and oxidizing agent used is not particularly limited, and from the viewpoint of yield, etc., 1 to 10 moles (especially 2 to 5 moles) of Grignard reagent should be used per 1 mole of compound (5). Is preferred.
  • the oxidizing agent is preferably used in an excess amount as an aqueous solution.
  • the organic solvent that can be used in this step known ones can be adopted, and in this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable.
  • the same solvent as the said cyclization process can be used.
  • the reaction conditions may be such that the reaction proceeds sufficiently.
  • the reaction conditions may be ⁇ 50 to 100 ° C., particularly 0 to 50 ° C., 30 minutes to 10 hours, particularly 1 to 5 hours.
  • the phosphafluorescein compound represented by the general formula (1) can be obtained, and can be used through ordinary isolation and purification steps as necessary.
  • the phosphafluorescein compound represented by the general formula (1) is a neutral compound under acidic conditions (for example, pH 1 to 5), but is made to be under neutral conditions or alkaline conditions (for example, pH 6 to 14). Thus, it can be easily converted into a salt having an anion represented by the general formula (2), and can be used through ordinary isolation and purification steps as necessary.
  • the absorption maximum wavelength is shifted to a longer wavelength in the range of 600 to 700 nm (especially about 600 to 650 nm) and the fluorescence maximum wavelength is further shifted (about 650 to 700 nm, particularly 655 to 650 nm). It is possible to further improve the fluorescence quantum yield (about 0.25 to 0.60, especially 0.35 to 0.50).
  • the fluorescent dye of the present invention contains the phosphafluorescein compound of the present invention or a salt thereof.
  • the oxygen atom at the 10-position of the xanthene ring portion of fluorescein is substituted with a phosphorus atom, so that it has a maximum absorption wavelength and a maximum fluorescence wavelength in the range of 600 to 700 nm, but it is sufficient even under physiological conditions.
  • a high fluorescence quantum yield is obtained.
  • the absorption maximum wavelength of 627 nm in the examples is almost the same as the excitation wavelength of 633 nm of a HeNe laser that is normally equipped with a laser microscope, so that the excitation efficiency as a fluorescent dye is extremely high.
  • the phosphafluorescein compound or a salt thereof of the present invention has high permeability into cells, and when a desired substituent is introduced as R 1 , desired cells (for example, cancer cells such as HeLa cells) in vivo. ) Can be selectively localized. That is, only desired cells (for example, cancer cells such as HeLa cells) can emit light.
  • the phosphafluorescein compound or a salt thereof of the present invention has a high fluorescence quantum that is not found in conventional fluorescent dyes that have an absorption maximum wavelength and a fluorescence maximum wavelength in the range of 600 to 700 nm but have a maximum wavelength in this region.
  • the phosphafluorescein compound of the present invention or a salt thereof can reduce the HOMO level by the electronic effect of the phosphorus substituent, and can dramatically improve the stability to light. It is possible to observe for a long time.
  • the cell detection agent of the present invention contains the phosphafluorescein compound of the present invention or a salt thereof, preferably dissolved in an organic solvent to form a solution, From the viewpoint of detecting more desired cells (for example, cancer cells such as HeLa cells) and color rendering (visualization in real time) the desired cells (for example, cancer cells such as HeLa cells) more selectively.
  • the content of the fluorescein compound is preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 4 mol / L, more preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 5 mol / L.
  • content of a phosphafluorescein compound can be restrained low.
  • the organic solvent that can be used is not particularly limited, and both polar solvents and nonpolar solvents are used. it can.
  • polar solvents examples include ether compounds (tetrahydrofuran, anisole, 1,4-dioxane, cyclopentylmethyl ether, etc.), alcohols (methanol, ethanol, allyl alcohol, etc.), ester compounds (ethyl acetate, etc.), ketones (acetone, etc.) , Halogenated hydrocarbons (dichloromethane, chloroform), dimethyl sulfoxide, amide solvents (N, N-dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, etc.) .
  • ether compounds tetrahydrofuran, anisole, 1,4-dioxane, cyclopentylmethyl ether, etc.
  • alcohols methanol, ethanol, allyl alcohol, etc.
  • ester compounds ethyl acetate, etc.
  • ketones acetone, etc.
  • Halogenated hydrocarbons
  • nonpolar solvent examples include aliphatic organic solvents such as pentane, hexane, cyclohexane and heptane; aromatic solvents such as benzene, toluene, xylene and mesitylene.
  • the cell detection agent of the present invention is preferably in the form of a solution, but has a sufficiently high fluorescence quantum yield even under physiological conditions while having an absorption maximum wavelength and a fluorescence maximum wavelength at 600 to 700 nm.
  • the pH is preferably about 5 to 11 and more preferably about 6.5 to 7.5 from the viewpoint of introduction into cells.
  • Buffers Hepes buffer, Tris buffer, tricine-sodium hydroxide buffer, phosphate buffer, phosphate buffered saline, etc. are used to adjust the pH of the cell detection agent of the present invention. May be.
  • the general operating melting point (mp) or decomposition temperature was measured with a Yanaco MP-S3 instrument (MP-S3).
  • 1 H, 13 C ⁇ 1 H ⁇ and 31 P ⁇ 1 H ⁇ NMR spectra were measured using JEOL AL-400 spectrometer (400 MHz for 1 H, 100 MHz for 13 C and 161.70 MHz for 31 P), JEOL JNM-ECS400 ( CDCl 3 , CD 2 Cl 2 or 400 MHz for 1 H, 100 MHz for 13 C and 161.70 MHz for 31 P) or JEOL A-600 spectrometer (600 MHz for 1 H and 150 MHz for 13 C) Measured in CD 3 OD.
  • Mass spectra were measured by electrospray ionization (ESI) using a Bruker micrOTOF Focus spectrometry system using atmospheric pressure chemical ionization (APCI) or Thermo Fisher Scientific Exactive.
  • Thin layer chromatography (TLC) was performed using a glass plate coated with silica gel 60F 254 (Merck).
  • Column chromatography was performed using neutral silica gel PSQ100B (Fuji Silysia Chemical) or silica gel 60 (Kanto Chemical).
  • Preparative recycling HPLC was performed using a YMC LC-forte / R equipped with a reverse phase column (YMC-Actus Triart C18). Unless otherwise stated, all reactions were performed under a nitrogen atmosphere.
  • compound 2 was obtained by the following method.
  • Bis [2-bromo-4- (N, N-diallylamino) phenyl] methane (Compound 1) (0.978 g, 1.89 mmol) in dehydrated THF (9 mL) at -78 ° C with s-butyl Lithium in cyclohexane and hexane (0.99 M, 4.00 mL, 3.96 mmol) was added dropwise over 5 minutes.
  • dichlorophenylphosphine PhPCl 2 ; 0.290 mL, 0.383 g, 2.14 mmol
  • compound 5 was also obtained by the following method. NaNO 2 (171 mg, 2.48 mmol) was added in air at 0 ° C. to a 96% sulfuric acid (2.5 mL) solution of compound 4 (247 mg, 0.739 mmol) in air. After stirring for 3 hours, the mixture was slowly added dropwise to ice and stirred at 110 ° C. for 0.5 hours. The resulting precipitate was collected by filtration, washed with distilled water, and dispersed in methanol. The obtained dark brown precipitate was filtered, and the filtrate was concentrated under reduced pressure to obtain 158 mg (0.470 mmol, yield 64%) of Compound 5 as a yellow solid.
  • the spectral data of Compound 6 is as follows.
  • compound 6 was also obtained by the following method.
  • Compound 5 (229 mg, 0.680 mmol) and imidazole (232 mg, 3.40 mmol) against dehydration CH 2 Cl 2 (25 mL) solution of, t- butyl chloro dimethyl silane (512 mg, 3.40 mmol) dehydrated CH 2 of A solution of Cl 2 (7 mL) was added. After stirring for 3 hours, water was added and the two layers were separated. The aqueous layer was extracted with CH 2 Cl 2 . The combined organic layers were dried over dehydrated sodium sulfate and filtered.
  • the obtained solid was dissolved in toluene, put into a separatory funnel, 1N HCl aqueous solution was added, and the separatory funnel was shaken.
  • the combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate.
  • Sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain Compound POF as a red solid in 30 mg (0.0730 mmol, 18% yield).
  • the spectral data of the compound POF is as follows.
  • the compound POF was also obtained by the following method. To a dehydrated THF (3 mL) solution of 2-bromotoluene (89 ⁇ L, 0.74 mmol), a cyclohexane and hexane solution (0.99 M, 0.90 mL, 0.89 mmol) of s-BuLi was added at ⁇ 78 ° C. The mixture was stirred at ⁇ 78 ° C. for 2 hours and a solution of compound 6 (139 mg, 0.246 mmol) in dehydrated THF (3 mL) was added slowly. The temperature was raised to room temperature and the reaction mixture was stirred for 1.5 hours. Thereafter, 0.5 M hydrochloric acid (20 mL) was added to quench the reaction.
  • the compound POF (37 mg, 0.090 mmol) obtained in Example 1 was dissolved in 5 mL of dry pyridine.
  • Acetic anhydride (85 ⁇ L, 0.90 mmol) was added at room temperature and the mixture was stirred for 3 hours.
  • the solvent was removed under reduced pressure, and the product was purified by silica gel column chromatography (CH 2 Cl 2 / ethyl acetate 3/1 to 2/1), then further purified by recrystallization from CH 2 Cl 2 / hexane. Then, 33 mg (0.073 mmol, yield 81%) of compound AcPOF was obtained as a yellow powder.
  • the spectral data of the compound AcPOF is as follows. Mp. 175-179 ° C.
  • Synthetic compound 8 (800 mg, 1.57 mmol), 1,3-dimethylbarbituric acid (1.14 g, 7.30 mmol), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ; 1.01 g, 0.874 mmol was dissolved in degassed dehydrated 1,2-dichloroethane (16.0 mL), stirred at 85 ° C. for 3 days, and extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • compositional organisms obtained under a nitrogen atmosphere and imidazole (85.0 mg, 1.25 mmol) were dissolved in dehydrated CH 2 Cl 2 (21 mL) and stirred for 30 minutes.
  • water was added and extracted with CH 2 Cl 2 .
  • the combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained solid was dissolved in toluene, placed in a separatory funnel, and extracted with 1N aqueous HCl.
  • the combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate.
  • Sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain Compound PSF as a red-purple solid in 18 mg (0.0422 mmol, yield 32%).
  • the spectral data of the compound PSF is as follows.
  • Example 1 LUMO and HOMO
  • the phosphafluorescein compound obtained in Example 1 (position 10 is a phosphorus atom), a known fluorescein compound (position 10 is an oxygen atom; TokyoGreen; JACS, 2005, 127, 4888), and a known silicon-substituted fluorescein compound (position 10)
  • the HOMO level and the LUMO level were calculated by structural optimization using the Gaussian 09 program. The calculation was performed at the B3LYP / 6-31 + G level. The results are shown in Table 1.
  • the phosphafluorescein compound of the present invention can reduce LUMO and HOMO (particularly LUMO) as well as the energy gap as compared with conventional compounds. For this reason, it is expected that the stability to light is further improved.
  • Example 2 X-ray crystal structure analysis
  • position 10 is a phosphorus atom
  • the structure was determined by the direct method (SIR-2003) and by the full matrix least squares method of F 2 (SHELXL-2013).
  • the crystal data is as follows.
  • the fluorescence spectrum was measured with a Hitachi F-4500 spectrometer with a resolution of 1 nm using a sample solution dissolved with 10 ⁇ 6 M.
  • the excitation spectrum was measured with a Horiba SPEX Fluorolog 3 spectrofluorometer equipped with Hamamatsu PMA R5509-73 and cooling system C9940-01, using a sample solution dissolved with 10 ⁇ 6 M.
  • the absolute fluorescence quantum yield was measured by Hamamatsu photonics PMA-11.
  • the phosphafluorescein compound obtained in Example 1 is dissolved in dimethyl sulfoxide (DMSO) as a solvent, and then the citric acid aqueous solution adjusted to pH 3 and Na 2 HPO are used.
  • DMSO dimethyl sulfoxide
  • a test solution in which the phosphafluorescein compound obtained in Example 1 was diluted to 7.4 ⁇ 10 ⁇ 6 M was prepared by diluting 100 times with a mixed aqueous solution of 4 aqueous solutions (pH 3 test solution).
  • test solution was prepared by diluting 100 times with a mixed aqueous solution of the aqueous solutions and dissolving the phosphafluorescein compound obtained in Example 1 so as to be 7.4 ⁇ 10 ⁇ 6 M (test solution of pH 7).
  • Example 1 when using a pH 9 buffered aqueous solution, the phosphafluorescein compound obtained in Example 1 was dissolved in dimethyl sulfoxide (DMSO), and then a mixed aqueous solution of Na 2 CO 3 aqueous solution and NaHCO 3 aqueous solution adjusted to pH 9 A test solution was prepared by diluting the phosphafluorescein compound obtained in Example 1 to 7.4 ⁇ 10 ⁇ 6 M (pH 9 test solution).
  • DMSO dimethyl sulfoxide
  • the absorption maximum wavelength and the fluorescence maximum wavelength can be made 600 to 700 nm, and the fluorescence quantum yield can be particularly improved.
  • the relative absorption at 627 nm increases with increasing pH and is almost the same in the neutral to alkaline region.
  • 627 nm with increasing pH. It can also be understood from the fact that the ratio of the excitation intensity at 532 nm to the excitation intensity at 532 nm is almost the same in the neutral to alkaline region. This behavior is considered to be due to the anionization of the phosphafluorescein compound of the present invention by increasing the pH.
  • Test Example 4 Photophysical characteristics (2)
  • the photophysical properties of test solutions 2 and 3 obtained in Test Example 3 above are reported values (TokyoGreen: JACS, 2005, 127, 4888, TokyoMagenda: Chem. Commun. 2011, 47, 4162, Nap-Fluorescein: Cytometry. 1989, 10, 151).
  • the results are shown in Table 2.
  • the phosphafluorescein compound of the present invention has the highest fluorescence quantum yield among compounds having an absorption maximum wavelength and a fluorescence maximum wavelength at 600 nm or more.
  • the absorption maximum wavelength is maximum, and self-absorption of organelles and light damage to cells can be minimized in bioimaging.
  • Test Example 5 Stability to light
  • DMSO dimethyl sulfoxide
  • a mixed aqueous solution of Na 2 HPO 4 solution and Na 2 HPO 4 solution adjusted to pH 7 was added and diluted 100 times.
  • a test solution 4 was obtained in which the obtained phosphafluorescein compound was dissolved to 7.4 ⁇ 10 ⁇ 6 M.
  • test solutions 4, 5 and 6 are irradiated with white light having a wavelength of 350 nm or more using a xenon lamp, and the absorption maximum wavelength (test solution 4: 627 nm; test solution 5: 491 nm; test solution 6: The absorbance maintenance rate at 582 nm was measured.
  • the results are shown in FIG.
  • the upper line (along with POF) is the phosphafluorescein compound of the present invention
  • the lower line (along with TM) is a known silicon-containing fluorescein compound
  • the line between them (along with TG) is known. It is a fluorescein compound.
  • Phosphorfluorescein dye has higher light stability than Cy5, which is a well-known representative red fluorescent dye, and is known as Alexa Fluor (registered trademark) 633, which is known as a red fluorescent dye excellent in light stability. It was shown to have the same light stability as Alexa Fluor (registered trademark) 647.
  • the compound AcPOF of Example 2 is 5 ⁇ M, 4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES; pH 7.4) is 10 mM, DMSO. Was used, and DMEM containing Pluronic F-127 0.02% was used. The cells were stained at 37 ° C.
  • the phosphafluorocein compound of the present invention does not permeate the nuclear membrane, but permeates the cell membrane and enters the cell, and can be used as a fluorescent dye of the cell (HeLa cell etc.). .
  • Cytotoxicity assessment HeLa cells were seeded in flat bottom 96-well plates (1 ⁇ 10 4 cells / well) and cultured in DMEM containing 10% FBS at 37 ° C. in an incubator with 5% CO 2 /95% air for 24 hours. . The medium was then replaced with medium having various concentrations of compound AcPOF of Example 2 (1 ⁇ M, 5 ⁇ M and 10 ⁇ M) and the cells were further incubated at 37 ° C. for 24 hours.
  • 3- (4,5-di-methylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) reagent is added to each well (final concentration 0.5 mg / mL) and the plate was incubated for an additional 4 hours in a CO 2 incubator. Excess MTT in tetrazolium was removed and the cells were washed once with PBS. Formazan crystals were solubilized in DMSO (100 ⁇ L / well) at room temperature for 30 minutes, and then the absorbance of each well was measured with SpectraMax i3 (Molecular Devices) at a wavelength of 535 nm.
  • MTT 3- (4,5-di-methylthiazol-2-yl) -2,5-diphenyltetrazolium bromide
  • results are shown in FIG. In FIG. 7, the results represent the survival rate as a percentage relative to the case where no fluorescent dye was used. All data are shown by mean standard deviation (number of measurements n is 12). From this result, it can be understood that the phosphafluorocein compound of the present invention can cause cells to fluoresce within a range that can significantly reduce damage to the cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A phospha-fluorescein compound represented by general formula (I), or a salt, hydrate or solvate of the phospha-fluorescein compound is capable of achieving a sufficient quantum yield, while having a maximum absorption wavelength and a maximum fluorescence wavelength within the range of 600-700 nm. This phospha-fluorescein compound, or a salt, hydrate or solvate thereof is also capable of sufficiently reducing HOMO. (In general formula (I), R1 represents an optionally substituted aryl group; R2 represents a hydrogen atom or an organic group; and R represents a group that is represented by general formula (II) (where, R3 represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group or an optionally substituted alkynyl group; and R4 represents an optionally substituted alkyl group).)

Description

ホスファフルオレセイン化合物若しくはその塩、又はそれを用いた蛍光色素Phosphafluorescein compound or a salt thereof, or fluorescent dye using the same
 本発明は、ホスファフルオレセイン化合物若しくはその塩、又はそれを用いた蛍光色素に関する。 The present invention relates to a phosphafluorescein compound or a salt thereof, or a fluorescent dye using the same.
 赤色から近赤外領域の光は高い組織浸透性があるため、この領域(620 nm以上)に吸収及び蛍光極大波長を有する色素が、生体組織の深部観察において注目されている。この生体組織の深部観察においては、細胞の自己蛍光を抑制し、細胞へのダメージを抑制するためには、600~700 nm程度の位置に蛍光極大波長を有しつつも、蛍光量子収率を向上させることが好ましい。特に、水溶性を示す蛍光色素のうち650 nm以上に蛍光極大を有する色素は、緑色又は黄色蛍光体(495~570 nmに蛍光極大を有する色素)と比較してそれほど多くない。これらは、例えば、π拡張したキサンテン系色素、ケイ素置換ローダミン(Si-rhodamine)、フルオレセイン系色素、シアニン系色素(Cy5等)等が挙げられる。いずれの蛍光色素についても、生体試料の可視化において実用例が報告されている。 Since light in the red to near-infrared region has high tissue permeability, a dye having absorption and fluorescence maximum wavelengths in this region (620 nm or more) has attracted attention in deep observation of living tissue. In this deep observation of living tissue, in order to suppress cell autofluorescence and suppress damage to cells, the fluorescence quantum yield is increased while having a fluorescence maximum wavelength at a position of about 600 to 700 nm. It is preferable to improve. In particular, among fluorescent dyes exhibiting water solubility, there are not so many dyes having a fluorescence maximum at 650 nm or more compared to green or yellow phosphors (dyes having a fluorescence maximum at 495 to 570 nm). These include, for example, π-extended xanthene dyes, silicon-substituted rhodamines (Si-rhodamines), fluorescein dyes, cyanine dyes (Cy5, etc.). For any fluorescent dye, practical examples have been reported for visualization of biological samples.
 例えば、フルオレセイン系色素は、吸収極大波長は491 nm、蛍光極大波長は510 nm、量子収率は0.85である(非特許文献1)が、バイオイメージングのためは、深赤色~近赤外領域の波長に対して吸収及び蛍光を示す必要があることから、600~700 nm程度の波長において吸収極大及び蛍光極大を有する色素が求められている。 For example, a fluorescein dye has an absorption maximum wavelength of 491 nm, a fluorescence maximum wavelength of 510 nm, and a quantum yield of 0.85 (Non-Patent Document 1). Since it is necessary to exhibit absorption and fluorescence with respect to the wavelength, there is a demand for a dye having an absorption maximum and a fluorescence maximum at a wavelength of about 600 to 700 nm.
 このフルオレセイン系色素のキサンテン骨格の酸素原子をケイ素原子に置換すると、吸収極大波長は582 nm、蛍光極大波長は598 nm、量子収率0.42と、長波長側にシフトさせることができることが知られている(非特許文献2)。しかしながら、その効果は不十分であり、さらなる長波長シフトが必要である。 It is known that when the oxygen atom of the xanthene skeleton of this fluorescein dye is replaced with a silicon atom, the absorption maximum wavelength is 582 nm, the fluorescence maximum wavelength is 598 nm, and the quantum yield is 0.42, which can be shifted to the longer wavelength side. (Non-Patent Document 2). However, the effect is insufficient and further long wavelength shifts are necessary.
 一方、吸収極大波長及び蛍光極大波長をさらに長波長シフトさせるべく、キサンテン骨格のπ共役を拡張した構造を有する化合物が、吸収極大波長は595 nmと600 nm未満であるものの、蛍光極大波長を660 nmとすることができることも知られているが、この色素は、量子収率が0.14と著しく小さいことから、バイオイメージング用途には不十分である(非特許文献3)。 On the other hand, in order to further shift the absorption maximum wavelength and the fluorescence maximum wavelength, a compound having a structure in which the π conjugation of the xanthene skeleton is extended, although the absorption maximum wavelengths are 595 nm and less than 600 nm, the fluorescence maximum wavelength is 660 nm. Although it is also known that this dye can be set to nm, this dye has an extremely small quantum yield of 0.14, which is insufficient for bioimaging applications (Non-patent Document 3).
 上記のように、一般に、長波長領域に吸収極大及び蛍光極大を有する色素は、量子収率が低く、十分に高くすることが困難であった。また、これらの蛍光色素は、最高被占軌道(HOMO)が高いため、光照射下において酸素と反応し、活性酸素種を与えることから、光に対する安定性も低かった。 As described above, in general, a dye having an absorption maximum and a fluorescence maximum in a long wavelength region has a low quantum yield and is difficult to sufficiently increase. In addition, these fluorescent dyes have a high maximum occupied orbit (HOMO), and thus react with oxygen under light irradiation to give active oxygen species. Therefore, the stability to light is low.
 このため、本発明は、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、十分な量子収率を得ることができるとともに、十分にHOMOを低減することができる化合物(蛍光色素)を提供することを目的とする。 For this reason, the present invention provides a compound (fluorescent dye) capable of obtaining a sufficient quantum yield and sufficiently reducing HOMO while having an absorption maximum wavelength and a fluorescence maximum wavelength in the range of 600 to 700 nm. ).
 上記目的を鑑み、鋭意検討した結果、本発明者らは、フルオレセインのキサンテン環部位の10位の酸素原子をリン原子に置換した一連の赤色蛍光色素(ホスファフルオレセイン化合物)を開発した。この化合物は、中性条件下又はアルカリ条件下に置いてアニオン化することにより、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、生理的条件下でも十分に高い蛍光量子収率が得られることを見出した。また、この化合物は、リン置換基の電子的効果によりHOMO準位が下がるため、光照射に対する著しい安定化効果も認められた。本発明は、このような知見に基づきさらに研究を重ね、完成させたものである。すなわち、本発明は以下の構成を包含する。 As a result of intensive investigations in view of the above object, the present inventors have developed a series of red fluorescent dyes (phosphafluorescein compounds) in which the oxygen atom at the 10-position of the xanthene ring portion of fluorescein is substituted with a phosphorus atom. This compound is anionized under neutral or alkaline conditions, and has a sufficiently high fluorescence quantum yield even under physiological conditions while having an absorption maximum wavelength and a fluorescence maximum wavelength of 600 to 700 nm. We found that rate was obtained. In addition, since this compound lowered the HOMO level due to the electronic effect of the phosphorus substituent, a remarkable stabilizing effect against light irradiation was also observed. The present invention has been completed by further research based on such knowledge. That is, the present invention includes the following configurations.
 項1.一般式(1): Item 1. General formula (1):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中、R1は置換されていてもよいアリール基を示す。R2は水素原子又は有機基を示す。Rは一般式(1A)~(1C): [Wherein, R 1 represents an optionally substituted aryl group. R 2 represents a hydrogen atom or an organic group. R is the general formula (1A) to (1C):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R3は置換されていてもよいアリール基、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。R4は置換されていてもよいアルキル基を示す。)
で表される基である。]
で表されるホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。
(In the formula, R 3 represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group. R 4 represents a substituted group. Represents an alkyl group which may be substituted.)
It is group represented by these. ]
Or a salt, hydrate or solvate thereof.
 項2.前記一般式(1)において、Rが一般式(1A)で表される基である、項1に記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。 Item 2. Item 2. The phosphafluorescein compound according to item 1, or a salt, hydrate or solvate thereof, wherein in the general formula (1), R is a group represented by the general formula (1A).
 項3.前記一般式(1)で表されるホスファフルオレセイン化合物の塩が、一般式(2): Item 3. The salt of the phosphafluorescein compound represented by the general formula (1) is represented by the general formula (2):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式中、R1及びRは前記に同じである。]
で表されるアニオンを有する、項1又は2に記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。
[Wherein, R 1 and R are the same as defined above. ]
Item 3. The phosphafluorescein compound according to Item 1 or 2, or a salt, hydrate, or solvate thereof, having an anion represented by:
 項4.600~700 nmに最大吸収波長を有する、項1~3のいずれかに記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。 Item 4. The phosphafluorescein compound or a salt, hydrate or solvate thereof according to any one of Items 1 to 3, which has a maximum absorption wavelength at 600 to 700 nm.
 項5.600~700 nmに最大吸収波長を有し、且つ、蛍光量子収率が0.25~0.60である、項1~4のいずれかに記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。 Item 5. The phosphafluorescein compound according to any one of Items 1 to 4, having a maximum absorption wavelength at 600 to 700 nm and a fluorescence quantum yield of 0.25 to 0.60, or a salt, hydrate or Solvate.
 項6.項1~5のいずれかに記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物を含有する蛍光色素。 Item 6. Item 6. A fluorescent dye containing the phosphafluorescein compound according to any one of Items 1 to 5 or a salt, hydrate or solvate thereof.
 項7.バイオイメージング用蛍光色素である、項6に記載の蛍光色素。 Item 7. Item 7. The fluorescent dye according to Item 6, which is a fluorescent dye for bioimaging.
 項8.癌細胞のバイオイメージング用蛍光色素である、項7に記載の蛍光色素。 Item 8. Item 8. The fluorescent dye according to Item 7, which is a fluorescent dye for cancer cell bioimaging.
 項9.項6~8のいずれかに記載の蛍光色素を含有する、細胞検出剤。 Item 9. Item 9. A cell detection agent comprising the fluorescent dye according to any one of Items 6 to 8.
 項10.癌細胞検出剤である、項9に記載の細胞検出剤。 Item 10. Item 10. The cell detection agent according to Item 9, which is a cancer cell detection agent.
 項11.項6~8のいずれかに記載の蛍光色素、又は項9若しくは10に記載の細胞検出剤を用いる、細胞のバイオイメージング方法。 Item 11. Item 11. A cell bioimaging method using the fluorescent dye according to any one of Items 6 to 8, or the cell detection agent according to Item 9 or 10.
 項12.前記細胞が癌細胞である、項11に記載のバイオイメージング方法。 Item 12. Item 12. The bioimaging method according to Item 11, wherein the cell is a cancer cell.
 本発明のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物は、フルオレセインのキサンテン環部位の10位の酸素原子をリン原子に置換したため、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、生理的条件下でも十分に高い蛍光量子収率が得られる。特に、実施例における吸収極大波長627 nmは、レーザー顕微鏡が通常備えているHeNeレーザーの励起波長633 nmとほぼ一致していることから、蛍光色素としての励起効率が極めて高い。 The phosphafluorescein compound of the present invention or a salt, hydrate or solvate thereof has an absorption maximum wavelength and a fluorescence maximum wavelength of 600 to 700 nm because the oxygen atom at the 10-position of the xanthene ring portion of fluorescein is substituted with a phosphorus atom. In addition, a sufficiently high fluorescence quantum yield can be obtained even under physiological conditions. In particular, the absorption maximum wavelength of 627 nm in the examples is almost the same as the excitation wavelength of 633 nm of the HeNe laser normally provided in a laser microscope, so that the excitation efficiency as a fluorescent dye is extremely high.
 また、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、この領域に極大波長を有する従来の蛍光色素にはなかった高い蛍光量子収率を有することから、バイオイメージングに必要な蛍光色素濃度を低く抑えることができ、生体へのダメージを大幅に低減することができる。 In addition, while having an absorption maximum wavelength and a fluorescence maximum wavelength in the range of 600 to 700 nm, it has a high fluorescence quantum yield that was not found in conventional fluorescent dyes having a maximum wavelength in this region, which is necessary for bioimaging. The fluorescent dye concentration can be kept low, and damage to the living body can be greatly reduced.
 さらに、本発明のホスファフルオレセイン化合物又はその塩は、リン置換基の電子的効果によりHOMO準位を低下させることができ、光に対する安定性を飛躍的に向上させることができるため、生体深部の観測を長時間にわたって行うことが可能である。 Furthermore, the phosphafluorescein compound of the present invention or a salt thereof can reduce the HOMO level due to the electronic effect of the phosphorus substituent, and can dramatically improve the stability to light. It is possible to observe for a long time.
実施例1で得たホスファフルオレセイン化合物(化合物POF)のX線結晶構造解析の結果である。3 is a result of X-ray crystal structure analysis of a phosphafluorescein compound (compound POF) obtained in Example 1. FIG. 試験例3で調製したpH3、pH7,pH9とした場合の本発明のホスファフルオレセイン化合物(化合物POF)の吸収スペクトル及び蛍光スペクトルである。2 is an absorption spectrum and a fluorescence spectrum of the phosphafluorescein compound (compound POF) of the present invention when adjusted to pH 3, pH 7, and pH 9 prepared in Test Example 3. FIG. 各pHにおける本発明のホスファフルオロセイン化合物(化合物POF)の吸収スペクトル(上図)、627 nmにおける相対吸収とpHとの関係を示すグラフ(下図)である。It is an absorption spectrum (upper figure) of the phosphafluorocein compound (compound POF) of the present invention at each pH, and a graph (lower figure) showing the relationship between relative absorption at 627 nm and pH. 各pHにおける本発明のホスファフルオロセイン化合物(化合物POF)の励起スペクトル(上図)、627 nmにおける励起強度と532 nmにおける励起強度の比と、pHとの関係を示すグラフ(下図)である。It is a graph (lower figure) which shows the relationship between the excitation spectrum (upper figure) of the phosphafluorocein compound (compound POF) of the present invention at each pH, the ratio of the excitation intensity at 627 nm to the excitation intensity at 532 nm, and the pH. . 試験例5の結果を示すグラフである。(a)は本発明のホスファフルオレセイン化合物と、公知のフルオレセイン化合物(TokyoGreen及びTokyoMagenta)を用いた場合の吸収極大波長における吸光度の維持率を示すグラフである。(b)は試験例5で調製した試験液7~10の630 nmにおける吸光度の維持率を示すグラフである。6 is a graph showing the results of Test Example 5. (A) is a graph showing the absorbance maintenance rate at the absorption maximum wavelength when the phosphafluorescein compound of the present invention and known fluorescein compounds (TokyoGreen and TokyoMagenta) are used. (B) is a graph showing the absorbance maintenance rate at 630 nm of test solutions 7 to 10 prepared in Test Example 5. 試験例6の細胞インキュベーション及びイメージングの結果を示す写真である。左図(a)は、633 nmの励起で得られたConfocal fluorescence imageである。中図(b)は、明視野像である。右図(c)は、(a)及び(b)の併合イメージである。図中、スケールバーは50μmである。6 is a photograph showing the results of cell incubation and imaging in Test Example 6. The left figure (a) is a Confocal fluorescence image obtained by excitation at 633 nm. The middle figure (b) is a bright field image. The right figure (c) is a merged image of (a) and (b). In the figure, the scale bar is 50 μm. 試験例6の細胞毒性の結果を示すグラフである。6 is a graph showing the results of cytotoxicity in Test Example 6.
 1.ホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物
 本発明のホスファフルオレセイン化合物又はその塩は、一般式(1):
1. Phosphafluorescein compound or a salt, hydrate or solvate thereof The phosphafluorescein compound of the present invention or a salt thereof has the general formula (1):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、R1は置換されていてもよいアリール基を示す。R2は水素原子又は有機基を示す。Rは一般式(1A)~(1C): [Wherein, R 1 represents an optionally substituted aryl group. R 2 represents a hydrogen atom or an organic group. R is the general formula (1A) to (1C):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R3は置換されていてもよいアリール基、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。R4は置換されていてもよいアルキル基を示す。)
で表される基である。]
で表される化合物、又はその塩である。この一般式(1)で表されるホスファフルオレセイン化合物又はその塩は、文献未記載の新規化合物である。
(In the formula, R 3 represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group. R 4 represents a substituted group. Represents an alkyl group which may be substituted.)
It is group represented by these. ]
Or a salt thereof. The phosphafluorescein compound represented by the general formula (1) or a salt thereof is a novel compound not described in any literature.
 上記一般式(1)において、R1で示されるアリール基としては、単環アリール基、多環アリール基、及び複素芳香環基のいずれも採用することができ、例えば、フェニル基、オリゴアリール基(ナフチル基、アントリル基等)、ビフェニル基、ターフェニル基、ピレニル基、フェナンスレニル基、フルオレニル基、チエニル基、フリル基、ピリジル基等が挙げられる。 In the general formula (1), as the aryl group represented by R 1 , any of a monocyclic aryl group, a polycyclic aryl group, and a heteroaromatic ring group can be employed. For example, a phenyl group, an oligoaryl group (Naphthyl group, anthryl group, etc.), biphenyl group, terphenyl group, pyrenyl group, phenanthrenyl group, fluorenyl group, thienyl group, furyl group, pyridyl group and the like.
 R1で示されるアリール基が有していてもよい置換基としては、特に制限はなく、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基等)、ホルミル基、カルボキシル基、エステル基、アミド基(アミド基、メチルアミド基、ジメチルアミド基等)、アジド基(アジドフェニル基等)、アルキニル基(エチニル基、プロパルギル基等)、アルケニル基(ビニル基、アリル基等)等が挙げられる。このような置換基の数は、特に制限されず、0~6個が好ましく、0~3個がより好ましい。 The substituent which the aryl group represented by R 1 may have is not particularly limited, and is a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group). Group, n-propyl group, etc.), formyl group, carboxyl group, ester group, amide group (amide group, methylamide group, dimethylamide group etc.), azido group (azidephenyl group etc.), alkynyl group (ethynyl group, propargyl group) Etc.), alkenyl groups (vinyl group, allyl group, etc.) and the like. The number of such substituents is not particularly limited and is preferably 0 to 6, more preferably 0 to 3.
 なかでも、R1としては、蛍光量子収率をより向上させるとともに、バイオイメージングの際により認識しやすくする観点から、置換又は非置換単環アリール基(置換又は非置換フェニル基)が好ましく、オルト位に置換基を有する置換単環アリール基(置換フェニル基)がより好ましく、o-トリル基がさらに好ましい。 Among them, R 1 is preferably a substituted or unsubstituted monocyclic aryl group (substituted or unsubstituted phenyl group) from the viewpoint of further improving the fluorescence quantum yield and making it easier to recognize during bioimaging. A substituted monocyclic aryl group having a substituent at the position (substituted phenyl group) is more preferred, and an o-tolyl group is more preferred.
 上記一般式(1)において、R2で示される有機基としては、置換基を有していてもよいアルキル基、置換基を有していてもよいアシル基、置換基を有していてもよい環状エーテル基等が挙げられる。 In the general formula (1), the organic group represented by R 2 may be an alkyl group which may have a substituent, an acyl group which may have a substituent, or a substituent. Good cyclic ether groups and the like can be mentioned.
 上記一般式(1)において、R2で示される有機基としてのアルキル基としては、直鎖アルキル基及び分岐鎖アルキル基のいずれも採用できる。 In the general formula (1), as the alkyl group as the organic group represented by R 2 , both a linear alkyl group and a branched alkyl group can be employed.
 直鎖アルキル基としては、炭素数1~6(特に1~4)の直鎖アルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。 As the straight-chain alkyl group, a straight-chain alkyl group having 1 to 6 carbon atoms (particularly 1 to 4) is preferable. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. Group, n-hexyl group and the like.
 分岐鎖アルキル基としては、炭素数3~6(特に3~5)の分岐鎖アルキル基が好ましく、具体的には、イソプロピル基、イソブチル基、t-ブチル基、s-ブチル基、ネオペンチル基、イソヘキシル基、3-メチルペンチル基等が挙げられる。 As the branched alkyl group, a branched alkyl group having 3 to 6 carbon atoms (particularly 3 to 5 carbon atoms) is preferable. Specifically, isopropyl group, isobutyl group, t-butyl group, s-butyl group, neopentyl group, Examples thereof include an isohexyl group and a 3-methylpentyl group.
 R2で示される有機基としてのアルキル基が有していてもよい置換基としては、特に制限はなく、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。このような置換基の数は、特に制限されず、0~6個が好ましく、0~3個がより好ましい。 The substituent that the alkyl group as the organic group represented by R 2 may have is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.). . The number of such substituents is not particularly limited and is preferably 0 to 6, more preferably 0 to 3.
 上記一般式(1)において、R2で示される有機基としてのアシル基としては、例えば、メタノイル基、エタノイル基等が挙げられる。 In the general formula (1), examples of the acyl group as the organic group represented by R 2 include a methanoyl group and an ethanoyl group.
 上記一般式(1)において、R2で示される有機基としての環状エーテル基としては、例えば、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。 In the general formula (1), examples of the cyclic ether group as the organic group represented by R 2 include a tetrahydropyranyl group and a tetrahydrofuranyl group.
 R2で示される有機基としての環状エーテルが有していてもよい置換基としては、特に制限はなく、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アシル基(メタノイル基、エタノイル基等)、シリル基(トリメチルシリル基、トリエチルシリル基等)等が挙げられる。このような置換基の数は、特に制限されないが、0~2個が好ましく、0~1個がより好ましい。 The substituent that the cyclic ether as the organic group represented by R 2 may have is not particularly limited, and is a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), acyl group ( Methanoyl group, ethanoyl group, etc.), silyl group (trimethylsilyl group, triethylsilyl group, etc.) and the like. The number of such substituents is not particularly limited, but is preferably 0 to 2, more preferably 0 to 1.
 なかでも、R2としては、アニオン化させやすく、吸収極大波長及び蛍光極大波長を長波長シフトさせやすくする観点から、水素原子、アシル基、又は置換環状エーテル基が好ましく、水素原子がより好ましい。 Among them, R 2 is preferably a hydrogen atom, an acyl group, or a substituted cyclic ether group, and more preferably a hydrogen atom, from the viewpoint of easy anionization and easy shift of the absorption maximum wavelength and the fluorescence maximum wavelength.
 一般式(1)(一般式(1A)~(1C))において、Rで示される基のうち、R3で示されるアリール基としては、単環アリール基及び多環アリール基のいずれも採用することができ、例えば、フェニル基、オリゴアリール基(ナフチル基、アントリル基等)、ビフェニル基、ターフェニル基、ピレニル基、フェナンスレニル基、フルオレニル基等が挙げられる。 In the general formula (1) (general formulas (1A) to (1C)), among the groups represented by R, as the aryl group represented by R 3 , both a monocyclic aryl group and a polycyclic aryl group are employed. Examples thereof include a phenyl group, an oligoaryl group (naphthyl group, anthryl group, etc.), a biphenyl group, a terphenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group.
 R3で示されるアリール基が有していてもよい置換基としては、特に制限はなく、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基等)等が挙げられる。このような置換基の数は、特に制限されないが、0~6個が好ましく、0~3個がより好ましい。 The substituent which the aryl group represented by R 3 may have is not particularly limited, and is a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group). Group, n-propyl group, etc.). The number of such substituents is not particularly limited, but is preferably 0 to 6, more preferably 0 to 3.
 一般式(1)(一般式(1A)~(1C))において、Rで示される基のうち、R3で示されるアルキル基としては、直鎖アルキル基及び分岐鎖アルキル基のいずれも採用できる。 In the general formula (1) (general formulas (1A) to (1C)), among the groups represented by R, as the alkyl group represented by R 3 , either a linear alkyl group or a branched alkyl group can be employed. .
 直鎖アルキル基としては、炭素数1~6(特に1~4)の直鎖アルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。 As the straight-chain alkyl group, a straight-chain alkyl group having 1 to 6 carbon atoms (particularly 1 to 4) is preferable. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. Group, n-hexyl group and the like.
 分岐鎖アルキル基としては、炭素数3~6(特に3~5)の分岐鎖アルキル基が好ましく、具体的には、イソプロピル基、イソブチル基、t-ブチル基、s-ブチル基、ネオペンチル基、イソヘキシル基、3-メチルペンチル基等が挙げられる。 As the branched alkyl group, a branched alkyl group having 3 to 6 carbon atoms (particularly 3 to 5 carbon atoms) is preferable. Specifically, isopropyl group, isobutyl group, t-butyl group, s-butyl group, neopentyl group, Examples thereof include an isohexyl group and a 3-methylpentyl group.
 R2で示される有機基としてのアルキル基が有していてもよい置換基としては、特に制限はなく、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。このような置換基の数は、特に制限されないが、0~6個が好ましく、0~3個がより好ましい。 The substituent that the alkyl group as the organic group represented by R 2 may have is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.). . The number of such substituents is not particularly limited, but is preferably 0 to 6, more preferably 0 to 3.
 一般式(1)(一般式(1A)~(1C))において、Rで示される基のうち、R3で示されるアルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。 In the general formula (1) (general formulas (1A) to (1C)), among the groups represented by R, examples of the alkenyl group represented by R 3 include a vinyl group and an allyl group.
 一般式(1)(一般式(1A)~(1C))において、Rで示される基のうち、R3で示されるアルキニル基としては、例えば、アルキニル基、プロパルギル基等が挙げられる。 In the general formula (1) (general formulas (1A) to (1C)), among the groups represented by R, examples of the alkynyl group represented by R 3 include an alkynyl group and a propargyl group.
 このR3の種類によっては、電子構造の微調整や物理特性(溶解性、細胞透過性等)の調整を行うことも可能である。 Depending on the type of R 3 , the electronic structure can be finely adjusted and the physical properties (solubility, cell permeability, etc.) can be adjusted.
 一般式(1)(一般式(1C))において、Rで示される基のうち、R4で示されるアルキル基としては、直鎖アルキル基及び分岐鎖アルキル基のいずれも採用できる。 In the general formula (1) (general formula (1C)), among the groups represented by R, as the alkyl group represented by R 4 , both a linear alkyl group and a branched alkyl group can be employed.
 直鎖アルキル基としては、炭素数1~6(特に1~4)の直鎖アルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。 As the straight-chain alkyl group, a straight-chain alkyl group having 1 to 6 carbon atoms (particularly 1 to 4) is preferable. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. Group, n-hexyl group and the like.
 分岐鎖アルキル基としては、炭素数3~6(特に3~5)の分岐鎖アルキル基が好ましく、具体的には、イソプロピル基、イソブチル基、t-ブチル基、s-ブチル基、ネオペンチル基、イソヘキシル基、3-メチルペンチル基等が挙げられる。 As the branched alkyl group, a branched alkyl group having 3 to 6 carbon atoms (particularly 3 to 5 carbon atoms) is preferable. Specifically, isopropyl group, isobutyl group, t-butyl group, s-butyl group, neopentyl group, Examples thereof include an isohexyl group and a 3-methylpentyl group.
 R2で示される有機基としてのアルキル基が有していてもよい置換基としては、特に制限はなく、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。このような置換基の数は、特に制限されないが、0~6個が好ましく、0~3個がより好ましい。 The substituent that the alkyl group as the organic group represented by R 2 may have is not particularly limited, and examples thereof include a hydroxyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.). . The number of such substituents is not particularly limited, but is preferably 0 to 6, more preferably 0 to 3.
 なかでも、Rとしては、より電子求引性が高く、HOMO準位(最高被占有軌道のエネルギー準位)及びLUMO準位(最低空軌道のエネルギー準位)をより低減させやすいために光に対する安定性をより向上させやすい観点から、一般式(1A)で示される基が好ましい。 Among them, R has higher electron withdrawing properties, and it is easier to reduce the HOMO level (energy level of the highest occupied orbit) and LUMO level (energy level of the lowest unoccupied orbit). From the viewpoint of easily improving the stability, a group represented by the general formula (1A) is preferable.
 このような条件を満たす本発明の化合物としては、例えば、 Examples of the compound of the present invention that satisfies such conditions include, for example,
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、Phはフェニル基を示す。以下同様である。]
等で表されるホスファフルオレセイン化合物、又はその塩、水和物若しくは溶媒和物が好ましい。
[Wherein, Ph represents a phenyl group. The same applies hereinafter. ]
A phosphafluorescein compound represented by the above, or a salt, hydrate or solvate thereof is preferred.
 このような構造を有する本発明の化合物は、リン含有基の存在により電子求引性が高く、HOMO準位(最高被占有軌道のエネルギー準位)及びLUMO準位(最低空軌道のエネルギー準位)を低下することができる。特に、HOMO準位と比較してLUMO準位を効果的に低下させることができるため、アニオン型に変化させた場合のHOMO-LUMOエネルギーギャップを、2.00~2.50 eV、特に2.25~2.48 eVに低減することも可能である(B3LYP/6-31+G レベルでおこなった量子化学計算により求めた値)。このため、吸収極大波長及び蛍光極大波長をより長波長シフトさせることも可能である。HOMO準位及びLUMO準位は、Gaussian 09 プログラムを用いた構造最適化により測定する。 The compound of the present invention having such a structure has a high electron withdrawing property due to the presence of a phosphorus-containing group, and the HOMO level (energy level of the highest occupied orbit) and LUMO level (energy level of the lowest unoccupied orbit). ) Can be reduced. In particular, the LUMO level can be effectively reduced compared to the HOMO level, so the HOMO-LUMO energy gap when changed to an anion type is reduced to 2.00-2.50 eV, especially 2.25-2.48 eV. (B3LYP / 6-31 + G value obtained by quantum chemistry calculations performed at the G level). For this reason, it is also possible to shift the absorption maximum wavelength and the fluorescence maximum wavelength by longer wavelengths. HOMO and LUMO levels are measured by structural optimization using Gaussian 09 program.
 なお、本発明の化合物としては、中性型化合物(一般式(1)で表される化合物)であっても、蛍光極大波長を600~650 nm程度、特に610~640 nmに有することができるが、アニオン化して一般式(1)で表される化合物の塩の形態とすれば、吸収極大波長をより長波長シフトして600~700 nm(特に600~650 nm程度)の範囲とするとともに、蛍光極大波長をさらに長波長シフトさせ(650~700 nm程度、特に655~670 nm程度)、蛍光量子収率をさらに向上させる(0.25~0.60程度、特に0.35~0.50)ことも可能である。 As the compound of the present invention, even a neutral compound (compound represented by the general formula (1)) can have a fluorescence maximum wavelength of about 600 to 650 nm, particularly 610 to 640 nm. However, if the salt form of the compound represented by the general formula (1) is anionized, the absorption maximum wavelength is shifted to a wavelength longer than 600 to 700 nm (particularly about 600 to 650 nm). It is also possible to further shift the fluorescence maximum wavelength (about 650 to 700 nm, particularly about 655 to 670 nm) and further improve the fluorescence quantum yield (about 0.25 to 0.60, especially 0.35 to 0.50).
 このような観点から、本発明の化合物は、上記一般式(1)で示される化合物の塩が好ましく、一般式(2): From such a viewpoint, the compound of the present invention is preferably a salt of the compound represented by the general formula (1), and the general formula (2):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、R1及びRは前記に同じである。]
で表されるアニオンを有することがより好ましい。
[Wherein, R 1 and R are the same as defined above. ]
It is more preferable to have an anion represented by:
 一般式(2)において、R1及びRは前記説明したものと同様である。 In the general formula (2), R 1 and R are the same as those described above.
 また、一般式(2)で示されるアニオンと対のイオン(カチオン)としては特に制限はなく、例えば、塩基付加塩として、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等の金属塩;アンモニウム塩;トリエチルアンモニウム等の有機アンモニウム塩等を挙げることができる。 Moreover, there is no restriction | limiting in particular as an ion (cation) which is paired with the anion shown by General formula (2), For example, metal salts, such as a sodium salt, potassium salt, calcium salt, magnesium salt; An organic ammonium salt such as triethylammonium.
 また、本発明の化合物は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。 In addition, the compound of the present invention may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
 2.ホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物の製造方法
 本発明のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物は、特に制限されず、例えば、ケイ素置換フルオレセイン化合物の製造方法について報告されている既報(Chem. Commun. 2011, 47, 4162.)の方法に準じて(原料化合物を変更すること以外は同様に)合成することが可能である。
2. Method for producing phosphafluorescein compound or salt, hydrate or solvate thereof The phosphafluorescein compound of the present invention or a salt, hydrate or solvate thereof is not particularly limited, and examples thereof include silicon-substituted fluorescein compounds. It can be synthesized according to the method already reported for the production method (Chem. Commun. 2011, 47, 4162.) (except for changing the raw material compound).
 具体的には、以下の反応式1: Specifically, the following reaction formula 1:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、R及びR1は前記に同じである。R5及びR6は同一又は異なって、保護基を示す。X1及びX2は同一又は異なって、ハロゲン原子を示す。]
にしたがって合成することができる。
[Wherein, R and R 1 are the same as defined above. R 5 and R 6 are the same or different and represent a protecting group. X 1 and X 2 are the same or different and each represents a halogen atom. ]
Can be synthesized according to
 反応式1において、R5及びR6で示される保護基は、水酸基を保護することができる基であれば特に制限されず、どのようなものでも使用できるが、例えば、アルカノイル基(ホルミル基、アセチル基、プロピオニル等の炭素数1~4のアルカノイル基)、置換されていてもよいアラルキル基(ベンジル基、p-メトキシベンジル基、p-ニトロベンジル基等)、シリル基(トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基等)、アルコキシアルキル基(メトキシメチル基等)、テトラヒドロピラニル(THP)基等が挙げられる。本発明では、水酸基の保護及び求核付加反応の進行のしやすさの観点から、シリル基が好ましく、t-ブチルジメチルシリル基等がより好ましい。 In Reaction Scheme 1, the protecting group represented by R 5 and R 6 is not particularly limited as long as it is a group capable of protecting a hydroxyl group, and any group can be used. For example, an alkanoyl group (formyl group, C1-C4 alkanoyl groups such as acetyl group and propionyl), optionally substituted aralkyl groups (benzyl group, p-methoxybenzyl group, p-nitrobenzyl group, etc.), silyl groups (trimethylsilyl group, triethylsilyl group) Group, t-butyldimethylsilyl group, etc.), alkoxyalkyl group (methoxymethyl group etc.), tetrahydropyranyl (THP) group and the like. In the present invention, a silyl group is preferable and a t-butyldimethylsilyl group is more preferable from the viewpoint of protecting the hydroxyl group and facilitating the progress of the nucleophilic addition reaction.
 反応式1において、X1及びX2で示されるハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子をいずれも採用できるが、環化反応の進行のしやすさの観点から、塩素原子、臭素原子、ヨウ素原子等が好ましく、臭素原子がより好ましい。 In the reaction formula 1, as the halogen atom represented by X 1 and X 2 , any of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom can be adopted, but from the viewpoint of easy progress of the cyclization reaction, a chlorine atom , A bromine atom, an iodine atom and the like are preferable, and a bromine atom is more preferable.
 (2-1)環化反応
 本工程では、例えば、Rとして一般式(1A)で表される基を有する化合物を得ようとする場合は、原料としてケイ素化合物を用いる代わりに特定のリン化合物及び過酸化水素を用いること以外は、既報(Chem. Commun. 2011, 47, 4162.)と同様に行うことができる。具体的には、有機溶媒中で、上記反応式1における化合物(3)と、有機リチウム化合物とを反応させた後に、有機リン化合物を添加し、次いで、過酸化水素水を添加することにより、所望の環化反応を進行させることができる。Rとして一般式(1B)又は(1C)で表される基を有する化合物を得ようとする場合は、過酸化水素水の代わりに得ようとする置換基に応じて所望の原料化合物を使用することが好ましい。
(2-1) Cyclization reaction In this step, for example, when a compound having a group represented by the general formula (1A) as R is to be obtained, a specific phosphorus compound and Except for using hydrogen peroxide, it can be carried out in the same manner as previously reported (Chem. Commun. 2011, 47, 4162.). Specifically, by reacting the compound (3) in the above reaction formula 1 and the organolithium compound in an organic solvent, an organophosphorus compound is added, and then hydrogen peroxide solution is added. The desired cyclization reaction can proceed. When obtaining a compound having a group represented by the general formula (1B) or (1C) as R, a desired raw material compound is used according to the substituent to be obtained instead of the hydrogen peroxide solution. It is preferable.
 なお、上記反応式1における化合物(3)は、公知又は市販の化合物を用いることもでき、合成することもできる。合成する場合は、3-ハロゲン化アニリンとアリルハライドとを反応させ得て得られる3-ハロゲン化-N,N-ジアリルアニリンとホルムアルデヒドとを反応させることで合成することができる。 In addition, the compound (3) in the above reaction formula 1 can be a known or commercially available compound, or can be synthesized. In the case of synthesis, it can be synthesized by reacting 3-halogenated-N, N-diallylaniline obtained by reacting 3-halogenated aniline and allyl halide with formaldehyde.
 有機リチウム化合物としては、特に制限はなく、公知のものが採用でき、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、ペンチルリチウム、ヘキシルリチウム等のアルキルリチウム;シクロヘキシルリチウム等のシクロアルキルリチウム;フェニルリチウム等のアリールリチウム等が挙げられる。これらのうち、本工程では、収率の観点から、アルキルリチウムが好ましく、n-ブチルリチウムがより好ましい。 The organic lithium compound is not particularly limited, and known compounds can be used. For example, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, pentyl lithium, hexyl Alkyl lithium such as lithium; cycloalkyl lithium such as cyclohexyl lithium; aryl lithium such as phenyl lithium; and the like. Among these, in this step, alkyllithium is preferable and n-butyllithium is more preferable from the viewpoint of yield.
 有機リン化合物としては、本工程でRで表される基を有する化合物が得られれば特に制限はなく、公知のものが採用でき、例えば、ジクロロフェニルホスフィン、ジブロモフェニルホスフィン等のジハロゲン化アリールホスフィン等を使用することができる。 The organophosphorus compound is not particularly limited as long as a compound having a group represented by R can be obtained in this step, and known compounds can be used, for example, dihalogenated arylphosphine such as dichlorophenylphosphine and dibromophenylphosphine. Can be used.
 上記有機リチウム化合物、有機リン化合物及び過酸化水素の使用量は、特に制限はなく、収率等の観点から、化合物(3)1モルに対して、有機リチウム化合物を1~20モル(特に2~10モル)、有機リン化合物を0.1~10モル(特に0.5~5モル)使用することが好ましい。また、過酸化水素は水溶液を過剰量用いることが好ましい。 The amount of the organolithium compound, organophosphorus compound and hydrogen peroxide used is not particularly limited, and from the viewpoint of yield and the like, 1 to 20 moles (especially 2 to 2 moles) of the organolithium compound per mole of the compound (3) It is preferable to use 0.1 to 10 mol (especially 0.5 to 5 mol) of the organic phosphorus compound. Further, it is preferable to use an excess amount of an aqueous solution of hydrogen peroxide.
 本工程において使用され得る有機溶媒としては、公知のものを採用することができ、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル類が好ましい。また、反応条件は、反応が十分に進行する程度が好ましく、例えば、-150~0℃、特に-100~-50℃において5分~12時間、特に10分~6時間とすることができる。 As the organic solvent that can be used in this step, known ones can be adopted, and in this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable. The reaction conditions are preferably such that the reaction proceeds sufficiently. For example, the reaction can be carried out at −150 to 0 ° C., particularly −100 to −50 ° C. for 5 minutes to 12 hours, particularly 10 minutes to 6 hours.
 (2-2)酸化反応
 本工程では、既報(Chem. Commun. 2011, 47, 4162.)と同様に行うことができる。具体的には、有機溶媒中で、上記反応式1における化合物(4)に対して、酸化剤を用いて酸化反応を引き起こすことができる。
(2-2) Oxidation reaction This step can be carried out in the same manner as previously reported (Chem. Commun. 2011, 47, 4162.). Specifically, an oxidation reaction can be caused to the compound (4) in the above reaction formula 1 using an oxidizing agent in an organic solvent.
 酸化剤としては、特に制限はなく、過マンガン酸塩(過マンガン酸カリウム等)等を使用することができる。 The oxidizing agent is not particularly limited, and permanganate (such as potassium permanganate) can be used.
 上記酸化剤の使用量は、特に制限はなく、収率等の観点から、化合物(4)1モルに対して、1~10モル(特に2~5モル)使用することが好ましい。 The amount of the oxidizing agent used is not particularly limited, and is preferably used in an amount of 1 to 10 mol (especially 2 to 5 mol) with respect to 1 mol of compound (4) from the viewpoint of yield and the like.
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル類が好ましい。なお、上記環化工程と同じ溶媒を使用することができる。また、反応条件は、反応が十分に進行する程度とすることができ、例えば、-50~100℃、特に0~50℃において1~48時間、特に2~24時間とすることができる。 As the organic solvent that can be used in this step, a known one may be employed. In this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable. In addition, the same solvent as the said cyclization process can be used. The reaction conditions may be such that the reaction proceeds sufficiently. For example, the reaction conditions may be -50 to 100 ° C., particularly 0 to 50 ° C., 1 to 48 hours, particularly 2 to 24 hours.
 (2-3)脱アリル化反応
 本工程では、既報(Chem. Commun. 2011, 47, 4162.)と同様に行うことができる。具体的には、有機溶媒中で、上記反応式1における化合物(6)に対して、パラジウム触媒(テトラキス(トリフェニルホスフィン)パラジウム等)の存在下で、1,3-ジメチルバルビツール酸等を用いて、脱アリル化反応を引き起こすことができる。
(2-3) Deallylation Reaction This step can be performed in the same manner as previously reported (Chem. Commun. 2011, 47, 4162.). Specifically, 1,3-dimethylbarbituric acid or the like is added to the compound (6) in the above reaction formula 1 in the presence of a palladium catalyst (tetrakis (triphenylphosphine) palladium or the like) in an organic solvent. Can be used to cause a deallylation reaction.
 上記パラジウム触媒及び1,3-ジメチルバルビツール酸の使用量は、特に制限はなく、収率等の観点から、化合物(5)1モルに対して、パラジウム触媒を0.1~1モル(特に0.2~0.5モル)、1,3-ジメチルバルビツール酸を2~50モル(特に5~30モル)使用することが好ましい。 The amount of the palladium catalyst and 1,3-dimethylbarbituric acid used is not particularly limited. From the viewpoint of yield and the like, 0.1 to 1 mol of palladium catalyst (especially 0.2 to 1 mol) per 1 mol of compound (5). 0.5 mol) and 2 to 50 mol (especially 5 to 30 mol) of 1,3-dimethylbarbituric acid are preferably used.
 本工程において使用され得る有機溶媒としては、公知のものを採用すればよく、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル類が好ましい。なお、上記環化工程と同じ溶媒を使用することができる。また、反応条件は、反応が十分に進行する程度とすることができ、例えば、0~150℃、特に50~100℃において1~96時間、特に2~72時間とすることができる。 As the organic solvent that can be used in this step, a known one may be employed. In this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable. In addition, the same solvent as the said cyclization process can be used. The reaction conditions may be such that the reaction proceeds sufficiently. For example, the reaction conditions may be 1 to 96 hours, particularly 2 to 72 hours at 0 to 150 ° C., particularly 50 to 100 ° C.
 (2-4)変換反応
 本工程では、既報(Chem. Commun. 2011, 47, 4162.)と同様に行うことができる。具体的には、有機溶媒中で、上記反応式1における化合物(6)に対して、亜硝酸又はその塩を用いて、水酸基への変換反応を引き起こすことができる。
(2-4) Conversion reaction This step can be carried out in the same manner as previously reported (Chem. Commun. 2011, 47, 4162.). Specifically, a conversion reaction to a hydroxyl group can be caused by using nitrous acid or a salt thereof for the compound (6) in the above reaction formula 1 in an organic solvent.
 亜硝酸又はその塩としては、亜硝酸のほか、亜硝酸塩(亜硝酸ナトリウム)等を採用できる。 As nitrous acid or a salt thereof, in addition to nitrous acid, nitrite (sodium nitrite) or the like can be adopted.
 上記亜硝酸又はその塩の使用量は、特に制限はないが、収率等の観点から、化合物(6)1モルに対して、1~10モル(特に2~5モル)使用することが好ましい。 The amount of nitrous acid or a salt thereof used is not particularly limited, but from the viewpoint of yield and the like, it is preferable to use 1 to 10 mol (particularly 2 to 5 mol) with respect to 1 mol of compound (6). .
 本工程において使用され得る有機溶媒としては、公知のものを採用でき、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル類が好ましい。なお、上記環化工程と同じ溶媒を使用することができる。また、反応条件は、反応が十分に進行する程度とすることができ、例えば、50~200℃、特に100~150℃において5分~5時間、特に10分~2時間とすることができる。 As the organic solvent that can be used in this step, known ones can be adopted, and in this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable. In addition, the same solvent as the said cyclization process can be used. The reaction conditions may be such that the reaction proceeds sufficiently, for example, 50 to 200 ° C., particularly 100 to 150 ° C., 5 minutes to 5 hours, particularly 10 minutes to 2 hours.
 (2-5)保護化
 本工程では、既報(Chem. Commun. 2011, 47, 4162.)と同様に行うことができる。具体的には、有機溶媒中で、上記反応式1における化合物(7)に対して、公知の方法で保護化することができる。保護化の方法及び条件は、従来公知の方法及び条件をいずれも採用することができる。
(2-5) Protection This step can be performed in the same manner as previously reported (Chem. Commun. 2011, 47, 4162.). Specifically, the compound (7) in the above reaction formula 1 can be protected by a known method in an organic solvent. Any conventionally known methods and conditions can be adopted as the protection method and conditions.
 (2-6)求核付加反応
 本工程では、具体的には、有機溶媒中で、上記反応式1における化合物(7)とグリニャール試薬とを反応させ、次いで、酸化剤を用いて酸化反応を起こすことで、求核付加反応を引き起こすことができる。
(2-6) Nucleophilic addition reaction In this step, specifically, the compound (7) in the above reaction formula 1 is reacted with the Grignard reagent in an organic solvent, and then an oxidation reaction is performed using an oxidizing agent. This can cause a nucleophilic addition reaction.
 グリニャール試薬としては、本発明の化合物において所望のR1を導入できるものが好ましく、R1MgX3(R1は前記に同じである。X3はハロゲン原子を示す。)で表される有機マグネシウム化合物が好ましい。 As the Grignard reagent, those capable of introducing the desired R 1 in the compound of the present invention are preferable, and organic magnesium represented by R 1 MgX 3 (wherein R 1 is the same as above, X 3 represents a halogen atom). Compounds are preferred.
 X3で示されるハロゲン原子としては、上記したものを採用できる。好ましい具体例も同様である。 As the halogen atom represented by X 3 , those described above can be adopted. The same applies to preferred embodiments.
 このような条件を満たすグリニャール試薬としては、例えば、 Examples of Grignard reagents that satisfy these conditions include:
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
等が挙げられる。 Etc.
 酸化剤としては、特に制限はなく、塩化水素(塩酸)等を使用することができる。 There is no restriction | limiting in particular as an oxidizing agent, Hydrogen chloride (hydrochloric acid) etc. can be used.
 上記グリニャール試薬及び酸化剤の使用量は、特に制限はなく、収率等の観点から、化合物(5)1モルに対して、グリニャール試薬を1~10モル(特に2~5モル)使用することが好ましい。また、酸化剤は水溶液として過剰量使用することが好ましい。 The amount of Grignard reagent and oxidizing agent used is not particularly limited, and from the viewpoint of yield, etc., 1 to 10 moles (especially 2 to 5 moles) of Grignard reagent should be used per 1 mole of compound (5). Is preferred. The oxidizing agent is preferably used in an excess amount as an aqueous solution.
 本工程において使用され得る有機溶媒としては、公知のものを採用でき、本工程では、例えば、テトラヒドロフラン、ジオキサン等の環状エーテル類が好ましい。なお、上記環化工程と同じ溶媒を使用することができる。また、反応条件は、反応が十分に進行する程度とすることができ、例えば、-50~100℃、特に0~50℃において30分~10時間、特に1~5時間とすることができる。 As the organic solvent that can be used in this step, known ones can be adopted, and in this step, for example, cyclic ethers such as tetrahydrofuran and dioxane are preferable. In addition, the same solvent as the said cyclization process can be used. The reaction conditions may be such that the reaction proceeds sufficiently. For example, the reaction conditions may be −50 to 100 ° C., particularly 0 to 50 ° C., 30 minutes to 10 hours, particularly 1 to 5 hours.
 このようにして、一般式(1)で表されるホスファフルオレセイン化合物を得ることができ、必要に応じて通常の単離及び精製工程を経て使用することもできる。この一般式(1)で表されるホスファフルオレセイン化合物は、酸性条件下(例えばpH1~5)では中性型化合物であるが、中性条件下又はアルカリ性条件化(例えばpH6~14)とすることで、容易に一般式(2)で表されるアニオンを有する塩に変換し、必要に応じて通常の単離及び精製工程を経て使用することもできる。これにより、吸収極大波長をより長波長シフトして600~700 nm(特に600~650 nm程度)の範囲とするとともに、蛍光極大波長をさらに長波長シフトさせ(650~700 nm程度、特に655~670 nm程度)、蛍光量子収率をさらに向上させる(0.25~0.60程度、特に0.35~0.50)ことも可能である。 In this way, the phosphafluorescein compound represented by the general formula (1) can be obtained, and can be used through ordinary isolation and purification steps as necessary. The phosphafluorescein compound represented by the general formula (1) is a neutral compound under acidic conditions (for example, pH 1 to 5), but is made to be under neutral conditions or alkaline conditions (for example, pH 6 to 14). Thus, it can be easily converted into a salt having an anion represented by the general formula (2), and can be used through ordinary isolation and purification steps as necessary. As a result, the absorption maximum wavelength is shifted to a longer wavelength in the range of 600 to 700 nm (especially about 600 to 650 nm) and the fluorescence maximum wavelength is further shifted (about 650 to 700 nm, particularly 655 to 650 nm). It is possible to further improve the fluorescence quantum yield (about 0.25 to 0.60, especially 0.35 to 0.50).
 なお、上記では、本発明のホスファフルオレセイン化合物の一態様の合成方法の一例について記載したが、この製造方法に限定されることはなく、様々な合成方法で合成することができる。また、他のホスファフルオレセイン化合物についても同様の方法により合成することができる。 In addition, in the above, although an example of the synthesis | combining method of the one aspect | mode of the phosphafluorescein compound of this invention was described, it is not limited to this manufacturing method, It can synthesize | combine with various synthesis methods. Other phosphafluorescein compounds can be synthesized by the same method.
 3.蛍光色素及び細胞検出剤
 本発明の蛍光色素は、上記の本発明のホスファフルオレセイン化合物又はその塩を含有する。
3. Fluorescent dye and cell detection agent The fluorescent dye of the present invention contains the phosphafluorescein compound of the present invention or a salt thereof.
 本発明の蛍光色素は、フルオレセインのキサンテン環部位の10位の酸素原子をリン原子に置換したため、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、生理的条件下でも十分に高い蛍光量子収率が得られる。特に、実施例における吸収極大波長627 nmは、レーザー顕微鏡が通常備わっているHeNeレーザーの励起波長633 nmとほぼ一致していることから、蛍光色素としての励起効率が極めて高い。特に、本発明のホスファフルオレセイン化合物又はその塩は、細胞内への透過性が高いとともに、R1として所望の置換基を導入すれば、生体内で所望の細胞(例えばHeLa細胞等の癌細胞)中に選択的に局在させることができる。つまり、所望の細胞(例えばHeLa細胞等の癌細胞)のみを発光させることも可能である。特に、本発明のホスファフルオレセイン化合物又はその塩は、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、この領域に極大波長を有する従来の蛍光色素にはなかった高い蛍光量子収率を有することから、所望の細胞(例えばHeLa細胞等の癌細胞)のバイオイメージングをしやすくすることができるとともに、バイオイメージングに必要な蛍光色素濃度を低く抑えることができ、生体へのダメージを大幅に低減することができる。さらに、本発明のホスファフルオレセイン化合物又はその塩は、リン置換基の電子的効果によりHOMO準位を低減させることができ、光に対する安定性を飛躍的に向上させることができるため、生体深部の観測を長時間にわたって行うことが可能である。 In the fluorescent dye of the present invention, the oxygen atom at the 10-position of the xanthene ring portion of fluorescein is substituted with a phosphorus atom, so that it has a maximum absorption wavelength and a maximum fluorescence wavelength in the range of 600 to 700 nm, but it is sufficient even under physiological conditions. A high fluorescence quantum yield is obtained. In particular, the absorption maximum wavelength of 627 nm in the examples is almost the same as the excitation wavelength of 633 nm of a HeNe laser that is normally equipped with a laser microscope, so that the excitation efficiency as a fluorescent dye is extremely high. In particular, the phosphafluorescein compound or a salt thereof of the present invention has high permeability into cells, and when a desired substituent is introduced as R 1 , desired cells (for example, cancer cells such as HeLa cells) in vivo. ) Can be selectively localized. That is, only desired cells (for example, cancer cells such as HeLa cells) can emit light. In particular, the phosphafluorescein compound or a salt thereof of the present invention has a high fluorescence quantum that is not found in conventional fluorescent dyes that have an absorption maximum wavelength and a fluorescence maximum wavelength in the range of 600 to 700 nm but have a maximum wavelength in this region. Since it has a high yield, it can facilitate the bioimaging of desired cells (for example, cancer cells such as HeLa cells), and the fluorescent dye concentration required for bioimaging can be kept low, resulting in damage to the living body. Can be greatly reduced. Furthermore, the phosphafluorescein compound of the present invention or a salt thereof can reduce the HOMO level by the electronic effect of the phosphorus substituent, and can dramatically improve the stability to light. It is possible to observe for a long time.
 本発明の細胞検出剤(特にHeLa細胞等の癌細胞検出剤)は、本発明のホスファフルオレセイン化合物又はその塩を含有しているが、有機溶媒中に溶解させて溶液とすることが好ましく、より所望の細胞(例えばHeLa細胞等の癌細胞)を検出し、より場所選択的に所望の細胞(例えばHeLa細胞等の癌細胞)を演色(リアルタイムで視覚化)する観点から、本発明のホスファフルオレセイン化合物の含有量は、1×10-8~1×10-4mol/Lが好ましく、1×10-7~1×10-5mol/Lがより好ましい。このように、本発明では、従来の蛍光色素と比較し、ホスファフルオレセイン化合物の含有量を低く抑えることができる。 The cell detection agent of the present invention (particularly a cancer cell detection agent such as HeLa cells) contains the phosphafluorescein compound of the present invention or a salt thereof, preferably dissolved in an organic solvent to form a solution, From the viewpoint of detecting more desired cells (for example, cancer cells such as HeLa cells) and color rendering (visualization in real time) the desired cells (for example, cancer cells such as HeLa cells) more selectively. The content of the fluorescein compound is preferably 1 × 10 −8 to 1 × 10 −4 mol / L, more preferably 1 × 10 −7 to 1 × 10 −5 mol / L. Thus, in this invention, compared with the conventional fluorescent pigment | dye, content of a phosphafluorescein compound can be restrained low.
 本発明の蛍光色素(ホスファフルオレセイン化合物)を、本発明の細胞検出剤を含有する溶液とする場合、使用し得る有機溶媒としては、特に制限はなく、極性溶媒及び非極性溶媒のいずれも使用できる。 When the fluorescent dye (phosphafluorescein compound) of the present invention is used as a solution containing the cell detection agent of the present invention, the organic solvent that can be used is not particularly limited, and both polar solvents and nonpolar solvents are used. it can.
 極性溶媒としては、例えば、エーテル化合物(テトラヒドロフラン、アニソール、1,4-ジオキサン、シクロペンチルメチルエーテル等)、アルコール(メタノール、エタノール、アリルアルコール等)、エステル化合物(酢酸エチル等)、ケトン(アセトン等)、ハロゲン化炭化水素(ジクロロメタン、クロロホルム)、ジメチルスルホキシド、アミド系溶媒(N,N-ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドン等)等が挙げられる。 Examples of polar solvents include ether compounds (tetrahydrofuran, anisole, 1,4-dioxane, cyclopentylmethyl ether, etc.), alcohols (methanol, ethanol, allyl alcohol, etc.), ester compounds (ethyl acetate, etc.), ketones (acetone, etc.) , Halogenated hydrocarbons (dichloromethane, chloroform), dimethyl sulfoxide, amide solvents (N, N-dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, etc.) .
 非極性溶媒としては、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族有機溶媒;ベンゼン、トルエン、キシレン、メシチレン等の芳香族溶媒等が挙げられる。 Examples of the nonpolar solvent include aliphatic organic solvents such as pentane, hexane, cyclohexane and heptane; aromatic solvents such as benzene, toluene, xylene and mesitylene.
 本発明の細胞検出剤は、上記のとおり、溶液の形態が好ましいが、吸収極大波長及び蛍光極大波長を600~700 nmに有しつつも、生理的条件下でもより十分に高い蛍光量子収率としつつ、細胞中に投入する観点から、pHは5~11程度が好ましく、6.5~7.5程度がより好ましい。本発明の細胞検出剤のpHを調整するために、緩衝剤(ヘペス緩衝剤、トリス緩衝剤、トリシン-水酸化ナトリウム緩衝剤、リン酸系緩衝剤、リン酸緩衝生理食塩水等)等を使用してもよい。 As described above, the cell detection agent of the present invention is preferably in the form of a solution, but has a sufficiently high fluorescence quantum yield even under physiological conditions while having an absorption maximum wavelength and a fluorescence maximum wavelength at 600 to 700 nm. However, the pH is preferably about 5 to 11 and more preferably about 6.5 to 7.5 from the viewpoint of introduction into cells. Buffers (Hepes buffer, Tris buffer, tricine-sodium hydroxide buffer, phosphate buffer, phosphate buffered saline, etc.) are used to adjust the pH of the cell detection agent of the present invention. May be.
 実施例に基づいて、本発明を具体的に説明するが、本発明は、これらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 [実施例1] [Example 1]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般操作
 融点(mp)又は分解温度は、Yanaco MP-S3 instrument(MP-S3)で測定した。1H、13C{1H}及び31P{1H} NMRスペクトルは、JEOL AL-400 spectrometer(400 MHz for 1H, 100 MHz for 13C及び161.70 MHz for 31P)、JEOL JNM-ECS400(400 MHz for 1H, 100 MHz for 13C及び161.70 MHz for 31P)、又はJEOL A-600 spectrometer(600 MHz for 1H及び150 MHz for 13C)を用いて、CDCl3、CD2Cl2又はCD3OD中で測定した。1H NMRスペクトルのケミカルシフトは、内部標準として溶媒の残留プロトンを用いてδppmで表記し(CHCl3δ7.26、CH2Cl2δ5.32、CD3ODδ3.31)、13C NMRスペクトルのケミカルシフトは、内部標準としての溶媒のシグナルを用いてδppmで表記した(CDCl3δ77.16、CD2Cl2δ53.84、CD3ODδ49.0)。また、31P NMRスペクトルのケミカルシフト値はH3PO4のシグナル(δ0.00)を外部標準として用いた。マススペクトルは、Bruker micrOTOF Focus spectrometry systemを用いて、大気圧化学イオン化法(APCI)又はThermo Fisher Scientific Exactiveを用いて、エレクトスプレーイオン化法(ESI)で測定した。薄層クロマトグラフィー(TLC)はシリカゲル60F254(Merck)を塗布したガラス板を用いて行った。カラムクロマトグラフィーは、中性シリカゲルPSQ100B(富士シリシア化学)又はシリカゲル60(関東化学)を用いて行った。分取リサイクルHPLCは、逆相カラム(YMC-Actus Triart C18)を備えたYMC LC-forte/Rを用いて行った。特に記述のない限り、全ての反応は窒素雰囲気下でおこなった。特に断りのない限り、溶媒及び試薬は市販品を精製せずに使用した。脱水THF及びCH2Cl2は、関東化学から購入し、Glass Contour Solvent Systemsで精製した。ビス(2-ブロモ-4-N,N-ジアリルアミノフェニル)メタン(化合物1)及びTokyoMagentaは既報(Chem. Commun., 2011, 47, 4162-4164.)に従って合成し、TokyoGreenは既報(J. Am. Chem. Soc., 2005, 127, 4888-4894.)にしたがって合成した。
The general operating melting point (mp) or decomposition temperature was measured with a Yanaco MP-S3 instrument (MP-S3). 1 H, 13 C { 1 H} and 31 P { 1 H} NMR spectra were measured using JEOL AL-400 spectrometer (400 MHz for 1 H, 100 MHz for 13 C and 161.70 MHz for 31 P), JEOL JNM-ECS400 ( CDCl 3 , CD 2 Cl 2 or 400 MHz for 1 H, 100 MHz for 13 C and 161.70 MHz for 31 P) or JEOL A-600 spectrometer (600 MHz for 1 H and 150 MHz for 13 C) Measured in CD 3 OD. The chemical shift of the 1 H NMR spectrum is expressed in δ ppm using the residual proton of the solvent as an internal standard (CHCl 3 δ 7.26, CH 2 Cl 2 δ 5.32, CD 3 OD δ 3.31), and the 13 C NMR spectrum Chemical shifts were expressed in δ ppm using the solvent signal as an internal standard (CDCl 3 δ77.16, CD 2 Cl 2 δ53.84, CD 3 ODδ49.0). As the chemical shift value of the 31 P NMR spectrum, a signal of H 3 PO 4 (δ0.00) was used as an external standard. Mass spectra were measured by electrospray ionization (ESI) using a Bruker micrOTOF Focus spectrometry system using atmospheric pressure chemical ionization (APCI) or Thermo Fisher Scientific Exactive. Thin layer chromatography (TLC) was performed using a glass plate coated with silica gel 60F 254 (Merck). Column chromatography was performed using neutral silica gel PSQ100B (Fuji Silysia Chemical) or silica gel 60 (Kanto Chemical). Preparative recycling HPLC was performed using a YMC LC-forte / R equipped with a reverse phase column (YMC-Actus Triart C18). Unless otherwise stated, all reactions were performed under a nitrogen atmosphere. Unless otherwise noted, solvents and reagents were used without purifying commercial products. Dehydrated THF and CH 2 Cl 2 were purchased from Kanto Chemical and purified by Glass Contour Solvent Systems. Bis (2-bromo-4-N, N-diallylaminophenyl) methane (compound 1) and TokyoMagenta were synthesized according to the previous report (Chem. Commun., 2011, 47, 4162-4164.), And TokyoGreen was reported (J. Am. Chem. Soc., 2005, 127, 4888-4894.).
 化合物2の合成
 ビス[2-ブロモ-4-(N,N-ジアリルアミノ)フェニル]メタン(化合物1)(1.01 g, 1.96 mmol)を脱水THF(20 mL)に溶解させた。-78℃にてt-ブチルリチウムのペンタン溶液(1.63 M, 4.80 mL, 7.82 mmol)を20分間かけて滴下し、そのまま1時間撹拌した。ジクロロフェニルホスフィン(PhPCl2; 0.318 mL, 2.34 mmol)を25分間かけて滴下し、滴下終了から1.5時間後に0℃で30%H2O2溶液(1.0 mL)を加え、そのまま1時間撹拌した。反応混合物に次亜塩素酸ナトリウム水溶液と飽和亜硫酸ナトリウム水溶液を加えた後、CH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/メタノール 20/1, Rf = 0.4)で精製することにより、化合物2を黄色液体として761 mg(1.58 mmol, 収率81%)得た。化合物2のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CDCl3): δ7.47-7.42 (m, 4H), 7.39-7.31 (m, 3H), 7.18 (dd, J = 8.2 Hz, 6.2 Hz, 2H), 6.80 (bs, 2H), 5.89-5.80 (m, 4H) 5.18-5.13 (m, 8H), 4.03-3.90 (m, 8H), 3.84 (d, J = 18Hz, 1H), 3.66 (d, J = 18 Hz, 3.6 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3): δ 147.5 (d, JCP = 13.3 Hz, C), 134.7 (d, JCP = 104.1 Hz, C), 133.7 (s, CH), 131.1 (d, JCP= 2.5 Hz, CH), 130.9 (d, JCP = 9.9 Hz, CH), 129.8 (d, JCP= 100.1 Hz, C), 129.3 (d, JCP = 8.3 Hz, C), 129.0 (d, JCP= 11.5 Hz, CH), 128.4 (d, JCP = 12.4 Hz, CH), 116.4 (s, CH2), 115.8 (s, CH), 114.2 (d, JCP = 8.2 Hz, CH), 52.9 (s, CH2), 35.3 (d, JCP = 9.1 Hz, CH2). 31P{1H} NMR (161.70MHz, CDCl3): δ 14.33. HRMS (ESI): m/z calcd. for C31H33N2NaOP: 503.2228 ([M+Na]+); found. 503.2224。
Synthesis of Compound 2 Bis [2-bromo-4- (N, N-diallylamino) phenyl] methane (Compound 1) (1.01 g, 1.96 mmol) was dissolved in dehydrated THF (20 mL). A pentane solution of t-butyllithium (1.63 M, 4.80 mL, 7.82 mmol) was added dropwise at −78 ° C. over 20 minutes, and the mixture was stirred as it was for 1 hour. Dichlorophenylphosphine (PhPCl 2 ; 0.318 mL, 2.34 mmol) was added dropwise over 25 minutes, and 1.5 hours after completion of the addition, a 30% H 2 O 2 solution (1.0 mL) was added at 0 ° C., and the mixture was stirred as it was for 1 hour. A sodium hypochlorite aqueous solution and a saturated sodium sulfite aqueous solution were added to the reaction mixture, followed by extraction with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / methanol 20/1, Rf = 0.4) to obtain 761 mg (1.58 mmol, 81% yield) of Compound 2 as a yellow liquid. The spectral data of Compound 2 is as follows.
1 H NMR (400MHz, CDCl 3 ): δ7.47-7.42 (m, 4H), 7.39-7.31 (m, 3H), 7.18 (dd, J = 8.2 Hz, 6.2 Hz, 2H), 6.80 (bs, 2H ), 5.89-5.80 (m, 4H) 5.18-5.13 (m, 8H), 4.03-3.90 (m, 8H), 3.84 (d, J = 18Hz, 1H), 3.66 (d, J = 18 Hz, 3.6 Hz 13 C { 1 H} NMR (100 MHz, CDCl 3 ): δ 147.5 (d, J CP = 13.3 Hz, C), 134.7 (d, J CP = 104.1 Hz, C), 133.7 (s, CH), 131.1 (d, J CP = 2.5 Hz, CH), 130.9 (d, J CP = 9.9 Hz, CH), 129.8 (d, J CP = 100.1 Hz, C), 129.3 (d, J CP = 8.3 Hz, C), 129.0 (d, J CP = 11.5 Hz, CH), 128.4 (d, J CP = 12.4 Hz, CH), 116.4 (s, CH 2 ), 115.8 (s, CH), 114.2 (d, . J CP = 8.2 Hz, CH ), 52.9 (s, CH 2), 35.3 (d, J CP = 9.1 Hz, CH 2) 31 P {1 H} NMR (161.70MHz, CDCl 3):. δ 14.33 HRMS (ESI): m / z calcd. For C 31 H 33 N 2 NaOP: 503.2228 ([M + Na] + ); found. 503.2224.
 その他、以下の方法でも化合物2を得た。ビス[2-ブロモ-4-(N,N-ジアリルアミノ)フェニル]メタン(化合物1)(0.978 g, 1.89 mmol)の脱水THF(9 mL)溶液に対して、-78℃にてs-ブチルリチウムのシクロヘキサン及びヘキサン溶液(0.99 M, 4.00 mL, 3.96 mmol)を5分間かけて滴下した。1時間撹拌した後、ジクロロフェニルホスフィン(PhPCl2; 0.290 mL, 0.383 g, 2.14 mmol)を10分間かけて滴下した。同じ温度で3時間撹拌した後、溶液を0℃まで昇温し、30%H2O2溶液(1.0 mL)を加えた。混合物を1時間撹拌し、亜硫酸ナトリウム水溶液でクエンチした。その後、得られた溶液を酢酸エチル(AcOEt)で抽出した。合わせた有機層を食塩水で洗浄し、脱水硫酸ナトリウムで乾燥し、ろ過した。揮発物質を減圧下に除去し、得られた固体をシリカゲルカラムクロマトグラフィー(CH2Cl2/メタノール 20/1, Rf = 0.4)で精製することにより、化合物2を黄色液体として0.257 g(0.525 mmol, 収率28%)得た。 In addition, compound 2 was obtained by the following method. Bis [2-bromo-4- (N, N-diallylamino) phenyl] methane (Compound 1) (0.978 g, 1.89 mmol) in dehydrated THF (9 mL) at -78 ° C with s-butyl Lithium in cyclohexane and hexane (0.99 M, 4.00 mL, 3.96 mmol) was added dropwise over 5 minutes. After stirring for 1 hour, dichlorophenylphosphine (PhPCl 2 ; 0.290 mL, 0.383 g, 2.14 mmol) was added dropwise over 10 minutes. After stirring at the same temperature for 3 hours, the solution was warmed to 0 ° C. and 30% H 2 O 2 solution (1.0 mL) was added. The mixture was stirred for 1 hour and quenched with aqueous sodium sulfite. The resulting solution was then extracted with ethyl acetate (AcOEt). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and filtered. Volatiles were removed under reduced pressure, and the resulting solid was purified by silica gel column chromatography (CH 2 Cl 2 / methanol 20/1, Rf = 0.4) to give 0.257 g (0.525 mmol) of Compound 2 as a yellow liquid. Yield 28%).
 化合物3及び化合物4の合成
 空気中で化合物2(761 mg, 1.58 mmol)をCH2Cl2(16 mL)に溶解させた。室温でクロラニル(1.19 g, 4.84 mmol)を加え、そのまま12.5時間撹拌した。減圧下で溶媒を留去し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/メタノール 20/1, Rf = 0.44)で精製することにより、化合物3を黄色液体として304 mg(0.61 mmol, 収率39%)得た。化合物3のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CDCl3): δ8.27 (dd, J = 9.0 Hz, 6.2 Hz, 2H), 7.59-7.54 (m, 2H), 7.39-7.32 (m, 3H), 7.14 (dd, J = 15 Hz, 2.6 Hz, 2H), 6.86 (dd, J = 9.0 Hz, 2.6 Hz, 2H), 5.82-5.74 (m, 4H), 5.15-5.09 (m, 8H), 4.08-3.93 (m, 8H). 31P{1H} NMR (161.70MHz, CDCl3): δ 6.84. HRMS (ESI): m/z calcd. for C31H31NaN2O2P: 517.2021 ([M+Na]+); found. 517.2013。
Compound 2 (761 mg, 1.58 mmol) was dissolved in CH 2 Cl 2 (16 mL) in the synthetic air of Compound 3 and Compound 4 . Chloranyl (1.19 g, 4.84 mmol) was added at room temperature, and the mixture was stirred as it was for 12.5 hours. The solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / methanol 20/1, R f = 0.44) to obtain 304 mg (0.61 mmol, 39% yield) of compound 3 as a yellow liquid. The spectral data of Compound 3 is as follows.
1 H NMR (400MHz, CDCl 3 ): δ8.27 (dd, J = 9.0 Hz, 6.2 Hz, 2H), 7.59-7.54 (m, 2H), 7.39-7.32 (m, 3H), 7.14 (dd, J = 15 Hz, 2.6 Hz, 2H), 6.86 (dd, J = 9.0 Hz, 2.6 Hz, 2H), 5.82-5.74 (m, 4H), 5.15-5.09 (m, 8H), 4.08-3.93 (m, 8H ). 31 P { 1 H} NMR (161.70 MHz, CDCl 3 ): δ 6.84. HRMS (ESI): m / z calcd. For C 31 H 31 NaN 2 O 2 P: 517.2021 ([M + Na] + ) found. 517.2013.
 トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3; 50.4 mg, 0.055 mmol)、1,4-ビス(ジフェニルホスフィノ)ブタン(464 mg, 1.08 mmol)を脱気した脱水1,2-ジクロロエタン(1.0 mL)に溶解させ、室温で1時間撹拌した。得られた溶液を、脱気した脱水1,2-ジクロロエタン(0.4 mL)に化合物3(71.0 mg, 0.144 mmol)と1,3-ジメチルバルビツール酸(265 mg, 1.70 mmol)を溶解させた溶液に対して加え、80℃で2日間撹拌したのち、CH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/メタノール 10/1, Rf = 0.35)で精製することにより、化合物4を黄色固体として31 mg(0.0927 mmol, 収率65%)得た。化合物4のスペクトルデータは以下のとおりである。
Mp: 151℃. 1H NMR (400MHz, CD3OD): δ 8.15 (dd, J = 8.8 Hz, 6.0 Hz, 2H), 7.60-7.42 (m, 5H), 6.99 (dd, J = 14.8 Hz, 2.2 Hz, 2H), 6.91 (dd, J = 8.8 Hz, 2.2 Hz, 2H). The signal corresponding to NH2 moiety was not observed. 13C{1H} NMR (100MHz, CD3OD): δ181.38 (d, JCP = 9.0 Hz, C), 154.84 (d, JCP = 13.3 Hz, C), 135.14 (d, JCP = 97.6 Hz, C), 134.49 (d, JCP = 108.3 Hz, C), 133.29 (d, JCP = 2.5 Hz, CH), 132.59 (d, JCP = 10.7 Hz, CH), 131.64 (d, JCP = 10.7 Hz, CH), 129.94 (d, JCP = 13.3 Hz, CH), 125.7 (d, JCP = 6.6 Hz, C), 118.57 (CH), 115.25 (d, JCP= 7.4 Hz, CH). 31P{1H} NMR (161.70MHz, CD3OD): δ 7.83. HRMS (APCI): m/z calcd. for C19H16N2O2P : 335.0944 ([M+H]+); found. 335.0947。
Dehydrated 1,2-bis (diphenylphosphino) butane (464 mg, 1.08 mmol) dehydrated with tris (dibenzylideneacetone) dipalladium (Pd 2 (dba) 3 ; 50.4 mg, 0.055 mmol) Dissolved in dichloroethane (1.0 mL) and stirred at room temperature for 1 hour. A solution of compound 3 (71.0 mg, 0.144 mmol) and 1,3-dimethylbarbituric acid (265 mg, 1.70 mmol) in dehydrated dehydrated 1,2-dichloroethane (0.4 mL) The mixture was stirred at 80 ° C. for 2 days, and extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / methanol 10/1, R f = 0.35) to obtain 31 mg (0.0927 mmol, yield 65%) of compound 4 as a yellow solid. The spectral data of Compound 4 is as follows.
Mp: 151 ° C. 1 H NMR (400MHz, CD 3 OD): δ 8.15 (dd, J = 8.8 Hz, 6.0 Hz, 2H), 7.60-7.42 (m, 5H), 6.99 (dd, J = 14.8 Hz, 2.2 Hz, 2H), 6.91 (dd, J = 8.8 Hz, 2.2 Hz, 2H). The signal corresponding to NH 2 moiety was not observed. 13 C { 1 H} NMR (100 MHz, CD 3 OD): δ181.38 (d, J CP = 9.0 Hz, C), 154.84 (d, J CP = 13.3 Hz, C), 135.14 (d, J CP = 97.6 Hz, C), 134.49 (d, J CP = 108.3 Hz, C) , 133.29 (d, J CP = 2.5 Hz, CH), 132.59 (d, J CP = 10.7 Hz, CH), 131.64 (d, J CP = 10.7 Hz, CH), 129.94 (d, J CP = 13.3 Hz, . CH), 125.7 (d, J CP = 6.6 Hz, C), 118.57 (CH), 115.25 (d, J CP = 7.4 Hz, CH) 31 P {1 H} NMR (161.70MHz, CD 3 OD): δ 7.83. HRMS (APCI): m / z calcd. for C 19 H 16 N 2 O 2 P: 335.0944 ([M + H] + ); found. 335.0947.
 その他、以下の方法でも化合物3及び4を得た。化合物2(5.37 g, 11.2 mmol)のCH2Cl2(112 mL)溶液に対して、空気中でクロラニル(8.26 g, 33.6 mmol)を加えた。混合物を3時間撹拌し、亜硫酸ナトリウム水溶液でクエンチした。その後、得られた溶液をCH2Cl2で抽出した。合わせた有機層を食塩水で洗浄し、脱水硫酸ナトリウムで乾燥し、ろ過した。揮発物質を減圧下に除去し、得られた固体をシリカゲルカラムクロマトグラフィー(CH2Cl2/メタノール 20/1, Rf = 0.4)で精製することにより、化合物3を黄色固体として得た。単離できない不純物も存在したが、そのまま次の工程に使用した。 In addition, compounds 3 and 4 were also obtained by the following method. To a CH 2 Cl 2 (112 mL) solution of Compound 2 (5.37 g, 11.2 mmol), chloranil (8.26 g, 33.6 mmol) was added in air. The mixture was stirred for 3 hours and quenched with aqueous sodium sulfite. The resulting solution was then extracted with CH 2 Cl 2 . The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and filtered. Volatiles were removed under reduced pressure, and the resulting solid was purified by silica gel column chromatography (CH 2 Cl 2 / methanol 20/1, Rf = 0.4) to give compound 3 as a yellow solid. Although some impurities could not be isolated, they were used as they were in the next step.
 化合物3(4.39 g)の脱気した1,2-ジクロロエタン(370 mL)溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3; 1.34 g, 1.16 mmol)、及び1,3-ジメチルバルビツール酸(6.39 g, 40.9 mmol)を添加した。混合物を80℃で24時間撹拌した。反応を進行するため、得られた混合物に、Pd2(dba)3(1.34 g, 1.16 mmol)、及び1,3-ジメチルバルビツール酸(6.39 g, 40.9 mmol)をさらに添加した。80℃でさらに23時間撹拌した後、全ての揮発物質を減圧下に除去した。得られた橙色固体をシリカゲルカラムクロマトグラフィー(CHCl3/メタノール 10/1, Rf = 0.30)で精製することにより、化合物4を黄色固体として2.39 g(7.15 mmol, 収率64%)得た。 To a degassed 1,2-dichloroethane (370 mL) solution of compound 3 (4.39 g), tris (dibenzylideneacetone) dipalladium (Pd 2 (dba) 3 ; 1.34 g, 1.16 mmol), and 1,3- Dimethyl barbituric acid (6.39 g, 40.9 mmol) was added. The mixture was stirred at 80 ° C. for 24 hours. In order to proceed with the reaction, Pd 2 (dba) 3 (1.34 g, 1.16 mmol) and 1,3-dimethylbarbituric acid (6.39 g, 40.9 mmol) were further added to the obtained mixture. After stirring for a further 23 hours at 80 ° C., all volatiles were removed under reduced pressure. The obtained orange solid was purified by silica gel column chromatography (CHCl 3 / methanol 10/1, R f = 0.30) to obtain 2.39 g (7.15 mmol, yield 64%) of compound 4 as a yellow solid.
 化合物5の合成
 空気中で化合物4(52.0 mg, 0.156 mmol)を96%硫酸(0.46 mL)に溶解させた。0℃でNaNO2(33.0 mg, 0.478 mmol)を加え、そのまま3時間撹拌した。得られた反応溶液を適量の氷に対して滴下し、110℃で0.5時間撹拌した。得られた固体を濾別し、残渣を蒸留水で洗浄し粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/メタノール 10/1, Rf = 0.25)で精製することにより、化合物5を黄色固体として28.0 mg(0.832 mmol, 収率54%)得た。化合物5のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CD3OD): δ8.33 (dd, J = 8.8 Hz, 6.0 Hz, 2H), 7.59-7.45 (m, 5H), 7.21 (dd, J = 14.2 Hz, 2.4 Hz, 2H), 7.16 (dd, J = 8.8 Hz, 2.4 Hz, 2H). The signal corresponding to the OH moiety was not observed. 13C{1H} NMR (100MHz, CD3OD): δ 181.48 (d, JCP = 9.1 Hz, C), 163.96 (d, JCP = 13.2 Hz, C), 135.58 (d, JCP = 97.5 Hz, C), 133.68 (d, JCP = 3.3 Hz, CH), 133.64 (d, JCP = 109.9 Hz, C), 133.32 (d, JCP = 10.7 Hz, CH), 131.69 (d, JCP = 10.7 Hz, CH), 130.20 (d, JCP = 12.3 Hz, CH), 129.07 (d, JCP = 7.4 Hz, C), 121.56 (d, JCP = 1.6 Hz, CH), 117.60 (d, JCP = 6.6 Hz, CH). 31P{1H} NMR (161.70MHz, CD3OD): δ 6.44. HRMS (APCI): m/z calcd. for C19H14O4P : 337.0624 ([M+H]+) ; found. 337.0640。
Compound 4 (52.0 mg, 0.156 mmol) was dissolved in 96% sulfuric acid (0.46 mL) in the synthetic air of compound 5 . NaNO 2 (33.0 mg, 0.478 mmol) was added at 0 ° C., and the mixture was stirred as it was for 3 hours. The obtained reaction solution was added dropwise to an appropriate amount of ice and stirred at 110 ° C. for 0.5 hour. The obtained solid was filtered off, and the residue was washed with distilled water to obtain a crude product. The crude product was purified by silica gel column chromatography (CHCl 3 / methanol 10/1, R f = 0.25) to obtain 28.0 mg (0.832 mmol, yield 54%) of compound 5 as a yellow solid. The spectral data of Compound 5 is as follows.
1 H NMR (400MHz, CD 3 OD): δ8.33 (dd, J = 8.8 Hz, 6.0 Hz, 2H), 7.59-7.45 (m, 5H), 7.21 (dd, J = 14.2 Hz, 2.4 Hz, 2H ), 7.16 (dd, J = 8.8 Hz, 2.4 Hz, 2H) The signal corresponding to the OH moiety was not observed 13 C {1 H} NMR (100MHz, CD 3 OD):.. δ 181.48 (d, J CP = 9.1 Hz, C), 163.96 (d, J CP = 13.2 Hz, C), 135.58 (d, J CP = 97.5 Hz, C), 133.68 (d, J CP = 3.3 Hz, CH), 133.64 (d, J CP = 109.9 Hz, C), 133.32 (d, J CP = 10.7 Hz, CH), 131.69 (d, J CP = 10.7 Hz, CH), 130.20 (d, J CP = 12.3 Hz, CH), 129.07 ( d, J CP = 7.4 Hz, C), 121.56 (d, J CP = 1.6 Hz, CH), 117.60 (d, J CP = 6.6 Hz, CH). 31 P {1 H} NMR (161.70MHz, CD 3 OD): δ 6.44. HRMS (APCI): m / z calcd. For C 19 H 14 O 4 P: 337.0624 ([M + H] + ); found. 337.0640.
 その他、以下の方法でも化合物5を得た。空気中で化合物4(247 mg, 0.739 mmol)の96%硫酸(2.5 mL)溶液に対して、NaNO2(171 mg, 2.48 mmol)を空気中、0℃で添加した。3時間撹拌した後、混合物をゆっくりと氷に滴下し、110℃で0.5時間撹拌した。得られた沈殿をろ過して集め、蒸留水で洗浄し、メタノール中に分散させた。得られた暗褐色の沈殿をろ過し、ろ液を減圧下に濃縮することにより、化合物5を黄色固体として158 mg(0.470 mmol, 収率64%)得た。 In addition, compound 5 was also obtained by the following method. NaNO 2 (171 mg, 2.48 mmol) was added in air at 0 ° C. to a 96% sulfuric acid (2.5 mL) solution of compound 4 (247 mg, 0.739 mmol) in air. After stirring for 3 hours, the mixture was slowly added dropwise to ice and stirred at 110 ° C. for 0.5 hours. The resulting precipitate was collected by filtration, washed with distilled water, and dispersed in methanol. The obtained dark brown precipitate was filtered, and the filtrate was concentrated under reduced pressure to obtain 158 mg (0.470 mmol, yield 64%) of Compound 5 as a yellow solid.
 化合物6の合成
 化合物5(195 mg, 0.580 mmol)とイミダゾール(197 mg, 2.89 mmol)を脱水CH2Cl2(50 mL)に溶解させ、15分間撹拌した。t-ブチルクロロジメチルシラン(505 mg, 3.35 mmol)を脱水CH2Cl2(35 mL)に溶解させたものを、化合物5を含む溶液に対して滴下した。3時間撹拌した後、水を加え、CH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/酢酸エチル 30/1, Rf = 0.53)で精製することにより、化合物6を無色液体として265 mg(0.469 mmol, 収率81%)得た。化合物6のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CDCl3): δ8.36 (dd, J = 8.7 Hz, 5.8 Hz, 2H), 7.59-7.53 (m, 2H), 7.46-7.36 (m, 5H), 7.10 (dd, J = 8.7 Hz, 2.4 Hz, 2H), 0.95 (s, 18H), 0.21 (s, 6H), 0.20 (s, 6H). 13C{1H} NMR (100MHz, CDCl3): δ 181.08 (d, JCP = 9.1 Hz, C), 160.57 (d, JCP = 14.1 Hz, C), 135.55 (d, JCP = 95.9 Hz, C), 133.60 (d, JCP = 107.4 Hz, C), 132.08 (d, JCP = 10.7 Hz, CH), 131.99 (d, JCP = 2.5 Hz, CH), 130.78 (d, JCP = 10.7 Hz, CH), 129.64 (d, JCP = 6.6 Hz, C), 128.87 (d, JCP = 12.3 Hz, CH), 124.34 (d, JCP = 2.5 Hz, CH), 121.91 (d, JCP = 6.6 Hz, CH), 25.69 (s, CH3), 18.35 (s, C), -4.20 (s, CH3), -4.30 (s, CH3). 31P{1H} NMR (161.70 MHz, CDCl3): δ 4.50. HRMS (APCI): m/z calcd. for C31H41NaO4PSi2: 587.2179 ([M+H]+) ; found. 587.2167。
Synthesis of Compound 6 Compound 5 (195 mg, 0.580 mmol) and imidazole (197 mg, 2.89 mmol) were dissolved in dehydrated CH 2 Cl 2 (50 mL) and stirred for 15 minutes. A solution in which t-butylchlorodimethylsilane (505 mg, 3.35 mmol) was dissolved in dehydrated CH 2 Cl 2 (35 mL) was added dropwise to the solution containing Compound 5. After stirring for 3 hours, water was added and extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / ethyl acetate 30/1, R f = 0.53) to obtain 265 mg (0.469 mmol, 81% yield) of Compound 6 as a colorless liquid. . The spectral data of Compound 6 is as follows.
1 H NMR (400MHz, CDCl 3 ): δ8.36 (dd, J = 8.7 Hz, 5.8 Hz, 2H), 7.59-7.53 (m, 2H), 7.46-7.36 (m, 5H), 7.10 (dd, J = 8.7 Hz, 2.4 Hz, 2H ), 0.95 (s, 18H), 0.21 (s, 6H), 0.20 (s, 6H) 13 C {1 H} NMR (100MHz, CDCl 3):. δ 181.08 (d, J CP = 9.1 Hz, C), 160.57 (d, J CP = 14.1 Hz, C), 135.55 (d, J CP = 95.9 Hz, C), 133.60 (d, J CP = 107.4 Hz, C), 132.08 ( d, J CP = 10.7 Hz, CH), 131.99 (d, J CP = 2.5 Hz, CH), 130.78 (d, J CP = 10.7 Hz, CH), 129.64 (d, J CP = 6.6 Hz, C), 128.87 (d, J CP = 12.3 Hz, CH), 124.34 (d, J CP = 2.5 Hz, CH), 121.91 (d, J CP = 6.6 Hz, CH), 25.69 (s, CH 3 ), 18.35 (s , C), -4.20 (s, CH 3), -4.30 (s, CH 3) 31 P {1 H} NMR (161.70 MHz, CDCl 3):.. δ 4.50 HRMS (APCI): m / z calcd. for C 31 H 41 NaO 4 PSi 2 : 587.2179 ([M + H] + ); found. 587.2167.
 その他、以下の方法でも化合物6を得た。化合物5(229 mg, 0.680 mmol)とイミダゾール(232 mg, 3.40 mmol)の脱水CH2Cl2(25 mL)溶液に対して、t-ブチルクロロジメチルシラン(512 mg, 3.40 mmol)の脱水CH2Cl2(7 mL)溶液を添加した。3時間撹拌した後、水を加え、2層を分離した。水層をCH2Cl2で抽出した。あわせた有機層を脱水硫酸ナトリウムで乾燥し、ろ過した。揮発物質を減圧下に除去した後、得られた混合物をシリカゲルカラムクロマトグラフィー(CH2Cl2/酢酸エチル 30/1, Rf = 0.53)で精製することにより、化合物6を無色液体として354 mg(0.627 mmol, 収率92%)得た。 In addition, compound 6 was also obtained by the following method. Compound 5 (229 mg, 0.680 mmol) and imidazole (232 mg, 3.40 mmol) against dehydration CH 2 Cl 2 (25 mL) solution of, t- butyl chloro dimethyl silane (512 mg, 3.40 mmol) dehydrated CH 2 of A solution of Cl 2 (7 mL) was added. After stirring for 3 hours, water was added and the two layers were separated. The aqueous layer was extracted with CH 2 Cl 2 . The combined organic layers were dried over dehydrated sodium sulfate and filtered. After removing volatile substances under reduced pressure, the resulting mixture was purified by silica gel column chromatography (CH 2 Cl 2 / ethyl acetate 30/1, R f = 0.53) to obtain Compound 354 mg as a colorless liquid. (0.627 mmol, yield 92%).
 化合物POFの合成
 化合物6(230 mg, 0.407 mmol)を脱水THF(70 mL)に溶解させた。室温にて2-メチルフェニルマグネシウムブロミドのTHF溶液(1.03 M, 1.43 mL, 1.47 mmol)を滴下し、4時間撹拌した。1N HCl水溶液(50 mL)を加え、2時間撹拌し、反応混合物をCH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/メタノール 5/1 (TEA 10%), Rf = 0.48)にて分離した後、HPLCで精製することにより、55 mgの青色固体を得た。得られた固体をトルエンに溶解させ分液漏斗にいれ、1N HCl水溶液を加えて分液漏斗を振った。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで化合物POFを赤色固体として30 mg(0.0730 mmol, 収率18%)で得た。化合物POFのスペクトルデータは以下のとおりである。
Mp.> 300℃. 1H NMR (400 MHz, CD3OD) : δ 7.76-7.36 (m, 8H), 7.27-7.13 (m, 3H), 7.03-6.94 (m, 2H), 6.58 (d, J = 9.5 Hz, 2H), 2.12 and 2.06 (two signals, 3H, tolyl-methyl group signals from two diastereoisomers). 13C NMR (100 MHz, CD3OD): δ 140.0 (CH), 140.0 (CH), 138.3 (C), 138.2 (C), 137.9 (C), 137.7 (C), 137.6 (C), 137.3 (C), 137.2 (C), 137.1 (C), 134.1 (CH), 131.6 (CH), 131.6 (CH), 131.5 (CH), 131.4 (CH), 130.8 (CH), 130.5 (CH), 130.4 (CH), 130.4 (CH), 130.3 (CH), 129.9 (CH), 129.1 (CH), 127.2 (CH), 127.1 (CH), 125.9 (C), 125.8 (C), 125.7 (C), 125.3 (CH), 19.7 (CH3), 19.6 (CH3). 31P{1H} NMR (161.70 MHz, CDCl3): δ 11.1, 11.0. HRMS (ESI): m/z calcd. for C26H19NaO3P: 433.0970 ([M+H]+) ; found. 433.0960。
Compound POF Synthesis Compound 6 (230 mg, 0.407 mmol) was dissolved in dehydrated THF (70 mL). A THF solution of 2-methylphenylmagnesium bromide (1.03 M, 1.43 mL, 1.47 mmol) was added dropwise at room temperature, and the mixture was stirred for 4 hours. 1N aqueous HCl (50 mL) was added and stirred for 2 h, and the reaction mixture was extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was separated by silica gel column chromatography (CHCl 3 / methanol 5/1 (TEA 10%), R f = 0.48) and purified by HPLC to obtain 55 mg of a blue solid. The obtained solid was dissolved in toluene, put into a separatory funnel, 1N HCl aqueous solution was added, and the separatory funnel was shaken. The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain Compound POF as a red solid in 30 mg (0.0730 mmol, 18% yield). The spectral data of the compound POF is as follows.
Mp.> 300 ° C. 1 H NMR (400 MHz, CD 3 OD): δ 7.76-7.36 (m, 8H), 7.27-7.13 (m, 3H), 7.03-6.94 (m, 2H), 6.58 (d, . J = 9.5 Hz, 2H) , 2.12 and 2.06 (two signals, 3H, tolyl-methyl group signals from two diastereoisomers) 13 C NMR (100 MHz, CD 3 OD): δ 140.0 (CH), 140.0 (CH), 138.3 (C), 138.2 (C), 137.9 (C), 137.7 (C), 137.6 (C), 137.3 (C), 137.2 (C), 137.1 (C), 134.1 (CH), 131.6 (CH), 131.6 (CH), 131.5 (CH), 131.4 (CH), 130.8 (CH), 130.5 (CH), 130.4 (CH), 130.4 (CH), 130.3 (CH), 129.9 (CH), 129.1 (CH), 127.2 (CH), 127.1 (CH ), 125.9 (C), 125.8 (C), 125.7 (C), 125.3 (CH), 19.7 (CH 3), 19.6 (CH 3). 31 P {1 H} NMR ( 161.70 MHz, CDCl 3 ): δ 11.1, 11.0. HRMS (ESI): m / z calcd. For C 26 H 19 NaO 3 P: 433.0970 ([M + H] + ); found. 433.0960.
 その他、以下の方法でも化合物POFを得た。2-ブロモトルエン(89μL, 0.74 mmol)の脱水THF(3 mL)溶液に対して、s-BuLiのシクロヘキサン及びヘキサン溶液(0.99 M, 0.90 mL, 0.89 mmol)を-78℃で添加した。混合物を-78℃で2時間撹拌し、化合物6(139 mg, 0.246 mmol)の脱水THF(3 mL)溶液をゆっくりと添加した。室温まで昇温させ、反応混合物を1.5時間撹拌した。その後、0.5 M塩酸(20 mL)を添加して反応をクエンチした。45分間激しく撹拌した後、混合物を水及びCH2Cl2で希釈した。層を分離し、水層をCH2Cl2で5回抽出した。あわせた有機層を食塩水で洗浄し、Na2SO4で乾燥した。ろ過した後、揮発物質を減圧下に除去し、得られた混合物をCH2Cl2(10 mL)に分散させた。得られた黄色液体に対して、p-トルエンスルホン酸・一水和物(47 mg, 0.25 mmol)を添加し、得られた混合物を室温で45分間攪拌し、脱ヒドロキシ化を完了した。得られた深赤色溶液を直接シリカゲルカラムクロマトグラフィー(CH2Cl2/酢酸エチル 95/5)で精製した。溶離液を減圧下に除去した後、トルエンの添加と同時に凝固した赤色液体を得た。得られた懸濁液を0℃まで冷却し、得られた沈殿をろ過により集め、真空下に乾燥し、粗生成物を朱色固体として得た。その後、逆相HPLC(溶離液: 炭酸アンモニウムを5 mMで含むCH3CN/H2O 混合溶媒(混合比20/80~100/0)で精製することにより、化合物POFを茶色粉末として34 mg(0.083 mmol, 収率34%)得た。 In addition, the compound POF was also obtained by the following method. To a dehydrated THF (3 mL) solution of 2-bromotoluene (89 μL, 0.74 mmol), a cyclohexane and hexane solution (0.99 M, 0.90 mL, 0.89 mmol) of s-BuLi was added at −78 ° C. The mixture was stirred at −78 ° C. for 2 hours and a solution of compound 6 (139 mg, 0.246 mmol) in dehydrated THF (3 mL) was added slowly. The temperature was raised to room temperature and the reaction mixture was stirred for 1.5 hours. Thereafter, 0.5 M hydrochloric acid (20 mL) was added to quench the reaction. After stirring vigorously for 45 minutes, the mixture was diluted with water and CH 2 Cl 2 . The layers were separated and the aqueous layer was extracted 5 times with CH 2 Cl 2 . The combined organic layers were washed with brine and dried over Na 2 SO 4 . After filtration, volatiles were removed under reduced pressure and the resulting mixture was dispersed in CH 2 Cl 2 (10 mL). To the resulting yellow liquid, p-toluenesulfonic acid monohydrate (47 mg, 0.25 mmol) was added, and the resulting mixture was stirred at room temperature for 45 minutes to complete the dehydroxylation. The obtained deep red solution was directly purified by silica gel column chromatography (CH 2 Cl 2 / ethyl acetate 95/5). After removing the eluent under reduced pressure, a red liquid coagulated simultaneously with the addition of toluene was obtained. The resulting suspension was cooled to 0 ° C. and the resulting precipitate was collected by filtration and dried under vacuum to give the crude product as a vermilion solid. Then, it is purified by reverse phase HPLC (eluent: CH 3 CN / H 2 O mixed solvent containing 5 mM ammonium carbonate (mixing ratio 20/80 to 100/0) to obtain 34 mg of compound POF as a brown powder. (0.083 mmol, yield 34%).
 [実施例2] [Example 2]
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 窒素雰囲気下、実施例1で得た化合物POF(37 mg, 0.090 mmol)を、5 mLの乾燥ピリジンに溶解させた。室温で無水酢酸(85μL, 0.90 mmol)を添加し、混合物を3時間撹拌した。減圧下に溶媒を除去し、生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/酢酸エチル 3/1 to 2/1)で精製し、その後さらに、CH2Cl2/ヘキサンからの再結晶により精製し、化合物AcPOFを黄色粉末として33 mg(0.073 mmol, 収率81%)得た。化合物AcPOFのスペクトルデータは以下のとおりである。
Mp. 175-179℃. 1H NMR (400 MHz, CD2Cl2): δ7.75-7.60 (m, 3H), 7.60-7.52 (m, 1H), 7.52-7.30 (m, 5H), 7.30-7.06 (m, 3H), 7.06-6.91 (m, 2H), 6.26 (dd, J = 9.8, 1.8 Hz, 1H), 2.26 (s, 3H), 2.13 and 2.08 (two singlets, 3H, tolyl-methyl group signals from two diastereoisomers). 13C NMR (150 MHz, CD2Cl2): δ 184.3 (s, C), 184.2 (s, C), 168.9 (s, C), 153.0 (d, JCP = 14.4 Hz, C), 150.6 (d, JCP= 7.2 Hz, C), 150.5 (d, JCP = 10.1 Hz, C), 140.7 (d, JCP= 90.5 Hz, C), 140.33 (d, JCP = 90.5 Hz, CH), 139.7 (d, JCP= 10.1 Hz, CH), 139.62 (d, JCP = 8.6 Hz, CH), 137.2 (s, C), 137.2 (d, JCP = 4.4 Hz, CH), 137.0 (d, JCP = 2.9 Hz, CH), 136.5 (s, C), 136.4 (s, C), 136.4 (s, C), 135.0 (d, JCP = 5.9 Hz, C), 134.9 (d, JCP = 5.7 Hz, C), 134.3 (d, JCP = 11.6 Hz, CH), 134.3 (d, JCP = 10.1 Hz, CH), 133.7 (d, JCP = 102.0 Hz, C), 133.5 (d, JCP = 107.7 Hz, C), 133.0 (d, JCP = 89.1 Hz, C), 132.9 (s, CH), 131.0 (s, CH), 130.8 (d, JCP = 10.1 Hz, CH), 130.8 (d, JCP = 11.4 Hz, CH), 130.3 (s, CH), 129.62 (CH), 129.61 (CH), 129.51 (CH), 129.46 (CH), 129.42 (CH), 129.39 (CH), 129.38 (d, JCP = 8.6 Hz, C), 129.2 (s, CH), 127.73 (d, JCP = 5.9 Hz, C), 126.62 (s, CH), 126.59 (s, CH), 126.56 (s, CH), 125.94 (d, JCP = 5.7 Hz, CH), 125.87 (d, JCP = 7.2 Hz, CH), 21.2 (s, CH3), 19.8 (s, CH3). 31P{1H} NMR (162 MHz, CDCl3): δ5.8, 5.7. HRMS (ESI): m/z calcd. for C28H21NaO4P: 475.1075 ([M+Na]+); found. 475.1066。
Under a nitrogen atmosphere, the compound POF (37 mg, 0.090 mmol) obtained in Example 1 was dissolved in 5 mL of dry pyridine. Acetic anhydride (85 μL, 0.90 mmol) was added at room temperature and the mixture was stirred for 3 hours. The solvent was removed under reduced pressure, and the product was purified by silica gel column chromatography (CH 2 Cl 2 / ethyl acetate 3/1 to 2/1), then further purified by recrystallization from CH 2 Cl 2 / hexane. Then, 33 mg (0.073 mmol, yield 81%) of compound AcPOF was obtained as a yellow powder. The spectral data of the compound AcPOF is as follows.
Mp. 175-179 ° C. 1 H NMR (400 MHz, CD 2 Cl 2 ): δ7.75-7.60 (m, 3H), 7.60-7.52 (m, 1H), 7.52-7.30 (m, 5H), 7.30 -7.06 (m, 3H), 7.06-6.91 (m, 2H), 6.26 (dd, J = 9.8, 1.8 Hz, 1H), 2.26 (s, 3H), 2.13 and 2.08 (two singlets, 3H, tolyl-methyl . group signals from two diastereoisomers) 13 C NMR (150 MHz, CD 2 Cl 2): δ 184.3 (s, C), 184.2 (s, C), 168.9 (s, C), 153.0 (d, J CP = 14.4 Hz, C), 150.6 (d, J CP = 7.2 Hz, C), 150.5 (d, J CP = 10.1 Hz, C), 140.7 (d, J CP = 90.5 Hz, C), 140.33 (d, J CP = 90.5 Hz, CH), 139.7 (d, J CP = 10.1 Hz, CH), 139.62 (d, J CP = 8.6 Hz, CH), 137.2 (s, C), 137.2 (d, J CP = 4.4 Hz, CH), 137.0 (d, J CP = 2.9 Hz, CH), 136.5 (s, C), 136.4 (s, C), 136.4 (s, C), 135.0 (d, J CP = 5.9 Hz, C), 134.9 (d, J CP = 5.7 Hz, C), 134.3 (d, J CP = 11.6 Hz, CH), 134.3 (d, J CP = 10.1 Hz, CH), 133.7 (d, J CP = 102.0 Hz, C ), 133.5 (d, J CP = 107.7 Hz, C), 133.0 (d, J CP = 89.1 Hz, C), 132.9 (s, CH), 131.0 (s, CH), 130.8 (d, J CP = 10.1 Hz, CH), 130.8 (d, J CP = 11.4 Hz, CH), 130.3 (s, CH ), 129.62 (CH), 129.61 (CH), 129.51 (CH), 129.46 (CH), 129.42 (CH), 129.39 (CH), 129.38 (d, J CP = 8.6 Hz, C), 129.2 (s, CH ), 127.73 (d, J CP = 5.9 Hz, C), 126.62 (s, CH), 126.59 (s, CH), 126.56 (s, CH), 125.94 (d, J CP = 5.7 Hz, CH), 125.87 (d, J CP = 7.2 Hz, CH), 21.2 (s, CH 3 ), 19.8 (s, CH 3 ). 31 P { 1 H} NMR (162 MHz, CDCl 3 ): δ5.8, 5.7. HRMS (ESI): m / z calcd. For C 28 H 21 NaO 4 P: 475.1075 ([M + Na] + ); found. 475.1066.
 [実施例3] [Example 3]
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 化合物7の合成
 ビス[2-ブロモ-4-(N,N-ジアリルアミノ)フェニル]メタン(化合物1)(5.70 g, 11.0 mmol)を脱水THF(110 mL)に溶解させた。-78℃にてt-ブチルリチウムのペンタン溶液(1.61 M, 27.0 mL, 43.5 mmol)を35分間かけて滴下し、そのまま2時間撹拌した。ジクロロフェニルホスフィン(PhPCl2; 1.80 mL, 13.2 mmol)を90分間かけて滴下し、滴下終了後、終夜撹拌を行った。S8(705 mg)を加え、そのまま30分間撹拌した。反応溶媒を減圧化で濃縮し、得られた混合物をジクロロメタンで抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/ヘキサン 1/1, Rf = 0.25)で精製することにより、化合物7を黄色液体として2.84 mg(5.72 mmol, 収率52%)で得た。化合物7のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CD2Cl2): δ 7.67 (dd, J = 16.4 Hz, 2.4 Hz, 2H), 7.36-7.29 (m, 5H), 7.17 (dd, J = 8.2 Hz, 6.4 Hz, 2H), 6.80 (dd, J = 8.2 Hz, 2.4 Hz, 2H), 5.94-5.85 (m, 4H), 5.23-5.17 (m, 8H), 4.05-3.97 (m, 8H), 3.81 (d, J = 18 Hz, 1H), 3.56 (dd, J = 18 Hz, 3.4 Hz, 1H). 13C{1H} NMR (100MHz, CD2Cl2): δ 147.92 (d, JCP = 14.9 Hz, C), 136.04 (d, JCP = 84.3 Hz, C), 134.12 (s, CH), 131.01 (d, JCP = 2.5 Hz, CH), 130.62 (d, JCP = 11.5 Hz, CH), 129.42 (d, JCP = 81.8 Hz, C), 129. 32 (d, JCP = 5.7 Hz, C), 129.09 (d, JCP = 10.7 Hz, CH), 128.80 (d, JCP = 12.4 Hz, ), 116.50 (s, CH2), 115.84 (d, JCP = 12.3 Hz, CH), 115.66 (d, JCP = 2.5 Hz, CH), 53.44 (s, CH2), 35.77 (d, JCP = 9.0 Hz, CH2). 31P{1H} NMR (161.70MHz, CD2Cl2): δ26.9. HRMS (APCI) : m/z calcd. for C31H34N2PS : 497.2175 ([M+H]+) ; found. 497.2153。
Synthesis of Compound 7 Bis [2-bromo-4- (N, N-diallylamino) phenyl] methane (Compound 1) (5.70 g, 11.0 mmol) was dissolved in dehydrated THF (110 mL). A pentane solution of t-butyllithium (1.61 M, 27.0 mL, 43.5 mmol) was added dropwise over 35 minutes at -78 ° C, and the mixture was stirred as it was for 2 hours. Dichlorophenylphosphine (PhPCl 2 ; 1.80 mL, 13.2 mmol) was added dropwise over 90 minutes, and the mixture was stirred overnight after completion of the addition. S 8 (705 mg) was added and stirred as such for 30 minutes. The reaction solvent was concentrated under reduced pressure, and the resulting mixture was extracted with dichloromethane. The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / hexane 1/1, R f = 0.25) to give compound 7 as a yellow liquid in 2.84 mg (5.72 mmol, 52% yield). . The spectral data of Compound 7 is as follows.
1 H NMR (400MHz, CD 2 Cl 2 ): δ 7.67 (dd, J = 16.4 Hz, 2.4 Hz, 2H), 7.36-7.29 (m, 5H), 7.17 (dd, J = 8.2 Hz, 6.4 Hz, 2H ), 6.80 (dd, J = 8.2 Hz, 2.4 Hz, 2H), 5.94-5.85 (m, 4H), 5.23-5.17 (m, 8H), 4.05-3.97 (m, 8H), 3.81 (d, J = 18 Hz, 1H), 3.56 (dd, J = 18 Hz, 3.4 Hz, 1H). 13 C { 1 H} NMR (100 MHz, CD 2 Cl 2 ): δ 147.92 (d, J CP = 14.9 Hz, C) , 136.04 (d, J CP = 84.3 Hz, C), 134.12 (s, CH), 131.01 (d, J CP = 2.5 Hz, CH), 130.62 (d, J CP = 11.5 Hz, CH), 129.42 (d , J CP = 81.8 Hz, C), 129. 32 (d, J CP = 5.7 Hz, C), 129.09 (d, J CP = 10.7 Hz, CH), 128.80 (d, J CP = 12.4 Hz,), 116.50 (s, CH 2 ), 115.84 (d, J CP = 12.3 Hz, CH), 115.66 (d, J CP = 2.5 Hz, CH), 53.44 (s, CH 2 ), 35.77 (d, J CP = 9.0 Hz, CH 2 ). 31 P { 1 H} NMR (161.70 MHz, CD 2 Cl 2 ): δ26.9. HRMS (APCI): m / z calcd.for C 31 H 34 N 2 PS: 497.2175 ([M + H] + ); found. 497.2153.
 化合物8の合成
 空気中で化合物7(2.79 g, 5.62 mmol)をCH2Cl2(56 mL)に溶解させた。室温でクロラニル(6.22 g, 25.3 mmol)を加え、そのまま8.5時間撹拌した。減圧下で溶媒を留去し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2, Rf= 0.45)で精製することにより、化合物8を黄色液体として849 mg(1.66 mmol, 収率30%)得た。化合物8のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CD2Cl2): δ 8.21 (dd, J = 9.0 Hz, 6.2 Hz, 2H), 7.60-7.54 (m, 2H), 7.36-7.30 (m, 5H), 6.88 (d, J = 9.0 Hz, 2H), 5.88-5.79 (m, 4H), 5.18-5.13 (m, 8H), 4.08-3.97 (m, 8H). 13C{1H} NMR (100MHz, CD2Cl2): δ 179.73 (d, JCP = 8.3 Hz, C), 151.94 (d, JCP = 14.1 Hz, C), 136.31 (d, JCP = 83.5 Hz, C), 135.35 (d, JCP = 80.9, C), 132.71 (s, CH), 131.35 (d, JCP = 3.3 Hz, CH), 131. 20 (d, JCP = 9.1 Hz, CH), 130.63 (d, JCP = 11.5 Hz, CH), 128.78 (d, JCP = 12.4 Hz, CH), 124.30 (d, JCP = 4.9 Hz, C), 117.10 (s, CH2), 115.27 (d, JCP = 2.5 Hz, CH), 114.03 (d, JCP = 12.4 Hz, CH), 53.30 (s, CH2). 31P{1H} NMR (161.70MHz, CD2Cl2) : δ 18.9. HRMS (APCI): m/z calcd. for C31H31N2OPS: 510.1889 ([M]+) ; found. 510.1870。
Compound 7 (2.79 g, 5.62 mmol) was dissolved in CH 2 Cl 2 (56 mL) in the synthetic air of compound 8 . Chloranil (6.22 g, 25.3 mmol) was added at room temperature, and the mixture was stirred as it was for 8.5 hours. The solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 , R f = 0.45) to obtain 849 mg (1.66 mmol, yield 30%) of Compound 8 as a yellow liquid. The spectral data of Compound 8 is as follows.
1 H NMR (400MHz, CD 2 Cl 2 ): δ 8.21 (dd, J = 9.0 Hz, 6.2 Hz, 2H), 7.60-7.54 (m, 2H), 7.36-7.30 (m, 5H), 6.88 (d, J = 9.0 Hz, 2H), 5.88-5.79 (m, 4H), 5.18-5.13 (m, 8H), 4.08-3.97 (m, 8H). 13 C { 1 H} NMR (100MHz, CD 2 Cl 2 ) : δ 179.73 (d, J CP = 8.3 Hz, C), 151.94 (d, J CP = 14.1 Hz, C), 136.31 (d, J CP = 83.5 Hz, C), 135.35 (d, J CP = 80.9, C), 132.71 (s, CH), 131.35 (d, J CP = 3.3 Hz, CH), 131. 20 (d, J CP = 9.1 Hz, CH), 130.63 (d, J CP = 11.5 Hz, CH) , 128.78 (d, J CP = 12.4 Hz, CH), 124.30 (d, J CP = 4.9 Hz, C), 117.10 (s, CH 2 ), 115.27 (d, J CP = 2.5 Hz, CH), 114.03 ( d, J CP = 12.4 Hz, CH), 53.30 (s, CH 2 ). 31 P { 1 H} NMR (161.70 MHz, CD 2 Cl 2 ): δ 18.9. HRMS (APCI): m / z calcd. for C 31 H 31 N 2 OPS: 510.1889 ([M] + ); found. 510.1870.
 化合物9の合成
 化合物8(800 mg, 1.57 mmol)、1,3-ジメチルバルビツール酸(1.14 g, 7.30 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4; 1.01 g, 0.874 mmol)を脱気した脱水1,2-ジクロロエタン(16.0 mL)に溶解させ、85℃で3日間撹拌したのち、CH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/メタノール 30/1, Rf = 0.28)で精製することにより、化合物9を黄色固体として312 mg(0.890 mmol, 収率57%)得た。化合物9のスペクトルデータは以下のとおりである。
1H NMR (400 MHz, CD3OD): δ8.13 (dd, J = 8.6 Hz, 5.8 Hz, 2H), 7.65-7.60 (m, 2H), 7.43-7.34 (m, 2H), 7.19 (dd, J = 17.2 Hz, 2.2 Hz, 2H), 6.85 (dd, J = 8.6 Hz, 2.2 Hz, 2H).
13C{1H} NMR (100 MHz, CD3OD): δ 181.58 (d, JCP = 8.3 Hz, C), 154.95 (d, JCP = 14.9 Hz, C), 137.27 (d, JCP = 80.1 Hz, C), 136.54 (d, JCP = 83.4 Hz, C), 132.41 (d, JCP = 3.3 Hz, CH), 132.25 (d, JCP = 9.9 Hz, CH), 131.50 (d, JCP = 10.7 Hz, CH), 129.58 (d, JCP = 12.3 Hz, CH), 124.84 (d, JCP = 4.9 Hz, C), 117.90 (d, JCP = 2.5 Hz, CH), 116.40 (d, JCP = 10.7 Hz, CH). 31P{1H} NMR (161.70 MHz, CD3OD): δ 16.35. HRMS (APCI) : m/z calcd. for C19H16N2OPS : 351.0715 ([M+H]+) ; found. 351.0725。
Synthetic compound 8 (800 mg, 1.57 mmol), 1,3-dimethylbarbituric acid (1.14 g, 7.30 mmol), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ; 1.01 g, 0.874 mmol Was dissolved in degassed dehydrated 1,2-dichloroethane (16.0 mL), stirred at 85 ° C. for 3 days, and extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / methanol 30/1, R f = 0.28) to obtain 312 mg (0.890 mmol, 57% yield) of compound 9 as a yellow solid. The spectral data of Compound 9 is as follows.
1 H NMR (400 MHz, CD 3 OD): δ8.13 (dd, J = 8.6 Hz, 5.8 Hz, 2H), 7.65-7.60 (m, 2H), 7.43-7.34 (m, 2H), 7.19 (dd , J = 17.2 Hz, 2.2 Hz, 2H), 6.85 (dd, J = 8.6 Hz, 2.2 Hz, 2H).
13 C { 1 H} NMR (100 MHz, CD 3 OD): δ 181.58 (d, J CP = 8.3 Hz, C), 154.95 (d, J CP = 14.9 Hz, C), 137.27 (d, J CP = 80.1 Hz, C), 136.54 (d, J CP = 83.4 Hz, C), 132.41 (d, J CP = 3.3 Hz, CH), 132.25 (d, J CP = 9.9 Hz, CH), 131.50 (d, J CP = 10.7 Hz, CH), 129.58 (d, J CP = 12.3 Hz, CH), 124.84 (d, J CP = 4.9 Hz, C), 117.90 (d, J CP = 2.5 Hz, CH), 116.40 (d , J CP = 10.7 Hz, CH ) 31 P {1 H} NMR (161.70 MHz, CD 3 OD):.. δ 16.35 HRMS (APCI):. m / z calcd for C 19 H 16 N 2 OPS: 351.0715 ( [M + H] + ); found. 351.0725.
 化合物10及び11の合成
 空気中で化合物9(101 mg, 0.288 mmol)を硫酸(0.83 mL)に溶解させた。0℃で亜硝酸ナトリウム(60.0 mg, 0.869 mmol)を加え、そのまま3時間撹拌した。得られた反応溶液を適量の氷に対して滴下し、110℃で30分間撹拌した。得られた固体を濾別し、残渣を蒸留水で洗浄し、化合物10を含む粗生成物を黄色固体として87.0 mg得た。窒素雰囲気下で得られた組成生物とイミダゾール(85.0 mg, 1.25 mmol)を脱水CH2Cl2(21 mL)に溶解させ、30分間撹拌した。t-ブチルジメチルクロロシラン(TBDMSCl; 230 mg, 1.52 mmol)を脱水CH2Cl2(15 mL)に溶解させたものを、化合物10を含む溶液に対して滴下した。4時間撹拌した後、水を加え、CH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CH2Cl2/ヘキサン 3/2, Rf = 0.53)で精製することにより、化合物11を無色液体として98 mg(0.169 mmol, 収率59%(2段階))得た。化合物11のスペクトルデータは以下のとおりである。
1H NMR (400MHz, CDCl3): δ8.34 (dd, J = 8.6 Hz, 5.8 Hz, 2H), 7.63-7.53 (m, 4H), 7.39-7.30 (m, 3H), 7.086 (ddd, J = 8.8 Hz, 2.5 Hz, 0.60 Hz, 2H), 0.95 (s, 18H), 0.23 (s, 6H), 0.22 (s, 6H). 31P{1H} NMR (161.70MHz, CDCl3): δ17.1。
Compound 9 (101 mg, 0.288 mmol) was dissolved in sulfuric acid (0.83 mL) in the synthetic air of compounds 10 and 11 . Sodium nitrite (60.0 mg, 0.869 mmol) was added at 0 ° C., and the mixture was stirred as it was for 3 hours. The obtained reaction solution was added dropwise to an appropriate amount of ice and stirred at 110 ° C. for 30 minutes. The obtained solid was filtered off and the residue was washed with distilled water to obtain 87.0 mg of a crude product containing Compound 10 as a yellow solid. Compositional organisms obtained under a nitrogen atmosphere and imidazole (85.0 mg, 1.25 mmol) were dissolved in dehydrated CH 2 Cl 2 (21 mL) and stirred for 30 minutes. A solution in which t-butyldimethylchlorosilane (TBDMSCl; 230 mg, 1.52 mmol) was dissolved in dehydrated CH 2 Cl 2 (15 mL) was added dropwise to the solution containing Compound 10. After stirring for 4 hours, water was added and extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (CH 2 Cl 2 / hexane 3/2, R f = 0.53) to give 98 mg (0.169 mmol, yield 59% (2 steps)) as a colorless liquid )Obtained. The spectral data of Compound 11 is as follows.
1 H NMR (400MHz, CDCl 3 ): δ8.34 (dd, J = 8.6 Hz, 5.8 Hz, 2H), 7.63-7.53 (m, 4H), 7.39-7.30 (m, 3H), 7.086 (ddd, J = 8.8 Hz, 2.5 Hz, 0.60 Hz, 2H), 0.95 (s, 18H), 0.23 (s, 6H), 0.22 (s, 6H). 31 P { 1 H} NMR (161.70 MHz, CDCl 3 ): δ17 .1.
 化合物PSFの合成
 化合物11(78.0 mg, 0.134 mmol)を脱水THF(23 mL)に溶解させた。室温にて2-メチルフェニルマグネシウムブロミドのTHF溶液(1.03 M, 0.50 mL, 0.515 mmol)を滴下し、4時間撹拌した。1N HCl水溶液(16 mL)加え、2時間撹拌し、反応混合物をCH2Cl2で抽出した。あわせた有機層を飽和食塩水で洗浄した後、脱水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/メタノール 5/1 (トリエチルアミン10%), Rf = 0.50)にて分離した後、HPLCで精製することにより、28 mgの青色固体を得た。得られた固体をトルエンに溶解させ分液漏斗にいれ、1N HCl水溶液を加えて抽出した。あわせた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで化合物PSFを赤紫色固体として18 mg(0.0422 mmol, 収率32%)で得た。化合物PSFのスペクトルデータは以下のとおりである。
1H NMR (400MHz, CD2Cl2): δ 7.73-7.60 (m, 4H), 7.54-7.35 (m, 16H), 7.13 (dd, J = 21 Hz, 7.4 Hz, 2H), 6.97-6.91 (m, 4H), 6.56 (d, J = 9.2 Hz, 4H), 2.10 (s, 3H), 1.99 (s, 3H). (2つの回転異性体の混合物)HRMS (APCI): m/z calcd. for C26H20O2PS: 427.0916 ([M+H]+) ; found. 427.0936。
Synthesis of Compound PSF Compound 11 (78.0 mg, 0.134 mmol) was dissolved in dehydrated THF (23 mL). A THF solution of 2-methylphenylmagnesium bromide (1.03 M, 0.50 mL, 0.515 mmol) was added dropwise at room temperature, and the mixture was stirred for 4 hours. 1N aqueous HCl (16 mL) was added and stirred for 2 h, and the reaction mixture was extracted with CH 2 Cl 2 . The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was separated by silica gel column chromatography (CHCl 3 / methanol 5/1 (triethylamine 10%), R f = 0.50) and then purified by HPLC to obtain 28 mg of a blue solid. The obtained solid was dissolved in toluene, placed in a separatory funnel, and extracted with 1N aqueous HCl. The combined organic layers were washed with saturated brine and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain Compound PSF as a red-purple solid in 18 mg (0.0422 mmol, yield 32%). The spectral data of the compound PSF is as follows.
1 H NMR (400MHz, CD 2 Cl 2 ): δ 7.73-7.60 (m, 4H), 7.54-7.35 (m, 16H), 7.13 (dd, J = 21 Hz, 7.4 Hz, 2H), 6.97-6.91 ( m, 4H), 6.56 (d, J = 9.2 Hz, 4H), 2.10 (s, 3H), 1.99 (s, 3H). (mixture of two rotamers) HRMS (APCI): m / z calcd. for C 26 H 20 O 2 PS: 427.0916 ([M + H] + ); found. 427.0936.
 [試験例1:LUMO及びHOMO]
 実施例1で得たホスファフルオレセイン化合物(10位がリン原子)、公知のフルオレセイン化合物(10位が酸素原子;TokyoGreen;JACS, 2005, 127, 4888)、及び公知のケイ素置換フルオレセイン化合物(10位がケイ素原子;TokyoMagenta;Chem. Commun. 2011, 47, 4162)について、Gaussian 09 プログラムを用いた構造最適化により、HOMO準位及びLUMO準位を算出した。計算は B3LYP/6-31+G レベルでおこなった。結果を表1に示す。この結果、従来の化合物と比較し、本発明のホスファフルオレセイン化合物は、LUMO及びHOMO(特にLUMO)を低減することができるとともに、エネルギーギャップも低減することができることが理解できる。このため、光に対する安定性がより向上することが期待される。
[Test Example 1: LUMO and HOMO]
The phosphafluorescein compound obtained in Example 1 (position 10 is a phosphorus atom), a known fluorescein compound (position 10 is an oxygen atom; TokyoGreen; JACS, 2005, 127, 4888), and a known silicon-substituted fluorescein compound (position 10) For the silicon atom; TokyoMagenta; Chem. Commun. 2011, 47, 4162), the HOMO level and the LUMO level were calculated by structural optimization using the Gaussian 09 program. The calculation was performed at the B3LYP / 6-31 + G level. The results are shown in Table 1. As a result, it can be understood that the phosphafluorescein compound of the present invention can reduce LUMO and HOMO (particularly LUMO) as well as the energy gap as compared with conventional compounds. For this reason, it is expected that the stability to light is further improved.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 [試験例2:X線結晶構造解析]
 実施例1で得たホスファフルオレセイン化合物(10位がリン原子)について、Rigaku Single Crystal CCD X線解析装置 (FR-X microfocus generator、VariMax-Mo 光学系、PILATUS 200K 検出器、Mo Kα照射 (λ = 0.71070 Å))を用いて行った。2θ角が50°以下の範囲で19043個の反射を計測し、そのうち4694個が独立した反射であった(Rint = 0.0195)。構造は直接法(SIR-2003)によって決定し、F2のフルマトリクス最小二乗法(SHELXL-2013)によって決定した。結晶データは、以下のとおりである。C26H19O3P; FW = 410.38, crystal size 0.30×0.30×0.10 mm3, monoclinic, C2/c, a = 16.295(13)Å, b = 14.157(18)Å, c = 18.637(17)Å, β= 104.42(2)°, V = 4164(7)Å3, Z = 8, Dc =1.309 g cm-3, μ= 0.157 mm-1, R1 = 0.0402 (I > 2σ(I)), wR2 = 0.1095 (all data), GOF = 1.063. ケンブリッジ結晶構造データベース ID: CCDC 1435421. 結果を図1に示す。
[Test Example 2: X-ray crystal structure analysis]
About the phosphafluorescein compound obtained in Example 1 (position 10 is a phosphorus atom), a Rigaku Single Crystal CCD X-ray analyzer (FR-X microfocus generator, VariMax-Mo optical system, PILATUS 200K detector, Mo Kα irradiation (λ = 0.71070 ii)). 19043 reflections were measured in the 2θ angle range of 50 ° or less, of which 4694 were independent reflections (R int = 0.0195). The structure was determined by the direct method (SIR-2003) and by the full matrix least squares method of F 2 (SHELXL-2013). The crystal data is as follows. C 26 H 19 O 3 P; FW = 410.38, crystal size 0.30 × 0.30 × 0.10 mm 3 , monoclinic, C2 / c, a = 16.295 (13) Å, b = 14.157 (18) Å, c = 18.637 (17) Å, β = 104.42 (2) °, V = 4164 (7) Å 3 , Z = 8, D c = 1.309 g cm -3 , μ = 0.157 mm -1 , R 1 = 0.0402 (I> 2σ (I) ), wR 2 = 0.1095 (all data), GOF = 1.063. Cambridge Crystal Structure Database ID: CCDC 1435421. The results are shown in FIG.
 [試験例3:光物理特性(その1)]
 実施例1で得た化合物POFのUV-vis吸収スペクトルを、1%のDMSOを含有する緩衝水溶液(pH = 3~5.5: クエン酸及びNa2HPO4水溶液、pH = 6~8: Na2HPO4及びNaH2PO4水溶液、pH = 9~11: Na2CO3及びNaHCO3水溶液)に10-5 M溶解させた試料溶液を用いて、Shimadzu UV-3150 spectrometerにより、解像度0.2 nmで測定した。蛍光スペクトルは、解像度1 nmのHitachi F-4500 spectrometerで、10-6 M溶解させた試料溶液を用いて測定した。励起スペクトルは、Hamamatsu PMA R5509-73及びcooling system C9940-01を備えたHoriba SPEX Fluorolog 3 spectrofluorometerで、10-6M溶解させた試料溶液を用いて測定した。絶対蛍光量子収率は、Hamamatsu photonics PMA-11で測定した。
[Test Example 3: Photophysical characteristics (1)]
The UV-vis absorption spectrum of the compound POF obtained in Example 1 was analyzed using a buffered aqueous solution containing 1% DMSO (pH = 3-5.5: citric acid and Na 2 HPO 4 aqueous solution, pH = 6-8: Na 2 HPO). 4 and aqueous NaH 2 PO 4, pH = 9 ~ 11: with Na 2 CO 3 and the sample solution obtained by dissolving 10 -5 M aqueous NaHCO 3), by Shimadzu UV-3150 spectrometer, it was measured at a resolution 0.2 nm . The fluorescence spectrum was measured with a Hitachi F-4500 spectrometer with a resolution of 1 nm using a sample solution dissolved with 10 −6 M. The excitation spectrum was measured with a Horiba SPEX Fluorolog 3 spectrofluorometer equipped with Hamamatsu PMA R5509-73 and cooling system C9940-01, using a sample solution dissolved with 10 −6 M. The absolute fluorescence quantum yield was measured by Hamamatsu photonics PMA-11.
 例えば、pH3の緩衝水溶液を用いる場合、溶媒として、実施例1で得たホスファフルオレセイン化合物をジメチルスルホキシド(DMSO)に溶解させたのち、さらに、pHを3に調整したクエン酸水溶液及びNa2HPO4水溶液の混合水溶液で100倍に希釈し、実施例1で得たホスファフルオレセイン化合物を7.4×10-6 Mになるように溶解させた試験液を調製した(pH3の試験液)。 For example, when a pH 3 buffer aqueous solution is used, the phosphafluorescein compound obtained in Example 1 is dissolved in dimethyl sulfoxide (DMSO) as a solvent, and then the citric acid aqueous solution adjusted to pH 3 and Na 2 HPO are used. A test solution in which the phosphafluorescein compound obtained in Example 1 was diluted to 7.4 × 10 −6 M was prepared by diluting 100 times with a mixed aqueous solution of 4 aqueous solutions (pH 3 test solution).
 また、pH7の緩衝水溶液を用いる場合、実施例1で得たホスファフルオレセイン化合物をジメチルスルホキシド(DMSO)に溶解させたのち、さらに、pHを7に調整したNa2HPO4水溶液及びNa2HPO4水溶液の混合水溶液で100倍に希釈し、実施例1で得たホスファフルオレセイン化合物を7.4×10-6 Mになるように溶解させた試験液を調製した(pH7の試験液)。 In the case of using a buffered aqueous solution of pH 7, after dissolving the phosphazene fluorescein compound obtained in Example 1 in dimethyl sulfoxide (DMSO), furthermore, Na 2 HPO 4 aqueous solution and Na 2 HPO 4 adjusted to pH 7 A test solution was prepared by diluting 100 times with a mixed aqueous solution of the aqueous solutions and dissolving the phosphafluorescein compound obtained in Example 1 so as to be 7.4 × 10 −6 M (test solution of pH 7).
 さらに、pH9の緩衝水溶液を用いる場合、実施例1で得たホスファフルオレセイン化合物をジメチルスルホキシド(DMSO)に溶解させたのち、pHを9に調整したNa2CO3水溶液及びNaHCO3水溶液の混合水溶液で100倍に希釈し、実施例1で得たホスファフルオレセイン化合物を7.4×10-6 Mになるように溶解させた試験液を調製した(pH9の試験液)。 Furthermore, when using a pH 9 buffered aqueous solution, the phosphafluorescein compound obtained in Example 1 was dissolved in dimethyl sulfoxide (DMSO), and then a mixed aqueous solution of Na 2 CO 3 aqueous solution and NaHCO 3 aqueous solution adjusted to pH 9 A test solution was prepared by diluting the phosphafluorescein compound obtained in Example 1 to 7.4 × 10 −6 M (pH 9 test solution).
 結果を図2~4に示す。この結果、中性条件下又はアルカリ性条件下とすることで、吸収極大波長及び蛍光極大波長を600~700 nmとすることができるとともに、蛍光量子収率を特に向上させることが可能であった。このことは、図3の下図において、pHの増大とともに627 nmにおける相対吸収が増大しており中性~アルカリ性領域においてはほとんど同程度であること、図4の下図において、pHの増大とともに627 nmにおける励起強度と532 nmにおける励起強度の比が増大しており中性~アルカリ性領域においてはほとんど同程度であること等からも理解できる。この挙動は、pHを大きくすることにより、本発明のホスファフルオレセイン化合物がアニオン化していることに起因すると考えられる。 The results are shown in Figs. As a result, under the neutral or alkaline conditions, the absorption maximum wavelength and the fluorescence maximum wavelength can be made 600 to 700 nm, and the fluorescence quantum yield can be particularly improved. This is because, in the lower diagram of FIG. 3, the relative absorption at 627 nm increases with increasing pH and is almost the same in the neutral to alkaline region. In the lower diagram of FIG. 4, 627 nm with increasing pH. It can also be understood from the fact that the ratio of the excitation intensity at 532 nm to the excitation intensity at 532 nm is almost the same in the neutral to alkaline region. This behavior is considered to be due to the anionization of the phosphafluorescein compound of the present invention by increasing the pH.
 [試験例4:光物理特性(その2)]
 上記試験例3で得られた試験液2及び3の光物理特性を、既報の値(TokyoGreen:JACS, 2005, 127, 4888、TokyoMagenda:Chem. Commun. 2011, 47, 4162、Nap-Fluorescein:Cytometry, 1989, 10, 151)と比較した。結果を表2に示す。この結果、本発明のホスファフルオレセイン化合物は、600 nm以上に吸収極大波長及び蛍光極大波長を有する化合物のうち、最高の蛍光量子収率を有することが理解できる。また、吸収極大波長は最大であり、バイオイメージングにおいて、細胞小器官の自己吸収及び細胞への光によるダメージを最小限に抑えることができる。
[Test Example 4: Photophysical characteristics (2)]
The photophysical properties of test solutions 2 and 3 obtained in Test Example 3 above are reported values (TokyoGreen: JACS, 2005, 127, 4888, TokyoMagenda: Chem. Commun. 2011, 47, 4162, Nap-Fluorescein: Cytometry. 1989, 10, 151). The results are shown in Table 2. As a result, it can be understood that the phosphafluorescein compound of the present invention has the highest fluorescence quantum yield among compounds having an absorption maximum wavelength and a fluorescence maximum wavelength at 600 nm or more. In addition, the absorption maximum wavelength is maximum, and self-absorption of organelles and light damage to cells can be minimized in bioimaging.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 [試験例5:光に対する安定性]
 ホスファフルオレセイン化合物をジメチルスルホキシド(DMSO)に溶解させたのち、pHを7に調整したNa2HPO4水溶液及びNa2HPO4水溶液の混合水溶液を添加して100倍に希釈し、実施例1で得たホスファフルオレセイン化合物を7.4×10-6Mになるように溶解させた試験液4を得た。
[Test Example 5: Stability to light]
After dissolving the phosphafluorescein compound in dimethyl sulfoxide (DMSO), a mixed aqueous solution of Na 2 HPO 4 solution and Na 2 HPO 4 solution adjusted to pH 7 was added and diluted 100 times. A test solution 4 was obtained in which the obtained phosphafluorescein compound was dissolved to 7.4 × 10 −6 M.
 これとは別に、実施例1で得たホスファフルオレセイン化合物ではなく公知のフルオレセイン化合物(10位が酸素原子;TokyoGreen;JACS, 2005, 127, 4888)及びケイ素含有フルオレセイン化合物(10位がケイ素原子;TokyoMagenta;Chem. Commun., 2010, 47, 4162.)を用いたこと以外は同様に処理を行い、試験液5及び試験液6を得た。 Apart from this, not the phosphafluorescein compound obtained in Example 1, but a known fluorescein compound (10-position oxygen atom; TokyoGreen; JACS, 2005, 127, 4888) and silicon-containing fluorescein compound (10-position silicon atom; Test solution 5 and test solution 6 were obtained in the same manner except that TokyoMagenta; Chem. Commun., 2010, 47, 4162.) was used.
 試験液4、5及び6に対して、キセノンランプを用いて、350nm以上の波長の白色光を照射し、吸収極大波長(試験液4:627 nm;試験液5:491 nm;試験液6:582 nm)における吸光度の維持率を測定した。結果を図5(a)に示す。図中、上側の線(POFと併記)は本発明のホスファフルオレセイン化合物、下側の線(TMと併記)は公知のケイ素含有フルオレセイン化合物、これらの間の線(TGと併記)は公知のフルオレセイン化合物である。 The test solutions 4, 5 and 6 are irradiated with white light having a wavelength of 350 nm or more using a xenon lamp, and the absorption maximum wavelength (test solution 4: 627 nm; test solution 5: 491 nm; test solution 6: The absorbance maintenance rate at 582 nm was measured. The results are shown in FIG. In the figure, the upper line (along with POF) is the phosphafluorescein compound of the present invention, the lower line (along with TM) is a known silicon-containing fluorescein compound, and the line between them (along with TG) is known. It is a fluorescein compound.
 その他、以下の方法でホスファフルオレセイン化合物の光に対する安定性を評価した。 In addition, the light stability of the phosphafluorescein compound was evaluated by the following method.
 実施例1で得たホスファフルオレセイン化合物、及び公知の赤色蛍光色素である Alexa Fluor(登録商標)633、Alexa Fluor(登録商標)647、及びCy5をジメチルスルホキシド(DMSO)に溶解させた後、pHを7に調整したNa2HPO4水溶液及びNa2HPO4水溶液の混合水溶液を添加して希釈し、630 nmでの吸光度が同一になるように濃度を調整することで、試験液7、試験液8、試験液9及び試験液10を得た。試験液7、試験液8、試験液9及び試験液10に対して、300 Wキセノンランプ(朝日分光 MAX)に630 nm±10 nmの波長の光のみ透過するバンドパスフィルターを装着した状態で光照射を行い、630 nmにおける吸光度の維持率を測定した。結果を図5(b)に示す。ホスファフルオレセイン色素(POF)は公知の代表的な赤色蛍光色素であるCy5と比較して高い光安定性をもち、光安定性に優れた赤色蛍光色素として公知のAlexa Fluor(登録商標)633及びAlexa Fluor(登録商標)647と同程度の光安定性をもつことが示された。 After the phosphafluorescein compound obtained in Example 1 and the known red fluorescent dyes Alexa Fluor (registered trademark) 633, Alexa Fluor (registered trademark) 647, and Cy5 were dissolved in dimethyl sulfoxide (DMSO), pH was diluted by adding a mixed aqueous solution of aqueous solution of Na 2 HPO 4 and aqueous solution of Na 2 HPO 4 adjusted to 7, by absorbance at 630 nm is adjusted to a concentration to be identical, the test solution 7, test solution 8. Test solution 9 and test solution 10 were obtained. Light for test solution 7, test solution 8, test solution 9, and test solution 10 with a 300 W xenon lamp (Asahi Spectroscopy MAX) fitted with a bandpass filter that transmits only light with a wavelength of 630 nm ± 10 nm Irradiation was performed, and the absorbance maintenance rate at 630 nm was measured. The results are shown in FIG. Phosphorfluorescein dye (POF) has higher light stability than Cy5, which is a well-known representative red fluorescent dye, and is known as Alexa Fluor (registered trademark) 633, which is known as a red fluorescent dye excellent in light stability. It was shown to have the same light stability as Alexa Fluor (registered trademark) 647.
 [試験例6:細胞試験]
 細胞インキュベーション及びイメージング
 HeLa細胞(RIKEN Cell Bank、日本)及びRAW264.7細胞(JCRB Cell Bank、日本)を、10%ウシ胎児血清(FBS、Gibco)及び1%抗生物質-抗真菌(AA、Sigma)を含むDulbecco’s modified Eagle’s medium(DMEM、Sigma)で、37℃で5%CO2/95%空気のインキュベーター中で24時間インキュベートした。イメージングの2日前に、HeLa細胞及びRAW264.7細胞は、それぞれ、35 mmのガラスボトムと8ウェルガラスボトムディッシュに播種した。染色実験のため、HeLa細胞を、実施例2の化合物AcPOFが5μMのリン酸緩衝生理食塩水(PBS)溶液中で、37℃で10分間インキュベートし、次いでPBSで2回すすいだ。フェノールレッドを含まないDMEMに培地を交換した後、Olympus FV10i confocal fluorescence microscopeを用いて、635 nmの励起レーザーで細胞をイメージングした。一方、RAW264.7細胞の場合は、培養培地としては、実施例2の化合物AcPOFを5μM、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES; pH 7.4)を10 mM、DMSOを1%、及びPluronic F-127を0.02%含むDMEMを用いた。細胞を37℃で15分間染色し、DMEMで2回洗浄した後、各ウェルに、valinomycinを10μM、nigericinを10μM含むpHが4.5又は6.5のpH検量緩衝液(Thermo Fisher Scientific)を充填した。細胞イメージは、HC PL APO 20倍/0.75 IMM CORR CS2レンズを備えたTCS SP8 STED(Leica)を用いて得た。細胞は627 nm(白色光レーザー、80 MHz、出力電力70%、AOTF 50%)のレーザー線で励起し、蛍光は485~527 nm及び635~750 nmのフィルターを介して記録した。
[Test Example 6: Cell test]
Cell incubation and imaging HeLa cells (RIKEN Cell Bank, Japan) and RAW264.7 cells (JCRB Cell Bank, Japan), 10% fetal bovine serum (FBS, Gibco) and 1% antibiotic-antifungal (AA, Sigma) Incubated for 24 hours in an incubator with 5% CO 2 /95% air at 37 ° C. in Dulbecco's modified Eagle's medium (DMEM, Sigma). Two days before imaging, HeLa cells and RAW264.7 cells were seeded in 35 mm glass bottom and 8-well glass bottom dishes, respectively. For staining experiments, HeLa cells were incubated for 10 minutes at 37 ° C. in 5 μM phosphate buffered saline (PBS) solution of the compound AcPOF of Example 2 and then rinsed twice with PBS. After changing the medium to DMEM without phenol red, cells were imaged with an excitation laser of 635 nm using an Olympus FV10i confocal fluorescence microscope. On the other hand, in the case of RAW264.7 cells, as the culture medium, the compound AcPOF of Example 2 is 5 μM, 4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES; pH 7.4) is 10 mM, DMSO. Was used, and DMEM containing Pluronic F-127 0.02% was used. The cells were stained at 37 ° C. for 15 minutes, washed twice with DMEM, and each well was filled with a pH calibration buffer (Thermo Fisher Scientific) containing 10 μM valinomycin and 10 μM nigericin at pH 4.5 or 6.5. Cell images were obtained using TCS SP8 STED (Leica) equipped with HC PL APO 20 × / 0.75 IMM CORR CS2 lens. Cells were excited with a 627 nm (white light laser, 80 MHz, output power 70%, AOTF 50%) laser line, and fluorescence was recorded through filters at 485-527 nm and 635-750 nm.
 結果を図6に示す。この結果から、本発明のホスファフルオロセイン化合物は、核膜は透過しなかったものの、細胞膜を透過して細胞の中に侵入し、細胞(HeLa細胞等)の蛍光色素として使用できることが理解できる。 The results are shown in FIG. From this result, it can be understood that the phosphafluorocein compound of the present invention does not permeate the nuclear membrane, but permeates the cell membrane and enters the cell, and can be used as a fluorescent dye of the cell (HeLa cell etc.). .
 細胞毒性評価
 HeLa細胞を平底96ウェルプレート(1×104細胞/ウェル)に播種し、FBSを10%含むDMEMで、37℃で5%CO2/95%空気のインキュベーター中で24時間培養した。次いで、培地を、種々の実施例2の化合物AcPOFの濃度(1μM、5μM及び10μM)有する培地に置換し、細胞をさらに37℃で24時間インキュベートした。培地を除去した後、3-(4,5-ジ-メチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロミド(MTT)試薬を各ウェルに加え(最終濃度は0.5 mg/mL)、プレートをCO2インキュベーター中でさらに4時間インキュベートした。過剰のMTTのテトラゾリウム溶液を除去し、細胞をPBSで1回洗浄した。ホルマザン結晶をDMSO(100μL/ウェル)に室温で30分間可溶化した後、各ウェルの吸光度を波長535 nmでSpectraMax i3(Molecular Devices)で測定した。
Cytotoxicity assessment HeLa cells were seeded in flat bottom 96-well plates (1 × 10 4 cells / well) and cultured in DMEM containing 10% FBS at 37 ° C. in an incubator with 5% CO 2 /95% air for 24 hours. . The medium was then replaced with medium having various concentrations of compound AcPOF of Example 2 (1 μM, 5 μM and 10 μM) and the cells were further incubated at 37 ° C. for 24 hours. After removing the medium, 3- (4,5-di-methylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) reagent is added to each well (final concentration 0.5 mg / mL) and the plate Was incubated for an additional 4 hours in a CO 2 incubator. Excess MTT in tetrazolium was removed and the cells were washed once with PBS. Formazan crystals were solubilized in DMSO (100 μL / well) at room temperature for 30 minutes, and then the absorbance of each well was measured with SpectraMax i3 (Molecular Devices) at a wavelength of 535 nm.
 結果を図7に示す。図7においては、結果は、蛍光色素を使用しなかった場合に対する生存率をパーセンテージで表している。全てのデータは、平均標準偏差により示している(測定数nは12である)。この結果から、本発明のホスファフルオロセイン化合物は、細胞へのダメージを著しく低減できる範囲で細胞を蛍光させることができることが理解できる。
 
The results are shown in FIG. In FIG. 7, the results represent the survival rate as a percentage relative to the case where no fluorescent dye was used. All data are shown by mean standard deviation (number of measurements n is 12). From this result, it can be understood that the phosphafluorocein compound of the present invention can cause cells to fluoresce within a range that can significantly reduce damage to the cells.

Claims (12)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は置換されていてもよいアリール基を示す。R2は水素原子又は有機基を示す。Rは一般式(1A)~(1C):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は置換されていてもよいアリール基、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、又は置換されていてもよいアルキニル基を示す。R4は置換されていてもよいアルキル基を示す。)
    で表される基である。]
    で表されるホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents an optionally substituted aryl group. R 2 represents a hydrogen atom or an organic group. R is the general formula (1A) to (1C):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 represents an optionally substituted aryl group, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group. R 4 represents a substituted group. Represents an alkyl group which may be substituted.)
    It is group represented by these. ]
    Or a salt, hydrate or solvate thereof.
  2. 前記一般式(1)において、Rが一般式(1A)で表される基である、請求項1に記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。 The phosphafluorescein compound or a salt, hydrate or solvate thereof according to claim 1, wherein R is a group represented by the general formula (1A) in the general formula (1).
  3. 前記一般式(1)で表されるホスファフルオレセイン化合物の塩が、一般式(2):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1及びRは前記に同じである。]
    で表されるアニオンを有する、請求項1又は2に記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。
    The salt of the phosphafluorescein compound represented by the general formula (1) is represented by the general formula (2):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 1 and R are the same as defined above. ]
    The phosphafluorescein compound according to claim 1 or 2, or a salt, hydrate or solvate thereof, having an anion represented by:
  4. 600~700 nmに最大吸収波長を有する、請求項1~3のいずれかに記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。 The phosphafluorescein compound or a salt, hydrate or solvate thereof according to any one of claims 1 to 3, which has a maximum absorption wavelength at 600 to 700 nm.
  5. 600~700 nmに最大吸収波長を有し、且つ、蛍光量子収率が0.25~0.60である、請求項1~4のいずれかに記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物。 The phosphafluorescein compound or a salt, hydrate or solvate thereof according to any one of claims 1 to 4, having a maximum absorption wavelength at 600 to 700 nm and a fluorescence quantum yield of 0.25 to 0.60. object.
  6. 請求項1~5のいずれかに記載のホスファフルオレセイン化合物又はその塩、水和物若しくは溶媒和物を含有する蛍光色素。 A fluorescent dye comprising the phosphafluorescein compound according to any one of claims 1 to 5 or a salt, hydrate or solvate thereof.
  7. バイオイメージング用蛍光色素である、請求項6に記載の蛍光色素。 The fluorescent dye according to claim 6, which is a fluorescent dye for bioimaging.
  8. 癌細胞のバイオイメージング用蛍光色素である、請求項7に記載の蛍光色素。 The fluorescent dye according to claim 7, which is a fluorescent dye for bioimaging of cancer cells.
  9. 請求項6~8のいずれかに記載の蛍光色素を含有する、細胞検出剤。 A cell detection agent comprising the fluorescent dye according to any one of claims 6 to 8.
  10. 癌細胞検出剤である、請求項9に記載の細胞検出剤。 The cell detection agent according to claim 9, which is a cancer cell detection agent.
  11. 請求項6~8のいずれかに記載の蛍光色素、又は請求項9若しくは10に記載の細胞検出剤を用いる、細胞のバイオイメージング方法。 A cell bioimaging method using the fluorescent dye according to any one of claims 6 to 8 or the cell detection agent according to claim 9 or 10.
  12. 前記細胞が癌細胞である、請求項11に記載のバイオイメージング方法。
     
    The bioimaging method according to claim 11, wherein the cell is a cancer cell.
PCT/JP2016/054964 2015-02-20 2016-02-19 Phospha-fluorescein compound or salt thereof, and fluorescent dye using same WO2016133218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017500770A JP6675758B2 (en) 2015-02-20 2016-02-19 Phosphafluorescein compound or salt thereof, or fluorescent dye using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-032322 2015-02-20
JP2015032322 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016133218A1 true WO2016133218A1 (en) 2016-08-25

Family

ID=56689347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054964 WO2016133218A1 (en) 2015-02-20 2016-02-19 Phospha-fluorescein compound or salt thereof, and fluorescent dye using same

Country Status (2)

Country Link
JP (1) JP6675758B2 (en)
WO (1) WO2016133218A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164252A1 (en) * 2017-03-09 2018-09-13 富士フイルム株式会社 Composition, dichroic material, light-absorbing anisotropic film, laminate, and image display device
WO2018181529A1 (en) * 2017-03-28 2018-10-04 国立大学法人名古屋大学 Phospha-rhodol compound, salt of same, and fluorescent dye using same
CN110204575A (en) * 2019-07-10 2019-09-06 郑州大学 The hexa-atomic cycle compound of phospha containing fragrant polycyclic system and its synthetic method
WO2020098138A1 (en) * 2018-11-15 2020-05-22 武汉华星光电半导体显示技术有限公司 Dark blue thermally activated delayed fluorescence material and application thereof
CN112500714A (en) * 2020-09-25 2021-03-16 四川大学 Dyeing reagent based on phosphorus atom substituted rhodamine derivative skeleton and preparation method and application thereof
CN114716479A (en) * 2022-05-05 2022-07-08 广州青苗新材料科技有限公司 Phosphine oxide compound with thermal activation delayed fluorescence property and preparation and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257427A (en) * 2000-02-07 2006-09-28 Applera Corp Fluorescein coloring matter substituted with electron-deficient nitrogenous heterocyclic ring
JP2011521635A (en) * 2008-05-27 2011-07-28 ダコ・デンマーク・エー/エス Compositions and methods for detection of chromosomal abnormalities using novel hybridization buffers
JP2013520962A (en) * 2010-02-26 2013-06-10 ヴェンタナ メディカル システムズ, インク. Poly tag probe
CN103183710A (en) * 2011-12-31 2013-07-03 昆山维信诺显示技术有限公司 Phosphorus oxy-group hydrogen anthracene di-triarylated amine compound and application thereof
US8506655B1 (en) * 2012-08-02 2013-08-13 Enzo Life Sciences, Inc. Fluorescent dyes containing phosphorus or arsenic
WO2014106957A1 (en) * 2013-01-07 2014-07-10 国立大学法人 東京大学 ASYMMETRICAL Si RHODAMINE AND RHODOL SYNTHESIS
JP2014529586A (en) * 2011-08-10 2014-11-13 メルク パテント ゲーエムベーハー Metal complex

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257427A (en) * 2000-02-07 2006-09-28 Applera Corp Fluorescein coloring matter substituted with electron-deficient nitrogenous heterocyclic ring
JP2011521635A (en) * 2008-05-27 2011-07-28 ダコ・デンマーク・エー/エス Compositions and methods for detection of chromosomal abnormalities using novel hybridization buffers
JP2013520962A (en) * 2010-02-26 2013-06-10 ヴェンタナ メディカル システムズ, インク. Poly tag probe
JP2014529586A (en) * 2011-08-10 2014-11-13 メルク パテント ゲーエムベーハー Metal complex
CN103183710A (en) * 2011-12-31 2013-07-03 昆山维信诺显示技术有限公司 Phosphorus oxy-group hydrogen anthracene di-triarylated amine compound and application thereof
US8506655B1 (en) * 2012-08-02 2013-08-13 Enzo Life Sciences, Inc. Fluorescent dyes containing phosphorus or arsenic
WO2014106957A1 (en) * 2013-01-07 2014-07-10 国立大学法人 東京大学 ASYMMETRICAL Si RHODAMINE AND RHODOL SYNTHESIS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAI, XIAOYUN ET AL.: "Near-Infrared Phosphorus- Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging", CHEM. EUR. J., vol. 21, 30 September 2015 (2015-09-30), pages 16754 - 16758 *
SHINJI SUDA ET AL.: "Sekishoku Hakko o Shimesu Phospha-fluorescein Shikiso no Kaihatsu to Saibo Imaging eno Oyo", THE 95TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2015) KOEN YOKOSHU IV, 11 March 2015 (2015-03-11), pages 1463 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164252A1 (en) * 2017-03-09 2018-09-13 富士フイルム株式会社 Composition, dichroic material, light-absorbing anisotropic film, laminate, and image display device
CN110461951A (en) * 2017-03-09 2019-11-15 富士胶片株式会社 Composition, dichroic substance, extinction anisotropic membrane, laminated body and image display device
JPWO2018164252A1 (en) * 2017-03-09 2020-04-23 富士フイルム株式会社 Composition, dichroic material, light-absorption anisotropic film, laminate and image display device
CN110461951B (en) * 2017-03-09 2022-04-08 富士胶片株式会社 Composition, dichroic material, light-absorbing anisotropic film, laminate, and image display device
WO2018181529A1 (en) * 2017-03-28 2018-10-04 国立大学法人名古屋大学 Phospha-rhodol compound, salt of same, and fluorescent dye using same
WO2020098138A1 (en) * 2018-11-15 2020-05-22 武汉华星光电半导体显示技术有限公司 Dark blue thermally activated delayed fluorescence material and application thereof
CN110204575A (en) * 2019-07-10 2019-09-06 郑州大学 The hexa-atomic cycle compound of phospha containing fragrant polycyclic system and its synthetic method
CN110204575B (en) * 2019-07-10 2021-07-23 郑州大学 Phosphorus-hetero six-membered ring compound containing aromatic polycyclic system and synthesis method thereof
CN112500714A (en) * 2020-09-25 2021-03-16 四川大学 Dyeing reagent based on phosphorus atom substituted rhodamine derivative skeleton and preparation method and application thereof
CN112500714B (en) * 2020-09-25 2021-10-22 四川大学 Dyeing reagent based on phosphorus atom substituted rhodamine derivative skeleton and preparation method and application thereof
CN114716479A (en) * 2022-05-05 2022-07-08 广州青苗新材料科技有限公司 Phosphine oxide compound with thermal activation delayed fluorescence property and preparation and application thereof
CN114716479B (en) * 2022-05-05 2024-01-05 广州青苗新材料科技有限公司 Phosphine oxide compound with thermal activation delayed fluorescence property and preparation and application thereof

Also Published As

Publication number Publication date
JP6675758B2 (en) 2020-04-01
JPWO2016133218A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016133218A1 (en) Phospha-fluorescein compound or salt thereof, and fluorescent dye using same
CN108440475B (en) Ratio type fluorescent probe for distinguishing lipid droplets with different polarities and preparation method and application thereof
JP5090731B2 (en) Fluorescent probe
CN104262378B (en) Silicon-based rhodamine derivative, preparation method and applications thereof
WO2010126077A1 (en) Near-infrared fluorescent compound
Nie et al. Two novel six-coordinated cadmium (II) and zinc (II) complexes from carbazate β-diketonate: crystal structures, enhanced two-photon absorption and biological imaging application
Belyaev et al. Copper-mediated phospha-annulation to attain water-soluble polycyclic luminophores
George et al. Bright red luminescence and triboluminescence from PMMA-doped polymer film materials supported by Eu3+-triphenylphosphine based β-diketonate and 4, 5-bis (diphenylphosphino)-9, 9-dimethylxanthene oxide
Fukazawa et al. Synthesis of seminaphtho-phospha-fluorescein dyes based on the consecutive arylation of aryldichlorophosphines
Jiao et al. A highly selective and pH-tolerance fluorescent probe for Cu2+ based on a novel carbazole-rhodamine hybrid dye
Jiang et al. Tetraphenylethene end-capped [1, 2, 5] thiadiazolo [3, 4-c] pyridine with aggregation-induced emission and large two-photon absorption cross-sections
CN111848633B (en) coumarin-Tr baby's base Fe3+ fluorescent probe and preparation method thereof
EP0543333A1 (en) New pentacyclic compounds and their use as absorption or fluorescence dyestuffs
CN108864733A (en) A kind of near-infrared carbon rhodamine fluorescent dyes and its synthetic method
Yamagami et al. Syntheses and properties of second-generation V-shaped xanthene dyes with piperidino groups
AU2016230561A1 (en) Fluorescent compound responding to mitochondrial membrane potential
Zhang et al. A series of novel NIR fluorescent dyes: Synthesis, theoretical calculations and fluorescence imaging applications in living cells
CN111440143B (en) Neutral mitochondrial fluorescent marker based on nitrogen-containing heterocycle and preparation method and application thereof
US9250232B2 (en) Fluorescent probe
CN111253420B (en) Pyrene compound pH value fluorescent probe and preparation method and application thereof
Chow Two-photon induced emissive thiophene donor–acceptor systems as molecular probes for in vitro bio-imaging: synthesis, crystal structure, and spectroscopic properties
JP7013024B2 (en) Phosphalrhodamine compound or salt thereof, and fluorescent dye using it
WO2018181529A1 (en) Phospha-rhodol compound, salt of same, and fluorescent dye using same
Woydziak et al. Efficient and scalable synthesis of 4-carboxy-pennsylvania green methyl ester: a hydrophobic building block for fluorescent molecular probes
Guo et al. One-pot synthesis and applications of two asymmetrical benzoxanthene dyes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752604

Country of ref document: EP

Kind code of ref document: A1