WO2016132521A1 - Teaching data-generating device - Google Patents

Teaching data-generating device Download PDF

Info

Publication number
WO2016132521A1
WO2016132521A1 PCT/JP2015/054698 JP2015054698W WO2016132521A1 WO 2016132521 A1 WO2016132521 A1 WO 2016132521A1 JP 2015054698 W JP2015054698 W JP 2015054698W WO 2016132521 A1 WO2016132521 A1 WO 2016132521A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
component
gripping
information
model information
Prior art date
Application number
PCT/JP2015/054698
Other languages
French (fr)
Japanese (ja)
Inventor
中須 信昭
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/054698 priority Critical patent/WO2016132521A1/en
Publication of WO2016132521A1 publication Critical patent/WO2016132521A1/en

Links

Images

Definitions

  • the present invention relates to a teaching data generation technique for a multi-arm type automatic assembly apparatus.
  • Operation teaching for an arm type automatic assembly device is a method of teaching by actually operating an assembly robot using a teaching pendant, a method of teaching while moving a three-dimensional image of an assembly robot displayed in a PC, etc.
  • Patent Documents 1 and 2 disclose teaching data generation techniques for conventional arm-type automatic assembly apparatuses.
  • Patent Document 1 a method for narrowing the gripping position by generating a plurality of candidate positions that can be gripped, determining the contact area between the hand and the assembly part and the distance from the center of gravity, A method for determining the gripping position by determining the interference of the hand at the position is described.
  • Patent Document 2 JP 2008-272886 (Patent Document 2) describes a method for determining the possibility of gripping from the inner product of the normal vector of the grip surface of the hand and the normal vector of the part surface.
  • Patent Documents 1 and 2 relate to work using one arm, they cannot be applied to a multi-arm type automatic assembly apparatus having a plurality of arms.
  • the multi-arm type automatic assembly apparatus although there is an operation that requires cooperation between the arms, such as a change-over operation to different arms, the above-described prior art teaches the operation of each arm independently. This is because interference between arms occurs.
  • An object of the present invention is to realize automatic generation of teaching data by preventing interference between arms of a multi-arm type automatic assembly apparatus.
  • the present application includes a plurality of means for solving the above-mentioned problems, and an example is given below.
  • a teaching data generation device that includes a storage unit and an arithmetic device, and that automatically generates teaching data for a multi-arm type automatic assembly device
  • the storage unit includes part model information, hand model information, work environment model information, assembly order information, and hand correspondence information.
  • the component model information includes a component attribute, a shape specification, and a component gripping specification capable of specifying a grippable position
  • the hand model information includes a hand attribute, a shape specification, and a hand gripping specification
  • the work environment model information includes, for each component type, a component supply specification including a component supply mechanism position, a component supply mechanism shape, and a gripping specification, a component arrangement specification including a component arrangement position and an orientation, and automatic assembly apparatus specifications.
  • the assembly order information includes information for specifying an assembly order of parts
  • the hand correspondence information includes information associated with a part type and a hand capable of assembling a part of the part type
  • the arithmetic device executes teaching data generation processing by performing a cooperative operation with a program.
  • the teaching data generation process includes a process of specifying a teaching target part based on the assembly order information, a part type of the target part based on a part attribute of the part model information, and based on the hand correspondence information.
  • the process of identifying the hand corresponding to the component type, and the work environment information is based on the hand grip specification of the component model information, the hand model information, and the work environment model information.
  • processing for generating gripping region candidates when gripping with the specified hand processing for evaluating each region in the gripping region candidate and selecting a gripping position with a high evaluation value
  • automatic assembly apparatus specifications Processing for calculating a changeable range based on the arm length and the movable angle range of the arm, and processing for evaluating each position within the changeable range and generating a changeover coordinate , And the component supply mechanism position, and the component placement position, based on the re-holding coordinate, teaching data generating apparatus characterized by having a process of generating a movement path.
  • FIG. 1 is an overall configuration diagram of a teaching data generation system. It is a figure which shows an example of the data table of component model information. It is a figure which shows an example of the data table of hand model information. It is a figure which shows an example of the data table of work environment model information. It is a figure which shows an example of the data table of component classification determination conditions. It is a figure which shows an example of the data table of assembly order information. It is a figure which shows an example of hand corresponding
  • FIG. 1 is an overall configuration diagram of a teaching data generation system of a multi-arm type automatic assembly apparatus.
  • This teaching data generation system includes a teaching data generation device 100, a model generation device 200, and a network 210 that connects them.
  • the model generation apparatus 200 of the present embodiment is configured with a three-dimensional CAD apparatus.
  • the teaching data generation apparatus 100 includes a control unit 110, a storage unit 130, an input unit 140, an output unit 150, and a communication unit 160.
  • the teaching data generation apparatus 100 is connected to an external model generation apparatus 200 via a network 210 via a communication unit 160.
  • the teaching data generation apparatus 100 and the model generation apparatus 200 may be constructed in an integrated system, for example, the same computer.
  • the teaching data generation apparatus 100 may be a dedicated machine, but may be constructed by causing a general-purpose computer to execute a program, that is, by a cooperative operation of hardware resources such as a processor and a memory and software.
  • a specific hardware configuration example is as follows.
  • the control unit 110 includes a CPU (Central Processing Unit) and a main memory.
  • the storage unit 130 includes an external storage device such as an SSD (solid state drive) or an HDD (hard disk drive).
  • the input unit 140 is configured by a device such as a keyboard, a mouse, a touch panel, a dedicated switch or sensor, or a voice recognition device.
  • the input / output unit 150 includes a display device such as a display, a projector, and a head mounted display, and a device such as a printer that performs printing.
  • the control unit 110 includes a model information acquisition unit 111, a component type determination unit 112, an assembly order acquisition unit 113, a hand selection unit 114, a gripping position candidate generation unit 115, a gripping position selection unit 116, a transfer coordinate generation unit 117, and component movement.
  • a route generation unit 118 is provided. Each process of the control unit 110 will be described later.
  • the storage unit 130 includes part model information 131, hand model information 132, work environment model information 133, part type determination condition information 134, assembly order information 135, and hand correspondence information 136.
  • the part model information 131 is information regarding parts. Specifically, information for specifying an assembly relationship between components or an assembly and a component, information for specifying a shape specification of the component, or information for specifying a gripping specification of the component is provided.
  • the model data generated by the model generation device 200 is extracted in advance and stored.
  • FIG. 2 is a diagram illustrating an example of a data table of the part model information 131 stored in the storage unit 130. This data table includes columns for large items, small items, and contents.
  • the content field of the small item “part type name” stores the result of the part type determination process described later.
  • the hand model information 132 is information regarding the hand. Specifically, it is information for specifying the outer shape of the hand that can be used in the automatic assembly apparatus and the hand gripping specification. In this embodiment, it is obtained from an automatic assembly device manufacturer and stored in the storage unit 300 in advance.
  • FIG. 3 is a diagram illustrating an example of the data table of the hand model information 133. This data table includes, for example, large items, small items, and contents columns.
  • hand attribute For example, “hand attribute”, “shape specification”, and “hand gripping specification” are stored in the large item.
  • “hand attribute” For the small item whose major item is “hand attribute”, for example, “hand ID”, “catalog drawing number”, “model name”, and “hand type name” are stored.
  • the work environment model information 133 is information related to the work environment. Specifically, for each part type, the work supply space used by the automatic assembly equipment, such as the position, shape, and movable range of the parts supply mechanism, parts tool hangar, and automatic assembly equipment used, and automatic assembly within the workable space.
  • FIG. 4 is a diagram illustrating an example of the data table of the work environment model 133. This data table includes, for example, large items, small items, and contents columns.
  • a “component type name” is stored for a small item whose major item is “component attribute”.
  • the “component supply mechanism position”, “component supply mechanism shape specification”, and “gripping specification” are stored.
  • the small item whose major item is “component placement specification”, “component placement position” and “placement posture” are stored.
  • the small item whose major item is “tool hangar specification”, “hangar position” and “hangar shape” are stored.
  • each “arm length”, “movable angle range”, “portable weight”, and the like are stored.
  • FIG. 5 is a diagram illustrating an example of a data table of the component type determination condition 134 stored in the storage unit 130.
  • This table includes a “part type name” field and a “judgment condition” field.
  • the “judgment condition” field further includes a “model name” field, a “part diagram number” field, a “part type judgment word” field, and a “shape” field.
  • “Specifications” column These columns correspond to the component attribute column of the component model information and the component type name column of the hand correspondence information 136. It is used to determine the corresponding part type with reference to the corresponding column.
  • the determined part type is stored in the part model information 131.
  • “*” in the table of FIG. 5 is a wild card.
  • FIG. 6 is a diagram illustrating an example of a data table of the assembly order information 135.
  • the assembly order information 135 is information for specifying the assembly order of parts.
  • the data table of the assembly order information 135 includes a “part ID” field and an “assembly order” field. It shows that the parts specified by the ID in the part ID column are assembled in the order of the assembly order column.
  • FIG. 7 is a diagram illustrating an example of a data table of the hand correspondence information 136.
  • FIG. 7A is a data table of component supply hand correspondence information
  • FIG. 7B is a data table of component placement hand correspondence information.
  • Both data tables include a hand ID column and a used component type name column, and indicate that the hand specified in the hand ID column can be used for the component in the used component type name column. For example, in FIG.
  • Fig. 8 shows the basic flowchart of the teaching data generation process.
  • the teaching data generation process includes model information acquisition process (S10), part type determination process (S20), assembly order information acquisition process (S30), part supply hand selection process (S40), part placement hand selection process (S45), part Gripping position candidate generation processing (S50), gripping position selection processing (S60), reselection confirmation processing (S70), all placement hand examination completion confirmation processing (S71), all supply hand examination completion confirmation processing (S72), transfer coordinates A generation process (S80), a part movement path generation process (S90), and an all parts completion confirmation process (S100) are provided.
  • S10 model information acquisition process
  • S20 part type determination process
  • S30 assembly order information acquisition process
  • S40 part supply hand selection process
  • S45 part Gripping position candidate generation processing
  • S50 gripping position selection processing
  • S60 gripping position selection processing
  • S70 reselection confirmation processing
  • S71 all placement hand examination completion confirmation processing
  • S72 all supply hand examination completion confirmation processing
  • ⁇ S10: Model information acquisition process> The model information acquisition process in step S10 of FIG.
  • the part model information 131, hand model information 132, and work environment model information 133 stored in the storage unit 130 are acquired. If there is insufficient data, it is extracted from model data (for example, three-dimensional CAD data) of the model generation device 200. Information not included in the model data is obtained from the manufacturer of the automatic assembly apparatus and stored, or stored in advance by the user.
  • model data for example, three-dimensional CAD data
  • Part type determination process The component type determination process in step S20 of FIG.
  • the part type determination condition information 134 of the storage unit 130 is acquired, and the part types of the part model information 131 and the work environment model information 133 extracted in step S10 are determined using the determination conditions of the part type determination condition information 134, and the determination is made.
  • the part type name as a result is stored in the part type column of the data table of the part model information 131 and the hand model information 132. This process ensures the allocation by the part type name column in the hand correspondence information 136 of FIG. 7 when performing the hand selection process of steps S40 and S45 described later. If it is assumed that all the component types can be associated with the component type name column in the hand correspondence information 136 of FIG. 7, the component type determination condition information 136 in the present processing and the storage unit 130 may be omitted.
  • ⁇ S30 Assembly order information acquisition process> The assembly order information acquisition process in step S30 of FIG. In this assembly sequence information acquisition process, the assembly sequence information 135 is acquired from the storage unit 130. When the assembly order information 135 is not stored, the assembly order information is generated using the assembly tree structure of the part model information 131 or stored by the user.
  • Parts supply hand selection process > The part supply hand selection process in step S40 in FIG. 8 and the part placement hand selection process in step S45 are executed by the hand selection unit 114.
  • the gripping position candidate generation process in step S50 of FIG. The grip position candidate generation process will be described with reference to FIGS.
  • the gripping position candidate generation unit 115 searches the part model information 131, the hand model information 132, and the work environment model information 133 of the corresponding part ID, and grips the gripping position candidate for the parts supply hand and the gripping position candidate for the parts placement hand. Is generated.
  • FIG. 9 is a flowchart for explaining the grip position candidate generation processing flow.
  • the gripping position generation processing in step S50 includes grippable range information acquisition processing S501, work environment model information acquisition processing S502, hand model information acquisition processing S503, grippable range correction processing S504, grippable region division processing S505, and region number setting processing.
  • S506, final region number confirmation processing S507, interference determination processing S508, gripping position candidate list addition processing S509, and determination region change processing S510 are provided.
  • each process is explained in full detail.
  • FIG. 10 is a diagram illustrating an example of a grippable range.
  • FIG. 10A is an example illustrating the grippable range of the printed circuit board.
  • FIG. 10B is a diagram showing an example in which the printed circuit board 10 which is a component is stored in the component supply box 20.
  • the component supply box 20 By storing plate-like components such as the printed circuit board 10 in a component supply box 20 (an example of a component supply mechanism), the component supply box 20 is reduced and the installation area is reduced.
  • the grippable range is hidden behind the component supply box.
  • the range in which the printed circuit board 10 can be gripped without interference between the component supply box 20 and the hand is narrower than the component grippable range 11.
  • the shape of the component supply box 20 is specified from the component supply mechanism shape specification, and the grippable range in the component supply mechanism in the component type is specified from the grip specification.
  • the gripping position candidate generation unit 115 acquires the tool hangar specifications and the automatic assembly apparatus specifications from the work environment model information 132. By this processing, the basic operation range of the automatic assembly apparatus is specified.
  • the gripping position candidate generation unit 115 acquires the component arrangement specification, and further, the gripping position candidate generation unit 115 acquires in the assembly order information acquisition process in step S30.
  • the part model information before the part is acquired from the assembly order information, and the shape data of the subassembly in which those parts are assembled is generated.
  • FIG. 11 is a diagram illustrating an example of a hand used in a multi-arm type automatic assembly apparatus.
  • FIG. 11A shows an example of the component supply hand 30, and
  • FIG. 11B shows an example of the component placement hand 35.
  • the component supply hand 30 is an example of a hand that holds a plate-shaped component such as the printed circuit board 10.
  • the printed circuit board 10 is inserted into the recess and the claw 31 is opened and closed to hold the printed circuit board 10.
  • the component placement hand 35 is a hand for holding the printed circuit board 10 sideways and placing it in a box-shaped housing.
  • the claw 36 is opened and closed to hold the printed circuit board 10.
  • FIG. 12 is a flowchart for explaining a grip position candidate calculation processing flow.
  • FIG. 12A is a diagram showing the hand gripping range 13 of the printed circuit board 10 derived from the hand model information 135.
  • the hand gripping range 13 is derived from the interference determination between the printed circuit board 10 and the component supply hand 30 and the interference determination between the printed circuit board 10 and the component placement hand 35.
  • a region where the overlapping portion (and calculation result) of the hand gripping range 13 and the component gripping range 11 is extracted is set as a correction grippable region 14.
  • FIG. 12B shows an example of the corrected grippable area 14.
  • step S505 Grasping Area Division Processing
  • the correctable grippable area 14 is divided by the grippable area dividing process in step S505.
  • the division resolution there are a method using a value stored in advance, a method for calculating the division resolution from the number of divisions, and the like.
  • FIG. 12C shows an example of division. An area number i is assigned to each divided area.
  • Step S507 Final Area Number Confirmation Process to Step S510: Determination Area Change Process
  • the interference determination processing in step S508 is performed.
  • interference between the work environment and the hand is determined.
  • the center of the component supply hand 30 is arranged in the region number i of the divided region, it is determined from the work environment model information 132 whether there is interference with the work environment at the component supply position, for example, the component supply box 20.
  • FIG. 13 shows an example of interference determination.
  • the hand 30 (a) indicates a position where the upper side of the printed circuit board 10 is gripped, and there is no interference with the component supply box 20.
  • the hand 30 (b) indicates a position where the side surface of the printed circuit board 10 is gripped, but the hand 30 (b) interferes with the component supply box 20 and cannot be gripped.
  • a simple technique such as a method for determining the presence or absence of a portion where the bounding boxes of both parts overlap, or a method for determining the presence or absence of an intersection between component surfaces is used. it can.
  • FIG. 12D illustrates a component supply gripping position candidate 16 and a component placement gripping position candidate 17 as examples of gripping position candidates.
  • step S507 when the area number i becomes larger than the final number, the gripping position candidate generation process in step 50 is terminated.
  • FIG. 14 is a flowchart for explaining a gripping position selection processing flow.
  • the gripping position selection processing flow in step S60 includes evaluation value calculation processing S601, initial gripping position setting processing step S602, inter-hand interference determination processing step S603, position change necessity determination processing step S604, gripping position recalculation processing step S605, Determination completion confirmation processing step S606 is provided. Each process will be described in detail below.
  • evaluation values for the divided regions of the component supply grip position candidate 16 and the component placement grip position candidate 17 are calculated in the evaluation value calculation process of step S601.
  • the evaluation value for example, the magnitude of the rotational moment applied to the hand when the printed circuit board 10 is gripped can be used.
  • the rotational moment can be easily calculated from the relationship between the weight and the gravity center position included in the shape specification of the part model information 131 and the shape specification of the hand and the gripping position.
  • FIG. 15 shows division point numbers (i, j) of the component supply gripping position candidate 16 and the component placement gripping position candidate 17 and the calculated rotational moment.
  • the distance between the component supply box 20 and the hand 30 when taking out from the component supply position (the risk of the hand coming into contact with the component supply box 20 when taking out the component)
  • the distance from the boundary of the grippable range 13 set on the printed circuit board 10 (represents the risk that the hand will come into contact with components and wiring on the printed circuit board 10 when components are placed), and the hand attachment / detachment position (supply)
  • An evaluation value representing workability such as a distance from the position and the placement position (shortening the movement distance to shorten the work time), can also be used.
  • the evaluation based on the distance between the component supply box 20 and the hand 30 is, for example, the shape specification and component gripping specification of the component model information 131, the shape specification and component gripping specification of the hand model information 132, and the component supply of the work environment model information 133. It can be determined by using specifications. Further, the distance from the hand attachment / detachment position can be obtained by using, for example, the component supply mechanism position of the component supply specification and the component arrangement position of the component arrangement specification of the work environment model information 133.
  • step S602 Initial Holding Position Setting Process
  • the initial gripping position (i, j) is set in the initial gripping position setting process in step S602.
  • a combination that minimizes the sum of the evaluation value of the component supply gripping position 16 and the evaluation value of the component placement gripping position 17 is set as the initial gripping position.
  • the gripping position (6, 6) where the sum of the evaluation values is the smallest is selected as the initial value.
  • step S605 Grasping Position Recalculation Process
  • a combination of gripping positions with the next smallest sum of evaluation values at the gripping positions (6, 6) is extracted.
  • the gripping position (6, 5) or (6, 7) is a combination having the smallest sum of evaluation values next to the gripping position (6, 6).
  • the gripping position recalculation S605 is repeated until a combination having no hand interference is extracted.
  • step S606 Determination Completion Confirmation Process >> In step S606, if it is not possible to calculate a gripping position without hand interference even after determining all combinations, the gripping position selection process is terminated as a gripping position selection failure.
  • step S606 If the gripping position selection fails in step S606, the component placement hand is reselected or the component supply hand is reselected. If the grip position can be calculated, the process proceeds to step S80. First, the parts placement hand is reset, and if the gripping position cannot be selected even after resetting all the placement hands in step S71 of FIG. 8, then the parts supply hand is reset. carry out. In step S72 of FIG. 8, if the gripping position cannot be selected even after evaluating all the combinations of the component supply hands and the component placement hands, the processing ends as a gripping position selection failure.
  • FIG. 16 is a flowchart for explaining the exchange coordinate generation processing flow.
  • FIG. 17 is a diagram illustrating an example of transfer coordinate generation.
  • FIG. 17A is a view of the two-arm type automatic assembly apparatus as viewed from above
  • FIG. 17B is a view as viewed from the direction AA in FIG. 17A.
  • the change coordinate generation processing flow of step S80 includes an automatic assembly machine movable range calculation process S801, a component movement plane calculation process S802, a changeable range calculation process S803, a changeable coordinate candidate extraction process S804, and a changeable coordinate selection process S805. It has. Each process will be described in detail below.
  • Step S801: Movable Range Calculation Process In the transfer coordinate generation process, first, the movable range 45 of the arm of the automatic assembly apparatus is calculated in the movable range calculation process in step S801.
  • the movable range of the automatic assembly apparatus can be roughly determined by the arm length from the specifications of the automatic assembly apparatus in the work environment model information 133.
  • the outer edge of the movable range becomes more accurate from the shape specification of the hand model information 132, and can be obtained in more detail by using the part shape specification in the part model information 131 and the grip position extracted by the grip position selection process.
  • the posture at the time of holding is the same as, for example, the component posture at the time of component placement, but needless to say, the holding operation can be performed in an arbitrary posture. From the above information, the movable range of the arm of the automatic assembly apparatus can be easily obtained by changing each joint angle by a predetermined angle.
  • Step S802: Component Movement Plane Calculation Process >> Next, the component movement plane 41 is calculated by the component movement plane calculation process in step S802.
  • the printed circuit board 10 stored in the component supply box 20 is moved upward, and a component supply position 46 that enables the next operation and an upper portion of the housing 49 in which the printed circuit board 10 is arranged.
  • the pre-placement standby position 47 which is a passing point immediately before placement, is given, the most efficient movement path is a path connecting the component supply position 46 and the pre-placement standby position 47 with a straight line.
  • step S ⁇ b> 802 considering the possibility that an obstacle exists on a path connecting the component supply position 46 and the standby position 47 before placement with a straight line, first, the component is moved along a plane passing through the component supply position 46 and the standby position 47 before placement.
  • a plane 41 is defined.
  • An example of the component moving plane 41 is a vertical plane including a component supply start position 46 and a pre-arrangement standby position 47. If the pre-placement standby position 47 is not given, the component moving plane 41 is set at the position of the component supply box 20.
  • Step S803 Changeable Range Calculation Processing >> Next, in the changeable range calculation process in step S803, a range of coordinates that can be changed is calculated. By performing an AND operation on the robot movable range 45 calculated in step S801 corresponding to each arm, the overlapping area is calculated as the changeable range 40.
  • Step S804: Replacement Coordinate Candidate Extraction Process a replacement coordinate candidate is extracted in the replacement coordinate candidate extraction process in step S804.
  • step S804 first, a route for moving the component is calculated on the component moving plane 41 calculated in step S802.
  • a path connecting the two points with a straight line becomes the component movement path 42.
  • the shortest path for avoiding the obstacle is set as the component movement path 42.
  • An obstacle can be determined by referring to the work environment model information 132.
  • the overlapping part of the calculated component movement path 42 and the replaceable range 40 is extracted.
  • the extracted line segment is the replacement coordinate candidate 48.
  • Step S805 Transfer Coordinate Selection Process
  • the replacement coordinate 43 is selected in the replacement coordinate selection processing in step S805.
  • one replacement coordinate is selected from the replacement coordinate candidates 48 calculated in step S804.
  • a method of selecting the midpoint of the line segment of the transfer coordinate candidate 48 a method of selecting the transfer coordinate so that the joint angle of the robot is farthest from the upper and lower limit values of the movable range, before waiting, or holding
  • step S90 of FIG. A movement path 42 that connects the component supply start position 46, the pre-arrangement standby position 47 (the position of the component supply box 20 if not provided), and the transfer coordinate 43 is generated.
  • General techniques can be used, including avoiding obstacle interference.
  • a path for avoiding interference between the plurality of arms is further generated. First, the trajectory of the arm that moves the component from the supply table to the holding position is calculated. At this time, not only the parts but also the area through which the hand or arm passes is obtained.
  • FIG. 18 is a diagram illustrating an example of an input screen 1001 for inputting a gripping position evaluation value setting method and a replacement coordinate selection method.
  • This screen is displayed on the display unit 150 and can be input by operating the input unit 140.
  • a display item 1002 is displayed on the input screen 1001, and the method can be determined by selecting from the list.
  • the determination button 1004 the selected data is stored in the storage unit 130 (not shown), and is used for setting the evaluation standard in the evaluation value calculation process S601 and the selection standard in the replacement coordinate selection process S805.
  • FIG. 19 is a data table that stores evaluation value setting method data for gripping positions and replacement coordinate selection method data.
  • As the data information for example, a library number 1101, a library first item 1102, and a library second item 1103 are included.
  • a grip position evaluation value setting method is stored as the first library item, and a replacement coordinate selection method is stored as the second library item.
  • FIG. 20 shows an example of a user interface in the transfer coordinate generation process.
  • the printed circuit board 10 is gripped at the gripping position derived in the gripping position selection process in step S60 in FIG. 8, and the printed circuit board 10 and the hand are set to the replacement coordinates and posture calculated in the replacement coordinate generation process in step S80 in FIG.
  • the position / orientation of the automatic assembly apparatus 5 at the time of placing is displayed on the input / output screen 1006 and the replaceable range 40 is displayed in an overlapping manner. Further, the work environment (not shown) of the work table or the component supply mechanism may be displayed on the input / output screen 1006.
  • the printed circuit board 10 When the printed circuit board 10 is dragged and dropped on the input / output screen 1006 using an instruction device such as a mouse, the printed circuit board 10 can be moved on the input / output screen 1006. At this time, it is possible to display on the input / output screen 1001 how the two arms 6 (a) and 6 (b) of the automatic assembly apparatus 5 move in association with the movement of the printed board 10 as the printed board 10 moves. desirable. At this time, the angle of the arm and the position of the printed circuit board 10 can be visually confirmed by the operator, and the position of the printed circuit board 10 can be moved as necessary.
  • a recalculation button 1007 is pressed to recalculate from the generation of the component movement path in step S90 of FIG.
  • the case where the posture of the printed circuit board 10 is changed at the transfer coordinates will be described.
  • the positions of the arms 6 (a) and 6 (b) that hold the printed circuit board 10 are changed, so that the movable range 40 is changed.
  • the change of the changeable range 40 is performed in conjunction with the posture change of the printed circuit board 10.
  • the operator can change the posture and position of the printed circuit board 10 while observing the change in the movable range 40.
  • a recalculation button 1007 is pressed to recalculate from the generation of the component movement path in step S90 of FIG. If neither the change coordinates nor the change attitude is changed, the end button 1008 is pressed to end the confirmation work.
  • the path display button 1009 When the path display button 1009 is pressed, the movement path and posture of the part from the part supply position to the assembly position can be displayed.
  • a display method a method of displaying the movement path of the center of gravity position of the printed circuit board 10 as a curve, a method of displaying the animation including the automatic assembly device 5, a method of displaying a position and orientation at regular time intervals (for example, 1 second), etc.
  • a general method can be used. The operator can determine the position and orientation of the printed circuit board 10 in consideration of the movement path of the printed circuit board 10 in addition to the change in the movable range 40.
  • FIG. 21 shows an example of a user interface in the transfer coordinate generation process.
  • a component movement plane 41 including the position of the component supply mechanism and the component placement position is displayed on the input / output screen 1006, and a function for allowing the printed circuit board 10 to move only on the component movement plane 41 is added. You can also.
  • Teaching data generation apparatus 110 of automatic assembly apparatus 110 Control part 111 Model information acquisition part 112 Part classification determination part 113 Assembly order information acquisition part 114 Hand selection part 115 Gripping position candidate generation part 116 Gripping position selection part 117 Carrying coordinate generation part 118 Part movement path generation unit 130 Storage unit 131 Part model information 132 Hand model information 133 Work environment model information 134 Part type determination condition 135 Assembly order information 136 Hand correspondence information 140 Input unit 150 Display unit 160 Communication unit 200 Model generation device 210 Network

Abstract

A teaching data-generating device acquires information from a model-generating device, determines part classification from the information obtained, acquires an assembly sequence, selects gripping hands, generates possible gripping positions at which to grip a part, evaluates interference for multiple hands and selects a gripping position, generates coordinates for re-gripping the part, and generates a path for moving from part supply coordinates to re-gripping coordinates and part placement coordinates.

Description

教示データ生成装置Teaching data generator
 本発明は、複数アーム型自動組立装置の教示データ生成技術に関する。 The present invention relates to a teaching data generation technique for a multi-arm type automatic assembly apparatus.
 アーム型自動組立装置(組立ロボット)に対する動作教示は、ティーチングペンダントを用いて実際に組立ロボットを操作して教示する方式や、PC内に表示した組立ロボットの3次元画像を動かしながら教示する方式など、オペレータの操作が必要な半自動化生成技術がある。 Operation teaching for an arm type automatic assembly device (assembly robot) is a method of teaching by actually operating an assembly robot using a teaching pendant, a method of teaching while moving a three-dimensional image of an assembly robot displayed in a PC, etc. There are semi-automated generation techniques that require operator operation.
 しかし、これらの教示方式は、オペレータによる操作が必要なため、教示データの生成に長い期間(現状、二週間程度)が必要である。そのため、多品種少量生産では教示データの生成時間の生産時間に占める割合が高くなる。 However, since these teaching methods require operation by an operator, it takes a long period of time (currently, about two weeks) to generate teaching data. For this reason, in the high-mix low-volume production, the ratio of the teaching data generation time to the production time increases.
 従来のアーム型自動組立装置の教示データ生成技術が特許文献1と2に開示されている。 Patent Documents 1 and 2 disclose teaching data generation techniques for conventional arm-type automatic assembly apparatuses.
 特開2013-43271(特許文献1)には、把持可能な候補位置を複数生成し、ハンドと組付け部品の接触面積や重心からの距離を判定して、把持位置を絞り込む方法や、組付け位置でのハンドの干渉を判定して把持位置を決定する方法が記載されている。 In JP2013-43271A (Patent Document 1), a method for narrowing the gripping position by generating a plurality of candidate positions that can be gripped, determining the contact area between the hand and the assembly part and the distance from the center of gravity, A method for determining the gripping position by determining the interference of the hand at the position is described.
 特開2008-272886(特許文献2)には、ハンドの把持面の法線ベクトルと部品表面の法線ベクトルの内積から把持の可能性を判定する方法が記載されている。 JP 2008-272886 (Patent Document 2) describes a method for determining the possibility of gripping from the inner product of the normal vector of the grip surface of the hand and the normal vector of the part surface.
特開2013-43271号公報JP 2013-43271 A 特開2008-272886号公報JP 2008-272886 A
 特許文献1及び2は、1つのアームを使った作業に関するものであるため、複数のアームを備えた複数アーム型自動組立装置には適用できない。複数アーム型自動組立装置には、異なるアームへの持ち替え動作など、アーム同士の協調が必要な動作があるにもかかわらず、上記従来技術では各アームの動作を独立に教示することになるため、アーム同士の干渉を生じてしまうからである。 Since Patent Documents 1 and 2 relate to work using one arm, they cannot be applied to a multi-arm type automatic assembly apparatus having a plurality of arms. In the multi-arm type automatic assembly apparatus, although there is an operation that requires cooperation between the arms, such as a change-over operation to different arms, the above-described prior art teaches the operation of each arm independently. This is because interference between arms occurs.
 本発明の目的は、複数アーム型自動組立装置のアーム同士の干渉を防止した教示データの自動生成を実現することにある。 An object of the present invention is to realize automatic generation of teaching data by preventing interference between arms of a multi-arm type automatic assembly apparatus.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を以下に挙げる。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems, and an example is given below.
 記憶部と演算装置とを備え、複数アーム型自動組立装置への教示データを自動的に生成する教示データ生成装置であって、
前記記憶部は、部品モデル情報と、ハンドモデル情報と、作業環境モデル情報と、組立順序情報と、ハンド対応情報とを備え、
前記部品モデル情報は、部品属性と、形状仕様と、把持可能な位置が特定可能な部品把持仕様とを含み、前記ハンドモデル情報は、ハンド属性と、形状仕様と、ハンド把持仕様とを含み、前記作業環境モデル情報は、部品種別毎の、部品供給機構位置と部品供給機構形状と把持仕様とを含む部品供給仕様と、部品配置位置と配置姿勢を含む部品配置仕様と、自動組立装置諸元とを含み、前記組立順序情報は、部品の組立順序を特定する情報を含み、
前記ハンド対応情報は、部品種別と当該部品種別の部品の組立を行うことができるハンドが対応付ける情報を含み、前記演算装置はプログラムと協調動作を行うことにより教示データ生成処理を実行するものであり、
前記教示データ生成処理は、前記組立順序情報に基づいて教示対象部品を特定する処理と、前記部品モデル情報の部品属性に基づいて前記対象部品の部品種別を特定し、前記ハンド対応情報に基づいて当該部品種別に対応したハンドを特定する処理と、前記作業環境情報は、前記部品モデル情報のハンド把持仕様と、前記ハンドモデル情報と、前記作業環境モデル情報と、に基づいて、前記部品を前記特定されたハンドで把持する際の把持領域候補を生成する処理と、前記把持領域候補内の各領域を評価し、評価値の高い把持位置を選定する処理と、前記自動組立装置諸元に含まれるアーム長さとアームの可動角範囲と、に基づいて、持替え可能範囲を算出する処理と、前記持替え可能範囲内の各位置を評価し、持ち替え座標を生成する処理と、前記部品供給機構位置と、前記部品配置位置と、前記持ち替え座標に基づいて、移動経路を生成する処理とを有することを特徴とする教示データ生成装置。
A teaching data generation device that includes a storage unit and an arithmetic device, and that automatically generates teaching data for a multi-arm type automatic assembly device,
The storage unit includes part model information, hand model information, work environment model information, assembly order information, and hand correspondence information.
The component model information includes a component attribute, a shape specification, and a component gripping specification capable of specifying a grippable position, and the hand model information includes a hand attribute, a shape specification, and a hand gripping specification, The work environment model information includes, for each component type, a component supply specification including a component supply mechanism position, a component supply mechanism shape, and a gripping specification, a component arrangement specification including a component arrangement position and an orientation, and automatic assembly apparatus specifications. And the assembly order information includes information for specifying an assembly order of parts,
The hand correspondence information includes information associated with a part type and a hand capable of assembling a part of the part type, and the arithmetic device executes teaching data generation processing by performing a cooperative operation with a program. ,
The teaching data generation process includes a process of specifying a teaching target part based on the assembly order information, a part type of the target part based on a part attribute of the part model information, and based on the hand correspondence information. The process of identifying the hand corresponding to the component type, and the work environment information is based on the hand grip specification of the component model information, the hand model information, and the work environment model information. Included in the processing for generating gripping region candidates when gripping with the specified hand, processing for evaluating each region in the gripping region candidate and selecting a gripping position with a high evaluation value, and the automatic assembly apparatus specifications Processing for calculating a changeable range based on the arm length and the movable angle range of the arm, and processing for evaluating each position within the changeable range and generating a changeover coordinate , And the component supply mechanism position, and the component placement position, based on the re-holding coordinate, teaching data generating apparatus characterized by having a process of generating a movement path.
 本発明によれば、複数アーム型自動組立装置のアーム同士の干渉を防止した教示データの自動生成が可能となる。 According to the present invention, it is possible to automatically generate teaching data that prevents interference between arms of a multi-arm type automatic assembly apparatus.
教示データ生成システムの全体構成図である。1 is an overall configuration diagram of a teaching data generation system. 部品モデル情報のデータテーブルの一例を示す図である。It is a figure which shows an example of the data table of component model information. ハンドモデル情報のデータテーブルの一例を示す図である。It is a figure which shows an example of the data table of hand model information. 作業環境モデル情報のデータテーブルの一例を示す図である。It is a figure which shows an example of the data table of work environment model information. 部品種別判定条件のデータテーブルの一例を示す図である。It is a figure which shows an example of the data table of component classification determination conditions. 組立順序情報のデータテーブルの一例を示す図である。It is a figure which shows an example of the data table of assembly order information. ハンド対応情報の一例を示す図である。It is a figure which shows an example of hand corresponding | compatible information. ハンド対応情報の一例を示す図である。It is a figure which shows an example of hand corresponding | compatible information. 教示データ生成処理の基本フローチャートである。It is a basic flowchart of teaching data generation processing. 把持位置候補生成処理フローを説明するフローチャートである。It is a flowchart explaining a holding position candidate generation processing flow. 把持可能範囲の一例を説明する図である。It is a figure explaining an example of a graspable range. 把持可能範囲の一例を説明する図である。It is a figure explaining an example of a graspable range. 複数アーム型自動組立装置で使用するハンドの一例を示す図である。It is a figure which shows an example of the hand used with a multi-arm type automatic assembly apparatus. 複数アーム型自動組立装置で使用するハンドの一例を示す図である。It is a figure which shows an example of the hand used with a multi-arm type automatic assembly apparatus. 把持位置候補算出処理フローを説明するフローチャートである。It is a flowchart explaining a gripping position candidate calculation processing flow. 干渉判定の一例を示す図である。It is a figure which shows an example of interference determination. 把持位置選定処理フローを説明するフローチャートである。It is a flowchart explaining a grip position selection processing flow. 把持位置選定処理フローにおける回転モーメントを評価値としたときの算出例である。It is a calculation example when the rotation moment in the gripping position selection processing flow is used as an evaluation value. 持替え座標生成処理フローを説明するフローチャートである。It is a flowchart explaining a change coordinate production | generation processing flow. 持替え座標生成の一例を示す図である。It is a figure which shows an example of a transfer coordinate production | generation. 把持位置の評価値設定方法と持替え座標選定方法を入力する入力画面の一例を説明する図である。It is a figure explaining an example of the input screen which inputs the evaluation value setting method of a holding position, and the change coordinate selection method. 把持位置の評価値設定方法データと持替え座標選定方法データを格納するデータテーブルである。It is a data table which stores the evaluation value setting method data of the gripping position and the replacement coordinate selection method data. 持ち替え座標生成処理におけるユーザインターフェースの例である。It is an example of the user interface in the exchange coordinate generation process. 持ち替え座標生成処理におけるユーザインターフェースの例である。It is an example of the user interface in the exchange coordinate generation process.
 以下、本発明の実施例を説明する。なお、以下の実施例は、教示対象の自動組立装置として、2本アームを想定した処理フローを記述しているが、アームの本数は3本以上であってもよい。 Hereinafter, examples of the present invention will be described. In the following embodiments, a processing flow assuming two arms is described as an automatic assembly apparatus to be taught, but the number of arms may be three or more.
 図1は、複数アーム型自動組立装置の教示データ生成システムの全体構成図である。本教示データ生成システムは、教示データ生成装置100、モデル生成装置200、これらを繋げるネットワーク210とを備えている。本実施例のモデル生成装置200は、3次元CAD装置で構成されている。 FIG. 1 is an overall configuration diagram of a teaching data generation system of a multi-arm type automatic assembly apparatus. This teaching data generation system includes a teaching data generation device 100, a model generation device 200, and a network 210 that connects them. The model generation apparatus 200 of the present embodiment is configured with a three-dimensional CAD apparatus.
 教示データ生成装置100は、制御部110と、記憶部130と、入力部140と、出力部150と、通信部160とを有する。教示データ生成装置100は、通信部160を介して、外部にあるモデル生成装置200とネットワーク210を介して接続されている。ここで、教示データ生成装置100とモデル生成装置200は一体となったシステム、例えば、同一コンピュータ内に構築してもよい。 The teaching data generation apparatus 100 includes a control unit 110, a storage unit 130, an input unit 140, an output unit 150, and a communication unit 160. The teaching data generation apparatus 100 is connected to an external model generation apparatus 200 via a network 210 via a communication unit 160. Here, the teaching data generation apparatus 100 and the model generation apparatus 200 may be constructed in an integrated system, for example, the same computer.
 本教示データ生成装置100は、専用機でもよいが、汎用コンピュータにプログラムを実行させること、つまり、プロセッサやメモリなどのハードウェア資源とソフトウェアとの協調動作により構築してもよい。具体的なハードウェア構成例は次のとおりである。制御部110は、CPU(中央処理装置)および主記憶メモリで構成される。記憶部130は、SSD(ソリッドステートドライブ)やHDD(ハードディスクドライブ)などの外部記憶装置により構成される。入力部140は、例えばキーボード、マウス、タッチパネル、専用のスイッチやセンサあるいは音声認識装置などの装置により構成される。入出力部150は、例えばディスプレイ、プロジェクタ、ヘッドマウントディスプレイなどの表示装置や印刷するプリンタなどの装置により構成される。 The teaching data generation apparatus 100 may be a dedicated machine, but may be constructed by causing a general-purpose computer to execute a program, that is, by a cooperative operation of hardware resources such as a processor and a memory and software. A specific hardware configuration example is as follows. The control unit 110 includes a CPU (Central Processing Unit) and a main memory. The storage unit 130 includes an external storage device such as an SSD (solid state drive) or an HDD (hard disk drive). The input unit 140 is configured by a device such as a keyboard, a mouse, a touch panel, a dedicated switch or sensor, or a voice recognition device. The input / output unit 150 includes a display device such as a display, a projector, and a head mounted display, and a device such as a printer that performs printing.
 制御部110は、モデル情報取得部111、部品種別判定部112、組立順序取得部113、ハンド選定部114、把持位置候補生成部115、把持位置選定部116、持替え座標生成部117および部品移動経路生成部118を備える。制御部110の各処理については後述する。 The control unit 110 includes a model information acquisition unit 111, a component type determination unit 112, an assembly order acquisition unit 113, a hand selection unit 114, a gripping position candidate generation unit 115, a gripping position selection unit 116, a transfer coordinate generation unit 117, and component movement. A route generation unit 118 is provided. Each process of the control unit 110 will be described later.
 記憶部130は、部品モデル情報131、ハンドモデル情報132、作業環境モデル情報133、部品種別判定条件情報134、組立順序情報135、ハンド対応情報136とを備える。
[記憶部に格納される情報]
 制御部110での処理に使用される記憶部130に格納される各情報について説明する。
<部品モデル情報>
 部品モデル情報131は、部品に関する情報である。具体的には、部品同士または組立品と部品との組立関係を特定する情報、部品の形状仕様を特定する情報あるいは部品の把持仕様を特定する情報を備えている。本実施例では、モデル生成装置200で生成されたモデルデータから予め抽出して、格納しておく。図2は、記憶部130に格納された部品モデル情報131のデータテーブルの一例を示す図である。このデータテーブルは、大項目、小項目および内容の欄を備える。
The storage unit 130 includes part model information 131, hand model information 132, work environment model information 133, part type determination condition information 134, assembly order information 135, and hand correspondence information 136.
[Information stored in the storage unit]
Each information stored in the memory | storage part 130 used for the process in the control part 110 is demonstrated.
<Part model information>
The part model information 131 is information regarding parts. Specifically, information for specifying an assembly relationship between components or an assembly and a component, information for specifying a shape specification of the component, or information for specifying a gripping specification of the component is provided. In this embodiment, the model data generated by the model generation device 200 is extracted in advance and stored. FIG. 2 is a diagram illustrating an example of a data table of the part model information 131 stored in the storage unit 130. This data table includes columns for large items, small items, and contents.
 大項目には、例えば、「部品属性」、「アセンブリーツリー構造」、「形状仕様」および「部品把持仕様」が格納される。 In the large items, for example, “part attribute”, “assembly tree structure”, “shape specification”, and “part gripping specification” are stored.
 大項目が「部品属性」の小項目に対しては、例えば、「部品ID」、「モデル名」、「部品図番」及び「部品種別名称」が格納されている。大項目が「アセンブリーツリー構造」の小項目に対しては、例えば、「親部品ID」及び「子部品ID」が格納される。大項目が「形状仕様」の小項目に対しては、例えば、「寸法」、「重量」、「重心位置」および「バウンディングボックス」(例えば、部品を外包する境界となる直方体の8頂点の座標)が格納されている。大項目が「部品把持仕様」の小項目に対しては、「把持面」、「把持可能範囲」が格納されている。なお、小項目「部品種別名称」の内容欄は後述する部品種別判定処理の処理結果が格納される。
<ハンドモデル情報>
 ハンドモデル情報132は、ハンドに関する情報である。具体的には、自動組立装置で使用可能なハンドの外形とハンド把持仕様を特定する情報である。本実施例では、自動組立装置メーカから入手し、予め記憶部300に格納しておく。図3は、ハンドモデル情報133のデータテーブルの一例を示す図である。このデータテーブルは、例えば、大項目、小項目および内容の欄を備えている。
For the small item whose major item is “component attribute”, for example, “component ID”, “model name”, “component diagram number”, and “component type name” are stored. For a small item whose major item is “assembly tree structure”, for example, “parent part ID” and “child part ID” are stored. For the small item whose major item is “shape specification”, for example, “dimension”, “weight”, “center of gravity” and “bounding box” (for example, the coordinates of eight vertices of a rectangular parallelepiped serving as a boundary surrounding the part) ) Is stored. For a small item whose major item is “component gripping specification”, “grip surface” and “gripable range” are stored. The content field of the small item “part type name” stores the result of the part type determination process described later.
<Hand model information>
The hand model information 132 is information regarding the hand. Specifically, it is information for specifying the outer shape of the hand that can be used in the automatic assembly apparatus and the hand gripping specification. In this embodiment, it is obtained from an automatic assembly device manufacturer and stored in the storage unit 300 in advance. FIG. 3 is a diagram illustrating an example of the data table of the hand model information 133. This data table includes, for example, large items, small items, and contents columns.
 大項目には、例えば、「ハンド属性」、「形状仕様」及び「ハンド把持仕様」が格納される。大項目が「ハンド属性」の小項目に対しては、例えば、「ハンドID」、「カタログ図番」、「モデル名」、および「ハンド種別名称」が格納されている。 For example, “hand attribute”, “shape specification”, and “hand gripping specification” are stored in the large item. For the small item whose major item is “hand attribute”, for example, “hand ID”, “catalog drawing number”, “model name”, and “hand type name” are stored.
 大項目が「形状仕様」の小項目に対しては、例えば、「ハンド外形」、「爪の幅」および「爪の長さ」が格納されている。大項目が「ハンド把持仕様」の小項目に対しては、例えば、「爪動作ストローク」、「把持時の爪長さに対する把持力」、「最適把持力」および「把持可能重量」が格納されている。
<作業環境モデル情報>
 作業環境モデル情報133は、作業環境に関する情報である。具体的には、各部品種別毎に、使用される部品供給機構、部品工具格納庫および自動組立装置の位置、形状および可動範囲など、自動組立装置による作業可能空間およびその作業可能空間内で自動組立装置のアームとハンドの経路設定が制限されている空間とを特定する情報と、部品供給機構からハンドが部品を取り出す際の把持可能範囲および部品を配置する際の配置仕様とを特定する情報である。本実施例では、自動組立装置メーカやモデル生成装置から入手するか、または本教示データ生成装置のユーザが作成することにより、予め記憶部300に格納しておく。図4は、作業環境モデル133のデータテーブルの一例を示す図である。このデータテーブルは、例えば、大項目、小項目および内容の欄を備えている。
For the small item whose major item is “shape specification”, for example, “hand outline”, “nail width”, and “nail length” are stored. For the small item with the “hand gripping specification” as the major item, for example, “claw operation stroke”, “gripping force with respect to the claw length during gripping”, “optimal gripping force”, and “gripable weight” are stored. ing.
<Work environment model information>
The work environment model information 133 is information related to the work environment. Specifically, for each part type, the work supply space used by the automatic assembly equipment, such as the position, shape, and movable range of the parts supply mechanism, parts tool hangar, and automatic assembly equipment used, and automatic assembly within the workable space. Information that identifies the arm of the device and the space where the path setting of the hand is restricted, and information that identifies the gripping range when the hand takes out the part from the part supply mechanism and the placement specification when placing the part is there. In this embodiment, the information is obtained from an automatic assembly device manufacturer or model generation device, or is stored in advance in the storage unit 300 by being created by the user of the teaching data generation device. FIG. 4 is a diagram illustrating an example of the data table of the work environment model 133. This data table includes, for example, large items, small items, and contents columns.
 大項目には、例えば、「部品属性」、「部品供給機構仕様」、「部品配置仕様」、「工具格納庫仕様」および「自動組立装置諸元」が格納されている。 In the large item, for example, “part attribute”, “part supply mechanism specification”, “part placement specification”, “tool hangar specification”, and “automatic assembly apparatus specifications” are stored.
 大項目が「部品属性」の小項目に対しては、「部品種別名称」が格納されている。大項目が「部品供給機構仕様」の小項目に対しては、「部品供給機構位置」、「部品供給機構形状仕様」及び「把持仕様」が格納されている。大項目が「部品配置仕様」の小項目に対しては、「部品配置位置」および「配置姿勢」が格納されている。大項目が「工具格納庫仕様」の小項目に対しては、「格納庫位置」および「格納庫形状」が格納されている。大項目が「自動組立諸元」の小項目に対しては、各「アームの長さ」と「可動角範囲」、「可搬重量」などが格納されている。
<部品種別判定条件情報>
 図5は、記憶部130に格納された部品種別判定条件134のデータテーブルの一例を示す図である。このテーブルは、「部品種別名称」欄と「判定条件」欄を備え、「判定条件」欄はさらに、「モデル名」欄、「部品図番」欄、「部品種別判定ワード」欄、「形状仕様」欄を備えている。これらの欄は、部品モデル情報の部品属性欄およびハンド対応情報136の部品種別名称欄に対応している。該当する欄を参照し、該当する部品種別を判定するのに用いられる。判定した部品種別は部品モデル情報131に格納される。なお、図5の表中の「*」はワイルドカードである。モデル生成装置200により作成された部品モデル情報は、作成者による表現の揺らぎが発生する可能性があるため、文字列の部分一致で引き当てることを許容している。本実施例では、形状仕様として面情報から抽出可能な寸法条件を格納したが、バウンディングボックスの頂点や重心位置などを格納してもよい。また、数値での判定においては、等しい、以下、より大きいなどの範囲を示す条件とし、またこれら条件のANDおよびOR条件にて設定可能とする。
<組立順序情報>
 図6は、組立順序情報135のデータテーブルの一例を示す図である。この組立順序情報135は、部品の組立順序を特定する情報である。この組立順序情報135のデータテーブルは、「部品ID」欄および「組立順序」欄を備えている。部品ID欄のIDで特定された部品が組立順序欄の順序で組み立てられることを示している。
<ハンド対応情報>
 図7は、ハンド対応情報136のデータテーブルの一例を示す図である。図7(a)は部品供給用ハンド対応情報のデータテーブル、図7(b)は部品配置用ハンド対応情報のデータテーブルである。両データテーブルともに、ハンドID欄と使用部品種別名称欄を備え、ハンドID欄で特定されたハンドが使用部品種別名称欄の部品に対して使用可能であることを示している。例えば、図7(a)において、ハンドID「hand2」のハンドは、部品種別名称が「部品A」である部品と部品種別名称が「部品B」である部品に使用可能であることを示している。
[制御部]
 制御部110に含まれる各機能部111~118により実現される教示データ作成処理およびユーザインターフェースについて、図1~図21を用いて以下説明する。
A “component type name” is stored for a small item whose major item is “component attribute”. For the small item “component supply mechanism specification”, the “component supply mechanism position”, “component supply mechanism shape specification”, and “gripping specification” are stored. For the small item whose major item is “component placement specification”, “component placement position” and “placement posture” are stored. For the small item whose major item is “tool hangar specification”, “hangar position” and “hangar shape” are stored. For a small item whose major item is “automatic assembly specifications”, each “arm length”, “movable angle range”, “portable weight”, and the like are stored.
<Part type judgment condition information>
FIG. 5 is a diagram illustrating an example of a data table of the component type determination condition 134 stored in the storage unit 130. This table includes a “part type name” field and a “judgment condition” field. The “judgment condition” field further includes a “model name” field, a “part diagram number” field, a “part type judgment word” field, and a “shape” field. “Specifications” column. These columns correspond to the component attribute column of the component model information and the component type name column of the hand correspondence information 136. It is used to determine the corresponding part type with reference to the corresponding column. The determined part type is stored in the part model information 131. Note that “*” in the table of FIG. 5 is a wild card. Since the part model information created by the model generation device 200 may cause expression fluctuation by the creator, it is allowed to be assigned by partial matching of character strings. In this embodiment, the dimensional condition that can be extracted from the surface information is stored as the shape specification. However, the vertex of the bounding box, the position of the center of gravity, and the like may be stored. Further, in the determination by numerical values, conditions indicating ranges such as equal, hereafter, and larger are set, and can be set by AND and OR conditions of these conditions.
<Assembly order information>
FIG. 6 is a diagram illustrating an example of a data table of the assembly order information 135. The assembly order information 135 is information for specifying the assembly order of parts. The data table of the assembly order information 135 includes a “part ID” field and an “assembly order” field. It shows that the parts specified by the ID in the part ID column are assembled in the order of the assembly order column.
<Hand support information>
FIG. 7 is a diagram illustrating an example of a data table of the hand correspondence information 136. FIG. 7A is a data table of component supply hand correspondence information, and FIG. 7B is a data table of component placement hand correspondence information. Both data tables include a hand ID column and a used component type name column, and indicate that the hand specified in the hand ID column can be used for the component in the used component type name column. For example, in FIG. 7A, it is shown that the hand with the hand ID “hand2” can be used for a part whose part type name is “part A” and a part whose part type name is “part B”. Yes.
[Control unit]
A teaching data creation process and a user interface realized by the functional units 111 to 118 included in the control unit 110 will be described below with reference to FIGS.
 教示データ生成処理の基本フローチャートを図8に示す。教示データ生成処理は、モデル情報取得処理(S10)、部品種別判定処理(S20)、組立順序情報取得処理(S30)、部品供給ハンド選定処理(S40)、部品配置ハンド選定処理(S45)、部品把持位置候補生成処理(S50)、把持位置選定処理(S60)、再選定確認処理(S70)、全配置ハンド検討完了確認処理(S71)、全供給ハンド検討完了確認処理(S72)、持替え座標生成処理(S80)、部品移動経路生成処理(S90)、全部品完了確認処理(S100)とを備えている。以下、各処理について、詳述する。 Fig. 8 shows the basic flowchart of the teaching data generation process. The teaching data generation process includes model information acquisition process (S10), part type determination process (S20), assembly order information acquisition process (S30), part supply hand selection process (S40), part placement hand selection process (S45), part Gripping position candidate generation processing (S50), gripping position selection processing (S60), reselection confirmation processing (S70), all placement hand examination completion confirmation processing (S71), all supply hand examination completion confirmation processing (S72), transfer coordinates A generation process (S80), a part movement path generation process (S90), and an all parts completion confirmation process (S100) are provided. Hereinafter, each process will be described in detail.
 <S10:モデル情報取得処理>
 図8のステップS10のモデル情報取得処理はモデル情報取得部111で実行される。ステップS10において、記憶部130に格納されている部品モデル情報131、ハンドモデル情報132および作業環境モデル情報133を取得する。もし、不足するデータがあった場合、モデル生成装置200のモデルデータ(例えば、3次元CADデータ)から抽出する。モデルデータにない情報は、自動組立装置のメーカから入手して格納しておくか、ユーザが予め格納しておく。
<S10: Model information acquisition process>
The model information acquisition process in step S10 of FIG. In step S10, the part model information 131, hand model information 132, and work environment model information 133 stored in the storage unit 130 are acquired. If there is insufficient data, it is extracted from model data (for example, three-dimensional CAD data) of the model generation device 200. Information not included in the model data is obtained from the manufacturer of the automatic assembly apparatus and stored, or stored in advance by the user.
 <S20:部品種別判定処理>
 図8のステップS20の部品種別判定処理は部品種別判定部112で実行される。記憶部130の部品種別判定条件情報134を取得し、部品種別判定条件情報134の判定条件を用いて、ステップS10で抽出した部品モデル情報131と作業環境モデル情報133の部品種別を判定し、判定結果である部品種別名称を、部品モデル情報131とハンドモデル情報132のデータテーブルの部品種別欄に格納する。この処理は後述するステップS40、S45のハンド選定処理を行うに当たり、図7のハンド対応情報136における部品種別名称欄による引き当てを確実にするものである。全ての部品種別が図7のハンド対応情報136における部品種別名称欄との対応が取れる前提とするならば、本処理及び記憶部130の部品種別判定条件情報136はなくても構わない。
<S20: Part type determination process>
The component type determination process in step S20 of FIG. The part type determination condition information 134 of the storage unit 130 is acquired, and the part types of the part model information 131 and the work environment model information 133 extracted in step S10 are determined using the determination conditions of the part type determination condition information 134, and the determination is made. The part type name as a result is stored in the part type column of the data table of the part model information 131 and the hand model information 132. This process ensures the allocation by the part type name column in the hand correspondence information 136 of FIG. 7 when performing the hand selection process of steps S40 and S45 described later. If it is assumed that all the component types can be associated with the component type name column in the hand correspondence information 136 of FIG. 7, the component type determination condition information 136 in the present processing and the storage unit 130 may be omitted.
 <S30:組立順序情報取得処理>
 図8のステップS30の組立順序の情報取得処理は組立順序取得部113で実行される。この組立順序情報取得処理では、組立順序情報135を記憶部130から取得する。組立順序情報135が格納されていない場合、部品モデル情報131のアセンブリツリー構造を用いて組立順序情報を生成しておくか、ユーザが格納しておく。
<S30: Assembly order information acquisition process>
The assembly order information acquisition process in step S30 of FIG. In this assembly sequence information acquisition process, the assembly sequence information 135 is acquired from the storage unit 130. When the assembly order information 135 is not stored, the assembly order information is generated using the assembly tree structure of the part model information 131 or stored by the user.
 <S40:部品供給ハンド選定処理>
 図8のステップS40の部品供給ハンド選定処理とステップS45の部品配置ハンド選定処理はハンド選定部114で実行される。
<S40: Parts supply hand selection process>
The part supply hand selection process in step S40 in FIG. 8 and the part placement hand selection process in step S45 are executed by the hand selection unit 114.
 部品供給ハンド選定部114は、まず、ステップ30で取得した組立順序情報135のn番目(nは1以上の自然数、初期値n=1)の部品IDを組立順序情報135から取得する。次に、部品モデル情報131の部品ID欄で検索することで、当該部品の部品種別名称を取得する。次に、図7(a)のハンド対応情報136の部品供給用ハンド対応情報のテーブルを読み出し、部品種別名称欄を検索することで、当該組立対象部品の供給に使用するハンドIDを抽出(ハンド選定)する。なお、組立対象部品に使用することができるハンドが複数存在する場合(例えば、図7(a)の部品供給用ハンド対応情報のテーブルにおいて、部品Bに使用可能なハンドとして、hand2とhand3が該当する)、当該部品の前後に組み立てる部品で使用するハンドのデータを参照し、ハンド交換が少なくなるように使用するハンドを選定する。また、後述するように、他の部品や作業環境とハンドが干渉するため、選定したハンドで把持できないと判断された場合には、使用可能な別のハンドを選定する。 The component supply hand selection unit 114 first acquires the n-th component ID (n is a natural number of 1 or more, initial value n = 1) of the assembly sequence information 135 acquired in Step 30 from the assembly sequence information 135. Next, by searching in the part ID column of the part model information 131, the part type name of the part is acquired. Next, the hand correspondence information 136 table of the hand correspondence information 136 in FIG. 7A is read, and the hand ID used to supply the assembly target part is extracted by searching the part type name field (hand Select). In addition, when there are a plurality of hands that can be used for the assembly target part (for example, in the table of the hand supply information for parts supply in FIG. ), Refer to the data of the hands used for the parts assembled before and after the parts, and select the hands to be used so that the number of hand exchanges is reduced. Further, as will be described later, when it is determined that the selected hand cannot be gripped because the hand interferes with other parts or the work environment, another usable hand is selected.
 <S45:部品配置ハンド選定処理>
 ステップS45の部品配置ハンド選定処理もステップS40の部品供給ハンド選定と同様の処理を行う。つまり、組立順序がn番目(nは1以上の自然数、初期値n=1)の部品IDで、部品モデル情報131の部品ID欄を検索することで、当該部品の部品種別名称を取得する。最後に、図7(b)のハンド対応情報136の部品配置用ハンド対応情報のテーブルを読み出し、部品種別名称を検索することで、当該組立対象部品の配置に使用するハンドIDを抽出(ハンド選定)する。なお、組立対象部品に使用することができるハンドが複数存在する場合の処理は、ステップS40と同様の処理を行う。
<S45: Parts placement hand selection process>
The part placement hand selection process at step S45 is the same as the part supply hand selection at step S40. That is, the part type name of the part is acquired by searching the part ID column of the part model information 131 with the part ID of the nth assembly order (n is a natural number of 1 or more, initial value n = 1). Finally, the hand correspondence information 136 in the hand correspondence information 136 of FIG. 7B is read out, and the hand ID used for the placement of the assembly target part is extracted by searching for the part type name (hand selection) ) Note that the processing in the case where there are a plurality of hands that can be used for the assembly target component is the same processing as in step S40.
 <S50:把持位置候補生成処理>
 図8のステップS50の把持位置候補生成処理は把持位置候補生成部115で実行される。図9~図12を用いて把持位置候補生成処理を説明する。把持位置候補生成部115は、該当する部品IDの部品モデル情報131、ハンドモデル情報132、作業環境モデル情報133を検索し、部品部品供給用ハンドの把持位置候補と部品配置用ハンドの把持位置候補を生成する。
<S50: Holding position candidate generation process>
The gripping position candidate generation process in step S50 of FIG. The grip position candidate generation process will be described with reference to FIGS. The gripping position candidate generation unit 115 searches the part model information 131, the hand model information 132, and the work environment model information 133 of the corresponding part ID, and grips the gripping position candidate for the parts supply hand and the gripping position candidate for the parts placement hand. Is generated.
 図9は、把持位置候補生成処理フローを説明するフローチャートである。ステップS50の把持位置生成処理は、把持可能範囲情報取得処理S501、作業環境モデル情報取得処理S502、ハンドモデル情報取得処理S503、把持可能範囲補正処理S504、把持可能領域分割処理S505、領域番号設定処理S506、最終領域番号確認処理S507、干渉判定処理S508、把持位置候補リスト追加処理S509、判定領域変更処理S510を備える。以下、各処理について詳述する。 FIG. 9 is a flowchart for explaining the grip position candidate generation processing flow. The gripping position generation processing in step S50 includes grippable range information acquisition processing S501, work environment model information acquisition processing S502, hand model information acquisition processing S503, grippable range correction processing S504, grippable region division processing S505, and region number setting processing. S506, final region number confirmation processing S507, interference determination processing S508, gripping position candidate list addition processing S509, and determination region change processing S510 are provided. Hereinafter, each process is explained in full detail.
 <<S501:把持可能範囲情報取得処理>>
 ステップS501の把持可能範囲情報取得処理において、把持位置候補生成部115は、当該部品の部品モデル情報131の形状仕様と部品把持仕様情報を取得する。図10は、把持可能範囲の一例を説明する図である。図10(a)は、プリント基板の把持可能範囲を図示した例である。この処理により、形状仕様からプリント基板10の形状が特定され、部品把持仕様情報からプリント基板10上の部品把持可能範囲11が特定される。
<< S501: Gripping Range Information Acquisition Process >>
In the grippable range information acquisition process in step S501, the gripping position candidate generation unit 115 acquires the shape specification and component gripping specification information of the component model information 131 of the component. FIG. 10 is a diagram illustrating an example of a grippable range. FIG. 10A is an example illustrating the grippable range of the printed circuit board. By this processing, the shape of the printed circuit board 10 is specified from the shape specification, and the component grippable range 11 on the printed circuit board 10 is specified from the component gripping specification information.
 <<S502:作業環境モデル情報取得処理>>
 ステップS502の作業環境モデル情報取得処理において、把持位置候補生成部115は、作業環境モデル情報132から部品供給機構の形状仕様情報と把持仕様を取得する。図10(b)は、部品供給箱20に部品であるプリント基板10が格納されている一例を示した図である。プリント基板10のような板状部品は部品供給箱20(部品供給機構の一例)に立てて格納することにより、部品供給箱20を小さくし、設置面積を小さくする。一方、部品供給箱20内にプリント基板10を格納すると、部品供給箱の奥に把持可能範囲が隠れてしまう。そのため、部品供給箱20とハンドが干渉することなくプリント基板10を把持可能な範囲は、部品把持可能範囲11より狭められることになる。本処理により、部品供給機構形状仕様から部品供給箱20の形状が特定され、把持仕様から当該部品種別における部品供給機構における把持可能範囲が特定される。
<< S502: Work Environment Model Information Acquisition Process >>
In the work environment model information acquisition process in step S <b> 502, the gripping position candidate generation unit 115 acquires the shape specification information and gripping specifications of the component supply mechanism from the work environment model information 132. FIG. 10B is a diagram showing an example in which the printed circuit board 10 which is a component is stored in the component supply box 20. By storing plate-like components such as the printed circuit board 10 in a component supply box 20 (an example of a component supply mechanism), the component supply box 20 is reduced and the installation area is reduced. On the other hand, when the printed circuit board 10 is stored in the component supply box 20, the grippable range is hidden behind the component supply box. Therefore, the range in which the printed circuit board 10 can be gripped without interference between the component supply box 20 and the hand is narrower than the component grippable range 11. By this processing, the shape of the component supply box 20 is specified from the component supply mechanism shape specification, and the grippable range in the component supply mechanism in the component type is specified from the grip specification.
 次に、ステップS502の作業環境モデル情報取得処理において、把持位置候補生成部115は、作業環境モデル情報132から工具格納庫仕様と自動組立装置諸元とを取得する。この処理により、自動組立装置の基本動作範囲が特定される。 Next, in the work environment model information acquisition process of step S502, the gripping position candidate generation unit 115 acquires the tool hangar specifications and the automatic assembly apparatus specifications from the work environment model information 132. By this processing, the basic operation range of the automatic assembly apparatus is specified.
 次に、ステップS502の作業環境モデル情報取得処理において、把持位置候補生成部115は、部品配置仕様を取得し、さらに、把持位置候補生成部115は、ステップS30の組立順序情報取得処理で取得した組立順序情報から当該部品よりも前の部品モデル情報を取得し、それらの部品を組み立てた部分組立品の形状データを生成する。この処理により、配置位置周辺において配置済みの部品とハンドが干渉する範囲が特定される。 Next, in the work environment model information acquisition process in step S502, the gripping position candidate generation unit 115 acquires the component arrangement specification, and further, the gripping position candidate generation unit 115 acquires in the assembly order information acquisition process in step S30. The part model information before the part is acquired from the assembly order information, and the shape data of the subassembly in which those parts are assembled is generated. By this processing, a range in which the arranged component and the hand interfere around the arrangement position is specified.
 <<S503:ハンドモデル情報取得処理>>
 ステップS503のハンドモデル情報取得処理で、ハンドモデル情報135からハンドの形状仕様情報およびハンド把持仕様を取得する。この処理により、どのようなハンドモデルがどのような把持性能を持っているのか特定される。図11は、複数アーム型自動組立装置で使用するハンドの一例を示す図である。図11(a)は、部品供給用ハンド30の一例を、図11(b)は部品配置用ハンド35の一例を示す図である。部品供給用ハンド30は、プリント基板10のような板状部品を把持するハンドの一例である。凹部分にプリント基板10を差し込み、爪31を開閉することでプリント基板10を把持するものである。部品配置用ハンド35は、プリント基板10を横に持ち、箱状の筐体内に配置するためのハンドである。爪36を開閉してプリント基板10を把持する。
<< S503: Hand Model Information Acquisition Process >>
In the hand model information acquisition process in step S503, hand shape specification information and hand gripping specifications are acquired from the hand model information 135. By this processing, what kind of hand model has what kind of gripping performance is specified. FIG. 11 is a diagram illustrating an example of a hand used in a multi-arm type automatic assembly apparatus. FIG. 11A shows an example of the component supply hand 30, and FIG. 11B shows an example of the component placement hand 35. The component supply hand 30 is an example of a hand that holds a plate-shaped component such as the printed circuit board 10. The printed circuit board 10 is inserted into the recess and the claw 31 is opened and closed to hold the printed circuit board 10. The component placement hand 35 is a hand for holding the printed circuit board 10 sideways and placing it in a box-shaped housing. The claw 36 is opened and closed to hold the printed circuit board 10.
 <<S504:把持可能範囲補正処理>>
 次に、ステップS504の把持可能範囲補正処理で、ハンドモデル情報135を用いて、ステップS501の把持可能範囲情報取得処理で取得した把持可能範囲を補正する。具体的には、S503で取得したハンドモデル情報135のハンドの形状仕様とハンド把持仕様から把持可能範囲を特定し、ステップS501の把持可能範囲情報取得処理で取得した把持可能範囲とand演算を行うことにより、把持可能範囲を補正する。図12は、把持位置候補算出処理フローを説明するフローチャートである。図12(a)は、ハンドモデル情報135から導出されるプリント基板10のハンド把持範囲13を示す図である。ハンド把持範囲13の導出では、プリント基板10と部品供給用ハンド30との干渉判定およびプリント基板10と部品配置用ハンド35との干渉判定から、ハンド把持範囲13を導出する。次に、ハンド把持範囲13と部品把持可能範囲11の重なる部分(and演算結果)を抽出した領域を補正把持可能領域14とする。図12(b)に補正把持可能領域14の一例を示す。
<< S504: Gripping Range Correction Process >>
Next, in the grippable range correction process in step S504, the grippable range acquired in the grippable range information acquisition process in step S501 is corrected using the hand model information 135. Specifically, the grippable range is specified from the hand shape specification and hand gripping specification of the hand model information 135 acquired in S503, and an AND operation is performed on the grippable range acquired in the grippable range information acquisition process of Step S501. Thus, the grippable range is corrected. FIG. 12 is a flowchart for explaining a grip position candidate calculation processing flow. FIG. 12A is a diagram showing the hand gripping range 13 of the printed circuit board 10 derived from the hand model information 135. In deriving the hand gripping range 13, the hand gripping range 13 is derived from the interference determination between the printed circuit board 10 and the component supply hand 30 and the interference determination between the printed circuit board 10 and the component placement hand 35. Next, a region where the overlapping portion (and calculation result) of the hand gripping range 13 and the component gripping range 11 is extracted is set as a correction grippable region 14. FIG. 12B shows an example of the corrected grippable area 14.
 <<S505:把持可能領域分割処理>>
 次に、ステップS505の把持可能領域分割処理で、補正把持可能領域14を分割する。分割分解能はあらかじめ記憶した値を用いる方法や、分割数から分割分解能を算出する方法などがある。図12(c)に分割例を示す。分割した各領域には領域番号iを付与する。
<< S505: Grasping Area Division Processing >>
Next, the correctable grippable area 14 is divided by the grippable area dividing process in step S505. As the division resolution, there are a method using a value stored in advance, a method for calculating the division resolution from the number of divisions, and the like. FIG. 12C shows an example of division. An area number i is assigned to each divided area.
 <<S507:最終領域番号確認処理~ステップS510:判定領域変更処理>>
 次に、ステップS507の最終領域番号確認処理で、領域番号iが最終領域でないことを確認し、最終領域でない場合にステップS508の干渉判定処理を行う。
<< S507: Final Area Number Confirmation Process to Step S510: Determination Area Change Process >>
Next, in the final region number confirmation processing in step S507, it is confirmed that the region number i is not the final region. If the region number i is not the final region, the interference determination processing in step S508 is performed.
 次に、ステップS508の干渉判定処理で、作業環境とハンドとの干渉判定を行う。ここで、分割した領域の領域番号iに部品供給用ハンド30の中心を配置したとき、作業環境モデル情報132から、部品供給位置での作業環境、例えば部品供給箱20との干渉の有無を判定する。図13に干渉判定の一例を示す。ハンド30(a)は、プリント基板10の上方を把持する位置を示しており、部品供給箱20との干渉はない。ハンド30(b)は、プリント基板10の側面を把持する位置を示しているが、部品供給箱20と干渉するため、把持できない位置である。干渉の判定方法として、簡易的には、両部品のバウンディングボックスが重なる部分の有無を判定する方法や、部品の構成面間の交差の有無を判定する方法など、一般的な技術を用いることができる。 Next, in the interference determination process in step S508, interference between the work environment and the hand is determined. Here, when the center of the component supply hand 30 is arranged in the region number i of the divided region, it is determined from the work environment model information 132 whether there is interference with the work environment at the component supply position, for example, the component supply box 20. To do. FIG. 13 shows an example of interference determination. The hand 30 (a) indicates a position where the upper side of the printed circuit board 10 is gripped, and there is no interference with the component supply box 20. The hand 30 (b) indicates a position where the side surface of the printed circuit board 10 is gripped, but the hand 30 (b) interferes with the component supply box 20 and cannot be gripped. As a method for determining interference, a simple technique such as a method for determining the presence or absence of a portion where the bounding boxes of both parts overlap, or a method for determining the presence or absence of an intersection between component surfaces is used. it can.
 干渉があると判定された場合は、ステップS510で領域番号iを1増やし、次の領域での干渉判定を継続する。干渉なしと判定された場合は、ステップS509の把持位置候補リスト追加処理で、把持位置候補リストに領域番号iを追加し、記憶部130に記憶する。図12(d)に把持位置候補の一例として、部品供給用把持位置候補16と部品配置用把持位置候補17を図示する。 If it is determined that there is interference, the area number i is incremented by 1 in step S510, and the interference determination in the next area is continued. If it is determined that there is no interference, the region number i is added to the gripping position candidate list and stored in the storage unit 130 in the gripping position candidate list addition processing in step S509. FIG. 12D illustrates a component supply gripping position candidate 16 and a component placement gripping position candidate 17 as examples of gripping position candidates.
 ステップS507の最終領域番号確認処理で、領域番号iが、最終番号より大きくなった時に、ステップ50の把持位置候補生成処理を終了する。 In the final area number confirmation process in step S507, when the area number i becomes larger than the final number, the gripping position candidate generation process in step 50 is terminated.
 <S60:把持位置選定処理>
 図8のステップS60の把持位置選定処理は把持位置選定部116で実行される。図14、図15を用いて把持位置選定部116で実行されるフローを示す。図14は把持位置選定処理フローを説明するフローチャートである。ステップS60の把持位置選定処理フローは、評価値算出処理S601、初期把持位置設定処理ステップS602、ハンド間の干渉判定処理ステップS603、位置変更要否決定処理ステップS604、把持位置再計算処理ステップS605、判定完了確認処理ステップS606を備えている。以下各処理について、詳述する。
<S60: gripping position selection processing>
The gripping position selection process in step S60 of FIG. A flow executed by the grip position selection unit 116 will be described with reference to FIGS. 14 and 15. FIG. 14 is a flowchart for explaining a gripping position selection processing flow. The gripping position selection processing flow in step S60 includes evaluation value calculation processing S601, initial gripping position setting processing step S602, inter-hand interference determination processing step S603, position change necessity determination processing step S604, gripping position recalculation processing step S605, Determination completion confirmation processing step S606 is provided. Each process will be described in detail below.
 <<S601:評価値算出処理>>
 把持位置選定処理では、まず、ステップS601の評価値算出処理で、部品供給用把持位置候補16と部品配置用把持位置候補17の各分割領域に対する評価値を算出する。評価値としては、例えば、プリント基板10を把持したときに、ハンドにかかる回転モーメントの大きさを用いることができる。回転モーメントは、部品モデル情報131の形状仕様に含まれる重量と重心位置およびハンドの形状仕様と把持位置との関係から容易に算出することができる。回転モーメントを評価値としたときの算出例を図15に示す。図15には、部品供給用把持位置候補16と部品配置用把持位置候補17の分割点番号(i、j)と、算出した回転モーメントを示している。プリント基板10の重心位置19から、部品供給用把持位置16のi=6と部品配置用把持位置17のj=6において、評価値である回転モーメントが0になる。i=6とj=6から把持位置が離れる程、大きな評価値となる。評価値としては、ハンドにかかる回転モーメントの他、例えば、部品供給位置から取りだすときの、部品供給箱20とハンド30との距離(部品の取出し時にハンドが部品供給箱20に接触する危険性を表す)や、プリント基板10に設定されている把持可能範囲13の境界からの距離(部品の配置時にハンドがプリント基板10上の部品や配線に接触する危険性を表す)、ハンド着脱位置(供給位置と配置位置)からの距離(移動距離を短くして作業時間を短縮する)など、作業性を表す評価値なども用いることができる。なお、部品供給箱20とハンド30との距離による評価は、例えば、部品モデル情報131の形状仕様および部品把持仕様、ハンドモデル情報132の形状仕様及び部品把持仕様、作業環境モデル情報133の部品供給仕様を用いることで求めることができる。また、ハンド着脱位置からの距離は、例えば、作業環境モデル情報133の部品供給仕様の部品供給機構位置と部品配置仕様の部品配置位置を用いることで求めることができる。
<< S601: Evaluation Value Calculation Process >>
In the grip position selection process, first, evaluation values for the divided regions of the component supply grip position candidate 16 and the component placement grip position candidate 17 are calculated in the evaluation value calculation process of step S601. As the evaluation value, for example, the magnitude of the rotational moment applied to the hand when the printed circuit board 10 is gripped can be used. The rotational moment can be easily calculated from the relationship between the weight and the gravity center position included in the shape specification of the part model information 131 and the shape specification of the hand and the gripping position. An example of calculation when the rotational moment is used as an evaluation value is shown in FIG. FIG. 15 shows division point numbers (i, j) of the component supply gripping position candidate 16 and the component placement gripping position candidate 17 and the calculated rotational moment. From the center of gravity position 19 of the printed circuit board 10, the rotational moment as an evaluation value becomes 0 at i = 6 of the component supply gripping position 16 and j = 6 of the component placement gripping position 17. The larger the gripping position is from i = 6 and j = 6, the larger the evaluation value. As an evaluation value, in addition to the rotational moment applied to the hand, for example, the distance between the component supply box 20 and the hand 30 when taking out from the component supply position (the risk of the hand coming into contact with the component supply box 20 when taking out the component) The distance from the boundary of the grippable range 13 set on the printed circuit board 10 (represents the risk that the hand will come into contact with components and wiring on the printed circuit board 10 when components are placed), and the hand attachment / detachment position (supply) An evaluation value representing workability, such as a distance from the position and the placement position (shortening the movement distance to shorten the work time), can also be used. The evaluation based on the distance between the component supply box 20 and the hand 30 is, for example, the shape specification and component gripping specification of the component model information 131, the shape specification and component gripping specification of the hand model information 132, and the component supply of the work environment model information 133. It can be determined by using specifications. Further, the distance from the hand attachment / detachment position can be obtained by using, for example, the component supply mechanism position of the component supply specification and the component arrangement position of the component arrangement specification of the work environment model information 133.
 <<S602:初期把持位置設定処理>>
 次に、ステップS602の初期把持位置設定処理で、初期把持位置(i、j)を設定する。例えば、部品供給用把持位置16の評価値と部品配置用把持位置17の評価値の和が最も小さくなる組み合わせを初期把持位置とする。図15に示した回転モーメントを評価値とした例では、評価値の和が最も小さくなる、把持位置(6、6)を初期値として選定する。
<< S602: Initial Holding Position Setting Process >>
Next, the initial gripping position (i, j) is set in the initial gripping position setting process in step S602. For example, a combination that minimizes the sum of the evaluation value of the component supply gripping position 16 and the evaluation value of the component placement gripping position 17 is set as the initial gripping position. In the example in which the rotational moment shown in FIG. 15 is used as the evaluation value, the gripping position (6, 6) where the sum of the evaluation values is the smallest is selected as the initial value.
 <<S603:ハンド間の干渉判定処理>>
 次に、ステップS603のハンド間の干渉判定処理で、部品供給用ハンド30と部品配置用ハンド35間の干渉の有無を判定する。干渉の有無は、例えば、初期把持位置同士の重複関係の有無で確認すればよい。
<< S603: Inter-Hand Interference Determination Process >>
Next, the presence or absence of interference between the component supply hand 30 and the component placement hand 35 is determined in the interference determination process between the hands in step S603. The presence or absence of interference may be confirmed, for example, by the presence or absence of an overlapping relationship between the initial gripping positions.
 <<S604:位置変更要否決定処理>>
 次に、ステップS604の位置変更要否決定処理で、位置変更要否決定を行う。S603で干渉がないと判定された場合、当該把持位置に決定する。干渉がある場合、ステップS605の把持位置再算出処理で把持位置を再算出する。
<< S604: Position Change Necessity Determination Process >>
Next, the position change necessity determination is performed in the position change necessity determination process in step S604. If it is determined in S603 that there is no interference, the gripping position is determined. If there is interference, the gripping position is recalculated in the gripping position recalculation process in step S605.
 <<S605:把持位置再計算処理>>
 次に、ステップS605では、把持位置(6、6)での評価値の和が次に小さい把持位置の組み合わせを抽出する。図15の例では、把持位置(6、5)または(6、7)が把持位置(6、6)の次に評価値の和が小さい組み合わせである。ここでは、ハンドの干渉を避けるため、部品供給用把持位置16から遠い把持位置(6、7)を選択する方がよい。以降、ハンドの干渉がない組み合わせが抽出されるまで、把持位置の再算出S605を繰り返す。
<< S605: Grasping Position Recalculation Process >>
Next, in step S605, a combination of gripping positions with the next smallest sum of evaluation values at the gripping positions (6, 6) is extracted. In the example of FIG. 15, the gripping position (6, 5) or (6, 7) is a combination having the smallest sum of evaluation values next to the gripping position (6, 6). Here, in order to avoid interference with the hand, it is better to select a gripping position (6, 7) far from the component supply gripping position 16. Thereafter, the gripping position recalculation S605 is repeated until a combination having no hand interference is extracted.
 <<S606:判定完了確認処理>>
 ステップS606で、すべての組み合わせを判定してもハンドの干渉がない把持位置を算出できなかった場合、把持位置選定失敗として、把持位置選定処理を終了する。
<< S606: Determination Completion Confirmation Process >>
In step S606, if it is not possible to calculate a gripping position without hand interference even after determining all combinations, the gripping position selection process is terminated as a gripping position selection failure.
 <S70、S71、S72:再選定確認処理>
 ステップS606で把持位置選定失敗の場合、部品配置ハンドの再選定や部品供給ハンドの再選定を実施する。把持位置を算出できた場合、ステップS80に移行する。まず、部品配置ハンドの再設定を行い、図8のステップS71において、すべての配置ハンドの再設定を実施しても把持位置を選定できなかった場合、次に、部品供給用ハンドの再設定を実施する。図8のステップS72において、すべての部品供給用ハンドと部品配置用ハンドの組み合わせを評価しても把持位置を選定できなかった場合には、把持位置選定失敗として、処理を終了する。
<S70, S71, S72: Reselection confirmation process>
If the gripping position selection fails in step S606, the component placement hand is reselected or the component supply hand is reselected. If the grip position can be calculated, the process proceeds to step S80. First, the parts placement hand is reset, and if the gripping position cannot be selected even after resetting all the placement hands in step S71 of FIG. 8, then the parts supply hand is reset. carry out. In step S72 of FIG. 8, if the gripping position cannot be selected even after evaluating all the combinations of the component supply hands and the component placement hands, the processing ends as a gripping position selection failure.
 <S80:持替え座標生成処理>
 図8のステップS80の持替え座標生成処理は持替え座標生成部117で実行される。図16、図17を用いて持替え座標生成部117で実行される持替え座標生成処理のフローを説明する。図16は、持替え座標生成処理フローを説明するフローチャートである。図17は、持替え座標生成の一例を示す図である。ここで、図17(a)は、2アーム型自動組立装置を上から観察した図であり、図17(b)は、図17(a)のA-A方向からの矢視図である。ステップS80の持替え座標生成処理フローは、自動組立機械の可動範囲算出処理S801、部品移動平面算出処理S802、持替え可能範囲算出処理S803、持替え座標候補抽出処理S804、持替え座標選定処理S805を備えている。以下各処理について、詳述する。
<S80: Transfer coordinate generation processing>
The change-over coordinate generation process in step S80 of FIG. With reference to FIGS. 16 and 17, the flow of the change coordinate generation process executed by the change coordinate generation unit 117 will be described. FIG. 16 is a flowchart for explaining the exchange coordinate generation processing flow. FIG. 17 is a diagram illustrating an example of transfer coordinate generation. Here, FIG. 17A is a view of the two-arm type automatic assembly apparatus as viewed from above, and FIG. 17B is a view as viewed from the direction AA in FIG. 17A. The change coordinate generation processing flow of step S80 includes an automatic assembly machine movable range calculation process S801, a component movement plane calculation process S802, a changeable range calculation process S803, a changeable coordinate candidate extraction process S804, and a changeable coordinate selection process S805. It has. Each process will be described in detail below.
 <<ステップS801:可動範囲算出処理>>
 持替え座標生成処理では、まず、ステップS801の可動範囲算出処理で、自動組立装置のアームの可動範囲45を算出する。例えば、作業環境モデル情報133の自動組立装置諸元からアーム長さで自動組立装置の可動範囲が概ね決めることができる。ハンドモデル情報132の形状仕様から可動範囲の外縁がより正確となり、部品モデル情報131における部品形状仕様、把持位置選定処理で抽出した把持位置も用いれば、さらに詳細に求めることができる。ここで、持ち替え時の姿勢は、例えば部品配置時の部品姿勢と同じであるとすることが望ましいが、任意の姿勢で持ち替え動作を実施可能であることはいうまでもない。以上の情報から、各関節角を所定角度ずつ変化させることにより、容易に自動組立装置のアームの可動範囲を求めることができる。
<< Step S801: Movable Range Calculation Process >>
In the transfer coordinate generation process, first, the movable range 45 of the arm of the automatic assembly apparatus is calculated in the movable range calculation process in step S801. For example, the movable range of the automatic assembly apparatus can be roughly determined by the arm length from the specifications of the automatic assembly apparatus in the work environment model information 133. The outer edge of the movable range becomes more accurate from the shape specification of the hand model information 132, and can be obtained in more detail by using the part shape specification in the part model information 131 and the grip position extracted by the grip position selection process. Here, it is desirable that the posture at the time of holding is the same as, for example, the component posture at the time of component placement, but needless to say, the holding operation can be performed in an arbitrary posture. From the above information, the movable range of the arm of the automatic assembly apparatus can be easily obtained by changing each joint angle by a predetermined angle.
 <<ステップS802:部品移動平面算出処理>>
 次に、ステップS802の部品移動平面算出処理で、部品移動平面41を算出する。図17(b)において、部品供給箱20に格納されたプリント基板10を上方に移動し、次の動作を可能とする部品供給位置46と、プリント基板10を配置する筐体49の上方で、配置直前の通過点である配置前待機位置47が与えられていたとき、最も効率の高い移動経路は、部品供給位置46と配置前待機位置47を直線で結んだ経路である。ステップS802では、部品供給位置46と配置前待機位置47を直線で結んだ経路上に障害物が存在する可能性を考え、まず、部品供給位置46と配置前待機位置47を通る平面を部品移動平面41と定義する。作業環境との干渉を回避する経路も含め、組み立てる部品は、この部品移動平面41上を移動するとよい。部品移動平面41の一例は、部品供給開始位置46と配置前待機位置47を含む垂直面がある。なお、配置前待機位置47が与えられていない場合、部品供給箱20の位置で部品移動平面41を設定する。
<< Step S802: Component Movement Plane Calculation Process >>
Next, the component movement plane 41 is calculated by the component movement plane calculation process in step S802. In FIG. 17B, the printed circuit board 10 stored in the component supply box 20 is moved upward, and a component supply position 46 that enables the next operation and an upper portion of the housing 49 in which the printed circuit board 10 is arranged. When the pre-placement standby position 47, which is a passing point immediately before placement, is given, the most efficient movement path is a path connecting the component supply position 46 and the pre-placement standby position 47 with a straight line. In step S <b> 802, considering the possibility that an obstacle exists on a path connecting the component supply position 46 and the standby position 47 before placement with a straight line, first, the component is moved along a plane passing through the component supply position 46 and the standby position 47 before placement. A plane 41 is defined. The parts to be assembled, including the path for avoiding interference with the work environment, may move on the part moving plane 41. An example of the component moving plane 41 is a vertical plane including a component supply start position 46 and a pre-arrangement standby position 47. If the pre-placement standby position 47 is not given, the component moving plane 41 is set at the position of the component supply box 20.
 <<ステップS803:持替え可能範囲算出処理>>
 次に、ステップS803の持替え可能範囲算出処理で、持替えが可能な座標の範囲を算出する。各アームに対応する、ステップS801で算出したロボット可動範囲45のand演算を行うことで、重なっている領域を持替え可能範囲40として算出する。
<< Step S803: Changeable Range Calculation Processing >>
Next, in the changeable range calculation process in step S803, a range of coordinates that can be changed is calculated. By performing an AND operation on the robot movable range 45 calculated in step S801 corresponding to each arm, the overlapping area is calculated as the changeable range 40.
 <<ステップS804:持替え座標候補抽出処理>>
 次に、ステップS804の持替え座標候補抽出処理で、持替え座標候補を抽出する。ステップS804では、まず、S802で算出した部品移動平面41上で、部品を移動する経路を算出する。部品供給開始位置46と配置前待機位置47(またh、部品供給箱20の位置)の間に障害物がない場合は、二点を直線で結んだ経路が部品移動経路42となる。障害物が存在する場合は、障害物を回避する最短経路を部品移動経路42とする。障害物の判定は、作業環境モデル情報132を参照することで可能である。次に、算出した部品移動経路42と、持替え可能範囲40の重なる部分を抽出する。抽出した線分が持替え座標候補48である。
<< Step S804: Replacement Coordinate Candidate Extraction Process >>
Next, a replacement coordinate candidate is extracted in the replacement coordinate candidate extraction process in step S804. In step S804, first, a route for moving the component is calculated on the component moving plane 41 calculated in step S802. When there is no obstacle between the component supply start position 46 and the pre-placement standby position 47 (also h, the position of the component supply box 20), a path connecting the two points with a straight line becomes the component movement path 42. When there is an obstacle, the shortest path for avoiding the obstacle is set as the component movement path 42. An obstacle can be determined by referring to the work environment model information 132. Next, the overlapping part of the calculated component movement path 42 and the replaceable range 40 is extracted. The extracted line segment is the replacement coordinate candidate 48.
 <<ステップS805:持替え座標選定処理>>
 最後に、ステップS805の持替え座標選定処理で、持替え座標43を選定する。持替え座標選定処理では、ステップS804で算出した持替え座標候補48の中から、持替え座標を一点選定する。このとき、持替え座標候補48の線分の中点を選定する方法や、ロボットの関節角が可動範囲の上下限値から最も離れるように持替え座標を選定する方法、待ち替え前、あるいは持替え後の経路が最短となるように持替え座標を選定する方法などがある。
<< Step S805: Transfer Coordinate Selection Process >>
Finally, the replacement coordinate 43 is selected in the replacement coordinate selection processing in step S805. In the replacement coordinate selection process, one replacement coordinate is selected from the replacement coordinate candidates 48 calculated in step S804. At this time, a method of selecting the midpoint of the line segment of the transfer coordinate candidate 48, a method of selecting the transfer coordinate so that the joint angle of the robot is farthest from the upper and lower limit values of the movable range, before waiting, or holding There is a method of selecting a replacement coordinate so that the route after replacement is the shortest.
 <S90:部品移動経路生成処理>
 図8のステップS90の部品移動経路生成処理は、部品移動経路生成部118で実行される。部品供給開始位置46と配置前待機位置47(与えられていない場合、部品供給箱20の位置)、持替え座標43を結ぶ移動経路42を生成するものである。障害物の干渉回避を含め、一般的な技術を用いることができる。ここで、さらに、複数のアームの間の干渉を回避するための経路を生成する。まず、部品を供給台から持替え位置まで移動させるアームの軌道を算出する。このとき、部品だけなく、ハンドやアームが通過する領域を求める。次に、部品を持替え位置で受け取り組み立てるアームの軌道を算出するとき、先に算出した部品供給時に部品やハンド、アームが通過する領域と交差しない移動経路を算出する。このとき、移動経路の終点座標は、持替え座標に近い座標であることが望ましい。
<S90: Part Movement Route Generation Processing>
The component movement path generation process in step S90 of FIG. A movement path 42 that connects the component supply start position 46, the pre-arrangement standby position 47 (the position of the component supply box 20 if not provided), and the transfer coordinate 43 is generated. General techniques can be used, including avoiding obstacle interference. Here, a path for avoiding interference between the plurality of arms is further generated. First, the trajectory of the arm that moves the component from the supply table to the holding position is calculated. At this time, not only the parts but also the area through which the hand or arm passes is obtained. Next, when calculating the trajectory of the arm that receives and assembles the component at the holding position, a movement path that does not intersect the region through which the component, hand, and arm pass when the component is calculated is calculated. At this time, it is desirable that the end point coordinates of the movement route are close to the transfer coordinates.
 <ユーザインターフェース>
 図18は、把持位置の評価値設定方法と持替え座標選定方法を入力する入力画面1001の一例を示す図である。本画面は、表示部150に表示され、入力部140で操作することにより、入力することができる。入力画面1001には、表示項目1002が表示され、リストから選択することで、方式を決定することができる。決定ボタン1004を押下することで、選択したデータが記憶部130に格納され(図示せず)、評価値算出処理S601の評価基準や持替え座標選定処理S805の選定基準の設定に用いられる。図19は、把持位置の評価値設定方法データと持替え座標選定方法データを格納するデータテーブルである。データ情報として、例えば、ライブラリ番号1101とライブラリ第一項目1102、ライブラリ第二項目1103が含まれる。ライブラリ第一項目として、把持位置の評価値設定方法が格納され、ライブラリ第二項目として、持替え座標選定方法が格納される。
<User interface>
FIG. 18 is a diagram illustrating an example of an input screen 1001 for inputting a gripping position evaluation value setting method and a replacement coordinate selection method. This screen is displayed on the display unit 150 and can be input by operating the input unit 140. A display item 1002 is displayed on the input screen 1001, and the method can be determined by selecting from the list. By pressing the determination button 1004, the selected data is stored in the storage unit 130 (not shown), and is used for setting the evaluation standard in the evaluation value calculation process S601 and the selection standard in the replacement coordinate selection process S805. FIG. 19 is a data table that stores evaluation value setting method data for gripping positions and replacement coordinate selection method data. As the data information, for example, a library number 1101, a library first item 1102, and a library second item 1103 are included. A grip position evaluation value setting method is stored as the first library item, and a replacement coordinate selection method is stored as the second library item.
 図20は、持ち替え座標生成処理におけるユーザインターフェースの例である。図8のステップS60の把持位置選定処理で導出された把持位置でプリント基板10を把持し、図8のステップS80の持替え座標生成処理で算出された持替え座標と姿勢にプリント基板10とハンドを配置したときの自動組立装置5の位置姿勢を、入出力画面1006に表示するとともに、持替え可能範囲40を重ねて表示する。また、作業台や部品供給機構の作業環境(図示せず)も入出力画面1006に表示してもよい。プリント基板10をマウス等の指示装置を用いて入出力画面1006上でドラッグ&ドロップすると、入出力画面1006上でプリント基板10を移動させることができる。このとき、プリント基板10の移動に伴い、自動組立装置5の2本のアーム6(a)、6(b)もプリント基板10の動きに関連して動く様子を入出力画面1001に表示できることが望ましい。このとき、アームの角度やプリント基板10の位置をオペレータが目視で確認し、必要に応じてプリント基板10の位置を移動させることができる。プリント基板10の持替え座標を変更した場合は、再計算ボタン1007を押下し、図8のステップS90の部品移動経路生成から再計算させる。 FIG. 20 shows an example of a user interface in the transfer coordinate generation process. The printed circuit board 10 is gripped at the gripping position derived in the gripping position selection process in step S60 in FIG. 8, and the printed circuit board 10 and the hand are set to the replacement coordinates and posture calculated in the replacement coordinate generation process in step S80 in FIG. The position / orientation of the automatic assembly apparatus 5 at the time of placing is displayed on the input / output screen 1006 and the replaceable range 40 is displayed in an overlapping manner. Further, the work environment (not shown) of the work table or the component supply mechanism may be displayed on the input / output screen 1006. When the printed circuit board 10 is dragged and dropped on the input / output screen 1006 using an instruction device such as a mouse, the printed circuit board 10 can be moved on the input / output screen 1006. At this time, it is possible to display on the input / output screen 1001 how the two arms 6 (a) and 6 (b) of the automatic assembly apparatus 5 move in association with the movement of the printed board 10 as the printed board 10 moves. desirable. At this time, the angle of the arm and the position of the printed circuit board 10 can be visually confirmed by the operator, and the position of the printed circuit board 10 can be moved as necessary. When the transfer coordinate of the printed circuit board 10 is changed, a recalculation button 1007 is pressed to recalculate from the generation of the component movement path in step S90 of FIG.
 持替え座標での、プリント基板10の姿勢を変更する場合について説明する。プリント基板10の姿勢を変更すると、それを把持しているアーム6(a)、6(b)の位置が変化するため、持替え可能範囲40が変化する。この持替え可能範囲40の変化を、プリント基板10の姿勢変化と連動して実施する。オペレータは、持替え可能範囲40の変化を見ながら、プリント基板10の姿勢と位置を変更することができる。プリント基板10の持替え姿勢を変更した場合は、再計算ボタン1007を押下し、図8のステップS90の部品移動経路生成から再計算させる。また、持替え座標も持ち替え姿勢も変更しない場合は、終了ボタン1008を押下し、確認作業を終了する。 The case where the posture of the printed circuit board 10 is changed at the transfer coordinates will be described. When the posture of the printed circuit board 10 is changed, the positions of the arms 6 (a) and 6 (b) that hold the printed circuit board 10 are changed, so that the movable range 40 is changed. The change of the changeable range 40 is performed in conjunction with the posture change of the printed circuit board 10. The operator can change the posture and position of the printed circuit board 10 while observing the change in the movable range 40. When the holding posture of the printed circuit board 10 is changed, a recalculation button 1007 is pressed to recalculate from the generation of the component movement path in step S90 of FIG. If neither the change coordinates nor the change attitude is changed, the end button 1008 is pressed to end the confirmation work.
 経路表示ボタン1009を押下すると部品供給位置から、組立位置までの部品の移動経路と姿勢を表示することができる。表示方法として、プリント基板10の重心位置の移動経路を曲線で表示する方法や、自動組立装置5を含めアニメーションで表示する方法、一定時間間隔(例えば1秒)毎の位置姿勢を表示する方法など、一般的な方法を用いることができる。オペレータは、持替え可能範囲40の変化に加え、プリント基板10の移動経路も考慮して、プリント基板10の位置姿勢を決定することができる。 When the path display button 1009 is pressed, the movement path and posture of the part from the part supply position to the assembly position can be displayed. As a display method, a method of displaying the movement path of the center of gravity position of the printed circuit board 10 as a curve, a method of displaying the animation including the automatic assembly device 5, a method of displaying a position and orientation at regular time intervals (for example, 1 second), etc. A general method can be used. The operator can determine the position and orientation of the printed circuit board 10 in consideration of the movement path of the printed circuit board 10 in addition to the change in the movable range 40.
 図21は、持替え座標生成処理におけるユーザインターフェースの例である。図21に示すように、部品供給機構の位置と部品配置位置を含む部品移動平面41を入出力画面1006に表示し、プリント基板10がこの部品移動平面41上のみ移動可能とする機能を付加することもできる。 FIG. 21 shows an example of a user interface in the transfer coordinate generation process. As shown in FIG. 21, a component movement plane 41 including the position of the component supply mechanism and the component placement position is displayed on the input / output screen 1006, and a function for allowing the printed circuit board 10 to move only on the component movement plane 41 is added. You can also.
100 自動組立装置の教示データ生成装置
110 制御部
111 モデル情報取得部
112 部品種別判定部
113 組立順序情報取得部
114 ハンド選定部
115 把持位置候補生成部
116 把持位置選定部
117 持替え座標生成部
118 部品移動経路生成部
130 記憶部
131 部品モデル情報
132 ハンドモデル情報
133 作業環境モデル情報
134 部品種別判定条件
135 組立順序情報
136 ハンド対応情報
140 入力部
150 表示部
160 通信部
200 モデル生成装置
210 ネットワーク
DESCRIPTION OF SYMBOLS 100 Teaching data generation apparatus 110 of automatic assembly apparatus 110 Control part 111 Model information acquisition part 112 Part classification determination part 113 Assembly order information acquisition part 114 Hand selection part 115 Gripping position candidate generation part 116 Gripping position selection part 117 Carrying coordinate generation part 118 Part movement path generation unit 130 Storage unit 131 Part model information 132 Hand model information 133 Work environment model information 134 Part type determination condition 135 Assembly order information 136 Hand correspondence information 140 Input unit 150 Display unit 160 Communication unit 200 Model generation device 210 Network

Claims (7)

  1.  記憶部と演算装置とを備え、
     複数アーム型自動組立装置への教示データを自動的に生成する教示データ生成装置であって、
     前記記憶部は、部品モデル情報と、ハンドモデル情報と、作業環境モデル情報と、組立順序情報と、ハンド対応情報とを備え、
     前記部品モデル情報は、部品属性と、形状仕様と、把持可能な位置が特定可能な部品把持仕様とを含み、
     前記ハンドモデル情報は、ハンド属性と、形状仕様と、ハンド把持仕様とを含み、
     前記作業環境モデル情報は、部品種別毎の、部品供給機構位置と部品供給機構形状と把持仕様とを含む部品供給仕様と、部品配置位置と配置姿勢を含む部品配置仕様と、自動組立装置諸元とを含み、
     前記組立順序情報は、部品の組立順序を特定する情報を含み、
     前記ハンド対応情報は、部品種別と当該部品種別の部品の組立を行うことができるハンドが対応付ける情報を含み、
     前記演算装置はプログラムと協調動作を行うことにより教示データ生成処理を実行するものであり、
     前記教示データ生成処理は、
     前記組立順序情報に基づいて教示対象部品を特定する処理と、
     前記部品モデル情報の部品属性に基づいて前記対象部品の部品種別を特定し、前記ハンド対応情報に基づいて当該部品種別に対応したハンドを特定する処理と、
     前記作業環境情報は、前記部品モデル情報のハンド把持仕様と、前記ハンドモデル情報と、前記作業環境モデル情報と、に基づいて、前記部品を前記特定されたハンドで把持する際の把持領域候補を生成する処理と、
     前記把持領域候補内の各領域を評価し、評価値の高い把持位置を選定する処理と、
     前記自動組立装置諸元に含まれるアーム長さとアームの可動角範囲と、に基づいて、持替え可能範囲を算出する処理と、
     前記持替え可能範囲内の各位置を評価し、持ち替え座標を生成する処理と、
     前記部品供給機構位置と、前記部品配置位置と、前記持ち替え座標に基づいて、移動経路を生成する処理とを有することを特徴とする教示データ生成装置。
    A storage unit and an arithmetic unit;
    A teaching data generation device that automatically generates teaching data for a multi-arm type automatic assembly device,
    The storage unit includes part model information, hand model information, work environment model information, assembly order information, and hand correspondence information.
    The component model information includes a component attribute, a shape specification, and a component gripping specification capable of specifying a grippable position,
    The hand model information includes hand attributes, shape specifications, and hand grip specifications,
    The work environment model information includes, for each component type, a component supply specification including a component supply mechanism position, a component supply mechanism shape, and a gripping specification, a component arrangement specification including a component arrangement position and an orientation, and automatic assembly apparatus specifications. Including
    The assembly order information includes information for specifying an assembly order of parts,
    The hand correspondence information includes information associated with a part type and a hand that can assemble a part of the part type,
    The arithmetic device performs teaching data generation processing by performing a cooperative operation with a program,
    The teaching data generation process includes:
    A process of specifying a teaching target part based on the assembly order information;
    A process of identifying the part type of the target part based on the part attribute of the part model information, and identifying a hand corresponding to the part type based on the hand correspondence information;
    The work environment information is a gripping area candidate for gripping the part with the specified hand based on the hand grip specification of the part model information, the hand model information, and the work environment model information. Process to generate,
    A process for evaluating each area in the gripping area candidate and selecting a gripping position with a high evaluation value;
    Based on the arm length and the movable angle range of the arm included in the specifications of the automatic assembly apparatus, a process of calculating a movable range,
    A process of evaluating each position within the changeable range and generating a changeover coordinate;
    A teaching data generation device comprising: a process for generating a movement path based on the component supply mechanism position, the component arrangement position, and the holding coordinates.
  2.  請求項1において、
     前記把持領域候補生成処理において、他のアームハンドの干渉を判定することを特徴とする教示データ生成装置。
    In claim 1,
    A teaching data generation device, wherein in the grip region candidate generation processing, interference of another arm hand is determined.
  3.  請求項1において、
     前記把持領域候補の評価値としてハンドにかかる回転モーメント、部品供給機構とハンド間の距離、および前記部品に関連付けて記憶されている把持可能範囲の境界からの距離のいずれかを用いることを特徴とする教示データ生成装置。
    In claim 1,
    One of the rotational moment applied to the hand, the distance between the component supply mechanism and the hand, and the distance from the boundary of the grippable range stored in association with the component is used as the evaluation value of the gripping region candidate. Teaching data generation device.
  4.  請求項1において、
     前記部品持ち替え座標は、部品供給位置と部品配置位置との距離の和が最小となる座標であることを特徴とする教示データ生成装置。
    In claim 1,
    The teaching data generating apparatus according to claim 1, wherein the component replacement coordinates are coordinates that minimize a sum of distances between a component supply position and a component arrangement position.
  5.  請求項1において、
     前記部品の移動経路は、部品持ち替え座標、部品供給位置及び部品配置位置を含む平面上に存在することを特徴とする教示データ生成装置。
    In claim 1,
    The part movement path exists on a plane including a part change coordinate, a part supply position, and a part placement position.
  6.  請求項1において、
     前記持替え座標での自動組立装置および部品の位置及び姿勢を表示するとともに、持替え可能範囲を重ねて図示することを特徴とする教示データ生成装置。
    In claim 1,
    A teaching data generation device, wherein the automatic assembly device and the position and orientation of a part at the changeover coordinates are displayed, and a changeable range is displayed in an overlapping manner.
  7.  請求項1において、前記持替え座標での自動組立装置および部品の位置姿勢を表示するとともに、部品移動が可能な平面を表示し、その平面上から持替え座標を選択可能にすることを特徴とする教示データ生成装置。 2. The automatic assembly apparatus and the position and orientation of a part at the change-over coordinates are displayed, a plane on which the part can be moved is displayed, and the change-over coordinates can be selected from the plane. Teaching data generation device.
PCT/JP2015/054698 2015-02-20 2015-02-20 Teaching data-generating device WO2016132521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054698 WO2016132521A1 (en) 2015-02-20 2015-02-20 Teaching data-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054698 WO2016132521A1 (en) 2015-02-20 2015-02-20 Teaching data-generating device

Publications (1)

Publication Number Publication Date
WO2016132521A1 true WO2016132521A1 (en) 2016-08-25

Family

ID=56692087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054698 WO2016132521A1 (en) 2015-02-20 2015-02-20 Teaching data-generating device

Country Status (1)

Country Link
WO (1) WO2016132521A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418359B1 (en) * 2017-03-24 2018-11-07 三菱電機株式会社 Robot program generation device and generation method
WO2020178937A1 (en) * 2019-03-04 2020-09-10 株式会社Fuji Facility introduction support system
WO2022168609A1 (en) * 2021-02-05 2022-08-11 オムロン株式会社 Control system, motion planning device, control device, motion planning and control method, motion planning method, and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272886A (en) * 2007-04-27 2008-11-13 Nissan Motor Co Ltd Gripping candidate position selecting device, gripping candidate position selecting method, gripping passage forming device and gripping passage forming method
WO2014080652A1 (en) * 2012-11-22 2014-05-30 大日本スクリーン製造株式会社 Trajectory generation device of grasping mechanism, trajectory generation method of grasping mechanism, trajectory generation program of grasping mechanism, recording medium, and robot program generation device
JP2015033745A (en) * 2013-08-09 2015-02-19 株式会社安川電機 Robot control device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272886A (en) * 2007-04-27 2008-11-13 Nissan Motor Co Ltd Gripping candidate position selecting device, gripping candidate position selecting method, gripping passage forming device and gripping passage forming method
WO2014080652A1 (en) * 2012-11-22 2014-05-30 大日本スクリーン製造株式会社 Trajectory generation device of grasping mechanism, trajectory generation method of grasping mechanism, trajectory generation program of grasping mechanism, recording medium, and robot program generation device
JP2015033745A (en) * 2013-08-09 2015-02-19 株式会社安川電機 Robot control device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418359B1 (en) * 2017-03-24 2018-11-07 三菱電機株式会社 Robot program generation device and generation method
WO2020178937A1 (en) * 2019-03-04 2020-09-10 株式会社Fuji Facility introduction support system
JPWO2020178937A1 (en) * 2019-03-04 2021-12-23 株式会社Fuji Equipment introduction support system
JP7217337B2 (en) 2019-03-04 2023-02-02 株式会社Fuji Equipment introduction support system
WO2022168609A1 (en) * 2021-02-05 2022-08-11 オムロン株式会社 Control system, motion planning device, control device, motion planning and control method, motion planning method, and control method

Similar Documents

Publication Publication Date Title
US11511415B2 (en) System and method for robotic bin picking
EP3166084B1 (en) Method and system for determining a configuration of a virtual robot in a virtual environment
US20170066092A1 (en) Apparatus for generating assembly sequence and method for generating assembly sequence
CN108000523B (en) Simulation device, simulation method, and recording medium for simulating operation of robot system
US11185984B2 (en) Method and apparatus for controlling robot
JP2019018272A (en) Motion generation method, motion generation device, system, and computer program
JP2018051652A (en) Robot system
JP7246267B2 (en) Assembly planning device, assembly planning method, and assembly planning program
JP6902369B2 (en) Presentation device, presentation method and program, and work system
JP2019171501A (en) Robot interference determination device, robot interference determination method and program
TW202122225A (en) System and method for robotic bin picking using advanced scanning techniques
WO2016132521A1 (en) Teaching data-generating device
WO2014080652A1 (en) Trajectory generation device of grasping mechanism, trajectory generation method of grasping mechanism, trajectory generation program of grasping mechanism, recording medium, and robot program generation device
JP2011238041A (en) Programming apparatus and programming method
JP5386921B2 (en) Industrial robot position teaching apparatus, operation program creating apparatus, industrial robot position teaching method and program
JP6654532B2 (en) Design support apparatus and design support method
JP6972800B2 (en) Assembly sequence generator, assembly sequence generator and assembly sequence generator
JP2020175471A (en) Information processing device, information processing method, program and recording medium
JPWO2019069361A1 (en) Gripping position / posture teaching apparatus, gripping position / posture teaching method, and robot system
KR20230111250A (en) Creation of robot control plans
WO2016151862A1 (en) Assembly teaching device and assembly teaching method
Wu et al. Tools and equipment modelling for interactive assembling operating in a virtual environment
JP2006338119A (en) Production examination support device
JP7074057B2 (en) Work description creation device for industrial robots and work description creation method for industrial robots
US10379620B2 (en) Finger model verification method and information processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP