WO2016132490A1 - Drawing preparation system and drawing preparation method - Google Patents

Drawing preparation system and drawing preparation method Download PDF

Info

Publication number
WO2016132490A1
WO2016132490A1 PCT/JP2015/054482 JP2015054482W WO2016132490A1 WO 2016132490 A1 WO2016132490 A1 WO 2016132490A1 JP 2015054482 W JP2015054482 W JP 2015054482W WO 2016132490 A1 WO2016132490 A1 WO 2016132490A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
partial
coordinate system
normal
unit
Prior art date
Application number
PCT/JP2015/054482
Other languages
French (fr)
Japanese (ja)
Inventor
敬介 藤本
渡邊 高志
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/054482 priority Critical patent/WO2016132490A1/en
Priority to JP2017500205A priority patent/JP6248228B2/en
Publication of WO2016132490A1 publication Critical patent/WO2016132490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a system and method for creating a drawing from shape data measured by a shape measurement sensor.
  • a shape measurement sensor that can measure the three-dimensional shape of an entity by measuring the distance to the surrounding entity.
  • the shape measurement sensor uses the shape measurement sensor to measure the shape of the entire space to be acquired more quickly and with higher accuracy than by hand measurement, and the shape can be measured non-destructively from a place away from a high place or a dangerous place where human hands cannot reach.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-43248
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-43248
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-43248
  • an asymmetrical three-dimensional marker is attached to a measurement location of an object to be measured, and a partial region of the object to be measured is optically three-dimensional with a marker using a shape measuring instrument.
  • a measurement value is obtained by measurement, and then the shape measuring device is moved, and a partial region of another measurement location including the marker is optically measured three-dimensionally to obtain the measurement value.
  • Patent Document 2 International Publication 2011/070927 discloses a non-surface removal unit that removes points in a non-surface region from point cloud data of a measurement object, and points other than points removed by the non-surface removal unit. 3D based on at least one of the surface labeling part that gives the same label to the point on the same surface, the intersection line between the surfaces divided by the surface labeling part, and the convex hull that wraps the surface in a convex shape
  • a three-dimensional edge extracting unit for extracting an edge; a two-dimensional edge extracting unit for extracting a two-dimensional edge from the plane divided by the surface labeling unit; and an edge integrating unit for integrating the three-dimensional edge and the two-dimensional edge.
  • a point cloud data processing apparatus 1 is described.
  • Patent Document 3 Japanese Patent Laid-Open No. 2014-89104 discloses a three-dimensional point group in which a laser measuring unit measures a distance from a laser emission point to an irradiation point on a surface to be measured and calculates a three-dimensional coordinate.
  • 3D point cloud acquisition means for acquiring data, and 3D point cloud data acquired as a measurement target when there is no volume estimation target object and a state where a volume estimation target object exists as a measurement target
  • Data storage means for storing a plurality of foreground data, which are three-dimensional point cloud data acquired from a plurality of points, and a voxel for generating a plurality of object voxel data for each object for volume estimation from each of the plurality of foreground data and background data
  • the volume of the common part voxel data extracted as a part common to the data generation means and the plurality of object voxel data is set as the volume of the object to be estimated.
  • Volume estimating apparatus and a volume calculation means for output is described.
  • the surrounding shape can be measured as a set of measurement points (hereinafter referred to as a point group). Then, as described in Patent Document 2, it is possible to generate a three-dimensional drawing by recognizing a surface or an edge from the measured point group.
  • the measured point cloud data is approximated by a set of a plurality of small cubes, thereby drawing the drawing. Can be created.
  • the direction of the cube and the direction of the surface of the entity are different, there is a problem that a step is generated in the restored surface and the surface is broken.
  • a typical example of the invention disclosed in the present application is as follows. That is, a drawing creation system for creating a shape drawing from a surrounding measurement result by a measurement unit, a normal recognition unit for estimating a normal of a surface constituted by shape data measured by the measurement unit, and the normal A coordinate system calculation unit that calculates a coordinate system with one direction as a coordinate axis, a partial shape determination unit that sets a shape surrounded by a plane orthogonal to the coordinate axis of the coordinate system, and the partial shape is the shape data And a shape restoration unit that arranges a plurality of the partial shapes so that the surfaces of the adjacent partial shapes are smoothly connected to each other.
  • a drawing can be created without breaking the shape of the surface of an entity and without failing to restore the shape.
  • the drawing creation system of the first embodiment restores the shape without breaking the surface when the front surface and the back surface of the entity are parallel to each other. Even in an environment where many artifacts exist, the drawing creation system of the first embodiment can be used when the above condition is satisfied.
  • FIG. 1 is a diagram showing a schematic configuration of a drawing creation system of the present embodiment.
  • the drawing creation system includes shape data 11 obtained by the shape measuring unit 10 measuring the surrounding shape, normal information 13 indicating the normal of the shape data, coordinate system information 15 indicating a coordinate system used for shape restoration, and a target shape. Is stored in the storage device (memory 2, auxiliary storage device 3).
  • a set of points is handled as an example of the shape data 11, but if the data represents a shape (specifically, the shape can be acquired and does not include information on edges and vertices). Good.
  • the normal recognition unit 12 recognizes the normal on the shape data.
  • the normal and the size of the surface are paired and stored as normal information 13.
  • the normal can be recognized using a plane recognition method such as Hough transform.
  • the coordinate system calculation unit 14 uses the normal information 13 to calculate coordinate system information 15 used for shape restoration of the shape data 11. For example, each coordinate axis constituting the coordinate system is determined using the normal direction stored in the normal information 13. When the target space is a three-dimensional space, three coordinate axes are required. If the number of recognized normals is less than 3, the direction designated by the operator may be used as the coordinate axis. For example, the operator may specify a direction equal to the surface of the entity that could not be measured. Specifically, if the upper surface cannot be measured, it may be vertically upward. When two or more coordinate axes are calculated, the direction of the outer product of the created coordinate axes may be set as a new coordinate axis.
  • the drawing creation system of this embodiment approximates the target shape by arranging a plurality of small partial shapes 17.
  • the shape of the partial shape 17 is determined by the partial shape determining unit 16. At this time, a region surrounded by a set of planes orthogonal to each coordinate axis that has been created is defined as the partial shape 17.
  • the length of each side of the partial shape 17 may be determined according to the operator's specification. For example, the length may be set according to the accuracy of the shape to be restored. Or since the partial shape 17 is arrange
  • the shape restoration unit 18 arranges the partial shapes 17 so as to include the measured shape data 11.
  • the shape restoration unit 18 is arranged so that adjacent surfaces are smoothly connected so that the surfaces do not collapse.
  • the surfaces can be smoothly connected by stacking the partial shapes 17 in the direction calculated from the coordinate system information 15 by the following method.
  • the stacking direction is the normal group that was not used to create the surface of each partial shape 17 (one normal for a two-dimensional space, two normals for a three-dimensional space). ).
  • the partial shape 17 may be sequentially added at a position where the newly added partial shape 17 is connected to the surface of the existing partial shape 17.
  • the shape restoration unit 18 outputs a set of the arranged partial shapes 17 as drawing information 19.
  • FIG. 2 is a diagram showing a schematic configuration of a drawing creation system capable of processing the shape data 11 composed of a plurality of parts.
  • dividing unit 20 that divides the shape data 11 composed of a plurality of parts for each part in addition to the structure shown in FIG. 2 stores the division shape data 21 generated by the division unit 20 in a storage device (memory 2, auxiliary storage device 3).
  • the divided divided shape data 21 is processed by the normal recognition unit 12, the coordinate system calculating unit 14, the partial shape determining unit 16, and the shape restoring unit 18, as in the drawing creation system shown in FIG. However, in order to handle a plurality of divided shape data 21, the normal line information 22, the coordinate system information 23, and the partial shape 24 are calculated independently for each divided shape data 21. Further, the shape restoration unit 18 integrates the partial shapes 24 created for each divided shape data, and outputs them as drawing information 19.
  • FIG. 3 is a block diagram showing a physical configuration of the drawing creation system of the first embodiment.
  • the drawing creation system of this embodiment is configured by a computer having a processor (CPU) 1, a memory 2, an auxiliary storage device 3, and a communication interface 4.
  • CPU central processing unit
  • the processor 1 executes a program stored in the memory 2.
  • the memory 2 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element.
  • the ROM stores an immutable program (for example, BIOS).
  • BIOS basic input/output
  • the RAM is a high-speed and volatile storage element such as DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 1 and data used when the program is executed.
  • the auxiliary storage device 3 is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD), for example, and a program executed by the processor 1 and data used when the program is executed (for example, , Map data). That is, the program is read from the auxiliary storage device 3, loaded into the memory 2, and executed by the processor 1.
  • HDD magnetic storage device
  • SSD flash memory
  • the drawing creation system may have an input interface 5 and an output interface 8.
  • the input interface 5 is an interface to which an input from an operator is received, to which a keyboard 6 and a mouse 7 are connected.
  • the output interface 8 is an interface to which a display device 9 or a printer is connected, and the execution result of the program is output in a form that can be visually recognized by the operator.
  • the communication interface 4 is a network interface device that controls communication with other devices according to a predetermined protocol.
  • the drawing creation system may be connected to a terminal (not shown) via the communication interface 4, may operate according to an instruction input from the terminal, and may output a calculation result to the terminal.
  • the program executed by the processor 1 is provided to the drawing creation system via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in the nonvolatile storage device 3 which is a non-temporary storage medium. For this reason, the drawing creation system may have an interface for reading data from a removable medium.
  • a drawing creation system is a computer system that is configured on one computer or a plurality of computers that are logically or physically configured, and operates on separate threads on the same computer. Alternatively, it may operate on a virtual machine constructed on a plurality of physical computer resources.
  • FIG. 4 is a diagram showing an example of the shape data of the surrounding entities 30, 31, 32 measured by the shape measuring unit 10.
  • the distance to the entity in the irradiation direction can be measured by measuring the time until the laser beam is reflected and returned.
  • the shape measuring unit 10 can repeatedly irradiate laser light in all directions and measure the distance to the entire surrounding objects. As a measurement result, one point on the surface of the surrounding object can be measured for each irradiation of the laser. By repeating this, the surrounding shape can be measured as a point cloud.
  • a point group 34 is obtained as the measurement result of the existence object 30
  • a point group 35 is obtained as the measurement result of the existence object 31
  • a point group 36 is obtained as the measurement result of the existence object 32.
  • FIG. 5 is a diagram showing an example of dividing shape data by the dividing unit 20.
  • the dividing unit 20 divides the shape data measured by the shape measuring unit 10 into different entities. For example, a clustering method such as Euclidean clustering or spectral clustering may be used to divide the points when the distance between the point groups is long. Specifically, the dividing unit 20 divides the shape data (point group) 11 into point groups 34, 35, and 36 to generate clusters 40, 41, and 42.
  • a clustering method such as Euclidean clustering or spectral clustering may be used to divide the points when the distance between the point groups is long.
  • the dividing unit 20 divides the shape data (point group) 11 into point groups 34, 35, and 36 to generate clusters 40, 41, and 42.
  • FIG. 6 is a flowchart of normal recognition processing of the shape data 11 (or each divided shape data 21) by the normal recognition unit 12.
  • the normal line recognition unit 12 executes a plane extraction process for extracting a plane having the maximum size from the shape data (point group) 11 (S500).
  • a plane can be extracted using the Hough transform, but any method other than the Hough transform may be used as long as it is a method for extracting a plane.
  • a method of extracting a plurality of planes at a time may be used instead of a method of extracting planes in descending order.
  • the normal line recognition unit 12 executes a data division process that divides the extracted plane data 502 and the remaining data 505 of other parts (S501).
  • Data addition processing for adding the extracted plane data 502 to the normal information 22 is executed (S503).
  • the plane data 502 is a combination of the size of the surface and the direction of the normal, and is stored in the normal information 22.
  • step S506 If the data amount of the remaining data 505 other than the plane data 502 is smaller than the predetermined threshold (YES in step S506), the process is terminated. On the other hand, when the data amount of the remaining data 505 is equal to or larger than the predetermined threshold (NO in step S506), the process returns to step S500, and the plane extraction process is repeatedly executed.
  • FIG. 7 is a diagram illustrating an example of a result of the normal line recognition unit 12 recognizing the normal line.
  • FIG. 7A only one surface is extracted from the point group 34, and one normal 60 is recognized corresponding to the extracted surface. Further, as shown in FIG. 7B, two front and upper surfaces are extracted from the point group 35, and normals 61 and 62 are recognized corresponding to the extracted surfaces. Yes. As shown in FIG. 7C, three surfaces are extracted from the point group 35, and normals 63, 64, and 65 corresponding to the extracted surfaces are recognized.
  • FIG. 8 is a diagram illustrating an example of the coordinate system information 15 calculated by the coordinate system calculation unit 14.
  • the coordinate system calculation unit 14 determines coordinate axes based on the normal lines recognized by the normal line recognition unit 12, but the number of recognized normal lines may be less than the number of necessary coordinate axes. Therefore, the coordinate system calculation unit 14 of the present embodiment will be described in the case where there are three, two, and one recognized normal.
  • the coordinates of the coordinate axes are 70, 71 and 72 with the direction of each normal as the direction of the coordinate axes. Calculate the system. If the axes are orthogonal, the coordinate system is an orthogonal coordinate system. On the other hand, if the axes are not orthogonal, the coordinate system is a non-orthogonal coordinate system.
  • the direction 75 is calculated by the outer product of the recognized normal line 73 and the normal line 74.
  • three directions are defined, and a normal system 73 and 74 and a direction 75 constitute a coordinate system.
  • the restoration target is an artifact, in many cases, the upper surface is a horizontal plane, and therefore, the vertical upward direction may be designated.
  • the second coordinate axis direction 77 may be automatically designated by the coordinate system calculation unit 14, or the operator may be prompted to input one coordinate axis, and the direction designated by the operator may be used as the coordinate axis.
  • the third coordinate axis is calculated as a direction 78 by the outer product of the normal 76 and the direction 77 and is used as the coordinate axis.
  • three directions are defined, and the normal system 76 and the directions 77 and 78 constitute a coordinate system.
  • normals if more than 4 normals are recognized, reduce the number of normals until it reaches 3. For example, one of normals in the same direction (for example, a surface having a large extracted plane area) is selected. In addition, three normals may be extracted in descending order of the area of the extracted plane.
  • FIG. 9 is a diagram illustrating an example of determining the partial shape by the partial shape determining unit 16.
  • the partial shape determination unit 16 creates planes (planes with the respective coordinate axes as normals) 80, 81, 82 orthogonal to the coordinate axes 70, 71, 72 calculated by the coordinate system calculation unit 14, and the created planes A partial shape 83 of an area surrounded by 80, 81, 82 is created.
  • the surface on the opposite side of each surface in the partial shape 83 may be the same surface as the front surface
  • the back surface of the surface 80 is the same surface as the surface 80
  • the back surface of the surface 81 is the same direction as the surface 81.
  • the back surface of the surface 82 and the back surface of the surface 82 generate a surface in the same direction as the surface 82.
  • the length of each side of the partial shape 83 is the length set by the operator. For example, the operator may set the length from the approximate accuracy of the restored shape.
  • the partial shape 83 is arranged so as to include the measurement points (points included in the position data), a length corresponding to the measurement density of the measurement points may be set.
  • the partial shape determination procedure will be described in detail with reference to FIGS. 10 and 11.
  • FIG. 10 is a diagram illustrating a calculation example of the surface arrangement direction and the partial shape arrangement direction by the partial shape determination unit 16.
  • the partial shape determination unit 16 determines the arrangement direction of the surface corresponding to each coordinate axis by calculating the direction orthogonal to the other coordinate axes. For example, as shown in FIG. 10A, the surface created for the coordinate axis 70 is the surface 80 as described in FIG. This surface is arranged in the direction 90 to determine the partial shape.
  • the direction 90 can be calculated by a direction orthogonal to the other coordinate axes (the coordinate axes 71 and 72) (the direction in which the inner product is zero in a two-dimensional space and the direction obtained by outer product calculation in a three-dimensional space).
  • the arrangement direction 91 of the surface 81 is obtained by calculating the outer product of the coordinate axis 70 and the coordinate axis 72 (FIG. 10B).
  • the arrangement direction 92 of the surface 82 is obtained by calculating the outer product of the coordinate axis 70 and the coordinate axis 71 (FIG. 10C).
  • FIG. 11 is a diagram illustrating creation of a partial shape by the partial shape determination unit 16.
  • the partial shape determination unit 16 creates a partial shape from the surfaces constituting the partial shape and the arrangement direction corresponding to each surface.
  • the surface 80 created for the coordinate axis 70 is moved to the position of the intersection 93 of the coordinate axes to create the surface 94, and further the surface 95 is created at the position moved by the length 90L set in the direction 90.
  • the set length is the length set by the operator as described in FIG.
  • the surface 81 is moved to the position of the intersection 93 of the coordinate axes to create the surface 96, and further, the surface 97 is created at the position moved by the length 91L set in the direction 91.
  • the surface 82 is moved to the position of the intersection 93 of the coordinate axes to create the surface 98, and further, the surface 99 is created at a position moved by the length 92L set in the direction 92.
  • a partial shape 83 can be created by extracting a region surrounded by these surfaces 94, 95, 96, 97, 98 and 99.
  • FIG. 12 is a diagram showing an example of shape restoration by the shape restoration unit 18.
  • the shape restoration unit 18 stacks the partial shapes 83 created by the partial shape determination unit 16 so as to include the shape data 11.
  • the partial shape 83 may be arranged so that the measurement point is located on the front side surface of the partial shape 83, or the partial shape 83 may be arranged so that the measurement point is located inside the partial shape 83.
  • the drawing information 19 can be created without breaking the surfaces by smoothly connecting the surfaces of the adjacent partial shapes 83.
  • the created partial shapes may be stacked in the above-described surface arrangement direction. Specifically, when the length of each side of the partial shape 83 is set according to the measurement density of the measurement points, if the partial shape 83 is translated in the direction 90 to the position of the measurement points and stacked, If it is translated and stacked in the direction 91, the arrangement example 102 is obtained. If it is translated in the direction 92 and stacked, the arrangement example 103 is obtained. Thus, even if the partial shapes 83 are stacked in any plane arrangement direction, each plane is smoothly connected. By repeating this process, the shape 104 for restoring the point group 36 can be created.
  • the partial shape 83 is not arranged at the position of each measurement point, but the partial shape 83 is not arranged at the position of each measurement point, but the partial shape 83 is arranged along a predetermined grid. Good.
  • partial shape 83 may be arranged from an arbitrary position.
  • FIG. 13 is a diagram showing a shape restoration result by the shape restoration unit 18.
  • the restored shapes 110, 111, and 112 are obtained, respectively.
  • the shape can be restored without breaking the surface by stacking the partial shapes 83 in the same direction as the surface of the object to be restored. Furthermore, if the partial shape 83 is determined, the partial shape 83 is simply repeatedly arranged so as to cover the measured shape data, so that the possibility of failure in drawing creation is low.
  • the procedure shown in the present embodiment is a method of restoring the shape without breaking the surface when the front and back surfaces of each entity are parallel.
  • this aspect collapses.
  • most of the artifacts to be drawn are parallel to the front surface and the back surface, and only the surface with a small amount of measurement is broken, so that the surface is rarely broken.
  • FIG. 14 is a flowchart of processing executed by the drawing creation system of this embodiment.
  • the dividing unit 20 divides the shape data 11 composed of a plurality of parts for each part, and creates divided shape data 21 (S1200).
  • the normal line recognition unit 12 recognizes each normal line of the divided divided shape data 21 (S1201).
  • the combination of the size of the surface and the direction of the normal is stored in the normal information 22.
  • the normal can be recognized using a plane recognition method such as Hough transform.
  • the coordinate system calculation unit 14 uses the normal information 22 to calculate the coordinate system information 15 used for shape restoration (S1202). For each coordinate axis constituting the coordinate system, the normal direction stored in the normal information 13 is used. If the target space is three-dimensional, three coordinate axes are required, but if the number of recognized normals is less than three, the direction specified by the operator (for example, the surface of the surrounding shape that could not be measured) May be used as a coordinate axis. For example, when the upper surface cannot be measured, the vertical upward direction may be specified. When two or more coordinate axes are calculated, the outer product of the calculated coordinate axes may be calculated and the direction may be set as a new coordinate axis.
  • the partial shape determining unit 16 determines the shape of the partial shape (S1203). For example, a region surrounded by a set of planes orthogonal to each coordinate axis that has been created is defined as a partial shape 38.
  • the length of each side of the partial shape 38 is designated by the operator based on the approximate accuracy of the shape to be restored.
  • the length may be set according to the measurement density of the measurement points.
  • the shape restoration unit 18 arranges the partial shapes 38 so as to include the measured shape data (S1204). It is good to arrange so that adjacent surfaces may be smoothly connected so that the surfaces to be restored will not collapse. Thereafter, a set of the arranged partial shapes 38 is output as the drawing information 19.
  • the shape restoration unit 18 includes the partial shape 83 including the shape data (point group) and the surfaces of the adjacent partial shapes 83 are smooth. Since the partial shapes 83 are arranged so as to be connected, regardless of the size and orientation of the existence, the shape of the surface of the existence is not destroyed and the drawing can be created without failing to restore the shape (robustly). can do.
  • the dividing unit 20 divides the shape data 11 into divided shape data 21, the normal recognition unit 12 recognizes a normal for each divided shape data 21, and the coordinate system calculation unit 14 performs a normal for each divided shape data 21.
  • a coordinate system having one axis as one axis is calculated, and the shape restoration unit 18 arranges the partial shapes 83 using the coordinate system calculated for each divided shape data 21. Therefore, two or more surfaces having different directions are provided. Even in an environment where an object exists, a drawing can be created without breaking the shape of the surface of the object.
  • the partial shape determining unit 16 determines the length of each side of the partial shape based on an instruction from the operator, it is possible to determine the size of the partial shape according to the accuracy with which the shape is restored.
  • the partial shape determining unit 16 determines the shape of the partial shape so that the shape data is located on the surface of the partial shape 83 and the surfaces of the adjacent partial shapes are smoothly connected to each other. The accuracy of the position of the surface of the shape can be improved.
  • the shape restoration unit 18 has a partial shape in a direction orthogonal to two normals that were not used to create the surface of the partial shape 83 (a direction orthogonal in a two-dimensional space, a direction of an outer product in a three-dimensional space or more). Since 83 are arranged side by side, the restored shape can be made smooth.
  • the normal recognition unit 12 estimates normals in order from the largest plane in the shape data, it is possible to correctly calculate the coordinate system and improve the accuracy of the restored shape.
  • the normal recognition unit 12 associates the sizes and normals of a plurality of planes configured by shape data and records them in the normal information 13 and 22, and the coordinate system calculation unit 14 has a surface configured by shape data. Since the coordinate system is calculated by selecting the normal corresponding to the plane in the descending order as the coordinate axis, it is possible to correctly calculate the coordinate system and improve the accuracy of the restored shape.
  • the coordinate system calculation unit 14 determines the coordinate axis corresponding to the surface that is not configured by the shape data by calculating the outer product of two normals having different directions among the estimated normal lines. From these, three normals can be estimated.
  • the coordinate system calculation unit 14 determines the coordinate axis in the direction designated by the operator, even when only one normal is estimated from the measured point group, an appropriate normal can be determined.
  • FIG. 15 is a diagram illustrating an example of a result of the normal line recognition unit 12 recognizing the normal line in the second embodiment.
  • the normal recognition unit 12 searches for a neighboring point for each point of the measurement data, and uses a normal calculation method such as principal component analysis. A normal direction 1301 is obtained. Thereby, the normal direction can be recognized for each point.
  • FIG. 16 is a diagram illustrating an example of the coordinate system information 15 calculated by the coordinate system calculation unit 14 of the second embodiment.
  • the recognized normal is only calculated in one direction, it is necessary to add two axes. First, the outer product of the vertically upward direction and the recognized normal direction is calculated to determine one coordinate axis. Further, the outer product of the determined coordinate axis and the normal direction is calculated to determine another coordinate axis.
  • the coordinate system may be modified so that the coordinate systems of adjacent points are close to each other.
  • the coordinate system can be modified by fixing the normal vector and rotating the other two axes about the normal vector.
  • the difference in the direction of each axis is obtained by the square sum of the directions of the respective axes, and the closeness of the coordinate system is calculated.
  • the rotation amount of the coordinate axes is obtained by an optimization method such as the steepest descent method, and the coordinate axes are corrected so as to minimize the sum of squares in the direction of each axis. As a result, adjacent coordinate systems become closer.
  • FIG. 17 is a diagram illustrating an example of calculation of a partial shape by the partial shape determination unit 16 of the second embodiment.
  • the orientation of the surface is determined for each position of the entity.
  • the direction of the surface is determined as a surface having the coordinate axis direction as a normal line.
  • the front and back surfaces of the partial shape are determined non-parallel to match the coordinate system.
  • the point cloud is not measured and the coordinate system is unknown, it may be determined as a plane parallel to the opposite plane.
  • the portion where the basic partial shape 38 overlaps the adjacent partial shape may be deleted so that the surfaces of the adjacent partial shapes 83 are smoothly connected to each other.
  • the surface of the partial shape 83 located outside the shape to be restored may be smoothly connected, and the surface of the partial shape 83 located inside the shape to be restored is an unknown surface and its position is determined. It does not have to be.
  • the size of the partial shape is determined so that the surface of the partial shape matches the position of the point cloud. For example, in FIG. 17, when the point group 1502 is measured, the left side of the partial shape 1501 is matched with the position of the point group. When two or more point groups are measured on the surface of one partial shape, an average of the two or more point groups is used. Also in this embodiment, as shown in FIG. 9, the operator may determine the length of each side of the partial shape.
  • FIG. 18 is a diagram illustrating an arrangement example of the partial shapes 17 by the shape restoration unit 18 of the second embodiment.
  • the arrangement direction of the partial shape is also different for each position.
  • the arrangement direction of the partial shape is determined using the coordinate system at the position of each surface of the partial shape, and the partial shapes are sequentially added. For example, as shown in FIG. When the shape in the range 1600 is restored, first, the partial shape arrangement direction on the right side 1602 surface of the leftmost partial shape 1601 in the range 1600 is a direction 1603. Therefore, a partial shape 1604 is created and added in the direction of the direction 1603. Similarly, by adding a new partial shape 1607 in the direction 1606 from the surface 1605 and further adding partial shapes 1608 and 1609 in order, the shape of the point group in the range 1600 can be restored.
  • this process is repeated to generate a restored shape 1700 in which all the shape data 1300 is restored.
  • the coordinate system calculation unit 14 calculates a coordinate system for each of a plurality of positions of the shape data 1300, and information on the position and the calculated coordinate system Information is recorded in the coordinate system information 15 and 23 in association with the information, and the shape restoration unit 18 arranges partial shapes using the coordinate system calculated for each position. For this reason, it is possible to restore the shape of an arbitrarily-shaped entity (including a curved surface or a surface whose back and front are not parallel).
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Abstract

This drawing preparation system, which prepares a shape drawing from the results of a measuring unit measuring the surroundings, is provided with: a normal line recognition unit which estimates the normal line of a plane configured by shape data measured by the measurement unit; a coordinate system calculation unit which calculates a coordinate system in having a coordinate axis in direction of the aforementioned normal line; a partial shape determination unit which sets, as partial shapes, shapes surrounded by planes orthogonal to the aforementioned coordinate axis of the coordinate system; and a shape reconstruction unit which arranges a plurality of the aforementioned partial shapes such that the partial shapes encompass the points representing the shape data and such that planes of adjacent partial shapes are smoothly connected to each other.

Description

図面作成システム及び図面作成方法Drawing creation system and drawing creation method
 本発明は、形状計測センサが計測した形状データから図面を作成するためのシステム及び方法に関する。 The present invention relates to a system and method for creating a drawing from shape data measured by a shape measurement sensor.
 空間の形状を記録するための一つの手段として、周囲の存在物までの距離を測ることによって存在物の三次元的な形状を計測できる形状計測センサがある。形状計測センサを用いると、手計りに比べ迅速かつ高精度に空間全体の形状を取得でき、また人の手が届かない高所や危険な場所を離れた地点から非破壊で形状を計測できる。 As one means for recording the shape of the space, there is a shape measurement sensor that can measure the three-dimensional shape of an entity by measuring the distance to the surrounding entity. Using the shape measurement sensor, the shape of the entire space can be acquired more quickly and with higher accuracy than by hand measurement, and the shape can be measured non-destructively from a place away from a high place or a dangerous place where human hands cannot reach.
 本技術の背景技術として、特開2005-43248号公報(特許文献1)、国際公開2011/070927号公報(特許文献2)、特開2014-089104号公報(特許文献3)がある。特許文献1(特開2005-43248号公報)には、非対称の3次元形状のマーカーを被測定物の測定箇所に取り付け、被測定物の部分領域を形状測定器によりマーカーと共に光学的に3次元測定して測定値を得て、その後、形状測定器を移動して、マーカーを含む被測定物の他の測定箇所の部分領域を光学的に3次元測定して測定値を得る。そして、測定値から、マーカーを認識すると共に、マーカーの位置・姿勢を算出して、マーカーに基づいて座標変換係数を算出し、測定値を同一座標系に変換して、被測定物の外形形状を測定する3次元形状測定方法が記載されている。 As background arts of this technology, there are JP-A-2005-43248 (Patent Document 1), International Publication No. 2011/070927 (Patent Document 2), and JP-A-2014-089104 (Patent Document 3). In Patent Document 1 (Japanese Patent Laid-Open No. 2005-43248), an asymmetrical three-dimensional marker is attached to a measurement location of an object to be measured, and a partial region of the object to be measured is optically three-dimensional with a marker using a shape measuring instrument. A measurement value is obtained by measurement, and then the shape measuring device is moved, and a partial region of another measurement location including the marker is optically measured three-dimensionally to obtain the measurement value. Then, while recognizing the marker from the measured value, calculating the position / orientation of the marker, calculating a coordinate conversion coefficient based on the marker, converting the measured value to the same coordinate system, and measuring the outer shape of the object to be measured A three-dimensional shape measuring method for measuring is described.
 また、特許文献2(国際公開2011/070927号公報)には、測定対象物の点群データから非面領域の点を除去する非面除去部と、非面除去部によって除去された点以外の点に対して、同一面上の点に同一ラベルを付与する面ラベリング部と、面ラベリング部によって区分けされた面同士の交線および面を凸状に包む凸包線の少なくとも一に基づき三次元エッジを抽出する三次元エッジ抽出部と、面ラベリング部によって区分けされた面内から二次元エッジを抽出する二次元エッジ抽出部と、三次元エッジと二次元エッジを統合するエッジ統合部とを備える点群データ処理装置1が記載されている。 Patent Document 2 (International Publication 2011/070927) discloses a non-surface removal unit that removes points in a non-surface region from point cloud data of a measurement object, and points other than points removed by the non-surface removal unit. 3D based on at least one of the surface labeling part that gives the same label to the point on the same surface, the intersection line between the surfaces divided by the surface labeling part, and the convex hull that wraps the surface in a convex shape A three-dimensional edge extracting unit for extracting an edge; a two-dimensional edge extracting unit for extracting a two-dimensional edge from the plane divided by the surface labeling unit; and an edge integrating unit for integrating the three-dimensional edge and the two-dimensional edge. A point cloud data processing apparatus 1 is described.
 また、特許文献3(特開2014-89104号公報)には、レーザ測定手段がレーザ発射点から測定対象の表面上の照射点までの距離を測定し、3次元座標を算定した3次元点群データを取得する3次元点群取得手段と、体積推定対象の物体が存在しない状態を測定対象として取得した3次元点群データである背景データと体積推定対象の物体が存在する状態を測定対象として複数の地点から取得した3次元点群データである複数の前景データを記憶するデータ記憶手段と、複数の前景データのそれぞれと背景データから体積推定対象の物体について複数の物体ボクセルデータを生成するボクセルデータ生成手段と、複数の物体ボクセルデータに共通する部分として抽出した共通部ボクセルデータの体積を体積推定対象の物体の体積として出力する体積計算手段とを備える体積推定装置が記載されている。 Patent Document 3 (Japanese Patent Laid-Open No. 2014-89104) discloses a three-dimensional point group in which a laser measuring unit measures a distance from a laser emission point to an irradiation point on a surface to be measured and calculates a three-dimensional coordinate. 3D point cloud acquisition means for acquiring data, and 3D point cloud data acquired as a measurement target when there is no volume estimation target object and a state where a volume estimation target object exists as a measurement target Data storage means for storing a plurality of foreground data, which are three-dimensional point cloud data acquired from a plurality of points, and a voxel for generating a plurality of object voxel data for each object for volume estimation from each of the plurality of foreground data and background data The volume of the common part voxel data extracted as a part common to the data generation means and the plurality of object voxel data is set as the volume of the object to be estimated. Volume estimating apparatus and a volume calculation means for output is described.
特開2005-43248号公報Japanese Patent Laid-Open No. 2005-43248 国際公開2011/070927号公報International Publication No. 2011/070927 特開2014-89104号公報JP 2014-89104 A
 前述した従来技術によると、特許文献1に記載されるようなレーザ光を用いた形状計測では、周囲の形状を計測点の集合(以下、点群と称する)として測定できる。そして、特許文献2に記載されるように、計測した点群から面やエッジを認識することで3次元図面を生成することができる。 According to the above-described prior art, in the shape measurement using the laser beam as described in Patent Document 1, the surrounding shape can be measured as a set of measurement points (hereinafter referred to as a point group). Then, as described in Patent Document 2, it is possible to generate a three-dimensional drawing by recognizing a surface or an edge from the measured point group.
 しかしながら、面やエッジを認識するために十分な量の計測データが必要である。このため、細かな部分までを図面化するためには、大量の計測データが必要となる。計測データ量が不十分である場合、面やエッジを認識できず、図面が作成できない場合がある。 However, a sufficient amount of measurement data is necessary for recognizing surfaces and edges. For this reason, a large amount of measurement data is required to make a detailed part into a drawing. If the amount of measurement data is insufficient, faces and edges cannot be recognized and a drawing may not be created.
 これに対し、細かな部分まで失敗せずに図面化するためには、特許文献3に開示されているように、実測した点群データを複数の小さな立方体の集合で近似することによって、図面を作成できる。しかしながら、立方体の向きと、存在物の面の向きが異なっている場合には、復元される面に段が生じ、面が崩れるという課題がある。 On the other hand, in order to make a drawing without failing to a fine part, as disclosed in Patent Document 3, the measured point cloud data is approximated by a set of a plurality of small cubes, thereby drawing the drawing. Can be created. However, when the direction of the cube and the direction of the surface of the entity are different, there is a problem that a step is generated in the restored surface and the surface is broken.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、計測部による周囲の計測結果から形状図面を作成する図面作成システムであって、前記計測部が計測した形状データによって構成される面の法線を推定する法線認識部と、前記法線の方向を一つの座標軸とする座標系を算出する座標系算出部と、前記座標系の座標軸と直交する面に囲まれる形状を部分形状とする部分形状決定部と、前記部分形状が前記形状データを表す点を包含し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、複数の前記部分形状を配置する形状復元部とを備える。 A typical example of the invention disclosed in the present application is as follows. That is, a drawing creation system for creating a shape drawing from a surrounding measurement result by a measurement unit, a normal recognition unit for estimating a normal of a surface constituted by shape data measured by the measurement unit, and the normal A coordinate system calculation unit that calculates a coordinate system with one direction as a coordinate axis, a partial shape determination unit that sets a shape surrounded by a plane orthogonal to the coordinate axis of the coordinate system, and the partial shape is the shape data And a shape restoration unit that arranges a plurality of the partial shapes so that the surfaces of the adjacent partial shapes are smoothly connected to each other.
 本発明の一形態によれば、存在物の面の形状を崩すことなく、かつ、形状復元に失敗せずに図面を作成することができる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to an embodiment of the present invention, a drawing can be created without breaking the shape of the surface of an entity and without failing to restore the shape. Problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
第1実施例の図面作成システムの概要の構成を示す図である。It is a figure which shows the structure of the outline | summary of the drawing creation system of 1st Example. 第1実施例の複数の部位から構成される形状データを処理可能な図面作成システムの概要の構成を示す図である。It is a figure which shows the structure of the outline | summary of the drawing creation system which can process the shape data comprised from the some site | part of 1st Example. 第1実施例の図面作成システムの物理的な構成を示すブロック図である。It is a block diagram which shows the physical structure of the drawing creation system of 1st Example. 第1実施例の形状計測部が計測した周囲の存在物の形状データの例を示す図である。It is a figure which shows the example of the shape data of the surrounding entity which the shape measurement part of 1st Example measured. 第1実施例の分割部による形状データの分割例を示す図である。It is a figure which shows the example of a division | segmentation of the shape data by the division part of 1st Example. 第1実施例の法線認識部による形状データの法線認識処理のフローチャートである。It is a flowchart of the normal-line recognition process of the shape data by the normal-line recognition part of 1st Example. 第1実施例の法線認識部が法線を認識した結果の例を示す図である。It is a figure which shows the example of the result as which the normal line recognition part of 1st Example recognized the normal line. 第1実施例の座標系算出部が算出した座標系情報の例を示す図である。It is a figure which shows the example of the coordinate system information which the coordinate system calculation part of 1st Example computed. 第1実施例の部分形状決定部による部分形状の決定例を示す図である。It is a figure which shows the example of determination of the partial shape by the partial shape determination part of 1st Example. 第1実施例の部分形状決定部による面配置方向及び部分形状配置方向の算出例を示す図である。It is a figure which shows the example of calculation of the surface arrangement | positioning direction and partial shape arrangement | positioning direction by the partial shape determination part of 1st Example. 第1実施例の部分形状決定部による部分形状の作成を示す図である。It is a figure which shows creation of the partial shape by the partial shape determination part of 1st Example. 第1実施例の形状復元部による形状復元例を示す図である。It is a figure which shows the example of shape restoration by the shape restoration part of 1st Example. 第1実施例の形状復元部による形状復元結果を示す図である。It is a figure which shows the shape restoration result by the shape restoration part of 1st Example. 第1実施例の本実施例の図面作成システムが実行する処理のフローチャートである。It is a flowchart of the process which the drawing preparation system of a present Example of a 1st Example performs. 第2実施例の法線認識部が法線を認識した結果の例を示す図である。It is a figure which shows the example of the result as which the normal line recognition part of 2nd Example recognized the normal line. 第2実施例の座標系算出部が算出した座標系情報の例を示す図である。It is a figure which shows the example of the coordinate system information which the coordinate system calculation part of 2nd Example calculated. 第2実施例の部分形状決定部による部分形状の算出例を示す図である。It is a figure which shows the example of calculation of the partial shape by the partial shape determination part of 2nd Example. 第2実施例の形状復元部による部分形状の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the partial shape by the shape decompression | restoration part of 2nd Example. 第2実施例の形状復元部による形状の復元を示す図である。It is a figure which shows the decompression | restoration of the shape by the shape restoration part of 2nd Example.
 以下、図面を用いて本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1実施例>
 第1実施例の図面作成システムは、存在物の表面と裏面とが平行である場合に、面を崩さずに形状を復元する。多くの人工物が存在する環境であっても、上記条件が成り立つ場合に、第1実施例の図面作成システムを利用することができる。
<First embodiment>
The drawing creation system of the first embodiment restores the shape without breaking the surface when the front surface and the back surface of the entity are parallel to each other. Even in an environment where many artifacts exist, the drawing creation system of the first embodiment can be used when the above condition is satisfied.
 図1は、本実施例の図面作成システムの概要の構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a drawing creation system of the present embodiment.
 図1に示す図面作成システムは、最小限の構成として、法線認識部12、座標系算出部14、部分形状決定部16及び形状復元部18を有する。また、図面作成システムは、形状計測部10が周囲の形状を計測した形状データ11、形状データの法線を表す法線情報13、形状復元に用いる座標系を示す座標系情報15、対象の形状を近似するために使用する部分形状17及び復元された形状を含む図面情報19を記憶装置(メモリ2、補助記憶装置3)に格納する。 1 has a normal line recognition unit 12, a coordinate system calculation unit 14, a partial shape determination unit 16 and a shape restoration unit 18 as a minimum configuration. In addition, the drawing creation system includes shape data 11 obtained by the shape measuring unit 10 measuring the surrounding shape, normal information 13 indicating the normal of the shape data, coordinate system information 15 indicating a coordinate system used for shape restoration, and a target shape. Is stored in the storage device (memory 2, auxiliary storage device 3).
 本実施例では、形状データ11の一例として、点の集合(点群)を扱うが、形状を表す(具体的には、形状が取得できてエッジや頂点の情報を含まない)データであればよい。 In the present embodiment, a set of points (point group) is handled as an example of the shape data 11, but if the data represents a shape (specifically, the shape can be acquired and does not include information on edges and vertices). Good.
 まず、法線認識部12は、形状データ上の法線を認識する。複数の法線が存在する場合、法線と面の大きさとを対にして法線情報13として記憶する。例えば、ハフ変換などの平面認識方法を用いて法線を認識することができる。 First, the normal recognition unit 12 recognizes the normal on the shape data. When there are a plurality of normals, the normal and the size of the surface are paired and stored as normal information 13. For example, the normal can be recognized using a plane recognition method such as Hough transform.
 座標系算出部14は、法線情報13を用いて形状データ11の形状復元に用いる座標系情報15を算出する。例えば、法線情報13に記憶されている法線方向を用いて、座標系を構成する各座標軸を決定する。対象空間が三次元空間である場合、3本の座標軸が必要となる。認識できた法線の数が3本未満の場合、オペレータが指定した方向を座標軸として用いてもよい。例えば、オペレータは、計測できなかった存在物の面と等しい向きを指定すればよい。具体的には、上面が計測できなかった場合は、鉛直上向きとすればよい。また、座標軸が2本以上算出されている場合、作成済みの座標軸の外積の方向を新たな座標軸としてもよい。 The coordinate system calculation unit 14 uses the normal information 13 to calculate coordinate system information 15 used for shape restoration of the shape data 11. For example, each coordinate axis constituting the coordinate system is determined using the normal direction stored in the normal information 13. When the target space is a three-dimensional space, three coordinate axes are required. If the number of recognized normals is less than 3, the direction designated by the operator may be used as the coordinate axis. For example, the operator may specify a direction equal to the surface of the entity that could not be measured. Specifically, if the upper surface cannot be measured, it may be vertically upward. When two or more coordinate axes are calculated, the direction of the outer product of the created coordinate axes may be set as a new coordinate axis.
 本実施例の図面作成システムは、小さな部分形状17を複数配置することによって対象の形状を近似する。部分形状17の形状は、部分形状決定部16が定める。その際、作成済みの各座標軸と直交する平面の集合で囲まれる領域を部分形状17に定める。部分形状17の各辺の長さは、オペレータの指定に従って定めるとよい。例えば、復元すべき形状の精度によって長さを設定すればよい。又は、本実施例では計測点を包含するように部分形状17を配置するので、計測点の計測密度に応じて長さを設定すればよい。 The drawing creation system of this embodiment approximates the target shape by arranging a plurality of small partial shapes 17. The shape of the partial shape 17 is determined by the partial shape determining unit 16. At this time, a region surrounded by a set of planes orthogonal to each coordinate axis that has been created is defined as the partial shape 17. The length of each side of the partial shape 17 may be determined according to the operator's specification. For example, the length may be set according to the accuracy of the shape to be restored. Or since the partial shape 17 is arrange | positioned so that a measurement point may be included in a present Example, what is necessary is just to set length according to the measurement density of a measurement point.
 形状復元部18は、計測した形状データ11を包含するように、部分形状17を並べる。形状復元部18は、面が崩れないように、隣り合う面が滑らかに接続されるように並べる。例えば、座標系情報15から以下の方法で算出される方向に部分形状17を積み重ねることによって、面を滑らかに接続することができる。例えば、積み重ねの方向は、部分形状17の各面について、当該面の作成に用いなかった法線群(二次元空間であれば1本の法線、三次元空間であれば2本の法線)と直交する向きとすることができる。また、面が崩れないようにするその他の方法として、新しく追加される部分形状17が既存の部分形状17の面と接続される位置に部分形状17を逐次追加してもよい。 The shape restoration unit 18 arranges the partial shapes 17 so as to include the measured shape data 11. The shape restoration unit 18 is arranged so that adjacent surfaces are smoothly connected so that the surfaces do not collapse. For example, the surfaces can be smoothly connected by stacking the partial shapes 17 in the direction calculated from the coordinate system information 15 by the following method. For example, the stacking direction is the normal group that was not used to create the surface of each partial shape 17 (one normal for a two-dimensional space, two normals for a three-dimensional space). ). As another method for preventing the surface from collapsing, the partial shape 17 may be sequentially added at a position where the newly added partial shape 17 is connected to the surface of the existing partial shape 17.
 形状復元部18は、配置した部分形状17の集合を図面情報19として出力する。 The shape restoration unit 18 outputs a set of the arranged partial shapes 17 as drawing information 19.
 図2は、複数の部位から構成される形状データ11を処理可能な図面作成システムの概要の構成を示す図である。 FIG. 2 is a diagram showing a schematic configuration of a drawing creation system capable of processing the shape data 11 composed of a plurality of parts.
 図2に示す図面作成システムは、図1に示す構成の他に、複数の部位から構成される形状データ11を部位毎に分割する分割部20を有す。また、図2に示す図面作成システムは、分割部20が生成した分割形状データ21を記憶装置(メモリ2、補助記憶装置3)に格納する。 2 has a dividing unit 20 that divides the shape data 11 composed of a plurality of parts for each part in addition to the structure shown in FIG. 2 stores the division shape data 21 generated by the division unit 20 in a storage device (memory 2, auxiliary storage device 3).
 分割された分割形状データ21は、図1に示す図面作成システムと同様に、法線認識部12、座標系算出部14、部分形状決定部16及び形状復元部18によって処理される。但し、複数の分割形状データ21を扱うため、法線情報22、座標系情報23及び部分形状24は、各分割形状データ21毎に独立して算出される。さらに、形状復元部18は、各分割形状データ毎に作成した部分形状24を統合し、図面情報19として出力する。 The divided divided shape data 21 is processed by the normal recognition unit 12, the coordinate system calculating unit 14, the partial shape determining unit 16, and the shape restoring unit 18, as in the drawing creation system shown in FIG. However, in order to handle a plurality of divided shape data 21, the normal line information 22, the coordinate system information 23, and the partial shape 24 are calculated independently for each divided shape data 21. Further, the shape restoration unit 18 integrates the partial shapes 24 created for each divided shape data, and outputs them as drawing information 19.
 図3は、第1実施例の図面作成システムの物理的な構成を示すブロック図である。 FIG. 3 is a block diagram showing a physical configuration of the drawing creation system of the first embodiment.
 本実施形態の図面作成システムは、プロセッサ(CPU)1、メモリ2、補助記憶装置3及び通信インターフェース4を有する計算機によって構成される。 The drawing creation system of this embodiment is configured by a computer having a processor (CPU) 1, a memory 2, an auxiliary storage device 3, and a communication interface 4.
 プロセッサ1は、メモリ2に格納されたプログラムを実行する。メモリ2は、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、プロセッサ1が実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 The processor 1 executes a program stored in the memory 2. The memory 2 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage element such as DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 1 and data used when the program is executed.
 補助記憶装置3は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置であり、プロセッサ1が実行するプログラム及びプログラムの実行時に使用されるデータ(例えば、地図データ)を格納する。すなわち、プログラムは、補助記憶装置3から読み出されて、メモリ2にロードされて、プロセッサ1によって実行される。 The auxiliary storage device 3 is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD), for example, and a program executed by the processor 1 and data used when the program is executed (for example, , Map data). That is, the program is read from the auxiliary storage device 3, loaded into the memory 2, and executed by the processor 1.
 図面作成システムは、入力インターフェース5及び出力インターフェース8を有してもよい。入力インターフェース5は、キーボード6やマウス7などが接続され、オペレータからの入力を受けるインターフェースである。出力インターフェース8は、ディスプレイ装置9やプリンタなどが接続され、プログラムの実行結果をオペレータが視認可能な形式で出力するインターフェースである。 The drawing creation system may have an input interface 5 and an output interface 8. The input interface 5 is an interface to which an input from an operator is received, to which a keyboard 6 and a mouse 7 are connected. The output interface 8 is an interface to which a display device 9 or a printer is connected, and the execution result of the program is output in a form that can be visually recognized by the operator.
 通信インターフェース4は、所定のプロトコルに従って、他の装置との通信を制御するネットワークインターフェース装置である。図面作成システムは、通信インターフェース4を介して端末(図示省略)と接続されてもよく、該端末から入力された指示に従って動作し、該端末に演算結果を出力してもよい。 The communication interface 4 is a network interface device that controls communication with other devices according to a predetermined protocol. The drawing creation system may be connected to a terminal (not shown) via the communication interface 4, may operate according to an instruction input from the terminal, and may output a calculation result to the terminal.
 プロセッサ1が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して図面作成システムに提供され、非一時的記憶媒体である不揮発性記憶装置3に格納される。このため、図面作成システムは、リムーバブルメディアからデータを読み込むインターフェースを有するとよい。 The program executed by the processor 1 is provided to the drawing creation system via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in the nonvolatile storage device 3 which is a non-temporary storage medium. For this reason, the drawing creation system may have an interface for reading data from a removable medium.
 図面作成システムは、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、同一の計算機上で別個のスレッドで動作してもよく、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。 A drawing creation system is a computer system that is configured on one computer or a plurality of computers that are logically or physically configured, and operates on separate threads on the same computer. Alternatively, it may operate on a virtual machine constructed on a plurality of physical computer resources.
 以下、本実施例の図面作成システムが実行する処理について、図1に示す図面作成システムを例示して説明するが、図2に示す図面作成システムは、複数の分割形状データ21の各々について同様の処理を実行することによって、実現可能である。 Hereinafter, the processing executed by the drawing creation system of the present embodiment will be described by exemplifying the drawing creation system shown in FIG. 1, but the drawing creation system shown in FIG. This can be realized by executing the process.
 図4は、形状計測部10が計測した周囲の存在物30、31、32の形状データの例を示す図である。 FIG. 4 is a diagram showing an example of the shape data of the surrounding entities 30, 31, 32 measured by the shape measuring unit 10.
 レーザ光の照射方向33に物体が存在する場合、レーザ光が反射して戻るまでの時間を計測することによって、照射方向にある存在物までの距離を計測できる。形状計測部10は、周囲全方向にレーザ光を繰り返し照射して、周囲全体の存在物までの距離を計測することができる。計測結果として、レーザ1回の照射につき、周囲の物体の表面上の1点が計測できるので、これを繰り返すことによって、周囲の形状を点群として計測できる。存在物30の計測結果として点群34、存在物31の計測結果として点群35、存在物32の計測結果として点群36が、それぞれ得られる。 When there is an object in the irradiation direction 33 of the laser beam, the distance to the entity in the irradiation direction can be measured by measuring the time until the laser beam is reflected and returned. The shape measuring unit 10 can repeatedly irradiate laser light in all directions and measure the distance to the entire surrounding objects. As a measurement result, one point on the surface of the surrounding object can be measured for each irradiation of the laser. By repeating this, the surrounding shape can be measured as a point cloud. A point group 34 is obtained as the measurement result of the existence object 30, a point group 35 is obtained as the measurement result of the existence object 31, and a point group 36 is obtained as the measurement result of the existence object 32.
 図5は、分割部20による形状データの分割例を示す図である。 FIG. 5 is a diagram showing an example of dividing shape data by the dividing unit 20.
 分割部20は、形状計測部10が計測した形状データを異なる存在物毎に分割する。例えば、ユークリッドクラスタリング、スペクトラルクラスタリングなどのクラスタリング方法を用いて、点群同士の距離が離れている場合に分割すればよい。具体的には、分割部20は、形状データ(点群)11を点群34、35、36に分割し、クラスタ40、41、42に生成する。 The dividing unit 20 divides the shape data measured by the shape measuring unit 10 into different entities. For example, a clustering method such as Euclidean clustering or spectral clustering may be used to divide the points when the distance between the point groups is long. Specifically, the dividing unit 20 divides the shape data (point group) 11 into point groups 34, 35, and 36 to generate clusters 40, 41, and 42.
 図6は、法線認識部12による形状データ11(又は、各分割形状データ21)の法線認識処理のフローチャートである。 FIG. 6 is a flowchart of normal recognition processing of the shape data 11 (or each divided shape data 21) by the normal recognition unit 12.
 まず、法線認識部12は、形状データ(点群)11から最大の大きさの平面を抽出する平面抽出処理を実行する(S500)。例えば、ハフ変換を用いて平面を抽出することができるが、平面を抽出する方法であればハフ変換以外の方法を用いてもよい。また、平面を大きな順に抽出する方法でなく、一度に複数の平面を抽出する方法を用いてもよい。 First, the normal line recognition unit 12 executes a plane extraction process for extracting a plane having the maximum size from the shape data (point group) 11 (S500). For example, a plane can be extracted using the Hough transform, but any method other than the Hough transform may be used as long as it is a method for extracting a plane. In addition, a method of extracting a plurality of planes at a time may be used instead of a method of extracting planes in descending order.
 次に、法線認識部12は、抽出した平面データ502と、それ以外の部分の残りデータ505を分けるデータ分割処理を実行する(S501)。抽出された平面データ502を法線情報22に追加するデータ追加処理を実行する(S503)。複数の法線が存在する場合、平面データ502は、面の大きさと法線の方向との組み合わせであり、法線情報22に記憶される。 Next, the normal line recognition unit 12 executes a data division process that divides the extracted plane data 502 and the remaining data 505 of other parts (S501). Data addition processing for adding the extracted plane data 502 to the normal information 22 is executed (S503). When there are a plurality of normals, the plane data 502 is a combination of the size of the surface and the direction of the normal, and is stored in the normal information 22.
 平面データ502以外の残りデータ505のデータ量が所定の閾値より少ない場合(ステップS506でYES)、処理を終了する。一方、残りデータ505のデータ量が所定の閾値以上である場合(ステップS506でNO)、ステップS500に戻り、平面抽出処理を繰り返し実行する。 If the data amount of the remaining data 505 other than the plane data 502 is smaller than the predetermined threshold (YES in step S506), the process is terminated. On the other hand, when the data amount of the remaining data 505 is equal to or larger than the predetermined threshold (NO in step S506), the process returns to step S500, and the plane extraction process is repeatedly executed.
 図7は、法線認識部12が法線を認識した結果の例を示す図である。 FIG. 7 is a diagram illustrating an example of a result of the normal line recognition unit 12 recognizing the normal line.
 図7(A)に示すように、点群34からは一つの面のみが抽出されており、抽出された面に対応して1本の法線60が認識されている。また、図7(B)に示すように、点群35からは、手前方向と上方向の2面が抽出されており、抽出された各面に対応して法線61及び62が認識されている。また、図7(C)に示すように、点群35からは3面が抽出されており抽出された各面に対応する法線63、64及び65が認識されている。 As shown in FIG. 7A, only one surface is extracted from the point group 34, and one normal 60 is recognized corresponding to the extracted surface. Further, as shown in FIG. 7B, two front and upper surfaces are extracted from the point group 35, and normals 61 and 62 are recognized corresponding to the extracted surfaces. Yes. As shown in FIG. 7C, three surfaces are extracted from the point group 35, and normals 63, 64, and 65 corresponding to the extracted surfaces are recognized.
 図8は、座標系算出部14が算出した座標系情報15の例を示す図である。 FIG. 8 is a diagram illustrating an example of the coordinate system information 15 calculated by the coordinate system calculation unit 14.
 三次元空間において、座標系を構成するためには3本の座標軸が必要である。座標系算出部14は、法線認識部12が認識した法線に基づいて座標軸を決定するが、認識された法線の数が必要な座標軸の数に満たない場合がある。そこで、本実施例の座標系算出部14は、認識済みの法線が3本、2本、1本の場合について説明する。 In a three-dimensional space, three coordinate axes are required to construct a coordinate system. The coordinate system calculation unit 14 determines coordinate axes based on the normal lines recognized by the normal line recognition unit 12, but the number of recognized normal lines may be less than the number of necessary coordinate axes. Therefore, the coordinate system calculation unit 14 of the present embodiment will be described in the case where there are three, two, and one recognized normal.
 図8(C)に示すように、点群36からは3本の法線が認識されているため、各法線の方向を座標軸の方向とし、座標軸70、71及び72からから構成される座標系を算出する。各軸が直交すれば、座標系は直交座標系となる。一方、各軸が直交しなければ、座標系は非直交座標系となる。 As shown in FIG. 8C, since three normals are recognized from the point group 36, the coordinates of the coordinate axes are 70, 71 and 72 with the direction of each normal as the direction of the coordinate axes. Calculate the system. If the axes are orthogonal, the coordinate system is an orthogonal coordinate system. On the other hand, if the axes are not orthogonal, the coordinate system is a non-orthogonal coordinate system.
 図8(B)に示すように、点群35からは2本の法線が認識されており、座標系を構成するためにはさらに1本の座標軸が必要となる。そこで、認識済み法線73と法線74との外積によって方向75を算出する。これにより三つの方向を定め、法線73、74及び方向75によって座標系を構成する。 As shown in FIG. 8 (B), two normals are recognized from the point group 35, and one more coordinate axis is required to construct a coordinate system. Therefore, the direction 75 is calculated by the outer product of the recognized normal line 73 and the normal line 74. As a result, three directions are defined, and a normal system 73 and 74 and a direction 75 constitute a coordinate system.
 図8(A)に示すように、点群34からは1本の法線が認識されており、座標系を構成するためにはさらに2本の座標軸が必要となる。そこで、鉛直上向きを指定すればよい。これは、復元対象が人工物であれば、多くの場合、上面は水平面であるため、鉛直上向きを指定すればよい。なお、法線認識部12が抽出した平面のエッジの方向を指定してもよい。2本目の座標軸方向77は、座標系算出部14が自動的に指定してもよく、オペレータに1本の座標軸の入力を促し、オペレータが指定した方向を座標軸としてもよい。さらに、3本目の座標軸は法線76と方向77との外積によって方向78を算出し座標軸とする。これにより三つの方向を定め、法線76及び方向77、78によって座標系を構成する。 As shown in FIG. 8 (A), one normal is recognized from the point group 34, and two additional coordinate axes are required to construct the coordinate system. Therefore, it suffices to specify the vertically upward direction. If the restoration target is an artifact, in many cases, the upper surface is a horizontal plane, and therefore, the vertical upward direction may be designated. Note that the direction of the edge of the plane extracted by the normal line recognition unit 12 may be specified. The second coordinate axis direction 77 may be automatically designated by the coordinate system calculation unit 14, or the operator may be prompted to input one coordinate axis, and the direction designated by the operator may be used as the coordinate axis. Further, the third coordinate axis is calculated as a direction 78 by the outer product of the normal 76 and the direction 77 and is used as the coordinate axis. As a result, three directions are defined, and the normal system 76 and the directions 77 and 78 constitute a coordinate system.
 また、4本以上の法線が認識されている場合、法線の数が3本になるまで減らす。例えば、同じ方向の法線の一方(例えば、抽出された平面の面積が大きい面)を選択する。また、抽出された平面の面積が大きい順に3本の法線を抽出してもよい。 Also, if more than 4 normals are recognized, reduce the number of normals until it reaches 3. For example, one of normals in the same direction (for example, a surface having a large extracted plane area) is selected. In addition, three normals may be extracted in descending order of the area of the extracted plane.
 また、同じ方向(180度逆向きの法線も含む)の法線が認識されている場合、抽出された平面の面積が大きい面の法線を選択するとよい。 Also, when normals in the same direction (including normals that are 180 degrees opposite) are recognized, it is preferable to select the normals of the surface with the large extracted plane area.
 図9は、部分形状決定部16による部分形状の決定例を示す図である。 FIG. 9 is a diagram illustrating an example of determining the partial shape by the partial shape determining unit 16.
 部分形状決定部16は、座標系算出部14によって算出した座標軸70、71、72のそれぞれに直交する面(各座標軸を法線とする平面)80、81、82を作成し、作成された面80、81、82に囲まれる領域の部分形状83を作成する。なお、部分形状83における各面の反対側の面は、正面側の面と同じ面を用いればよく、面80の裏面は面80と同じ向きの面、面81の裏面は面81と同じ向きの面、面82の裏面は面82と同じ向きの面を生成する。 The partial shape determination unit 16 creates planes (planes with the respective coordinate axes as normals) 80, 81, 82 orthogonal to the coordinate axes 70, 71, 72 calculated by the coordinate system calculation unit 14, and the created planes A partial shape 83 of an area surrounded by 80, 81, 82 is created. In addition, the surface on the opposite side of each surface in the partial shape 83 may be the same surface as the front surface, the back surface of the surface 80 is the same surface as the surface 80, and the back surface of the surface 81 is the same direction as the surface 81. The back surface of the surface 82 and the back surface of the surface 82 generate a surface in the same direction as the surface 82.
 部分形状83の各辺の長さは、オペレータが設定した長さとする。例えば、オペレータは、復元形状の近似精度から長さを設定すればよい。また、本実施例では、計測点(位置データに含まれる点)を包含するように部分形状83を配置するので、計測点の計測密度に応じた長さを設定してもよい。以下、図10及び図11を用いて部分形状決定手順を詳細に説明する。 The length of each side of the partial shape 83 is the length set by the operator. For example, the operator may set the length from the approximate accuracy of the restored shape. In this embodiment, since the partial shape 83 is arranged so as to include the measurement points (points included in the position data), a length corresponding to the measurement density of the measurement points may be set. Hereinafter, the partial shape determination procedure will be described in detail with reference to FIGS. 10 and 11.
 図10は、部分形状決定部16による面配置方向及び部分形状配置方向の算出例を示す図である。 FIG. 10 is a diagram illustrating a calculation example of the surface arrangement direction and the partial shape arrangement direction by the partial shape determination unit 16.
 部分形状決定部16は、各座標軸に対応する面の配置方向を、他の座標軸と直交する方向を計算して定める。例えば、図10(A)に示すように、座標軸70について作成される面は図9で説明したように面80となる。この面を方向90に配置して部分形状を決定する。方向90は、その他の座標軸(座標軸71と座標軸72)と直交する方向(二次元空間であれば内積がゼロになる方向、三次元空間であれば外積計算によって求まる向き)によって計算できる。座標軸71についても同様に、面81の配置方向91は座標軸70と座標軸72との外積計算によって求まる(図10(B))。座標軸72についても同様に、面82の配置方向92は座標軸70と座標軸71との外積計算によって求まる(図10(C))。 The partial shape determination unit 16 determines the arrangement direction of the surface corresponding to each coordinate axis by calculating the direction orthogonal to the other coordinate axes. For example, as shown in FIG. 10A, the surface created for the coordinate axis 70 is the surface 80 as described in FIG. This surface is arranged in the direction 90 to determine the partial shape. The direction 90 can be calculated by a direction orthogonal to the other coordinate axes (the coordinate axes 71 and 72) (the direction in which the inner product is zero in a two-dimensional space and the direction obtained by outer product calculation in a three-dimensional space). Similarly, for the coordinate axis 71, the arrangement direction 91 of the surface 81 is obtained by calculating the outer product of the coordinate axis 70 and the coordinate axis 72 (FIG. 10B). Similarly, with respect to the coordinate axis 72, the arrangement direction 92 of the surface 82 is obtained by calculating the outer product of the coordinate axis 70 and the coordinate axis 71 (FIG. 10C).
 図11は、部分形状決定部16による部分形状の作成を示す図である。 FIG. 11 is a diagram illustrating creation of a partial shape by the partial shape determination unit 16.
 図11を参照して、部分形状決定部16が部分形状を構成する面及び各面に対応する配置方向から部分形状を作成する方法を説明する。座標軸70について作成される面80を座標軸の交点93の位置に移動して面94を作成し、さらに、方向90に設定された長さ90Lだけ移動した位置に面95を作成する。設定された長さは図9において説明したように、オペレータが設定した長さである。 Referring to FIG. 11, a method in which the partial shape determination unit 16 creates a partial shape from the surfaces constituting the partial shape and the arrangement direction corresponding to each surface will be described. The surface 80 created for the coordinate axis 70 is moved to the position of the intersection 93 of the coordinate axes to create the surface 94, and further the surface 95 is created at the position moved by the length 90L set in the direction 90. The set length is the length set by the operator as described in FIG.
 同様に、座標軸71についても、面81を座標軸の交点93の位置に移動して面96を作成し、さらに、方向91に設定された長さ91Lだけ移動した位置に面97を作成する。さらに、座標軸71についても同様に、面82を座標軸の交点93の位置に移動して面98を作成し、さらに、方向92に設定された長さ92Lだけ移動した位置に面99を作成する。 Similarly, also with respect to the coordinate axis 71, the surface 81 is moved to the position of the intersection 93 of the coordinate axes to create the surface 96, and further, the surface 97 is created at the position moved by the length 91L set in the direction 91. Further, similarly for the coordinate axis 71, the surface 82 is moved to the position of the intersection 93 of the coordinate axes to create the surface 98, and further, the surface 99 is created at a position moved by the length 92L set in the direction 92.
 これらの面94、95、96、97、98及び99によって囲まれる領域を抽出することによって部分形状83を作成できる。 A partial shape 83 can be created by extracting a region surrounded by these surfaces 94, 95, 96, 97, 98 and 99.
 図12は、形状復元部18による形状復元例を示す図である。 FIG. 12 is a diagram showing an example of shape restoration by the shape restoration unit 18.
 形状復元部18は、形状データ11を包含するように部分形状決定部16で作成した部分形状83を積み重ねる。例えば、部分形状83の表側の面上に計測点が位置するように部分形状83を配置してもよく、部分形状83の内部に計測点が位置するように部分形状83を配置してもよい。この際、隣り合う部分形状83の面同士が滑らかに接続されるようにすることで、面を崩さずに図面情報19を作成できる。 The shape restoration unit 18 stacks the partial shapes 83 created by the partial shape determination unit 16 so as to include the shape data 11. For example, the partial shape 83 may be arranged so that the measurement point is located on the front side surface of the partial shape 83, or the partial shape 83 may be arranged so that the measurement point is located inside the partial shape 83. . At this time, the drawing information 19 can be created without breaking the surfaces by smoothly connecting the surfaces of the adjacent partial shapes 83.
 部分形状83の面同士を滑らかに接続する部分形状83の積み重ね方を説明する。面同士を接続するためには、作成した部分形状を前述した面配置方向に積み重ねればよい。具体的には、部分形状83の各辺の長さを計測点の計測密度に応じて設定した場合、部分形状83を方向90に計測点の位置まで平行移動させて積み重ねれば配置例101のようになり、方向91に平行移動させて積み重ねれば配置例102のようになり、方向92に平行移動させて積み重ねれば配置例103のようになる。このように、いずれの面配置方向に部分形状83を積み重ねても、各面が滑らかに接続される。この処理を繰り返すことによって、点群36を復元する形状104を作成できる。 A method of stacking the partial shapes 83 that smoothly connect the surfaces of the partial shapes 83 will be described. In order to connect the surfaces, the created partial shapes may be stacked in the above-described surface arrangement direction. Specifically, when the length of each side of the partial shape 83 is set according to the measurement density of the measurement points, if the partial shape 83 is translated in the direction 90 to the position of the measurement points and stacked, If it is translated and stacked in the direction 91, the arrangement example 102 is obtained. If it is translated in the direction 92 and stacked, the arrangement example 103 is obtained. Thus, even if the partial shapes 83 are stacked in any plane arrangement direction, each plane is smoothly connected. By repeating this process, the shape 104 for restoring the point group 36 can be created.
 また、部分形状83を各計測点の位置に配置するのではなく、部分形状83を各計測点の位置に配置するのではなく、予め定められたグリッドに沿って部分形状83を配置してもよい。 Also, the partial shape 83 is not arranged at the position of each measurement point, but the partial shape 83 is not arranged at the position of each measurement point, but the partial shape 83 is arranged along a predetermined grid. Good.
 また、部分形状83は、任意の位置から配置すればよい。 Further, the partial shape 83 may be arranged from an arbitrary position.
 図13は、形状復元部18による形状復元結果を示す図である。 FIG. 13 is a diagram showing a shape restoration result by the shape restoration unit 18.
 存在物30、31、32を独立して形状を復元することによって、それぞれ、復元形状110、111、112となる。本実施例によれば、復元対象の存在物の面と同一の方向の部分形状83を積み重ねることによって、面を崩さずに形状を復元できる。さらに、部分形状83が決まれば、計測された形状データを覆うように部分形状83を繰り返し配置するだけであるため、図面作成に失敗する可能性が低い。 By restoring the shapes of the existences 30, 31, and 32 independently, the restored shapes 110, 111, and 112 are obtained, respectively. According to the present embodiment, the shape can be restored without breaking the surface by stacking the partial shapes 83 in the same direction as the surface of the object to be restored. Furthermore, if the partial shape 83 is determined, the partial shape 83 is simply repeatedly arranged so as to cover the measured shape data, so that the possibility of failure in drawing creation is low.
 なお、本実施例で示す手順は、各存在物の表面と裏面が平行である場合に面を崩さずに形状復元する方法であり、存在物32のように上面と下面が平行でない場合、どちらかの面が崩れる問題がある。しかし、図面化対象の人工物の多くは表面と裏面が平行であり、かつ、計測量が少ない面だけが崩れるので、面の崩れは発生する場合は少ない。 In addition, the procedure shown in the present embodiment is a method of restoring the shape without breaking the surface when the front and back surfaces of each entity are parallel. There is a problem that this aspect collapses. However, most of the artifacts to be drawn are parallel to the front surface and the back surface, and only the surface with a small amount of measurement is broken, so that the surface is rarely broken.
 図14は、本実施例の図面作成システムが実行する処理のフローチャートである。 FIG. 14 is a flowchart of processing executed by the drawing creation system of this embodiment.
 まず、分割部20が、複数の部位から構成される形状データ11を部位毎に分割し、分割形状データ21を作成する(S1200)。法線認識部12は、分割後の分割形状データ21の各々法線を認識する(S1201)。複数の法線が存在する場合、面の大きさと法線の方向との組み合わせが法線情報22に記憶される。例えば、ハフ変換などの平面認識方法を用いて、法線を認識することができる。 First, the dividing unit 20 divides the shape data 11 composed of a plurality of parts for each part, and creates divided shape data 21 (S1200). The normal line recognition unit 12 recognizes each normal line of the divided divided shape data 21 (S1201). When there are a plurality of normals, the combination of the size of the surface and the direction of the normal is stored in the normal information 22. For example, the normal can be recognized using a plane recognition method such as Hough transform.
 次に、座標系算出部14は、法線情報22を用いて形状の復元に用いる座標系情報15を算出する(S1202)。座標系を構成する各座標軸は、法線情報13に記憶されている法線方向を用いる。対象空間が三次元である場合、3本の座標軸が必要となるが、認識された法線の数が3本未満である場合、オペレータが指定した方向(例えば、計測できなかった周囲形状の面の向き)を座標軸として用いてもよい。例えば、上面が計測できなかった場合、鉛直上向きを指定すればよい。また、座標軸が2本以上算出されている場合は、算出済みの座標軸の外積を算出し、その方向を新たな座標軸としてもよい。 Next, the coordinate system calculation unit 14 uses the normal information 22 to calculate the coordinate system information 15 used for shape restoration (S1202). For each coordinate axis constituting the coordinate system, the normal direction stored in the normal information 13 is used. If the target space is three-dimensional, three coordinate axes are required, but if the number of recognized normals is less than three, the direction specified by the operator (for example, the surface of the surrounding shape that could not be measured) May be used as a coordinate axis. For example, when the upper surface cannot be measured, the vertical upward direction may be specified. When two or more coordinate axes are calculated, the outer product of the calculated coordinate axes may be calculated and the direction may be set as a new coordinate axis.
 次に、部分形状決定部16は、部分形状の形状を決定する(S1203)。例えば、作成済みの各座標軸と直交する平面の集合で囲まれる領域を部分形状38とする。部分形状38の各辺の長さは、復元される形状の近似精度に基づいて、オペレータが指定する。又は、本実施例では、計測点を包含するように部分形状38を配置するので、計測点の計測密度に応じた長さとしてもよい。 Next, the partial shape determining unit 16 determines the shape of the partial shape (S1203). For example, a region surrounded by a set of planes orthogonal to each coordinate axis that has been created is defined as a partial shape 38. The length of each side of the partial shape 38 is designated by the operator based on the approximate accuracy of the shape to be restored. Alternatively, in the present embodiment, since the partial shape 38 is arranged so as to include the measurement points, the length may be set according to the measurement density of the measurement points.
 次に、形状復元部18では、計測された形状データを包含するように、部分形状38を並べる(S1204)。復元する面が崩れないように、隣り合う面同士が滑らかに接続されるように並べるとよい。その後、配置した部分形状38の集合を図面情報19として出力する。 Next, the shape restoration unit 18 arranges the partial shapes 38 so as to include the measured shape data (S1204). It is good to arrange so that adjacent surfaces may be smoothly connected so that the surfaces to be restored will not collapse. Thereafter, a set of the arranged partial shapes 38 is output as the drawing information 19.
 以上に説明したように、本発明の第1実施例によると、形状復元部18が、部分形状83が形状データ(点群)を包含し、かつ、隣接する部分形状83の面同士が滑らかに接続されるように部分形状83を配置するので、存在物の大きさや向きにかかわらず、存在物の面の形状を崩すことなく、かつ、形状復元に失敗せずに(ロバストに)図面を作成することができる。 As described above, according to the first embodiment of the present invention, the shape restoration unit 18 includes the partial shape 83 including the shape data (point group) and the surfaces of the adjacent partial shapes 83 are smooth. Since the partial shapes 83 are arranged so as to be connected, regardless of the size and orientation of the existence, the shape of the surface of the existence is not destroyed and the drawing can be created without failing to restore the shape (robustly). can do.
 また、分割部20が形状データ11を分割形状データ21に分割し、法線認識部12が分割形状データ21毎に法線を認識し、座標系算出部14が分割形状データ21毎に法線の方向を一つの軸とする座標系を算出し、形状復元部18が分割形状データ21毎に算出された座標系を用いて部分形状83を配置するので、異なる方向の面を有する2以上の物体が存在する環境でも、存在物の面の形状を崩すことなく図面を作成することができる。 Further, the dividing unit 20 divides the shape data 11 into divided shape data 21, the normal recognition unit 12 recognizes a normal for each divided shape data 21, and the coordinate system calculation unit 14 performs a normal for each divided shape data 21. A coordinate system having one axis as one axis is calculated, and the shape restoration unit 18 arranges the partial shapes 83 using the coordinate system calculated for each divided shape data 21. Therefore, two or more surfaces having different directions are provided. Even in an environment where an object exists, a drawing can be created without breaking the shape of the surface of the object.
 また、部分形状決定部16は、オペレータの指示に基づいて部分形状の各辺の長さを決定するので、形状が復元される精度に応じて、部分形状の大きさを決定することができる。 Also, since the partial shape determining unit 16 determines the length of each side of the partial shape based on an instruction from the operator, it is possible to determine the size of the partial shape according to the accuracy with which the shape is restored.
 また、部分形状決定部16は、形状データが部分形状83の表面に位置し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、部分形状の形状を決定するので、復元される形状の表面の位置の精度を向上することができる。 Further, the partial shape determining unit 16 determines the shape of the partial shape so that the shape data is located on the surface of the partial shape 83 and the surfaces of the adjacent partial shapes are smoothly connected to each other. The accuracy of the position of the surface of the shape can be improved.
 また、形状復元部18は、部分形状83の面の作成に利用しなかった二つの法線と直交する方向(二次元空間では直交する方向、三次元以上の空間では外積の方向)に部分形状83を並べて配置するので、復元される形状の滑らかにすることができる。 In addition, the shape restoration unit 18 has a partial shape in a direction orthogonal to two normals that were not used to create the surface of the partial shape 83 (a direction orthogonal in a two-dimensional space, a direction of an outer product in a three-dimensional space or more). Since 83 are arranged side by side, the restored shape can be made smooth.
 また、法線認識部12は、形状データのうち大きな平面から順に法線を推定するので、座標系を正しく算出して、復元される形状の精度を向上することができる。 In addition, since the normal recognition unit 12 estimates normals in order from the largest plane in the shape data, it is possible to correctly calculate the coordinate system and improve the accuracy of the restored shape.
 また、法線認識部12が形状データによって構成される複数の平面の大きさ及び法線を関連付けて法線情報13、22に記録し、座標系算出部14が形状データによって構成される面が大きい順に当該平面に対応する法線を座標軸として選ぶことによって座標系を算出するので、座標系を正しく算出して、復元される形状の精度を向上することができる。 In addition, the normal recognition unit 12 associates the sizes and normals of a plurality of planes configured by shape data and records them in the normal information 13 and 22, and the coordinate system calculation unit 14 has a surface configured by shape data. Since the coordinate system is calculated by selecting the normal corresponding to the plane in the descending order as the coordinate axis, it is possible to correctly calculate the coordinate system and improve the accuracy of the restored shape.
 また、座標系算出部14は、推定された法線のうち、方向が異なる二つの法線の外積を算出することによって、形状データによって構成されない面に対応する座標軸を定めるので、計測した点群から適切な3本の法線を推定することができる。 In addition, the coordinate system calculation unit 14 determines the coordinate axis corresponding to the surface that is not configured by the shape data by calculating the outer product of two normals having different directions among the estimated normal lines. From these, three normals can be estimated.
 また、座標系算出部14は、オペレータが指示した方向に座標軸を定めるので、計測した点群から1本のみの法線が推定された場合でも、適切な法線を決定することができる。 In addition, since the coordinate system calculation unit 14 determines the coordinate axis in the direction designated by the operator, even when only one normal is estimated from the measured point group, an appropriate normal can be determined.
 <第2実施例>
 第2実施例では、存在物の位置毎に異なる座標系を定義する図面作成システムを説明する。なお、第2実施例では、前述した第1実施例との相違点のみを説明し、同一の構成及び機能についての説明は省略する。
<Second embodiment>
In the second embodiment, a drawing creation system that defines a different coordinate system for each position of an entity will be described. In the second embodiment, only differences from the first embodiment described above will be described, and description of the same configuration and function will be omitted.
 図15は、第2実施例において、法線認識部12が法線を認識した結果の例を示す図である。 FIG. 15 is a diagram illustrating an example of a result of the normal line recognition unit 12 recognizing the normal line in the second embodiment.
 第2実施例では計測データの各点毎に座標系を定義するために、法線認識部12は、計測データの各点毎に近傍点を探索し、主成分分析などの法線計算方法によって法線方向1301を求める。これにより、点毎に法線方向を認識できる。 In the second embodiment, in order to define a coordinate system for each point of the measurement data, the normal recognition unit 12 searches for a neighboring point for each point of the measurement data, and uses a normal calculation method such as principal component analysis. A normal direction 1301 is obtained. Thereby, the normal direction can be recognized for each point.
 図16は、第2実施例の座標系算出部14が算出した座標系情報15の例を示す図である。 FIG. 16 is a diagram illustrating an example of the coordinate system information 15 calculated by the coordinate system calculation unit 14 of the second embodiment.
 認識済みの法線は、1方向のみしか計算していないため、2本の軸を追加する必要がある。まず、鉛直上向き方向と認識済みの法線方向との外積を算出し、一つの座標軸を定める。さらに、定められた座標軸と法線方向との外積を算出し、もう一本の座標軸を定める。 ∙ Since the recognized normal is only calculated in one direction, it is necessary to add two axes. First, the outer product of the vertically upward direction and the recognized normal direction is calculated to determine one coordinate axis. Further, the outer product of the determined coordinate axis and the normal direction is calculated to determine another coordinate axis.
 さらに、隣り合う点同士の座標系が近くなるように座標系を修正してもよい。例えば、法線ベクトルを固定し、他の2軸を法線ベクトルを中心として回転することによって、座標系を修正することができる。また、各軸の方向の2乗和によって各軸の方向の差異を求め、座標系の近さを算出する。最急降下法などの最適化方法によって、座標軸の回転量を求め、各軸の方向の2乗和を最小にするように、座標軸を修正する。これにより、隣接する座標系が近くなる。 Furthermore, the coordinate system may be modified so that the coordinate systems of adjacent points are close to each other. For example, the coordinate system can be modified by fixing the normal vector and rotating the other two axes about the normal vector. Further, the difference in the direction of each axis is obtained by the square sum of the directions of the respective axes, and the closeness of the coordinate system is calculated. The rotation amount of the coordinate axes is obtained by an optimization method such as the steepest descent method, and the coordinate axes are corrected so as to minimize the sum of squares in the direction of each axis. As a result, adjacent coordinate systems become closer.
 図17は、第2実施例の部分形状決定部16による部分形状の算出例を示す図である。 FIG. 17 is a diagram illustrating an example of calculation of a partial shape by the partial shape determination unit 16 of the second embodiment.
 まず、存在物の位置毎に面の向きを決定する。例えば、面の向きは座標軸方向を法線とする面と決定する。なお、部分形状内で座標系が変化する場合、座標系に合わせて部分形状の表面と裏面とを非平行に定める。また、点群が計測されず座標系が不明である場合、反対の面と平行な面に定めればよい。 First, the orientation of the surface is determined for each position of the entity. For example, the direction of the surface is determined as a surface having the coordinate axis direction as a normal line. When the coordinate system changes within the partial shape, the front and back surfaces of the partial shape are determined non-parallel to match the coordinate system. Further, when the point cloud is not measured and the coordinate system is unknown, it may be determined as a plane parallel to the opposite plane.
 また、座標系の方向が変化する部分では、基本的な部分形状38が隣接する部分形状と重なる部分を削除して、隣り合う部分形状83の面同士が滑らかに接続されるようにしてもよい。このとき、復元される形状の外側に位置する部分形状83の面が滑らかに接続されればよく、復元される形状の内側に位置する部分形状83の面は不明な面として、その位置が定まらなくてもよい。 Further, in the portion where the direction of the coordinate system changes, the portion where the basic partial shape 38 overlaps the adjacent partial shape may be deleted so that the surfaces of the adjacent partial shapes 83 are smoothly connected to each other. . At this time, the surface of the partial shape 83 located outside the shape to be restored may be smoothly connected, and the surface of the partial shape 83 located inside the shape to be restored is an unknown surface and its position is determined. It does not have to be.
 本実施例では、部分形状の面が点群の位置と一致するように、部分形状の大きさを定める。例えば、図17において、点群1502が計測されている場合、部分形状1501の左側を点群の位置に合わせる。一つの部分形状の面上に二つ以上の点群が計測されている場合、当該二つ以上の点群の一の平均を用いる。また、本実施例においても、図9で示すように、オペレータが部分形状の各辺の長さを定めてもよい。 In the present embodiment, the size of the partial shape is determined so that the surface of the partial shape matches the position of the point cloud. For example, in FIG. 17, when the point group 1502 is measured, the left side of the partial shape 1501 is matched with the position of the point group. When two or more point groups are measured on the surface of one partial shape, an average of the two or more point groups is used. Also in this embodiment, as shown in FIG. 9, the operator may determine the length of each side of the partial shape.
 図17では、二次元について説明したが、三次元についても同様の手順で処理が可能である。 In FIG. 17, the explanation has been given on the two-dimensional, but the three-dimensional can be processed in the same procedure.
 図18は、第2実施例の形状復元部18による部分形状17の配置例を示す図である。 FIG. 18 is a diagram illustrating an arrangement example of the partial shapes 17 by the shape restoration unit 18 of the second embodiment.
 本実施例では、存在物の位置毎に座標系が異なるため、部分形状の配置方向も位置毎に異なる。図12に示すように、部分形状の各面の位置における座標系を用いて部分形状の配置方向を定め、部分形状を逐次追加する。例えば、図18に示すように。範囲1600内の形状を復元する場合、まず、範囲1600内の最も左に位置する部分形状1601の右側1602の面における部分形状配置方向は方向1603となる。そこで、部分形状1604を作成し、方向1603の方向に追加する。同様に、面1605から方向1606に新たな部分形状1607を追加し、更に部分形状1608及び1609を順に追加することによって、範囲1600の点群の形状を復元することができる。 In this embodiment, since the coordinate system is different for each position of the entity, the arrangement direction of the partial shape is also different for each position. As shown in FIG. 12, the arrangement direction of the partial shape is determined using the coordinate system at the position of each surface of the partial shape, and the partial shapes are sequentially added. For example, as shown in FIG. When the shape in the range 1600 is restored, first, the partial shape arrangement direction on the right side 1602 surface of the leftmost partial shape 1601 in the range 1600 is a direction 1603. Therefore, a partial shape 1604 is created and added in the direction of the direction 1603. Similarly, by adding a new partial shape 1607 in the direction 1606 from the surface 1605 and further adding partial shapes 1608 and 1609 in order, the shape of the point group in the range 1600 can be restored.
 そして、図19に示すように、この処理を繰り返して、全ての形状データ1300を復元した復元形状1700を生成する。 Then, as shown in FIG. 19, this process is repeated to generate a restored shape 1700 in which all the shape data 1300 is restored.
 以上に説明したように、本発明の第2実施例によると、座標系算出部14が形状データ1300の複数の位置毎に座標系を算出し、当該位置の情報と前記算出された座標系の情報とを関連付けて座標系情報15、23に記録し、形状復元部18が前記位置毎に算出された座標系を用いて部分形状を配置する。このため、任意形状の存在物(曲面を含むものや、裏表が平行でない面を含むもの)の形状を復元することができる。 As described above, according to the second embodiment of the present invention, the coordinate system calculation unit 14 calculates a coordinate system for each of a plurality of positions of the shape data 1300, and information on the position and the calculated coordinate system Information is recorded in the coordinate system information 15 and 23 in association with the information, and the shape restoration unit 18 arranges partial shapes using the coordinate system calculated for each position. For this reason, it is possible to restore the shape of an arbitrarily-shaped entity (including a curved surface or a surface whose back and front are not parallel).
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Claims (15)

  1.  計測部による周囲の計測結果から形状図面を作成する図面作成システムであって、
     前記計測部が計測した形状データによって構成される面の法線を推定する法線認識部と、
     前記法線の方向を一つの座標軸とする座標系を算出する座標系算出部と、
     前記座標系の座標軸と直交する面に囲まれる形状を部分形状とする部分形状決定部と、
     前記部分形状が前記形状データを表す点を包含し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、複数の前記部分形状を配置する形状復元部とを備えることを特徴とする図面作成システム。
    A drawing creation system for creating a shape drawing from surrounding measurement results by a measurement unit,
    A normal recognition unit that estimates a normal of a surface constituted by the shape data measured by the measurement unit;
    A coordinate system calculation unit that calculates a coordinate system having the direction of the normal as one coordinate axis;
    A partial shape determining unit that takes a shape surrounded by a plane orthogonal to the coordinate axis of the coordinate system as a partial shape;
    A shape restoration unit that includes a plurality of the partial shapes so that the partial shapes include points representing the shape data and the surfaces of adjacent partial shapes are smoothly connected to each other. To create a drawing system.
  2.  請求項1に記載の図面作成システムであって、
     前記形状データを複数の分割形状データに分割する分割部を備え、
     前記法線認識部は、前記分割形状データ毎に法線を認識し、
     前記座標系算出部は、前記分割形状データ毎に前記法線の方向を一つの軸とする座標系を算出し、
     前記形状復元部は、前記分割形状データ毎に、前記部分形状が前記分割形状データを表す点を包含し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、複数の前記部分形状を配置することを特徴とする図面作成システム。
    A drawing creation system according to claim 1,
    A division unit for dividing the shape data into a plurality of divided shape data;
    The normal recognition unit recognizes a normal for each divided shape data,
    The coordinate system calculation unit calculates a coordinate system with the direction of the normal as one axis for each of the divided shape data,
    The shape restoration unit includes, for each of the divided shape data, a plurality of the portions so that the partial shape includes a point representing the divided shape data and surfaces of adjacent partial shapes are smoothly connected to each other. A drawing creation system characterized by arranging shapes.
  3.  請求項1に記載の図面作成システムであって、
     前記部分形状決定部は、オペレータの指示に基づいて、前記部分形状の各辺の長さを決定し、前記部分形状の形状を決定することを特徴とする図面作成システム。
    A drawing creation system according to claim 1,
    The partial shape determination unit determines a length of each side of the partial shape based on an instruction from an operator, and determines the shape of the partial shape.
  4.  請求項1に記載の図面作成システムであって、
     前記部分形状決定部は、前記形状データが前記部分形状の表面に位置し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、前記部分形状の形状を決定することを特徴とする図面作成システム。
    A drawing creation system according to claim 1,
    The partial shape determining unit determines the shape of the partial shape so that the shape data is located on the surface of the partial shape and surfaces of adjacent partial shapes are smoothly connected to each other. To create a drawing system.
  5.  請求項1から4のいずれか一つに記載の図面作成システムであって、
     前記形状復元部は、前記部分形状の面の作成に利用しなかった二つの法線と直交する方向に前記部分形状を並べて配置することを特徴とする図面作成システム。
    A drawing creation system according to any one of claims 1 to 4,
    The drawing reconstruction system, wherein the shape restoration unit arranges the partial shapes side by side in a direction orthogonal to two normals that were not used for creating the surface of the partial shape.
  6.  請求項1から4のいずれか一つに記載の図面作成システムであって、
     前記法線認識部は、前記形状データによって構成される面が大きい順に法線を推定することを特徴とする図面作成システム。
    A drawing creation system according to any one of claims 1 to 4,
    The drawing recognizing system, wherein the normal recognizing unit estimates normals in descending order of the surface constituted by the shape data.
  7.  請求項6に記載の図面作成システムであって、
     前記法線認識部は、前記形状データによって構成される複数の平面の大きさ及び法線を関連付けてメモリに記録し、
     前記座標系算出部は、前記複数の平面が大きい順に、当該平面に対応する法線を座標軸として選ぶことによって座標系を算出することを特徴とする図面作成システム。
    The drawing creation system according to claim 6,
    The normal recognition unit associates and records in a memory the size and normal of a plurality of planes configured by the shape data,
    The drawing system according to claim 1, wherein the coordinate system calculation unit calculates a coordinate system by selecting a normal line corresponding to the plane as a coordinate axis in order of decreasing size of the plurality of planes.
  8.  請求項7に記載の図面作成システムであって、
     前記座標系算出部は、推定された法線のうち、方向が異なる二つの法線の外積を算出することによって、前記形状データによって構成されない面に対応する座標軸を定めることを特徴とする図面作成システム。
    The drawing creation system according to claim 7,
    The coordinate system calculation unit determines a coordinate axis corresponding to a surface not constituted by the shape data by calculating an outer product of two normals having different directions among the estimated normal lines. system.
  9.  請求項7に記載の図面作成システムであって、
     前記座標系算出部は、オペレータが指示した方向に座標軸を定めることを特徴とする図面作成システム。
    The drawing creation system according to claim 7,
    The drawing system, wherein the coordinate system calculation unit determines a coordinate axis in a direction designated by an operator.
  10.  請求項1から4のいずれか一つに記載の図面作成システムであって、
     前記座標系算出部は、前記形状データの複数の位置毎に座標系を算出し、当該位置の情報と前記算出された座標系の情報とを関連付けて前記メモリに記録し、
     前記形状復元部は、前記位置毎に算出された座標系を用いて、前記部分形状を配置することを特徴とする図面作成システム。
    A drawing creation system according to any one of claims 1 to 4,
    The coordinate system calculation unit calculates a coordinate system for each of a plurality of positions of the shape data, associates the information of the position with the information of the calculated coordinate system, and records the information in the memory,
    The drawing reconstruction system, wherein the shape restoration unit arranges the partial shapes using a coordinate system calculated for each position.
  11.  計測部による周囲の計測結果から形状図面をコンピュータを用いて作成する方法であって、
     前記コンピュータは、プログラムを実行するプロセッサと、前記プログラムを格納するメモリとを有し、
     前記方法は、
     前記プロセッサが、前記計測部が計測した形状データによって構成される面の法線を推定する法線認識手順と、
     前記プロセッサが、前記法線の方向を一つの座標軸とする座標系を算出する座標系算出手順と、
     前記プロセッサが、前記座標系の座標軸と直交する面に囲まれる形状を部分形状とする部分形状決定手順と、
     前記プロセッサが、前記部分形状が前記形状データを表す点を包含し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、複数の前記部分形状を配置する形状復元手順とを含むことを特徴とする図面作成方法。
    A method of creating a shape drawing from a surrounding measurement result by a measuring unit using a computer,
    The computer has a processor that executes a program, and a memory that stores the program,
    The method
    A normal recognition procedure in which the processor estimates a normal of a surface constituted by shape data measured by the measurement unit;
    A coordinate system calculation procedure in which the processor calculates a coordinate system having the direction of the normal as one coordinate axis;
    A partial shape determination procedure in which the processor has a shape surrounded by a plane orthogonal to the coordinate axis of the coordinate system;
    The processor includes a shape restoration procedure for arranging a plurality of the partial shapes so that the partial shapes include a point representing the shape data and surfaces of adjacent partial shapes are smoothly connected to each other. A drawing creation method characterized by the above.
  12.  請求項11に記載の図面作成方法であって、
     前記プロセッサが、前記形状データを複数の分割形状データに分割する分割手順を含み、
     前記法線認識手順では、前記分割形状データ毎に法線を認識し、
     前記座標系算出手順では、前記分割形状データ毎に前記法線の方向を一つの軸とする座標系を算出し、
     前記形状復元手順では、前記分割形状データ毎に算出された座標系を用いて、前記部分形状を配置することを特徴とする図面作成方法。
    A drawing creation method according to claim 11,
    The processor includes a dividing procedure for dividing the shape data into a plurality of divided shape data;
    In the normal recognition procedure, a normal is recognized for each divided shape data,
    In the coordinate system calculation procedure, a coordinate system having the direction of the normal as one axis is calculated for each of the divided shape data,
    In the shape restoration procedure, the partial shape is arranged using a coordinate system calculated for each of the divided shape data.
  13.  請求項11に記載の図面作成方法であって、
     前記部分形状決定手順では、オペレータの指示に基づいて、前記部分形状の各辺の長さを決定し、前記部分形状の形状を決定することを特徴とする図面作成方法。
    A drawing creation method according to claim 11,
    In the partial shape determination procedure, a drawing creation method is characterized in that, based on an instruction from an operator, the length of each side of the partial shape is determined to determine the shape of the partial shape.
  14.  請求項11に記載の図面作成方法であって、
     前記部分形状決定手順では、前記形状データが前記部分形状の表面に位置し、かつ、隣接する部分形状の面同士が滑らかに接続されるように、前記部分形状の形状を決定することを特徴とする図面作成方法。
    A drawing creation method according to claim 11,
    In the partial shape determining procedure, the shape of the partial shape is determined so that the shape data is positioned on the surface of the partial shape and surfaces of the adjacent partial shapes are smoothly connected to each other. Drawing creation method.
  15.  請求項11から14のいずれか一つに記載の図面作成方法であって、
     前記形状復元手順では、前記部分形状の面の作成に利用しなかった二つの法線と直交する方向に前記部分形状を並べて配置することを特徴とする図面作成方法。
    A drawing creation method according to any one of claims 11 to 14,
    In the shape restoration procedure, the partial shape is arranged side by side in a direction orthogonal to two normals not used for creating the partial shape surface.
PCT/JP2015/054482 2015-02-18 2015-02-18 Drawing preparation system and drawing preparation method WO2016132490A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/054482 WO2016132490A1 (en) 2015-02-18 2015-02-18 Drawing preparation system and drawing preparation method
JP2017500205A JP6248228B2 (en) 2015-02-18 2015-02-18 Drawing creation system and drawing creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054482 WO2016132490A1 (en) 2015-02-18 2015-02-18 Drawing preparation system and drawing preparation method

Publications (1)

Publication Number Publication Date
WO2016132490A1 true WO2016132490A1 (en) 2016-08-25

Family

ID=56692486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054482 WO2016132490A1 (en) 2015-02-18 2015-02-18 Drawing preparation system and drawing preparation method

Country Status (2)

Country Link
JP (1) JP6248228B2 (en)
WO (1) WO2016132490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515937A (en) * 2017-01-13 2020-05-28 インターデジタル ヴイシー ホールディングス, インコーポレイテッド Method, apparatus and stream for immersive video format

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070927A1 (en) * 2009-12-11 2011-06-16 株式会社トプコン Point group data processing device, point group data processing method, and point group data processing program
JP2012088834A (en) * 2010-10-18 2012-05-10 Bridgestone Corp Vibration mode calculation method and vibration mode calculation device
JP2014186566A (en) * 2013-03-25 2014-10-02 Geo Technical Laboratory Co Ltd Analysis method of three-dimensional point group

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5785074B2 (en) * 2011-12-22 2015-09-24 国立大学法人 東京大学 Model generation apparatus, model generation method, and model generation program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070927A1 (en) * 2009-12-11 2011-06-16 株式会社トプコン Point group data processing device, point group data processing method, and point group data processing program
JP2012088834A (en) * 2010-10-18 2012-05-10 Bridgestone Corp Vibration mode calculation method and vibration mode calculation device
JP2014186566A (en) * 2013-03-25 2014-10-02 Geo Technical Laboratory Co Ltd Analysis method of three-dimensional point group

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515937A (en) * 2017-01-13 2020-05-28 インターデジタル ヴイシー ホールディングス, インコーポレイテッド Method, apparatus and stream for immersive video format
JP7241018B2 (en) 2017-01-13 2023-03-16 インターデジタル ヴイシー ホールディングス, インコーポレイテッド Method, Apparatus and Stream for Immersive Video Formats

Also Published As

Publication number Publication date
JPWO2016132490A1 (en) 2017-05-25
JP6248228B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US10268917B2 (en) Pre-segment point cloud data to run real-time shape extraction faster
KR102318023B1 (en) 3-Dimensional Model Generation Using Edges
Shi et al. Adaptive simplification of point cloud using k-means clustering
US10417821B2 (en) Method of simplifying a geometry model
US9928645B2 (en) Raster-based mesh decimation
US20160117795A1 (en) Point cloud data processing system and method thereof and computer readable storage medium
JP5830004B2 (en) 3D model generation apparatus, 3D model generation method, and 3D model generation program
JP6518517B2 (en) Point cloud data modeling device
US9665978B2 (en) Consistent tessellation via topology-aware surface tracking
US11263802B2 (en) Method and apparatus for splitting three-dimensional volumes
JP2023525535A (en) Method and apparatus for identifying surface features in three-dimensional images
CN113724401B (en) Three-dimensional model cutting method and device, computer equipment and storage medium
JP6248228B2 (en) Drawing creation system and drawing creation method
CN112581511B (en) Three-dimensional reconstruction method and system based on near vertical scanning point cloud rapid registration
KR20240013085A (en) Methods and apparatus for processing image data for machine vision
KR100843292B1 (en) Apparatus and Method for Ray Tracing Using Lookup Table
CN115690120B (en) Method, apparatus, device, medium and program product for generating three-dimensional grid
JP6227801B2 (en) Drawing creation system and drawing creation method
JP6441032B2 (en) Corresponding point search device, corresponding point search program, and corresponding point search method
US20160260248A1 (en) Apparatus and method for generating bitmap of 3-dimensional model
Umetani et al. Out-of-core Extraction of Curve Skeletons for Large Volumetric Models
KR101434380B1 (en) Method and Apparatus for Feature Line Extraction from 3D polygonal Model based on Graphic Accelerator
Xu Hexahedral Mesh Generation, Optimization, and Visualization
JP2023087700A (en) Bridge data extraction device, bridge data extraction method, and program
JP2022134806A (en) Display program, display method, and information processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882593

Country of ref document: EP

Kind code of ref document: A1