WO2016132446A1 - Picture projection apparatus and shaking correction method - Google Patents

Picture projection apparatus and shaking correction method Download PDF

Info

Publication number
WO2016132446A1
WO2016132446A1 PCT/JP2015/054229 JP2015054229W WO2016132446A1 WO 2016132446 A1 WO2016132446 A1 WO 2016132446A1 JP 2015054229 W JP2015054229 W JP 2015054229W WO 2016132446 A1 WO2016132446 A1 WO 2016132446A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
video
position information
shake correction
Prior art date
Application number
PCT/JP2015/054229
Other languages
French (fr)
Japanese (ja)
Inventor
中出 真弓
慎一郎 廣岡
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2015/054229 priority Critical patent/WO2016132446A1/en
Publication of WO2016132446A1 publication Critical patent/WO2016132446A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a video projection device that projects image data onto a screen, and more particularly to a video projection device and a shake correction method for correcting a shake of a video.
  • the small and lightweight video projection device has an essential function for correcting the projected video according to the positional relationship between the screen and the video projection device because of its usage.
  • Patent Document 1 JP-A-2005-148298 (Patent Document 1) as background art in this technical field.
  • Patent Document 1 a test pattern image is displayed on a screen with invisible light in a predetermined cycle, an image of the test pattern displayed on the screen is acquired, and image distortion correction processing is performed based on the test pattern image. It is described.
  • Patent Document 1 there is a description that always corrects image distortion with invisible light, but there is no description of specific control, and correction of distortion of the entire screen that occurs mainly during installation is possible, but it seems that the screen always undulates. It does not take into account the tremors.
  • An object of the present invention is to provide a video projection apparatus and a shake correction method that can constantly monitor the shake of the screen and reduce the shake of the projected video.
  • the present invention includes a plurality of means for solving the above-described problems.
  • the present invention relates to a method for correcting a shake of a projected video of a video projection device, and a pattern image having a singular point at a correction point in a video signal. Project the superimposed video signal for projection, capture the projected image, detect the position information of the pattern image and singular point from the captured image, and compare the position information that serves as the reference for the correction point with the detected position information Then, the correction parameter is calculated, and the shake correction of the video signal is performed.
  • the screen that is the projection destination of the video projection device is shaking, it is possible to correct the shaking of the image projected by the video projection device and reduce the shaking.
  • FIG. 1 is a block diagram illustrating an overall configuration of a video projection device in Embodiment 1.
  • FIG. FIG. 6 is an explanatory diagram of dividing an image into blocks according to the first embodiment.
  • FIG. 6 is a diagram illustrating an output image after shake correction in the first embodiment. It is a figure which shows the projection pattern image of the video projection apparatus in Example 1.
  • FIG. It is a figure which shows the picked-up image of the projection pattern image in Example 1.
  • FIG. FIG. 3 is a process flow diagram of the video projection apparatus in Embodiment 1. It is a block diagram which shows the whole structure of the video projection apparatus in Example 2.
  • FIG. FIG. 10 is a diagram illustrating a captured image captured by the pattern image capturing apparatus according to the second embodiment.
  • FIG. 10 is a diagram illustrating a captured image captured by a pattern image capturing unit according to the second embodiment.
  • FIG. 10 is a diagram illustrating setting of a reference correction position in the second embodiment. It is a block diagram which shows the whole structure of the video projection apparatus in Example 3.
  • FIG. It is a figure which shows the locus
  • FIG. It is a block diagram which shows the whole structure of the video projection apparatus in Example 4.
  • FIG. 10 is a block diagram of a shake correction unit in Embodiment 4.
  • FIG. 12 is a timing diagram of video projection apparatus input video, projection, and imaging in Example 4. It is a block diagram which shows the whole structure of the video projection apparatus in Example 5.
  • FIG. It is a figure which shows the pattern image in Example 5.
  • FIG. 1 is a block diagram showing the overall configuration of the video projection apparatus in the present embodiment.
  • 110 is a video projection device
  • 100 is a video input terminal
  • 111 is a video signal processing unit
  • 112 is a shake correction unit
  • 113 is a pattern image unit
  • 114 is a projection video composition unit
  • 115 is a projection unit
  • 123 is an imaging unit
  • 122 is an imaging pattern detection unit
  • 121 is a control unit
  • 130 is a position information storage unit
  • 117 is a projection screen.
  • the video input terminal 100 is connected to a device that outputs a video signal, such as a personal computer or a media player, and the video signal is input from the video input terminal 100.
  • the video signal processing unit 111 converts the video signal input from the video input terminal 100 into a video signal that can be processed by the shake correction unit 112 at the subsequent stage. For example, when the input video signal is an analog signal, conversion processing to a digital signal is performed. For example, when a component signal is input, video signal processing is performed as necessary, such as conversion to an RBG signal.
  • the shake correction unit 112 applies correction parameters set by the control unit 121, which will be described later, to the signal output from the video signal processing unit 111 when the video projected by the video projection device 110 is shaken. Perform shake correction accordingly.
  • the shake correction is performed, for example, by dividing one frame image output from the video signal processing unit 111 into a plurality of blocks, and the control unit 121 uses the coordinates of the movement destination of the vertex for each block as a correction parameter.
  • the shake correction unit 112 converts the image in the block into a trapezoid, rotates or moves the position so that the coordinates specified by the correction parameter for each block, and synthesizes the image of each block to correct the shake. Generate an image.
  • FIG. 2 shows an example of block division of one frame image.
  • FIG. 2 is an example in which one frame image output from the video signal processing unit 111 is divided into 3 ⁇ 3, 300 is an image of one frame, 310 is a display position of a pattern image described later, and P11 and P12. , P13, P14, P21, P22, P23, P24, P31, P32, P33, P34, P41, P42, P43, and P44 indicate the vertex coordinates of each block of the pattern image, and are used as shake correction correction points.
  • the shake correction parameter is given as a movement amount having the coordinates or direction of the movement destination of each correction point.
  • FIG. 3 shows an example of an output image after the shake correction unit 112 corrects the shake.
  • FIG. 3 shows an example in which the shake correction unit 112 converts an image for each block.
  • P11a, P12a, P21a, and P22a indicate the vertex coordinates of the upper left block set by the shake correction parameter, and 300a indicates the shake correction.
  • the subsequent one-frame shake correction image is shown.
  • the shake correcting unit 112 can convert the quadrilateral P11a, P11a, Conversion to P12a, P21a, and P22a is performed.
  • the shake correction unit 112 converts images sequentially in the same manner, and connects all the converted blocks to generate a shake correction image of one frame.
  • the shake correction unit 112 may reduce the image data simultaneously with the shake correction.
  • boundary lines and block vertices in FIG. 2 and FIG. 3 are illustrated for explanation, they are not drawn on an actual image.
  • the number of block divisions is not limited to 3 ⁇ 3, and other division numbers may be used in accordance with the state of shaking and the performance of correction.
  • the pattern image unit 113 stores a pattern image for detecting the shaking of the projected video.
  • the pattern image is a pattern image having a singular point at a correction point.
  • the image may be any image in which the shake correction unit 112 can detect the vertices of a block that divides the video.
  • a lattice may be used, and the vertex position of a block may be a dot or cross pattern instead of a line.
  • the pattern image when projecting a pattern image with visible light, the pattern image does not use the pattern that overlaps the shake correction image output from the shake correction unit 112, but uses only the pattern arranged outside the shake correction image. To do.
  • FIG. 4 shows an example of a pattern image projected with visible light.
  • Reference numeral 210 denotes an entire image area projected by the video projection apparatus 110
  • reference numeral 211 denotes an area for displaying a shake correction image.
  • a pattern image 212 is arranged inside the entire image area 210 and outside the shake image area 211. .
  • black and white lines are alternately displayed in the horizontal x direction and the vertical y direction, and the black lines are rectangles having vertices C1, C2, C3, and C4, and B11, B12, B21, and B22. , B31, B32, B41, B42.
  • B21 and B22, B31 and B32 have the same coordinate position in the y direction
  • B11 and B41, and B12 and B42 have the same coordinate position in the x direction
  • C1, C2, C3, C4, B11, B12, B21, B22, B31, B32, B41, and B42 correspond to the shake correction points at which the shake correction unit 112 divides the video. That is, B ** can be detected as a vertex of the block because the black line is interrupted, and C ** can be similarly detected as a vertex of the block because it is a corner.
  • FIG. 4 shows an example in which the shake correction unit divides the image into 3 ⁇ 3 blocks for correction.
  • the number of divisions is not limited to this as long as it corresponds to the block of the shake correction unit 112.
  • further fine division can increase the amount of processing, but more accurate correction can be performed.
  • the pattern image is not limited to the one shown in the figure as long as the position can be detected, and may be a black and white inverted pattern or a pattern using colors other than black and white.
  • the projection video synthesis unit 114 synthesizes the shake correction image output from the shake correction unit 112 and the pattern image of the pattern image unit 113 to generate and output a projection video signal.
  • the projection unit 115 includes a light source, a light modulation unit, a projection lens, and the like, modulates the light output from the light source by the light modulation unit, and displays an image on the projection screen 117 with the projection lens.
  • the light modulation unit may be any component that can modulate light by changing the light transmittance or reflectance, and includes, for example, a liquid crystal panel, a liquid crystal panel and a dichroic mirror, a digital mirror device, and a color wheel.
  • the projection screen 117 is not limited to the projector screen, and may be, for example, a wall or a curtain as long as it can project an image.
  • the imaging unit 123 captures an image projected by the projection unit 115 onto the projection screen, and outputs it as an captured image signal.
  • the imaging unit 123 is configured by appropriately using, for example, a lens group including a zoom lens and a focus lens, an image sensor including an iris, a shutter, an imaging element such as a CCD or a CMOS, an amplifier, an AD converter, and the like.
  • the optical image received at is photoelectrically converted, and the signal is subjected to separation processing, demosaicing processing, and the like to generate a captured video signal.
  • the imaging pattern detection unit 122 detects a pattern image from the captured video signal output from the imaging unit 123, and detects a correction point in the pattern image.
  • FIG. 5 shows an example of a captured image of one frame of the captured video signal from the imaging unit 123 when the video projection device 110 projects a video on which the pattern image shown in FIG. 4 is superimposed.
  • 400 is the entire range of the captured image
  • 212b is the captured pattern image
  • C1b, C2b, C3b, and C4b are the apex portions of the captured pattern image
  • B11b, B12b, B21b, B22b, B31b, B32b, B41b , B42b indicates a discontinuous portion of the captured pattern image.
  • Each vertex part and the discontinuous part correspond to each vertex part and each discontinuous part of the pattern image shown in FIG.
  • the imaging pattern detection unit 122 detects, for example, C1b, C2b, C3b, C4b, B11b, B12b, B21b, B22b, B31b, B32b, B41b, and B42b as correction points, and the position information of each correction point is the position at the time of installation. Output as information.
  • the control unit 121 compares the position of the correction point detected by the imaging pattern detection unit 122 with the position of the reference correction point stored in the position information storage unit 130, and determines the amount of shift of the correction point from the pattern image shift. It is converted into a quantity and set in the shake correction unit 112 as a shake correction parameter.
  • the reference correction point is a correction point obtained for the first time immediately after the start of shake correction, for example, and the control unit 121 stores the position information detected in the captured pattern image at the time of the first correction in the position information storage unit 130. Store.
  • the control unit 121 sets a correction parameter having a shake correction amount of zero in the control unit 121 during the initial correction.
  • the shake correction can be performed regardless of the positions of the projection screen 117 and the imaging unit 123.
  • a calibration period is provided, and an intermediate position or an average position of correction points acquired in a plurality of past frames. May be used as a reference correction point. In this case, correction to a more appropriate position is possible.
  • Correction coordinates are calculated from the points and set in the shake correction unit 112.
  • the movement amount is calculated by weighting according to the distance to the correction point for calculating the movement amount of the correction point in the peripheral portion.
  • the control unit 121 sets the correction coordinates between the detected correction point and the calculated correction point as a correction parameter for the shake correction unit 112.
  • FIG. 6 is a processing flow of the video projection apparatus in the present embodiment.
  • the video projection apparatus 110 initializes correction parameters and reference positions in step S1001, for example, when the power is turned on or when shake correction is started.
  • the shake correction unit 112 acquires the video signal input in step S1002, and in step S1003, performs shake correction according to the shake correction parameter and outputs a shake correction image.
  • the projection image synthesizing unit 114 synthesizes the shake correction image and the pattern image.
  • step S1005 the composite image from the projection video composition unit 114 is converted into a projected image projected by the projection unit 115 as necessary, and video projection is performed by the projection unit.
  • the image projected in step S1006 is imaged by the imaging unit.
  • step S1007 a pattern image is detected from the captured image, and further, a correction point position is detected.
  • step S1008 it is determined whether position information serving as a reference for calculating the amount of shaking is set. If the reference position information is not set, the correction point position acquired in step S1009 is set as the reference position information, and the correction end determination in the next step S1012 is performed.
  • step S1010 the correction point position information is compared with the reference position information, and a shake correction parameter is calculated. Further, if necessary, the fluctuation amount of the center correction point position is calculated from the fluctuation correction parameters of the peripheral portion.
  • step S1011 the shake correction parameter is set in the shake correction unit 112.
  • step S1012 the end of the correction is determined. If the correction is not finished, the process returns to the video signal acquisition in step S1002. If it is determined in step S1012 that the correction has been completed, the shake correction is terminated.
  • the image projection apparatus projects the image even when the screen is shaken by measuring the amount of shake on the screen and correcting the image to be projected at any time so as not to shake. It can correct the shaking of the image and reduce the shaking.
  • This embodiment describes a video projection apparatus that uses initial correction data as reference correction data when distortion of a projected image at the time of initial setting is combined with shake correction.
  • FIG. 7 is a block diagram showing the overall configuration of the video projection apparatus in the present embodiment.
  • reference numeral 140 denotes an image pickup apparatus.
  • an image sensor including a lens group including a zoom lens and a focus lens, an image pickup device such as an iris, a shutter, a CCD or a CMOS, an amplifier, and an AD converter are used as appropriate.
  • the optical image received by the image sensor is photoelectrically converted, the signal is subjected to separation processing and demosaicing processing, etc., and a video signal is generated and output.
  • the imaging device 140 is a position where the distortion of the projected image at the time of initial setting of the video projection device 500 is to be corrected, for example, when a video is projected from the video projection device 500 onto the projection screen 117 and a presentation is given.
  • the image projected by the image projection device 500 is imaged at the center of the position.
  • the imaging device 140 sends the captured video to the video projection device 500 as a video signal.
  • the video signal is not limited to a moving image, and may be one piece of still image data.
  • FIG. 8 shows a captured image obtained by projecting the pattern image shown in FIG.
  • 600 is the entire range of the captured image
  • 212d is the captured pattern image
  • C1d, C2d, C3d, and C4d are the apex portions of the captured pattern image
  • B11d, B12d, B21d, B22d, B31d, B32d, B41d, B42d indicates a portion where the captured pattern image is interrupted.
  • Each vertex part and the discontinuous part correspond to each vertex part and each discontinuous part of the pattern image shown in FIG. That is, the imaging device 140 is a means for inputting a distortion image of a projection image when the video projection device 500 is installed.
  • FIG. 9 shows a captured image obtained by projecting the pattern image shown in FIG.
  • 610 is the entire range of the captured image
  • 212e is the captured pattern image
  • C1e, C2e, C3e, and C4e are the apex portions of the captured pattern image
  • B11e, B12e, B21e, B22e, B31e, B32e, B41e, B42e indicates a portion where the captured pattern image is interrupted.
  • Each vertex part and the discontinuous part correspond to each vertex part and each discontinuous part of the pattern image shown in FIG.
  • the control unit 121 causes the imaging pattern detection unit 122 to first process the pattern image from the imaging device 140, and then cause the pattern image from the imaging unit 123 to be analyzed.
  • the imaging pattern detection unit 122 interrupts the pattern images from the vertexes C1d, C2d, C3d, and C4d of the pattern image that are correction points at the time of installation from the image data 600 acquired from the imaging device 140.
  • the positions of the existing parts B11d, B12d, B21d, B22d, B31d, B32d, B41d, and B42d are detected, and position information is output.
  • the control unit 121 stores the position information output by the imaging pattern detection unit 122 as installation position information.
  • the imaging pattern detection unit 122 uses the pattern data vertexes C1e, C2e, C3e, and C4d, which are correction points at the time of installation, from the image data 610 acquired from the imaging unit 123, and a portion B11e where the image pattern is interrupted.
  • the positions of B12e, B21d, B22d, B31e, B32e, B41e, and B42e are detected, and position information is output.
  • the control unit 121 stores the position information acquired from the imaging pattern detection unit 122 as pre-reference position information.
  • the control unit 121 calculates reference position information from the installation position information and the pre-reference position information.
  • a calculation method for example, a point obtained by moving the same difference distance in the direction opposite to the installation position with respect to the position of each correction point in the pre-reference position information is set as a reference correction point.
  • Fig. 10 shows an example of setting the reference correction position.
  • reference numeral 620 denotes an entire image space where shake correction is performed
  • P11e, P12e, P13e, P14e, P21e, P24e, P31e, P34e, P41e, P42e, P43e, and P44e denote reference position correction points.
  • Each reference position correction point is calculated from the position information of the correction point 212d shown in FIG. 8 and the correction point position information 212e shown in FIG. 9, and is stored in the position information storage unit 130 as reference position information. Since the subsequent operation is the same as that of the first embodiment, the description thereof is omitted.
  • the approximate line is calculated from the measurement position of the peripheral portion of the captured image of the imaging device 140 by matching the timing of imaging of the imaging device 140 and the imaging unit 123.
  • a reference correction point may be created in consideration of the amount of positional deviation from a straight line.
  • a projection image without distortion can be obtained even in a projection place where an image such as a wave curtain is distorted.
  • the pattern image captured by the imaging unit 123 and the pattern image captured by the imaging device 140 may differ depending on the imaging distance and the imaging size.
  • the size of the pattern image captured by the imaging device 140 may be different. Can be realized by converting to a size of the pattern image captured by the imaging unit 123 and correcting the pattern image.
  • the imaging device 140 is not limited to a dedicated imaging device, and may be any device that has an imaging function and can output image data or a video signal.
  • the imaging unit 140 may be used as the imaging unit 123.
  • the imaging unit 123 has a memory for storing a still image, captures an image of the front of the projection screen 117 at the time of installation, and stores the image in the still image storage memory. Then, the imaging unit 123 is moved to a position where the video of the video projection device 500 is to be corrected, and the video on the projection screen 117 is captured.
  • a pattern image may be detected from the stored still image.
  • means for inputting a distorted image of a projected image at the time of installation of the video projection device is provided, and the distorted image is reflected in reference position information, for example, a projection destination and a video. Even in a state where the projection apparatus is not parallel, it is possible to obtain a projection image that is free from trapezoidal distortion and is free from shaking or reduced.
  • FIG. 11 is a block diagram showing the overall configuration of the video projection apparatus 700 in the present embodiment.
  • 710 is a position information storage unit
  • 711 is a trajectory analysis unit
  • the control unit 121 stores position information of correction points detected by the imaging pattern detection unit 122 in the position information storage unit 710.
  • the trajectory analysis unit 711 analyzes the position information stored in the position information storage unit 710 and calculates the predicted movement amount and movement direction.
  • Fig. 12 shows an example of the locus of correction point fluctuation.
  • FIG. 12 shows an example of movement of the position of the correction point detected by the imaging pattern detection unit 122. It shows that a certain correction point moves from the position m0 to m1, m2, and m3 every frame.
  • the trajectory analysis unit 711 calculates the predicted position of the next correction point when it is determined that the projection screen 117 is periodically swaying, for example, the correction point is moving in a circular motion. .
  • the trajectory analysis unit 711 can easily predict the periodic shaking described above, but cannot predict when the prediction data is small or the projection screen does not move, or the predicted position is It will cause a large shift and a large shaking.
  • the trajectory analysis unit 711 outputs an index of the probability of the predicted position at the same time, and the control unit 121 determines whether or not the predicted position information of the trajectory analysis unit 711 is adopted. Good.
  • the present embodiment predicts shaking and performs the predicted correction on the image before projection, thereby reducing the time lag of shaking correction that occurs from projection until imaging. Correction becomes possible.
  • FIG. 13 is a block diagram showing the overall configuration of the video projection apparatus 800 in this embodiment.
  • reference numeral 810 denotes a shaking speed analysis unit, which outputs a result of analyzing the shaking speed from the movement amount of the position information accumulated by the position information accumulation unit 710.
  • the control unit 121 determines from the result of the analysis by the shake speed analysis unit 810 that the speed of the shake is fast, the control unit 121 sets the shake correction unit to perform the shake correction at a period earlier than the period of the input video signal. Control.
  • FIG. 14 shows a block diagram of the shake correction unit 112.
  • 820 is a video storage unit
  • 821 is a video storage unit
  • 822 is an image conversion unit
  • 823 is a corrected image storage unit
  • 824 is a corrected image output unit.
  • the video storage unit 820 stores the video signal output from the video signal processing unit 111 in the video storage 821.
  • the video storage unit 821 has a capacity for storing video signals of a plurality of frames, and the video storage unit 820 stores the video signal in the storage location of the video storage unit 821 specified by the control unit 121.
  • the image conversion unit 822 takes out necessary image data from the video storage unit 821, performs image data enlargement / reduction, rotation, and movement processing according to the correction parameters set by the shake correction unit, and stores corrected image data. Stored in the unit 823.
  • the corrected image output unit 824 sequentially reads out image data from the corrected image storage unit 823 after the image conversion unit 822 stores an image for one frame in the corrected image storage unit 823, and outputs it as a shake correction video signal.
  • the image correction unit 822 speeds up the shake correction by making the read-out cycle of the image conversion unit 822 faster than the cycle in which the video storage unit 820 stores the video signal in the video storage unit 821.
  • FIG. 15 shows an example of the input video of the video projection device 800 and the timing of projection and imaging.
  • the input video of the video projection device 800 is sent image data in the order of video 1, video 2 and video 3 in the cycle specified by the device outputting the video signal.
  • the video storage unit 821 has an area in which a video signal can be stored for two frames. Data of video 1 is recorded in the first frame, and is held in the first frame until video 3 which is a video signal of the next frame is input.
  • control unit 112 projects the shake correction image corrected by the shake correction unit in the period in which the data of the video 1 is held in the first frame of the video storage unit, and images the image pickup unit. This shows that the cycle of detecting the pattern image from the captured image and setting the correction parameter in the shake correction unit is performed three times.
  • correction cycle of the present embodiment is an example, and is not limited to this.
  • the cycle for the input signal may be set according to the speed of shaking and the cycle of the input video signal. If it is determined that the shaking is slow and high-speed correction is not necessary, correction may be performed in accordance with the period of the input video signal.
  • the speed of shaking is analyzed from the amount of movement of the position information accumulated by the position information accumulating unit, and when it is determined that the speed of shaking is fast, the period of the input video signal is
  • the followability to the shake is improved, and an image without shake is obtained.
  • FIG. 16 is a block diagram showing the overall configuration of the video projection apparatus 900 in the present embodiment. The same parts as those in FIG. In FIG. 16, 911 is a pattern image unit for invisible light, a projection unit 910 is a projection unit capable of projecting invisible light, and 920 is an imaging unit capable of imaging invisible light.
  • FIG. 17 shows an example of a pattern image of invisible light.
  • Reference numeral 950 denotes an entire video area projected by the projection unit 910
  • reference numeral 951 denotes a video area when there is no shaking
  • D11, D12, D13, D14, D21, D22, D23, D24, D31, D32, D33, D34, D41, D42, D43, and D44 represent, for example, dot pattern images. Since the pattern image only needs to know the dot pattern position, it is only necessary that the brightness and darkness of the brightness other than the dot pattern portion and the dot pattern portion be different. Further, the shape of the pattern is not limited to the dot, but may be a square or lattice image pattern. Since the pattern image is projected with non-visible light, it is also arranged at the center of the screen, for example, D22, D23, D32, and D33.
  • Projection unit 910 is configured to project visible light and invisible light simultaneously.
  • the pixels of the liquid crystal panel are provided with a filter that transmits only invisible light, for example, specific infrared light in addition to red, blue and green.
  • the image signal that has been subjected to shake correction is displayed in the portion where the red, blue, and green filters are arranged, and the pattern image is displayed in the non-visible light filter portion.
  • a projection method that divides a light source it may be a method in which four liquid crystal panels are combined by a dichroic mirror by splitting into invisible light, for example, specific infrared light in addition to red, blue and green. .
  • the image signal corrected for shaking is displayed on the liquid crystal panel irradiated with red blue green light, and the pattern image is displayed on the liquid crystal panel irradiated with invisible light.
  • the light source is separated into red, blue, green, and infrared light by a dichroic mirror and transmitted through a liquid crystal panel provided in each.
  • the image signal generated by the shake correction unit is displayed on the liquid crystal panel that transmits light emitted from the red, blue, and green light sources, and the pattern image is transmitted through the liquid crystal panel for infrared light.
  • the imaging unit 920 is configured by appropriately using an image sensor, an amplifier, an AD converter, or the like that includes, for example, an imaging element such as a lens group, an iris, a shutter, a CCD or a CMOS, and photoelectrically converts an optical image received by the image sensor.
  • an imaging element such as a lens group, an iris, a shutter, a CCD or a CMOS
  • a filter that transmits only infrared light is disposed in the image sensor.
  • the imaging unit 920 captures an image projected by the image projection apparatus 900 displayed on the projection screen 117 and extracts a pattern image portion projected with infrared light.
  • the imaging pattern detection unit 122 detects the position of the pattern image and outputs the position information of each pattern as in the first embodiment.
  • the shake correction parameter is calculated from the position information of each correction point and set in the shake correction unit.
  • the processing for calculating the correction point in the central portion from the correction points in the peripheral portion is not necessary.

Abstract

An ultra-short focus projector has the problem of noticeable image distortion due to screen shaking caused by even a slight wind or the like, interfering with a presentation or the like. Hitherto, shaking such as a constant wave-like motion of the screen has not been taken into consideration. Thus, in a projected-picture shaking correction method for a picture projection apparatus, picture-signal shaking correction is performed by: projecting a projection picture signal obtained by superposing a pattern image having singular points at correction points on a picture signal; capturing an image of the projected picture; detecting the pattern image and position information about the singular points from the captured picture; and calculating a correction parameter by comparing position information that is the correction point standard with the detected position information. As a result, even in a state where the screen that is a projection destination of the picture projection apparatus is shaking, the shaking of the picture projected by the picture projection apparatus can be corrected and the shaking can be reduced.

Description

映像投射装置および揺れ補正方法Image projection apparatus and shake correction method
 本発明は、画像データをスクリーンに投射する映像投射装置に関し、特に映像の揺れを補正する映像投射装置および揺れ補正方法に関する。 The present invention relates to a video projection device that projects image data onto a screen, and more particularly to a video projection device and a shake correction method for correcting a shake of a video.
 小型で軽量な映像投射装置は、その利用形態から、スクリーンと映像投射装置との位置関係に応じた投射映像の補正は必須の機能となっている。 The small and lightweight video projection device has an essential function for correcting the projected video according to the positional relationship between the screen and the video projection device because of its usage.
 本技術分野の背景技術として、特開2005-148298号公報(特許文献1)がある。特許文献1には、テストパタンの画像を所定の周期で不可視光によりスクリーンに表示し、スクリーンに表示したテストパタンの画像を取得し、そのテストパタンの画像に基づいて画像歪み補正処理を実施することが記載されている。 There is JP-A-2005-148298 (Patent Document 1) as background art in this technical field. In Patent Document 1, a test pattern image is displayed on a screen with invisible light in a predetermined cycle, an image of the test pattern displayed on the screen is acquired, and image distortion correction processing is performed based on the test pattern image. It is described.
特開2005-148298号公報JP 2005-148298 A
 近年、設置場所の制限から、スクリーンとプロジェクタ間の距離が短くても大きな画面が得られる焦点距離が短い超短焦点プロジェクタが多く用いられるようになってきている。特に、超短焦点プロジェクタでは、僅かな風等によるスクリーンの揺れによる画像歪が顕著であり、プレゼンテーション等の妨げになるという問題がある。 In recent years, due to the limitation of installation location, ultra-short focus projectors with a short focal length that can obtain a large screen even if the distance between the screen and the projector is short have come to be used frequently. In particular, in the ultra-short focus projector, there is a problem that image distortion due to screen shaking due to a slight wind or the like is remarkable, which hinders presentation and the like.
 前記特許文献1では、不可視光で常時画像歪み補正をする記載はあるが具体的な制御の記載はなく、主に設置時に生じる画面全体の歪みの補正は可能であるが、スクリーンが常時波打つような揺れについては考慮されていない。 In Patent Document 1, there is a description that always corrects image distortion with invisible light, but there is no description of specific control, and correction of distortion of the entire screen that occurs mainly during installation is possible, but it seems that the screen always undulates. It does not take into account the tremors.
 本発明の目的は、スクリーンの揺れを常時監視し、投射映像の揺れを低減できる映像投射装置及び揺れ補正方法を提供することである。 An object of the present invention is to provide a video projection apparatus and a shake correction method that can constantly monitor the shake of the screen and reduce the shake of the projected video.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、映像投射装置の投射映像の揺れ補正方法であって、映像信号に補正ポイントで特異点をもつパターン画像を重畳した投射用映像信号を投射し、投射された映像を撮像し、撮像映像からパターン画像および特異点の位置情報を検出し、補正ポイントの基準となる位置情報と、検出した位置情報とを比較して補正パラメータを算出し、映像信号の揺れ補正を行う。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present invention includes a plurality of means for solving the above-described problems. To give an example, the present invention relates to a method for correcting a shake of a projected video of a video projection device, and a pattern image having a singular point at a correction point in a video signal. Project the superimposed video signal for projection, capture the projected image, detect the position information of the pattern image and singular point from the captured image, and compare the position information that serves as the reference for the correction point with the detected position information Then, the correction parameter is calculated, and the shake correction of the video signal is performed.
 本発明によれば、映像投射装置の投射先であるスクリーンが揺れている状態においても、映像投射装置が投射する映像の揺れを補正でき、揺れを低減できる。 According to the present invention, even when the screen that is the projection destination of the video projection device is shaking, it is possible to correct the shaking of the image projected by the video projection device and reduce the shaking.
実施例1における映像投射装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of a video projection device in Embodiment 1. FIG. 実施例1における画像をブロック分割する説明図である。FIG. 6 is an explanatory diagram of dividing an image into blocks according to the first embodiment. 実施例1における揺れ補正後の出力画像を示す図である。FIG. 6 is a diagram illustrating an output image after shake correction in the first embodiment. 実施例1における映像投射装置の投射パターン画像を示す図である。It is a figure which shows the projection pattern image of the video projection apparatus in Example 1. FIG. 実施例1における投射パターン画像の撮像画像を示す図である。It is a figure which shows the picked-up image of the projection pattern image in Example 1. FIG. 実施例1における映像投射装置の処理フロー図である。FIG. 3 is a process flow diagram of the video projection apparatus in Embodiment 1. 実施例2における映像投射装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the video projection apparatus in Example 2. FIG. 実施例2におけるパターン画像の撮像装置が撮像した撮像画像を示す図である。FIG. 10 is a diagram illustrating a captured image captured by the pattern image capturing apparatus according to the second embodiment. 実施例2におけるパターン画像の撮像部が撮像した撮像画像を示す図である。FIG. 10 is a diagram illustrating a captured image captured by a pattern image capturing unit according to the second embodiment. 実施例2における基準補正位置の設定を説明する図である。FIG. 10 is a diagram illustrating setting of a reference correction position in the second embodiment. 実施例3における映像投射装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the video projection apparatus in Example 3. FIG. 実施例3における補正ポイントの軌跡を示す図である。It is a figure which shows the locus | trajectory of the correction point in Example 3. FIG. 実施例4における映像投射装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the video projection apparatus in Example 4. FIG. 実施例4における揺れ補正部のブロック図である。FIG. 10 is a block diagram of a shake correction unit in Embodiment 4. 実施例4における映像投射装置入力映像と投射、撮像のタイミング図である。FIG. 12 is a timing diagram of video projection apparatus input video, projection, and imaging in Example 4. 実施例5における映像投射装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the video projection apparatus in Example 5. FIG. 実施例5におけるパターン画像を示す図である。It is a figure which shows the pattern image in Example 5. FIG.
 以下、本発明の実施例について図面を用いて説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is used for the same element and the overlapping description is abbreviate | omitted.
 本実施例では、パターンの揺れを検出して投射映像を補正する映像投射装置について説明する。 In the present embodiment, a video projection apparatus that detects the fluctuation of the pattern and corrects the projected video will be described.
 図1は、本実施例における映像投射装置の全体構成を示すブロック図である。図1において、110は映像投射装置であり、100は映像入力端子、111は映像信号処理部、112は揺れ補正部、113はパターン画像部、114は投射映像合成部、115は投射部、123は撮像部、122は撮像パターン検出部、121は制御部、130は位置情報格納部、117は投射用スクリーンである。以下、各々のブロックについて説明する。 FIG. 1 is a block diagram showing the overall configuration of the video projection apparatus in the present embodiment. In FIG. 1, 110 is a video projection device, 100 is a video input terminal, 111 is a video signal processing unit, 112 is a shake correction unit, 113 is a pattern image unit, 114 is a projection video composition unit, 115 is a projection unit, and 123. Is an imaging unit, 122 is an imaging pattern detection unit, 121 is a control unit, 130 is a position information storage unit, and 117 is a projection screen. Hereinafter, each block will be described.
 映像入力端子100には、例えば、パソコンやメディアプレーヤー等の映像信号を出力する機器が接続され、映像入力端子100から映像信号が入力される。 The video input terminal 100 is connected to a device that outputs a video signal, such as a personal computer or a media player, and the video signal is input from the video input terminal 100.
 映像信号処理部111は、映像入力端子100から入力された映像信号を後段の揺れ補正部112で信号処理可能な映像信号への変換処理を行う。例えば、入力された映像信号がアナログ信号である場合は、デジタル信号への変換処理を行う。また、例えば、コンポーネント信号が入力される場合はRBG信号に変換する等、必要に応じた映像信号処理を行う。 The video signal processing unit 111 converts the video signal input from the video input terminal 100 into a video signal that can be processed by the shake correction unit 112 at the subsequent stage. For example, when the input video signal is an analog signal, conversion processing to a digital signal is performed. For example, when a component signal is input, video signal processing is performed as necessary, such as conversion to an RBG signal.
 揺れ補正部112は、映像投射装置110が投射した映像に揺れが生じている場合に、映像信号処理部111から出力された信号に対して、後で説明する制御部121が設定した補正パラメータに応じて揺れ補正を行う。 The shake correction unit 112 applies correction parameters set by the control unit 121, which will be described later, to the signal output from the video signal processing unit 111 when the video projected by the video projection device 110 is shaken. Perform shake correction accordingly.
 揺れの補正は、例えば、映像信号処理部111から出力された1フレームの画像を複数のブロックに分割し、各々のブロック毎の頂点の移動先の座標を、制御部121が補正パラメータとして揺れ補正部112に与え、揺れ補正部112はブロック毎に補正パラメータで指定された座標になるようにブロック内の画像を台形変換、回転あるいは位置を移動し、各ブロックの画像を合成することにより揺れ補正画像を生成する。 The shake correction is performed, for example, by dividing one frame image output from the video signal processing unit 111 into a plurality of blocks, and the control unit 121 uses the coordinates of the movement destination of the vertex for each block as a correction parameter. The shake correction unit 112 converts the image in the block into a trapezoid, rotates or moves the position so that the coordinates specified by the correction parameter for each block, and synthesizes the image of each block to correct the shake. Generate an image.
 図2に1フレームの画像のブロック分割例を示す。図2は、映像信号処理部111から出力された1フレームの画像を3×3に分割した例であり、300は1フレームの画像、310は後で説明するパターン画像の表示位置、P11、P12、P13、P14、P21、P22、P23、P24、P31、P32、P33、P34、P41、P42、P43、P44はパターン画像の各ブロックの頂点座標を示しており、揺れ補正の補正ポイントとする。例えば、揺れ補正パラメータは各補正ポイントの移動先の座標あるいは方向を持った移動量で与えられる。 Fig. 2 shows an example of block division of one frame image. FIG. 2 is an example in which one frame image output from the video signal processing unit 111 is divided into 3 × 3, 300 is an image of one frame, 310 is a display position of a pattern image described later, and P11 and P12. , P13, P14, P21, P22, P23, P24, P31, P32, P33, P34, P41, P42, P43, and P44 indicate the vertex coordinates of each block of the pattern image, and are used as shake correction correction points. For example, the shake correction parameter is given as a movement amount having the coordinates or direction of the movement destination of each correction point.
 図3に揺れ補正部112が揺れ補正した後の出力画像例を示す。図3は、揺れ補正部112で、ブロック毎に画像を変換する例を示しており、P11a、P12a、P21a、P22aは揺れ補正パラメータで設定された左上ブロックの頂点座標を示し、300aは揺れ補正後の1フレームの揺れ補正画像を示している。例えば、P11、P12、P21、P22を頂点に持つブロックの移動先の座標が、P11a、P12a、P21a、P22aとすると、揺れ補正部112は、長方形P11、P12、P21、P22から四辺形P11a、P12a、P21a、P22aにする変換を行う。他のブロックにおいても、揺れ補正部112は、同様に順次画像を変換し、変換した全ブロックをつなぎ合わせて1フレームの揺れ補正画像を生成する。 FIG. 3 shows an example of an output image after the shake correction unit 112 corrects the shake. FIG. 3 shows an example in which the shake correction unit 112 converts an image for each block. P11a, P12a, P21a, and P22a indicate the vertex coordinates of the upper left block set by the shake correction parameter, and 300a indicates the shake correction. The subsequent one-frame shake correction image is shown. For example, if the coordinates of the movement destination of the block having P11, P12, P21, and P22 as vertices are P11a, P12a, P21a, and P22a, the shake correcting unit 112 can convert the quadrilateral P11a, P11a, Conversion to P12a, P21a, and P22a is performed. In other blocks as well, the shake correction unit 112 converts images sequentially in the same manner, and connects all the converted blocks to generate a shake correction image of one frame.
 なお、揺れ補正を行うために、画像を揺れる前の表示位置よりも外側に配置する必要がある場合がある。揺れる前の表示位置を投射部115が投射可能な画像サイズにすると、揺れにより投射部115の投射可能な位置の外側に画像を配置する必要が生じ、表示したい画像が途切れて表示できない場合がある。そのため、入力された映像信号の画像サイズを予め縮小しておくことで、画像が途切れるのを防ぐことができる。揺れ補正部112では、これらを考慮して、揺れの補正と同時に画像データの縮小を行ってもよい。 In addition, in order to perform shake correction, it may be necessary to arrange the image outside the display position before shaking. If the display position before shaking is set to an image size that can be projected by the projection unit 115, the image needs to be arranged outside the position where the projection unit 115 can project due to shaking, and the image to be displayed may be interrupted and cannot be displayed. . Therefore, it is possible to prevent the image from being interrupted by reducing the image size of the input video signal in advance. In consideration of these, the shake correction unit 112 may reduce the image data simultaneously with the shake correction.
 また、図2および図3におけるブロック分割の境界線およびブロックの頂点は説明のために図示しているが、実際の画像上に描くものではない。またブロック分割数は3×3に限ったものではなく、揺れの状態や補正の性能に合わせて他の分割数としてもよい。 Further, although the boundary lines and block vertices in FIG. 2 and FIG. 3 are illustrated for explanation, they are not drawn on an actual image. The number of block divisions is not limited to 3 × 3, and other division numbers may be used in accordance with the state of shaking and the performance of correction.
 パターン画像部113は、投射映像の揺れを検出するためのパターン画像が格納されている。パターン画像は、補正ポイントで特異点をもつパターン画像であり、例えば、揺れ補正部112が映像を分割するブロックの頂点が検出できる画像であればよく、ブロックの頂点位置が途切れている枠線や格子でもよく、線の代わりにブロックの頂点位置がドットやクロスのパターンでもよい。また、パターン画像を可視光で投射する場合は、パターン画像は揺れ補正部112が出力する揺れ補正画像に重なる部分のパターンは使用せずに、揺れ補正画像の外側に配置されるパターンのみを使用する。 The pattern image unit 113 stores a pattern image for detecting the shaking of the projected video. The pattern image is a pattern image having a singular point at a correction point. For example, the image may be any image in which the shake correction unit 112 can detect the vertices of a block that divides the video. A lattice may be used, and the vertex position of a block may be a dot or cross pattern instead of a line. In addition, when projecting a pattern image with visible light, the pattern image does not use the pattern that overlaps the shake correction image output from the shake correction unit 112, but uses only the pattern arranged outside the shake correction image. To do.
 図4に、可視光で投射するパターン画像例を示す。210は映像投射装置110が投射する全画像領域であり、211は揺れ補正画像を表示する領域であり、全画像領域210の内側で、揺れ画像領域211の外側にパターン画像212が配置されている。パターン画像212は、例えば、水平x方向および垂直y方向で白黒のラインが交互に表示され、黒のラインは、頂点C1、C2、C3、C4を持つ四角形であり、B11、B12、B21、B22、B31、B32、B41、B42の位置で途切れている。B21とB22、B31とB32のy方向の座標位置は等しく、B11とB41、B12とB42のx方向の座標位置は等しい。C1、C2、C3、C4、B11、B12、B21、B22、B31、B32、B41、B42が揺れ補正部112が映像を分割する揺れ補正ポイントに対応する。すなわち、B**は黒のラインが途切れているのでブロックの頂点として検出でき、また、C**は角部であるので同様にブロックの頂点として検出できる。 FIG. 4 shows an example of a pattern image projected with visible light. Reference numeral 210 denotes an entire image area projected by the video projection apparatus 110, and reference numeral 211 denotes an area for displaying a shake correction image. A pattern image 212 is arranged inside the entire image area 210 and outside the shake image area 211. . In the pattern image 212, for example, black and white lines are alternately displayed in the horizontal x direction and the vertical y direction, and the black lines are rectangles having vertices C1, C2, C3, and C4, and B11, B12, B21, and B22. , B31, B32, B41, B42. B21 and B22, B31 and B32 have the same coordinate position in the y direction, and B11 and B41, and B12 and B42 have the same coordinate position in the x direction. C1, C2, C3, C4, B11, B12, B21, B22, B31, B32, B41, and B42 correspond to the shake correction points at which the shake correction unit 112 divides the video. That is, B ** can be detected as a vertex of the block because the black line is interrupted, and C ** can be similarly detected as a vertex of the block because it is a corner.
 なお、本パターン画像例では、図2の揺れ補正ポイントP22、P23、P32、P33に対応したパターン画像はないが、後述する制御部121で検出可能な揺れ補正ポイントから各揺れ補正ポイントの移動量を算出することにより補正を行うことができる。また、図4は、揺れ補正部が映像を3×3のブロックに分割して補正する例であるが、揺れ補正部112のブロックに対応していれば、分割数はこれに限ったものではなく、さらに細かく分割することにより、処理量が多くなるが、より高精度な補正をすることができる。 In this pattern image example, there is no pattern image corresponding to the shake correction points P22, P23, P32, and P33 in FIG. 2, but the movement amount of each shake correction point from the shake correction point that can be detected by the control unit 121 described later. Correction can be performed by calculating. FIG. 4 shows an example in which the shake correction unit divides the image into 3 × 3 blocks for correction. However, the number of divisions is not limited to this as long as it corresponds to the block of the shake correction unit 112. However, further fine division can increase the amount of processing, but more accurate correction can be performed.
 また、パターン画像は位置が検出できる画像であれば図示したものに限ったものではなく、白黒反転したパターンとしてもよいし、白黒以外の色を使ったパターンとしてもよい。 Further, the pattern image is not limited to the one shown in the figure as long as the position can be detected, and may be a black and white inverted pattern or a pattern using colors other than black and white.
 図1において、投射映像合成部114は、揺れ補正部112から出力される揺れ補正画像と、パターン画像部113のパターン画像とを合成し、投射用映像信号を生成し、出力する。 In FIG. 1, the projection video synthesis unit 114 synthesizes the shake correction image output from the shake correction unit 112 and the pattern image of the pattern image unit 113 to generate and output a projection video signal.
 投射部115は、光源と、光変調部と、投射用レンズ等で構成され、光源から出力された光を光変調部で変調し、投射用レンズで投射用スクリーン117上に映像を表示する。光変調部は、光の透過率や反射率を変えることにより光を変調できるものであればよく、例えば、液晶パネルや、液晶パネルとダイクロイックミラー、デジタルミラーデバイスとカラーホイール等で構成される。 The projection unit 115 includes a light source, a light modulation unit, a projection lens, and the like, modulates the light output from the light source by the light modulation unit, and displays an image on the projection screen 117 with the projection lens. The light modulation unit may be any component that can modulate light by changing the light transmittance or reflectance, and includes, for example, a liquid crystal panel, a liquid crystal panel and a dichroic mirror, a digital mirror device, and a color wheel.
 なお、投射用スクリーン117は、プロジェクタ用のスクリーンに限ったものではなく、映像の投射が可能なものであれば、例えば、壁やカーテン等でもよい。 The projection screen 117 is not limited to the projector screen, and may be, for example, a wall or a curtain as long as it can project an image.
 撮像部123は、投射部115が投射用スクリーンに投射した映像を撮影し、撮像映像信号として出力する。撮像部123は、例えば、ズームレンズ及びフォーカスレンズを含むレンズ群、アイリス、シャッタ、CCDまたはCMOSなどの撮像素子等で構成されるイメージセンサ、増幅器及びADコンバータ等を適宜用いて構成され、イメージセンサで受光した光学像を光電変換し、信号に分離処理とデモザイキング処理等を行い、撮像映像信号を生成する。 The imaging unit 123 captures an image projected by the projection unit 115 onto the projection screen, and outputs it as an captured image signal. The imaging unit 123 is configured by appropriately using, for example, a lens group including a zoom lens and a focus lens, an image sensor including an iris, a shutter, an imaging element such as a CCD or a CMOS, an amplifier, an AD converter, and the like. The optical image received at is photoelectrically converted, and the signal is subjected to separation processing, demosaicing processing, and the like to generate a captured video signal.
 撮像パターン検出部122は、撮像部123から出力された撮像映像信号から、パターン画像を検出し、パターン画像にある補正ポイントを検出する。 The imaging pattern detection unit 122 detects a pattern image from the captured video signal output from the imaging unit 123, and detects a correction point in the pattern image.
 図5に、図4に示したパターン画像を重畳した映像を映像投射装置110で投射した場合の、撮像部123からの撮像映像信号の1フレーム分の撮像画像例を示す。図5において、400は撮像画像の全範囲であり、212bは撮像したパターン画像、C1b、C2b、C3b、C4bは撮像したパターン画像の頂点部分、B11b、B12b、B21b、B22b、B31b、B32b、B41b、B42bは撮像したパターン画像の途切れている部分を示している。各頂点部分および途切れている部分は図4に示したパターン画像の、各頂点部分および各途切れている部分に対応している。 FIG. 5 shows an example of a captured image of one frame of the captured video signal from the imaging unit 123 when the video projection device 110 projects a video on which the pattern image shown in FIG. 4 is superimposed. In FIG. 5, 400 is the entire range of the captured image, 212b is the captured pattern image, C1b, C2b, C3b, and C4b are the apex portions of the captured pattern image, B11b, B12b, B21b, B22b, B31b, B32b, B41b , B42b indicates a discontinuous portion of the captured pattern image. Each vertex part and the discontinuous part correspond to each vertex part and each discontinuous part of the pattern image shown in FIG.
 撮像パターン検出部122は、例えば、C1b、C2b、C3b、C4b、B11b、B12b、B21b、B22b、B31b、B32b、B41b、B42bを補正ポイントとして検出し、各補正ポイントの位置情報を設置時の位置情報として出力する。 The imaging pattern detection unit 122 detects, for example, C1b, C2b, C3b, C4b, B11b, B12b, B21b, B22b, B31b, B32b, B41b, and B42b as correction points, and the position information of each correction point is the position at the time of installation. Output as information.
 制御部121は、撮像パターン検出部122で検出した補正ポイントの位置と、位置情報格納部130に格納されている基準となる補正ポイントの位置を比較し、補正ポイントのずれ量をパターン画像のずれ量に換算し、揺れ補正パラメータとして揺れ補正部112に設定する。ここで、基準となる補正ポイントは、例えば、揺れ補正開始直後の初回に得られた補正ポイントとし、制御部121は、補正初回時に撮像パターン画像で検出された位置情報を位置情報格納部130に格納する。位置情報格納部130に基準位置情報がない場合、制御部121は、初回補正時には揺れ補正量がゼロの補正パラメータを制御部121に設定する。このように、初回の補正ポイントを基準位置とすることで、投射スクリーン117と撮像部123の位置に関係なく揺れ補正が可能になる。なお、任意の過去の時点での補正ポイントとしても良い。また、1回の位置の取得では、投射スクリーン117が大きく揺れている状態を基準としてしまう可能性があるため、キャリブレーションの期間を設け、過去の複数フレーム取得した補正ポイントの中間位置あるいは平均位置を基準補正ポイントとしてもよい。この場合、より適切な位置への補正が可能になる。 The control unit 121 compares the position of the correction point detected by the imaging pattern detection unit 122 with the position of the reference correction point stored in the position information storage unit 130, and determines the amount of shift of the correction point from the pattern image shift. It is converted into a quantity and set in the shake correction unit 112 as a shake correction parameter. Here, the reference correction point is a correction point obtained for the first time immediately after the start of shake correction, for example, and the control unit 121 stores the position information detected in the captured pattern image at the time of the first correction in the position information storage unit 130. Store. When there is no reference position information in the position information storage unit 130, the control unit 121 sets a correction parameter having a shake correction amount of zero in the control unit 121 during the initial correction. In this way, by setting the first correction point as the reference position, the shake correction can be performed regardless of the positions of the projection screen 117 and the imaging unit 123. In addition, it is good also as a correction point in arbitrary past time points. In addition, since there is a possibility that the position of the projection screen 117 is greatly shaken in one acquisition of the position, a calibration period is provided, and an intermediate position or an average position of correction points acquired in a plurality of past frames. May be used as a reference correction point. In this case, correction to a more appropriate position is possible.
 また、パターン画像を可視光で投射し、補正ポイントを周辺部にしか設けられないような場合は、例えば図2の補正ポイントP21、P22,P32およびP33は直接測位ができないので、周辺部の補正ポイントから、補正座標を算出して、揺れ補正部112に設定する。検出できない補正ポイントの位置の算出方法としては、例えば、周辺部分の補正ポイントの移動量を算出する補正ポイントまでの距離に応じて重みづけをして、移動量を算出する。制御部121は、検出した補正ポイントと算出した補正ポイントとの補正座標を揺れ補正部112の補正パラメータとして設定する。 Further, when a pattern image is projected with visible light and correction points can be provided only at the peripheral part, for example, correction points P21, P22, P32 and P33 in FIG. Correction coordinates are calculated from the points and set in the shake correction unit 112. As a method for calculating the position of the correction point that cannot be detected, for example, the movement amount is calculated by weighting according to the distance to the correction point for calculating the movement amount of the correction point in the peripheral portion. The control unit 121 sets the correction coordinates between the detected correction point and the calculated correction point as a correction parameter for the shake correction unit 112.
 以上説明した映像投射装置110により、映像投射先の揺れにより投射映像が移動する場合においても、常に補正が可能であり、揺れのない投射映像を得ることができる。 With the video projection device 110 described above, even when the projected video moves due to the shaking of the video projection destination, correction can always be made and a projection video without shaking can be obtained.
 次に、映像投射装置110の制御部121と揺れ補正部112の処理フローについて、以下説明する。 Next, the processing flow of the control unit 121 and the shake correction unit 112 of the video projection device 110 will be described below.
 図6は、本実施例における映像投射装置の処理フローである。図6において、映像投射装置110は、例えば、電源投入時や揺れ補正開始時にステップS1001で、補正パラメータと基準位置の初期化を行う。次に、揺れ補正部112はステップS1002で入力された映像信号を取得し、ステップS1003で、揺れ補正パラメータに応じた揺れ補正を行い揺れ補正画像を出力する。ここで、揺れ補正パラメータが初期化状態にある場合は、揺れ補正を行っていない画像と同様な画像を揺れ補正画像として出力する。ステップS1004で、投射映像合成部114で揺れ補正画像とパターン画像とを合成する。ステップS1005で、投射映像合成部114からの合成画像を、必要に応じて投射部115が投射する投射する映像に変換し、投射部で映像投射を行う。ステップS1006で投射された映像を撮像部で撮像する。ステップS1007で、撮像した画像からパターン画像を検出し、さらに、補正ポイント位置を検出する。ステップS1008で、揺れ量を算出する基準となる位置情報が設定されているか判断する。ここで、基準となる位置情報が設定されていない場合は、ステップS1009で取得した補正ポイント位置を基準位置情報として設定し、次のステップS1012の補正終了判定にすすむ。ステップS1008で基準位置情報が設定済みである場合は、ステップS1010で、補正ポイント位置情報と基準位置情報を比較し、揺れ補正パラメータを算出する。また、必要に応じて、周辺部の揺れ補正パラメータから、中央の補正ポイント位置の揺れ量を算出する。ステップS1011で揺れ補正部112に揺れ補正パラメータを設定し、ステップS1012で補正終了の判定を行い、補正を終了しない場合は、ステップS1002の映像信号取得に戻る。ステップS1012で補正終了の判定をした場合は、揺れ補正を終了する。 FIG. 6 is a processing flow of the video projection apparatus in the present embodiment. In FIG. 6, the video projection apparatus 110 initializes correction parameters and reference positions in step S1001, for example, when the power is turned on or when shake correction is started. Next, the shake correction unit 112 acquires the video signal input in step S1002, and in step S1003, performs shake correction according to the shake correction parameter and outputs a shake correction image. Here, when the shake correction parameter is in the initialized state, an image similar to an image not subjected to shake correction is output as a shake correction image. In step S1004, the projection image synthesizing unit 114 synthesizes the shake correction image and the pattern image. In step S1005, the composite image from the projection video composition unit 114 is converted into a projected image projected by the projection unit 115 as necessary, and video projection is performed by the projection unit. The image projected in step S1006 is imaged by the imaging unit. In step S1007, a pattern image is detected from the captured image, and further, a correction point position is detected. In step S1008, it is determined whether position information serving as a reference for calculating the amount of shaking is set. If the reference position information is not set, the correction point position acquired in step S1009 is set as the reference position information, and the correction end determination in the next step S1012 is performed. If the reference position information has been set in step S1008, in step S1010, the correction point position information is compared with the reference position information, and a shake correction parameter is calculated. Further, if necessary, the fluctuation amount of the center correction point position is calculated from the fluctuation correction parameters of the peripheral portion. In step S1011, the shake correction parameter is set in the shake correction unit 112. In step S1012, the end of the correction is determined. If the correction is not finished, the process returns to the video signal acquisition in step S1002. If it is determined in step S1012 that the correction has been completed, the shake correction is terminated.
 以上説明したように、本実施例では、スクリーン上の揺れ量を測定し、随時投射する画像を揺れがないように補正することにより、スクリーンが揺れている状態においても、映像投射装置が投射する映像の揺れを補正でき、揺れを低減できる。 As described above, in this embodiment, the image projection apparatus projects the image even when the screen is shaken by measuring the amount of shake on the screen and correcting the image to be projected at any time so as not to shake. It can correct the shaking of the image and reduce the shaking.
 本実施例は、初期設定時の投射画像の歪みを揺れ補正と組み合わせる場合の、初期の補正データを基準補正データとして使用する映像投射装置について説明する。 This embodiment describes a video projection apparatus that uses initial correction data as reference correction data when distortion of a projected image at the time of initial setting is combined with shake correction.
 図7は、本実施例における映像投射装置の全体構成を示すブロック図である。図1と同じものには同じ番号を付し、説明は省略する。図7において、140は撮像装置であり、例えば、ズームレンズ及びフォーカスレンズを含むレンズ群、アイリス、シャッタ、CCDまたはCMOSなどの撮像素子等で構成されるイメージセンサ、増幅器及びADコンバータ等を適宜用いて構成され、イメージセンサで受光した光学像を光電変換し、信号に分離処理とデモザイキング処理等を行い、映像信号を生成し、出力する。 FIG. 7 is a block diagram showing the overall configuration of the video projection apparatus in the present embodiment. The same parts as those in FIG. In FIG. 7, reference numeral 140 denotes an image pickup apparatus. For example, an image sensor including a lens group including a zoom lens and a focus lens, an image pickup device such as an iris, a shutter, a CCD or a CMOS, an amplifier, and an AD converter are used as appropriate. The optical image received by the image sensor is photoelectrically converted, the signal is subjected to separation processing and demosaicing processing, etc., and a video signal is generated and output.
 撮像装置140は、映像投射装置500の初期設定時の投射画像の歪みを補正したい位置、例えば、映像投射装置500の映像を投射用スクリーン117に投射してプレゼンテーションを行う場合は、プレゼンテーションを受ける観客の位置の中央等に配置され、映像投射装置500が投射した映像を撮像する。撮像装置140は、撮像した映像を、映像信号として映像投射装置500に送る。ここで、映像信号は、動画像に限らず、1枚の静止画像データで構わない。 The imaging device 140 is a position where the distortion of the projected image at the time of initial setting of the video projection device 500 is to be corrected, for example, when a video is projected from the video projection device 500 onto the projection screen 117 and a presentation is given. The image projected by the image projection device 500 is imaged at the center of the position. The imaging device 140 sends the captured video to the video projection device 500 as a video signal. Here, the video signal is not limited to a moving image, and may be one piece of still image data.
 図8に、図4に示したパターン画像を映像投射装置500で投射し、撮像装置140で撮像した撮像画像を示す。図8において、600は撮像画像の全範囲であり、212dは撮像したパターン画像、C1d、C2d、C3d、C4dは撮像パターン画像の頂点部分、B11d、B12d、B21d、B22d、B31d、B32d、B41d、B42dは撮像パターン画像の途切れている部分を示している。各頂点部分および途切れている部分は図4に示したパターン画像の、各頂点部分および各途切れている部分に対応している。すなわち、撮像装置140は、映像投射装置500の設置時の投射画像の歪み画像を入力する手段である。 FIG. 8 shows a captured image obtained by projecting the pattern image shown in FIG. In FIG. 8, 600 is the entire range of the captured image, 212d is the captured pattern image, C1d, C2d, C3d, and C4d are the apex portions of the captured pattern image, B11d, B12d, B21d, B22d, B31d, B32d, B41d, B42d indicates a portion where the captured pattern image is interrupted. Each vertex part and the discontinuous part correspond to each vertex part and each discontinuous part of the pattern image shown in FIG. That is, the imaging device 140 is a means for inputting a distortion image of a projection image when the video projection device 500 is installed.
 図9に、図4に示したパターン画像を映像投射装置500で投射し、撮像部123で撮像した撮像画像を示す。図9において、610は撮像画像の全範囲であり、212eは撮像したパターン画像、C1e、C2e、C3e、C4eは撮像パターン画像の頂点部分、B11e、B12e、B21e、B22e、B31e、B32e、B41e、B42eは撮像パターン画像の途切れている部分を示している。各頂点部分および途切れている部分は図4に示したパターン画像の、各頂点部分および各途切れている部分に対応している。 FIG. 9 shows a captured image obtained by projecting the pattern image shown in FIG. In FIG. 9, 610 is the entire range of the captured image, 212e is the captured pattern image, C1e, C2e, C3e, and C4e are the apex portions of the captured pattern image, B11e, B12e, B21e, B22e, B31e, B32e, B41e, B42e indicates a portion where the captured pattern image is interrupted. Each vertex part and the discontinuous part correspond to each vertex part and each discontinuous part of the pattern image shown in FIG.
 制御部121は、撮像パターン検出部122に、まず撮像装置140からのパターン画像の処理をさせ、次に、撮像部123からのパターン画像の解析処理をさせる。
撮像パターン検出部122は、制御部121の指示に従い、撮像装置140から取得した画像データ600から設置時の補正ポイントであるパターン画像の頂点部C1d、C2d、C3d、C4dと、パターン画像の途切れている部分B11d、B12d、B21d、B22d、B31d、B32d、B41d、B42dの位置を検出し、位置情報を出力する。制御部121は、撮像パターン検出部122が出力した位置情報を設置時位置情報として格納する。
The control unit 121 causes the imaging pattern detection unit 122 to first process the pattern image from the imaging device 140, and then cause the pattern image from the imaging unit 123 to be analyzed.
In accordance with an instruction from the control unit 121, the imaging pattern detection unit 122 interrupts the pattern images from the vertexes C1d, C2d, C3d, and C4d of the pattern image that are correction points at the time of installation from the image data 600 acquired from the imaging device 140. The positions of the existing parts B11d, B12d, B21d, B22d, B31d, B32d, B41d, and B42d are detected, and position information is output. The control unit 121 stores the position information output by the imaging pattern detection unit 122 as installation position information.
 次に、撮像パターン検出部122は、撮像部123から取得した画像データ610から設置時の補正ポイントであるパターン画像の頂点部C1e、C2e、C3e、C4dと、画像パターンの途切れている部分B11e、B12e、B21d、B22d、B31e、B32e、B41e、B42eの位置を検出し、位置情報を出力する。制御部121は、撮像パターン検出部122から取得した位置情報を、プレ基準位置情報として格納する。 Next, the imaging pattern detection unit 122 uses the pattern data vertexes C1e, C2e, C3e, and C4d, which are correction points at the time of installation, from the image data 610 acquired from the imaging unit 123, and a portion B11e where the image pattern is interrupted. The positions of B12e, B21d, B22d, B31e, B32e, B41e, and B42e are detected, and position information is output. The control unit 121 stores the position information acquired from the imaging pattern detection unit 122 as pre-reference position information.
 制御部121は、設置時位置情報とプレ基準位置情報から基準位置情報を算出する。算出方法としては、例えば、プレ基準位置情報にある各補正ポイントの位置に対して、設置時位置とは反対方向に、同じ差分の距離を移動したポイントを基準補正ポイントとする。 The control unit 121 calculates reference position information from the installation position information and the pre-reference position information. As a calculation method, for example, a point obtained by moving the same difference distance in the direction opposite to the installation position with respect to the position of each correction point in the pre-reference position information is set as a reference correction point.
 図10に基準補正位置の設定例を示す。図10において、620は、揺れ補正を行う画像空間全体を示し、P11e、P12e、P13e、P14e、P21e、P24e、P31e、P34e、P41e、P42e、P43e、P44eは基準位置補正ポイントを示している。各々の基準位置補正ポイントは、図8で示した212dの補正ポイントの位置情報と、図9で示した212eの補正ポイント位置情報から算出し、基準位置情報として位置情報格納部130に格納する。以降の動作は実施例1と同様なため、説明は省略する。 Fig. 10 shows an example of setting the reference correction position. In FIG. 10, reference numeral 620 denotes an entire image space where shake correction is performed, and P11e, P12e, P13e, P14e, P21e, P24e, P31e, P34e, P41e, P42e, P43e, and P44e denote reference position correction points. Each reference position correction point is calculated from the position information of the correction point 212d shown in FIG. 8 and the correction point position information 212e shown in FIG. 9, and is stored in the position information storage unit 130 as reference position information. Since the subsequent operation is the same as that of the first embodiment, the description thereof is omitted.
 なお、初期設定でスクリーン内の歪みを補正する場合は、撮像装置140と撮像部123の撮像するタイミングを合わせ、撮像装置140の撮像画像の周辺部の測定位置から近似直線を算出し、算出した直線からの位置のずれ量を加味して基準補正ポイントを作成してもよい。この場合、設置位置により生じる台形歪み以外に、例えば、波をうっているカーテンなどの画像が歪んで見える投射場所でも、歪みのない投射画像を得ることができる。 In addition, when correcting the distortion in the screen by the initial setting, the approximate line is calculated from the measurement position of the peripheral portion of the captured image of the imaging device 140 by matching the timing of imaging of the imaging device 140 and the imaging unit 123. A reference correction point may be created in consideration of the amount of positional deviation from a straight line. In this case, in addition to the trapezoidal distortion caused by the installation position, for example, a projection image without distortion can be obtained even in a projection place where an image such as a wave curtain is distorted.
 また、撮像距離や撮像サイズにより、撮像部123で撮像されたパターン画像と撮像装置140で撮像されたパターン画像のサイズが異なる場合があるが、例えば、撮像装置140で撮像されたパターン画像のサイズを撮像部123で撮像されたパターン画像のサイズに換算して補正する等、どちらかのサイズに換算して処理することにより揺れ補正を実現できる。 Further, the pattern image captured by the imaging unit 123 and the pattern image captured by the imaging device 140 may differ depending on the imaging distance and the imaging size. For example, the size of the pattern image captured by the imaging device 140 may be different. Can be realized by converting to a size of the pattern image captured by the imaging unit 123 and correcting the pattern image.
 以上、撮像装置140と撮像部123の撮像した画像を1枚ずつ使用する例について説明したが、複数枚の画像データから検出した位置情報の平均値、あるいは、代表値を使用してもよい。この場合、キャリブレーションに時間はかかるが、より精度の高い揺れ補正が実現できる。
なお、撮像装置140は、撮像専用機器に限ったものではなく、撮像機能が備わり、画像データあるいは映像信号を出力できるものであればよい。
The example in which the images captured by the imaging device 140 and the imaging unit 123 are used one by one has been described above. However, an average value of position information detected from a plurality of pieces of image data or a representative value may be used. In this case, although calibration takes time, more accurate shake correction can be realized.
The imaging device 140 is not limited to a dedicated imaging device, and may be any device that has an imaging function and can output image data or a video signal.
 また、映像投射装置500の撮像部123が映像装置500とは別の、任意の場所に移動ができるものであれば、撮像装置140を撮像部123が兼用するようにしてもかまわない。例えば、撮像部123は静止画保存用のメモリを有し、設置時に投射用スクリーン117の正面の映像を撮影し、静止画像保存メモリに格納する。そして、撮像部123を映像投射装置500の映像を補正したい位置に移動して投射用スクリーン117の映像を撮影する。撮像部123を映像投射装置に接続すると、保存された静止画像からパターン画像を検出するようにしてもよい。 Further, if the imaging unit 123 of the video projection device 500 can move to an arbitrary place different from the video device 500, the imaging unit 140 may be used as the imaging unit 123. For example, the imaging unit 123 has a memory for storing a still image, captures an image of the front of the projection screen 117 at the time of installation, and stores the image in the still image storage memory. Then, the imaging unit 123 is moved to a position where the video of the video projection device 500 is to be corrected, and the video on the projection screen 117 is captured. When the imaging unit 123 is connected to the video projection device, a pattern image may be detected from the stored still image.
 以上説明したように本実施例によれば、映像投射装置の設置時の投射画像の歪み画像を入力する手段を設け、歪み画像を基準となる位置情報に反映することで、例えば投射先と映像投射装置が平行でない状態においても、台形歪みがなく、かつ揺れのない、または低減された投射映像を得ることが出来る。 As described above, according to the present embodiment, means for inputting a distorted image of a projected image at the time of installation of the video projection device is provided, and the distorted image is reflected in reference position information, for example, a projection destination and a video. Even in a state where the projection apparatus is not parallel, it is possible to obtain a projection image that is free from trapezoidal distortion and is free from shaking or reduced.
 本実施例は、揺れ量の変化の軌跡から揺れ量を予測し、揺れ補正を行う映像投射装置について説明する。 In this embodiment, an image projection apparatus that predicts a shake amount from a change locus of the shake amount and performs shake correction will be described.
 図11は、本実施例における映像投射装置700の全体構成を示すブロック図である。図1と同じものには同じ番号を付し、説明は省略する。図11において、710は位置情報蓄積部であり、711は軌跡解析部であり、制御部121は撮像パターン検出部122で検出した補正ポイントの位置情報を位置情報蓄積部710に蓄積する。軌跡解析部711は、位置情報蓄積部710に蓄積された位置情報を解析し、予測した移動量および移動方向を算出する。 FIG. 11 is a block diagram showing the overall configuration of the video projection apparatus 700 in the present embodiment. The same parts as those in FIG. In FIG. 11, 710 is a position information storage unit, 711 is a trajectory analysis unit, and the control unit 121 stores position information of correction points detected by the imaging pattern detection unit 122 in the position information storage unit 710. The trajectory analysis unit 711 analyzes the position information stored in the position information storage unit 710 and calculates the predicted movement amount and movement direction.
 図12に補正ポイントの揺れの軌跡例を示す。図12は、撮像パターン検出部122が検出した補正ポイントの位置の移動例を示している。ある補正ポイントが位置m0から1フレーム毎にm1、m2、m3と移動していることを示している。このように、軌跡解析部711では、投射用スクリーン117の揺れが周期的なもので、例えば補正ポイントが円運動をしていると判断した場合には、次の補正ポイントの予測位置を算出する。なお、軌跡解析部711では、上記説明した周期的な揺れは容易に予測できるが、予測データが少ない、あるいは、投射用スクリーンが決まった動きをしていない場合は予測できない、あるいは、予測位置が大きくはずれて揺れを大きく見せる原因になる。このようなことを防止するために、軌跡解析部711では、予測位置の確からしさの指標を同時に出力し、制御部121で軌跡解析部711の予測位置情報の採用の有無を決めるようにしてもよい。 Fig. 12 shows an example of the locus of correction point fluctuation. FIG. 12 shows an example of movement of the position of the correction point detected by the imaging pattern detection unit 122. It shows that a certain correction point moves from the position m0 to m1, m2, and m3 every frame. In this way, the trajectory analysis unit 711 calculates the predicted position of the next correction point when it is determined that the projection screen 117 is periodically swaying, for example, the correction point is moving in a circular motion. . The trajectory analysis unit 711 can easily predict the periodic shaking described above, but cannot predict when the prediction data is small or the projection screen does not move, or the predicted position is It will cause a large shift and a large shaking. In order to prevent this, the trajectory analysis unit 711 outputs an index of the probability of the predicted position at the same time, and the control unit 121 determines whether or not the predicted position information of the trajectory analysis unit 711 is adopted. Good.
 以上説明したように、本実施例は、揺れを予測し、投射する前の映像に予測した補正を行うことにより、投射されてから撮像までに生じる揺れ補正の時間ずれを減らすことができ適切な補正が可能になる。 As described above, the present embodiment predicts shaking and performs the predicted correction on the image before projection, thereby reducing the time lag of shaking correction that occurs from projection until imaging. Correction becomes possible.
 本実施例は、揺れの速さに応じてフィードバック周波数を変える映像投射装置について説明する。本実施例は、揺れが速い場合に、特に有効である。 In this embodiment, a video projection apparatus that changes the feedback frequency in accordance with the speed of shaking will be described. This embodiment is particularly effective when the shaking is fast.
 図13は、本実施例における映像投射装置800の全体構成を示すブロック図である。図1と同じものには同じ番号を付し、説明は省略する。図13において、810は揺れ速度解析部であり、位置情報蓄積部710が蓄積した位置情報の移動量から揺れの速度を解析した結果を出力する。制御部121は、揺れ速度解析部810が解析した結果から、揺れの速度が速いと判断した場合は、入力される映像信号の周期よりも早い周期で揺れ補正を行うように、揺れ補正部を制御する。 FIG. 13 is a block diagram showing the overall configuration of the video projection apparatus 800 in this embodiment. The same parts as those in FIG. In FIG. 13, reference numeral 810 denotes a shaking speed analysis unit, which outputs a result of analyzing the shaking speed from the movement amount of the position information accumulated by the position information accumulation unit 710. When the control unit 121 determines from the result of the analysis by the shake speed analysis unit 810 that the speed of the shake is fast, the control unit 121 sets the shake correction unit to perform the shake correction at a period earlier than the period of the input video signal. Control.
 図14に揺れ補正部112のブロック図を示す。図14において、820は映像格納部、821は映像記憶部、822は画像変換部、823は補正画像記憶部、824は補正画像出力部である。 FIG. 14 shows a block diagram of the shake correction unit 112. In FIG. 14, 820 is a video storage unit, 821 is a video storage unit, 822 is an image conversion unit, 823 is a corrected image storage unit, and 824 is a corrected image output unit.
 映像格納部820は映像信号処理部111から出力された映像信号を映像記憶821に格納する。ここで、映像記憶部821は、複数フレームの映像信号を格納する容量を持ち、映像格納部820は、制御部121で指示された映像記憶部821の格納場所に映像信号を格納していく。 The video storage unit 820 stores the video signal output from the video signal processing unit 111 in the video storage 821. Here, the video storage unit 821 has a capacity for storing video signals of a plurality of frames, and the video storage unit 820 stores the video signal in the storage location of the video storage unit 821 specified by the control unit 121.
 画像変換部822は、映像記憶部821から必要な画像データを取り出し、揺れ補正部が設定した補正パラメータに従い、必要に応じて画像データの拡大、縮小、回転および移動の処理を行い、補正画像記憶部823に記憶する。補正画像出力部824は画像変換部822が1フレーム分の画像を補正画像記憶部823に格納したのちに、補正画像記憶部823から順次画像データを読み出し、揺れ補正映像信号として出力する。 The image conversion unit 822 takes out necessary image data from the video storage unit 821, performs image data enlargement / reduction, rotation, and movement processing according to the correction parameters set by the shake correction unit, and stores corrected image data. Stored in the unit 823. The corrected image output unit 824 sequentially reads out image data from the corrected image storage unit 823 after the image conversion unit 822 stores an image for one frame in the corrected image storage unit 823, and outputs it as a shake correction video signal.
 制御部121では、例えば、映像格納部820が映像記憶部821に映像信号を格納する周期よりも、画像変換部822が読み出す周期を早くすることにより、揺れ補正を高速化する。 In the control unit 121, for example, the image correction unit 822 speeds up the shake correction by making the read-out cycle of the image conversion unit 822 faster than the cycle in which the video storage unit 820 stores the video signal in the video storage unit 821.
 図15に、映像投射装置800の入力映像と投射、撮像のタイミング例を示す。
映像投射装置800の入力映像は、映像信号を出力している機器が指定した周期で順次映像1、映像2、映像3の順番で画像データが送られてくる。映像記憶部821は、例えば、映像信号を2フレーム分格納できる領域があり、各々を第1フレーム、第2フレームとした例を示している。第1フレームには、映像1のデータが記録されており、次の次のフレームの映像信号である映像3が入力されるまで、第1フレームに保持される。
FIG. 15 shows an example of the input video of the video projection device 800 and the timing of projection and imaging.
The input video of the video projection device 800 is sent image data in the order of video 1, video 2 and video 3 in the cycle specified by the device outputting the video signal. For example, the video storage unit 821 has an area in which a video signal can be stored for two frames. Data of video 1 is recorded in the first frame, and is held in the first frame until video 3 which is a video signal of the next frame is input.
 図15では、映像記憶部の第1フレームに映像1のデータが保持されている期間に、制御部112が、揺れ補正部で補正した揺れ補正画像を投射部で投射し、撮像部で撮像した撮像画像からパターン画像を検出して揺れ補正部に補正パラメータを設定するというサイクルを3回行っていることを示している。 In FIG. 15, the control unit 112 projects the shake correction image corrected by the shake correction unit in the period in which the data of the video 1 is held in the first frame of the video storage unit, and images the image pickup unit. This shows that the cycle of detecting the pattern image from the captured image and setting the correction parameter in the shake correction unit is performed three times.
 なお、本実施例の補正周期は一例であり、それに限ったものではなく、揺れの速さや、入力映像信号の周期により、入力信号に対する周期を設定してよい。また、揺れがゆっくりであり、高速の補正が必要ないと判断した場合は、入力される映像信号の周期に合わせて補正を行ってもよい。 Note that the correction cycle of the present embodiment is an example, and is not limited to this. The cycle for the input signal may be set according to the speed of shaking and the cycle of the input video signal. If it is determined that the shaking is slow and high-speed correction is not necessary, correction may be performed in accordance with the period of the input video signal.
 以上説明したように、本実施例では、位置情報蓄積部が蓄積した位置情報の移動量から揺れの速度を解析し、揺れの速度が速いと判断した場合は、入力される映像信号の周期よりも早い周期で揺れ補正を行うことで、揺れへの追従性を良くし、より揺れの無い映像が得られる。 As described above, in this embodiment, the speed of shaking is analyzed from the amount of movement of the position information accumulated by the position information accumulating unit, and when it is determined that the speed of shaking is fast, the period of the input video signal is However, by performing shake correction at an early cycle, the followability to the shake is improved, and an image without shake is obtained.
 本実施例では、パターン画像を非可視光で投射することにより、揺れている映像を見せることなく、かつ、精度よく揺れ補正を行う映像投射装置について説明する。 In the present embodiment, a video projection apparatus that corrects shaking accurately without projecting a shaking image by projecting a pattern image with invisible light will be described.
 図16は、本実施例における映像投射装置900の全体構成を示すブロック図である。図1と同じものには同じ番号を付し、説明は省略する。図16において、911は非可視光用のパターン画像部であり、投射部910は非可視光が投射可能な投射部であり、920は非可視光が撮像可能な撮像部である。 FIG. 16 is a block diagram showing the overall configuration of the video projection apparatus 900 in the present embodiment. The same parts as those in FIG. In FIG. 16, 911 is a pattern image unit for invisible light, a projection unit 910 is a projection unit capable of projecting invisible light, and 920 is an imaging unit capable of imaging invisible light.
 図17に非可視光のパターン画像例を示す。950は投射部910が投射する全映像領域であり、951は揺れがない場合の映像領域、D11、D12、D13、D14、D21、D22、D23、D24、D31、D32、D33、D34、D41、D42、D43、D44は、例えば、ドットパターン画像を示している。パターン画像はドットパターン位置がわかればよいため、ドットパターン部分とドットパターン部分以外の輝度の明暗が違っていればよく、図17とは明暗が反転した画像パターンを使用してもよい。また、パターンの形状は、ドットに限ったものではなく、四角や格子状の画像パターンとしてもよい。パターン画像は非可視光で投射されるため、画面中央部、例えばD22、D23、D32、D33の位置にも配置されている。 FIG. 17 shows an example of a pattern image of invisible light. Reference numeral 950 denotes an entire video area projected by the projection unit 910, and reference numeral 951 denotes a video area when there is no shaking, D11, D12, D13, D14, D21, D22, D23, D24, D31, D32, D33, D34, D41, D42, D43, and D44 represent, for example, dot pattern images. Since the pattern image only needs to know the dot pattern position, it is only necessary that the brightness and darkness of the brightness other than the dot pattern portion and the dot pattern portion be different. Further, the shape of the pattern is not limited to the dot, but may be a square or lattice image pattern. Since the pattern image is projected with non-visible light, it is also arranged at the center of the screen, for example, D22, D23, D32, and D33.
 投射部910は、可視光と非可視光を同時に投射可能な構成のものである。例えば液晶パネル1枚を用いた投射方式であれば、液晶パネルの画素は赤青緑のほかに非可視光、例えば、ある特定の赤外光のみを透過するフィルタが配置されている。赤青緑のフィルタが配置された部分には揺れ補正された映像信号を表示し、非可視光フィルタ部分にはパターン画像を表示する。また、例えば光源を分光する投射方式であれば、赤青緑に加えて非可視光、例えば、ある特定の赤外光に分光し、4枚の液晶パネルをダイクロイックミラーで合成する方式としてもよい。赤青緑の光が照射される液晶パネルには揺れ補正された映像信号を表示し、非可視光を照射する液晶パネルにはパターン画像を表示する。また、光を分光して投射する方式では、光源をダイクロイックミラーで赤、青、緑と赤外光に分離し、各々に設けられた液晶パネルを透過させる。この時、赤、青、緑の光源から出た光を透過する液晶パネルには揺れ補正部で生成した映像信号を表示し、パターン画像は赤外光用の液晶パネルを透過させる。 Projection unit 910 is configured to project visible light and invisible light simultaneously. For example, in the case of a projection method using one liquid crystal panel, the pixels of the liquid crystal panel are provided with a filter that transmits only invisible light, for example, specific infrared light in addition to red, blue and green. The image signal that has been subjected to shake correction is displayed in the portion where the red, blue, and green filters are arranged, and the pattern image is displayed in the non-visible light filter portion. For example, in the case of a projection method that divides a light source, it may be a method in which four liquid crystal panels are combined by a dichroic mirror by splitting into invisible light, for example, specific infrared light in addition to red, blue and green. . The image signal corrected for shaking is displayed on the liquid crystal panel irradiated with red blue green light, and the pattern image is displayed on the liquid crystal panel irradiated with invisible light. In the method of projecting by splitting light, the light source is separated into red, blue, green, and infrared light by a dichroic mirror and transmitted through a liquid crystal panel provided in each. At this time, the image signal generated by the shake correction unit is displayed on the liquid crystal panel that transmits light emitted from the red, blue, and green light sources, and the pattern image is transmitted through the liquid crystal panel for infrared light.
 撮像部920は、例えば、レンズ群、アイリス、シャッタ、CCDまたはCMOSなどの撮像素子等で構成されるイメージセンサ、増幅器及びADコンバータ等を適宜用いて構成され、イメージセンサで受光した光学像を光電変換する構成で、例えば、イメージセンサ内に赤外光のみを透過するフィルタが配置されている。撮像部920は、投射用スクリーン117上に表示された映像投射装置900が投射した映像を撮像し、赤外光で投射されたパターン画像部分を抽出する。 The imaging unit 920 is configured by appropriately using an image sensor, an amplifier, an AD converter, or the like that includes, for example, an imaging element such as a lens group, an iris, a shutter, a CCD or a CMOS, and photoelectrically converts an optical image received by the image sensor. For example, a filter that transmits only infrared light is disposed in the image sensor. The imaging unit 920 captures an image projected by the image projection apparatus 900 displayed on the projection screen 117 and extracts a pattern image portion projected with infrared light.
 撮像パターン検出部122は、実施例1と同様に、パターン画像の位置を検出し、各々の位置情報を出力する。 The imaging pattern detection unit 122 detects the position of the pattern image and outputs the position information of each pattern as in the first embodiment.
 制御部121では、実施例1と同様に、各補正ポイントの位置情報から揺れ補正パラメータを算出し、揺れ補正部に設定する。ここで、本実施例では投射画面中央部においてもパターン画像が配置され全補正ポイントの計測が可能であることから、周辺部の補正ポイントから中央部の補正ポイントを算出する処理は不要になる。 In the control unit 121, as in the first embodiment, the shake correction parameter is calculated from the position information of each correction point and set in the shake correction unit. Here, in this embodiment, since the pattern image is arranged even in the central portion of the projection screen and all the correction points can be measured, the processing for calculating the correction point in the central portion from the correction points in the peripheral portion is not necessary.
 以上説明したように本実施例によれば、見ている人に余計な映像を見せることなく、かつ、精度よく揺れ補正を行うことができる。また、中央部にも補正ポイントを表示することができるため、演算量を少なく、かつ精度よく補正することができる。 As described above, according to the present embodiment, it is possible to perform shake correction with high accuracy without showing an extra image to the viewer. In addition, since correction points can be displayed at the center, the amount of calculation can be reduced and correction can be performed with high accuracy.
 なお、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
110、500、700、800、900:映像投射装置、
111:映像信号処理部、112:揺れ補正部、113、911:パターン画像部、
114:投射映像合成部、115、910:投射部、117:スクリーン、
121:制御部、122:撮像パターン検出部、123、920:撮像部、
130:位置情報格納部、140:撮像装置、710:位置情報蓄積部、
711:軌跡解析部、810:揺れ速度解析部、820:映像格納部、
821:映像記憶部、822:映像変換部、823:補正画像記憶部、
824:補正画像出力部。
110, 500, 700, 800, 900: video projection device,
111: Video signal processing unit, 112: Shake correction unit, 113, 911: Pattern image unit,
114: Projection video composition unit, 115, 910: Projection unit, 117: Screen,
121: control unit, 122: imaging pattern detection unit, 123, 920: imaging unit,
130: position information storage unit, 140: imaging device, 710: position information storage unit,
711: locus analysis unit, 810: shaking speed analysis unit, 820: video storage unit,
821: Video storage unit, 822: Video conversion unit, 823: Correction image storage unit,
824: A corrected image output unit.

Claims (15)

  1. 補正パラメータに基づき、映像信号に揺れ補正を行った揺れ補正映像信号を生成する揺れ補正部と、
    前記揺れ補正部が出力した揺れ補正映像信号に補正ポイントで特異点をもつパターン画像を重畳して投射用映像信号を出力する投射映像合成部と、
    前記投射映像合成部が出力した投射用映像信号を投射する投射部と
    投射された映像を撮像し、撮像映像を出力する撮像部と、
    前記撮像部が出力する撮像映像からパターン画像および前記特異点の位置情報を検出する撮像パターン検出部と、
    前記補正ポイントの基準となる位置情報を格納する位置情報格納部と、
    揺れ補正量を算出して前記揺れ補正部の補正パラメータを生成する制御部と、
    を有し、
    前記制御部は前記位置情報格納部に格納されている位置情報と、前記撮像パターン検出部が検出した位置情報とを比較して前記補正パラメータを算出することを特徴とする映像投射装置。
    A shake correction unit that generates a shake correction video signal obtained by performing shake correction on the video signal based on the correction parameter;
    A projection video synthesizing unit that outputs a projection video signal by superimposing a pattern image having a singular point at a correction point on the shake correction video signal output by the shake correction unit;
    A projection unit that projects the projection video signal output by the projection video synthesis unit, an imaging unit that captures the projected video, and outputs a captured video;
    An imaging pattern detection unit for detecting a pattern image and positional information of the singular point from the captured video output by the imaging unit;
    A position information storage unit that stores position information serving as a reference for the correction point;
    A control unit that calculates a shake correction amount and generates a correction parameter of the shake correction unit;
    Have
    The video projection apparatus, wherein the control unit calculates the correction parameter by comparing position information stored in the position information storage unit with position information detected by the imaging pattern detection unit.
  2. 請求項1に記載の映像投射装置であって、
    前記基準となる位置情報は、過去の前記撮像パターン検出部で検出された位置情報を前記位置情報格納部に格納した情報であることを特徴とする映像投射装置。
    The video projection device according to claim 1,
    The reference position information is information in which position information detected by the imaging pattern detection unit in the past is stored in the position information storage unit.
  3. 請求項2に記載の映像投射装置であって、
    前記過去の前記位置情報格納部に格納した情報は、揺れ補正開始後の初回に得られた前記位置情報格納部に格納した情報であることを特徴とする映像投射装置。
    The video projection device according to claim 2,
    The video projection apparatus according to claim 1, wherein the information stored in the past position information storage unit is information stored in the position information storage unit obtained for the first time after starting shake correction.
  4. 請求項1に記載の映像投射装置であって、
    前記基準となる位置情報は、過去の前記撮像パターン検出部で検出された位置情報の複数回分の中間位置あるいは平均位置であることを特徴とする映像投射装置。
    The video projection device according to claim 1,
    The image projection apparatus characterized in that the reference position information is a plurality of intermediate positions or average positions of position information detected by the imaging pattern detection unit in the past.
  5. 請求項1に記載の映像投射装置であって、
    前記映像投射装置の設置時の投射画像の歪み画像を入力する手段を設け、
    前記歪み画像を前記基準となる位置情報に反映することを特徴とする映像投射装置。
    The video projection device according to claim 1,
    Providing a means for inputting a distortion image of a projection image at the time of installation of the video projection device;
    An image projection apparatus, wherein the distortion image is reflected in the reference position information.
  6. 請求項1に記載の映像投射装置であって、
    前記位置情報格納部は、複数フレームの位置情報を蓄積する位置情報蓄積部であって、
    前記制御部は、前記複数フレームの位置情報の規則性から映像信号の揺れ方向を予測し、該予測した揺れを補正する補正パラメータを前記揺れ補正部に設定することを特徴する映像投射装置。
    The video projection device according to claim 1, wherein
    The location information storage unit is a location information storage unit that stores location information of a plurality of frames,
    The control unit predicts a shake direction of a video signal from regularity of positional information of the plurality of frames, and sets a correction parameter for correcting the predicted shake in the shake correction unit.
  7. 請求項1に記載の映像投射装置であって、
    前記位置情報格納部は、複数フレームの位置情報を蓄積する位置情報蓄積部であって、
    前記制御部は、位置情報蓄積部が蓄積した位置情報の移動量から揺れの速度を解析し、揺れの速度が速いと判断した場合は、入力される映像信号の周期よりも早い周期で揺れ補正を行うように前記揺れ補正部を制御することを特徴する映像投射装置。
    The video projection device according to claim 1, wherein
    The location information storage unit is a location information storage unit that stores location information of a plurality of frames,
    The control unit analyzes the shaking speed from the amount of movement of the position information accumulated by the position information accumulating unit, and when it is determined that the shaking speed is fast, the shaking correction is performed at a period earlier than the period of the input video signal. An image projection apparatus that controls the shake correction unit so as to perform.
  8. 請求項1に記載の映像投射装置であって、
    前記パターン画像は非可視光用のパターン画像であり、前記投射部は非可視光が投射可能な投射部であり、前記撮像部は非可視光が撮像可能な撮像部であることを特徴する映像投射装置。
    The video projection device according to claim 1, wherein
    The pattern image is a pattern image for invisible light, the projection unit is a projection unit capable of projecting invisible light, and the imaging unit is an imaging unit capable of imaging invisible light. Projection device.
  9. 映像投射装置の投射映像の揺れ補正方法であって、
    映像信号に補正ポイントで特異点をもつパターン画像を重畳した投射用映像信号を投射し、
    投射された映像を撮像し、
    撮像映像から前記パターン画像および前記特異点の位置情報を検出し、
    前記補正ポイントの基準となる位置情報と、前記検出した位置情報とを比較して補正パラメータを算出し、前記映像信号の揺れ補正を行うことを特徴とする揺れ補正方法。
    A method of correcting a shake of a projected image of a video projection device,
    Project a video signal for projection with a pattern image with a singular point at the correction point superimposed on the video signal,
    Capture the projected image,
    Detecting the position information of the pattern image and the singular point from the captured video,
    A shake correction method comprising: comparing position information serving as a reference for the correction point with the detected position information to calculate a correction parameter, and performing shake correction of the video signal.
  10. 請求項9に記載の揺れ補正方法であって、
    前記基準となる位置情報は、過去の前記検出された位置情報であることを特徴とする揺れ補正方法。
    The shake correction method according to claim 9,
    The shake correction method, wherein the reference position information is the detected position information in the past.
  11. 請求項9に記載の揺れ補正方法であって、
    前記映像信号の揺れ補正を常時行うことを特徴とする揺れ補正方法。
    The shake correction method according to claim 9,
    A shake correction method characterized by constantly performing shake correction of the video signal.
  12. 請求項9に記載の揺れ補正方法であって、
    前記パターン画像は前記映像信号の表示領域以外に可視光で表示することを特徴とする揺れ補正方法。
    The shake correction method according to claim 9,
    The shake correction method, wherein the pattern image is displayed with visible light outside the display area of the video signal.
  13. 請求項9に記載の揺れ補正方法であって、
    前記基準となる位置情報を前記映像投射装置の設置時の投射画像の歪み画像で設定し、その基準位置をもとに前記揺れ補正を行うことを特徴とする揺れ補正方法。
    The shake correction method according to claim 9,
    A shake correction method, wherein the reference position information is set as a distortion image of a projected image when the video projector is installed, and the shake correction is performed based on the reference position.
  14. 請求項9に記載の揺れ補正方法であって、
    前記位置情報の複数フレームの規則性から映像信号の揺れ方向を予測し、該予測した揺れにもとづき揺れ補正を行うことを特徴とする揺れ補正方法。
    The shake correction method according to claim 9,
    A shake correction method comprising: predicting a shake direction of a video signal from regularity of a plurality of frames of the position information, and performing shake correction based on the predicted shake.
  15. 請求項9に記載の揺れ補正方法であって、
    前記位置情報の複数フレームの移動量から揺れの速度を解析し、揺れの速度が速いと判断した場合は、入力される映像信号の周期よりも早い周期で揺れ補正を行うことを特徴する揺れ補正方法。
    The shake correction method according to claim 9,
    Analyzing the speed of shaking from the amount of movement of a plurality of frames of the position information, if it is judged that the speed of shaking is fast, the shaking correction is characterized in that the shaking correction is performed at a period earlier than the period of the input video signal Method.
PCT/JP2015/054229 2015-02-17 2015-02-17 Picture projection apparatus and shaking correction method WO2016132446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054229 WO2016132446A1 (en) 2015-02-17 2015-02-17 Picture projection apparatus and shaking correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054229 WO2016132446A1 (en) 2015-02-17 2015-02-17 Picture projection apparatus and shaking correction method

Publications (1)

Publication Number Publication Date
WO2016132446A1 true WO2016132446A1 (en) 2016-08-25

Family

ID=56688826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054229 WO2016132446A1 (en) 2015-02-17 2015-02-17 Picture projection apparatus and shaking correction method

Country Status (1)

Country Link
WO (1) WO2016132446A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189722A (en) * 2021-12-20 2022-03-15 四川长虹电器股份有限公司 Screen display device and display method thereof
CN115278183A (en) * 2022-06-23 2022-11-01 广州市恒众车联网科技股份有限公司 HUD picture display method and system
CN115704737A (en) * 2021-08-03 2023-02-17 宜宾市极米光电有限公司 Method and related device for measuring shaking amount of projection picture of projector
CN115704737B (en) * 2021-08-03 2024-04-23 宜宾市极米光电有限公司 Method and related device for measuring shaking amount of projection picture of projector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083949A (en) * 1999-09-16 2001-03-30 Japan Science & Technology Corp Image projecting device
JP2010010926A (en) * 2008-06-25 2010-01-14 Toshiba Corp Video projector, and method for controlling the same
JP2011048773A (en) * 2009-08-28 2011-03-10 Ricoh Co Ltd Device for detecting projection image area

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083949A (en) * 1999-09-16 2001-03-30 Japan Science & Technology Corp Image projecting device
JP2010010926A (en) * 2008-06-25 2010-01-14 Toshiba Corp Video projector, and method for controlling the same
JP2011048773A (en) * 2009-08-28 2011-03-10 Ricoh Co Ltd Device for detecting projection image area

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704737A (en) * 2021-08-03 2023-02-17 宜宾市极米光电有限公司 Method and related device for measuring shaking amount of projection picture of projector
CN115704737B (en) * 2021-08-03 2024-04-23 宜宾市极米光电有限公司 Method and related device for measuring shaking amount of projection picture of projector
CN114189722A (en) * 2021-12-20 2022-03-15 四川长虹电器股份有限公司 Screen display device and display method thereof
CN114189722B (en) * 2021-12-20 2023-07-25 四川长虹电器股份有限公司 Screen display method
CN115278183A (en) * 2022-06-23 2022-11-01 广州市恒众车联网科技股份有限公司 HUD picture display method and system
CN115278183B (en) * 2022-06-23 2023-03-14 广州市恒众车联网科技股份有限公司 HUD picture display method and system

Similar Documents

Publication Publication Date Title
JP5298507B2 (en) Image display device and image display method
JP3925521B2 (en) Keystone correction using part of the screen edge
US8350951B2 (en) Image sensing apparatus and image data correction method
JP4165540B2 (en) How to adjust the position of the projected image
US8823843B2 (en) Image processing device, image capturing device, image processing method, and program for compensating for a defective pixel in an imaging device
JP2007142929A (en) Image processing apparatus and camera system
JPWO2012117616A1 (en) Imaging apparatus and defective pixel correction method
US20110080503A1 (en) Image sensing apparatus
CN109714536A (en) Method for correcting image, device, electronic equipment and computer readable storage medium
JP2011508248A (en) Background color correction method for portable projector
JP4535714B2 (en) projector
JP7207319B2 (en) Two-dimensional flicker measuring device, two-dimensional flicker measuring system, two-dimensional flicker measuring method, and two-dimensional flicker measuring program
JPH11161773A (en) Method for processing picture and device for inputting picture
JP7310606B2 (en) Two-dimensional flicker measuring device and two-dimensional flicker measuring method
WO2016132446A1 (en) Picture projection apparatus and shaking correction method
JP2007274504A (en) Digital camera
JP2005037771A (en) Projector
WO2015186510A1 (en) Imaging device and method, and program
JPH09163215A (en) Image pickup device
JP5298738B2 (en) Image display system and image adjustment method
JP2007071891A (en) Three-dimensional measuring device
JP2007049266A (en) Picture imaging apparatus
JP6415330B2 (en) Image processing apparatus, imaging apparatus, and image processing method
JP2010130481A (en) Image projection apparatus
JP2012244243A (en) Imaging apparatus and method of controlling imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP