WO2016132445A1 - Charged particle irradiation system - Google Patents

Charged particle irradiation system Download PDF

Info

Publication number
WO2016132445A1
WO2016132445A1 PCT/JP2015/054184 JP2015054184W WO2016132445A1 WO 2016132445 A1 WO2016132445 A1 WO 2016132445A1 JP 2015054184 W JP2015054184 W JP 2015054184W WO 2016132445 A1 WO2016132445 A1 WO 2016132445A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
nuclide
irradiation system
particle irradiation
irradiation
Prior art date
Application number
PCT/JP2015/054184
Other languages
French (fr)
Japanese (ja)
Inventor
平本 和夫
泰介 高柳
伸一 清水
祐介 藤井
博樹 白土
梅垣 菊男
Original Assignee
株式会社日立製作所
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人北海道大学 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/054184 priority Critical patent/WO2016132445A1/en
Publication of WO2016132445A1 publication Critical patent/WO2016132445A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means

Definitions

  • the present invention relates to a charged particle irradiation system, and more particularly to a charged particle irradiation system suitable for cancer treatment using a plurality of types of ion beams composed of protons, helium ions, carbon ions, or the like.
  • An apparatus for irradiating charged particles in this treatment method includes a charged particle generation apparatus, a beam transport system, and an irradiation apparatus.
  • Charged particles generated by the charged particle generator are transported to the irradiation device by the beam transport system, and the lateral distribution and depth distribution (energy distribution) are expanded by the irradiation device to match the shape of the cancer. Later, the cancerous part is reached. Thereby, the charged particles that have reached the affected area of the cancer form a dose distribution that matches the shape of the affected area.
  • the heavier particles or the larger energy particles have a smaller scattering angle when they collide with a substance, so the gradient of the dose distribution in the lateral direction becomes steeper.
  • the steeper lateral gradient of the dose distribution makes it possible to form a dose distribution that more closely matches the affected area.
  • the charge-mass ratio the ratio of the number of charges to the mass number (hereinafter referred to as the charge-mass ratio) and the energy per nucleon are compared under the same condition, the lighter particles reach the same depth because they reach the patient deeper. The energy required for this is smaller for lighter particles. Therefore, the device for irradiating light particles is smaller than the device for irradiating heavy particles.
  • both the deep position and the shallow position are irradiated by irradiating light particles with high energy to the deep position of the affected area and irradiating heavy particles to the shallow position.
  • the dose distribution formed by the charged particles to be irradiated is different for each type of charged particles. Therefore, confirming the type of charged particles to be irradiated before irradiation is important for ensuring the reliability of an apparatus that irradiates a plurality of types of charged particles.
  • Some devices that irradiate multiple types of charged particles irradiate multiple types of charged particles having the same charge-mass ratio.
  • helium ions with a mass number of 4 and a charge number of 2 (charge mass ratio of 1/2) and carbon ions with a mass number of 12 and a charge number of 6 (also charge mass ratio of 1/2) are irradiated.
  • charge mass ratio of 1/2 charge mass ratio of 1/2
  • carbon ions with a mass number of 12 and a charge number of 6 also charge mass ratio of 1/2
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a charged particle irradiation system capable of determining the type of charged particles irradiated to an irradiation target before irradiation.
  • a charged particle irradiation system of the present invention includes an ion generator that generates a plurality of types of ions having different nuclides, and an accelerator that accelerates the ions supplied from the ion generator and emits the ions as an ion beam.
  • a beam transport system that transports an ion beam emitted from the accelerator, an irradiation device that irradiates an irradiation target with an ion beam transported by the beam transport system, and a nuclide of ions supplied from the ion generator.
  • a nuclide discrimination device configured to discriminate is provided.
  • the present invention in the treatment of irradiating a plurality of types of charged particles, it is possible to reliably irradiate the charged particles determined in the treatment plan.
  • 1 is an overall configuration diagram of a charged particle irradiation system according to a first embodiment. It is an expanded block diagram of the nuclide discrimination
  • FIG. 1 is an overall configuration diagram of a charged particle beam irradiation system according to a first embodiment of the present invention.
  • the particle beam irradiation system includes a charged particle generator 100, an accelerator 200 including a linac 6a as a front stage accelerator and a synchrotron 6b as a rear stage accelerator, a beam transport system 300, an irradiation apparatus 20, And a control device 30.
  • the charged particle generator 100 is mainly composed of a plurality of ion sources 1 and 2.
  • the ion sources 1 and 2 are devices that generate charged particles of different nuclides, and the ion sources 1 and 2 in the present embodiment are each composed of a helium ion source and a carbon ion source.
  • the helium ions generated by the helium ion source 1 have a mass number of 4 and a charge number of 2 (charge-mass ratio is 1/2), and the carbon ions generated by the carbon ion source 2 have a mass number of 12 and a charge number. Is 6 (also charge-mass ratio is 1/2).
  • a helium ion source shutter 3, a carbon ion source shutter 4, and an ion source switching device 5 are provided between the ion sources 1 and 2 and the linac 6a.
  • the linac 6a is connected to the synchrotron 6b via the beam duct 7, and after accelerating charged particles incident from the ion sources 1 and 2 to energy that can enter the synchrotron 6b, the linac 6a is emitted toward the synchrotron 6b. To do.
  • the synchrotron 6b includes an annular beam duct 8 and a plurality of deflection electromagnets 9, a plurality of quadrupole electromagnets (not shown), a high-frequency acceleration electrode 10, an output high-frequency electrode 11, and an output deflector 12. The synchrotron 6b accelerates charged particles incident from the linac 6a to energy necessary for target irradiation, and outputs the accelerated particles to the beam transport system 300.
  • the beam transport system 300 transports the beam emitted from the emission deflector 12 of the synchrotron 6b to the irradiation device 20, and includes a beam duct 13 that connects the emission deflector 12 of the synchrotron 6b and the irradiation device 20.
  • a plurality of deflection electromagnets 14 provided in the beam duct 13 and a plurality of quadrupole electromagnets (not shown) are provided.
  • a part of the beam transport system 300 is installed in the rotating gantry 15 so as to rotate together with the rotating gantry 15.
  • the beam transport system 300 includes a path switching device 40 and a nuclide discrimination device 50 in the middle of the beam duct 13.
  • the path switching device 40 includes an electromagnet that can switch the magnetic field intensity at high speed, and has a function of switching the path of the charged particles emitted from the synchrotron 6b between the path reaching the irradiation apparatus 20 and the path reaching the nuclide discrimination apparatus 50.
  • the nuclide discrimination device 50 has a function of measuring a predetermined parameter depending on the nuclide of the charged particle incident on the nuclide discrimination device 50.
  • An enlarged configuration diagram of the nuclide discrimination device 50 is shown in FIG.
  • the nuclide determination device 50 includes a nuclide measurement unit 51 and a nuclide determination unit 52.
  • the nuclide measurement unit 51 includes a plurality of metal plates 53 stacked at a predetermined interval, and each of the plurality of metal plates 53 is connected to a nuclide determination unit 52.
  • the irradiation device 20 is mounted on the rotating gantry 15 so as to rotate integrally with the rotating gantry 15. By rotating the rotating gantry 15, the irradiation device 20 is attached to the patient 17 fixed on the couch 16.
  • the irradiation angle can be set from 0 degrees to 360 degrees.
  • the irradiation device 20 includes two pairs of scanning electromagnets 21 ⁇ / b> A and 21 ⁇ / b> B, a dose monitor 22, and a position monitor 23.
  • the two pairs of scanning electromagnets 21 ⁇ / b> A and 21 ⁇ / b> B are installed in a direction perpendicular to each other, and change the position where charged particles in a direction perpendicular to the beam axis 24 arrive.
  • control device 30 is connected to the charged particle generation device 100, the accelerator 200, the beam transport system 300, the irradiation device 20, and the database 31, and spot data recorded in the database 31. These are controlled based on (described later).
  • the scanning irradiation method which is the irradiation method of the present embodiment, is a method in which a dose distribution called a spot is arranged in a direction perpendicular to the beam axis (hereinafter referred to as a lateral direction) and a depth direction so as to match the shape of the affected part.
  • the irradiation position in the horizontal direction is changed by changing the excitation amount of the scanning electromagnets 21A and 21B, and the irradiation position in the depth direction is changed by changing the energy of the electroparticles.
  • FIG. 4 is a diagram showing a dose distribution in the lateral direction formed by irradiated charged particles.
  • the dose distribution 60 in the lateral direction of each spot has a Gaussian distribution shape.
  • a uniform dose distribution 61 can be formed by arranging spots irradiated with an equal amount of charged particles at equal intervals.
  • FIG. 5A is a diagram showing a dose distribution in the depth direction formed by charged particles irradiated with a single energy. Since charged particles give a lot of energy immediately before stopping, a peak 70 (hereinafter referred to as a Bragg peak) is formed immediately before stopping. The water equivalent thickness from the body surface to the Bragg peak 70 is called the range. For example, when helium ions and carbon ions are compared, if the energy per nucleon is equal, helium ions having a small mass number have a larger range than carbon ions. Therefore, helium ions can achieve the same range in a smaller system than carbon ions.
  • FIG. 5B is a diagram showing a dose distribution in the depth direction formed by helium ions and carbon ions irradiated with a plurality of energies.
  • the affected area is divided into a deep irradiation region 71 and a shallow irradiation region 72 from the body surface, and helium ions are irradiated to the deep irradiation region 71 with a plurality of energies, and the shallow irradiation region 72 is irradiated to the shallow irradiation region 72.
  • a uniform dose distribution 73 is formed in the affected area in the depth direction.
  • a treatment plan using a treatment planning device (not shown). Specifically, based on the X-ray CT image of the affected part 18 imaged in advance so that a desired dose distribution is formed in the affected part 18 of the patient 17, the angle of the rotating gantry 15, the irradiation parameters for each spot (charged particles) Type (nuclide), energy, target irradiation position, target irradiation amount) and the like. The determined irradiation parameters for each spot are registered in the database 31 as spot data.
  • preparation for irradiation is performed. Specifically, the patient 17 is fixed on the couch 16, the couch 16 is moved so that the patient 17 is placed at a desired position, and the angle of the rotating gantry 15 is set to the same angle as when the treatment plan is created. .
  • an irradiation start button (not shown) is pushed to instruct the control device 30 to start irradiation. Thereafter, irradiation control (described later) based on the spot data registered in the database 31 is performed by the control device 30.
  • FIG. 6 is a flowchart showing irradiation control by the control device 30. Hereinafter, each step constituting the flow will be described in order.
  • step S101 preparation for irradiation is performed.
  • the control device 30 reads spot data from the database 31 and determines the irradiation order of each spot. Usually, irradiation is performed in the order of a high energy spot to a low energy spot.
  • helium ions are used first to irradiate from a high energy spot to a low energy spot, and then carbon ions are used to irradiate from a high energy spot to a low energy spot.
  • step S102 the helium ion source 1 is selected.
  • the control device 30 switches the path in the ion source switching device 5 to the helium ion source 1 side and opens the shutter 3 for the helium ion source. At this time, the carbon ion source shutter 4 is kept closed.
  • step S103 helium ions are accelerated in the previous stage.
  • the control device 30 accelerates the helium ions emitted from the helium ion source 1 by the linac 6a and emits the helium ions to the synchrotron 6b.
  • the helium ions incident on the synchrotron 6b circulate in the synchrotron 6b.
  • step S104 helium ions are accelerated later.
  • the control device 30 applies a high frequency to the high frequency acceleration electrode 10 and controls the amount of excitation of the deflection electromagnet 9 and a quadrupole magnet (not shown) to accelerate helium ions to a predetermined energy.
  • step S105 the control device 30 excites the electromagnet of the path switching device 40 so that helium ions reach the nuclide discrimination device 50.
  • step S106 the ion nuclide is determined.
  • the control device 30 applies a high frequency to the high-frequency electrode 11 for emission, and emits helium ions circulating in the synchrotron 6b from the extraction deflector 12 to the beam transport system 300.
  • the helium ions emitted to the beam transport system 300 reach the nuclide discrimination device 50 via the path switching device 40.
  • the helium ions that have reached the nuclide discrimination device 50 lose energy while passing through the metal plate 53 (FIG. 2), and eventually stop in any of the metal plates 53 when the energy disappears.
  • the position (range) of the metal plate 53 where helium ions are stopped is detected by the nuclide discrimination unit 52 as an electric signal flowing through the metal plate 53.
  • the nuclide discrimination unit 52 enters the nuclide discrimination device 50 based on the energy per nucleon determined by the acceleration condition of the accelerator 200 (the synchrotron 6b) and the stop position (range) of helium ions measured by the nuclide measurement unit 51.
  • the nuclide of the charged particles is discriminated, and the discrimination result is transmitted to the control device 30.
  • the control device 30 stops the extraction of helium ions from the synchrotron 6b to the beam transport system 300 by stopping the application of the high frequency to the extraction high-frequency electrode 11.
  • step S107 it is determined whether or not the nuclide of the helium ion source 1 selected in step S102 matches the nuclide determined in step S106. If the nuclide is determined to be helium ions in step S106, and if it is determined to be coincident (yes) in step S107 (normal), helium ions are irradiated to the affected part 18 of the patient 17 in step S109 and thereafter.
  • step S106 if the nuclide is determined to be a nuclide other than helium ions in step S106 and it is determined in step S107 that there is a mismatch (no) (abnormal), the application of the high frequency to the high frequency electrode 11 for emission is stopped and the irradiation is interrupted ( Step S108).
  • step S109 the irradiation position is set.
  • the control device 30 excites the scanning electromagnets 21A and 21B (FIG. 3) in the irradiation device 20 according to the target irradiation position of the spot data, and the electromagnets of the path switching device 40 so that helium ions reach the irradiation device 20. Control the amount of excitation.
  • step S110 helium ion irradiation is performed.
  • the control device 30 applies a high frequency to the emission high-frequency electrode 11.
  • Helium ions circulating around the synchrotron 6b with a predetermined energy are emitted to the beam transport system 300 and reach the irradiation device 20 via the path switching device 40.
  • the helium ions that have reached the irradiation device 20 are scanned by the scanning electromagnets 21A and 21B, pass through the dose monitor 22 (FIG. 3) and the position monitor 23 (FIG. 3), reach the affected area 18 of the patient 17, and determine the dose distribution.
  • the dose monitor 22 and the position monitor 23 measure the amount and position of the helium ions that have passed, and transmit the measurement results to the control device 30.
  • the control device 30 stops the application of the high frequency to the extraction high-frequency electrode 11 and stops the emission of helium ions.
  • the control device 30 collates the position of the helium ions measured by the position monitor 23 with the target irradiation position, and confirms that they match.
  • step S111 it is determined whether there is an unirradiated spot with the same energy in the spot data.
  • the scanning electromagnets 21A and 21B are excited so that the helium ions reach the next unirradiated spot (step S109), and the high-frequency electrode 11 for emission has a high frequency.
  • step S110 To emit helium ions from the synchrotron 6b (step S110).
  • step S109 to S111 are repeated until it is determined in step S111 that there is no unirradiated spot (no), thereby completing the irradiation of helium ions with the same energy.
  • step S112 it is determined whether or not the spot data includes unirradiated energy of helium ions. If it is determined in step S112 that there is unirradiated energy (yes), the process returns to step S104. As in the case of irradiation with helium ions having the previous energy, the helium ions are accelerated to the next energy by the synchrotron 6b (step S104).
  • the control device 30 controls the route switching device 40 to excite the electromagnet of the route switching device 40 so that helium ions reach the nuclide discrimination device 50 in the same manner as the previous energy (step S105), and then the high frequency electrode for emission A high frequency is applied to 11 and helium ions are emitted toward the nuclide discrimination device 50.
  • the helium ions that have reached the nuclide discriminating device 50 lose energy while passing through the metal plate 53, and eventually stop in any of the metal plates 53 when the energy is lost. Since the energy of helium ions is lower than that in the previous irradiation, the number of metal plates 53 that pass through until the helium ions stop is smaller than in the previous time.
  • the nuclide determination unit 52 determines the nuclide based on the energy per nucleon and the helium ion stop position (range) measured by the nuclide determination device 50 (step S106), and transmits the determination result to the control device 30. .
  • step S107 After confirming that the ion source nuclide selected in step S102 matches the nuclide determined in step S106 (step S107), the control device 30 performs the same energy unirradiated spot in step S111 as in the previous energy. By repeating steps S109 to S111 until it is determined that there is no (no), irradiation of helium ions with the same energy is completed. Thereafter, the irradiation of helium ions is completed by repeating steps S103 to S112 until it is determined in step S112 that there is no unirradiated energy (no).
  • step S113 it is determined whether or not there is an unirradiated nuclide in the spot data.
  • step S102 the carbon ion source 2 is selected.
  • the controller 30 closes the helium ion source shutter 3 so that the carbon ions emitted from the carbon ion source 2 enter the linac 6a, controls the ion source switching device 5, and controls the carbon ion source shutter 4. open.
  • step S103 the carbon ions are accelerated in the previous stage.
  • the control device 30 accelerates the carbon ions emitted from the carbon ion source 2 with the linac 6a and emits them to the synchrotron 6b.
  • the carbon ions incident on the synchrotron 6b go around in the synchrotron 6b.
  • step S104 carbon ions are accelerated later.
  • the control device 30 applies a high frequency to the high frequency acceleration electrode 10 and controls the amount of excitation of the deflection electromagnet 9 and a quadrupole magnet (not shown) to accelerate carbon ions to a predetermined energy.
  • step S105 the control device 30 excites the electromagnet of the path switching device 40 such that the carbon ions reach the nuclide discrimination device 50.
  • step S106 the ion nuclide is determined.
  • the control device 30 applies a high frequency to the high frequency electrode 11 for emission, and emits carbon ions circulating in the synchrotron 6 b to the beam transport system 300 via the extraction deflector 12.
  • the carbon ions emitted to the beam transport system 300 reach the nuclide discrimination device 50 via the path switching device 40.
  • the carbon ions that have reached the nuclide discriminating device 50 lose energy while passing through the metal plate 53 (FIG. 2) like the helium ions, and eventually stop in any of the metal plates 53 when the energy disappears.
  • the position (negation) of the metal plate 53 where the carbon ions are stopped is detected by the nuclide discrimination unit 52 as an electric signal flowing through the metal plate 53.
  • the nuclide discrimination unit 52 enters the nuclide discrimination device 50 based on the energy per nucleon determined by the acceleration condition of the accelerator 200 (the synchrotron 6b) and the stop position (range) of the carbon ion measured by the nuclide measurement unit 51.
  • the nuclide of the charged particles is discriminated, and the discrimination result is transmitted to the control device 30.
  • the number of metal plates 53 through which carbon ions pass is smaller than the number of helium ions through when compared under the condition that the energy per nucleon is equal. This is due to the property of charged particles that the heavier particles have a smaller range when the energy per nucleon is equal.
  • the controller 30 stops the emission of carbon ions from the synchrotron 6b to the beam transport system 300 by stopping the application of the high frequency to the extraction high-frequency electrode 11.
  • step S107 it is determined whether or not the nuclide of the carbon ion source 2 selected in step S102 matches the nuclide determined in step S106.
  • the nuclide is determined to be a carbon ion, and in step S107, if it is determined to be coincident (yes) (normal), the affected part 18 of the patient 17 is irradiated with the carbon ion after step S109.
  • the nuclide is determined to be a nuclide other than the carbon ion in step S106 and it is determined that there is a mismatch (no) in step S107 (abnormal)
  • the application of the high frequency to the high frequency electrode for emission 11 is stopped and irradiation is interrupted ( Step S108).
  • step S109 the irradiation position is set.
  • the control device 30 excites the scanning electromagnets 21A and 21B in the irradiation device 20 according to the target irradiation position of the spot data, and controls the excitation amount of the electromagnet of the path switching device 40 so that the carbon ions reach the irradiation device 20. To do.
  • step S110 irradiation with carbon ions is performed.
  • the control device 30 applies a high frequency to the emission high-frequency electrode 11.
  • Carbon ions circulating around the synchrotron 6b with a predetermined energy are emitted to the beam transport system 300 in the same manner as the helium ions, and reach the irradiation device 20 via the path switching device 40.
  • the carbon ions that have reached the irradiation device 20 are scanned by the scanning electromagnets 21A and 21B, pass through the dose monitor 22 and the position monitor 23, reach the affected area 18 of the patient 17, and form a dose distribution.
  • step S114 the irradiation of carbon ions is completed by repeating steps S105 to S112 until it is determined in step S112 that there is no unirradiated energy (no).
  • step S113 since there is no charged particle to be irradiated following the carbon ion, it is determined in step S113 that there is no unirradiated nuclide (no), and irradiation is completed (step S114).
  • the process for performing nuclide discrimination is performed after the energy change (step S104).
  • the process may be performed after setting the irradiation position (step S109). As a result, the frequency of nuclide discrimination in treatment increases, and irradiation with higher reliability becomes possible.
  • the nuclide measurement unit 51 of the nuclide discrimination apparatus 50 may be formed of a laminated ionization chamber as shown in FIG.
  • the laminated ionization chamber 51 has a structure in which an air layer and a resin plate 54 coated with metal (or carbon) are alternately laminated in a beam path.
  • a laminated ionization chamber power supply 55 is connected to one side of the metal (or carbon) coated on the resin plate 54, and since a voltage is applied, an electric field is generated in the air layer.
  • the charged particles incident on the laminated ionization chamber 51 lose energy by mainly passing through the resin plate 54 and stop after passing through any of the resin plates 54.
  • the charged particles ionize the air when passing through the air layer sandwiched between the resin plates 54.
  • the ionized charge reaches the metal (or carbon) coated on the resin plate 54 under the influence of the electric field.
  • the reached charge is detected by the nuclide discrimination unit 52.
  • the nuclide discrimination unit 52 discriminates the type of charged particles based on the number (range) of the resin plates 54 from which charges are detected and the energy per nucleon.
  • the nuclide measuring unit 51 configured of the laminated ionization chamber can amplify the detection signal of the nuclide discrimination unit 52 by the ionization action of the air layer, and therefore, the range can be measured with high accuracy even with a small amount of incident charged particles.
  • the nuclide measurement unit 51 of the nuclide discrimination device 50 may be configured to include an ionization chamber 56 and a scintillator 57 as shown in FIG.
  • the ionization chamber 56 and the scintillator 57 are each connected to the nuclide discrimination unit 52.
  • the ionized gas that fills the ionization layer of the ionization chamber 56 is ionized to generate charges. Since the charge generation amount is proportional to the energy loss dE / dx of the charged particles in the ionosphere, the energy loss dE / dx of the charged particles in the ionosphere is measured by detecting the charge amount.
  • the amount of light emitted when the charged particles stop is detected in the scintillator 57 that is configured to be sufficiently thicker than the range of the charged particles. Since the amount of luminescence is proportional to the kinetic energy E of the charged particles, the kinetic energy E of the charged particles is measured by detecting the amount of luminescence.
  • the kinetic energy E of the charged particles corresponds to a value obtained by multiplying the energy per nucleon by the number of nucleons.
  • the kinetic energy dE / dx of the charged particle at the kinetic energy E varies depending on the nuclide.
  • the nuclide determination unit 52 determines the nuclide of the charged particle based on the energy loss dE / dx of the charged particle and the total energy E measured by the nuclide measurement unit 51. Alternatively, it is determined whether or not the desired nuclide is accelerated by comparing the charged particle energy Ecalc determined from the operation pattern of the accelerator with the measured total energy E of the charged particles.
  • the nuclide discriminating apparatus 50 when the intensity of the beam is large and measurement for each particle is difficult, the following method is also effective. If the number of charged particles is N, the amount of energy loss measured by the ionization chamber 56 is N ⁇ dE / dx, and the total energy of the charged particles measured by the scintillator 57 is N ⁇ E.
  • the nuclide determination unit 52 obtains (dE / dx) / E by dividing the energy loss amount N ⁇ dE / dx by the energy N ⁇ E.
  • the charged particle energy Ecalc is obtained based on the operation pattern of the accelerator, and the charged particle energy loss amount (dE / dx) calc in the charged particle energy Ecalc is calculated based on the Bethe calculation formula. Further, (dE / dx) calc is divided by Ecalc to obtain ((dE / dx) / E) calc. Finally, by comparing (dE / dx) / E and ((dE / dx) / E) calc, the nuclide determination unit 52 determines whether or not the desired nuclide is accelerated.
  • the nuclide measurement unit 51 is configured to include the ionization chamber 56 and the scintillator 57 in this manner, the signal line connected to the nuclide determination unit 52 can be suppressed to two for the ionization chamber and the scintillator.
  • the determination unit 52 can be manufactured at low cost.
  • a radiation measuring device capable of measuring the dose distribution in the transverse direction of the beam.
  • Radiation measuring instruments include wire chambers such as MWPC (Multi-Wire Proportional Chamber) and MWIC (Multi-Wire Ionization Chamber) and FPD (Flat-panel detector) that arranges measurement elements in a two-dimensional array. In this case, the same effect can be achieved.
  • MWPC Multi-Wire Proportional Chamber
  • MWIC Multi-Wire Ionization Chamber
  • FPD Felat-panel detector
  • FIG. 9 is an enlarged configuration diagram of a nuclide discrimination device 50 including a wire chamber as the nuclide measurement unit 51.
  • the wire chamber 51 includes a plurality of conducting wires 58 arranged at equal intervals perpendicular to the beam traveling direction in the ionosphere as charge collection electrodes, and each of the plurality of conducting wires 58 is connected to the nuclide discrimination unit 52.
  • the nuclide discriminating unit 52 obtains a lateral distribution of the beam with the position of each conducting wire 58 as the horizontal axis and the charge collected by each conducting wire 58 as the vertical axis, and approximates this lateral distribution with a Gaussian distribution. A standard deviation ⁇ is calculated.
  • the nuclide determination unit 52 compares the standard deviation ⁇ and ⁇ table, and searches for a nuclide that matches within the range of measurement accuracy of the wire chamber 51.
  • ⁇ table is the standard deviation of the lateral distribution of the beam obtained by calculation or measurement for each combination of the nuclide type and the charged particle energy Tcalc determined by the operation pattern of the accelerator, and the nuclide type and energy Tcalc.
  • the nuclide determination unit 52 is registered in advance. If the lateral distribution of the beam cannot be approximated by a Gaussian distribution, the distribution itself is registered instead of the standard deviation, the degree of coincidence with the measured distribution is obtained by gamma analysis, etc., and the nuclide is based on the degree of coincidence. May be determined.
  • the nuclide discrimination device 50 can discriminate the nuclide of charged particles based on the lateral distribution of the beam measured by the radiation measuring instrument. Further, since the radiation measuring instrument can reduce the thickness in the beam traveling direction, the nuclide determination device 51 can be downsized by configuring the nuclide measuring unit 51 with the radiation measuring instrument.
  • FIG. 10 is an overall configuration diagram of a charged particle beam irradiation system according to the second embodiment of the present invention. 10 the difference from the charged particle beam irradiation system in the first embodiment shown in FIG. 1 is that the path switching device 40 and the nuclide discrimination device 50 are connected to the linac 6a and the synchrotron 6b. 7 is the point. In the present embodiment, the nuclide is discriminated using the nuclide discriminating apparatus 50 before entering the synchrotron 6b.
  • FIG. 11 is a flowchart showing irradiation control by the control device 30 in the present embodiment.
  • the difference from the irradiation control in the first embodiment shown in FIG. 6 is that the process accompanying the nuclide discrimination (steps S105 to S108) is performed before the process of accelerating charged particles (step S104). It is a point to execute.
  • the nuclide discrimination unit 52 in the present embodiment is based on the energy per nucleon determined by the acceleration condition of the accelerator 200 (linac 6a) and the stop position (range) of helium ions measured by the nuclide measurement unit 51.
  • the nuclide of charged particles incident on the device 50 is determined, and the determination result is transmitted to the control device 30. This makes it possible to determine the nuclide before accelerating the charged particles with the synchrotron 6b, and to suppress energy consumption until an abnormality (nuclide mismatch) is detected.
  • the nuclide discrimination device 50 has a thickness. Needs to be configured to include a plurality of metal plates 53 (which are about a thin film).
  • FIG. 12 is a diagram showing an overall configuration diagram of a charged particle beam irradiation system according to the third embodiment of the present invention. 12 is different from the charged particle beam irradiation system in the first or second embodiment shown in FIG. 1 or 10 in that a nuclide discriminating apparatus 50 is installed in the irradiation apparatus 20.
  • FIG. 13 the expanded block diagram of the irradiation apparatus 20 in this Embodiment is shown. As shown in FIG.
  • the beam path 25 reaching the affected part 18 of the patient 17 is changed by changing the excitation amount of the scanning electromagnets 21 ⁇ / b> A and 21 ⁇ / b> B.
  • the beam path 26 reaches 50.
  • FIG. 14 is a flowchart showing irradiation control by the control device 30 in the present embodiment.
  • the difference from the irradiation control in the first embodiment shown in FIG. 6 is that the excitation amounts of the scanning electromagnets 21A and 21B (FIG. 13) are changed in step S105.
  • the present invention is applied to a treatment that makes it particularly difficult to determine the type of charged particle, that is, a treatment that combines charged particles (carbon ions and helium ions) having the same charge mass ratio.
  • a treatment that combines charged particles (carbon ions and helium ions) having the same charge mass ratio that is, a treatment that combines charged particles (carbon ions and helium ions) having the same charge mass ratio.
  • the scope of application of the present invention is not limited to this example, and the present invention is applicable to treatments in which charged particles having different charge mass ratios are combined. In that case, it is necessary to provide a linac 6a for each type of charged particle.
  • a helium ion source that generates helium ions having a mass number of 4 and a charge number of 2 (charge mass ratio of 1/2) and a carbon ion that generates carbon ions of a mass number of 12 and a charge number of 4 (charge mass ratio of 1/3).
  • Each ion source is provided with a linac, and the number of carbon ion charges is converted from 4 to 6 by a charge conversion device installed at the exit of the linac for carbon ions so that it enters the synchrotron. It is necessary to unify the charge mass ratio of charged particles to be 1 ⁇ 2.
  • the present invention in which the present invention is applied to the treatment in which a plurality of types of charged particles are irradiated from one direction has been described.
  • the scope of the present invention is limited to this.
  • the present invention can be applied to a treatment in which irradiation is performed from a plurality of directions. In that case, it is not always necessary to irradiate a plurality of types of charged particles from each direction, and may be limited to one type depending on the direction. Further, the number of charged particles irradiated to the same patient 17 may be one or plural.
  • the present invention is applied to the treatment of irradiating two types of charged particles (helium ions and carbon ions) has been described.
  • the scope of the present invention is limited to this.
  • the present invention can be applied to a treatment in which three or more kinds of charged particles are irradiated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Provided is a charged particle irradiation system capable of distinguishing the type of charged particles with which an object to be irradiated is to be irradiated, prior to the irradiation. The system is provided with: an ion generation device that generates a plurality of types of ions of different nuclear species; an accelerator that accelerates the ions supplied from the ion generation device to emit an ion beam; a beam transport system that transports the ion beam emitted from the accelerator; an irradiation device that irradiates an irradiation target with the ion beam transported by the beam transport system; and a nuclear species distinguishing device configured to distinguish the nuclear species of the ions supplied from the ion generation device.

Description

荷電粒子照射システムCharged particle irradiation system
 本発明は、荷電粒子照射システムに係り、特に、陽子、ヘリウムイオン、または炭素イオンなどで構成された複数種類のイオンビームを用いるがん治療に好適な荷電粒子照射システムに関する。 The present invention relates to a charged particle irradiation system, and more particularly to a charged particle irradiation system suitable for cancer treatment using a plurality of types of ion beams composed of protons, helium ions, carbon ions, or the like.
 陽子、ヘリウムイオン、炭素イオンなどの荷電粒子をがんの患部に照射して治療する方法が知られている。この治療方法において荷電粒子を照射する装置は、荷電粒子発生装置、ビーム輸送系及び照射装置を備えている。荷電粒子発生装置で発生させた荷電粒子は、ビーム輸送系により照射装置まで輸送され、照射装置によってがんの形状と合致するように横方向分布及び深さ方向分布(エネルギー分布)が拡大された後にがんの患部に到達する。これにより、がんの患部に到達した荷電粒子は患部の形状に合致した線量分布を形成する。 There is a known method of treating cancer by irradiating charged particles such as protons, helium ions, and carbon ions to the affected area of the cancer. An apparatus for irradiating charged particles in this treatment method includes a charged particle generation apparatus, a beam transport system, and an irradiation apparatus. Charged particles generated by the charged particle generator are transported to the irradiation device by the beam transport system, and the lateral distribution and depth distribution (energy distribution) are expanded by the irradiation device to match the shape of the cancer. Later, the cancerous part is reached. Thereby, the charged particles that have reached the affected area of the cancer form a dose distribution that matches the shape of the affected area.
 陽子、ヘリウムイオン、炭素イオンなどの荷電粒子は、重い粒子ほど、あるいはエネルギーが大きい粒子ほど物質に衝突したときの散乱角度が小さいため、線量分布の横方向への勾配が急峻となる。線量分布の横方向の勾配が急峻であるほど、患部により合致した線量分布を形成することができる。一方、質量数に対する電荷数の比(以下、電荷質量比という)と核子あたりのエネルギーとがそれぞれ等しい条件で比較した場合、軽い粒子ほど患者体内の到達深さは大きいため、同じ深さまで到達させるのに要するエネルギーは軽い粒子ほど小さい。従って、重い粒子を照射する装置に比べて軽い粒子を照射する装置は小型である。複数種類の荷電粒子を照射する装置としては、例えば特許文献1及び特許文献2に記載のものがある。 For charged particles such as protons, helium ions, and carbon ions, the heavier particles or the larger energy particles have a smaller scattering angle when they collide with a substance, so the gradient of the dose distribution in the lateral direction becomes steeper. The steeper lateral gradient of the dose distribution makes it possible to form a dose distribution that more closely matches the affected area. On the other hand, when the ratio of the number of charges to the mass number (hereinafter referred to as the charge-mass ratio) and the energy per nucleon are compared under the same condition, the lighter particles reach the same depth because they reach the patient deeper. The energy required for this is smaller for lighter particles. Therefore, the device for irradiating light particles is smaller than the device for irradiating heavy particles. As an apparatus for irradiating a plurality of types of charged particles, for example, there are devices described in Patent Document 1 and Patent Document 2.
特開2013-233233号公報JP 2013-233233 A 特表2013-533953号公報Special table 2013-533953 gazette
 特許文献1又は2に記載の荷電粒子照射システムによれば、患部の深い位置には軽い粒子を高いエネルギーで照射し、浅い位置には重い粒子を照射することにより、深い位置と浅い位置の双方において患部により合致した線量分布を小型の装置によって形成することが可能となる。ここで、照射される荷電粒子によって形成される線量分布は、荷電粒子の種類ごとに異なる。従って、照射される荷電粒子の種類を照射前に確認することは、複数種類の荷電粒子を照射する装置の信頼性を確保する上で重要である。 According to the charged particle irradiation system described in Patent Document 1 or 2, both the deep position and the shallow position are irradiated by irradiating light particles with high energy to the deep position of the affected area and irradiating heavy particles to the shallow position. In this case, it is possible to form a dose distribution more matched to the affected area with a small device. Here, the dose distribution formed by the charged particles to be irradiated is different for each type of charged particles. Therefore, confirming the type of charged particles to be irradiated before irradiation is important for ensuring the reliability of an apparatus that irradiates a plurality of types of charged particles.
 複数種類の荷電粒子を照射する装置には、それぞれの電荷質量比が等しい複数種類の荷電粒子を照射するものがある。一例として、質量数が4電荷数が2(電荷質量比が1/2)のヘリウムイオンと質量数が12、電荷数が6の炭素イオン(同じく電荷質量比が1/2)とを照射する装置がある。電荷質量比が等しい荷電粒子を同一条件で加速した場合、核子あたりのエネルギーが等しくなり、磁場内の軌道も同一となる。同一の軌道を進む荷電粒子の種類を判別することは困難であるため、電荷質量比が等しい複数種類の荷電粒子を照射する装置において、荷電粒子の種類を判別できることの意義は特に大きい。 Some devices that irradiate multiple types of charged particles irradiate multiple types of charged particles having the same charge-mass ratio. As an example, helium ions with a mass number of 4 and a charge number of 2 (charge mass ratio of 1/2) and carbon ions with a mass number of 12 and a charge number of 6 (also charge mass ratio of 1/2) are irradiated. There is a device. When charged particles with the same charge-mass ratio are accelerated under the same conditions, the energy per nucleon is equal and the trajectories in the magnetic field are also the same. Since it is difficult to determine the type of charged particles traveling in the same orbit, it is particularly significant that the type of charged particles can be determined in an apparatus that irradiates a plurality of types of charged particles having the same charge-mass ratio.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、照射対象に照射する荷電粒子の種類を照射前に判別することができる荷電粒子照射システムを提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a charged particle irradiation system capable of determining the type of charged particles irradiated to an irradiation target before irradiation.
 上記課題を解決するため、本発明の荷電粒子照射システムは、核種の異なる複数種類のイオンを生成するイオン発生装置と、前記イオン発生装置から供給されたイオンを加速してイオンビームとして出射する加速器と、前記加速器から出射されたイオンビームを輸送するビーム輸送系と、前記ビーム輸送系によって輸送されたイオンビームを照射目標に照射する照射装置と、前記イオン発生装置から供給されたイオンの核種を判別するように構成された核種判別装置とを備えるものとする。 In order to solve the above problems, a charged particle irradiation system of the present invention includes an ion generator that generates a plurality of types of ions having different nuclides, and an accelerator that accelerates the ions supplied from the ion generator and emits the ions as an ion beam. A beam transport system that transports an ion beam emitted from the accelerator, an irradiation device that irradiates an irradiation target with an ion beam transported by the beam transport system, and a nuclide of ions supplied from the ion generator. A nuclide discrimination device configured to discriminate is provided.
 本発明によれば、複数種類の荷電粒子を照射する治療において、治療計画で定めた荷電粒子を確実に照射することが可能となる。 According to the present invention, in the treatment of irradiating a plurality of types of charged particles, it is possible to reliably irradiate the charged particles determined in the treatment plan.
第1の実施の形態における荷電粒子照射システムの全体構成図である。1 is an overall configuration diagram of a charged particle irradiation system according to a first embodiment. 第1の実施の形態における荷電粒子照射システムに備えられた核種判別装置の拡大構成図である。It is an expanded block diagram of the nuclide discrimination | determination apparatus with which the charged particle irradiation system in 1st Embodiment was equipped. 第1の実施の形態における荷電粒子照射システムに備えられた照射装置の拡大構成図である。It is an enlarged block diagram of the irradiation apparatus with which the charged particle irradiation system in 1st Embodiment was equipped. 照射された荷電粒子によって形成される横方向の線量分布を示す図である。It is a figure which shows the dose distribution of the horizontal direction formed with the irradiated charged particle. 単一エネルギーで照射された荷電粒子によって形成される深さ方向の線量分布を示す図である。It is a figure which shows the dose distribution of the depth direction formed with the charged particle irradiated with single energy. 複数エネルギーで照射されたヘリウムイオン及び炭素イオンによって形成される深さ方向の線量分布を示す図である。It is a figure which shows the dose distribution of the depth direction formed of the helium ion and carbon ion irradiated with multiple energy. 第1の実施の形態における荷電粒子照射システムに備えられた制御装置による照射制御を示すフロー図である。It is a flowchart which shows irradiation control by the control apparatus with which the charged particle irradiation system in 1st Embodiment was equipped. 第1の実施の形態における荷電粒子照射システムに備えられた核種判別装置(変形例1)の拡大構成図である。It is an enlarged block diagram of the nuclide discrimination | determination apparatus (modification 1) with which the charged particle irradiation system in 1st Embodiment was equipped. 第1の実施の形態におけるにおける荷電粒子照射システムに備えられた核種判別装置(変形例2)の拡大構成図ある。It is an enlarged block diagram of the nuclide discrimination | determination apparatus (modification 2) with which the charged particle irradiation system in 1st Embodiment was equipped. 第1の実施の形態におけるにおける荷電粒子照射システムに備えられた核種判別装置(変形例3)の拡大構成図ある。It is an enlarged block diagram of the nuclide discrimination | determination apparatus (modification 3) with which the charged particle irradiation system in 1st Embodiment was equipped. 第2の実施の形態における荷電粒子照射システムの全体構成図である。It is a whole block diagram of the charged particle irradiation system in 2nd Embodiment. 第2の実施の形態における荷電粒子照射システムに備えられた制御装置による照射制御を示すフロー図である。It is a flowchart which shows irradiation control by the control apparatus with which the charged particle irradiation system in 2nd Embodiment was equipped. 第3の実施の形態における荷電粒子照射システムの全体構成図である。It is a whole block diagram of the charged particle irradiation system in 3rd Embodiment. 第3の実施の形態における荷電粒子照射システムに備えられた照射装置の拡大構成図である。It is an expanded block diagram of the irradiation apparatus with which the charged particle irradiation system in 3rd Embodiment was equipped. 第3の実施の形態における荷電粒子照射システムに備えられた制御装置による照射制御を示すフロー図である。It is a flowchart which shows the irradiation control by the control apparatus with which the charged particle irradiation system in 3rd Embodiment was equipped.
 本発明の実施の形態を図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態における荷電粒子ビーム照射システムの全体構成図である。図1において、粒子線照射システムは、荷電粒子発生装置100と、前段加速器としてのライナック6a及び後段加速器としてのシンクロトロン6bで構成された加速器200と、ビーム輸送系300と、照射装置20と、制御装置30とを備えている。
<First Embodiment>
FIG. 1 is an overall configuration diagram of a charged particle beam irradiation system according to a first embodiment of the present invention. In FIG. 1, the particle beam irradiation system includes a charged particle generator 100, an accelerator 200 including a linac 6a as a front stage accelerator and a synchrotron 6b as a rear stage accelerator, a beam transport system 300, an irradiation apparatus 20, And a control device 30.
 荷電粒子発生装置100は、主に複数のイオン源1,2により構成されている。イオン源1,2は、それぞれ核種の異なる荷電粒子を生成する装置であり、本実施の形態におけるイオン源1,2は、それぞれヘリウムイオン源と炭素イオン源とで構成されている。ヘリウムイオン源1で生成するヘリウムイオンは、質量数が4、電荷数が2(電荷質量比が1/2)であり、炭素イオン源2で生成する炭素イオンは、質量数が12、電荷数が6(同じく電荷質量比が1/2)である。イオン源1,2とライナック6aの間には、それぞれヘリウムイオン源用シャッター3と、炭素イオン源用シャッター4と、イオン源切替装置5とが設けられている。ライナック6aは、ビームダクト7を介してシンクロトロン6bに接続されており、イオン源1,2から入射した荷電粒子をシンクロトロン6bに入射可能なエネルギーまで加速した後、シンクロトロン6bに向けて出射する。シンクロトロン6bは、環状のビームダクト8に複数の偏向電磁石9、複数の四極電磁石(図示せず)、高周波加速電極10、出射用高周波電極11及び出射用デフレクタ12を備えている。シンクロトロン6bは、ライナック6aから入射した荷電粒子を標的の照射に必要なエネルギーまで加速し、ビーム輸送系300に出射する。 The charged particle generator 100 is mainly composed of a plurality of ion sources 1 and 2. The ion sources 1 and 2 are devices that generate charged particles of different nuclides, and the ion sources 1 and 2 in the present embodiment are each composed of a helium ion source and a carbon ion source. The helium ions generated by the helium ion source 1 have a mass number of 4 and a charge number of 2 (charge-mass ratio is 1/2), and the carbon ions generated by the carbon ion source 2 have a mass number of 12 and a charge number. Is 6 (also charge-mass ratio is 1/2). A helium ion source shutter 3, a carbon ion source shutter 4, and an ion source switching device 5 are provided between the ion sources 1 and 2 and the linac 6a. The linac 6a is connected to the synchrotron 6b via the beam duct 7, and after accelerating charged particles incident from the ion sources 1 and 2 to energy that can enter the synchrotron 6b, the linac 6a is emitted toward the synchrotron 6b. To do. The synchrotron 6b includes an annular beam duct 8 and a plurality of deflection electromagnets 9, a plurality of quadrupole electromagnets (not shown), a high-frequency acceleration electrode 10, an output high-frequency electrode 11, and an output deflector 12. The synchrotron 6b accelerates charged particles incident from the linac 6a to energy necessary for target irradiation, and outputs the accelerated particles to the beam transport system 300.
 ビーム輸送系300は、シンクロトロン6bの出射用デフレクタ12から出射されたビームを照射装置20まで輸送するものであり、シンクロトロン6bの出射用デフレクタ12と照射装置20とを接続するビームダクト13と、ビームダクト13に設けられた複数の偏向電磁石14及び複数の四極電磁石(図示せず)とを備えている。ビーム輸送系300の一部は回転ガントリー15と一体となって回転するよう回転ガントリー15に設置されている。また、ビーム輸送系300は、ビームダクト13の途中に経路切替装置40と核種判別装置50とを備えている。経路切替装置40は、高速に磁場強度を切り替えることができる電磁石を備え、シンクロトロン6bから出射された荷電粒子の経路を照射装置20に至る経路と核種判別装置50に至る経路とで切り替える機能を有する。核種判別装置50は、核種判別装置50に入射した荷電粒子の核種に依存する所定のパラメータを計測する機能を有する。核種判別装置50の拡大構成図を図2に示す。図2において、核種判別装置50は、核種計測部51と核種判別部52とを備えている。核種計測部51は、所定の間隔を空けて積層された複数の金属板53を備えており、複数の金属板53は、それぞれ核種判別部52に接続されている。 The beam transport system 300 transports the beam emitted from the emission deflector 12 of the synchrotron 6b to the irradiation device 20, and includes a beam duct 13 that connects the emission deflector 12 of the synchrotron 6b and the irradiation device 20. A plurality of deflection electromagnets 14 provided in the beam duct 13 and a plurality of quadrupole electromagnets (not shown) are provided. A part of the beam transport system 300 is installed in the rotating gantry 15 so as to rotate together with the rotating gantry 15. The beam transport system 300 includes a path switching device 40 and a nuclide discrimination device 50 in the middle of the beam duct 13. The path switching device 40 includes an electromagnet that can switch the magnetic field intensity at high speed, and has a function of switching the path of the charged particles emitted from the synchrotron 6b between the path reaching the irradiation apparatus 20 and the path reaching the nuclide discrimination apparatus 50. Have. The nuclide discrimination device 50 has a function of measuring a predetermined parameter depending on the nuclide of the charged particle incident on the nuclide discrimination device 50. An enlarged configuration diagram of the nuclide discrimination device 50 is shown in FIG. In FIG. 2, the nuclide determination device 50 includes a nuclide measurement unit 51 and a nuclide determination unit 52. The nuclide measurement unit 51 includes a plurality of metal plates 53 stacked at a predetermined interval, and each of the plurality of metal plates 53 is connected to a nuclide determination unit 52.
 図1に戻り、照射装置20は、回転ガントリー15と一体となって回転するよう回転ガントリー15に搭載されており、回転ガントリー15を回転させることにより、カウチ16の上に固定された患者17に対する照射角を0度から360度まで設定することができる。 Returning to FIG. 1, the irradiation device 20 is mounted on the rotating gantry 15 so as to rotate integrally with the rotating gantry 15. By rotating the rotating gantry 15, the irradiation device 20 is attached to the patient 17 fixed on the couch 16. The irradiation angle can be set from 0 degrees to 360 degrees.
 照射装置20の拡大構成図を図3に示す。図3において、照射装置20は、2対の走査電磁石21A,21Bと、線量モニタ22と、位置モニタ23とを備えている。2対の走査電磁石21A,21Bは、互いに直行する方向に設置されており、ビーム軸24に対して垂直な方向の荷電粒子が到達する位置を変更する。 The enlarged block diagram of the irradiation apparatus 20 is shown in FIG. In FIG. 3, the irradiation device 20 includes two pairs of scanning electromagnets 21 </ b> A and 21 </ b> B, a dose monitor 22, and a position monitor 23. The two pairs of scanning electromagnets 21 </ b> A and 21 </ b> B are installed in a direction perpendicular to each other, and change the position where charged particles in a direction perpendicular to the beam axis 24 arrive.
 図1に戻り、制御装置30は、荷電粒子発生装置100と、加速器200と、ビーム輸送系300と、照射装置20と、データベース31とに接続されており、データベース31に記録されているスポットデータ(後述)に基づいて、これらを制御する。 Returning to FIG. 1, the control device 30 is connected to the charged particle generation device 100, the accelerator 200, the beam transport system 300, the irradiation device 20, and the database 31, and spot data recorded in the database 31. These are controlled based on (described later).
 荷電粒子を照射することにより患者体内に形成される線量分布について説明する。本実施例の照射方法であるスキャニング照射方法は、スポットと呼ばれる線量分布を患部形状に合致するようにビーム軸に垂直な方向(以下、横方向という)と深さ方向に並べる方法である。横方向の照射位置の変更は、走査電磁石21A,21Bの励磁量を変更することにより行い、深さ方向の照射位置の変更は、電粒子のエネルギーを変更することにより行う。 The dose distribution formed in the patient's body by irradiating charged particles will be described. The scanning irradiation method, which is the irradiation method of the present embodiment, is a method in which a dose distribution called a spot is arranged in a direction perpendicular to the beam axis (hereinafter referred to as a lateral direction) and a depth direction so as to match the shape of the affected part. The irradiation position in the horizontal direction is changed by changing the excitation amount of the scanning electromagnets 21A and 21B, and the irradiation position in the depth direction is changed by changing the energy of the electroparticles.
 図4は、照射された荷電粒子によって形成される横方向の線量分布を示す図である。各スポットの横方向の線量分布60はガウス分布形状をしており、例えば等量の荷電粒子を照射するスポットを等間隔に配置することにより、一様な線量分布61を形成することができる。 FIG. 4 is a diagram showing a dose distribution in the lateral direction formed by irradiated charged particles. The dose distribution 60 in the lateral direction of each spot has a Gaussian distribution shape. For example, a uniform dose distribution 61 can be formed by arranging spots irradiated with an equal amount of charged particles at equal intervals.
 図5Aは、単一エネルギーで照射された荷電粒子によって形成される深さ方向の線量分布を示す図である。荷電粒子は停止直前に多くのエネルギーを付与するため、停止直前にピーク70(以下、ブラッグピークという)が形成される。体表からブラッグピーク70までの水等価厚を飛程と呼ぶ。例えば、ヘリウムイオンと炭素イオンを比較した場合、核子あたりのエネルギーが等しいと、質量数が小さいヘリウムイオンは炭素イオンに比べて飛程が大きい。従って、炭素イオンに比べてヘリウムイオンの方が小型のシステムで同じ飛程を実現することができる。一方、ヘリウムイオンと炭素イオンが同じ飛程のとき(核子あたりのエネルギーは異なる)、炭素イオンの方が直進性が高く、ビームサイズが小さい。また、どの核種もエネルギーが低いほど(飛程が短いほど)、ビームサイズが大きい。従って、例えば深い位置はヘリウムイオンを照射し、浅い位置は炭素イオンを照射することで、システムを小型化できるとともに、深い位置と浅い位置の双方において小さなビームサイズの荷電粒子を照射することができる。 FIG. 5A is a diagram showing a dose distribution in the depth direction formed by charged particles irradiated with a single energy. Since charged particles give a lot of energy immediately before stopping, a peak 70 (hereinafter referred to as a Bragg peak) is formed immediately before stopping. The water equivalent thickness from the body surface to the Bragg peak 70 is called the range. For example, when helium ions and carbon ions are compared, if the energy per nucleon is equal, helium ions having a small mass number have a larger range than carbon ions. Therefore, helium ions can achieve the same range in a smaller system than carbon ions. On the other hand, when helium ions and carbon ions have the same range (energy per nucleon is different), carbon ions have higher straightness and a smaller beam size. In addition, the beam size is larger as the energy of any nuclide is lower (the shorter the range is). Therefore, for example, by irradiating helium ions at a deep position and irradiating carbon ions at a shallow position, the system can be miniaturized and charged particles having a small beam size can be irradiated at both a deep position and a shallow position. .
 図5Bは、複数エネルギーで照射されたヘリウムイオン及び炭素イオンによって形成される深さ方向の線量分布を示す図である。図5Bに示すように、患部を体表から深い照射領域71と浅い照射領域72とに分割し、深い照射領域71にはヘリウムイオンを複数のエネルギーで照射し、浅い方の照射領域72には炭素イオンを複数のエネルギーで照射することにより、深さ方向において一様な線量分布73が患部に形成される。 FIG. 5B is a diagram showing a dose distribution in the depth direction formed by helium ions and carbon ions irradiated with a plurality of energies. As shown in FIG. 5B, the affected area is divided into a deep irradiation region 71 and a shallow irradiation region 72 from the body surface, and helium ions are irradiated to the deep irradiation region 71 with a plurality of energies, and the shallow irradiation region 72 is irradiated to the shallow irradiation region 72. By irradiating carbon ions with a plurality of energies, a uniform dose distribution 73 is formed in the affected area in the depth direction.
 ~作業手順~
 本実施の形態における荷電粒子照射システムを用いて治療を行う際のオペレータによる作業手順を図1を用いて説明する。
-Work procedure-
An operation procedure by an operator when performing treatment using the charged particle irradiation system according to the present embodiment will be described with reference to FIG.
 治療を行う前に、治療計画装置(図示せず)を利用して治療計画を決定する。具体的には、患者17の患部18に所望の線量分布が形成されるように、予め撮像した患部18のX線CT画像に基づいて、回転ガントリー15の角度、スポット毎の照射パラメータ(荷電粒子の種類(核種)、エネルギー、目標照射位置、目標照射量)等を決定する。決定されたスポット毎の照射パラメータは、スポットデータとしてデータベース31に登録される。 Before treatment, determine a treatment plan using a treatment planning device (not shown). Specifically, based on the X-ray CT image of the affected part 18 imaged in advance so that a desired dose distribution is formed in the affected part 18 of the patient 17, the angle of the rotating gantry 15, the irradiation parameters for each spot (charged particles) Type (nuclide), energy, target irradiation position, target irradiation amount) and the like. The determined irradiation parameters for each spot are registered in the database 31 as spot data.
 治療計画の決定後、照射のための準備作業を行う。具体的には、患者17をカウチ16の上に固定し、患者17が所望の位置に配置されるようにカウチ16を移動させ、回転ガントリー15の角度を治療計画作成時と同じ角度に設定する。 After preparation of treatment plan, preparation for irradiation is performed. Specifically, the patient 17 is fixed on the couch 16, the couch 16 is moved so that the patient 17 is placed at a desired position, and the angle of the rotating gantry 15 is set to the same angle as when the treatment plan is created. .
 上記の準備作業が完了した後、照射開始ボタン(図示せず)を押し、制御装置30に照射開始を指示する。以降、制御装置30によって、データベース31に登録されているスポットデータに基づいた照射制御(後述)が行われる。 After the above preparation work is completed, an irradiation start button (not shown) is pushed to instruct the control device 30 to start irradiation. Thereafter, irradiation control (described later) based on the spot data registered in the database 31 is performed by the control device 30.
 ~照射制御~
 図6は、制御装置30による照射制御を示すフロー図である。以下、フローを構成する各ステップについて順に説明する。
-Irradiation control-
FIG. 6 is a flowchart showing irradiation control by the control device 30. Hereinafter, each step constituting the flow will be described in order.
 ステップS101において、照射準備を行う。制御装置30は、データベース31からスポットデータを読み込み、各スポットの照射順序を決定する。通常、高いエネルギーのスポットから低いエネルギーのスポットの順に照射が行われる。本実施の形態では、最初にヘリウムイオンを用いて高いエネルギーのスポットから低いエネルギーのスポットの順に照射を行い、続いて炭素イオンを用いて高いエネルギーのスポットから低いエネルギーのスポットの順に照射を行う。 In step S101, preparation for irradiation is performed. The control device 30 reads spot data from the database 31 and determines the irradiation order of each spot. Usually, irradiation is performed in the order of a high energy spot to a low energy spot. In this embodiment, helium ions are used first to irradiate from a high energy spot to a low energy spot, and then carbon ions are used to irradiate from a high energy spot to a low energy spot.
 ステップS102において、ヘリウムイオン源1を選択する。制御装置30は、イオン源切替装置5内の経路をヘリウムイオン源1側に切り替え、ヘリウムイオン源用シャッター3を開く。このとき炭素イオン源用シャッター4は閉じたままにしておく。 In step S102, the helium ion source 1 is selected. The control device 30 switches the path in the ion source switching device 5 to the helium ion source 1 side and opens the shutter 3 for the helium ion source. At this time, the carbon ion source shutter 4 is kept closed.
 ステップS103において、ヘリウムイオンを前段加速する。制御装置30は、ヘリウムイオン源1から放出されたヘリウムイオンをライナック6aで加速し、シンクロトロン6bに出射する。シンクロトロン6bに入射したヘリウムイオンは、シンクロトロン6b内を周回する。 In step S103, helium ions are accelerated in the previous stage. The control device 30 accelerates the helium ions emitted from the helium ion source 1 by the linac 6a and emits the helium ions to the synchrotron 6b. The helium ions incident on the synchrotron 6b circulate in the synchrotron 6b.
 ステップS104において、ヘリウムイオンを後段加速する。制御装置30は、高周波加速電極10に高周波を印加し、偏向電磁石9と四極線磁石(図示せず)の励磁量を制御して所定のエネルギーにヘリウムイオンを加速する。 In step S104, helium ions are accelerated later. The control device 30 applies a high frequency to the high frequency acceleration electrode 10 and controls the amount of excitation of the deflection electromagnet 9 and a quadrupole magnet (not shown) to accelerate helium ions to a predetermined energy.
 ステップS105において、制御装置30は、ヘリウムイオンが核種判別装置50に到達するように経路切替装置40の電磁石を励磁する。 In step S105, the control device 30 excites the electromagnet of the path switching device 40 so that helium ions reach the nuclide discrimination device 50.
 ステップS106において、イオンの核種を判別する。制御装置30は、出射用高周波電極11に高周波が印加し、シンクロトロン6b内を周回しているヘリウムイオンを出射用デフレクタ12からビーム輸送系300に出射する。ビーム輸送系300に出射されたヘリウムイオンは、経路切替装置40を経由して核種判別装置50に到達する。核種判別装置50に到達したヘリウムイオンは、金属板53(図2)を通過しながらエネルギーを損失し、やがてエネルギーが無くなるといずれかの金属板53内で停止する。ヘリウムイオンが停止した金属板53の位置(飛程)は、金属板53を流れる電気信号として核種判別部52により検出される。核種判別部52は、加速器200(シンクロトロン6b)の加速条件により定まる核子あたりのエネルギーと核種計測部51で計測したヘリウムイオンの停止位置(飛程)とに基づいて、核種判別装置50に入射した荷電粒子の核種を判別し、その判別結果を制御装置30に送信する。制御装置30は、核種の判別結果を受信した後、出射用高周波電極11への高周波の印加を停止することにより、シンクロトロン6bからビーム輸送系300へのヘリウムイオンの出射を停止する。 In step S106, the ion nuclide is determined. The control device 30 applies a high frequency to the high-frequency electrode 11 for emission, and emits helium ions circulating in the synchrotron 6b from the extraction deflector 12 to the beam transport system 300. The helium ions emitted to the beam transport system 300 reach the nuclide discrimination device 50 via the path switching device 40. The helium ions that have reached the nuclide discrimination device 50 lose energy while passing through the metal plate 53 (FIG. 2), and eventually stop in any of the metal plates 53 when the energy disappears. The position (range) of the metal plate 53 where helium ions are stopped is detected by the nuclide discrimination unit 52 as an electric signal flowing through the metal plate 53. The nuclide discrimination unit 52 enters the nuclide discrimination device 50 based on the energy per nucleon determined by the acceleration condition of the accelerator 200 (the synchrotron 6b) and the stop position (range) of helium ions measured by the nuclide measurement unit 51. The nuclide of the charged particles is discriminated, and the discrimination result is transmitted to the control device 30. After receiving the nuclide discrimination result, the control device 30 stops the extraction of helium ions from the synchrotron 6b to the beam transport system 300 by stopping the application of the high frequency to the extraction high-frequency electrode 11.
 ステップS107において、ステップS102で選択したヘリウムイオン源1の核種とステップS106で判別した核種とが一致するか否かを判定する。ステップS106で核種をヘリウムイオンと判別し、ステップS107で一致(yes)と判定した場合(正常時)は、ステップS109以降でヘリウムイオンを患者17の患部18に照射する。一方、ステップS106でヘリウムイオン以外の核種と判別し、ステップS107で不一致(no)と判定した場合(異常時)は、出射用高周波電極11への高周波の印加を停止し、照射を中断する(ステップS108)。 In step S107, it is determined whether or not the nuclide of the helium ion source 1 selected in step S102 matches the nuclide determined in step S106. If the nuclide is determined to be helium ions in step S106, and if it is determined to be coincident (yes) in step S107 (normal), helium ions are irradiated to the affected part 18 of the patient 17 in step S109 and thereafter. On the other hand, if the nuclide is determined to be a nuclide other than helium ions in step S106 and it is determined in step S107 that there is a mismatch (no) (abnormal), the application of the high frequency to the high frequency electrode 11 for emission is stopped and the irradiation is interrupted ( Step S108).
 ステップS109において、照射位置を設定する。制御装置30は、スポットデータの目標照射位置に合わせて照射装置20内の走査電磁石21A,21B(図3)を励磁し、ヘリウムイオンが照射装置20に到達するように経路切替装置40の電磁石の励磁量を制御する。 In step S109, the irradiation position is set. The control device 30 excites the scanning electromagnets 21A and 21B (FIG. 3) in the irradiation device 20 according to the target irradiation position of the spot data, and the electromagnets of the path switching device 40 so that helium ions reach the irradiation device 20. Control the amount of excitation.
 ステップS110において、ヘリウムイオンの照射を行う。制御装置30は、出射用高周波電極11に高周波を印加する。シンクロトロン6b内を所定のエネルギーで周回しているヘリウムイオンは、ビーム輸送系300に出射され、経路切替装置40を経由して照射装置20に到達する。照射装置20に到達したヘリウムイオンは、走査電磁石21A,21Bにより走査され、線量モニタ22(図3)と位置モニタ23(図3)を通過して患者17の患部18に到達し、線量分布を形成する。線量モニタ22及び位置モニタ23は、それぞれ通過したヘリウムイオンの量及び位置を計測し、計測結果を制御装置30に送信する。制御装置30は、線量モニタ22が計測したヘリウムイオンの量がスポットデータの目標照射量に到達すると、出射用高周波電極11への高周波の印加を停止し、ヘリウムイオンの出射を停止する。制御装置30は、位置モニタ23が計測したヘリウムイオンの位置と目標照射位置を照合し、一致していることを確認する。 In step S110, helium ion irradiation is performed. The control device 30 applies a high frequency to the emission high-frequency electrode 11. Helium ions circulating around the synchrotron 6b with a predetermined energy are emitted to the beam transport system 300 and reach the irradiation device 20 via the path switching device 40. The helium ions that have reached the irradiation device 20 are scanned by the scanning electromagnets 21A and 21B, pass through the dose monitor 22 (FIG. 3) and the position monitor 23 (FIG. 3), reach the affected area 18 of the patient 17, and determine the dose distribution. Form. The dose monitor 22 and the position monitor 23 measure the amount and position of the helium ions that have passed, and transmit the measurement results to the control device 30. When the amount of helium ions measured by the dose monitor 22 reaches the target irradiation amount of the spot data, the control device 30 stops the application of the high frequency to the extraction high-frequency electrode 11 and stops the emission of helium ions. The control device 30 collates the position of the helium ions measured by the position monitor 23 with the target irradiation position, and confirms that they match.
 ステップS111において、スポットデータに同一エネルギーの未照射スポットがあるか否かを判定する。ステップS111で未照射スポットがある(yes)と判定した場合は、次の未照射スポットにヘリウムイオンが到達するように走査電磁石21A,21Bを励磁し(ステップS109)、出射用高周波電極11に高周波を印加してヘリウムイオンをシンクロトロン6bから出射させる(ステップS110)。シンクロトロン6bから出射されたヘリウムイオンは、前回のスポットと同様に患者17の患部18に到達し、線量分布を形成する。以降、ステップS111で未照射スポットが無い(no)と判定するまでステップS109~S111を繰り返すことにより、同一エネルギーでのヘリウムイオンの照射を完了する。 In step S111, it is determined whether there is an unirradiated spot with the same energy in the spot data. When it is determined in step S111 that there is an unirradiated spot (yes), the scanning electromagnets 21A and 21B are excited so that the helium ions reach the next unirradiated spot (step S109), and the high-frequency electrode 11 for emission has a high frequency. To emit helium ions from the synchrotron 6b (step S110). The helium ions emitted from the synchrotron 6b reach the affected part 18 of the patient 17 similarly to the previous spot, and form a dose distribution. Thereafter, steps S109 to S111 are repeated until it is determined in step S111 that there is no unirradiated spot (no), thereby completing the irradiation of helium ions with the same energy.
 ステップS112において、スポットデータにヘリウムイオンの未照射エネルギーがあるか否かを判定する。ステップS112で未照射エネルギーがある(yes)と判定した場合は、ステップS104に戻る。前回のエネルギーのヘリウムイオンを照射した場合と同様に、ヘリウムイオンがシンクロトロン6bによって次のエネルギーまで加速される(ステップS104)。制御装置30は、経路切替装置40を制御して前回のエネルギーと同様にヘリウムイオンが核種判別装置50に到達するように経路切替装置40の電磁石を励磁した(ステップS105)後、出射用高周波電極11に高周波を印加してヘリウムイオンを核種判別装置50に向けて出射する。核種判別装置50に到達したヘリウムイオンは、金属板53を通過しながらエネルギーを損失し、やがてエネルギーが無くなるといずれかの金属板53内で停止する。ヘリウムイオンのエネルギーは前回の照射時と比べて低いため、ヘリウムイオンが停止するまでに通過する金属板53の枚数は前回よりも少ない。核種判別部52は、核子あたりのエネルギーと核種判別装置50で計測したヘリウムイオンの停止位置(飛程)とに基づいて核種を判別し(ステップS106)、その判別結果を制御装置30に送信する。制御装置30は、ステップS102で選択したイオン源の核種とステップS106で判別した核種とが一致することを確認した後(ステップS107)、前回のエネルギーと同様にステップS111で同一エネルギーの未照射スポットが無い(no)と判定するまでステップS109~S111を繰り返すことにより、同一エネルギーでのヘリウムイオンの照射を完了する。以降、ステップS112で未照射エネルギーが無い(no)と判定するまでステップS103~S112を繰り返すことにより、ヘリウムイオンの照射を完了する。 In step S112, it is determined whether or not the spot data includes unirradiated energy of helium ions. If it is determined in step S112 that there is unirradiated energy (yes), the process returns to step S104. As in the case of irradiation with helium ions having the previous energy, the helium ions are accelerated to the next energy by the synchrotron 6b (step S104). The control device 30 controls the route switching device 40 to excite the electromagnet of the route switching device 40 so that helium ions reach the nuclide discrimination device 50 in the same manner as the previous energy (step S105), and then the high frequency electrode for emission A high frequency is applied to 11 and helium ions are emitted toward the nuclide discrimination device 50. The helium ions that have reached the nuclide discriminating device 50 lose energy while passing through the metal plate 53, and eventually stop in any of the metal plates 53 when the energy is lost. Since the energy of helium ions is lower than that in the previous irradiation, the number of metal plates 53 that pass through until the helium ions stop is smaller than in the previous time. The nuclide determination unit 52 determines the nuclide based on the energy per nucleon and the helium ion stop position (range) measured by the nuclide determination device 50 (step S106), and transmits the determination result to the control device 30. . After confirming that the ion source nuclide selected in step S102 matches the nuclide determined in step S106 (step S107), the control device 30 performs the same energy unirradiated spot in step S111 as in the previous energy. By repeating steps S109 to S111 until it is determined that there is no (no), irradiation of helium ions with the same energy is completed. Thereafter, the irradiation of helium ions is completed by repeating steps S103 to S112 until it is determined in step S112 that there is no unirradiated energy (no).
 ステップS113において、スポットデータに未照射核種があるか否かを判定する。本実施の形態では、ヘリウムイオンに続いて炭素イオンを照射するため、ステップS113で未照射核種がある(yes)と判定し、ステップS102に戻る。 In step S113, it is determined whether or not there is an unirradiated nuclide in the spot data. In this embodiment, in order to irradiate carbon ions subsequent to helium ions, it is determined in step S113 that there is an unirradiated nuclide (yes), and the process returns to step S102.
 ステップS102において、炭素イオン源2を選択する。制御装置30は、炭素イオン源2から放出された炭素イオンがライナック6aに入射するように、ヘリウムイオン源用シャッター3を閉め、イオン源切替装置5を切替制御し、炭素イオン源用シャッター4を開く。 In step S102, the carbon ion source 2 is selected. The controller 30 closes the helium ion source shutter 3 so that the carbon ions emitted from the carbon ion source 2 enter the linac 6a, controls the ion source switching device 5, and controls the carbon ion source shutter 4. open.
 ステップS103において、炭素イオンを前段加速する。制御装置30は、炭素イオン源2から放出された炭素イオンをライナック6aで加速し、シンクロトロン6bに出射する。シンクロトロン6bに入射した炭素イオンは、シンクロトロン6b内を周回する。 In step S103, the carbon ions are accelerated in the previous stage. The control device 30 accelerates the carbon ions emitted from the carbon ion source 2 with the linac 6a and emits them to the synchrotron 6b. The carbon ions incident on the synchrotron 6b go around in the synchrotron 6b.
 ステップS104において、炭素イオンを後段加速する。制御装置30は、高周波加速電極10に高周波を印加し、偏向電磁石9と四極線磁石(図示せず)の励磁量を制御して所定のエネルギーに炭素イオンを加速する。 In step S104, carbon ions are accelerated later. The control device 30 applies a high frequency to the high frequency acceleration electrode 10 and controls the amount of excitation of the deflection electromagnet 9 and a quadrupole magnet (not shown) to accelerate carbon ions to a predetermined energy.
 ステップS105において、制御装置30は、炭素イオンが核種判別装置50に到達するように経路切替装置40の電磁石を励磁する。 In step S105, the control device 30 excites the electromagnet of the path switching device 40 such that the carbon ions reach the nuclide discrimination device 50.
 ステップS106において、イオンの核種を判別する。制御装置30は、出射用高周波電極11に高周波が印加し、シンクロトロン6b内を周回している炭素イオンを出射用デフレクタ12を経由してビーム輸送系300に出射する。ビーム輸送系300に出射された炭素イオンは、経路切替装置40を経由して核種判別装置50に到達する。核種判別装置50に到達した炭素イオンは、ヘリウムイオンと同様に金属板53(図2)通過しながらエネルギーを損失し、やがてエネルギーが無くなるといずれかの金属板53内で停止する。炭素イオンが停止した金属板53の位置(否定)は、金属板53を流れる電気信号として核種判別部52により検出される。核種判別部52は、加速器200(シンクロトロン6b)の加速条件により定まる核子あたりのエネルギーと核種計測部51で計測した炭素イオンの停止位置(飛程)とに基づいて、核種判別装置50に入射した荷電粒子の核種を判別し、その判別結果を制御装置30に送信する。なお、炭素イオンが通過する金属板53の枚数は、核子あたりのエネルギーが等しい条件の下で比較した場合、ヘリウムイオンの通過枚数よりも少ない。これは、核子あたりのエネルギーが等しい場合、重い粒子ほど飛程が小さくなるという荷電粒子の特性による。制御装置30は、核種の判別結果を受信した後、出射用高周波電極11への高周波の印加を停止することにより、シンクロトロン6bからビーム輸送系300への炭素イオンの出射を停止する。 In step S106, the ion nuclide is determined. The control device 30 applies a high frequency to the high frequency electrode 11 for emission, and emits carbon ions circulating in the synchrotron 6 b to the beam transport system 300 via the extraction deflector 12. The carbon ions emitted to the beam transport system 300 reach the nuclide discrimination device 50 via the path switching device 40. The carbon ions that have reached the nuclide discriminating device 50 lose energy while passing through the metal plate 53 (FIG. 2) like the helium ions, and eventually stop in any of the metal plates 53 when the energy disappears. The position (negation) of the metal plate 53 where the carbon ions are stopped is detected by the nuclide discrimination unit 52 as an electric signal flowing through the metal plate 53. The nuclide discrimination unit 52 enters the nuclide discrimination device 50 based on the energy per nucleon determined by the acceleration condition of the accelerator 200 (the synchrotron 6b) and the stop position (range) of the carbon ion measured by the nuclide measurement unit 51. The nuclide of the charged particles is discriminated, and the discrimination result is transmitted to the control device 30. Note that the number of metal plates 53 through which carbon ions pass is smaller than the number of helium ions through when compared under the condition that the energy per nucleon is equal. This is due to the property of charged particles that the heavier particles have a smaller range when the energy per nucleon is equal. After receiving the nuclide discrimination result, the controller 30 stops the emission of carbon ions from the synchrotron 6b to the beam transport system 300 by stopping the application of the high frequency to the extraction high-frequency electrode 11.
 ステップS107において、ステップS102で選択した炭素イオン源2の核種とステップS106で判別した核種とが一致するか否かを判定する。ステップS106で核種を炭素イオンと判別し、ステップS107において一致(yes)と判定した場合(正常時)は、ステップS109以降で炭素イオンを患者17の患部18に照射する。一方、ステップS106で炭素イオン以外の核種と判別し、ステップS107で不一致(no)と判定した場合(異常時)は、出射用高周波電極11への高周波の印加を停止し、照射を中断する(ステップS108)。 In step S107, it is determined whether or not the nuclide of the carbon ion source 2 selected in step S102 matches the nuclide determined in step S106. In step S106, the nuclide is determined to be a carbon ion, and in step S107, if it is determined to be coincident (yes) (normal), the affected part 18 of the patient 17 is irradiated with the carbon ion after step S109. On the other hand, if the nuclide is determined to be a nuclide other than the carbon ion in step S106 and it is determined that there is a mismatch (no) in step S107 (abnormal), the application of the high frequency to the high frequency electrode for emission 11 is stopped and irradiation is interrupted ( Step S108).
 ステップS109において、照射位置を設定する。制御装置30は、スポットデータの目標照射位置に合わせて照射装置20内の走査電磁石21A,21Bを励磁し、炭素イオンが照射装置20に到達するように経路切替装置40の電磁石の励磁量を制御する。 In step S109, the irradiation position is set. The control device 30 excites the scanning electromagnets 21A and 21B in the irradiation device 20 according to the target irradiation position of the spot data, and controls the excitation amount of the electromagnet of the path switching device 40 so that the carbon ions reach the irradiation device 20. To do.
 ステップS110において、炭素イオンの照射を行う。制御装置30は、出射用高周波電極11に高周波を印加する。シンクロトロン6b内を所定のエネルギーで周回している炭素イオンは、ヘリウムイオンと同様にビーム輸送系300に出射され、経路切替装置40を経由して照射装置20に到達する。照射装置20に到達した炭素イオンは、走査電磁石21A,21Bにより走査され、線量モニタ22と位置モニタ23を通過して患者17の患部18に到達し、線量分布を形成する。以降、ヘリウムイオンと同様に、ステップS112で未照射エネルギーが無い(no)と判定するまでステップS105~S112を繰り返すことにより、炭素イオンの照射を完了する。本実施の形態では、炭素イオンに続いて照射する荷電粒子は無いため、ステップS113で未照射核種が無い(no)と判定し、照射を完了する(ステップS114)。 In step S110, irradiation with carbon ions is performed. The control device 30 applies a high frequency to the emission high-frequency electrode 11. Carbon ions circulating around the synchrotron 6b with a predetermined energy are emitted to the beam transport system 300 in the same manner as the helium ions, and reach the irradiation device 20 via the path switching device 40. The carbon ions that have reached the irradiation device 20 are scanned by the scanning electromagnets 21A and 21B, pass through the dose monitor 22 and the position monitor 23, reach the affected area 18 of the patient 17, and form a dose distribution. Thereafter, similarly to helium ions, the irradiation of carbon ions is completed by repeating steps S105 to S112 until it is determined in step S112 that there is no unirradiated energy (no). In this embodiment, since there is no charged particle to be irradiated following the carbon ion, it is determined in step S113 that there is no unirradiated nuclide (no), and irradiation is completed (step S114).
 なお、本実施の形態では、エネルギー変更(ステップS104)後に核種判別に伴う処理(ステップS105~S108)を行う構成としたが、照射位置設定(ステップS109)後に行う構成としても良い。これにより、治療における核種判別の頻度が増し、より信頼性の高い照射が可能となる。 In the present embodiment, the process for performing nuclide discrimination (steps S105 to S108) is performed after the energy change (step S104). However, the process may be performed after setting the irradiation position (step S109). As a result, the frequency of nuclide discrimination in treatment increases, and irradiation with higher reliability becomes possible.
 ~効果~
 このように、シンクロトロン6bの加速周期を更新(荷電粒子の種類又はエネルギーを変更)するごとに、荷電粒子を核種判別装置50に向けて出射し、選択したイオン源の核種とシンクロトロン6bから出射された荷電粒子の核種とが一致することを確認することにより、複数種類の荷電粒子を照射する治療において、治療計画で定めた荷電粒子を確実に照射することが可能となる。
~ Effect ~
Thus, every time the acceleration period of the synchrotron 6b is updated (the type or energy of the charged particles is changed), the charged particles are emitted toward the nuclide discriminating device 50, and the nuclide of the selected ion source and the synchrotron 6b are used. By confirming that the nuclides of the emitted charged particles coincide with each other, it is possible to reliably irradiate the charged particles determined in the treatment plan in the treatment of irradiating a plurality of types of charged particles.
 ~変形例~
 なお、核種判別装置50の核種計測部51は、図7に示すように、積層電離箱で構成しても良い。積層電離箱51は、空気層と金属(又は炭素)でコーティングされた樹脂板54とがビーム経路において交互に積層された構造をしている。樹脂板54にコーティングされた金属(又は炭素)の片側には積層電離箱用電源55が接続されており、電圧が印加されているため、空気層には電場が発生している。積層電離箱51に入射した荷電粒子は、主に樹脂板54を通過することによりエネルギーを損失し、いずれかの樹脂板54を通過した後に停止する。荷電粒子は、樹脂板54に挟まれた空気層を通過するときに空気を電離する。電離された電荷は、電場の影響を受けて樹脂板54にコーティングされた金属(又は炭素)まで到達する。到達した電荷は、核種判別部52によって検出される。核種判別部52は、電荷が検出された樹脂板54の枚数(飛程)と核子あたりのエネルギーとに基づいて、荷電粒子の種類を判別する。このように積層電離箱で構成された核種計測部51では、空気層の電離作用によって核種判別部52の検出信号を増幅できるため、入射する荷電粒子が少量でも高い精度で飛程を計測できる。
~ Modification ~
Note that the nuclide measurement unit 51 of the nuclide discrimination apparatus 50 may be formed of a laminated ionization chamber as shown in FIG. The laminated ionization chamber 51 has a structure in which an air layer and a resin plate 54 coated with metal (or carbon) are alternately laminated in a beam path. A laminated ionization chamber power supply 55 is connected to one side of the metal (or carbon) coated on the resin plate 54, and since a voltage is applied, an electric field is generated in the air layer. The charged particles incident on the laminated ionization chamber 51 lose energy by mainly passing through the resin plate 54 and stop after passing through any of the resin plates 54. The charged particles ionize the air when passing through the air layer sandwiched between the resin plates 54. The ionized charge reaches the metal (or carbon) coated on the resin plate 54 under the influence of the electric field. The reached charge is detected by the nuclide discrimination unit 52. The nuclide discrimination unit 52 discriminates the type of charged particles based on the number (range) of the resin plates 54 from which charges are detected and the energy per nucleon. As described above, the nuclide measuring unit 51 configured of the laminated ionization chamber can amplify the detection signal of the nuclide discrimination unit 52 by the ionization action of the air layer, and therefore, the range can be measured with high accuracy even with a small amount of incident charged particles.
 また、核種判別装置50の核種計測部51は、図8に示ように、電離箱56とシンチレータ57とを備える構成としてもよい。電離箱56及びシンチレータ57は、それぞれ核種判別部52に接続されている。荷電粒子が電離箱56内を通過すると、電離箱56の電離層を満たす電離ガスを電離し、電荷を発生させる。電荷の発生量は電離層内における荷電粒子のエネルギー損失dE/dxに比例することから、電荷量を検出することで電離層内の荷電粒子のエネルギー損失dE/dxが計測される。さらに、荷電粒子の飛程より十分に厚く構成されたシンチレータ57内で荷電粒子が停止する際に生じた発光量を検出する。発光量は荷電粒子の運動エネルギーEに比例することから、発光量を検出することで荷電粒子の運動エネルギーEが計測される。ここで、荷電粒子の運動エネルギーEは核子当たりのエネルギーに核子の個数を乗じた値に相当する。運動エネルギーEにおける荷電粒子の運動エネルギーdE/dxは核種によって異なる。従って、核種計測部51で計測した荷電粒子のエネルギー損失dE/dxと全エネルギーEとに基づいて、核種判別部52は荷電粒子の核種を判別する。もしくは、加速器の運転パターンから決まる荷電粒子のエネルギーEcalcと測定した荷電粒子の全エネルギーEとを比較することで、所望の核種が加速されているか否かを判別する。 Further, the nuclide measurement unit 51 of the nuclide discrimination device 50 may be configured to include an ionization chamber 56 and a scintillator 57 as shown in FIG. The ionization chamber 56 and the scintillator 57 are each connected to the nuclide discrimination unit 52. When the charged particles pass through the ionization chamber 56, the ionized gas that fills the ionization layer of the ionization chamber 56 is ionized to generate charges. Since the charge generation amount is proportional to the energy loss dE / dx of the charged particles in the ionosphere, the energy loss dE / dx of the charged particles in the ionosphere is measured by detecting the charge amount. Furthermore, the amount of light emitted when the charged particles stop is detected in the scintillator 57 that is configured to be sufficiently thicker than the range of the charged particles. Since the amount of luminescence is proportional to the kinetic energy E of the charged particles, the kinetic energy E of the charged particles is measured by detecting the amount of luminescence. Here, the kinetic energy E of the charged particles corresponds to a value obtained by multiplying the energy per nucleon by the number of nucleons. The kinetic energy dE / dx of the charged particle at the kinetic energy E varies depending on the nuclide. Accordingly, the nuclide determination unit 52 determines the nuclide of the charged particle based on the energy loss dE / dx of the charged particle and the total energy E measured by the nuclide measurement unit 51. Alternatively, it is determined whether or not the desired nuclide is accelerated by comparing the charged particle energy Ecalc determined from the operation pattern of the accelerator with the measured total energy E of the charged particles.
 核種判別装置50において、ビームの強度が大きく、粒子毎の計測が困難な場合には以下の方法も有効である。荷電粒子の数をNとすると、電離箱56で計測されるエネルギー損失量はN×dE/dxとなり、シンチレータ57で計測される荷電粒子の全エネルギーはN×Eとなる。核種判別部52は、エネルギー損失量N×dE/dxをエネルギーN×Eで除することで(dE/dx)/Eを得る。次に、加速器の運転パターンに基づいて荷電粒子のエネルギーEcalcを求め、ベーテの計算式等に基づいて荷電粒子のエネルギーEcalcにおける荷電粒子のエネルギー損失量(dE/dx)calcを計算する。さらに、(dE/dx)calcをEcalcで除し、((dE/dx)/E)calcを得る。最後に、(dE/dx)/Eと((dE/dx)/E)calcとを比較することで、核種判別部52は所望の核種が加速されているか否かを判別する。このように核種計測部51が電離箱56とシンチレータ57とを備える構成とすることにより、核種判別部52に接続される信号ラインが電離箱用とシンチレータ用との2つに抑えられるため、核種判別部52を安価に製造することができる。 In the nuclide discriminating apparatus 50, when the intensity of the beam is large and measurement for each particle is difficult, the following method is also effective. If the number of charged particles is N, the amount of energy loss measured by the ionization chamber 56 is N × dE / dx, and the total energy of the charged particles measured by the scintillator 57 is N × E. The nuclide determination unit 52 obtains (dE / dx) / E by dividing the energy loss amount N × dE / dx by the energy N × E. Next, the charged particle energy Ecalc is obtained based on the operation pattern of the accelerator, and the charged particle energy loss amount (dE / dx) calc in the charged particle energy Ecalc is calculated based on the Bethe calculation formula. Further, (dE / dx) calc is divided by Ecalc to obtain ((dE / dx) / E) calc. Finally, by comparing (dE / dx) / E and ((dE / dx) / E) calc, the nuclide determination unit 52 determines whether or not the desired nuclide is accelerated. Since the nuclide measurement unit 51 is configured to include the ionization chamber 56 and the scintillator 57 in this manner, the signal line connected to the nuclide determination unit 52 can be suppressed to two for the ionization chamber and the scintillator. The determination unit 52 can be manufactured at low cost.
 さらに、核種計測部51として、ビームの横方向の線量分布を計測できる放射線測定器を用いても良い。放射線測定器には、MWPC(Multi Wire Proportional Chamber)やMWIC(Multi Wire Ionization Chamber)といったワイヤーチェンバーや計測素子を2次元アレイ状に配置したFPD(Flat panel detector)等があり、そのいずれを用いた場合も同様の作用効果を達成できる。以下、ワイヤーチェンバーを用いた場合を例に説明する。 Furthermore, as the nuclide measuring unit 51, a radiation measuring device capable of measuring the dose distribution in the transverse direction of the beam may be used. Radiation measuring instruments include wire chambers such as MWPC (Multi-Wire Proportional Chamber) and MWIC (Multi-Wire Ionization Chamber) and FPD (Flat-panel detector) that arranges measurement elements in a two-dimensional array. In this case, the same effect can be achieved. Hereinafter, a case where a wire chamber is used will be described as an example.
 図9は、核種計測部51としてワイヤーチェンバーを備えた核種判別装置50の拡大構成図である。図9において、ワイヤーチェンバー51は、電離層中のビーム進行方向と垂直に等間隔に配置された複数の導線58を電荷収集電極として備えており、複数の導線58は、それぞれ核種判別部52に接続されている。核種判別部52は、各導線58の位置を横軸、各導線58で収集した電荷を縦軸としたビームの横方向分布を取得し、この横方向分布をガウス分布で近似することにより分布の標準偏差σを算出する。次に、核種判別部52は標準偏差σとσtableとを比較し、ワイヤーチェンバー51の計測精度の範囲で一致する核種を探索する。ここで、σtableは、核種の種類と、加速器の運転パターンで決まる荷電粒子のエネルギーTcalcとの組合せごとに計算や実測で求めたビームの横方向分布の標準偏差であり、核種の種類とエネルギーTcalcの2次元テーブルとして、予め核種判別部52に登録されている。なお、ビームの横方向分布をガウス分布で近似できない場合は、標準偏差に代えて分布そのものを登録しておき、計測した分布との一致度をガンマ解析等で求め、その一致度に基づいて核種を判別しても良い。このように核種判別装置50は、放射線計測器で計測したビームの横方向分布に基づいて荷電粒子の核種を判別することができる。また、放射線測定器はビーム進行方向の厚さを小さくできるため、核種計測部51を放射線測定器で構成することにより、核種判別装置50の小型化が可能となる。 FIG. 9 is an enlarged configuration diagram of a nuclide discrimination device 50 including a wire chamber as the nuclide measurement unit 51. In FIG. 9, the wire chamber 51 includes a plurality of conducting wires 58 arranged at equal intervals perpendicular to the beam traveling direction in the ionosphere as charge collection electrodes, and each of the plurality of conducting wires 58 is connected to the nuclide discrimination unit 52. Has been. The nuclide discriminating unit 52 obtains a lateral distribution of the beam with the position of each conducting wire 58 as the horizontal axis and the charge collected by each conducting wire 58 as the vertical axis, and approximates this lateral distribution with a Gaussian distribution. A standard deviation σ is calculated. Next, the nuclide determination unit 52 compares the standard deviation σ and σtable, and searches for a nuclide that matches within the range of measurement accuracy of the wire chamber 51. Here, σtable is the standard deviation of the lateral distribution of the beam obtained by calculation or measurement for each combination of the nuclide type and the charged particle energy Tcalc determined by the operation pattern of the accelerator, and the nuclide type and energy Tcalc. As a two-dimensional table, the nuclide determination unit 52 is registered in advance. If the lateral distribution of the beam cannot be approximated by a Gaussian distribution, the distribution itself is registered instead of the standard deviation, the degree of coincidence with the measured distribution is obtained by gamma analysis, etc., and the nuclide is based on the degree of coincidence. May be determined. As described above, the nuclide discrimination device 50 can discriminate the nuclide of charged particles based on the lateral distribution of the beam measured by the radiation measuring instrument. Further, since the radiation measuring instrument can reduce the thickness in the beam traveling direction, the nuclide determination device 51 can be downsized by configuring the nuclide measuring unit 51 with the radiation measuring instrument.
 <第2の実施の形態>
 図10は、本発明の第2の実施の形態における荷電粒子ビーム照射システムの全体構成図である。図10において、図1に示した第1の実施の形態における荷電粒子ビーム照射システムとの相違点は、経路切替装置40と核種判別装置50とをライナック6aとシンクロトロン6bとを接続するビームダクト7に設置した点である。本実施の形態では、シンクロトロン6bに入射させる前に核種判別装置50を用いて核種を判別する。
<Second Embodiment>
FIG. 10 is an overall configuration diagram of a charged particle beam irradiation system according to the second embodiment of the present invention. 10, the difference from the charged particle beam irradiation system in the first embodiment shown in FIG. 1 is that the path switching device 40 and the nuclide discrimination device 50 are connected to the linac 6a and the synchrotron 6b. 7 is the point. In the present embodiment, the nuclide is discriminated using the nuclide discriminating apparatus 50 before entering the synchrotron 6b.
 図11は、本実施の形態における制御装置30による照射制御を示すフロー図である。図11において、図6に示した第1の実施の形態における照射制御との相違点は、核種判別に伴う処理(ステップS105~S108)を荷電粒子を後段加速する処理(ステップS104)の前に実行する点である。 FIG. 11 is a flowchart showing irradiation control by the control device 30 in the present embodiment. In FIG. 11, the difference from the irradiation control in the first embodiment shown in FIG. 6 is that the process accompanying the nuclide discrimination (steps S105 to S108) is performed before the process of accelerating charged particles (step S104). It is a point to execute.
 本実施の形態における核種判別部52は、加速器200(ライナック6a)の加速条件により定まる核子あたりのエネルギーと核種計測部51で計測したヘリウムイオンの停止位置(飛程)とに基づいて、核種判別装置50に入射した荷電粒子の核種を判別し、その判別結果を制御装置30に送信する。これにより、荷電粒子をシンクロトロン6bで加速する前に核種の判別が可能となり、異常(核種不一致)を検出するまでの消費エネルギーを抑えることができる。 The nuclide discrimination unit 52 in the present embodiment is based on the energy per nucleon determined by the acceleration condition of the accelerator 200 (linac 6a) and the stop position (range) of helium ions measured by the nuclide measurement unit 51. The nuclide of charged particles incident on the device 50 is determined, and the determination result is transmitted to the control device 30. This makes it possible to determine the nuclide before accelerating the charged particles with the synchrotron 6b, and to suppress energy consumption until an abnormality (nuclide mismatch) is detected.
 また、本実施の形態における核種判別装置50に入射させる荷電粒子は、シンクロトロン6bで加速する前の荷電粒子であるため、シンクロトロン6bにより加速・出射された荷電粒子よりもエネルギーが低い。従って、経路切替装置40の電磁石の励磁量を小さくすることができる。なお、入射する荷電粒子のエネルギーが低下し、金属板53の通過枚数が少なくなることによって飛程の計測精度が悪化することを防止するため、本実施の形態における核種判別装置50は、厚さが十分に小さい(薄膜程度の)複数の金属板53を備えた構成とする必要がある。 Further, since the charged particles incident on the nuclide discriminating apparatus 50 in the present embodiment are charged particles before being accelerated by the synchrotron 6b, the energy is lower than that of the charged particles accelerated and emitted by the synchrotron 6b. Therefore, the excitation amount of the electromagnet of the path switching device 40 can be reduced. In order to prevent the measurement accuracy of the range from deteriorating due to a decrease in the energy of incident charged particles and a decrease in the number of passing metal plates 53, the nuclide discrimination device 50 according to the present embodiment has a thickness. Needs to be configured to include a plurality of metal plates 53 (which are about a thin film).
 <第3の実施の形態>
 図12は、本発明の第3の実施の形態における荷電粒子ビーム照射システムの全体構成図を示す図である。図12において、図1又は図10に示した第1又は第2の実施の形態における荷電粒子ビーム照射システムとの相違点は、核種判別装置50を照射装置20内に設置した点である。図13に、本実施の形態における照射装置20の拡大構成図を示す。図13に示すように、核種判別装置50を照射装置20内に設置した構成では、走査電磁石21A,21Bの励磁量を変更することにより、患者17の患部18に至るビーム経路25が核種判別装置50に至るビーム経路26に切り替えられる。これにより、第1及び第2の実施の形態における経路切替装置40を設ける必要が無くなり、荷電粒子照射システムの構成が簡易となる。
<Third Embodiment>
FIG. 12 is a diagram showing an overall configuration diagram of a charged particle beam irradiation system according to the third embodiment of the present invention. 12 is different from the charged particle beam irradiation system in the first or second embodiment shown in FIG. 1 or 10 in that a nuclide discriminating apparatus 50 is installed in the irradiation apparatus 20. In FIG. 13, the expanded block diagram of the irradiation apparatus 20 in this Embodiment is shown. As shown in FIG. 13, in the configuration in which the nuclide discrimination device 50 is installed in the irradiation device 20, the beam path 25 reaching the affected part 18 of the patient 17 is changed by changing the excitation amount of the scanning electromagnets 21 </ b> A and 21 </ b> B. The beam path 26 reaches 50. Thereby, it is not necessary to provide the path switching device 40 in the first and second embodiments, and the configuration of the charged particle irradiation system is simplified.
 図14は、本実施の形態における制御装置30による照射制御を示すフロー図である。図14において、図6に示した第1の実施の形態における照射制御との相違点は、ステップS105において走査電磁石21A,21B(図13)の励磁量を変更する点である。 FIG. 14 is a flowchart showing irradiation control by the control device 30 in the present embodiment. In FIG. 14, the difference from the irradiation control in the first embodiment shown in FIG. 6 is that the excitation amounts of the scanning electromagnets 21A and 21B (FIG. 13) are changed in step S105.
 <その他の実施の形態>
 第1~第3の実施の形態では、炭素イオンとヘリウムイオンを組み合わせた治療に本発明を適用した例を説明したが、本発明の適用範囲はこれに限定されるものではなく、これら以外の荷電粒子を組み合わせた治療にも適用可能である。例えば陽子と重陽子を組み合わせた場合は、浅い位置に重陽子を照射し、深い位置に陽子を照射することにより、小型なシステムで患部18の形状により合致した線量分布を形成することができる。また、陽子1つと中性子1つから成る重陽子は、核子あたりのエネルギーが等しい場合、ヘリウムイオンのおよそ2倍の飛程まで到達する。従って、ヘリウムイオンと重陽子を組み合わせた場合は、浅い位置にヘリウムイオンを照射し、深い位置に重陽子を照射することにより、小型なシステムで患部18の形状により合致した線量分布を形成することができる。
<Other embodiments>
In the first to third embodiments, the example in which the present invention is applied to the treatment in which carbon ions and helium ions are combined has been described. However, the scope of the present invention is not limited to this, and other than these examples. The present invention can also be applied to treatment using a combination of charged particles. For example, when protons and deuterons are combined, a dose distribution that matches the shape of the affected area 18 can be formed with a small system by irradiating deuterons at shallow positions and irradiating protons at deep positions. In addition, deuterons composed of one proton and one neutron reach a range approximately twice that of helium ions when the energy per nucleon is equal. Therefore, when helium ions and deuterons are combined, helium ions are irradiated at shallow positions and deuterons are irradiated at deep positions, thereby forming a dose distribution that matches the shape of the affected area 18 in a small system. Can do.
 また、第1~第3の実施の形態では、荷電粒子の種類を判別することが特に困難となる治療、すなわち電荷質量比が等しい荷電粒子(炭素イオンとヘリウムイオン)を組み合わせた治療に本発明を適用した例を説明したが、本発明の適用範囲はこれに限定されるものではなく、電荷質量比が異なる荷電粒子を組み合わせた治療にも適用可能である。その場合は、荷電粒子の種類毎にライナック6aを備える必要がある。例えば、質量数4、電荷数2(電荷質量比1/2)のヘリウムイオンを生成するヘリウムイオン源と質量数12、電荷数4(電荷質量比1/3)の炭素イオンを生成する炭素イオン源とを備えた場合、それぞれのイオン源ごとにライナックを備え、炭素イオン用ライナックの出口に設置された荷電変換装置によって炭素イオンの電荷数を4から6に変換することにより、シンクロトロンに入射する荷電粒子の電荷質量比を1/2に統一させる必要がある。 In the first to third embodiments, the present invention is applied to a treatment that makes it particularly difficult to determine the type of charged particle, that is, a treatment that combines charged particles (carbon ions and helium ions) having the same charge mass ratio. However, the scope of application of the present invention is not limited to this example, and the present invention is applicable to treatments in which charged particles having different charge mass ratios are combined. In that case, it is necessary to provide a linac 6a for each type of charged particle. For example, a helium ion source that generates helium ions having a mass number of 4 and a charge number of 2 (charge mass ratio of 1/2) and a carbon ion that generates carbon ions of a mass number of 12 and a charge number of 4 (charge mass ratio of 1/3). Each ion source is provided with a linac, and the number of carbon ion charges is converted from 4 to 6 by a charge conversion device installed at the exit of the linac for carbon ions so that it enters the synchrotron. It is necessary to unify the charge mass ratio of charged particles to be ½.
 また、第1~第3の実施の形態では、加速器としてシンクロトロンを用いた例を説明したが、サイクロトロンを用いたシステムにも本発明は適用可能である。 In the first to third embodiments, an example using a synchrotron as an accelerator has been described. However, the present invention can also be applied to a system using a cyclotron.
 また、第1~第3の実施の形態では、複数種類の荷電粒子を一つの方向から照射する治療に本発明を適用した例を示したが、本発明の適用範囲はこれに限定されるものではなく、複数の方向から照射する治療にも適用可能である。その場合、必ずしもそれぞれの方向から複数種類の荷電粒子を照射する必要はなく、方向によっては一種類に限定しても良い。また、同一の患者17に対して照射する荷電粒子の種類は1つでも複数でもよい。 In the first to third embodiments, the example in which the present invention is applied to the treatment in which a plurality of types of charged particles are irradiated from one direction has been described. However, the scope of the present invention is limited to this. Instead, the present invention can be applied to a treatment in which irradiation is performed from a plurality of directions. In that case, it is not always necessary to irradiate a plurality of types of charged particles from each direction, and may be limited to one type depending on the direction. Further, the number of charged particles irradiated to the same patient 17 may be one or plural.
 また、第1~第3の実施の形態では、2種類の荷電粒子(ヘリウムイオン及び炭素イオン)を照射する治療に本発明を適用した例を説明したが、本発明の適用範囲はこれに限定されるものではなく、3種類以上の荷電粒子を照射する治療にも適用可能である。 In the first to third embodiments, the example in which the present invention is applied to the treatment of irradiating two types of charged particles (helium ions and carbon ions) has been described. However, the scope of the present invention is limited to this. However, the present invention can be applied to a treatment in which three or more kinds of charged particles are irradiated.
1:ヘリウムイオン源
2:炭素イオン源
3:ヘリウムイオン源用シャッター
4:炭素イオン源用シャッター
5:イオン源切替装置
6a:ライナック(前段加速器)
6b:シンクロトロン(後段加速器)
7:ビームダクト
8:ビームダクト
9:偏向電磁石
10:高周波加速電極
11:出射用高周波電極
12:出射用デフレクタ
13:ビームダクト
14:偏向電磁石
15:回転ガントリー
16:カウチ
17:患者
18:患部
20:照射装置
21A,21B:走査電磁石
22:線量モニタ
23:位置モニタ
24:ビーム軸
25:ビーム経路
26:ビーム経路
30:制御装置
31:データベース
40:経路切替装置
50:核種判別装置
51:核種計測部
52:核種判別部
53:金属板
54:樹脂板
55:積層電離箱用電源
56:電離箱
57:シンチレータ
58:導線
60:線量分布
61:線量分布
70:ブラッグピーク
71:ヘリウムイオン照射領域
72:炭素イオン照射領域
73:線量分布
100:荷電粒子発生装置
200:加速器
300:ビーム輸送系
1: Helium ion source 2: Carbon ion source 3: Helium ion source shutter 4: Carbon ion source shutter 5: Ion source switching device 6a: Linac (pre-accelerator)
6b: Synchrotron (second stage accelerator)
7: Beam duct 8: Beam duct 9: Deflection electromagnet 10: High-frequency accelerating electrode 11: Extraction high-frequency electrode 12: Extraction deflector 13: Beam duct 14: Deflection electromagnet 15: Rotating gantry 16: Couch 17: Patient 18: Affected part 20 : Irradiation devices 21A, 21B: Scanning electromagnet 22: Dose monitor 23: Position monitor 24: Beam axis 25: Beam path 26: Beam path 30: Controller 31: Database 40: Path switching device 50: Nuclide discrimination device 51: Nuclide measurement Unit 52: nuclide discrimination unit 53: metal plate 54: resin plate 55: power source 56 for laminated ionization chamber 56: ionization chamber 57: scintillator 58: conductor 60: dose distribution 61: dose distribution 70: Bragg peak 71: helium ion irradiation region 72 : Carbon ion irradiation region 73: Dose distribution 100: Charged particle generator 200: Accelerator 300: Beam Transmission system

Claims (13)

  1.  核種の異なる複数種類のイオンを生成するイオン発生装置と、
     前記イオン発生装置から供給されたイオンを加速してイオンビームとして出射する加速器と、
     前記加速器から出射されたイオンビームを輸送するビーム輸送系と、
     前記ビーム輸送系によって輸送されたイオンビームを照射目標に照射する照射装置と、
     前記イオン発生装置から供給されたイオンの核種を判別するように構成された核種判別装置とを備えることを特徴とする荷電粒子照射システム。
    An ion generator that generates multiple types of ions with different nuclides;
    An accelerator for accelerating the ions supplied from the ion generator and emitting them as an ion beam;
    A beam transport system for transporting an ion beam emitted from the accelerator;
    An irradiation apparatus for irradiating an irradiation target with an ion beam transported by the beam transport system;
    A charged particle irradiation system comprising: a nuclide discrimination device configured to discriminate a nuclide of ions supplied from the ion generation device.
  2.  請求項1に記載の荷電粒子照射システムにおいて、
     前記核種判別装置は、イオンの核種に依存する所定のパラメータを計測する核種計測部を備えることを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 1,
    The nuclide discrimination apparatus includes a nuclide measurement unit that measures a predetermined parameter depending on an ion nuclide.
  3.  請求項2に記載の荷電粒子照射システムにおいて、
     前記核種判別装置は、前記核種計測部で計測した前記所定のパラメータと前記加速器の加速条件により定まる核子あたりのエネルギーとに基づいてイオンの核種を判別することを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 2.
    The charged particle irradiation system, wherein the nuclide discriminating apparatus discriminates ion nuclides based on the predetermined parameter measured by the nuclide measuring unit and energy per nucleon determined by acceleration conditions of the accelerator.
  4.  請求項2に記載の荷電粒子照射システムにおいて、
     前記核種計測部は、前記所定のパラメータとしてイオンビームの横方向分布を計測する放射線測定器であることを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 2.
    The charged particle irradiation system, wherein the nuclide measuring unit is a radiation measuring instrument that measures a lateral distribution of an ion beam as the predetermined parameter.
  5.  請求項1に記載の荷電粒子照射システムにおいて、
     前記イオン発生装置で生成したイオンが前記照射装置に到達至る経路を前記核種判別装置に至る経路に切り替える経路切替装置を更に備えたことを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 1,
    A charged particle irradiation system, further comprising: a path switching device that switches a path from which ions generated by the ion generator reach the irradiation apparatus to a path to the nuclide discrimination apparatus.
  6.  請求項5に記載の荷電粒子照射システムにおいて、
     前記経路切替装置は、前記ビーム輸送系に設置されたことを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 5.
    The charged particle irradiation system, wherein the path switching device is installed in the beam transport system.
  7.  請求項5に記載の荷電粒子照射システムにおいて、
     前記加速器は、前段加速器と後段加速器とを備え、
     前記経路切替装置は、前記前段加速器と前記後段加速器とを接続する経路部分に設置されたことを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 5.
    The accelerator includes a front stage accelerator and a rear stage accelerator,
    The charged particle irradiation system, wherein the path switching device is installed in a path portion that connects the front-stage accelerator and the rear-stage accelerator.
  8.  請求項1に記載の荷電粒子照射システムにおいて、
     前記核種判別装置は、前記照射装置内に設置されたことを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 1,
    The charged particle irradiation system, wherein the nuclide determination device is installed in the irradiation device.
  9.  請求項3に記載の荷電粒子照射システムにおいて、
     前記核種計測部は、前記所定のパラメータとしてイオンビームが停止するまでの飛程を計測するように構成されていることを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 3.
    The charged particle irradiation system, wherein the nuclide measurement unit is configured to measure a range until the ion beam stops as the predetermined parameter.
  10.  請求項9に記載の荷電粒子照射システムにおいて、
     前記核種計測部は、イオンビームの経路に配置された複数の金属板を備え、前記複数の金属板のうちイオンビームが停止した金属板の位置に基づいて前記飛程を計測することを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 9.
    The nuclide measurement unit includes a plurality of metal plates arranged in an ion beam path, and measures the range based on a position of a metal plate where the ion beam is stopped among the plurality of metal plates. Charged particle irradiation system.
  11.  請求項9に記載の荷電粒子照射システムにおいて、
     前記核種計測部は、イオンビームの経路に配置された金属または炭素でコーティングされた複数の樹脂板を備え、前記複数の樹脂板のうちイオンビームが通過した樹脂板の枚数に基づいて前記飛程を計測することを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 9.
    The nuclide measurement unit includes a plurality of resin plates coated with metal or carbon arranged in an ion beam path, and the range is based on the number of resin plates through which the ion beam passes among the plurality of resin plates. Charged particle irradiation system characterized by measuring
  12.  請求項2に記載の荷電粒子照射システムにおいて、
     前記核種計測部は、前記所定のパラメータとしてイオンビームの単位厚さあたりのエネルギー損失と全エネルギーとを計測するように構成されていることを特徴とする荷電粒子照射システム。
    The charged particle irradiation system according to claim 2.
    The charged particle irradiation system, wherein the nuclide measurement unit is configured to measure an energy loss and a total energy per unit thickness of the ion beam as the predetermined parameters.
  13.  請求項12に記載の荷電粒子照射システムにおいて、
     前記核種計測部は、イオンビームの単位厚さあたりのエネルギー損失を検出する電離箱とイオンビームの全エネルギーを検出するシンチレータとを備えることを特徴とする記載の荷電粒子照射システム。
    The charged particle irradiation system according to claim 12,
    The charged particle irradiation system according to claim 1, wherein the nuclide measurement unit includes an ionization chamber that detects an energy loss per unit thickness of the ion beam and a scintillator that detects the total energy of the ion beam.
PCT/JP2015/054184 2015-02-16 2015-02-16 Charged particle irradiation system WO2016132445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054184 WO2016132445A1 (en) 2015-02-16 2015-02-16 Charged particle irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054184 WO2016132445A1 (en) 2015-02-16 2015-02-16 Charged particle irradiation system

Publications (1)

Publication Number Publication Date
WO2016132445A1 true WO2016132445A1 (en) 2016-08-25

Family

ID=56692053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054184 WO2016132445A1 (en) 2015-02-16 2015-02-16 Charged particle irradiation system

Country Status (1)

Country Link
WO (1) WO2016132445A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3920398Y1 (en) * 1962-03-24 1964-07-17
JP2002525135A (en) * 1998-09-11 2002-08-13 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー Ion beam therapy system and method of operating the system
JP2007155649A (en) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp Beam position monitor
JP2009047559A (en) * 2007-08-20 2009-03-05 Institute Of National Colleges Of Technology Japan Method and apparatus for detecting nitrogen-containing compound
JP2011153833A (en) * 2010-01-26 2011-08-11 Hitachi Ltd Radiation measuring device, and positioning accuracy confirmation method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3920398Y1 (en) * 1962-03-24 1964-07-17
JP2002525135A (en) * 1998-09-11 2002-08-13 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー Ion beam therapy system and method of operating the system
JP2007155649A (en) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp Beam position monitor
JP2009047559A (en) * 2007-08-20 2009-03-05 Institute Of National Colleges Of Technology Japan Method and apparatus for detecting nitrogen-containing compound
JP2011153833A (en) * 2010-01-26 2011-08-11 Hitachi Ltd Radiation measuring device, and positioning accuracy confirmation method of the same

Similar Documents

Publication Publication Date Title
JP4632278B2 (en) Ion beam therapy system and method of operating the system
CN110709133B (en) Particle beam monitoring system and method
JP3806723B2 (en) Particle beam irradiation system
JP6692115B2 (en) Beam position monitoring device and charged particle beam irradiation system
JP5791546B2 (en) Calibration method of radiation measuring apparatus and particle beam therapy apparatus
JP2009000347A (en) Charged particle irradiation system
JP6292813B2 (en) Radiation measurement apparatus, particle beam therapy apparatus equipped with the same, and dose distribution calculation method for particle beam
JP5745069B2 (en) Charged particle beam irradiation system and method of operating charged particle beam irradiation system
JP2001085200A (en) Accelerator system
JP5668000B2 (en) Beam monitor system and particle beam irradiation system
JP2005124852A (en) Particle therapy system
US20090321656A1 (en) Verifying the energy of a particle beam
JP5193132B2 (en) Charged particle beam irradiation system
JPH09189769A (en) Method and system for particle beam treatment
Milluzzo et al. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line
JP2012002772A (en) Depth-directional dose distribution measuring device, particle therapy apparatus, and particle beam irradiation device
Lis et al. A facility for the research, development, and translation of advanced technologies for ion-beam therapies
JP5906179B2 (en) Dose distribution measuring device
JP2010012056A (en) Charged particle beam irradiation system
JP6214906B2 (en) Laser ion source, ion accelerator and heavy ion beam therapy system
WO2016132445A1 (en) Charged particle irradiation system
JP2009261634A (en) Charged particle beam irradiation system
JP2021045275A (en) Radiation therapy device
Hartmann A novel approach to ion spectroscopy of therapeutic ion beams using a pixelated semiconductor detector
WO2016158126A1 (en) Charged particle radiotherapy device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP