WO2016132092A1 - Integrated process for the production of formaldehyde-stabilized urea - Google Patents

Integrated process for the production of formaldehyde-stabilized urea Download PDF

Info

Publication number
WO2016132092A1
WO2016132092A1 PCT/GB2015/054083 GB2015054083W WO2016132092A1 WO 2016132092 A1 WO2016132092 A1 WO 2016132092A1 GB 2015054083 W GB2015054083 W GB 2015054083W WO 2016132092 A1 WO2016132092 A1 WO 2016132092A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
methanol
synthesis
formaldehyde
carbon dioxide
Prior art date
Application number
PCT/GB2015/054083
Other languages
French (fr)
Inventor
Ola Erlandsson
Andreas Magnusson
John David Pach
Daniel Sheldon
Original Assignee
Johnson Matthey Public Limited Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Public Limited Company filed Critical Johnson Matthey Public Limited Company
Priority to CA2977012A priority Critical patent/CA2977012C/en
Priority to CN201580076460.5A priority patent/CN107250106B/en
Priority to EP15813559.0A priority patent/EP3259248B1/en
Priority to EA201791868A priority patent/EA033955B1/en
Priority to US15/552,063 priority patent/US10077235B2/en
Priority to MX2017010601A priority patent/MX2017010601A/en
Priority to BR112017017593A priority patent/BR112017017593A2/en
Publication of WO2016132092A1 publication Critical patent/WO2016132092A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/14Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • C01B3/54Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0488Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/025Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds of solutions of urea and formaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/10Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds combined with the synthesis of ammonia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1838Autothermal gasification by injection of oxygen or steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the production of formaldehyde-stabilised urea. More particularly, it relates to an integrated process for the production of formaldehyde- stabilised urea in a process including the co-production of methanol and ammonia.
  • Urea finds widespread use as a fertiliser and in industrial chemical manufacture. It is conventionally made by reacting ammonia with carbon dioxide to form a solid product which is often shaped by prilling or granulating. Aqueous formaldehyde or a urea-formaldehyde concentrate (UFC) are often used to stabilise the urea before or during the shaping process. These products are typically produced in a formaldehyde production unit from methanol.
  • the invention provides a process for the production of formaldehyde-stabilised urea comprising the steps of: (a) generating a synthesis gas comprising hydrogen, nitrogen, carbon monoxide, carbon dioxide and steam in a synthesis gas generation unit; (b) recovering carbon dioxide from the synthesis gas to form a carbon dioxide-depleted synthesis gas; (c) synthesising methanol from the carbon dioxide-depleted synthesis gas in a methanol synthesis unit and recovering the methanol and a methanol synthesis off-gas comprising nitrogen, hydrogen and residual carbon monoxide; (d) subjecting at least a portion of the recovered methanol to oxidation with air in a formaldehyde production unit; (e) subjecting the methanol synthesis off-gas to methanation in a methanation reactor containing a methanation catalyst to form an ammonia synthesis gas; (f) synthesising ammonia from the ammonia synthesis gas in an ammonia production unit and recovering the ammonia; (g
  • the formaldehyde production unit may provide any formaldehyde product suitable as a urea stabiliser, including in particular, an aqueous formaldehyde product (formalin) or a urea- formaldehyde concentrate product (UFC).
  • the present invention utilises one air feed for both the production of the synthesis gas for ammonia/urea and the production of the formaldehyde, substantial benefits in the reduction of capital and operating costs are achieved when compared to that required for the separate systems utilised in the prior art.
  • multiple stages of compression are often used.
  • the air for the methanol oxidation stage may therefore conveniently be taken after the first stage without effecting the final air compression.
  • This air source therefore removes the need for a separate air compression unit for the formaldehyde production unit.
  • a single source of air is compressed, divided into first and second portions, the first portion provided to a
  • formaldehyde production unit is used to oxidise at least a portion of the methanol.
  • the first portion may be compressed to a pressure in the range 1 .1 -5 bar abs, preferably 1 .3-5 bar abs.
  • the second portion of compressed air fed to the synthesis gas generation unit is used to generate the synthesis gas, for example in a secondary or autothermal reformer.
  • the second portion may be compressed to 10-80 bar abs. If desired, the second portion may also be preheated to a temperature in the range 200-750°C .
  • the proportion of compressed air fed to the formaldehyde production unit may be up to about 20% by volume, preferably in the range 1 .5-15% by volume, of the total air fed to the process.
  • the methanol converter for the formaldehyde production is placed between the carbon dioxide removal and methanation stages of the ammonia/urea plant, where carbon oxide levels are low, preventing excessive hydrogen consumption.
  • methanol converters are upstream of the high temperature shift converter and immediately upstream of the synthesis loop.
  • the temperatures are too high for methanol synthesis and the high levels of all reactants makes over-conversion possible, with associated wastage of hydrogen.
  • the methanol synthesis would need to run at ammonia synthesis pressure (>130 bar abs) which requires non-conventional, and more expensive, methanol synthesis apparatus.
  • any methanol synthesis that occurs saves one mole of hydrogen per mole of methanol produced (assuming equivalent consumption of carbon monoxide and dioxide), enabling increased ammonia production, estimated to be approximately an additional third of a percent, equivalent to about 7 mtpd on a 2,000 mtpd ammonia plant.
  • Positioning the methanol synthesis after carbon dioxide removal also means that there is no reduction in the carbon dioxide removed and therefore no associated reduction in urea production.
  • the synthesis gas, comprising carbon monoxide, carbon dioxide, hydrogen and nitrogen provided in step (a) may be formed by any suitable means.
  • the synthesis gas generation unit used to prepare the synthesis gas is fed with a second portion of suitably compressed air.
  • the synthesis gas generation may be based on primary steam reforming of a hydrocarbon such as natural gas, naphtha or a refinery off-gas and secondary reforming with air or oxygen-enriched air; or by the gasification of a carbonaceous feedstock, such as coal or biomass with air.
  • the synthesis gas generation stage comprises steam reforming a hydrocarbon. This may be achieved by primary reforming a hydrocarbon with steam in externally-heated catalyst-filled tubes in a fired- or gas-heated steam reformer and secondary reforming the primary-reformed gas mixture in a secondary reformer, by subjecting it to partial combustion with air, or air enriched in oxygen, and then passing the partially combusted gas mixture through a bed of steam reforming catalyst.
  • the primary reforming catalyst typically comprises nickel at levels in the range 5-30% wt, supported on shaped refractory oxides, such as alpha alumina, magnesium aluminate or calcium aluminate. If desired, catalysts with different nickel contents may be used in different parts of the tubes, for example catalysts with nickel contents in the range 5-15% wt or 30-85% wt may be used advantageously at inlet or exit portions of the tubes. Alternatively, structured catalysts, wherein a nickel or precious metal catalyst is provided as a coated layer on a formed metal or ceramic structure may be used, or the catalysts may be provided in a plurality of containers disposed within the tubes.
  • Steam reforming reactions take place in the tubes over the steam reforming catalyst at temperatures above 350°C and typically the process fluid exiting the tubes is at a temperature in the range 650-950°C.
  • the heat exchange medium flowing around the outside of the tubes may have a temperature in the range 900-1300°C.
  • the pressure may be in the range 10-80 bar abs.
  • the primary- reformed gas is partially combusted in a burner apparatus mounted usually near the top of the reformer.
  • the partially combusted reformed gas is then passed adiabatically through a bed of a steam reforming catalyst disposed below the burner apparatus, to bring the gas composition towards equilibrium.
  • Heat for the endothermic steam reforming reaction is supplied by the hot, partially combusted reformed gas.
  • the bed of steam reforming catalyst in the secondary reformer typically comprises nickel at levels in the range 5-30% wt, supported on shaped refractory oxides, but layered beds may be used wherein the uppermost catalyst layer comprises a precious metal, such as platinum or rhodium, on a zirconia support.
  • a precious metal such as platinum or rhodium
  • the steam reforming maybe achieved by passing a mixture of the hydrocarbon and steam through an adiabatic pre-reformer containing a bed of steam reforming catalyst and then passing the pre-reformed gas mixture and air to an autothermal reformer which operates in the same way as the secondary reformer to produce a gas stream containing hydrogen, carbon oxides and steam.
  • adiabatic pre-reforming a mixture of hydrocarbon and steam, typically at a steam to carbon ratio in the range 1 -4, is passed at an inlet temperature in the range 300-620°C to a fixed bed of pelleted nickel-containing pre-reforming catalyst.
  • Such catalysts typically comprise > 40% wt nickel (expressed as NiO) and may be prepared by co-precipitation of a nickel-containing material with alumina and promoter compounds such as silica and magnesia. Again, the pressure may be in the range 10-80 bar abs.
  • the reaction stream may be formed by gasification of coal, biomass or other carbonaceous material with air using gasification apparatus.
  • the coal, biomass or other carbonaceous material is heated to high temperatures in the absence of a catalyst to form a crude synthesis gas often containing sulphur contaminants such as hydrogen sulphide, which have to be removed.
  • Gasification of carbonaceous feedstock to produce a synthesis gas may be achieved using known fixed bed, fluidised-bed or entrained- flow gasifiers at temperatures in the range 900-1700°C and pressures up to 90 bar abs.
  • the crude synthesis gas streams require additional treatments known in the art to remove unwanted sulphur and other contaminants.
  • the synthesis gas generation stage comprises primary reforming a hydrocarbon, particularly natural gas, in a fired steam reformer to produce a gas stream comprising hydrogen, carbon monoxide, carbon dioxide and steam, and secondary reforming stage in which the primary reformed gas is further reformed in a secondary reformer using air or oxygen-enriched air to provide a synthesis gas stream comprising hydrogen, carbon oxides and nitrogen.
  • the crude synthesis gas is preferably subjected to one or more stages of water-gas shift to produce a shifted synthesis gas with the desired gas composition.
  • a water gas shift stage a portion of the carbon monoxide in the stream is converted to carbon dioxide.
  • Any suitable catalytic shift conversion reactor and catalyst may be used. If insufficient steam is present, steam may be added to the gas stream before it is subjected to the water-gas shift conversion.
  • the reaction may be depicted as follows;
  • the reaction may be carried out in one or more stages.
  • The, or each, stage may be the same or different and may be selected from a high temperature shift process, a low temperature shift process, a medium temperature shift process and an isothermal shift process.
  • High temperature shift catalysts may be promoted iron catalysts such as chromia- or alumina- promoted magnetite catalysts.
  • Other high temperature shift catalysts may be used, for example iron/copper/zinc oxide/alumina catalysts, manganese/zinc oxide catalysts or zinc oxide/alumina catalysts.
  • Medium, low temperature and isothermal shift catalysts typically comprise copper, and useful catalysts may comprise varying amounts of copper, zinc oxide and alumina.
  • sulphur compounds are present in the gas mixture, such as synthesis gas streams obtained by gasification, so-called sour shift catalysts, such as those comprising sulphides of molybdenum and cobalt, are preferred.
  • sour shift catalysts such as those comprising sulphides of molybdenum and cobalt, are preferred.
  • Such water-gas shift apparatus and catalysts are commercially available.
  • the temperature in the shift converter may be in the range 300-360°C, for medium temperature shift catalysts the temperature may be in the range 190-300°C and for low-temperature shift catalysts the temperature may be 185-270°C. For sour shift catalysts the temperature may be in the range 200-370°C.
  • the flow-rate of synthesis gas containing steam may be such that the gas hourly space velocity (GHSV) through the bed of water-gas shift catalyst in the reactor may be > 6000 hour "1 .
  • the pressure may be in the range 10-80 bar abs.
  • the water-gas shift stage comprises a high temperature shift stage or a medium temperature shift stage or an isothermal shift stage with or without a low temperature shift stage.
  • Steam present in the shifted synthesis gas mixture may be condensed by cooling the shifted gas to below the dew point using one or more heat exchangers fed, for example, with cooling water.
  • the condensate may be recovered in a gas liquid separator and may be fed to steam generators that produce steam for the synthesis gas or water-gas shift stages.
  • a carbon dioxide removal unit is used to recover carbon dioxide from the synthesis gas in step (b). It is located downstream of the synthesis gas generation, preferably downstream of a water-gas shift stage, and upstream of the methanol synthesis stage. Any suitable carbon dioxide removal unit may be used. Suitable removal units may function by reactive absorption, such as those known as aMDEATM or BenfieldTM units that are based on using regenerable amine or potassium carbonate washes, or by physical absorption, based on using methanol, glycol or another liquid at low temperature, such as RectisolTM, SelexolTM units. Carbon dioxide removal may also be performed by means of pressure-swing adsorption (PSA) using suitable solid adsorbent materials.
  • PSA pressure-swing adsorption
  • the carbon dioxide removal unit if operated using physical absorption at low temperature, is able to simultaneously remove residual steam in the shifted synthesis gas by condensation.
  • Such carbon dioxide removal apparatus and materials are commercially available.
  • Some or all of the carbon dioxide formed in the synthesis gas may be removed to produce a gas stream comprising mainly hydrogen and nitrogen with low levels of carbon monoxide.
  • the carbon dioxide removed by the carbon dioxide removal unit may be captured, treated to remove contaminants such as hydrogen, and stored or used for reaction downstream with the ammonia produced to form urea.
  • Water removal is desirable to protect the downstream methanol synthesis catalyst, improve the kinetics of the methanol synthesis reaction and to minimise water in the crude methanol product. Water removal may also improve the performance and reliability of the first stage of compression. Water removal may be accomplished by cooling the water-containing gas below the dew point using one or more stages of heat exchange and passing the resulting stream through a gas liquid separator. Further stages of drying, e.g. with a desiccant may be performed if desired.
  • Methanol is synthesised from the carbon dioxide-depleted synthesis gas in step (c). Any methanol production technology may be used. Methanol is synthesised in a synthesis unit, which may comprise a methanol converter containing a methanol synthesis catalyst. The process can be on a once-through or a recycle basis in which unreacted product gas, after optional condensate removal, is mixed with make-up gas comprising hydrogen and carbon oxides in the desired ratio and returned to the methanol reactor.
  • the methanol synthesis because it is exothermic, may involve cooling by indirect heat exchange surfaces in contact with the reacting gas, or by subdividing the catalyst bed and cooling the gas between the beds by injection of cooler gas or by indirect heat exchange. The methanol may be recovered by condensation.
  • the methanol synthesis also produces water, which may also be fed to the formaldehyde production unit.
  • the synthesis gas composition preferably has PH 2 > 2PCO + 3PC0 2 such that there is excess hydrogen to react with the oxides of carbon.
  • the stoichiometry number, R, as defined by R ([H 2 ]-[C0 2 ])/([CO]+[C0 2 ]), of the synthesis gas fed to the methanol synthesis catalyst, is preferably > 3, more preferably >4, most preferably >5.
  • the unreacted gas stream recovered from the methanol synthesis unit is the methanol synthesis off-gas. It comprises nitrogen, hydrogen and residual carbon monoxide
  • a purge gas stream may be removed to prevent the undesirable build-up of inert/unreactive gases. If desired methanol may also be synthesised from this purge gas, or hydrogen recovered from it to adjust the stoichiometry of the feed gas or to generate power.
  • Any methanol synthesis catalyst may be used, but preferably it is based on a promoted or un- promoted copper/zinc oxide/alumina composition, for example those having a copper content in the range 50-70% wt.
  • Promoters include oxides of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths.
  • the zinc oxide content may be in the range 20-90% wt, and the one or more oxidic promoter compounds, if present, may be present in an amount in the range 0.01 -10% wt.
  • Magnesium compounds are preferred promoters and the catalyst preferably contains magnesium in an amount 1 -5% wt, expressed as MgO.
  • the synthesis gas may be passed over the catalyst at a temperature in the range 200-320°C, and at a pressure in the range 20-250 bar abs, preferably 20-120 bar abs, more preferably 30-120, bar abs and a space velocity in the range 500-20000 If 1 .
  • the inlet temperature of the methanol synthesis stage may be lower, e.g. 200-270°C thus extending the catalyst lifetime by reducing sintering of the active copper sites. In the present process, a single stage of methanol synthesis is sufficient.
  • the methanol synthesis may be part of a multiple synthesis process where the product gas, with or without condensate removal, is fed to one or more further methanol synthesis reactors, which may contain the same or different methanol synthesis catalyst.
  • Such methanol production apparatus and catalysts are commercially available
  • crude methanol recovered from the methanol synthesis stage is conventionally purified by multiple stages of distillation, because in the claimed process preferably all of the recovered methanol is oxidised to make formaldehyde, it is possible to simplify the purification process. Therefore preferably crude methanol recovered from the methanol synthesis stage is used directly in the formaldehyde production unit without further purification.
  • the crude methanol may be subjected one or more purification stages, including a single de-gassing stage, in a methanol purification unit prior to feeding it to the oxidation reactor.
  • the de-gassing stage or any distillation stages may be provided by distillation columns heated using heat recovered from the oxidation reactor or elsewhere in the process. In particular, the degassing stage may be heated using steam generated by the oxidation stage. This simplification of the purification offers significant savings in capital and operating costs for the process.
  • Methanol is oxidised to formaldehyde in step (d).
  • Any formaldehyde production technology using air as the oxidant may be used.
  • the formaldehyde is synthesised in a formaldehyde production unit, which may comprise an oxidation reactor containing an oxidation catalyst.
  • the oxidation catalyst may be provided as a fixed bed or within externally-cooled tubes disposed within the reactor.
  • the first portion of compressed air provided from the single air source fed to the process is used in the formaldehyde production unit.
  • the air may be in the temperature range 10-50°C.
  • the air and methanol may be passed to the reactor containing an oxidation catalyst in which the methanol is oxidised.
  • Air is preferably provided at 1 .1 -5 bar abs, more preferably 1 .3-5 bar abs, e.g. from a first stage of compression of the air fed to the process.
  • the amount of air fed to the formaldehyde production unit is a relatively small proportion of the air fed to the overall process and so compression costs are not significantly increased and may be more than compensated for by the removal of additional compression equipment.
  • Production of formaldehyde from methanol and oxygen may be performed either in a silver- or a metal oxide catalysed process operated at methanol-rich or methanol-lean conditions, respectively.
  • the oxidation catalyst may be selected from either a silver catalyst or a metal oxide catalyst, preferably comprising a mixture of iron and molybdenum oxides.
  • Vanadium oxide catalysts may also be used.
  • the principal reaction is the oxidation of the methanol to formaldehyde; 2 CH 3 OH + 0 2 ⁇ 2 CH 2 0 + 2 H 2 0
  • formaldehyde is produced in multi-tube reactors.
  • the catalyst used in the oxide process is preferably a mixture of iron molybdate Fe 2 (Mo0 4 )3 and molybdenum trioxide M0O 3 with a molybdenum: iron atomic ratio between 2 and 3.
  • the catalytic performance is satisfactory; the plant yield is high (88-93 or 94%) and neither molybdenum nor iron are toxic, which is favourable considering both environmental and human health aspects.
  • Air is preferably used at levels to maintain the oxygen content at the inlet of the reactor below the explosive limit.
  • the feed gas may therefore comprise ⁇ 6.5% by volume methanol for a once-through reactor, or about 8-1 1 % by volume methanol, preferably 8-9% by volume methanol, where there is recirculation.
  • the oxidation reactor may be operated adiabatically or isothermally, where the heat of reaction can be used to generate steam.
  • the inlet temperature to the oxidation reactor is typically in the range 80-270°C, preferably 150-270°C, with iron-based catalytic processes operating up to 400 °C and silver-based processes up to 650°C.
  • a single passage through the oxidation reactor can result in high yields of formaldehyde, or if desired it is possible to recycle unreacted gases, which comprise mainly of nitrogen, to the reactor inlet to maintain a low oxygen concentration. Due to the scale required in the present process, preferably the stage is operated without recycle of oxidised gas to the inlet of the oxidation reactor as this removes the need for a recycle compressor and hence offers further savings.
  • An absorption tower may be used to extract the formaldehyde product from the oxidised gas mixture into either water to produce aqueous formaldehyde solution, or a urea solution to produce a urea-formaldehyde concentrate (UFC).
  • the absorption tower may contain a selection of packing, trays and other features to promote the absorption, and cooling water may be used to provide the product at a temperature in the range 20-100°C.
  • the absorption stage typically runs at a slightly lower pressure than the reactor.
  • the formaldehyde production unit may be used to produce an aqueous formaldehyde solution (formalin) or a urea-formaldehyde concentrate (UFC).
  • Urea formaldehyde concentrate typically comprises a mixture of about 60% wt formaldehyde, about 25% wt urea and the balance about 15% wt water. Such a product may be termed "UFC85".
  • Other UFC products may also be used.
  • Other formaldehyde products may also be produced. Excess formaldehyde products may be sold.
  • the formaldehyde production unit generates a vent gas which may be passed to a vent gas treatment unit such as an emission control system (ECS) and discharged to atmosphere.
  • An emission control system may comprise a catalytic combustor that reacts any carbon monoxide, methanol, formaldehyde and dimethyl ether in the vent gas with oxygen.
  • the gas emitted from an ECS i.e. an ECS effluent, comprises carbon dioxide, steam and nitrogen and therefore may be recycled, preferably after suitable compression, to one or more stages of the process.
  • the ECS effluent may be passed to the carbon dioxide-removal stage where steam and carbon dioxide may be recovered, to provide additional nitrogen in the synthesis gas.
  • the ECS effluent may be provided to the methanol synthesis stage where the carbon dioxide may be reacted with hydrogen in the synthesis gas to produce additional methanol.
  • the ECS effluent may be fed to the urea production unit to provide carbon dioxide for additional urea production.
  • the vent gas treatment unit comprises a gas-liquid separator that separates the nitrogen-rich off-gas from liquid methanol, which may be recycled to the oxidation reactor directly or after one or more stages of purification.
  • the nitrogen-rich gas separated in the separator may be compressed and passed to the ammonia synthesis stage.
  • the formaldehyde vent gas may be recycled directly to the process, i.e. the vent gas treatment unit may be omitted.
  • the formaldehyde vent gas is recycled directly to the synthesis gas generation unit as a fuel gas so that the organic contaminants present in the vent gas may be combusted to generate energy.
  • the formaldehyde vent gas may, for example, be recycled directly to the fuel gas stream of a primary reformer or may be fed to a furnace for steam generation. In this way an ECS or vent gas treatment unit is not required, which offer considerable savings.
  • the vent gas may be combined with a hydrocarbon feedstock fed to the synthesis gas generation unit.
  • the formaldehyde vent gas may be recycled directly to the carbon dioxide removal stage so that the carbon dioxide and water vapour present in the vent gas may be captured.
  • Organic contaminants such as methanol, formaldehyde and dimethyl ether may also be captured, e.g. using a PSA unit.
  • the formaldehyde vent gas may be recycled directly to the methanol synthesis stage.
  • Direct recycling is simpler and is preferred. With direct recycling, the by-products will be limited by equilibrium across the methanol synthesis catalyst and so will not accumulate in this recycle loop. The nitrogen is also recovered without the need for catalytic combustion or intensive pressurisation.
  • the formaldehyde vent gas may be recycled directly to one, two or more of these alternatives.
  • the formaldehyde production unit may also produce an aqueous waste stream, for example a condensate recovered as a by-product of the methanol oxidation.
  • This condensate may contain organic compounds such as methanol, formaldehyde and dimethyl ether and therefore provides a potential source of hydrocarbon for the process.
  • the process condensate is recycled to the synthesis gas generation stage where it is used to generate steam for use in steam reforming.
  • the steam may be formed in a conventional boiler and added to the hydrocarbon feed or may, preferably, be generated in a saturator to which the aqueous effluent and hydrocarbon are fed.
  • methanation stage (e) residual carbon monoxide and carbon dioxide in the methanol synthesis off-gas stream is converted to methane in the methanator.
  • Any suitable arrangement for the methanator may be used.
  • the methanator may be operated adiabatically or isothermally.
  • One or more methanators may be used.
  • a nickel-based methanation catalyst may be used.
  • the gas from the methanol synthesis stage may be fed at an inlet temperature in the range 200-400°C to a fixed bed of pelleted nickel-containing methanation catalyst.
  • Such catalysts are typically pelleted compositions, comprising 20-40% wt nickel.
  • Such methanation apparatus and catalysts are commercially available.
  • the pressure for methanation may be in the range 10- 80 bar abs or higher up to 250 bar abs.
  • Steam is formed as a by-product of methanation.
  • the steam is desirably removed using conventional means such as cooling and separation of condensate.
  • An ammonia synthesis gas stream may be recovered from the methanation and drying stage.
  • Such methanation apparatus and catalysts are commercially available.
  • the methanated gas stream may be fed to the ammonia production unit as the ammonia synthesis gas.
  • the hydrogen: nitrogen molar ratio of the methanated gas stream may need to be adjusted, for example by addition of nitrogen from a suitable source, to provide the ammonia synthesis gas.
  • the adjustment of the hydrogen: nitrogen molar ratio is to ensure the ammonia synthesis reaction operates efficiently.
  • the nitrogen may be provided from any source, for example from an air separation unit (ASU).
  • ASU air separation unit
  • the adjustment may be performed by direct addition of nitrogen to the methanated gas stream.
  • the adjusted gas mixture may then be passed to the ammonia synthesis unit as the ammonia synthesis gas.
  • Ammonia is synthesised in step (f).
  • the ammonia synthesis gas may be compressed to the ammonia synthesis pressure and passed to an ammonia production unit.
  • the ammonia production unit comprises an ammonia converter containing an ammonia synthesis catalyst.
  • the nitrogen and hydrogen react together over the catalyst to form the ammonia product.
  • Ammonia synthesis catalysts are typically iron based but other ammonia synthesis catalysts may be used.
  • the reactor may operate adiabatically or may be operated isothermally.
  • the catalyst beds may be axial and/or radial flow and one or more beds may be provided within a single converter vessel.
  • the conversion over the catalyst is generally incomplete and so the synthesis gas is typically passed to a loop containing a partially reacted gas mixture recovered from the ammonia converter and the resulting mixture fed to the catalyst.
  • the synthesis gas mixture fed to the loop may have a hydrogen: nitrogen ratio of 2.2-3.2.
  • the hydrogen/nitrogen mixture may be passed over the ammonia synthesis catalyst at high pressure, e.g. in the range 80-350 bar abs, preferably 150-350 bar abs for large-scale plants, and a temperature in the range 300-540°C, preferably 350-520°C.
  • a purge gas stream containing methane and hydrogen may be taken from the ammonia synthesis loop and fed to the synthesis gas generation step or used as a fuel.
  • Compression of the synthesis gas is preferably effected in multiple stages, with a first and a second stage performed before the methanol synthesis to achieve e.g. 50-100 barg, preferably 80-100 barg, and a third stage after methanation to achieve a higher pressure, e.g. 150-250 barg, before the ammonia synthesis.
  • methanol synthesis may usefully be provided between the second and third stages of compression, with the methanator downstream of methanol synthesis and upstream of the third stage of compression.
  • the methanol synthesis may usefully be provided upstream of the first stage of compression.
  • Urea is produced in step (g) by reacting ammonia from step (f) with carbon dioxide recovered from step (d).
  • ammonia produced in step (f)
  • urea which is limited by the amount of carbon dioxide recovered in step (b).
  • the excess ammonia may be recovered and used to make nitric acid, ammonium nitrate or ammonia products for sale.
  • Any urea production technology may be used.
  • ammonia and carbon dioxide may be combined in a first reactor at 140-200°C and 120-220 bar abs to form ammonium carbamate as follows;
  • the decomposition and subsequent recycling can be carried out in one or more successive stages at decreasing pressures to minimise the ultimate concentration of ammonium carbamate dissolved in the urea solution.
  • An alternative process arrangement uses the fresh carbon dioxide gas to strip unreacted ammonia and carbon dioxide from the ammonium carbamate and urea solution at the same pressure as the reactor. Further unreacted material is recycled from lower pressure stages as ammonium carbamate solution.
  • Such urea production apparatus is commercially available.
  • Formaldehyde-stabilised urea is produced in step (h) by mixing urea produced in step (g) and a stabiliser prepared using formaldehyde recovered from the formaldehyde production unit in step (d).
  • the stabiliser may be any formaldehyde-based stabiliser; including aqueous formaldehyde and an aqueous urea-formaldehyde concentrate.
  • Aqueous formaldehyde and urea formaldehyde concentrate may be prepared directly in the formaldehyde production unit.
  • Formaldehyde, either as a concentrated solution or as a combined solution of urea and formaldehyde may be added to molten urea prior to forming into either prills or granules.
  • urea This reduces the tendency of the urea to absorb moisture and increases the hardness of the surface of the solid particles, preventing both caking (bonding of adjacent particles) and dusting (abrasion of adjacent particles). This maintains the free flowing nature of the product; prevents loss of material through dust, and enhances the stability during long term storage.
  • urea is available then it is preferable to use the urea formaldehyde solution as a stable solution with a higher formaldehyde concentration can be produced, which minimises the water being added to the molten urea.
  • Such stabilised urea production apparatus is commercially available.
  • Figure 1 is a schematic representation of a process according to a first aspect of the present invention
  • Figure 2 is a schematic representation of a process according to a second aspect of the present invention.
  • Figure 3 is a schematic representation of a process according to a third aspect of the present invention.
  • Figure 4 is a schematic representation of a process according to a fourth aspect of the present invention.
  • FIG. 1 a natural gas stream 10, steam 16 and a first portion 14 of an air stream 12 are fed to a synthesis gas generation unit 18 comprising a primary reformer, a secondary reformer and a water-gas shift unit comprising high- and low-temperature shift converters.
  • a synthesis gas generation unit 18 comprising a primary reformer, a secondary reformer and a water-gas shift unit comprising high- and low-temperature shift converters.
  • the natural gas is primary reformed with steam in externally-heated catalyst filled tubes and the primary reformed gas subjected to secondary reforming in the secondary reformer with air to generate a raw synthesis gas comprising nitrogen, hydrogen, carbon dioxide, carbon monoxide and steam.
  • the steam to carbon monoxide ratio of the raw synthesis gas may be adjusted by steam addition if necessary and the gas subjected to high temperature shift and low temperature shift in shift converters containing high and low temperature shift catalysts to generate a shifted synthesis gas mixture 22 in which the hydrogen and carbon dioxide contents are increased and the steam and carbon monoxide contents decreased.
  • Steam 20, generated by cooling the secondary and shifted gas streams, may be exported from the synthesis gas generation unit 18.
  • the shifted synthesis gas 22 is fed to a carbon dioxide removal unit 24 operating by means of reactive absorption.
  • a carbon dioxide and water stream is recovered from the separation unit 24 by line 26 for further use.
  • a carbon dioxide- depleted synthesis gas 28 comprising hydrogen, carbon monoxide and nitrogen is passed from the carbon dioxide removal unit 24 to a methanol synthesis unit 30 comprising a methanol converter containing a bed of methanol synthesis catalyst. If desired, upstream of the methanol synthesis unit 30, steam in the shifted gas may be removed by cooling and separation of condensate.
  • Methanol is synthesised in the converter on a once-through basis and separated from the product gas mixture and recovered from the methanol synthesis unit 30 by line 32 and passed to a formaldehyde production unit 34 comprising an oxidation reactor containing an oxidation catalyst.
  • a second portion 36 of the air source 12 is fed with the methanol to the oxidation reactor where they are reacted to produce formaldehyde.
  • the oxidation reactor is operated in a loop with a portion of the reacted gas fed to the inlet of the reactor.
  • the formaldehyde production unit is fed with cooling water 38 and generates a steam stream 40 and a formaldehyde vent gas 42.
  • feed streams to the formaldehyde production unit may include boiler feed water, process water and caustic (not shown).
  • the formaldehyde is recovered in an absorption tower which may be fed with urea via line 67 such that either an aqueous formaldehyde or a urea-formaldehyde concentrate (UFC) product stream 44 may be recovered from the formaldehyde production unit 34 for further use.
  • a methanol synthesis off-gas stream 46 comprising hydrogen, nitrogen and unreacted carbon monoxide recovered from the methanol synthesis unit 30 is passed to a methanation unit 48 comprising a methanation reactor containing a bed of methanation catalyst. Carbon oxides remaining in the off-gas 46 are converted to methane and water in the methanation reactor.
  • Water is recovered from the methanation unit 48 by line 50.
  • the methanated off-gas is an ammonia synthesis gas comprising essentially nitrogen and hydrogen and methane.
  • the ammonia synthesis gas is passed from the methanation unit 48 by line 52 to an ammonia synthesis unit 54 comprising an ammonia converter containing one or more beds of ammonia synthesis catalyst.
  • the ammonia converter is operated in a loop with a portion of the reacted gas fed to the inlet of the converter. Ammonia is produced in the converter and recovered from the ammonia synthesis unit 54 by line 56.
  • a purge gas stream 60 comprising methane and unreacted hydrogen and nitrogen is recovered from the ammonia synthesis unit 54 and provided to the synthesis gas generation unit 18 as fuel and/or feed to the primary and/or secondary reformers.
  • a vent gas stream 62 is also recovered from the ammonia synthesis unit 54.
  • a portion 58 of the ammonia is separated from the product stream 56.
  • the remaining ammonia is passed to a urea synthesis unit 64 where it is reacted with a purified carbon dioxide stream provided by stream 26 to produce a urea stream and water. Water is recovered from the urea synthesis unit 64 by line 66.
  • the urea stream is passed by line 68 to a stabilisation unit 70 comprising a stabilisation vessel where it is treated with aqueous formaldehyde or urea formaldehyde concentrate provided by line 44 to form a formaldehyde- stabilised urea product.
  • the formaldehyde-stabilised urea product is recovered from the stabilisation unit 70 by line 72.
  • the same synthesis gas generation, carbon dioxide removal, methanol synthesis, methanation, ammonia synthesis, urea synthesis and stabilisation units 18, 24, 30, 48, 54, 64 & 70 as set out in Figure 1 are provided.
  • the methanol stream 32 is passed to a methanol purification unit 80 where it is subjected to a distillation step heated by steam stream 40 recovered from the formaldehyde production unit 34.
  • Purified methanol is fed from the purification unit 80 by line 82 to the formaldehyde production unit 34 where it is oxidised to produce formaldehyde.
  • a by-product stream is recovered from the methanol purification unit 80 by line 88.
  • the vent gas stream 42 from the formaldehyde production unit 34 is passed to a gas-liquid separation unit 84 where unreacted methanol is recovered from a nitrogen-rich gas stream. Unreacted methanol is fed from the separation unit 84 to the methanol purification unit 80 by line 86.
  • the nitrogen-rich gas stream may be compressed and passed to the ammonia synthesis unit 54 (as shown by a dotted line 90).
  • the vent gas stream 42 from the formaldehyde production unit 34 is passed to an emission control system (ECS) 100 comprising a catalytic combustor in which the organic vent gas components are converted to carbon dioxide and steam.
  • ECS effluent which comprises nitrogen, carbon dioxide and steam may be suitably compressed and recycled from the emission control system 100 to the process.
  • the combusted gas mixture from the ECS unit 100 is passed by line 102 to the methanol synthesis unit 30 where the carbon dioxide may be reacted with hydrogen in the synthesis gas to generate additional methanol.
  • the combusted gas mixture may be provided by line 106 to the carbon dioxide removal unit 24 where the steam and carbon dioxide are removed to provide additional nitrogen in the synthesis gas.
  • the combusted gas mixture may be provided via line 104 to the urea production unit 64 where the carbon dioxide is reacted to produce additional urea.
  • vent gas stream 42 from the formaldehyde production unit 34 is recycled directly, without treatment in an ECS or other vent gas treatment units, to the process.
  • vent gas stream is passed by line 108 to the methanol synthesis unit 30 where the carbon dioxide is reacted with hydrogen to generate methanol.
  • the vent gas stream may be passed by line 1 10 to the carbon dioxide removal unit 24 where the steam and carbon dioxide are removed.
  • the vent gas stream may be passed by line 1 12 to the synthesis gas generation unit 18 as a fuel.
  • a process according to Figure 1 was modelled to determine the effects of using the compressed air feed for both the synthesis gas generation and formaldehyde production in a 3000 mtpd urea plant.
  • the synthesis gas generation was by conventional primary and secondary steam reforming with air of natural gas with, both high-temperature and low- temperature water gas shift.
  • the formaldehyde production was performed using air oxidation of methanol over a particulate iron/molybdenum catalyst disposed in cooled tubes, with recycle of a portion of the product gas to control the temperature of within the oxidation reactor.
  • the methanol synthesis was performed on a once though basis and the ammonia synthesis was performed with recycle of a portion of the product gas maximise the conversion to produce ammonia.
  • the compositions, pressures and temperatures for the various streams are given below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for the production of formaldehyde-stabilised urea is described comprising the steps of: (a) generating a synthesis gas comprising hydrogen, nitrogen, carbon monoxide, carbon dioxide and steam in a synthesis gas generation unit; (b) recovering carbon dioxide from the synthesis gas to form a carbon dioxide-depleted synthesis gas; (c) synthesising methanol from the carbon dioxide-depleted synthesis gas in a methanol synthesis unit and recovering the methanol and a methanol synthesis off-gas comprising nitrogen, hydrogen and residual carbon monoxide; (d) subjecting at least a portion of the recovered methanol to oxidation with air in a formaldehyde production unit; (e) subjecting the methanol synthesis off- gas to methanation in a methanation reactor containing a methanation catalyst to form an ammonia synthesis gas; (f) synthesising ammonia from the ammonia synthesis gas in an ammonia production unit and recovering the ammonia; (g) reacting a portion of the ammonia and at least a portion of the recovered carbon dioxide stream in a urea production unit to form a urea stream; and (h) stabilising the urea by mixing the urea stream and a stabiliser prepared using formaldehyde recovered from the formaldehyde production unit, wherein a source of air is compressed and divided into first and second portions, the first portion is provided to the formaldehyde production unit for the oxidation of methanol and the second portion is further compressed and provided to the synthesis gas generation unit.

Description

INTEGRATED PROCESS FOR THE PRODUCTION OF
FORMALDEHYDE-STABILIZED UREA
The present invention relates to a process for the production of formaldehyde-stabilised urea. More particularly, it relates to an integrated process for the production of formaldehyde- stabilised urea in a process including the co-production of methanol and ammonia.
Urea finds widespread use as a fertiliser and in industrial chemical manufacture. It is conventionally made by reacting ammonia with carbon dioxide to form a solid product which is often shaped by prilling or granulating. Aqueous formaldehyde or a urea-formaldehyde concentrate (UFC) are often used to stabilise the urea before or during the shaping process. These products are typically produced in a formaldehyde production unit from methanol.
However, the demand for formaldehyde to stabilise the urea from a single production facility is small and beyond the economic feasibility for a dedicated formaldehyde production facility. Due to the small scale of the requirements, the formaldehyde is normally produced at a separate dedicated formaldehyde production facility and transported to the ammonia/urea production facility where it is stored.
We have developed an integrated urea-formaldehyde process with a dedicated formaldehyde stabiliser production unit based on a methanol-ammonia co-production process which improves the ammonia productivity and does not reduce urea production.
Accordingly the invention provides a process for the production of formaldehyde-stabilised urea comprising the steps of: (a) generating a synthesis gas comprising hydrogen, nitrogen, carbon monoxide, carbon dioxide and steam in a synthesis gas generation unit; (b) recovering carbon dioxide from the synthesis gas to form a carbon dioxide-depleted synthesis gas; (c) synthesising methanol from the carbon dioxide-depleted synthesis gas in a methanol synthesis unit and recovering the methanol and a methanol synthesis off-gas comprising nitrogen, hydrogen and residual carbon monoxide; (d) subjecting at least a portion of the recovered methanol to oxidation with air in a formaldehyde production unit; (e) subjecting the methanol synthesis off-gas to methanation in a methanation reactor containing a methanation catalyst to form an ammonia synthesis gas; (f) synthesising ammonia from the ammonia synthesis gas in an ammonia production unit and recovering the ammonia; (g) reacting a portion of the ammonia and at least a portion of the recovered carbon dioxide stream in a urea production unit to form a urea stream; and (h) stabilising the urea by mixing the urea stream and a stabiliser prepared using formaldehyde recovered from the formaldehyde production unit, wherein a source of air is compressed and divided into first and second portions, the first portion is provided to the formaldehyde production unit for the oxidation of methanol and the second portion is further compressed and provided to the synthesis gas generation unit. There have been numerous designs for ammonia and methanol co-production over the last 50 years or so, but they have generally focussed on generating large quantities of both materials as saleable products. Examples of such processes are described, for example in US6106793, US6333014, US7521483, US8247463, US8303923, and WO2013/102589. None of these processes include a dedicated formaldehyde production unit as claimed. The formaldehyde production unit may provide any formaldehyde product suitable as a urea stabiliser, including in particular, an aqueous formaldehyde product (formalin) or a urea- formaldehyde concentrate product (UFC). As the present invention utilises one air feed for both the production of the synthesis gas for ammonia/urea and the production of the formaldehyde, substantial benefits in the reduction of capital and operating costs are achieved when compared to that required for the separate systems utilised in the prior art. In generating synthesis gas on ammonia plants, multiple stages of compression are often used. The air for the methanol oxidation stage may therefore conveniently be taken after the first stage without effecting the final air compression. This air source therefore removes the need for a separate air compression unit for the formaldehyde production unit. Thus in the present process a single source of air is compressed, divided into first and second portions, the first portion provided to a
formaldehyde production unit and the second portion further compressed and provided to a synthesis gas generation unit. The first portion of compressed air provided to the
formaldehyde production unit is used to oxidise at least a portion of the methanol. The first portion may be compressed to a pressure in the range 1 .1 -5 bar abs, preferably 1 .3-5 bar abs. The second portion of compressed air fed to the synthesis gas generation unit is used to generate the synthesis gas, for example in a secondary or autothermal reformer. The second portion may be compressed to 10-80 bar abs. If desired, the second portion may also be preheated to a temperature in the range 200-750°C . The proportion of compressed air fed to the formaldehyde production unit may be up to about 20% by volume, preferably in the range 1 .5-15% by volume, of the total air fed to the process. In the claimed process, the methanol converter for the formaldehyde production is placed between the carbon dioxide removal and methanation stages of the ammonia/urea plant, where carbon oxide levels are low, preventing excessive hydrogen consumption. There is still a need for a methanator because, to maintain a reasonable sized methanol converter, the approach to equilibrium is kept relatively high.
Other possible placements of the methanol converter are upstream of the high temperature shift converter and immediately upstream of the synthesis loop. In the first case, the temperatures are too high for methanol synthesis and the high levels of all reactants makes over-conversion possible, with associated wastage of hydrogen. In the latter case, the methanol synthesis would need to run at ammonia synthesis pressure (>130 bar abs) which requires non-conventional, and more expensive, methanol synthesis apparatus.
Should methanol reach the methanation unit, it will conveniently be converted into carbon oxides and water. The carbon oxides will then be methanated as normal. This process would generate a small endothermic reaction to compete against the exothermic methanation. An additional benefit of this scheme is clear when considering the two sets of reactions;
Methanation Methanol synthesis
CO + 3H2≠ CH4 + H20 CO + 2H2≠ CH3OH
C02 + 4H2≠ CH4 + 2H20 C02 + 3H2≠ CH3OH
Any methanol synthesis that occurs saves one mole of hydrogen per mole of methanol produced (assuming equivalent consumption of carbon monoxide and dioxide), enabling increased ammonia production, estimated to be approximately an additional third of a percent, equivalent to about 7 mtpd on a 2,000 mtpd ammonia plant. Positioning the methanol synthesis after carbon dioxide removal also means that there is no reduction in the carbon dioxide removed and therefore no associated reduction in urea production. The synthesis gas, comprising carbon monoxide, carbon dioxide, hydrogen and nitrogen provided in step (a) may be formed by any suitable means. The synthesis gas generation unit used to prepare the synthesis gas is fed with a second portion of suitably compressed air. The synthesis gas generation may be based on primary steam reforming of a hydrocarbon such as natural gas, naphtha or a refinery off-gas and secondary reforming with air or oxygen-enriched air; or by the gasification of a carbonaceous feedstock, such as coal or biomass with air. Preferably the synthesis gas generation stage comprises steam reforming a hydrocarbon. This may be achieved by primary reforming a hydrocarbon with steam in externally-heated catalyst-filled tubes in a fired- or gas-heated steam reformer and secondary reforming the primary-reformed gas mixture in a secondary reformer, by subjecting it to partial combustion with air, or air enriched in oxygen, and then passing the partially combusted gas mixture through a bed of steam reforming catalyst.
The primary reforming catalyst typically comprises nickel at levels in the range 5-30% wt, supported on shaped refractory oxides, such as alpha alumina, magnesium aluminate or calcium aluminate. If desired, catalysts with different nickel contents may be used in different parts of the tubes, for example catalysts with nickel contents in the range 5-15% wt or 30-85% wt may be used advantageously at inlet or exit portions of the tubes. Alternatively, structured catalysts, wherein a nickel or precious metal catalyst is provided as a coated layer on a formed metal or ceramic structure may be used, or the catalysts may be provided in a plurality of containers disposed within the tubes. Steam reforming reactions take place in the tubes over the steam reforming catalyst at temperatures above 350°C and typically the process fluid exiting the tubes is at a temperature in the range 650-950°C. The heat exchange medium flowing around the outside of the tubes may have a temperature in the range 900-1300°C. The pressure may be in the range 10-80 bar abs. In a secondary reformer, the primary- reformed gas is partially combusted in a burner apparatus mounted usually near the top of the reformer. The partially combusted reformed gas is then passed adiabatically through a bed of a steam reforming catalyst disposed below the burner apparatus, to bring the gas composition towards equilibrium. Heat for the endothermic steam reforming reaction is supplied by the hot, partially combusted reformed gas. As the partially combusted reformed gas contacts the steam reforming catalyst it is cooled by the endothermic steam reforming reaction to temperatures in the range 900-1 100°C. The bed of steam reforming catalyst in the secondary reformer typically comprises nickel at levels in the range 5-30% wt, supported on shaped refractory oxides, but layered beds may be used wherein the uppermost catalyst layer comprises a precious metal, such as platinum or rhodium, on a zirconia support. Such steam reforming apparatus and catalysts are commercially available.
Alternatively, the steam reforming maybe achieved by passing a mixture of the hydrocarbon and steam through an adiabatic pre-reformer containing a bed of steam reforming catalyst and then passing the pre-reformed gas mixture and air to an autothermal reformer which operates in the same way as the secondary reformer to produce a gas stream containing hydrogen, carbon oxides and steam. In adiabatic pre-reforming, a mixture of hydrocarbon and steam, typically at a steam to carbon ratio in the range 1 -4, is passed at an inlet temperature in the range 300-620°C to a fixed bed of pelleted nickel-containing pre-reforming catalyst. Such catalysts typically comprise > 40% wt nickel (expressed as NiO) and may be prepared by co-precipitation of a nickel-containing material with alumina and promoter compounds such as silica and magnesia. Again, the pressure may be in the range 10-80 bar abs.
Alternatively, the reaction stream may be formed by gasification of coal, biomass or other carbonaceous material with air using gasification apparatus. In such processes the coal, biomass or other carbonaceous material is heated to high temperatures in the absence of a catalyst to form a crude synthesis gas often containing sulphur contaminants such as hydrogen sulphide, which have to be removed. Gasification of carbonaceous feedstock to produce a synthesis gas may be achieved using known fixed bed, fluidised-bed or entrained- flow gasifiers at temperatures in the range 900-1700°C and pressures up to 90 bar abs. The crude synthesis gas streams require additional treatments known in the art to remove unwanted sulphur and other contaminants.
In a preferred process, the synthesis gas generation stage comprises primary reforming a hydrocarbon, particularly natural gas, in a fired steam reformer to produce a gas stream comprising hydrogen, carbon monoxide, carbon dioxide and steam, and secondary reforming stage in which the primary reformed gas is further reformed in a secondary reformer using air or oxygen-enriched air to provide a synthesis gas stream comprising hydrogen, carbon oxides and nitrogen.
Before recovery of the carbon dioxide, the crude synthesis gas is preferably subjected to one or more stages of water-gas shift to produce a shifted synthesis gas with the desired gas composition. In a water gas shift stage, a portion of the carbon monoxide in the stream is converted to carbon dioxide. Any suitable catalytic shift conversion reactor and catalyst may be used. If insufficient steam is present, steam may be added to the gas stream before it is subjected to the water-gas shift conversion. The reaction may be depicted as follows;
H20 + CO≠ H2 + C02 The reaction may be carried out in one or more stages. The, or each, stage may be the same or different and may be selected from a high temperature shift process, a low temperature shift process, a medium temperature shift process and an isothermal shift process.
High temperature shift catalysts may be promoted iron catalysts such as chromia- or alumina- promoted magnetite catalysts. Other high temperature shift catalysts may be used, for example iron/copper/zinc oxide/alumina catalysts, manganese/zinc oxide catalysts or zinc oxide/alumina catalysts. Medium, low temperature and isothermal shift catalysts typically comprise copper, and useful catalysts may comprise varying amounts of copper, zinc oxide and alumina. Alternatively, where sulphur compounds are present in the gas mixture, such as synthesis gas streams obtained by gasification, so-called sour shift catalysts, such as those comprising sulphides of molybdenum and cobalt, are preferred. Such water-gas shift apparatus and catalysts are commercially available.
For high temperature shift catalysts, the temperature in the shift converter may be in the range 300-360°C, for medium temperature shift catalysts the temperature may be in the range 190-300°C and for low-temperature shift catalysts the temperature may be 185-270°C. For sour shift catalysts the temperature may be in the range 200-370°C. The flow-rate of synthesis gas containing steam may be such that the gas hourly space velocity (GHSV) through the bed of water-gas shift catalyst in the reactor may be > 6000 hour"1. The pressure may be in the range 10-80 bar abs.
In a preferred embodiment, the water-gas shift stage comprises a high temperature shift stage or a medium temperature shift stage or an isothermal shift stage with or without a low temperature shift stage. Steam present in the shifted synthesis gas mixture may be condensed by cooling the shifted gas to below the dew point using one or more heat exchangers fed, for example, with cooling water. The condensate may be recovered in a gas liquid separator and may be fed to steam generators that produce steam for the synthesis gas or water-gas shift stages.
A carbon dioxide removal unit is used to recover carbon dioxide from the synthesis gas in step (b). It is located downstream of the synthesis gas generation, preferably downstream of a water-gas shift stage, and upstream of the methanol synthesis stage. Any suitable carbon dioxide removal unit may be used. Suitable removal units may function by reactive absorption, such as those known as aMDEA™ or Benfield™ units that are based on using regenerable amine or potassium carbonate washes, or by physical absorption, based on using methanol, glycol or another liquid at low temperature, such as Rectisol™, Selexol™ units. Carbon dioxide removal may also be performed by means of pressure-swing adsorption (PSA) using suitable solid adsorbent materials. The carbon dioxide removal unit, if operated using physical absorption at low temperature, is able to simultaneously remove residual steam in the shifted synthesis gas by condensation. Such carbon dioxide removal apparatus and materials are commercially available. Some or all of the carbon dioxide formed in the synthesis gas may be removed to produce a gas stream comprising mainly hydrogen and nitrogen with low levels of carbon monoxide. The carbon dioxide removed by the carbon dioxide removal unit may be captured, treated to remove contaminants such as hydrogen, and stored or used for reaction downstream with the ammonia produced to form urea.
It is desirable to remove water from the carbon dioxide-depleted synthesis gas. Water removal, or drying, is desirable to protect the downstream methanol synthesis catalyst, improve the kinetics of the methanol synthesis reaction and to minimise water in the crude methanol product. Water removal may also improve the performance and reliability of the first stage of compression. Water removal may be accomplished by cooling the water-containing gas below the dew point using one or more stages of heat exchange and passing the resulting stream through a gas liquid separator. Further stages of drying, e.g. with a desiccant may be performed if desired.
Methanol is synthesised from the carbon dioxide-depleted synthesis gas in step (c). Any methanol production technology may be used. Methanol is synthesised in a synthesis unit, which may comprise a methanol converter containing a methanol synthesis catalyst. The process can be on a once-through or a recycle basis in which unreacted product gas, after optional condensate removal, is mixed with make-up gas comprising hydrogen and carbon oxides in the desired ratio and returned to the methanol reactor. The methanol synthesis, because it is exothermic, may involve cooling by indirect heat exchange surfaces in contact with the reacting gas, or by subdividing the catalyst bed and cooling the gas between the beds by injection of cooler gas or by indirect heat exchange. The methanol may be recovered by condensation. The methanol synthesis also produces water, which may also be fed to the formaldehyde production unit. The synthesis gas composition preferably has PH2 > 2PCO + 3PC02 such that there is excess hydrogen to react with the oxides of carbon. The stoichiometry number, R, as defined by R = ([H2]-[C02])/([CO]+[C02]), of the synthesis gas fed to the methanol synthesis catalyst, is preferably > 3, more preferably >4, most preferably >5.
The unreacted gas stream recovered from the methanol synthesis unit is the methanol synthesis off-gas. It comprises nitrogen, hydrogen and residual carbon monoxide
A purge gas stream may be removed to prevent the undesirable build-up of inert/unreactive gases. If desired methanol may also be synthesised from this purge gas, or hydrogen recovered from it to adjust the stoichiometry of the feed gas or to generate power.
Any methanol synthesis catalyst may be used, but preferably it is based on a promoted or un- promoted copper/zinc oxide/alumina composition, for example those having a copper content in the range 50-70% wt. Promoters include oxides of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths. In the catalyst, the zinc oxide content may be in the range 20-90% wt, and the one or more oxidic promoter compounds, if present, may be present in an amount in the range 0.01 -10% wt. Magnesium compounds are preferred promoters and the catalyst preferably contains magnesium in an amount 1 -5% wt, expressed as MgO. The synthesis gas may be passed over the catalyst at a temperature in the range 200-320°C, and at a pressure in the range 20-250 bar abs, preferably 20-120 bar abs, more preferably 30-120, bar abs and a space velocity in the range 500-20000 If1. Because the aim of the process is not to maximise methanol production, the inlet temperature of the methanol synthesis stage may be lower, e.g. 200-270°C thus extending the catalyst lifetime by reducing sintering of the active copper sites. In the present process, a single stage of methanol synthesis is sufficient. Nevertheless, if desired, the methanol synthesis may be part of a multiple synthesis process where the product gas, with or without condensate removal, is fed to one or more further methanol synthesis reactors, which may contain the same or different methanol synthesis catalyst. Such methanol production apparatus and catalysts are commercially available
Whereas crude methanol recovered from the methanol synthesis stage is conventionally purified by multiple stages of distillation, because in the claimed process preferably all of the recovered methanol is oxidised to make formaldehyde, it is possible to simplify the purification process. Therefore preferably crude methanol recovered from the methanol synthesis stage is used directly in the formaldehyde production unit without further purification. If desired however, the crude methanol may be subjected one or more purification stages, including a single de-gassing stage, in a methanol purification unit prior to feeding it to the oxidation reactor. The de-gassing stage or any distillation stages may be provided by distillation columns heated using heat recovered from the oxidation reactor or elsewhere in the process. In particular, the degassing stage may be heated using steam generated by the oxidation stage. This simplification of the purification offers significant savings in capital and operating costs for the process.
Methanol is oxidised to formaldehyde in step (d). Any formaldehyde production technology using air as the oxidant may be used. The formaldehyde is synthesised in a formaldehyde production unit, which may comprise an oxidation reactor containing an oxidation catalyst. The oxidation catalyst may be provided as a fixed bed or within externally-cooled tubes disposed within the reactor. The first portion of compressed air provided from the single air source fed to the process is used in the formaldehyde production unit. The air may be in the temperature range 10-50°C. The air and methanol may be passed to the reactor containing an oxidation catalyst in which the methanol is oxidised. Air is preferably provided at 1 .1 -5 bar abs, more preferably 1 .3-5 bar abs, e.g. from a first stage of compression of the air fed to the process. The amount of air fed to the formaldehyde production unit is a relatively small proportion of the air fed to the overall process and so compression costs are not significantly increased and may be more than compensated for by the removal of additional compression equipment.
Production of formaldehyde from methanol and oxygen may be performed either in a silver- or a metal oxide catalysed process operated at methanol-rich or methanol-lean conditions, respectively. Hence the oxidation catalyst may be selected from either a silver catalyst or a metal oxide catalyst, preferably comprising a mixture of iron and molybdenum oxides.
Vanadium oxide catalysts may also be used. In the metal oxide process the principal reaction is the oxidation of the methanol to formaldehyde; 2 CH3OH + 02→ 2 CH20 + 2 H20
Over silver catalysts, in addition to the above oxidation reaction, methanol is also
dehydrogenated in the principal reaction for this type of catalyst; CH3OH→ CH20 + H2
In the metal oxide process, formaldehyde is produced in multi-tube reactors. Typically, a reactor comprises 10-30,000 or 10-20,000 tubes filled up with ring-shaped or other shaped catalysts and cooled by oil or molten salts as heat transfer fluid. Since the reaction is highly exothermic (ΔΗ = -156 kJ/mol), isothermal conditions are difficult to obtain and consequently a hotspot may be formed within the reaction zone. In order to limit the hot spot temperature, at the first part of the reactor the catalyst can be diluted with inert rings. The catalyst used in the oxide process is preferably a mixture of iron molybdate Fe2(Mo04)3 and molybdenum trioxide M0O3 with a molybdenum: iron atomic ratio between 2 and 3. In most aspects the catalytic performance is satisfactory; the plant yield is high (88-93 or 94%) and neither molybdenum nor iron are toxic, which is favourable considering both environmental and human health aspects.
Air is preferably used at levels to maintain the oxygen content at the inlet of the reactor below the explosive limit. The feed gas may therefore comprise < 6.5% by volume methanol for a once-through reactor, or about 8-1 1 % by volume methanol, preferably 8-9% by volume methanol, where there is recirculation. The oxidation reactor may be operated adiabatically or isothermally, where the heat of reaction can be used to generate steam. The inlet temperature to the oxidation reactor is typically in the range 80-270°C, preferably 150-270°C, with iron-based catalytic processes operating up to 400 °C and silver-based processes up to 650°C.
A single passage through the oxidation reactor can result in high yields of formaldehyde, or if desired it is possible to recycle unreacted gases, which comprise mainly of nitrogen, to the reactor inlet to maintain a low oxygen concentration. Due to the scale required in the present process, preferably the stage is operated without recycle of oxidised gas to the inlet of the oxidation reactor as this removes the need for a recycle compressor and hence offers further savings. An absorption tower may be used to extract the formaldehyde product from the oxidised gas mixture into either water to produce aqueous formaldehyde solution, or a urea solution to produce a urea-formaldehyde concentrate (UFC). The absorption tower may contain a selection of packing, trays and other features to promote the absorption, and cooling water may be used to provide the product at a temperature in the range 20-100°C. The absorption stage typically runs at a slightly lower pressure than the reactor.
In the present process, the products made from the formaldehyde are used to stabilise urea. The formaldehyde production unit may be used to produce an aqueous formaldehyde solution (formalin) or a urea-formaldehyde concentrate (UFC). Urea formaldehyde concentrate that may be used typically comprises a mixture of about 60% wt formaldehyde, about 25% wt urea and the balance about 15% wt water. Such a product may be termed "UFC85". Other UFC products may also be used. Other formaldehyde products may also be produced. Excess formaldehyde products may be sold. The formaldehyde production unit generates a vent gas which may be passed to a vent gas treatment unit such as an emission control system (ECS) and discharged to atmosphere. An emission control system may comprise a catalytic combustor that reacts any carbon monoxide, methanol, formaldehyde and dimethyl ether in the vent gas with oxygen. The gas emitted from an ECS, i.e. an ECS effluent, comprises carbon dioxide, steam and nitrogen and therefore may be recycled, preferably after suitable compression, to one or more stages of the process. Thus the ECS effluent may be passed to the carbon dioxide-removal stage where steam and carbon dioxide may be recovered, to provide additional nitrogen in the synthesis gas. Alternatively the ECS effluent may be provided to the methanol synthesis stage where the carbon dioxide may be reacted with hydrogen in the synthesis gas to produce additional methanol. Alternatively, the ECS effluent may be fed to the urea production unit to provide carbon dioxide for additional urea production.
In another embodiment, the vent gas treatment unit comprises a gas-liquid separator that separates the nitrogen-rich off-gas from liquid methanol, which may be recycled to the oxidation reactor directly or after one or more stages of purification. The nitrogen-rich gas separated in the separator may be compressed and passed to the ammonia synthesis stage.
Alternatively the formaldehyde vent gas may be recycled directly to the process, i.e. the vent gas treatment unit may be omitted. In one embodiment, the formaldehyde vent gas is recycled directly to the synthesis gas generation unit as a fuel gas so that the organic contaminants present in the vent gas may be combusted to generate energy. The formaldehyde vent gas may, for example, be recycled directly to the fuel gas stream of a primary reformer or may be fed to a furnace for steam generation. In this way an ECS or vent gas treatment unit is not required, which offer considerable savings. Alternatively the vent gas may be combined with a hydrocarbon feedstock fed to the synthesis gas generation unit.
Alternatively, the formaldehyde vent gas may be recycled directly to the carbon dioxide removal stage so that the carbon dioxide and water vapour present in the vent gas may be captured. Organic contaminants such as methanol, formaldehyde and dimethyl ether may also be captured, e.g. using a PSA unit.
Alternatively, the formaldehyde vent gas may be recycled directly to the methanol synthesis stage. Direct recycling is simpler and is preferred. With direct recycling, the by-products will be limited by equilibrium across the methanol synthesis catalyst and so will not accumulate in this recycle loop. The nitrogen is also recovered without the need for catalytic combustion or intensive pressurisation.
The formaldehyde vent gas may be recycled directly to one, two or more of these alternatives. The formaldehyde production unit may also produce an aqueous waste stream, for example a condensate recovered as a by-product of the methanol oxidation. This condensate may contain organic compounds such as methanol, formaldehyde and dimethyl ether and therefore provides a potential source of hydrocarbon for the process. In one embodiment, the process condensate is recycled to the synthesis gas generation stage where it is used to generate steam for use in steam reforming. The steam may be formed in a conventional boiler and added to the hydrocarbon feed or may, preferably, be generated in a saturator to which the aqueous effluent and hydrocarbon are fed. In the methanation stage (e), residual carbon monoxide and carbon dioxide in the methanol synthesis off-gas stream is converted to methane in the methanator. Any suitable arrangement for the methanator may be used. Thus the methanator may be operated adiabatically or isothermally. One or more methanators may be used. A nickel-based methanation catalyst may be used. For example, in a single methanation stage the gas from the methanol synthesis stage may be fed at an inlet temperature in the range 200-400°C to a fixed bed of pelleted nickel-containing methanation catalyst. Such catalysts are typically pelleted compositions, comprising 20-40% wt nickel. Such methanation apparatus and catalysts are commercially available. The pressure for methanation may be in the range 10- 80 bar abs or higher up to 250 bar abs. Steam is formed as a by-product of methanation. The steam is desirably removed using conventional means such as cooling and separation of condensate. An ammonia synthesis gas stream may be recovered from the methanation and drying stage. Such methanation apparatus and catalysts are commercially available.
The methanated gas stream may be fed to the ammonia production unit as the ammonia synthesis gas. However, the hydrogen: nitrogen molar ratio of the methanated gas stream may need to be adjusted, for example by addition of nitrogen from a suitable source, to provide the ammonia synthesis gas. The adjustment of the hydrogen: nitrogen molar ratio is to ensure the ammonia synthesis reaction operates efficiently. The nitrogen may be provided from any source, for example from an air separation unit (ASU). The adjustment may be performed by direct addition of nitrogen to the methanated gas stream. The adjusted gas mixture may then be passed to the ammonia synthesis unit as the ammonia synthesis gas.
Ammonia is synthesised in step (f). The ammonia synthesis gas may be compressed to the ammonia synthesis pressure and passed to an ammonia production unit. The ammonia production unit comprises an ammonia converter containing an ammonia synthesis catalyst. The nitrogen and hydrogen react together over the catalyst to form the ammonia product. Ammonia synthesis catalysts are typically iron based but other ammonia synthesis catalysts may be used. The reactor may operate adiabatically or may be operated isothermally. The catalyst beds may be axial and/or radial flow and one or more beds may be provided within a single converter vessel. The conversion over the catalyst is generally incomplete and so the synthesis gas is typically passed to a loop containing a partially reacted gas mixture recovered from the ammonia converter and the resulting mixture fed to the catalyst. The synthesis gas mixture fed to the loop may have a hydrogen: nitrogen ratio of 2.2-3.2. In the ammonia production unit, the hydrogen/nitrogen mixture may be passed over the ammonia synthesis catalyst at high pressure, e.g. in the range 80-350 bar abs, preferably 150-350 bar abs for large-scale plants, and a temperature in the range 300-540°C, preferably 350-520°C.
A purge gas stream containing methane and hydrogen may be taken from the ammonia synthesis loop and fed to the synthesis gas generation step or used as a fuel.
Compression of the synthesis gas is preferably effected in multiple stages, with a first and a second stage performed before the methanol synthesis to achieve e.g. 50-100 barg, preferably 80-100 barg, and a third stage after methanation to achieve a higher pressure, e.g. 150-250 barg, before the ammonia synthesis. Thus methanol synthesis may usefully be provided between the second and third stages of compression, with the methanator downstream of methanol synthesis and upstream of the third stage of compression.
Alternatively, the methanol synthesis may usefully be provided upstream of the first stage of compression. Urea is produced in step (g) by reacting ammonia from step (f) with carbon dioxide recovered from step (d). Typically only a portion of the ammonia produced in step (f) will be used to produce urea, which is limited by the amount of carbon dioxide recovered in step (b). The excess ammonia may be recovered and used to make nitric acid, ammonium nitrate or ammonia products for sale. Any urea production technology may be used. For example, ammonia and carbon dioxide may be combined in a first reactor at 140-200°C and 120-220 bar abs to form ammonium carbamate as follows;
NH3 + C02≠ NH2COONH4 The ammonium carbamate is then dehydrated in a further reactor to form urea;
NH2COONH4≠ NH2CONH2 + H20
The high pressure favours ammonium carbamate formation and the high temperature favours the dehydration, so the resultant mixture contains all the above components. Unreacted carbamate is therefore generally decomposed back to ammonia and carbon dioxide, which may then be recycled to the reactor. The carbon dioxide readily dissolves in the water from the dehydration, which if recycled supresses the equilibria and so the system may be run with excess ammonia to minimise this recycle. The decomposition and subsequent recycling can be carried out in one or more successive stages at decreasing pressures to minimise the ultimate concentration of ammonium carbamate dissolved in the urea solution. An alternative process arrangement uses the fresh carbon dioxide gas to strip unreacted ammonia and carbon dioxide from the ammonium carbamate and urea solution at the same pressure as the reactor. Further unreacted material is recycled from lower pressure stages as ammonium carbamate solution. Such urea production apparatus is commercially available.
Formaldehyde-stabilised urea is produced in step (h) by mixing urea produced in step (g) and a stabiliser prepared using formaldehyde recovered from the formaldehyde production unit in step (d). The stabiliser may be any formaldehyde-based stabiliser; including aqueous formaldehyde and an aqueous urea-formaldehyde concentrate. Aqueous formaldehyde and urea formaldehyde concentrate may be prepared directly in the formaldehyde production unit. Formaldehyde, either as a concentrated solution or as a combined solution of urea and formaldehyde may be added to molten urea prior to forming into either prills or granules. This reduces the tendency of the urea to absorb moisture and increases the hardness of the surface of the solid particles, preventing both caking (bonding of adjacent particles) and dusting (abrasion of adjacent particles). This maintains the free flowing nature of the product; prevents loss of material through dust, and enhances the stability during long term storage. If urea is available then it is preferable to use the urea formaldehyde solution as a stable solution with a higher formaldehyde concentration can be produced, which minimises the water being added to the molten urea. Such stabilised urea production apparatus is commercially available.
The present invention will now be described by way of example with reference to the accompanying drawings in which;
Figure 1 is a schematic representation of a process according to a first aspect of the present invention;
Figure 2 is a schematic representation of a process according to a second aspect of the present invention;
Figure 3 is a schematic representation of a process according to a third aspect of the present invention; and
Figure 4 is a schematic representation of a process according to a fourth aspect of the present invention.
It will be understood by those skilled in the art that the drawings are diagrammatic and that further items of equipment such as reflux drums, pumps, vacuum pumps, temperature sensors, pressure sensors, pressure relief valves, control valves, flow controllers, level controllers, holding tanks, storage tanks, and the like may be required in a commercial plant. The provision of such ancillary items of equipment forms no part of the present invention and is in accordance with conventional chemical engineering practice. In Figure 1 , a natural gas stream 10, steam 16 and a first portion 14 of an air stream 12 are fed to a synthesis gas generation unit 18 comprising a primary reformer, a secondary reformer and a water-gas shift unit comprising high- and low-temperature shift converters. The natural gas is primary reformed with steam in externally-heated catalyst filled tubes and the primary reformed gas subjected to secondary reforming in the secondary reformer with air to generate a raw synthesis gas comprising nitrogen, hydrogen, carbon dioxide, carbon monoxide and steam. The steam to carbon monoxide ratio of the raw synthesis gas may be adjusted by steam addition if necessary and the gas subjected to high temperature shift and low temperature shift in shift converters containing high and low temperature shift catalysts to generate a shifted synthesis gas mixture 22 in which the hydrogen and carbon dioxide contents are increased and the steam and carbon monoxide contents decreased. Steam 20, generated by cooling the secondary and shifted gas streams, may be exported from the synthesis gas generation unit 18. The shifted synthesis gas 22 is fed to a carbon dioxide removal unit 24 operating by means of reactive absorption. A carbon dioxide and water stream is recovered from the separation unit 24 by line 26 for further use. A carbon dioxide- depleted synthesis gas 28 comprising hydrogen, carbon monoxide and nitrogen is passed from the carbon dioxide removal unit 24 to a methanol synthesis unit 30 comprising a methanol converter containing a bed of methanol synthesis catalyst. If desired, upstream of the methanol synthesis unit 30, steam in the shifted gas may be removed by cooling and separation of condensate. Methanol is synthesised in the converter on a once-through basis and separated from the product gas mixture and recovered from the methanol synthesis unit 30 by line 32 and passed to a formaldehyde production unit 34 comprising an oxidation reactor containing an oxidation catalyst. A second portion 36 of the air source 12 is fed with the methanol to the oxidation reactor where they are reacted to produce formaldehyde. The oxidation reactor is operated in a loop with a portion of the reacted gas fed to the inlet of the reactor. The formaldehyde production unit is fed with cooling water 38 and generates a steam stream 40 and a formaldehyde vent gas 42. Other feed streams to the formaldehyde production unit may include boiler feed water, process water and caustic (not shown). The formaldehyde is recovered in an absorption tower which may be fed with urea via line 67 such that either an aqueous formaldehyde or a urea-formaldehyde concentrate (UFC) product stream 44 may be recovered from the formaldehyde production unit 34 for further use. A methanol synthesis off-gas stream 46 comprising hydrogen, nitrogen and unreacted carbon monoxide recovered from the methanol synthesis unit 30 is passed to a methanation unit 48 comprising a methanation reactor containing a bed of methanation catalyst. Carbon oxides remaining in the off-gas 46 are converted to methane and water in the methanation reactor. Water is recovered from the methanation unit 48 by line 50. The methanated off-gas is an ammonia synthesis gas comprising essentially nitrogen and hydrogen and methane. The ammonia synthesis gas is passed from the methanation unit 48 by line 52 to an ammonia synthesis unit 54 comprising an ammonia converter containing one or more beds of ammonia synthesis catalyst. The ammonia converter is operated in a loop with a portion of the reacted gas fed to the inlet of the converter. Ammonia is produced in the converter and recovered from the ammonia synthesis unit 54 by line 56. A purge gas stream 60 comprising methane and unreacted hydrogen and nitrogen is recovered from the ammonia synthesis unit 54 and provided to the synthesis gas generation unit 18 as fuel and/or feed to the primary and/or secondary reformers. A vent gas stream 62 is also recovered from the ammonia synthesis unit 54. A portion 58 of the ammonia is separated from the product stream 56. The remaining ammonia is passed to a urea synthesis unit 64 where it is reacted with a purified carbon dioxide stream provided by stream 26 to produce a urea stream and water. Water is recovered from the urea synthesis unit 64 by line 66. The urea stream is passed by line 68 to a stabilisation unit 70 comprising a stabilisation vessel where it is treated with aqueous formaldehyde or urea formaldehyde concentrate provided by line 44 to form a formaldehyde- stabilised urea product. The formaldehyde-stabilised urea product is recovered from the stabilisation unit 70 by line 72. In Figure 2, the same synthesis gas generation, carbon dioxide removal, methanol synthesis, methanation, ammonia synthesis, urea synthesis and stabilisation units 18, 24, 30, 48, 54, 64 & 70 as set out in Figure 1 are provided. In this embodiment, the methanol stream 32 is passed to a methanol purification unit 80 where it is subjected to a distillation step heated by steam stream 40 recovered from the formaldehyde production unit 34. Purified methanol is fed from the purification unit 80 by line 82 to the formaldehyde production unit 34 where it is oxidised to produce formaldehyde. A by-product stream is recovered from the methanol purification unit 80 by line 88. In addition, the vent gas stream 42 from the formaldehyde production unit 34 is passed to a gas-liquid separation unit 84 where unreacted methanol is recovered from a nitrogen-rich gas stream. Unreacted methanol is fed from the separation unit 84 to the methanol purification unit 80 by line 86. If desired, the nitrogen-rich gas stream may be compressed and passed to the ammonia synthesis unit 54 (as shown by a dotted line 90).
In Figure 3, the same synthesis gas generation, carbon dioxide removal, methanol synthesis, methanation, ammonia synthesis, urea synthesis and stabilisation units 18, 24, 30, 48, 54, 64 & 70 as set out in Figure 1 are provided. In this embodiment, the vent gas stream 42 from the formaldehyde production unit 34 is passed to an emission control system (ECS) 100 comprising a catalytic combustor in which the organic vent gas components are converted to carbon dioxide and steam. The combusted gas mixture, (i.e. ECS effluent) which comprises nitrogen, carbon dioxide and steam may be suitably compressed and recycled from the emission control system 100 to the process. In one embodiment, the combusted gas mixture from the ECS unit 100 is passed by line 102 to the methanol synthesis unit 30 where the carbon dioxide may be reacted with hydrogen in the synthesis gas to generate additional methanol. Alternatively or additionally, the combusted gas mixture may be provided by line 106 to the carbon dioxide removal unit 24 where the steam and carbon dioxide are removed to provide additional nitrogen in the synthesis gas. Alternatively or additionally, the combusted gas mixture may be provided via line 104 to the urea production unit 64 where the carbon dioxide is reacted to produce additional urea.
In Figure 4, the same synthesis gas generation, carbon dioxide removal, methanol synthesis, methanation, ammonia synthesis, urea synthesis and stabilisation units 18, 24, 30, 48, 54, 64 & 70 as set out in Figure 1 are provided. In this embodiment, the vent gas stream 42 from the formaldehyde production unit 34 is recycled directly, without treatment in an ECS or other vent gas treatment units, to the process. In one embodiment, vent gas stream is passed by line 108 to the methanol synthesis unit 30 where the carbon dioxide is reacted with hydrogen to generate methanol. Alternatively or in addition, the vent gas stream may be passed by line 1 10 to the carbon dioxide removal unit 24 where the steam and carbon dioxide are removed. Alternatively or in addition, the vent gas stream may be passed by line 1 12 to the synthesis gas generation unit 18 as a fuel.
The present invention will now be described with reference to the following example in accordance with the flow sheet depicted in Figure 1 .
A process according to Figure 1 was modelled to determine the effects of using the compressed air feed for both the synthesis gas generation and formaldehyde production in a 3000 mtpd urea plant. The synthesis gas generation was by conventional primary and secondary steam reforming with air of natural gas with, both high-temperature and low- temperature water gas shift. The formaldehyde production was performed using air oxidation of methanol over a particulate iron/molybdenum catalyst disposed in cooled tubes, with recycle of a portion of the product gas to control the temperature of within the oxidation reactor. The methanol synthesis was performed on a once though basis and the ammonia synthesis was performed with recycle of a portion of the product gas maximise the conversion to produce ammonia. The compositions, pressures and temperatures for the various streams are given below.
Figure imgf000018_0001
5
10 Stream 46 52 56 26 68 67 44 42 72 mole% dry
N2 25.38 25.55 <0.01 0.02 91.35 o2 5.48
H2 73.72 73.54 <0.01 0.15
NH3 99.99 0.18 0.18 0.01
CH4 0.37 0.61 0.01
Ar 0.29 0.30 1.10 co2 0.06 99.83
CO 0.14 1.51
C4+
CH3OH 0.04 0.24 0.51 <0.01
CH20 0.04 0.04 82.56 0.02 1.10
CO(NH2)2 99.78 99.78 17.20 98.89
Dry Flow 10345.0 10274.6 4921.9 2003.0 2086.1 4.9 28.1 66.4 2104.6 kmol/hr
H20 1.5 31.5 209.9 293.2 15.9 9.5 1.9 14.0 kmol/hr
Total flow 10346.5 10306.1 4921.9 2212.9 2379.3 20.8 37.6 68.3 2118.7 kmol/hr
Temperature 6 330 22 133 45 30 30 95
°C
Pressure 90.0 182.0 17.3 1.3 0.9 5.0 4.0 2.5 1.0 bar abs

Claims

Claims
1 . A process for the production of formaldehyde-stabilised urea comprising the steps of: (a) generating a synthesis gas comprising hydrogen, nitrogen, carbon monoxide, carbon dioxide and steam in a synthesis gas generation unit; (b) recovering carbon dioxide from the synthesis gas to form a carbon dioxide-depleted synthesis gas; (c) synthesising methanol from the carbon dioxide-depleted synthesis gas in a methanol synthesis unit and recovering the methanol and a methanol synthesis off-gas comprising nitrogen, hydrogen and residual carbon monoxide; (d) subjecting at least a portion of the recovered methanol to oxidation with air in a formaldehyde production unit; (e) subjecting the methanol synthesis off-gas to methanation in a methanation reactor containing a methanation catalyst to form an ammonia synthesis gas; (f) synthesising ammonia from the ammonia synthesis gas in an ammonia production unit and recovering the ammonia; (g) reacting a portion of the ammonia and at least a portion of the recovered carbon dioxide stream in a urea production unit to form a urea stream; and (h) stabilising the urea by mixing the urea stream and a stabiliser prepared using formaldehyde recovered from the formaldehyde production unit, wherein a source of air is compressed and divided into first and second portions, the first portion is provided to the formaldehyde production unit for the oxidation of methanol and the second portion is further compressed and provided to the synthesis gas generation unit.
2. A process according to claim 1 wherein the synthesis gas is provided in a synthesis gas production unit comprising a synthesis gas generation stage and a water-gas shift stage.
3. A process according to claim 2 wherein the synthesis gas generation stage is based on steam reforming of a hydrocarbon such as natural gas, naphtha or a refinery off-gas; or by the gasification of a carbonaceous feedstock, such as coal or biomass.
4. A process according to claim 2 or claim 3 wherein the synthesis gas generation stage is provided by adiabatic pre-reforming and/or primary reforming in a fired or gas-heated steam reformer and secondary or autothermal reforming with air or oxygen-enriched air.
5. A process according to any one of claims 2 to 4 wherein the water gas shift stage comprises one or more stages of high temperature shift, low temperature shift, medium temperature shift, isothermal shift and sour shift.
6. A process according to any one of claims 1 to 5 wherein carbon dioxide removal is effected using absorption or adsorption.
7. A process according to any one of claims 1 to 6 wherein the methanol synthesis is operated on a once-through, or a recycle basis in which unreacted gases, after condensate removal, are returned to the methanol converter in a loop.
8. A process according to any one of claims 1 to 7 wherein the methanol synthesis is operated in a single stage at an inlet temperature in the range 200-320°C preferably 200-270°C.
9. A process according to any one of claims 1 to 8 wherein crude methanol recovered from the methanol synthesis stage is fed without purification to the oxidation reactor within the formaldehyde production unit.
10. A process according to any one of claims 1 to 9 wherein the formaldehyde production unit comprises an oxidation reactor containing a bed of oxidation catalyst and is operated with or without recycle of unreacted gases to the inlet of the oxidation reactor.
1 1 . A process according to any one of claims 1 to 10 wherein the formaldehyde production unit generates a formaldehyde vent gas which is recycled to the process, either directly or after one or more stages of vent gas treatment in a vent-gas treatment unit.
12. A process according to claim 1 1 wherein the vent gas treatment unit comprises a gas-liquid separator that separates the nitrogen-rich off-gas from liquid methanol.
13. A process according to claim 1 1 wherein the formaldehyde vent gas is recycled directly without treatment to the methanol synthesis stage or indirectly after it has first passed to an emission control system comprising a catalytic combustor to convert the vent stream into carbon dioxide, nitrogen and steam.
14. A process according to claim 1 1 wherein the formaldehyde vent gas is recycled directly without treatment to the carbon dioxide removal stage or indirectly after it has first passed to an emission control system comprising a catalytic combustor to convert the vent stream into carbon dioxide, nitrogen and steam.
15. A process according to claim 1 1 wherein the formaldehyde vent gas is recycled after it has first passed to an emission control system comprising a catalytic combustor to convert the vent stream into carbon dioxide, nitrogen and steam to the urea synthesis stage.
16. A process according to claim 1 1 wherein the formaldehyde vent gas is recycled directly to the synthesis gas generation unit as a component of a fuel gas.
PCT/GB2015/054083 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea WO2016132092A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2977012A CA2977012C (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea
CN201580076460.5A CN107250106B (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea
EP15813559.0A EP3259248B1 (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea
EA201791868A EA033955B1 (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea
US15/552,063 US10077235B2 (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea
MX2017010601A MX2017010601A (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea.
BR112017017593A BR112017017593A2 (en) 2015-02-20 2015-12-18 process for the production of formaldehyde stabilized urea.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1502893.9 2015-02-20
GB201502893A GB201502893D0 (en) 2015-02-20 2015-02-20 Process

Publications (1)

Publication Number Publication Date
WO2016132092A1 true WO2016132092A1 (en) 2016-08-25

Family

ID=52821950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2015/054083 WO2016132092A1 (en) 2015-02-20 2015-12-18 Integrated process for the production of formaldehyde-stabilized urea

Country Status (9)

Country Link
US (1) US10077235B2 (en)
EP (1) EP3259248B1 (en)
CN (1) CN107250106B (en)
BR (1) BR112017017593A2 (en)
CA (1) CA2977012C (en)
EA (1) EA033955B1 (en)
GB (2) GB201502893D0 (en)
MX (1) MX2017010601A (en)
WO (1) WO2016132092A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550003A (en) * 2015-12-18 2017-11-08 Johnson Matthey Plc Process
WO2018078318A1 (en) * 2016-10-26 2018-05-03 Johnson Matthey Public Limited Company Process for the production of formaldehyde-stabilised urea
EP3323786A1 (en) * 2016-11-16 2018-05-23 Ulrich Koss Method for the combined preparation of methanol and ammonia
WO2018185459A1 (en) * 2017-04-05 2018-10-11 Johnson Matthey Public Limited Company Process for the production of formaldehyde-stabilized urea
WO2019106784A1 (en) * 2017-11-30 2019-06-06 三菱重工エンジニアリング株式会社 Fertilizer production plant and method for producing fertilizer
WO2019122809A1 (en) * 2017-12-18 2019-06-27 Johnson Matthey Davy Technologies Limited Process for producing methanol and ammonia
US11286159B2 (en) 2017-07-13 2022-03-29 Haldor Topsøe A/S Method and catalysts for the production of ammonia synthesis gas
RU2782258C2 (en) * 2017-12-18 2022-10-25 Джонсон Мэттей Дэйви Текнолоджиз Лимитед Method for production of methanol and ammonia
LU103095B1 (en) 2023-03-31 2024-09-30 Thyssenkrupp Ind Solutions Ag Quantitatively optimized production of methanol and formaldehyde-urea in a combined ammonia-urea plant
DE102023108298A1 (en) 2023-03-31 2024-10-02 Thyssenkrupp Ag Quantitatively optimized production of methanol and formaldehyde-urea in a combined ammonia-urea plant
WO2024200397A1 (en) 2023-03-31 2024-10-03 Thyssenkrupp Uhde Gmbh Quantity-optimised production of methanol and therefrom formaldehyde urea in a combined ammonia-urea system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201502894D0 (en) * 2015-02-20 2015-04-08 Johnson Matthey Plc Process
AU2018233670B2 (en) * 2017-03-12 2022-04-28 Haldor Topsøe A/S Co-production of methanol, ammonia and urea
US11873268B2 (en) * 2019-03-15 2024-01-16 Topsoe A/S Process for the production of urea formaldehyde concentrate
AU2020242886A1 (en) * 2019-03-15 2021-07-29 Haldor Topsøe A/S Process for the production of urea formaldehyde concentrate
JPWO2023022013A1 (en) * 2021-08-18 2023-02-23

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096758A1 (en) * 2003-04-29 2004-11-11 Prospect Management Bv Process for the preparation of a urea and formaldehyde-containting aqueous solution
WO2013102589A1 (en) * 2012-01-04 2013-07-11 Haldor Topsøe A/S Co-production of methanol and urea
EP2805914A1 (en) * 2013-05-23 2014-11-26 Haldor Topsøe A/S A process for co-production of ammonia, urea and methanol

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1245593A (en) * 1968-07-04 1971-09-08 Ici Ltd Formaldehyde production
US3598527A (en) * 1968-10-11 1971-08-10 Pullman Inc Ammonia and methanol production
DE2022818B2 (en) * 1970-05-11 1976-06-16 Basf Ag, 6700 Ludwigshafen PROCESS FOR PRODUCING FORMALDEHYDE
DE2442231C2 (en) * 1974-09-04 1982-04-01 Basf Ag, 6700 Ludwigshafen Process for the production of formaldehyde
FR2311048A1 (en) * 1975-05-13 1976-12-10 Mir Puig Pedro PROCESS FOR PREPARATION OF UREE-FORMALDEHYDE GLUES OR RESINS AND PRODUCTS OBTAINED BY IMPLEMENTATION OF THIS PROCESS
US5173513A (en) * 1980-09-04 1992-12-22 Alwyn Pinto Methanol synthesis
US4383123A (en) * 1981-10-08 1983-05-10 Monsanto Company Manufacture of aqueous formaldehyde
RU2193023C2 (en) 1995-09-11 2002-11-20 Метанол Казали С.А. Method of joint production of ammonia and methanol, plant for realization of this method and method of modernization of ammonia synthesis plant
EG20985A (en) 1995-11-23 2000-08-30 Methanol Casale Sa Process for sthe ammonia and methanol co-production
JP3667418B2 (en) 1996-02-01 2005-07-06 東洋エンジニアリング株式会社 Method for producing granular urea
DE60134124D1 (en) * 2000-03-06 2008-07-03 Woodland Biofuels Inc LIQUID HYDROCARBONS
DE102004014292A1 (en) 2004-03-22 2005-10-20 Lurgi Ag Co-production of methanol and ammonia from natural gas
FR2903688B1 (en) 2006-07-13 2008-09-05 Arkema France PROCESS FOR THE SYNTHESIS OF FORMALDEHYDE BY OXIDATION OF METHANOL IN THE PRESENCE OF METHANE
EP2192082B1 (en) 2008-11-28 2013-07-03 Haldor Topsoe A/S Co-production of methanol and ammonia
JP5355062B2 (en) 2008-12-15 2013-11-27 東洋エンジニアリング株式会社 Co-production method of methanol and ammonia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096758A1 (en) * 2003-04-29 2004-11-11 Prospect Management Bv Process for the preparation of a urea and formaldehyde-containting aqueous solution
WO2013102589A1 (en) * 2012-01-04 2013-07-11 Haldor Topsøe A/S Co-production of methanol and urea
EP2805914A1 (en) * 2013-05-23 2014-11-26 Haldor Topsøe A/S A process for co-production of ammonia, urea and methanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Boosting profitability for urea producers 6 th GPCA Fertilizer Convention Integration of urea-formaldehyde production", 16 September 2015 (2015-09-16), Dubai, pages 1 - 18, XP055252601, Retrieved from the Internet <URL:http://gpcafertilizers.com/2015/wp-content/uploads/2015/10/Haldor-Topsoe-David-James-Bray.pdf> [retrieved on 20160223] *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550076B2 (en) 2015-12-18 2020-02-04 Johnson Matthey Public Limited Company Integrated process for the production of formaldehyde-stabilised urea
GB2550003B (en) * 2015-12-18 2019-01-16 Johnson Matthey Plc Process for the production of formaldehyde-stabilised urea
GB2550003A (en) * 2015-12-18 2017-11-08 Johnson Matthey Plc Process
WO2018078318A1 (en) * 2016-10-26 2018-05-03 Johnson Matthey Public Limited Company Process for the production of formaldehyde-stabilised urea
EA036440B1 (en) * 2016-10-26 2020-11-11 Джонсон Мэтти Паблик Лимитед Компани Process for the production of formaldehyde-stabilised urea
US10479761B2 (en) 2016-10-26 2019-11-19 Johnson Matthey Public Limited Company Process for the production of formaldehyde-stabilized urea
EP3323786A1 (en) * 2016-11-16 2018-05-23 Ulrich Koss Method for the combined preparation of methanol and ammonia
WO2018091593A1 (en) * 2016-11-16 2018-05-24 Ulrich Koss Method for the combined production of methanol and ammonia
US10843989B2 (en) 2016-11-16 2020-11-24 Gascontec Gmbh Method for the combined production of methanol and ammonia
US10759744B2 (en) 2017-04-05 2020-09-01 Johnson Matthey Public Limited Company Process for the production of formaldehyde-stabilized urea
WO2018185459A1 (en) * 2017-04-05 2018-10-11 Johnson Matthey Public Limited Company Process for the production of formaldehyde-stabilized urea
RU2758773C2 (en) * 2017-04-05 2021-11-01 Джонсон Мэтти Паблик Лимитед Компани Method for producing formaldehyde-stabilised urea
US11286159B2 (en) 2017-07-13 2022-03-29 Haldor Topsøe A/S Method and catalysts for the production of ammonia synthesis gas
WO2019106784A1 (en) * 2017-11-30 2019-06-06 三菱重工エンジニアリング株式会社 Fertilizer production plant and method for producing fertilizer
WO2019122809A1 (en) * 2017-12-18 2019-06-27 Johnson Matthey Davy Technologies Limited Process for producing methanol and ammonia
US11261086B2 (en) 2017-12-18 2022-03-01 Johnson Matthey Davy Technologies Limited Process for producing methanol and ammonia
RU2782258C2 (en) * 2017-12-18 2022-10-25 Джонсон Мэттей Дэйви Текнолоджиз Лимитед Method for production of methanol and ammonia
LU103095B1 (en) 2023-03-31 2024-09-30 Thyssenkrupp Ind Solutions Ag Quantitatively optimized production of methanol and formaldehyde-urea in a combined ammonia-urea plant
DE102023108298A1 (en) 2023-03-31 2024-10-02 Thyssenkrupp Ag Quantitatively optimized production of methanol and formaldehyde-urea in a combined ammonia-urea plant
WO2024200397A1 (en) 2023-03-31 2024-10-03 Thyssenkrupp Uhde Gmbh Quantity-optimised production of methanol and therefrom formaldehyde urea in a combined ammonia-urea system

Also Published As

Publication number Publication date
US20180072658A1 (en) 2018-03-15
CA2977012C (en) 2023-03-21
EA033955B1 (en) 2019-12-13
CN107250106B (en) 2020-07-10
GB2539294A (en) 2016-12-14
EA201791868A1 (en) 2017-12-29
BR112017017593A2 (en) 2018-05-08
EP3259248A1 (en) 2017-12-27
GB201522399D0 (en) 2016-02-03
MX2017010601A (en) 2017-11-16
CN107250106A (en) 2017-10-13
GB2539294B (en) 2019-07-03
GB201502893D0 (en) 2015-04-08
US10077235B2 (en) 2018-09-18
CA2977012A1 (en) 2016-08-25
EP3259248B1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US10457634B2 (en) Process for the production of formaldehyde
GB2539294B (en) Process
AU2016373417B2 (en) Integrated process for the production of formaldehyde-stabilised urea
US10479761B2 (en) Process for the production of formaldehyde-stabilized urea
EP3606871B1 (en) Process for the production of formaldehyde-stabilized urea

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15813559

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015813559

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2977012

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010601

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15552063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017593

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: A201709222

Country of ref document: UA

Ref document number: 201791868

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112017017593

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170816