WO2016131236A1 - 射频参数的调整方法及装置 - Google Patents

射频参数的调整方法及装置 Download PDF

Info

Publication number
WO2016131236A1
WO2016131236A1 PCT/CN2015/088059 CN2015088059W WO2016131236A1 WO 2016131236 A1 WO2016131236 A1 WO 2016131236A1 CN 2015088059 W CN2015088059 W CN 2015088059W WO 2016131236 A1 WO2016131236 A1 WO 2016131236A1
Authority
WO
WIPO (PCT)
Prior art keywords
handheld
sensors
state
terminal device
handheld state
Prior art date
Application number
PCT/CN2015/088059
Other languages
English (en)
French (fr)
Inventor
刘凤鹏
刘冬梅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016131236A1 publication Critical patent/WO2016131236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for adjusting radio frequency parameters.
  • the radio frequency performance is one of the most important performance indicators of the terminal device, and the corresponding values of the radio frequency parameters are different, which will also have different effects on the communication effect of the terminal device.
  • whether the radio frequency parameter of a terminal device is optimal or not is related to environmental factors.
  • the environmental factor may be an external communication environment or an object directly contacting the terminal device, for example, an operator of the handheld terminal. .
  • a set of radio frequency parameters are generally used in communication scenarios commonly used in various terminal devices, such as non-touch hands-free, left-hand handheld, right-hand handheld, etc., all using the same radio frequency.
  • Parameters, however, for the terminal device, different grip positions will have different effects on RF performance. Therefore, in different communication scenarios, the optimal radio frequency parameters corresponding to the terminal device are also different. Therefore, the solution provided by the related technology is still used, which inevitably affects the radio frequency performance of the terminal device in different communication scenarios, thereby causing the terminal. The problem of poor communication of the device.
  • the invention provides a method and a device for adjusting radio frequency parameters, so as to at least solve the problem of poor communication effect caused by using the same radio frequency parameters in different communication scenarios in the related art.
  • a method for adjusting a radio frequency parameter includes: acquiring handheld state data collected by a sensor in a handheld area on both sides of a communication device during communication; and determining, according to the handheld state data, a current location of the terminal device The handheld state at the location; adjusting the radio frequency parameter of the terminal device to a target radio frequency parameter that matches the above-mentioned hand-held state currently in use.
  • the two-handed handheld area includes a first handheld area and a second handheld area, and determining, according to the handheld status data, the handheld state that the terminal device is currently located to: acquiring the first handheld area The number of the first sensors of the state data, and the number of the second sensors that collect the second state data in the second hand-held area, wherein the hand-held state data includes the first number collected by the first sensor The state data and the second state data collected by the second sensor; determining the hand-held state in which the terminal device is currently located according to the number of the first sensors and the number of the second sensors.
  • the first handheld area is a left side handheld area of the terminal device in the case of a screen facing the terminal device
  • the second handheld area is a terminal device facing the screen of the terminal device.
  • the right side handheld area wherein the terminal device is determined according to the number of the first sensors and the number of the second sensors
  • the current handheld state includes: if the number of the first sensors is greater than the number of the second sensors, determining that the current handheld state is a right-hand handheld state; if the number of the first sensors is less than the above
  • the number of the second sensors determines that the currently held handheld state is the left-handed handheld state.
  • determining that the currently held handheld state is a right-handed handheld state includes: if the number of the first sensors is greater than or equal to the first When the threshold is predetermined, it is determined that the current handheld state is the right-hand handheld state.
  • determining that the currently held handheld state is a left-handed handheld state includes: if the number of the second sensors is greater than or equal to the second When the threshold is predetermined, it is determined that the current handheld state is the left-hand handheld state.
  • determining, according to the number of the first sensors and the number of the second sensors, that the handheld device is currently in a handheld state includes: if the number of the first sensors and the number of the second sensors are both If it is less than or equal to the third predetermined threshold, it is determined that the currently held handheld state is the no-grip state.
  • an apparatus for adjusting radio frequency parameters comprising: an acquisition unit configured to acquire handheld state data collected by sensors in a handheld area on both sides of the communication device during communication; And being configured to determine, according to the handheld state data, the handheld state currently in the terminal device; the adjusting unit is configured to adjust the radio frequency parameter of the terminal device to a target radio frequency parameter that matches the currently held handheld state.
  • the two-side handheld area includes a first handheld area and a second handheld area
  • the determining unit includes: an acquiring module, configured to acquire the first collected first state data in the first handheld area The number of the sensors, and the number of the second sensors that collect the second state data in the second handheld area, wherein the handheld state data includes the first state data collected by the first sensor and the second The second state data collected by the sensor; the determining module is configured to determine, according to the number of the first sensors and the number of the second sensors, a hand-held state in which the terminal device is currently located.
  • the first handheld area is a left side handheld area of the terminal device in the case of a screen facing the terminal device
  • the second handheld area is a terminal device facing the screen of the terminal device.
  • the second judging sub-module is configured to determine that the currently held handheld state is a left-handed handheld state when the number of the first sensors is less than the number of the second sensors.
  • the first determining sub-module determines, by using the following steps, that the current handheld state is a right-hand handheld state: if the number of the first sensors is greater than or equal to a first predetermined threshold, determining that the current current location is The handheld state is a right hand handheld state.
  • the second determining sub-module determines, by using the following steps, that the current handheld state is a left-hand handheld state: if the number of the second sensors is greater than or equal to a second predetermined threshold, determining that the current current location is The handheld state is a left handed state.
  • the determining module includes: a third determining sub-module, configured to determine that the current location is when the number of the first sensor and the number of the second sensor are both less than or equal to a third predetermined threshold
  • the hand-held state is a gripless state.
  • the handheld state data collected by the sensors in the two sides of the terminal device determines the handheld state of the handheld terminal device (ie, the grip position), and the radio frequency of the terminal device according to different handheld states.
  • the parameter is adaptively adjusted and adjusted to the target radio frequency parameter that matches the handheld state of the current terminal device, thereby realizing the real-time adjustment of the radio frequency parameter to the target radio frequency parameter adapted to the grip position, so that the radio frequency parameter and the terminal device are
  • the communication scenario is adapted to achieve the purpose of improving the communication effect, and overcomes the problem that the communication effect caused by using the same radio frequency parameter in different communication scenarios in the related art is poor.
  • FIG. 1 is a flow chart of an optional method for adjusting radio frequency parameters according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an optional method for adjusting radio frequency parameters according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another optional method for adjusting radio frequency parameters according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of still another optional method for adjusting radio frequency parameters according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another optional method for adjusting radio frequency parameters according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of still another optional method for adjusting radio frequency parameters according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optional RF parameter adjustment apparatus in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart of an optional radio frequency parameter adjustment method according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • S102 Obtain handheld state data collected by a sensor in a handheld area on both sides of the communication device during communication;
  • S104 Determine, according to the handheld state data, a handheld state in which the terminal device is currently located.
  • the radio frequency parameter adjustment method may be, but is not limited to, being applied to the terminal device communication process, and determining, according to the handheld state data collected by the sensor in the terminal device, the handheld state of the operator of the handheld terminal device (ie, gripping Positionally, adaptively adjust the radio frequency parameters of the terminal device according to different handheld states, and adjust to the target radio frequency parameters that match the current handheld state of the terminal device, so as to adjust the radio frequency parameters to be adapted in real time during communication.
  • the target radio frequency parameter achieves the purpose of improving the communication effect, thereby overcoming the problem that the communication effect caused by using the same radio frequency parameter in different communication scenarios in the related art is poor.
  • the foregoing terminal device may include, but is not limited to, a handheld terminal, for example, a mobile phone terminal, an intercom terminal, and the like. The above is only an example, and the embodiment is not limited herein.
  • the handheld state may include, but is not limited to, at least one of the following: a left-handed posture, a right-handed posture, and a non-grip posture (eg, no-contact hands-free).
  • a left-handed posture e.g., a right-handed posture
  • a non-grip posture e.g, no-contact hands-free.
  • the above-mentioned different grip positions may have different influences on the terminal device, and the communication scenario of the terminal device may be changed, and further, the radio frequency performance of the terminal device may be changed. Therefore, in the different communication scenarios of the terminal device, the same radio frequency parameters provided in the related art are still used, which will inevitably cause the communication effect to be affected to different degrees, and the optimal communication cannot be achieved.
  • adaptive adjustment of the radio frequency parameters of the terminal device is realized by detecting different hand-held states (ie, grip positions). Specifically, as shown in FIG. 2 , it is assumed that the radio frequency parameter A matches the left-hand grip posture, the radio frequency parameter B matches the right-hand grip posture, and the radio frequency parameter C matches the non-grip posture.
  • the corresponding radio frequency parameter is adjusted to a target radio frequency parameter that matches the left-hand grip posture, that is, the radio frequency parameter A; if the current handheld state of the terminal device is detected as In the right hand grip position, the target RF parameter corresponding to the right hand grip position, that is, the radio frequency parameter B, is adjusted correspondingly; if the current handheld state of the terminal device is detected as no grip position, the radio frequency parameter is adjusted accordingly.
  • the target RF parameter with no grip matching ie RF parameter C.
  • the foregoing sensor may include, but is not limited to, at least one of the following: a temperature sensor and a pressure sensor. That is, the hand-held state in which the terminal device is currently located is judged by detecting the temperature at which the operator holds the terminal device, or the contact pressure.
  • the two side regions of the terminal device where the above sensor is located may include, but are not limited to, two side frames.
  • a touch screen phone can be area X as shown in FIG. The above is only an example, and the embodiment does not limit this.
  • determining, according to the handheld state data, the handheld state that the terminal device is currently located includes: acquiring the number of the first sensors that collect the first state data in the first handheld area, and the second handheld The number of the second sensors that collect the second state data in the area; determine the handheld state in which the terminal device is currently located according to the number of the first sensors and the number of the second sensors, such as the left hand handheld state and the right hand handheld state.
  • the terminal device can be determined to be in the hands-free state without the grip position according to the detection result.
  • handheld state data collected by sensors in the two side regions of the terminal device Determining the handheld state of the handheld terminal device (ie, the gripping posture), adaptively adjusting the radio frequency parameter of the terminal device according to different handheld states, and adjusting to the target radio frequency parameter that matches the handheld state of the current terminal device. Therefore, real-time adjustment of the radio frequency parameter to the target radio frequency parameter adapted to the grip posture, so that the radio frequency parameter is adapted to the communication scenario of the terminal device, thereby achieving the purpose of improving the communication effect, and overcoming the adoption of the related technologies in different communication scenarios.
  • the problem of poor communication results caused by the same RF parameters.
  • the handheld area on both sides includes a first handheld area and a second handheld area, and determining, according to the handheld status data, the handheld state currently in which the terminal device is located includes:
  • the handheld state data includes First state data collected by one sensor and second state data collected by the second sensor;
  • the first sensor located in the first handheld area of the terminal device is a first sensor
  • the second handheld area located in the second handheld area of the terminal device is a second sensor.
  • FIG. 4 shows that the first sensor on the left side of the terminal device includes: temperature sensor A-D
  • the second sensor on the right side of the terminal device includes: temperature sensor E-H. It should be noted that the detection range of the above temperature sensor is not limited to the area shown in FIG.
  • determining, according to the number of the first sensors and the number of the second sensors, the handheld state that the terminal device is currently located includes: if the number of the first sensors is greater than the number of the second sensors, Then, it is determined that the current handheld state is the right-hand handheld state; if the number of the first sensors is less than the number of the second sensors, it is determined that the current handheld state is the left-hand handheld state; if the number of the first sensors is When the number of the second sensors is less than or equal to a predetermined threshold, it is determined that the currently held hand-held state is the no-grip state.
  • the terminal device when the terminal device is handheld, the five fingers will respectively fix the terminal device from both sides of the terminal device, and therefore, the number of the first sensor and the second sensor respectively located in the two sides of the terminal device are necessarily different. Therefore, the different handheld states in which the terminal device is currently located are determined according to the number of the first sensor and the second sensor.
  • the hand-held state of the terminal device is determined according to the number of the first sensor and the number of the second sensor, so that the hand-held state of the terminal device is accurately determined by using the temperature sensor, thereby ensuring the accuracy of adjusting the radio frequency parameter.
  • the first hand-held area is a left-hand side handheld area of the terminal device in the case of a terminal-facing screen
  • the second hand-held area is a right side of the terminal device in the case of a terminal-oriented screen.
  • the side handheld area, wherein determining, according to the number of the first sensors and the number of the second sensors, the handheld state currently in which the terminal device is located includes:
  • the five fingers will respectively fix the terminal device from both sides of the terminal device, and thus, the first sensor that collects the handheld state data on both sides of the terminal device and The number of the second sensors determines the handheld state in which the current terminal device is located.
  • the current terminal device can be accurately determined. It is held by the left hand, that is, the hand-held state is the left-handed state.
  • the current terminal can be accurately determined.
  • the device is held by the right hand, that is, the handheld state is the right hand handheld state.
  • determining that the currently held handheld state is a right-handed handheld state includes:
  • the foregoing first predetermined threshold may include, but is not limited to, 2, 3.
  • the first predetermined threshold is set to 3, which is specifically described in conjunction with FIG. 2.
  • the number of the first sensors in the left hand-held area is 3, and the number of the second sensors in the right hand-held area is 1. That is, the number of the left-side sensors is equal to 3, and it is determined that the terminal device is currently in the right-hand handheld state.
  • the radio frequency parameter of the terminal device can be adjusted to the corresponding target radio frequency parameter, that is, the radio frequency parameter B.
  • the terminal device can adaptively adjust the radio frequency parameter according to the judgment result, and switch the adjustment to the target radio frequency parameter that matches the right-hand handheld state, so as to ensure that the radio frequency parameter is adjusted to the communication scenario in the communication scenario of the right-hand handheld state.
  • the optimal value improves the communication effect in the communication scenario.
  • determining that the current handheld state is the left-hand handheld state includes:
  • the foregoing first predetermined threshold may include, but is not limited to, 2, 3.
  • the first predetermined threshold is set to 3, which is specifically described in conjunction with FIG. 2.
  • the number of second sensors in the right hand-held area is 3, and the number of first sensors in the left hand-held area is 1. That is, the number of the right-hand sensors is equal to 3, and it is determined that the terminal device is currently in the left-handed handheld state.
  • the radio frequency parameter of the terminal device can be adjusted to the corresponding target radio frequency parameter, that is, the radio frequency parameter A.
  • the terminal device can adaptively adjust the radio frequency parameter according to the judgment result, and switch the adjustment to the target radio frequency parameter that matches the left-hand handheld state, so as to ensure that the radio frequency parameter is adjusted to the communication scenario in the communication scenario of the left-hand handheld state.
  • the optimal value improves the communication effect in the communication scenario.
  • step S502 it is determined whether the left temperature sensor ABCD has a target temperature sensor. If not, return to S502 again; if yes, further execute S504. , determining whether the left temperature sensor ABCD has at least three target temperature sensors; if yes, executing S506, determining whether the right temperature sensor EFGH has a target temperature sensor, and if the determination result is yes, that is, determining the left temperature sensor The ABCD has at least three target temperature sensors, and the right temperature sensor EFGH has one target temperature sensor. Then, step S510 can be performed to determine that the handheld state is a right-hand grip. Further, if the result of the determination in the step S506 is NO, the process returns to S504 again.
  • step S508 is performed to determine whether the right temperature sensor EFGH has at least three target temperature sensors. If the determination result is yes, that is, the left temperature sensor ABCD is determined to have 1 For the target temperature sensor, if the right temperature sensor EFGH has at least three target temperature sensors, step S512 may be performed to determine that the handheld state is a left-handed grip. Further, if the decision result in the step S508 is NO, the process returns to S504 again.
  • step S514 is performed to adjust the radio frequency parameter to a target radio frequency parameter that matches the currently held handheld state.
  • determining, according to the number of the first sensors and the number of the second sensors, the handheld state currently in which the terminal device is located includes:
  • the state of no grip ie, hands-free
  • the sensors in both sides do not collect the handheld state data, according to the detection. As a result, it can be judged that the terminal device is in a hands-free state without a grip.
  • step S602 is started to determine whether the current handheld state is a left-handed grip posture. If yes, step S606 is performed to adjust the use radio frequency parameter A; if not, step 604 is executed to determine the current handheld state. Whether the state is a right-hand grip posture, if yes, step S608 is performed to adjust the use of the radio frequency parameter B; if not, the current handheld state can be determined to be the hands-free state without the grip position, and further step S610 is performed to adjust the use radio frequency parameter C. .
  • the determination process shown in FIG. 6 is only an example, and the determination order of the three handheld states may be mutually interchanged, which is not limited in this embodiment.
  • the radio frequency parameters are adjusted to The handheld state matches the target radio frequency parameters to overcome the problem of poor communication performance caused by using only the same radio frequency parameters in the related art.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the device includes:
  • the obtaining unit 702 is configured to acquire handheld state data collected by sensors in the handheld areas on both sides of the communication device during communication;
  • the determining unit 704 is configured to determine, according to the handheld state data, a handheld state in which the terminal device is currently located;
  • the adjusting unit 706 is configured to adjust the radio frequency parameter of the terminal device to a target radio frequency parameter that matches the currently held handheld state.
  • the radio frequency parameter adjusting apparatus may be, but is not limited to, being applied to the terminal device communication process, and determining, according to the handheld state data collected by the sensor in the terminal device, the handheld state of the operator of the handheld terminal device (ie, gripping Positionally, adaptively adjust the radio frequency parameters of the terminal device according to different handheld states, and adjust to the target radio frequency parameters that match the current handheld state of the terminal device, so as to adjust the radio frequency parameters to be adapted in real time during communication.
  • the target radio frequency parameter achieves the purpose of improving the communication effect, thereby overcoming the problem that the communication effect caused by using the same radio frequency parameter in different communication scenarios in the related art is poor.
  • the foregoing terminal device may include, but is not limited to, a handheld terminal, for example, a mobile phone terminal, an intercom terminal, and the like. The above is only an example, and the embodiment is not limited herein.
  • the handheld state may include, but is not limited to, at least one of the following: a left-handed posture, a right-handed posture, and a non-grip posture (eg, no-contact hands-free).
  • a left-handed posture e.g., a right-handed posture
  • a non-grip posture e.g, no-contact hands-free.
  • the above-mentioned different grip positions may have different influences on the terminal device, and the communication scenario of the terminal device may be changed, and further, the radio frequency performance of the terminal device may be changed. Therefore, in the different communication scenarios of the terminal device, the same radio frequency parameters provided in the related art are still used, which will inevitably cause the communication effect to be affected to different degrees, and the optimal communication cannot be achieved.
  • the terminal device by detecting different handheld states (ie, holding positions), the terminal device is implemented.
  • Adaptive adjustment of RF parameters Specifically, as shown in FIG. 2 , it is assumed that the radio frequency parameter A matches the left-hand grip posture, the radio frequency parameter B matches the right-hand grip posture, and the radio frequency parameter C matches the non-grip posture.
  • the corresponding radio frequency parameter is adjusted to a target radio frequency parameter that matches the left-hand grip posture, that is, the radio frequency parameter A; if the current handheld state of the terminal device is detected as In the right hand grip position, the target RF parameter corresponding to the right hand grip position, that is, the radio frequency parameter B, is adjusted correspondingly; if the current handheld state of the terminal device is detected as no grip position, the radio frequency parameter is adjusted accordingly.
  • the target RF parameter with no grip matching ie RF parameter C.
  • the foregoing sensor may include, but is not limited to, at least one of the following: a temperature sensor and a pressure sensor. That is, the hand-held state in which the terminal device is currently located is judged by detecting the temperature at which the operator holds the terminal device, or the contact pressure.
  • the two side regions of the terminal device where the above sensor is located may include, but are not limited to, two side frames.
  • a touch screen phone can be area X as shown in FIG. The above is only an example, and the embodiment does not limit this.
  • determining, according to the handheld state data, the handheld state that the terminal device is currently located includes: acquiring the number of the first sensors that collect the first state data in the first handheld area, and the second handheld The number of the second sensors that collect the second state data in the area; determine the handheld state in which the terminal device is currently located according to the number of the first sensors and the number of the second sensors, such as the left hand handheld state and the right hand handheld state.
  • the terminal device can be determined to be in the hands-free state without the grip position according to the detection result.
  • the handheld state data collected by the sensors in the two sides of the terminal device determines the handheld state (ie, the grip position) of the handheld terminal device, and the terminal device according to different handheld states.
  • the RF parameters are adaptively adjusted to be adjusted to the target RF parameters that match the handheld state of the current terminal device, thereby realizing the real-time adjustment of the RF parameters to the target RF parameters that are compatible with the grip posture, so that the RF parameters and the terminal devices are enabled.
  • the communication scenario is adapted to achieve the purpose of improving the communication effect, and overcomes the problem that the communication effect caused by using the same radio frequency parameter in different communication scenarios in the related art is poor.
  • the handheld area on both sides includes a first handheld area and a second handheld area
  • the determining unit 704 includes:
  • an acquisition module configured to acquire a number of first sensors that collect the first state data in the first handheld area, and a number of second sensors that collect the second state data in the second handheld area, where The handheld state data includes first state data collected by the first sensor and second state data collected by the second sensor;
  • the judging module is configured to judge the hand-held state in which the terminal device is currently located according to the number of the first sensors and the number of the second sensors.
  • the first sensor located in the first handheld area of the terminal device is a first sensor
  • the second handheld area located in the second handheld area of the terminal device is a second sensor.
  • FIG. 4 shows that the first sensor on the left side of the terminal device includes: temperature sensor A-D
  • the second sensor on the right side of the terminal device includes: temperature sensor E-H. It should be noted that the detection range of the above temperature sensor is not limited to the area shown in FIG.
  • determining, according to the number of the first sensors and the number of the second sensors, the handheld state that the terminal device is currently located includes: if the number of the first sensors is greater than the number of the second sensors, Then, it is determined that the current handheld state is the right-hand handheld state; if the number of the first sensors is less than the number of the second sensors, it is determined that the current handheld state is the left-hand handheld state; if the number of the first sensors is When the number of the second sensors is less than or equal to a predetermined threshold, it is determined that the currently held hand-held state is the no-grip state.
  • the terminal device when the terminal device is handheld, the five fingers will respectively fix the terminal device from both sides of the terminal device, and therefore, the number of the first sensor and the second sensor respectively located in the two sides of the terminal device are necessarily different. Therefore, the different handheld states in which the terminal device is currently located are determined according to the number of the first sensor and the second sensor.
  • the hand-held state of the terminal device is determined according to the number of the first sensor and the number of the second sensor, so that the hand-held state of the terminal device is accurately determined by using the temperature sensor, thereby ensuring the accuracy of adjusting the radio frequency parameter.
  • the first hand-held area is a left-hand side handheld area of the terminal device in the case of a terminal-facing screen
  • the second hand-held area is a right side of the terminal device in the case of a terminal-oriented screen.
  • the side handheld area; wherein the judging module comprises:
  • the first determining sub-module is configured to determine that the currently held handheld state is a right-handed handheld state when the number of the first sensors is greater than the number of the second sensors;
  • the second determining sub-module is configured to determine that the current handheld state is the left-hand handheld state when the number of the first sensors is less than the number of the second sensors.
  • the five fingers will respectively fix the terminal device from both sides of the terminal device, and thus, the first sensor that collects the handheld state data on both sides of the terminal device and The number of the second sensors determines the handheld state in which the current terminal device is located.
  • the current terminal device can be accurately determined. It is held by the left hand, that is, the hand-held state is the left-handed state.
  • the current terminal can be accurately determined.
  • the device is held by the right hand, that is, the handheld state is the right hand handheld state.
  • the first determining sub-module determines, by using the following steps, that the current handheld state is the right-hand handheld state:
  • the foregoing first predetermined threshold may include, but is not limited to, 2, 3.
  • the first predetermined threshold is set to 3, which is specifically described in conjunction with FIG. 2.
  • the number of the first sensors in the left hand-held area is 3, and the number of the second sensors in the right hand-held area is 1. That is, the number of the left-side sensors is equal to 3, and it is determined that the terminal device is currently in the right-hand handheld state.
  • the radio frequency parameter of the terminal device can be adjusted to the corresponding target radio frequency parameter, that is, the radio frequency parameter B.
  • the terminal device can adaptively adjust the radio frequency parameter according to the judgment result, and switch the adjustment to the target radio frequency parameter that matches the right-hand handheld state, so as to ensure that the radio frequency parameter is adjusted to the communication scenario in the communication scenario of the right-hand handheld state.
  • the optimal value improves the communication effect in the communication scenario.
  • the second determining sub-module determines that the current handheld state is the left-hand handheld state by the following steps:
  • the foregoing first predetermined threshold may include, but is not limited to, 2, 3.
  • the first predetermined threshold is set to 3, which is specifically described in conjunction with FIG. 2.
  • the number of second sensors in the right hand-held area is 3, and the number of first sensors in the left hand-held area is 1. That is, the number of the right-hand sensors is equal to 3, and it is determined that the terminal device is currently in the left-handed handheld state.
  • the radio frequency parameter of the terminal device can be adjusted to the corresponding target radio frequency parameter, that is, the radio frequency parameter A.
  • the terminal device can adaptively adjust the radio frequency parameter according to the judgment result, and switch the adjustment to the target radio frequency parameter that matches the left-hand handheld state, so as to ensure that the radio frequency parameter is adjusted to the communication scenario in the communication scenario of the left-hand handheld state.
  • the optimal value improves the communication effect in the communication scenario.
  • the judging module includes:
  • the third determining sub-module is configured to determine that the currently held hand-held state is the no-grip state when both the number of the first sensor and the number of the second sensors are less than or equal to a third predetermined threshold.
  • the state of no grip ie, hands-free
  • the sensors in both sides do not collect the handheld state data, according to the detection. As a result, it can be judged that the terminal device is in a hands-free state without a grip.
  • the radio frequency parameter is adjusted to the target radio frequency parameter matching the handheld state, so as to overcome the use of the same in the related art. Communication caused by radio frequency parameters Poor effect.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the handheld state data collected by the sensors in the two sides of the terminal device determines the handheld state of the handheld terminal device (ie, the grip position), and the radio frequency of the terminal device according to different handheld states.
  • the parameter is adaptively adjusted and adjusted to the target radio frequency parameter that matches the handheld state of the current terminal device, thereby realizing the real-time adjustment of the radio frequency parameter to the target radio frequency parameter adapted to the grip position, so that the radio frequency parameter and the terminal device are
  • the communication scenario is adapted to achieve the purpose of improving the communication effect, and overcomes the problem that the communication effect caused by using the same radio frequency parameter in different communication scenarios in the related art is poor.

Abstract

本发明提供了一种射频参数的调整方法及装置。其中,该方法包括:获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;根据手持状态数据判断终端设备当前所处的手持状态;将终端设备的射频参数调整为与当前所处的手持状态匹配的目标射频参数。通过本发明,解决了相关技术中不同通信场景下采用相同的射频参数所导致的通信效果较差问题。

Description

射频参数的调整方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种射频参数的调整方法及装置。
背景技术
在终端设备的通信过程中,射频性能作为终端设备非常重要的性能指标之一,其对应的射频参数的取值不同,也将对终端设备的通信效果产生不同影响。其中,一台终端设备的射频参数是否达到最优,与环境因素有很大关联,这里,环境因素可以是外部通信环境,也可以是直接与终端设备接触的对象,例如,手持终端的操作者。
目前,在相关的方案中,通常都是统一采用一套射频参数普遍应用于各种终端设备的通信场景中,例如非触碰免提、左手手持、右手手持等情况下,均采用同一套射频参数,然而,对终端设备来说,不同握姿对射频性能将有不同的影响。因而,不同的通信场景下,终端设备对应的最优射频参数也必然是不同的,那么仍采用相关技术中提供的方案,则必然会影响终端设备在不同通信场景下的射频性能,进而造成终端设备通信效果较差的问题。
针对上述提出的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种射频参数的调整方法及装置,以至少解决相关技术中不同通信场景下采用相同的射频参数所导致的通信效果较差问题。
根据本发明的一个方面,提供了一种射频参数的调整方法,包括:获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;根据上述手持状态数据判断上述终端设备当前所处的手持状态;将上述终端设备的射频参数调整为与上述当前所处的上述手持状态匹配的目标射频参数。
可选地,上述两侧手持区域包括第一手持区域和第二手持区域,其中,根据上述手持状态数据判断上述终端设备当前所处的手持状态包括:获取上述第一手持区域中采集到第一状态数据的第一传感器的个数,以及上述第二手持区域中采集到第二状态数据的第二传感器的个数,其中,上述手持状态数据包括上述第一传感器采集到的上述第一状态数据和上述第二传感器采集到的上述第二状态数据;根据上述第一传感器的个数与上述第二传感器的个数判断上述终端设备当前所处的手持状态。
可选地,上述第一手持区域为在面向上述终端设备的屏幕的情况下上述终端设备的左侧面手持区域,上述第二手持区域为在面向上述终端设备的屏幕的情况下上述终端设备的右侧面手持区域,其中,根据上述第一传感器的个数与上述第二传感器的个数判断上述终端设备 当前所处的手持状态包括:若上述第一传感器的个数大于上述第二传感器的个数,则判断出上述当前所处的手持状态为右手手持状态;若上述第一传感器的个数小于上述第二传感器的个数,则判断出上述当前所处的手持状态为左手手持状态。
可选地,上述若上述第一传感器的个数大于上述第二传感器的个数,则判断出上述当前所处的手持状态为右手手持状态包括:若上述第一传感器的个数大于等于第一预定阈值,则判断出上述当前所处的手持状态为右手手持状态。
可选地,上述若上述第一传感器的个数小于上述第二传感器的个数,则判断出上述当前所处的手持状态为左手手持状态包括:若上述第二传感器的个数大于等于第二预定阈值,则判断出上述当前所处的手持状态为左手手持状态。
可选地,上述根据上述第一传感器的个数与上述第二传感器的个数判断上述终端设备当前所处的手持状态包括:若上述第一传感器的个数与上述第二传感器的个数均小于等于第三预定阈值,则判断出上述当前所处的手持状态为无握姿状态。
根据本发明的另一方面,提供了一种射频参数的调整装置,包括:获取单元,被设置为获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;判断单元,被设置为根据上述手持状态数据判断上述终端设备当前所处的手持状态;调整单元,被设置为将上述终端设备的射频参数调整为与上述当前所处的上述手持状态匹配的目标射频参数。
可选地,上述两侧手持区域包括第一手持区域和第二手持区域,其中,上述判断单元包括:获取模块,被设置为获取上述第一手持区域中采集到第一状态数据的第一传感器的个数,以及上述第二手持区域中采集到第二状态数据的第二传感器的个数,其中,上述手持状态数据包括上述第一传感器采集到的上述第一状态数据和上述第二传感器采集到的上述第二状态数据;判断模块,被设置为根据上述第一传感器的个数与上述第二传感器的个数判断上述终端设备当前所处的手持状态。
可选地,上述第一手持区域为在面向上述终端设备的屏幕的情况下上述终端设备的左侧面手持区域,上述第二手持区域为在面向上述终端设备的屏幕的情况下上述终端设备的右侧面手持区域;其中,上述判断模块包括:第一判断子模块,被设置为在上述第一传感器的个数大于上述第二传感器的个数时,判断出上述当前所处的手持状态为右手手持状态;第二判断子模块,被设置为在上述第一传感器的个数小于上述第二传感器的个数时,判断出上述当前所处的手持状态为左手手持状态。
可选地,上述第一判断子模块通过以下步骤判断出上述当前所处的手持状态为右手手持状态:若上述第一传感器的个数大于等于第一预定阈值,则判断出上述当前所处的手持状态为右手手持状态。
可选地,上述第二判断子模块通过以下步骤判断出上述当前所处的手持状态为左手手持状态:若上述第二传感器的个数大于等于第二预定阈值,则判断出上述当前所处的手持状态为左手手持状态。
可选地,上述判断模块包括:第三判断子模块,被设置为在上述第一传感器的个数与上述第二传感器的个数均小于等于第三预定阈值时,判断出上述当前所处的手持状态为无握姿状态。
在本发明实施例中,通过终端设备中两侧区域内的传感器采集的手持状态数据,判断手持终端设备在当前所处的手持状态(即握姿),根据不同的手持状态对终端设备的射频参数的进行自适应调整,调整至与当前终端设备所处的手持状态匹配的目标射频参数,从而实现实时将射频参数调整至与握姿相适应的目标射频参数,以使射频参数与终端设备的通信场景相适应,进而达到改善通信效果的目的,克服相关技术中在不同通信场景下采用相同的射频参数所导致的通信效果较差的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种可选的射频参数的调整方法的流程图;
图2是根据本发明实施例的一种可选的射频参数的调整方法的示意图;
图3是根据本发明实施例的另一种可选的射频参数的调整方法的示意图;
图4是根据本发明实施例的又一种可选的射频参数的调整方法的示意图;
图5是根据本发明实施例的另一种可选的射频参数的调整方法的流程图;
图6是根据本发明实施例的又一种可选的射频参数的调整方法的流程图;以及
图7是根据本发明实施例的一种可选的射频参数的调整装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种射频参数的调整方法,图1是根据本发明实施例的一种可选的射频参数的调整方法的流程图,如图1所示,该流程包括如下步骤:
S102,获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;
S104,根据手持状态数据判断终端设备当前所处的手持状态;
S106,将终端设备的射频参数调整为与当前所处的手持状态匹配的目标射频参数。
可选地,在本实施例中,上述射频参数调整方法可以但不限于应用于终端设备通信过程中,根据终端设备中传感器采集的手持状态数据判断手持终端设备的操作者的手持状态(即握姿),根据不同的手持状态对终端设备的射频参数的进行自适应调整,调整至与终端设备当前所处的手持状态匹配的目标射频参数,从而实现在通信时实时将射频参数调整至相适应的目标射频参数,达到改善通信效果的目的,进而克服相关技术中在不同通信场景下采用相同的射频参数所导致的通信效果较差的问题。其中,在本实施例中,上述终端设备可以包括但不限于手持终端,例如,手机终端、对讲终端等。上述仅是一种示例,本实施例在此不做任何限定。
需要说明的是,在本实施例中,上述手持状态可以包括但不限于以下至少之一:左手握姿、右手握姿、无握姿(如无接触免提)。其中,由于上述不同握姿会对终端设备产生不同影响,改变终端设备的通信场景,进一步,将使得终端设备的射频性能发生变化。因而,在终端设备的不同通信场景下,仍采用相关技术中提供的相同的射频参数,将必然会导致通信效果受到不同程度的影响,而无法实现最优通信。
针对上述技术问题,本实施例中通过检测不同的手持状态(即握姿),实现对终端设备的射频参数的自适应调整。具体结合图2所示进行说明,假设与左手握姿匹配的为射频参数A,与右手握姿匹配的为射频参数B,与无握姿匹配的为射频参数C。若检测出终端设备当前所处的手持状态为左手握姿,则将对应调整射频参数到与左手握姿匹配的目标射频参数,即射频参数A;若检测出终端设备当前所处的手持状态为右手握姿,则将对应调整射频参数到与右手握姿匹配的目标射频参数,即射频参数B;若检测出终端设备当前所处的手持状态为无握姿,则将对应调整射频参数到与无握姿匹配的目标射频参数,即射频参数C。
可选地,在本实施例中,上述传感器可以包括但不限于以下至少之一:温度传感器、压力传感器。也就是说,通过检测操作者手持终端设备时的温度,或,接触压力来判断终端设备当前所处的手持状态。进一步,上述传感器的所在的终端设备的两侧区域可以包括但不限于:两侧边框。例如,触屏手机,可以为如图3所示区域X。上述仅是一种示例,本实施例对此不做任何限定。
可选地,在本实施例中,根据手持状态数据判断终端设备当前所处的手持状态包括:获取第一手持区域中采集到第一状态数据的第一传感器的个数,以及第二手持区域中采集到第二状态数据的第二传感器的个数;根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态,如左手手持状态,右手手持状态。
需要说明的是,在本实施例中,若两侧区域内传感器均未采集到手持状态数据,则根据该检测结果可以判断出终端设备处于无握姿的免提状态。
通过本申请提供的实施例,通过终端设备中两侧区域内的传感器采集的手持状态数据, 判断手持终端设备在当前所处的手持状态(即握姿),根据不同的手持状态对终端设备的射频参数的进行自适应调整,调整至与当前终端设备所处的手持状态匹配的目标射频参数,从而实现实时将射频参数调整至与握姿相适应的目标射频参数,以使射频参数与终端设备的通信场景相适应,进而达到改善通信效果的目的,克服相关技术中在不同通信场景下采用相同的射频参数所导致的通信效果较差的问题。
作为一种可选的方案,两侧手持区域包括第一手持区域和第二手持区域,其中,根据手持状态数据判断终端设备当前所处的手持状态包括:
S1,获取第一手持区域中采集到第一状态数据的第一传感器的个数,以及第二手持区域中采集到第二状态数据的第二传感器的个数,其中,手持状态数据包括第一传感器采集到的第一状态数据和第二传感器采集到的第二状态数据;
S2,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态。
可选地,在本实施例中,位于终端设备第一手持区域的为第一传感器,位于终端设备第二手持区域的为第二传感器。例如,图4示出了终端设备左侧的第一传感器包括:温度传感器A-D,终端设备右侧的第二传感器包括:温度传感器E-H。需要说明的是,上述温度传感器的检测范围并不仅限于如图4所示的区域。
可选地,在本实施例中,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态包括:若第一传感器的个数大于第二传感器的个数,则判断出当前所处的手持状态为右手手持状态;若第一传感器的个数小于第二传感器的个数,则判断出当前所处的手持状态为左手手持状态;若第一传感器的个数与第二传感器的个数均小于等于预定阈值,则判断出当前所处的手持状态为无握姿状态。
需要说明的是,由于手持终端设备时,五指将分别从终端设备的两侧固定该终端设备,因而,分别位于终端设备两侧区域的第一传感器与第二传感器的个数必然不同。因此,根据上述第一传感器与第二传感器的个数来判定终端设备在当前所处的不同的手持状态。
通过本申请提供的实施例,通过获取第一手持区域中采集到第一状态数据的第一传感器的个数,以及第二手持区域中采集到第二状态数据的第二传感器的个数,进一步,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态,从而实现利用温度传感器准确判断出终端设备的手持状态,进而保证对射频参数调整的准确性。
作为一种可选的方案,第一手持区域为在面向终端设备的屏幕的情况下终端设备的左侧面手持区域,第二手持区域为在面向终端设备的屏幕的情况下终端设备的右侧面手持区域,其中,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态包括:
S1,若第一传感器的个数大于第二传感器的个数,则判断出当前所处的手持状态为右手手持状态;
S2,若第一传感器的个数小于第二传感器的个数,则判断出当前所处的手持状态为左手 手持状态。
可选地,在本实施例中,由于手持终端设备通信时,五指将分别从终端设备的两侧固定该终端设备,因而,可以通过判断终端设备两侧采集到手持状态数据的第一传感器和第二传感器的个数来判断当前终端设备所处的手持状态。
例如,当左侧面手持区域采集到第一状态数据的第一传感器的个数大于右侧面手持区域采集到第二状态数据的第二传感器的个数时,则可以准确判断出当前终端设备被左手手持,即所处手持状态为左手手持状态。
又例如,当左侧面手持区域采集到第一状态数据的第一传感器的个数小于右侧面手持区域采集到第二状态数据的第二传感器的个数时,则可以准确判断出当前终端设备被右手手持,即所处手持状态为右手手持状态。
作为一种可选的方案,若第一传感器的个数大于第二传感器的个数,则判断出当前所处的手持状态为右手手持状态包括:
S1,若第一传感器的个数大于等于第一预定阈值,则判断出当前所处的手持状态为右手手持状态。
可选地,在本实施例中,上述第一预定阈值可以包括但不限于:2、3。
具体结合以下示例进行说明,假设第一预定阈值设置为3,具体结合图2所示进行说明,例如,左侧手持区域第一传感器的数量为3,右侧手持区域第二传感器的数量为1,即,左侧传感器的数量等于3,则确定终端设备在当前处于右手手持状态,进一步,根据该判断结果,可以将终端设备的射频参数调整至对应的目标射频参数,即射频参数B。
通过本申请提供的实施例,通过根据检测到的手持状态数据,具体而言,第一传感器的个数大于等于第一预定阈值时,则可判定当前终端设备所处的手持状态为右手手持状态,进一步,终端设备则可根据判断结果自适应调整射频参数,将其调整切换至与右手手持状态匹配的目标射频参数,以保证在右手手持状态的通信场景下,射频参数调整至该通信场景下的最优值,进而实现改善该通信场景下的通信效果。
作为一种可选的方案,若第一传感器的个数小于第二传感器的个数,则判断出当前所处的手持状态为左手手持状态包括:
S1,若第二传感器的个数大于等于第二预定阈值,则判断出当前所处的手持状态为左手手持状态。
可选地,在本实施例中,上述第一预定阈值可以包括但不限于:2、3。
具体结合以下示例进行说明,假设第一预定阈值设置为3,具体结合图2所示进行说明,例如,右侧手持区域第二传感器的数量为3,左侧手持区域第一传感器的数量为1,即,右侧传感器的数量等于3,则确定终端设备在当前处于左手手持状态,进一步,根据该判断结果,可以将终端设备的射频参数调整至对应的目标射频参数,即射频参数A。
通过本申请提供的实施例,通过根据检测到的手持状态数据,具体而言,第二传感器的个数大于等于第二预定阈值时,则可判定当前终端设备所处的手持状态为左手手持状态,进一步,终端设备则可根据判断结果自适应调整射频参数,将其调整切换至与左手手持状态匹配的目标射频参数,以保证在左手手持状态的通信场景下,射频参数调整至该通信场景下的最优值,进而实现改善该通信场景下的通信效果。
具体还可结合图4-5所示步骤S502-S514进行说明,首先如S502,判断左侧温度传感器ABCD是否有1个目标温度传感器,若否,则返回重新执行S502;若是,则进一步执行S504,判断左侧温度传感器ABCD是否有至少3个目标温度传感器;若是,则执行S506,判断右侧温度传感器EFGH是否有1个目标温度传感器,若判断结果为是,即,判断出左侧温度传感器ABCD有至少3个目标温度传感器,右侧温度传感器EFGH有1个目标温度传感器,则可执行步骤S510,判定上述手持状态为右手握姿。进一步,若步骤S506的判断结果为否,则返回重新执行S504。
可选地,若步骤S504的判断结果为否,则执行步骤S508,判断右侧温度传感器EFGH是否有至少3个目标温度传感器,若判断结果为是,即,判断出左侧温度传感器ABCD有1个目标温度传感器,右侧温度传感器EFGH有至少3个目标温度传感器,则可执行步骤S512,判定上述手持状态为左手握姿。进一步,若步骤S508的判断结果为否,则返回重新执行S504。
在终端设备判断出在当前所处的手持状态后,则执行步骤S514,将射频参数调整为与当前所处的手持状态匹配的目标射频参数。
作为一种可选的方案,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态包括:
S1,若第一传感器的个数与第二传感器的个数均小于等于第三预定阈值,则判断出当前所处的手持状态为无握姿状态。
可选地,在本实施例中,根据手持状态数据还可以判断出无握姿(即免提)状态,具体而言,若两侧区域内传感器均未采集到手持状态数据,则根据该检测结果可以判断出终端设备处于无握姿的免提状态。
具体结合图6所示进行说明,开始执行步骤S602,判断当前的手持状态是否为左手握姿,若是,则执行步骤S606,调整使用射频参数A;若否,则执行步骤604,判断当前的手持状态是否为右手握姿,若是,则执行步骤S608,调整使用射频参数B;若否,则可以判断出当前的手持状态为无握姿的免提状态,进一步执行步骤S610,调整使用射频参数C。
需要说明的是,在本实例中,上述图6所示的判断流程仅是一种示例,三种手持状态的判断顺序可以相互调换,本实施例对此不做任何限定。
通过本申请提供的实施例,在第一传感器的个数与第二传感器的个数均小于等于第三预定阈值时,则可以判断出终端设备在当前并未被手持,表示该终端设备正处于免提状态进行通信,通过上述判断将得出终端设备处于无握姿的免提通话状态,进而将射频参数调整至与 该手持状态相匹配的目标射频参数,以克服相关技术中仅采用相同的射频参数所导致的通信效果差的问题。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种射频参数的调整装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
在本实施例中提供了一种射频参数的调整方法,图7所示,该装置包括:
1)获取单元702,被设置为获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;
2)判断单元704,被设置为根据手持状态数据判断终端设备当前所处的手持状态;
3)调整单元706,被设置为将终端设备的射频参数调整为与当前所处的手持状态匹配的目标射频参数。
可选地,在本实施例中,上述射频参数调整装置可以但不限于应用于终端设备通信过程中,根据终端设备中传感器采集的手持状态数据判断手持终端设备的操作者的手持状态(即握姿),根据不同的手持状态对终端设备的射频参数的进行自适应调整,调整至与终端设备当前所处的手持状态匹配的目标射频参数,从而实现在通信时实时将射频参数调整至相适应的目标射频参数,达到改善通信效果的目的,进而克服相关技术中在不同通信场景下采用相同的射频参数所导致的通信效果较差的问题。其中,在本实施例中,上述终端设备可以包括但不限于手持终端,例如,手机终端、对讲终端等。上述仅是一种示例,本实施例在此不做任何限定。
需要说明的是,在本实施例中,上述手持状态可以包括但不限于以下至少之一:左手握姿、右手握姿、无握姿(如无接触免提)。其中,由于上述不同握姿会对终端设备产生不同影响,改变终端设备的通信场景,进一步,将使得终端设备的射频性能发生变化。因而,在终端设备的不同通信场景下,仍采用相关技术中提供的相同的射频参数,将必然会导致通信效果受到不同程度的影响,而无法实现最优通信。
针对上述技术问题,本实施例中通过检测不同的手持状态(即握姿),实现对终端设备的 射频参数的自适应调整。具体结合图2所示进行说明,假设与左手握姿匹配的为射频参数A,与右手握姿匹配的为射频参数B,与无握姿匹配的为射频参数C。若检测出终端设备当前所处的手持状态为左手握姿,则将对应调整射频参数到与左手握姿匹配的目标射频参数,即射频参数A;若检测出终端设备当前所处的手持状态为右手握姿,则将对应调整射频参数到与右手握姿匹配的目标射频参数,即射频参数B;若检测出终端设备当前所处的手持状态为无握姿,则将对应调整射频参数到与无握姿匹配的目标射频参数,即射频参数C。
可选地,在本实施例中,上述传感器可以包括但不限于以下至少之一:温度传感器、压力传感器。也就是说,通过检测操作者手持终端设备时的温度,或,接触压力来判断终端设备当前所处的手持状态。进一步,上述传感器的所在的终端设备的两侧区域可以包括但不限于:两侧边框。例如,触屏手机,可以为如图3所示区域X。上述仅是一种示例,本实施例对此不做任何限定。
可选地,在本实施例中,根据手持状态数据判断终端设备当前所处的手持状态包括:获取第一手持区域中采集到第一状态数据的第一传感器的个数,以及第二手持区域中采集到第二状态数据的第二传感器的个数;根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态,如左手手持状态,右手手持状态。
需要说明的是,在本实施例中,若两侧区域内传感器均未采集到手持状态数据,则根据该检测结果可以判断出终端设备处于无握姿的免提状态。
通过本申请提供的实施例,通过终端设备中两侧区域内的传感器采集的手持状态数据,判断手持终端设备在当前所处的手持状态(即握姿),根据不同的手持状态对终端设备的射频参数的进行自适应调整,调整至与当前终端设备所处的手持状态匹配的目标射频参数,从而实现实时将射频参数调整至与握姿相适应的目标射频参数,以使射频参数与终端设备的通信场景相适应,进而达到改善通信效果的目的,克服相关技术中在不同通信场景下采用相同的射频参数所导致的通信效果较差的问题。
作为一种可选的方案,两侧手持区域包括第一手持区域和第二手持区域,其中,判断单元704包括:
1)获取模块,被设置为获取第一手持区域中采集到第一状态数据的第一传感器的个数,以及第二手持区域中采集到第二状态数据的第二传感器的个数,其中,手持状态数据包括第一传感器采集到的第一状态数据和第二传感器采集到的第二状态数据;
2)判断模块,被设置为根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态。
可选地,在本实施例中,位于终端设备第一手持区域的为第一传感器,位于终端设备第二手持区域的为第二传感器。例如,图4示出了终端设备左侧的第一传感器包括:温度传感器A-D,终端设备右侧的第二传感器包括:温度传感器E-H。需要说明的是,上述温度传感器的检测范围并不仅限于如图4所示的区域。
可选地,在本实施例中,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态包括:若第一传感器的个数大于第二传感器的个数,则判断出当前所处的手持状态为右手手持状态;若第一传感器的个数小于第二传感器的个数,则判断出当前所处的手持状态为左手手持状态;若第一传感器的个数与第二传感器的个数均小于等于预定阈值,则判断出当前所处的手持状态为无握姿状态。
需要说明的是,由于手持终端设备时,五指将分别从终端设备的两侧固定该终端设备,因而,分别位于终端设备两侧区域的第一传感器与第二传感器的个数必然不同。因此,根据上述第一传感器与第二传感器的个数来判定终端设备在当前所处的不同的手持状态。
通过本申请提供的实施例,通过获取第一手持区域中采集到第一状态数据的第一传感器的个数,以及第二手持区域中采集到第二状态数据的第二传感器的个数,进一步,根据第一传感器的个数与第二传感器的个数判断终端设备当前所处的手持状态,从而实现利用温度传感器准确判断出终端设备的手持状态,进而保证对射频参数调整的准确性。
作为一种可选的方案,第一手持区域为在面向终端设备的屏幕的情况下终端设备的左侧面手持区域,第二手持区域为在面向终端设备的屏幕的情况下终端设备的右侧面手持区域;其中,判断模块包括:
1)第一判断子模块,被设置为在第一传感器的个数大于第二传感器的个数时,判断出当前所处的手持状态为右手手持状态;
2)第二判断子模块,被设置为在第一传感器的个数小于第二传感器的个数时,判断出当前所处的手持状态为左手手持状态。
可选地,在本实施例中,由于手持终端设备通信时,五指将分别从终端设备的两侧固定该终端设备,因而,可以通过判断终端设备两侧采集到手持状态数据的第一传感器和第二传感器的个数来判断当前终端设备所处的手持状态。
例如,当左侧面手持区域采集到第一状态数据的第一传感器的个数大于右侧面手持区域采集到第二状态数据的第二传感器的个数时,则可以准确判断出当前终端设备被左手手持,即所处手持状态为左手手持状态。
又例如,当左侧面手持区域采集到第一状态数据的第一传感器的个数小于右侧面手持区域采集到第二状态数据的第二传感器的个数时,则可以准确判断出当前终端设备被右手手持,即所处手持状态为右手手持状态。
作为一种可选的方案,第一判断子模块通过以下步骤判断出当前所处的手持状态为右手手持状态:
1)若第一传感器的个数大于等于第一预定阈值,则判断出当前所处的手持状态为右手手持状态。
可选地,在本实施例中,上述第一预定阈值可以包括但不限于:2、3。
具体结合以下示例进行说明,假设第一预定阈值设置为3,具体结合图2所示进行说明,例如,左侧手持区域第一传感器的数量为3,右侧手持区域第二传感器的数量为1,即,左侧传感器的数量等于3,则确定终端设备在当前处于右手手持状态,进一步,根据该判断结果,可以将终端设备的射频参数调整至对应的目标射频参数,即射频参数B。
通过本申请提供的实施例,通过根据检测到的手持状态数据,具体而言,第一传感器的个数大于等于第一预定阈值时,则可判定当前终端设备所处的手持状态为右手手持状态,进一步,终端设备则可根据判断结果自适应调整射频参数,将其调整切换至与右手手持状态匹配的目标射频参数,以保证在右手手持状态的通信场景下,射频参数调整至该通信场景下的最优值,进而实现改善该通信场景下的通信效果。
作为一种可选的方案,第二判断子模块通过以下步骤判断出当前所处的手持状态为左手手持状态:
1)若第二传感器的个数大于等于第二预定阈值,则判断出当前所处的手持状态为左手手持状态。
可选地,在本实施例中,上述第一预定阈值可以包括但不限于:2、3。
具体结合以下示例进行说明,假设第一预定阈值设置为3,具体结合图2所示进行说明,例如,右侧手持区域第二传感器的数量为3,左侧手持区域第一传感器的数量为1,即,右侧传感器的数量等于3,则确定终端设备在当前处于左手手持状态,进一步,根据该判断结果,可以将终端设备的射频参数调整至对应的目标射频参数,即射频参数A。
通过本申请提供的实施例,通过根据检测到的手持状态数据,具体而言,第二传感器的个数大于等于第二预定阈值时,则可判定当前终端设备所处的手持状态为左手手持状态,进一步,终端设备则可根据判断结果自适应调整射频参数,将其调整切换至与左手手持状态匹配的目标射频参数,以保证在左手手持状态的通信场景下,射频参数调整至该通信场景下的最优值,进而实现改善该通信场景下的通信效果。
作为一种可选的方案,判断模块包括:
1)第三判断子模块,被设置为在第一传感器的个数与第二传感器的个数均小于等于第三预定阈值时,判断出当前所处的手持状态为无握姿状态。
可选地,在本实施例中,根据手持状态数据还可以判断出无握姿(即免提)状态,具体而言,若两侧区域内传感器均未采集到手持状态数据,则根据该检测结果可以判断出终端设备处于无握姿的免提状态。
通过本申请提供的实施例,在第一传感器的个数与第二传感器的个数均小于等于第三预定阈值时,则可以判断出终端设备在当前并未被手持,表示该终端设备正处于免提状态进行通信,通过上述判断将得出终端设备处于无握姿的免提通话状态,进而将射频参数调整至与该手持状态相匹配的目标射频参数,以克服相关技术中仅采用相同的射频参数所导致的通信 效果差的问题。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,通过终端设备中两侧区域内的传感器采集的手持状态数据,判断手持终端设备在当前所处的手持状态(即握姿),根据不同的手持状态对终端设备的射频参数的进行自适应调整,调整至与当前终端设备所处的手持状态匹配的目标射频参数,从而实现实时将射频参数调整至与握姿相适应的目标射频参数,以使射频参数与终端设备的通信场景相适应,进而达到改善通信效果的目的,克服相关技术中在不同通信场景下采用相同的射频参数所导致的通信效果较差的问题。

Claims (12)

  1. 一种射频参数的调整方法,包括:
    获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;
    根据所述手持状态数据判断所述终端设备当前所处的手持状态;
    将所述终端设备的射频参数调整为与所述当前所处的所述手持状态匹配的目标射频参数。
  2. 根据权利要求1所述的方法,其中,所述两侧手持区域包括第一手持区域和第二手持区域,其中,根据所述手持状态数据判断所述终端设备当前所处的手持状态包括:
    获取所述第一手持区域中采集到第一状态数据的第一传感器的个数,以及所述第二手持区域中采集到第二状态数据的第二传感器的个数,其中,所述手持状态数据包括所述第一传感器采集到的所述第一状态数据和所述第二传感器采集到的所述第二状态数据;
    根据所述第一传感器的个数与所述第二传感器的个数判断所述终端设备当前所处的手持状态。
  3. 根据权利要求2所述的方法,其中,所述第一手持区域为在面向所述终端设备的屏幕的情况下所述终端设备的左侧面手持区域,所述第二手持区域为在面向所述终端设备的屏幕的情况下所述终端设备的右侧面手持区域,其中,根据所述第一传感器的个数与所述第二传感器的个数判断所述终端设备当前所处的手持状态包括:
    若所述第一传感器的个数大于所述第二传感器的个数,则判断出所述当前所处的手持状态为右手手持状态;
    若所述第一传感器的个数小于所述第二传感器的个数,则判断出所述当前所处的手持状态为左手手持状态。
  4. 根据权利要求3所述的方法,其中,所述若所述第一传感器的个数大于所述第二传感器的个数,则判断出所述当前所处的手持状态为右手手持状态包括:
    若所述第一传感器的个数大于等于第一预定阈值,则判断出所述当前所处的手持状态为右手手持状态。
  5. 根据权利要求3所述的方法,其中,所述若所述第一传感器的个数小于所述第二传感器的个数,则判断出所述当前所处的手持状态为左手手持状态包括:
    若所述第二传感器的个数大于等于第二预定阈值,则判断出所述当前所处的手持状态为左手手持状态。
  6. 根据权利要求2所述的方法,其中,所述根据所述第一传感器的个数与所述第二传感器的个数判断所述终端设备当前所处的手持状态包括:
    若所述第一传感器的个数与所述第二传感器的个数均小于等于第三预定阈值,则判 断出所述当前所处的手持状态为无握姿状态。
  7. 一种射频参数的调整装置,包括:
    获取单元,被设置为获取终端设备在通信时两侧手持区域内的传感器采集到的手持状态数据;
    判断单元,被设置为根据所述手持状态数据判断所述终端设备当前所处的手持状态;
    调整单元,被设置为将所述终端设备的射频参数调整为与所述当前所处的所述手持状态匹配的目标射频参数。
  8. 根据权利要求7所述的装置,其中,所述两侧手持区域包括第一手持区域和第二手持区域,其中,所述判断单元包括:
    获取模块,被设置为获取所述第一手持区域中采集到第一状态数据的第一传感器的个数,以及所述第二手持区域中采集到第二状态数据的第二传感器的个数,其中,所述手持状态数据包括所述第一传感器采集到的所述第一状态数据和所述第二传感器采集到的所述第二状态数据;
    判断模块,被设置为根据所述第一传感器的个数与所述第二传感器的个数判断所述终端设备当前所处的手持状态。
  9. 根据权利要求8所述的装置,其中,所述第一手持区域为在面向所述终端设备的屏幕的情况下所述终端设备的左侧面手持区域,所述第二手持区域为在面向所述终端设备的屏幕的情况下所述终端设备的右侧面手持区域;其中,所述判断模块包括:
    第一判断子模块,被设置为在所述第一传感器的个数大于所述第二传感器的个数时,判断出所述当前所处的手持状态为右手手持状态;
    第二判断子模块,被设置为在所述第一传感器的个数小于所述第二传感器的个数时,判断出所述当前所处的手持状态为左手手持状态。
  10. 根据权利要求9所述的装置,其中,所述第一判断子模块通过以下步骤判断出所述当前所处的手持状态为右手手持状态:
    若所述第一传感器的个数大于等于第一预定阈值,则判断出所述当前所处的手持状态为右手手持状态。
  11. 根据权利要求9所述的装置,其中,所述第二判断子模块通过以下步骤判断出所述当前所处的手持状态为左手手持状态:
    若所述第二传感器的个数大于等于第二预定阈值,则判断出所述当前所处的手持状态为左手手持状态。
  12. 根据权利要求8所述的装置,其中,所述判断模块包括:
    第三判断子模块,被设置为在所述第一传感器的个数与所述第二传感器的个数均小于等于第三预定阈值时,判断出所述当前所处的手持状态为无握姿状态。
PCT/CN2015/088059 2015-07-03 2015-08-25 射频参数的调整方法及装置 WO2016131236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510390830.4A CN106330347A (zh) 2015-07-03 2015-07-03 射频参数的调整方法及装置
CN201510390830.4 2015-07-03

Publications (1)

Publication Number Publication Date
WO2016131236A1 true WO2016131236A1 (zh) 2016-08-25

Family

ID=56689234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088059 WO2016131236A1 (zh) 2015-07-03 2015-08-25 射频参数的调整方法及装置

Country Status (2)

Country Link
CN (1) CN106330347A (zh)
WO (1) WO2016131236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022405A (zh) * 2019-03-29 2019-07-16 惠州Tcl移动通信有限公司 射频参数调整方法、装置及存储介质
WO2020134582A1 (zh) * 2018-12-29 2020-07-02 中兴通讯股份有限公司 触摸位置调整方法、装置、存储介质及电子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737629B (zh) * 2017-04-20 2021-12-14 中兴通讯股份有限公司 一种左右手识别方法及其装置、移动终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895977A (zh) * 2010-07-19 2010-11-24 华为终端有限公司 控制终端信号发射的方法和终端
CN102804610A (zh) * 2009-06-19 2012-11-28 高通股份有限公司 用于无线通信装置的功率及阻抗测量电路
CN104252292A (zh) * 2014-08-29 2014-12-31 惠州Tcl移动通信有限公司 一种显示方法及移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368658B2 (en) * 2008-12-02 2013-02-05 At&T Mobility Ii Llc Automatic soft key adaptation with left-right hand edge sensing
US8977318B2 (en) * 2011-02-10 2015-03-10 Samsung Electronics Co., Ltd. Mobile terminal and method for controlling the same in consideration of communication environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804610A (zh) * 2009-06-19 2012-11-28 高通股份有限公司 用于无线通信装置的功率及阻抗测量电路
CN101895977A (zh) * 2010-07-19 2010-11-24 华为终端有限公司 控制终端信号发射的方法和终端
CN104252292A (zh) * 2014-08-29 2014-12-31 惠州Tcl移动通信有限公司 一种显示方法及移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134582A1 (zh) * 2018-12-29 2020-07-02 中兴通讯股份有限公司 触摸位置调整方法、装置、存储介质及电子装置
CN110022405A (zh) * 2019-03-29 2019-07-16 惠州Tcl移动通信有限公司 射频参数调整方法、装置及存储介质

Also Published As

Publication number Publication date
CN106330347A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6671477B2 (ja) エコー除去方法、デバイス、およびコンピュータストレージ媒体
JP2011239405A5 (zh)
WO2016131236A1 (zh) 射频参数的调整方法及装置
RU2016133158A (ru) Способ и оборудование для управления электронным устройством
CN108115688A (zh) 一种机械臂的抓取控制方法、系统及机械臂
US9754113B2 (en) Method, apparatus, terminal and media for detecting document object model-based cross-site scripting attack vulnerability
CN109314664B (zh) 僵尸主控机发现设备和方法
EP3240198B1 (en) Mobile terminal and antenna determining method
WO2016023304A1 (zh) 一种自动识别左右手握持的移动终端和实现方法
US20160073347A1 (en) Device Proximity Detection Implemented In Hardware
US20160191492A1 (en) Method and device for transferring resources
CN108429575A (zh) 天线切换方法、移动终端以及计算机可读存储介质
WO2017185728A1 (zh) 按键操作的识别方法和装置
WO2014104034A1 (ja) 携帯端末装置、ロック解除方法およびプログラム
WO2018192168A1 (zh) 左右手识别方法及其装置、移动终端
US20170308243A1 (en) Method for controlling blank screen gesture processing and terminal
CN105120089B (zh) 一种移动终端自动接听电话的方法及移动终端
US9549240B2 (en) Mobile terminal and method of pairing mobile terminal with hearing apparatus
JP2017208784A5 (zh)
JP2013026981A5 (zh)
JP2017038383A5 (zh)
MX2020012380A (es) Dispositivo para comunicacion inalambrica con otros dispositivos.
CN110632734B (zh) 对焦方法及相关产品
WO2016109051A1 (en) Hybrid model for smart positioning data processing
CN110099428A (zh) 无线保真WiFi网络访问方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882375

Country of ref document: EP

Kind code of ref document: A1