WO2016131217A1 - 一种图像校正的方法和装置 - Google Patents
一种图像校正的方法和装置 Download PDFInfo
- Publication number
- WO2016131217A1 WO2016131217A1 PCT/CN2015/079708 CN2015079708W WO2016131217A1 WO 2016131217 A1 WO2016131217 A1 WO 2016131217A1 CN 2015079708 W CN2015079708 W CN 2015079708W WO 2016131217 A1 WO2016131217 A1 WO 2016131217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- binocular
- virtual
- camera
- image plane
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000003702 image correction Methods 0.000 title claims abstract description 16
- 210000001508 eye Anatomy 0.000 claims abstract description 103
- 238000013507 mapping Methods 0.000 claims abstract description 14
- 210000005252 bulbus oculi Anatomy 0.000 claims description 14
- 210000000744 eyelid Anatomy 0.000 claims description 8
- 210000001747 pupil Anatomy 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
Definitions
- This paper relates to the field of image processing technology, and in particular to a method and apparatus for image correction.
- Embodiments of the present invention provide a method and apparatus for image correction, which can correct a line of sight of a person in a close-up photographing screen, and the corrected line of sight of the person is close to a direct view state.
- an embodiment of the present invention provides a method for image correction, the method comprising:
- the binocular image in the terminal screen image is replaced with the binocular image on the virtual correction image plane.
- the method further includes the following features:
- the virtual original image plane corresponding to the original line of sight when the binocular gaze is on the screen of the terminal, and the virtual corrected image plane corresponding to the corrected line of sight include:
- the method further includes the following features:
- mapping the binocular image displayed on the screen of the terminal from the virtual original image plane to the virtual corrected image plane comprises:
- the upper half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f1(y), and the lower half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f2(y);
- f1(y) and f2(y) are the same or different, and y is the ordinate of the binocular image displayed on the terminal screen image in the Cartesian coordinate system, and the horizontal axis of the Cartesian coordinate system is in the image.
- the coordinate axis of the center of the pupil of the binocular, the longitudinal axis of the Cartesian coordinate system is perpendicular to the horizontal axis, and the horizontal axis is above the upper half of the binocular image, and below the horizontal axis is the lower half of the binocular image.
- the method further includes the following features:
- ⁇ is the focal length of the camera
- d1 is the distance between the camera and the center point of the eyes in the screen
- d2 is the distance between the camera and the center point of the eyes.
- the method further includes the following features:
- the method further includes:
- the distance between the camera and the center point of the person's eyes is preset or through infrared sensing Ranging is obtained; wherein the infrared sensor is mounted beside the camera;
- the distance between the camera and the center point of the two eyes in the screen image is obtained by analyzing and calculating the position of both eyes in the screen according to the physical position of the camera.
- the method further includes the following features:
- the method further includes:
- the method further includes the following features:
- the method further includes:
- the edge blending process is performed on the image after the replacement is completed.
- an apparatus for image correction including:
- a virtual image plane construction module configured to establish a virtual original image plane corresponding to an original line of sight when the binocular eyes are viewed on the screen of the terminal, and a virtual corrected image plane corresponding to the corrected line of sight;
- mapping module configured to map a binocular image displayed on the screen of the terminal from the virtual original image plane to the virtual corrected image plane
- An image synthesis module configured to replace the binocular image in the terminal screen image with the binocular image on the virtual corrected image plane.
- the device further includes the following features:
- the virtual image plane construction module is set to:
- the device further includes the following features:
- the mapping module is set to:
- the upper half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f1(y), and the lower half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f2(y);
- f1(y) and f2(y) are the same or different, and y is the ordinate of the binocular image displayed on the terminal screen image in the Cartesian coordinate system, and the horizontal axis of the Cartesian coordinate system is in the image.
- the coordinate axis of the center of the pupil of the binocular, the longitudinal axis of the Cartesian coordinate system is perpendicular to the horizontal axis, and the horizontal axis is above the upper half of the binocular image, and below the horizontal axis is the lower half of the binocular image.
- the device further includes the following features:
- ⁇ is the focal length of the camera
- d1 is the distance between the camera and the center point of the eyes in the screen
- d2 is the distance between the camera and the center point of the eyes.
- the device further includes the following features:
- the device also includes:
- a data acquisition module configured to obtain a distance value between the camera and the center point of the eyes of the character, and a distance between the camera and the center point of the eyes in the screen image;
- the distance between the camera and the center point of the person's eyes is preset or obtained by infrared sensor ranging; wherein the infrared sensor is mounted beside the camera;
- the distance between the camera and the center point of the eyes in the screen image is based on the physical position of the camera. Obtained after analyzing and calculating the position of both eyes in the screen.
- the device further includes the following features:
- the image synthesizing module is further configured to: before detecting that the user has taken a reference image of the binocular direct-view camera, replacing the binocular image in the terminal screen image with the binocular image on the virtual corrected image plane, and further according to the reference image
- the eye image parameter adjusts the aspect ratio of the circumscribed rectangle of the outer contour of the eye on the virtual corrected image plane, the aspect ratio of the circumscribed rectangle of the eyeball, and the width of the area where the eyelid covers the eyeball.
- the device further includes the following features:
- the image synthesizing module is further configured to perform edge blending processing on the replaced image after replacing the binocular image in the terminal screen image with the binocular image on the virtual corrected image plane.
- An embodiment of the present invention further provides a computer readable storage medium storing a computer program, the computer program comprising program instructions, when the program instruction is executed by the terminal device, enabling the device to perform the claims 1-7 Any of the methods.
- the image correction method and apparatus Compared with the related art, the image correction method and apparatus provided by the embodiments of the present invention correct the line of sight of a person in a close-up shooting picture by using a positional relationship between a camera, a human eye, and a binocular image in a screen image, and the corrected The character's line of sight is close to direct view.
- FIG. 1 is a flowchart of a method for image correction according to an embodiment of the present invention.
- FIG. 2 is a schematic view of a human eye line of sight in close-range photography according to the present invention.
- FIG. 3 is a schematic diagram of a virtual original image plane and a virtual corrected image plane according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of the angle between the virtual original image plane and the virtual corrected image plane when the vertical line of sight is corrected.
- FIG. 5 is a schematic diagram of the principle of imaging the virtual original image plane and the virtual corrected image plane.
- FIG. 6 is a schematic diagram showing the effect of mapping a human eye image from a virtual original image plane to a virtual corrected image plane.
- Figure 7 is a parameter of a human eye image.
- FIG. 8 is a schematic structural diagram of an apparatus for image correction according to an embodiment of the present invention.
- an embodiment of the present invention provides a method for image correction, which includes:
- the method may also include the following features:
- the virtual original image plane corresponding to the original line of sight when the two eyes are looking at the screen of the terminal, and the virtual corrected image plane corresponding to the corrected line of sight include:
- point A is the center point of the person's eyes
- point B is the front camera
- point C is the center point of the eyes in the screen.
- Point D is a point on the terminal screen, and points B, C, and D form a right triangle, where ⁇ BDC is a right angle.
- the corresponding virtual original image plane is the plane a in the figure, and the line It intersects the plane a perpendicularly to point A;
- the corresponding virtual correction image plane is the plane b in the figure, and the line It intersects plane b perpendicularly to point A; the angle ⁇ between plane a and plane b is equal to ⁇ BAC.
- mapping of the binocular image displayed on the screen of the terminal from the virtual original image plane to the virtual corrected image plane includes:
- the upper half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f1(y), and the lower half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f2(y);
- f1(y) and f2(y) are the same or different
- y is the ordinate of the binocular image displayed on the terminal screen in the Cartesian coordinate system
- the horizontal axis of the Cartesian coordinate system is the center of the binocular pupil in the image.
- a coordinate axis the longitudinal axis of the Cartesian coordinate system is perpendicular to the horizontal axis, and the horizontal axis is above the upper half of the binocular image, and below the horizontal axis is the lower half of the binocular image;
- the best shooting angle and viewing angle can be obtained, that is, the line of sight of the human eye is approximately vertical. status.
- d1 is the distance between the camera B and the center point C of the eyes in the screen picture
- d2 is the distance between the camera B and the center point A of the eyes
- d1 is equal to Length
- d2 is equal to The length
- ⁇ ABC is a right triangle
- AB is perpendicular to the b plane
- AC is perpendicular to the a plane.
- point B is a camera
- point o is a point on the intersection of the virtual original image plane a and the virtual corrected image plane b
- o' is an image point of the o point on the imaging plane of the camera
- point c is the virtual original image plane a Any pixel on the upper half plane
- point d is any pixel on the lower half of the virtual original image plane a
- point e is any pixel on the upper half of the virtual correction image plane b
- f The point is any pixel point on the lower half plane of the virtual correction image plane b
- the c' point is the image point formed by the point c on the upper half plane of the virtual original image plane a on the imaging plane of the camera
- the d' point is virtual
- the point d of the lower half plane of the original image plane a is the image point formed on the imaging plane of the camera
- the point e' is the image point of the point e on the upper half plane of the virtual correction image plane b on the imaging plane of the camera
- ⁇ is the focal length of the camera
- y is the ordinate of the binocular image displayed on the screen of the terminal screen in the Cartesian coordinate system
- the horizontal axis of the Cartesian coordinate system is the coordinate axis passing through the center of the pupil of both eyes in the image, the Cartesian coordinate system
- the longitudinal axis is perpendicular to the horizontal axis.
- the method further includes:
- the distance between the camera and the center point of the person's eyes is preset or obtained by infrared sensor ranging; wherein the infrared sensor is mounted beside the camera;
- the distance between the camera and the center point of the two eyes in the screen image is obtained by analyzing and calculating the position of both eyes in the screen according to the physical position of the camera.
- the upper half of the eye is shortened in the longitudinal direction
- the lower half of the eye is stretched in the longitudinal direction
- the covering area of the eyelid is narrowed
- the corrected line of sight is close to the state of direct viewing of the eye.
- the method further includes:
- the proportion of the adjusted eye image is close to the proportion of the eye image in the reference image.
- the parameters of the eye image in the reference image include: the lateral length (length) Lx of the circumscribed rectangle of the outer contour of the eye, the longitudinal length (width) Ly, the lateral length (length) Lx1 of the circumscribed rectangle of the eyeball, The longitudinal length (width) Ly, the width of the area where the eyelid covers the eyeball Ly1.
- the method further includes:
- the edge blending process is performed on the image after the replacement is completed.
- an embodiment of the present invention provides an apparatus for image correction, including a processor and a program storage device, where the program storage device stores a computer readable program, and the program includes:
- a virtual image plane construction module which is suitable for establishing a virtual original image plane corresponding to an original line of sight when a binocular gaze terminal screen is displayed, and a virtual corrected image plane corresponding to the corrected line of sight;
- mapping module configured to map a binocular image displayed on the screen of the terminal from the virtual original image plane to the virtual corrected image plane
- An image synthesis module configured to replace a terminal screen with a binocular image on the virtual correction image plane A binocular image in the screen.
- the apparatus for image correction may further include the following features:
- the virtual image plane construction module is applicable to the virtual original image plane corresponding to the original line of sight when the screen of the binocular gaze is displayed, and the virtual corrected image plane corresponding to the corrected line of sight, including:
- the mapping module is configured to map the binocular image displayed on the screen of the terminal from the virtual original image plane to the virtual corrected image plane, including:
- the upper half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f1(y), and the lower half of the binocular image displayed on the screen of the terminal screen is longitudinally changed according to the function f2(y);
- f1(y) and f2(y) are the same or different, and y is the ordinate of the binocular image displayed on the terminal screen image in the Cartesian coordinate system, and the horizontal axis of the Cartesian coordinate system is in the image.
- the coordinate axis of the center of the pupil of the binocular, the longitudinal axis of the Cartesian coordinate system is perpendicular to the horizontal axis, and the horizontal axis is above the upper half of the binocular image, and below the horizontal axis is the lower half of the binocular image.
- ⁇ is the focal length of the camera
- d1 is the distance between the camera and the center point of the eyes in the screen
- d2 is the photo The distance between the head and the center point of both eyes.
- d1 is the distance between the camera and the center point of the eyes in the screen
- d2 is the distance between the camera and the center point of the eyes.
- the device further comprises:
- a data acquisition module configured to obtain a distance value between the camera and the center point of the eyes of the character, and a distance between the camera and the center point of the eyes in the screen image;
- the distance between the camera and the center point of the person's eyes is preset or obtained by infrared sensor ranging; wherein the infrared sensor is mounted beside the camera;
- the distance between the camera and the center point of the two eyes in the screen image is obtained by analyzing and calculating the position of both eyes in the screen according to the physical position of the camera.
- the image synthesizing module is further adapted to: before detecting that the user has taken a reference image of the binocular direct-view camera, replacing the binocular image in the terminal screen image with the binocular image on the virtual correction image plane, according to the reference
- the eye image parameter in the image adjusts the aspect ratio of the circumscribed rectangle of the outer contour of the eye on the virtual corrected image plane, the aspect ratio of the circumscribed rectangle of the eyeball, and the width of the area of the eyelid covering the eyeball.
- the proportion of the adjusted eye image is close to the proportion of the eye image in the reference image.
- the image synthesizing module is further adapted to replace the binocular image in the terminal screen image with the binocular image on the virtual correction image plane, and perform edge blending processing on the image after the replacement.
- the image correction method and apparatus provided by the above embodiment provide a correction of a person's line of sight in a close-up photographing image by using a positional relationship between a binocular image in a camera, a human eye, and a screen image, and the corrected person's line of sight is close to direct view. status.
- the image correction method and device provided by the embodiment of the invention corrects the line of sight of the person in the close-up shooting picture by using the positional relationship between the camera, the human eye and the binocular image in the screen image, and the corrected line of sight of the person can be close to the direct view. status.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Processing Or Creating Images (AREA)
- Image Processing (AREA)
Abstract
一种图像校正的方法和装置,所述方法包括:建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面,(S10);将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上(S20);用所述虚拟校正像平面上的双眼图像替换掉终端屏幕画面中的双眼图像(S30)。该方法能够对近距离拍摄画面中人物的视线进行校正,校正后的人物视线接近直视状态。
Description
本文涉及图像处理技术领域,尤其涉及的是一种图像校正的方法和装置。
手机自拍或者视频通话的时候,因为人眼注视的目标是屏幕,而摄像头与注视的焦点有位置差,这个位置差在近距离拍照或者摄像的时候会造成人眼的视线偏差,使得画面中人物的视线总是向下(眼睛朝下看),用户体验不理想。
发明内容
本发明实施例提供一种图像校正的方法和装置,能够对近距离拍摄画面中人物的视线进行校正,校正后的人物视线接近直视状态。
为了解决上述技术问题,本发明实施例提供了一种图像校正的方法,该方法包括:
建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面;
将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上;
用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像。
可选地,该方法还包括下述特点:
所述建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面,包括:
建立注视焦点落在终端屏幕画面中双眼中心点时对应的虚拟原始像平面;其中,所述虚拟原始像平面与经过双眼中心点和所述终端屏幕画面中双眼中心点的原始视线垂直相交于所述双眼中心点;
建立注视焦点落在所述摄像头时对应的虚拟校正像平面;其中,所述虚拟校正像平面与经过双眼中心点和所述摄像头的校正视线垂直相交于所述双眼中心点。
可选地,该方法还包括下述特点:
所述将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上,包括:
将终端屏幕画面上显示的双眼图像的上半部分纵向根据函数f1(y)进行变化,将终端屏幕画面上显示的双眼图像的下半部分纵向根据函数f2(y)进行变化;
其中,f1(y)和f2(y)的函数式相同或不相同,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴,所述横轴以上为双眼图像的上半部分,所述横轴以下为双眼图像的下半部分。
可选地,该方法还包括下述特点:
如果校正后的视线垂直于摄像头所在的终端屏幕平面,则
f1(y)=|y|/(cosθ+(|y|/α)·sinθ),y≥0;
f2(y)=-|y|/(cosθ-(|y|/α)·sinθ),y<0;
其中,α是摄像头焦距;
其中,θ是虚拟原始像平面与虚拟校正像平面之间的夹角,θ=arctan(d1/d2);
其中,d1是摄像头与所述屏幕画面中双眼中心点之间的距离值,d2是摄像头与双眼中心点之间的距离值。
可选地,该方法还包括下述特点:
所述方法还包括:
获取摄像头与人物双眼中心点之间的距离值,以及摄像头与屏幕画面中双眼中心点的距离值;
其中,摄像头与人物双眼中心点之间的距离值预先设定或通过红外传感
器测距获得;其中,所述红外传感器装配在所述摄像头旁边;
其中,摄像头与屏幕画面中双眼中心点的距离值根据摄像头的物理位置,对屏幕画面中双眼位置进行分析和计算后获得。
可选地,该方法还包括下述特点:
如检测到用户拍摄了双眼直视摄像头的参考图像,则用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像之前,还包括:
根据所述参考图像中的眼睛图像参数调整所述虚拟校正像平面上的眼睛的外轮廓的外接矩形的长宽比、眼球的外接矩形的长宽比、以及眼皮遮盖眼球的区域的宽度。
可选地,该方法还包括下述特点:
在用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像后,还包括:
对替换完成后的图像进行边缘融合处理。
为了解决上述技术问题,本发明实施例提供了一种图像校正的装置,包括:
虚拟像平面构造模块,设置为建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面;
映射模块,设置为将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上;
图像合成模块,设置为用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像。
可选地,该装置还包括下述特点:
虚拟像平面构造模块是设置为:
建立注视焦点落在终端屏幕画面中双眼中心点时对应的虚拟原始像平面;其中,所述虚拟原始像平面与经过双眼中心点和所述终端屏幕画面中双眼中心点的原始视线垂直相交于所述双眼中心点;
建立注视焦点落在所述摄像头时对应的虚拟校正像平面;其中,所述虚
拟校正像平面与经过双眼中心点和所述摄像头的校正视线垂直相交于所述双眼中心点。
可选地,该装置还包括下述特点:
映射模块是设置为:
将终端屏幕画面上显示的双眼图像的上半部分纵向根据函数f1(y)进行变化,将终端屏幕画面上显示的双眼图像的下半部分纵向根据函数f2(y)进行变化;
其中,f1(y)和f2(y)的函数式相同或不相同,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴,所述横轴以上为双眼图像的上半部分,所述横轴以下为双眼图像的下半部分。
可选地,该装置还包括下述特点:
如果校正后的视线垂直于摄像头所在的终端屏幕平面,则
f1(y)=|y|/(cosθ+(|y|/α)·sinθ),y≥0;
f2(y)=-|y|/(cosθ-(|y|/α)·sinθ),y<0;
其中,α是摄像头焦距;
其中,θ是虚拟原始像平面与虚拟校正像平面之间的夹角,θ=arctan(d1/d2);
其中,d1是摄像头与所述屏幕画面中双眼中心点之间的距离值,d2是摄像头与双眼中心点之间的距离值。
可选地,该装置还包括下述特点:
所述装置还包括:
数据获取模块,设置为获取摄像头与人物双眼中心点之间的距离值,以及摄像头与屏幕画面中双眼中心点的距离值;
其中,摄像头与人物双眼中心点之间的距离值预先设定或通过红外传感器测距获得;其中,所述红外传感器装配在所述摄像头旁边;
其中,摄像头与屏幕画面中双眼中心点的距离值根据摄像头的物理位置,
对屏幕画面中双眼位置进行分析和计算后获得。
可选地,该装置还包括下述特点:
图像合成模块,还设置为如检测到用户拍摄了双眼直视摄像头的参考图像,则用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像之前,还根据所述参考图像中的眼睛图像参数调整所述虚拟校正像平面上的眼睛的外轮廓的外接矩形的长宽比、眼球的外接矩形的长宽比、以及眼皮遮盖眼球的区域的宽度。
可选地,该装置还包括下述特点:
图像合成模块,还设置为用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像后,还对替换完成后的图像进行边缘融合处理。
本发明实施例还提供一种计算机可读存储介质,所述存储介质存储有计算机程序,该计算机程序包括程序指令,当该程序指令被终端设备执行时,使得该设备可执行权利要求1-7任一项的方法。
与相关技术相比,本发明实施例提供的图像校正的方法和装置,利用摄像头、人眼和屏幕画面中双眼图像之间的位置关系对近距离拍摄画面中的人物视线进行校正,校正后的人物视线接近直视状态。
附图概述
图1为本发明实施例的一种图像校正的方法的流程图。
图2为本发明中近距离拍摄时人眼视线的示意图。
图3为本发明实施例中虚拟原始像平面和虚拟校正像平面的示意图。
图4为校正视线垂直屏幕时虚拟原始像平面和虚拟校正像平面夹角的示意图。
图5为虚拟原始像平面和虚拟校正像平面成像原理示意图。
图6为将人眼图像从虚拟原始像平面映射到虚拟校正像平面的效果示意图。
图7为人眼图像的参数。
图8为本发明实施例的一种图像校正的装置的结构示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,本发明实施例提供了一种图像校正的方法,该方法包括:
S10,建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面;
S20,将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上;
S30,用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像;
所述方法还可以包括下述特点:
其中,所述方法应用于视频通话或自拍;
其中,如图2所示,终端屏幕画面中显示的人物图像(笑脸)中双眼中心点C与前置摄像头B之间具有一定的距离,C点与B点之间的水平距离为图中标记的x,垂直距离为图中标记的y;人物双眼中心点记作A点,经过A、C两点的直线与经过A、B两点的直线之间的夹角为图中标记的∠b。
其中,建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面,包括:
建立注视焦点落在终端屏幕画面中双眼中心点时对应的虚拟原始像平面;其中,所述虚拟原始像平面与经过双眼中心点和所述终端屏幕画面中双眼中心点的原始视线垂直相交于所述双眼中心点;
建立注视焦点落在所述摄像头时对应的虚拟校正像平面;其中,所述虚拟校正像平面与经过双眼中心点和所述摄像头的校正视线垂直相交于所述双眼中心点;
如图3所示,A点为人物双眼中心点,B点为前置摄像头,C点为屏幕画面中双眼中心点。D点为终端屏幕上的一点,B点、C点和D点构成一个直角三角形,其中,∠BDC为直角。人眼原始视线落在屏幕画面中双眼中心点时对应的虚拟原始像平面为图中的平面a,直线与平面a垂直相交于A点;人眼校正视线落在所述摄像头时对应的虚拟校正像平面为图中的平面b,直线与平面b垂直相交于A点;平面a与平面b的夹角θ等于∠BAC。
其中,将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上,包括:
将终端屏幕画面上显示的双眼图像的上半部分纵向根据函数f1(y)进行变化,将终端屏幕画面上显示的双眼图像的下半部分纵向根据函数f2(y)进行变化;
其中,f1(y)和f2(y)相同或不相同,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴,所述横轴以上为双眼图像的上半部分,所述横轴以下为双眼图像的下半部分;
其中,在自拍或者视频通话过程中,如果人眼视线与摄像头所在的手机平面垂直,手机平面跟人脸平面平行,则能够获得最好的拍摄角度和观看角度,也即,人眼视线近似垂直状态。
其中,如图4所示,如果校正后的视线垂直于摄像头所在的终端屏幕平面,则虚拟原始像平面(a平面)与虚拟校正像平面(b平面)之间的夹角θ的值为:θ=arctan(d1/d2);
其中,d1是摄像头B与所述屏幕画面中双眼中心点C之间的距离值,d2是摄像头B与人物双眼中心点A之间的距离值;如图4所示,d1等于的长度,d2等于的长度,ΔABC是直角三角形,AB⊥BC,AB垂直于b平面,AC垂直于a平面。
其中,如图5所示,B点为摄像头,o点为虚拟原始像平面a与虚拟校正像平面b交线上的点,o’为o点在摄像头成像平面上的像点;
为了计算虚拟原始像平面a和虚拟校正像平面b之间的映射关系,也即,
为了计算视线调整后的人眼图像与原始人眼图像之间的关系,假设c点是虚拟原始像平面a的上半平面上的任意一个像素点,d点是虚拟原始像平面a的下半平面上的任意一个像素点,e点是虚拟校正像平面b的上半平面上的任意一个像素点,f点是虚拟校正像平面b的下半平面上的任意一个像素点,c’点是虚拟原始像平面a的上半平面上的c点在摄像头成像平面上成的像点,d’点是虚拟原始像平面a的下半平面上的d点在摄像头成像平面上成的像点,e’点是虚拟校正像平面b的上半平面上的e点在摄像头成像平面上成的像点,f’点是虚拟校正像平面b的下半平面上的f点在摄像头成像平面上成的像点;从c点向oo’轴作垂线cm,cm与oo’轴交于m点,从d点向oo’轴作垂线dn,dn与oo’轴交于n点;如果则:
因此,f1(y)=(α·|y|)/(α·cosθ+|y|·sinθ),y≥0; (1-9)
也即,f1(y)=|y|/(cosθ+(|y|/α)·sinθ),y≥0; (1-10)
f2(y)=-(α·|y|)/(α·cosθ-|y|·sinθ),y<0; (1-11)
也即,f2(y)=-|y|/(cosθ-(|y|/α)·sinθ),y<0; (1-12)
其中,α是摄像头焦距,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴。
其中,所述方法还包括:
获取摄像头与人物双眼中心点之间的距离值,以及摄像头与屏幕画面中
双眼中心点的距离值;
其中,摄像头与人物双眼中心点之间的距离值预先设定或通过红外传感器测距获得;其中,所述红外传感器装配在所述摄像头旁边;
其中,摄像头与屏幕画面中双眼中心点的距离值根据摄像头的物理位置,对屏幕画面中双眼位置进行分析和计算后获得。
如图6所示,经过视线校正后,眼睛上半部分沿纵向缩短了,眼睛下半部分沿纵向拉伸了,眼皮的遮盖区域变窄了,校正后的视线接近眼睛直视状态。
其中,如检测到用户拍摄了双眼直视摄像头的参考图像,则用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像之前,还包括:
根据所述参考图像中的眼睛图像参数调整所述虚拟校正像平面上的眼睛的外轮廓的外接矩形的长宽比、眼球的外接矩形的长宽比、以及眼皮遮盖眼球的区域的宽度。调整后的眼睛图像的比例接近参考图像中眼睛图像的比例。
如图7所示,参考图像中的眼睛图像的参数包括:眼睛的外轮廓的外接矩形的横向长度(长)Lx,纵向长度(宽)Ly,眼球的外接矩形的横向长度(长)Lx1,纵向长度(宽)Ly,眼皮遮盖眼球的区域的宽度Ly1。
其中,用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像后,还包括:
对替换完成后的图像进行边缘融合处理。
如图8所示,本发明实施例提供了一种图像校正的装置,包括处理器和程序存储设备,所述程序存储设备存储计算机可读程序,所述程序包括:
虚拟像平面构造模块,适用于建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面;
映射模块,适用于将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上;
图像合成模块,适用于用所述虚拟校正像平面上的双眼图像替换终端屏
幕画面中的双眼图像。
所述图像校正的装置还可以包括下述特点:
其中,虚拟像平面构造模块,适用于建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面,包括:
建立注视焦点落在终端屏幕画面中双眼中心点时对应的虚拟原始像平面;其中,所述虚拟原始像平面与经过双眼中心点和所述终端屏幕画面中双眼中心点的原始视线垂直相交于所述双眼中心点;
建立注视焦点落在所述摄像头时对应的虚拟校正像平面;其中,所述虚拟校正像平面与经过双眼中心点和所述摄像头的校正视线垂直相交于所述双眼中心点。
其中,映射模块,适用于将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上,包括:
将终端屏幕画面上显示的双眼图像的上半部分纵向根据函数f1(y)进行变化,将终端屏幕画面上显示的双眼图像的下半部分纵向根据函数f2(y)进行变化;
其中,f1(y)和f2(y)的函数式相同或不相同,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴,所述横轴以上为双眼图像的上半部分,所述横轴以下为双眼图像的下半部分。
其中,如果校正后的视线垂直于摄像头所在的终端屏幕平面,则
f1(y)=|y|/(cosθ+(|y|/α)·sinθ),y≥0;
f2(y)=-|y|/(cosθ-(|y|/α)·sinθ),y<0;
其中,α是摄像头焦距;
其中,θ是虚拟原始像平面与虚拟校正像平面之间的夹角,θ=arctan(d1/d2);
其中,d1是摄像头与所述屏幕画面中双眼中心点之间的距离值,d2是摄
像头与双眼中心点之间的距离值。
其中,θ是虚拟原始像平面与虚拟校正像平面之间的夹角,θ=arctan(d1/d2);
其中,d1是摄像头与所述屏幕画面中双眼中心点之间的距离值,d2是摄像头与双眼中心点之间的距离值。
其中,所述装置还包括:
数据获取模块,适用于获取摄像头与人物双眼中心点之间的距离值,以及摄像头与屏幕画面中双眼中心点的距离值;
其中,摄像头与人物双眼中心点之间的距离值预先设定或通过红外传感器测距获得;其中,所述红外传感器装配在所述摄像头旁边;
其中,摄像头与屏幕画面中双眼中心点的距离值根据摄像头的物理位置,对屏幕画面中双眼位置进行分析和计算后获得。
其中,图像合成模块,还适用于如检测到用户拍摄了双眼直视摄像头的参考图像,则用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像之前,还根据所述参考图像中的眼睛图像参数调整所述虚拟校正像平面上的眼睛的外轮廓的外接矩形的长宽比、眼球的外接矩形的长宽比、以及眼皮遮盖眼球的区域的宽度。调整后的眼睛图像的比例接近参考图像中眼睛图像的比例。
其中,图像合成模块,还适用于用所述虚拟校正像平面上的双眼图像替换掉终端屏幕画面中的双眼图像后,还对替换完成后的图像进行边缘融合处理。
上述实施例提供的一种图像校正的方法和装置,利用摄像头、人眼和屏幕画面中双眼图像之间的位置关系对近距离拍摄画面中的人物视线进行校正,校正后的人物视线接近直视状态。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用
一个或多个集成电路来实现,相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
需要说明的是,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本发明实施例提供的图像校正的方法和装置,利用摄像头、人眼和屏幕画面中双眼图像之间的位置关系对近距离拍摄画面中的人物视线进行校正,校正后的人物视线可以接近直视状态。
Claims (15)
- 一种图像校正的方法,该方法包括:建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面;将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上;用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像。
- 如权利要求1所述的方法,其中:所述建立双眼注视终端屏幕画面时的原始视线对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面,包括:建立注视焦点落在终端屏幕画面中双眼中心点时对应的虚拟原始像平面;其中,所述虚拟原始像平面与经过双眼中心点和所述终端屏幕画面中双眼中心点的原始视线垂直相交于所述双眼中心点;建立注视焦点落在所述摄像头时对应的虚拟校正像平面;其中,所述虚拟校正像平面与经过双眼中心点和所述摄像头的校正视线垂直相交于所述双眼中心点。
- 如权利要求2所述的方法,其中:所述将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上,包括:将终端屏幕画面上显示的双眼图像的上半部分纵向根据函数f1(y)进行变化,将终端屏幕画面上显示的双眼图像的下半部分纵向根据函数f2(y)进行变化;其中,f1(y)和f2(y)的函数式相同或不相同,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴,所述横轴以上为双眼图像的上半部分,所述横轴以下为双眼图像的下半部分。
- 如权利要求3所述的方法,其中:如果校正后的视线垂直于摄像头所在的终端屏幕平面,则f1(y)=|y|/(cosθ+(|y|/α)·sinθ),y≥0;f2(y)=-|y|/(cosθ-(|y|/α)·sinθ),y<0;其中,α是摄像头焦距;其中,θ是虚拟原始像平面与虚拟校正像平面之间的夹角,θ=arctan(d1/d2);其中,d1是摄像头与所述屏幕画面中双眼中心点之间的距离值,d2是摄像头与双眼中心点之间的距离值。
- 如权利要4所述的方法,还包括:获取摄像头与人物双眼中心点之间的距离值,以及摄像头与屏幕画面中双眼中心点的距离值;其中,摄像头与人物双眼中心点之间的距离值预先设定或通过红外传感器测距获得;其中,所述红外传感器装配在所述摄像头旁边;其中,摄像头与屏幕画面中双眼中心点的距离值根据摄像头的物理位置,对屏幕画面中双眼位置进行分析和计算后获得。
- 如权利要求1所述的方法,其中:如检测到用户拍摄了双眼直视摄像头的参考图像,则用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像之前,还包括:根据所述参考图像中的眼睛图像参数调整所述虚拟校正像平面上的眼睛的外轮廓的外接矩形的长宽比、眼球的外接矩形的长宽比、以及眼皮遮盖眼球的区域的宽度。
- 如权利要求1所述的方法,其中:在用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像后,还包括:对替换完成后的图像进行边缘融合处理。
- 一种图像校正的装置,包括:虚拟像平面构造模块,设置为建立双眼注视终端屏幕画面时的原始视线 对应的虚拟原始像平面,以及校正后的视线对应的虚拟校正像平面;映射模块,设置为将所述终端屏幕画面上显示的双眼图像从所述虚拟原始像平面映射到所述虚拟校正像平面上;图像合成模块,设置为用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像。
- 如权利要求8所述的装置,其中:虚拟像平面构造模块是设置为:建立注视焦点落在终端屏幕画面中双眼中心点时对应的虚拟原始像平面;其中,所述虚拟原始像平面与经过双眼中心点和所述终端屏幕画面中双眼中心点的原始视线垂直相交于所述双眼中心点;建立注视焦点落在所述摄像头时对应的虚拟校正像平面;其中,所述虚拟校正像平面与经过双眼中心点和所述摄像头的校正视线垂直相交于所述双眼中心点。
- 如权利要求9所述的装置,其中:映射模块是设置为:将终端屏幕画面上显示的双眼图像的上半部分纵向根据函数f1(y)进行变化,将终端屏幕画面上显示的双眼图像的下半部分纵向根据函数f2(y)进行变化;其中,f1(y)和f2(y)的函数式相同或不相同,y是终端屏幕画面上显示的双眼图像在直角坐标系中的纵坐标,所述直角坐标系的横轴为经过图像中双眼瞳孔中心的坐标轴,所述直角坐标系的纵轴垂直于所述横轴,所述横轴以上为双眼图像的上半部分,所述横轴以下为双眼图像的下半部分。
- 如权利要求10所述的装置,其中:如果校正后的视线垂直于摄像头所在的终端屏幕平面,则f1(y)=|y|/(cosθ+(|y|/α)·sinθ),y≥0;f2(y)=-|y|/(cosθ-(|y|/α)·sinθ),y<0;其中,α是摄像头焦距;其中,θ是虚拟原始像平面与虚拟校正像平面之间的夹角,θ=arctan(d1/d2);其中,d1是摄像头与所述屏幕画面中双眼中心点之间的距离值,d2是摄像头与双眼中心点之间的距离值。
- 如权利要求11所述的装置,还包括:数据获取模块,设置为获取摄像头与人物双眼中心点之间的距离值,以及摄像头与屏幕画面中双眼中心点的距离值;其中,摄像头与人物双眼中心点之间的距离值预先设定或通过红外传感器测距获得;其中,所述红外传感器装配在所述摄像头旁边;其中,摄像头与屏幕画面中双眼中心点的距离值根据摄像头的物理位置,对屏幕画面中双眼位置进行分析和计算后获得。
- 如权利要求8所述的装置,其中:图像合成模块,还设置为如检测到用户拍摄了双眼直视摄像头的参考图像,则用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像之前,还根据所述参考图像中的眼睛图像参数调整所述虚拟校正像平面上的眼睛的外轮廓的外接矩形的长宽比、眼球的外接矩形的长宽比、以及眼皮遮盖眼球的区域的宽度。
- 如权利要求8所述的装置,其中:图像合成模块,还设置为用所述虚拟校正像平面上的双眼图像替换终端屏幕画面中的双眼图像后,还对替换完成后的图像进行边缘融合处理。
- 一种计算机可读存储介质,所述存储介质存储有计算机程序,该计算机程序包括程序指令,当该程序指令被终端设备执行时,使得该设备可执行权利要求1-7任一项的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510086541.5 | 2015-02-17 | ||
CN201510086541.5A CN105989577B (zh) | 2015-02-17 | 2015-02-17 | 一种图像校正的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016131217A1 true WO2016131217A1 (zh) | 2016-08-25 |
Family
ID=56689160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/079708 WO2016131217A1 (zh) | 2015-02-17 | 2015-05-25 | 一种图像校正的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105989577B (zh) |
WO (1) | WO2016131217A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020047860A1 (en) * | 2018-09-07 | 2020-03-12 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Electronic device and image processing method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2996269A1 (en) * | 2014-09-09 | 2016-03-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio splicing concept |
CN107123099B (zh) * | 2017-04-27 | 2020-02-14 | 广东华中科技大学工业技术研究院 | 人机界面数据采集方法 |
CN106973237B (zh) * | 2017-05-25 | 2019-03-01 | 维沃移动通信有限公司 | 一种拍摄方法及移动终端 |
CN107277375B (zh) * | 2017-07-31 | 2020-03-27 | 维沃移动通信有限公司 | 一种自拍方法和移动终端 |
CN108234994B (zh) * | 2017-12-29 | 2020-09-29 | 张家港康得新光电材料有限公司 | 一种人眼位置确定方法及装置 |
CN108491775B (zh) * | 2018-03-12 | 2021-04-23 | 维沃移动通信有限公司 | 一种图像修正方法及移动终端 |
CN112085647B (zh) * | 2019-06-14 | 2024-01-19 | 华为技术有限公司 | 一种人脸校正方法及电子设备 |
CN112153272B (zh) * | 2019-06-28 | 2022-02-25 | 华为技术有限公司 | 一种图像拍摄方法与电子设备 |
CN110597387B (zh) * | 2019-09-05 | 2021-11-30 | 腾讯科技(深圳)有限公司 | 基于人工智能的画面显示方法和装置、计算设备、存储介质 |
WO2022261856A1 (zh) * | 2021-06-16 | 2022-12-22 | 华为技术有限公司 | 图像处理方法、装置及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419664A (zh) * | 2007-10-25 | 2009-04-29 | 株式会社日立制作所 | 视线方向计测方法和视线方向计测装置 |
CN101866215A (zh) * | 2010-04-20 | 2010-10-20 | 复旦大学 | 在视频监控中采用视线跟踪的人机交互装置和方法 |
CN103310186A (zh) * | 2012-02-29 | 2013-09-18 | 三星电子株式会社 | 校正图像中用户的注视方向的方法和便携式终端 |
CN103501688A (zh) * | 2011-03-18 | 2014-01-08 | 感官运动仪器创新传感器有限公司 | 注视点映射的方法和装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986346B (zh) * | 2010-11-01 | 2012-08-08 | 华为终端有限公司 | 人脸图像处理方法及装置 |
US8888287B2 (en) * | 2010-12-13 | 2014-11-18 | Microsoft Corporation | Human-computer interface system having a 3D gaze tracker |
US20120274735A1 (en) * | 2011-04-28 | 2012-11-01 | Cisco Technology, Inc. | System and method for providing enhanced eye gaze in a video conferencing environment |
US8957943B2 (en) * | 2012-07-02 | 2015-02-17 | Bby Solutions, Inc. | Gaze direction adjustment for video calls and meetings |
CN203118420U (zh) * | 2012-08-21 | 2013-08-07 | 京东方科技集团股份有限公司 | 显示画面调节装置和显示装置 |
US9123142B2 (en) * | 2012-10-02 | 2015-09-01 | At&T Intellectual Property I, L.P. | Adjusting content display orientation on a screen based on user orientation |
CN103809737A (zh) * | 2012-11-13 | 2014-05-21 | 华为技术有限公司 | 一种人机交互方法及装置 |
-
2015
- 2015-02-17 CN CN201510086541.5A patent/CN105989577B/zh active Active
- 2015-05-25 WO PCT/CN2015/079708 patent/WO2016131217A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101419664A (zh) * | 2007-10-25 | 2009-04-29 | 株式会社日立制作所 | 视线方向计测方法和视线方向计测装置 |
CN101866215A (zh) * | 2010-04-20 | 2010-10-20 | 复旦大学 | 在视频监控中采用视线跟踪的人机交互装置和方法 |
CN103501688A (zh) * | 2011-03-18 | 2014-01-08 | 感官运动仪器创新传感器有限公司 | 注视点映射的方法和装置 |
CN103310186A (zh) * | 2012-02-29 | 2013-09-18 | 三星电子株式会社 | 校正图像中用户的注视方向的方法和便携式终端 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020047860A1 (en) * | 2018-09-07 | 2020-03-12 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Electronic device and image processing method |
Also Published As
Publication number | Publication date |
---|---|
CN105989577A (zh) | 2016-10-05 |
CN105989577B (zh) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016131217A1 (zh) | 一种图像校正的方法和装置 | |
JP6522708B2 (ja) | プレビュー画像表示方法及び装置、並びに端末 | |
JP6101397B2 (ja) | 写真出力方法および装置 | |
US10609282B2 (en) | Wide-area image acquiring method and apparatus | |
US9934615B2 (en) | Transition between binocular and monocular views | |
CN106250839B (zh) | 一种虹膜图像透视校正方法、装置和移动终端 | |
WO2013069048A1 (ja) | 画像生成装置および画像生成方法 | |
US10122918B2 (en) | System for producing 360 degree media | |
CN104754216A (zh) | 一种拍照方法及装置 | |
WO2019127512A1 (zh) | 拍摄设备的图像处理方法、拍摄设备及可移动平台 | |
CN101163189A (zh) | 人脸图像校正方法 | |
WO2019119410A1 (zh) | 全景拍照方法、拍照设备及机器可读存储介质 | |
JP2017033132A (ja) | 顔認証装置 | |
JP2012039591A (ja) | 撮像装置 | |
CN104270571B (zh) | 图像处理方法以及电子设备 | |
JP6924630B2 (ja) | 画像撮影装置、画像撮影プログラム、画像撮影方法 | |
WO2016101505A1 (zh) | 一种前摄像头拍摄修正方法、装置及终端 | |
TWI603225B (zh) | 液晶顯示器顯示視角的調整方法和裝置 | |
JP4871315B2 (ja) | 複眼撮影装置およびその制御方法並びにプログラム | |
WO2015198478A1 (ja) | 画像歪み補正装置、情報処理装置および画像歪み補正方法 | |
JP2011128913A (ja) | 画像処理装置及び画像処理方法 | |
TWI516120B (zh) | 產生全景影像的方法及其影像擷取裝置 | |
WO2020024196A1 (zh) | 拍摄装置参数的调节方法、控制设备及拍摄系统 | |
TWI569641B (zh) | 影像擷取方法及電子裝置 | |
WO2023040013A1 (zh) | Ar眼镜的焦距调节方法、装置、设备及可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882356 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15882356 Country of ref document: EP Kind code of ref document: A1 |