WO2016129825A1 - 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법 - Google Patents

연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법 Download PDF

Info

Publication number
WO2016129825A1
WO2016129825A1 PCT/KR2016/000807 KR2016000807W WO2016129825A1 WO 2016129825 A1 WO2016129825 A1 WO 2016129825A1 KR 2016000807 W KR2016000807 W KR 2016000807W WO 2016129825 A1 WO2016129825 A1 WO 2016129825A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
acid battery
storage system
energy storage
power
Prior art date
Application number
PCT/KR2016/000807
Other languages
English (en)
French (fr)
Inventor
허훈
정현철
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016129825A1 publication Critical patent/WO2016129825A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an energy storage system using a lead acid battery and a method of charging and discharging a lead acid battery, and more particularly, to a facility for supplying power at all times without a '0' current section while improving the charging and discharging efficiency and lifetime of the lead acid battery.
  • the present invention relates to an energy storage system and a charge / discharge method of a lead-acid battery using a lead-acid battery capable of regenerating the lead-acid battery while applying the lead-acid battery to an energy storage system.
  • Blackouts caused by lack of power supply reserves in recent summer season are becoming a major social issue. There are various ways to prevent blackout, and for the power provider, it is necessary to expand the infrastructure for maximum power supply, and to reduce power consumption as well as to reduce power consumption for the power consumer.
  • FIG. 1 is a view for explaining the effect of the maximum power supply, the power reserve ratio, and the energy storage system (ESS) in Korea.
  • the solid line of FIG. 1 shows an example of daily power consumption of the entire Korea during the summer season.
  • the dashed-dotted line in FIG. 1 is about 87 GW, which is the maximum generation capacity of Korea.
  • the summer season is always exposed to the risk of blackout due to the power reserve (Reserve Rate) less than 5%.
  • the energy stored in the lead-acid battery can be charged in a section in which power consumption is sufficient as shown in FIG. It can be secured, and this will have many socioeconomic effects.
  • Lead-acid batteries are relatively inexpensive compared to lithium-based batteries, have advantages such as durability and safety, and are already installed, so if used as an energy storage system, many effects can be expected without additional investment.
  • C P is the dischargeable capacity in [AH] ampere-hours
  • I is the actual discharge current (A) required from the load
  • k is the Pockert constant
  • t is the actual discharge rate for the lead-acid battery. Time [H].
  • FIG. 2 is a graph showing a discharge current proportional to a discharge time according to the Pockert's law of one of the lead-acid battery VGS 3000
  • Figure 3 is a graph showing the relationship between the discharge time and the total discharge current of the VGS 3000.
  • VGS 3000 when discharged to 1CA and 1204A, the discharge end voltage reaches 1.80V in 60 [min], but when discharged below 0.1CA 300A, it is possible to discharge 3060A for 600 [min]. There is a difference in total dischargeable current.
  • the sustainable discharge sustain voltage and time are relatively larger than when discharged at 1CA.
  • the efficiency of the lead-acid battery decreases rapidly. Compared to the design efficiency, the maximum decreases to 9.8% (15min) to 39.7% (60min).
  • VGS valve regulated gel type stationary
  • VRLA valve regulated lead-acid
  • the relationship between the discharge depth of a lead-acid battery and the number of possible discharges is 350 times when the discharge depth is 100%, and maximum 1,100 times when the discharge depth is 60% and 40%, respectively. After 1,550 discharges, the capacity reaches 80 [%], which is the replacement time of the lead-acid battery.
  • Lead acid batteries are rechargeable and rechargeable batteries that use lead dioxide (PbO 2 ) as an anode plate and lead (Pb) as a cathode plate, and sulfuric acid (H 2 ) as an electrolyte. SO 4 ).
  • PbO 2 lead dioxide
  • Pb lead
  • S 2 sulfuric acid
  • [Chemical Formula 1] through [Chemical Formula 3] If the reference ionization, and the separated free electrons (e -) lead to the left in the cathode plate. At this time, the generated cation (Pb 2+ ) of lead is combined with sulfate ion (SO 4 2- ) ionized in dilute sulfuric acid to become lead sulfate (PbSO 4 ).
  • Discharge means to extract and use the electrical energy stored in the lead-acid battery as shown in [Formula 1].
  • the charging process is a reverse reaction of discharge as shown in [Formula 2], and lead sulfate is converted into lead dioxide and lead by electric energy, and the electrolyte reacts with active materials of pole plate, and its specific gravity increases to a prescribed value. Electromotive force is generated.
  • lead sulfate in the discharge process is not completely decomposed and recrystallizes. Recrystallized lead sulfate, which is not decomposed, forms a coating on the electrode. This lowers the result that the sulfate ions used to form lead sulfate do not return to sulfuric acid, and the sulfuric acid is gradually reduced, so that sulfuric acid is lean around the electrode active materials. And the lead sulfate recrystallized in the electrode, the voltage is lowered, the current flow is reduced, the overall performance of the lead-acid battery is reduced.
  • a salt of sulfuric acid and a phosphate (M I 2 SO 4 ) oxide film are formed of lead sulfate. It binds to the surface.
  • the crystallization step of lead sulphate is gradually crystallized over time in the initial sponge sulfation stage, resulting in barrier sulfation, and crystallization sulfation when the crystallization is fixed It becomes a state.
  • Sulfates are greatly affected by rapid start-up current and depth of discharge (DOD), and self-discharge at different speeds, even if they remain in an equal charge or stored in nature for many years. Sulfation by) occurs.
  • DOD depth of discharge
  • the present invention has been made to solve the above problems, while improving the life and discharge efficiency of the lead-acid battery can be applied to the equipment for constant power supply without a zero current section, the lead-acid battery is applied to the energy storage system
  • the purpose of the present invention is to provide an energy storage system using lead-acid batteries capable of regenerating lead-acid batteries.
  • the object and the lead-acid battery A power converter which rectifies an external power source to charge the lead-acid battery, and converts the DC power discharged from the lead-acid battery into an AC power and supplies the load to a load;
  • the lead-acid battery comprising a control unit for controlling the power converter so that the waveform of the discharge current of the lead-acid battery has a pulse wave form without a section of '0' Is achieved by means of an energy storage system.
  • the waveform of the discharge current of the lead-acid battery is a pulse wave without a section of '0', for example, may have a sawtooth wave or square wave form.
  • the power converter may be configured to charge the lead-acid battery by rectifying the external power in the discharge mode to share the power supply to the load with the lead-acid battery, and rectifying the external power in the charging mode to charge the lead-acid battery.
  • a rectifier and an inverter for converting at least one of a DC power source from the rectifier and a DC power source discharged from the lead-acid battery into an AC power source and supplying the same to an AC power source;
  • the control unit controls the intensity and waveform of the discharge current of the lead-acid battery by controlling the output voltage of the rectifier in the discharge mode, so that the waveform of the discharge current of the lead-acid battery has a pulse wave, for example sawtooth or square wave form.
  • the rectifier can be controlled.
  • the controller may control the rectifier to have a pulse wave, for example, a sawtooth wave or a square wave, in a state in which the discharge current of the lead-acid battery maintains a predetermined discharge current amount in the discharge mode.
  • a pulse wave for example, a sawtooth wave or a square wave
  • the controller may control the rectifier to have a pulse wave, for example, a sawtooth wave or a square wave shape, in which the discharge current amount is 0.1CA.
  • the apparatus may further include a voltage change detector configured to detect a voltage change of the lead acid battery;
  • the controller may control the discharge current of the lead-acid battery to maintain the amount of discharge current by adjusting the output voltage of the rectifier in association with the voltage change of the lead-acid battery detected by the voltage change detector.
  • control unit is provided to be operable in the charge limit mode to limit the charge of the lead-acid battery;
  • the rectifier may control the output voltage so that the discharge current of the lead-acid battery maintains zero in the charge limit mode.
  • the controller may control the rectifier so that the waveform of the charging current charged to the lead-acid battery in the charging mode has a pulse wave shape without a section of '0'.
  • the waveform of the charging current is a pulse wave having no section of '0', for example, may have a sawtooth wave or a square wave shape.
  • the power converter is provided in the form of a bi-directional converter connected in series to the lead-acid battery, converts the DC power output from the lead-acid battery in the discharge mode to AC power to share the power supply to the load with an external power source ;
  • the controller may control the conversion of the power converter to AC power so that the discharge current of the lead acid battery has a pulse wave, for example, a sawtooth wave or a square wave shape in the discharge mode.
  • the controller may control the conversion of the power converter into AC power so as to have a pulse wave, for example, a sawtooth wave or a square wave shape in a state in which the discharge current of the lead acid battery maintains a predetermined discharge current amount in the discharge mode. have.
  • a pulse wave for example, a sawtooth wave or a square wave shape in a state in which the discharge current of the lead acid battery maintains a predetermined discharge current amount in the discharge mode. have.
  • the controller may control the conversion of the power converter into an AC power source so as to have a pulse wave, for example, a sawtooth wave or a square wave shape while the discharge current amount is 0.1CA.
  • a pulse wave for example, a sawtooth wave or a square wave shape while the discharge current amount is 0.1CA.
  • the apparatus may further include a voltage change detector configured to detect a voltage change of the lead acid battery;
  • the controller may control the power converter to adjust the discharge current of the lead-acid battery to be linked to the voltage change of the lead-acid battery detected by the voltage change detector, so that the discharge current of the lead-acid battery maintains the amount of discharge current. Can be.
  • the controller may control the power converter such that a waveform of the charging current charged to the lead acid battery has a pulse wave shape in which no interval of '0' is provided in the charging mode for charging the lead acid battery.
  • the waveform of the charging current is a pulse wave having no section of '0', for example, may have a sawtooth wave or a square wave shape.
  • the waveform of the charging current or the discharge current is a pulse wave without a section of '0', for example, may have a sawtooth wave or a square wave shape.
  • according to the present invention can be applied to the equipment for the constant power supply without improving the life and discharge efficiency of the lead-acid battery, without a zero current interval, and the regeneration of the lead-acid battery while applying the lead-acid battery to the energy storage system
  • An energy storage system using lead acid batteries is provided.
  • 1 is a view for explaining the effect of the maximum power supply and power reserve rate, and the energy storage system of Korea,
  • VGS 3000 which is one of the lead-acid batteries
  • VGS 3 is a graph showing the relationship between the discharge time and the total discharge current of the VGS 3000
  • FIG. 5 is a view showing the configuration of an energy storage system using a lead-acid battery according to an embodiment of the present invention
  • FIG. 6 is a control block diagram of an energy storage system using a lead acid battery according to an embodiment of the present invention
  • FIG. 7 is a view showing an equivalent circuit of the energy storage system shown in FIG.
  • FIGS. 8 and 9 are views for explaining the experimental results of the energy storage system using a lead-acid battery according to an embodiment of the present invention.
  • FIG. 10 is a view showing the configuration of an energy storage system using a lead-acid battery according to another embodiment of the present invention.
  • FIG. 11 is a view for explaining an operating method of the energy storage system according to the present invention.
  • FIG. 13 is a view showing another example of the waveform of the discharge current of the lead-acid battery of the energy storage system according to the present invention.
  • An energy storage system using a lead acid battery includes a lead acid battery; A power converter which rectifies an external power source to charge the lead-acid battery, and converts the DC power discharged from the lead-acid battery into an AC power and supplies the load to a load; When operating in the discharge mode for discharging the lead-acid battery, it characterized in that it comprises a control unit for controlling the power converter so that the waveform of the discharge current of the lead-acid battery has a pulse wave form without a section of '0'.
  • FIG. 5 is a view showing the configuration of the energy storage system 100 using the lead-acid battery 110 according to an embodiment of the present invention
  • Figure 6 is an energy using the lead-acid battery 110 according to an embodiment of the present invention.
  • a control block diagram of the storage system 100 is shown.
  • the energy storage system 100 using the lead acid battery 110 according to the present invention includes a lead acid battery 110, a power converter 120, and a controller 160.
  • the energy storage system 100 according to an embodiment of the present invention may include a discharge switch 141 and a bypass switch 151.
  • the lead-acid battery 110 is charged and discharged by using the external power source 300 to supply power to the load 500.
  • the power converter 120 rectifies the external power supply 300 to charge the lead-acid battery 110, converts the DC power discharged from the lead-acid battery 110 into AC power, and supplies the load 500 to the load 500.
  • the controller 160 controls the power converter 120 so that the waveform of the discharge current of the lead-acid battery 110 has a sawtooth wave form when operating in the discharge mode for discharging the lead-acid battery 110.
  • the power converter 120 may include a rectifier 121 and an inverter 122.
  • the rectifier 121 is connected in parallel with the lead-acid battery 110, and rectifies the external power supply 300 in the charging mode to charge the lead-acid battery (110). In addition, the rectifier 121 rectifies the external power source 300 in the discharge mode to share the power supply to the load 500 with the lead-acid battery 110.
  • the inverter 122 converts the DC power output from the lead acid battery 110 into AC power in the discharge mode of the lead acid battery 110 to supply the load 500 to the load 500, and also converts the DC power from the rectifier 121 to AC power. It converts and supplies it to the load 500.
  • the controller 160 controls the output voltage of the rectifier 121 in the discharge mode of the lead-acid battery 110 to control the intensity and waveform of the discharge current of the lead-acid battery 110. At this time, as described above, the controller 160 controls the rectifier 121 so that the waveform of the discharge current of the lead-acid battery 110 has a sawtooth wave shape.
  • FIG. 7 shows an equivalent circuit of the energy storage system 100 shown in FIG. 5.
  • V B is the voltage of the lead-acid battery 110
  • V R is the voltage of the rectifier 121
  • I 1 is the output current of the rectifier 121
  • I 2 is the lead-acid battery 110.
  • Is the discharge current of I I 3 is the output current to the load 500
  • r R is the internal impedance of the rectifier 121
  • r B is the internal impedance of the lead-acid battery 110
  • R is the Impedance.
  • the controller 160 controls the rectifier 121 of the power converter 120 of the lead-acid battery 110 It will prevent overdischarge and overcharge.
  • Equation 2 the voltage and current equations flowing through each impedance shown in FIG. 7 may be represented by Equation 2.
  • V R + (I 1 r R ) + (I 1 + I 2 ) R 0
  • r R and r B may be slightly changed by the ambient temperature of the rectifier 121, but can be designated as a constant (k) assuming that the ambient temperature is constant under the conditions that are constructed in the same place.
  • Equation 3 can be expressed as shown in [Equation 4] through.
  • I 1 k (V R -V B )
  • the output current I 1 of the rectifier 121 is determined by the voltage V R of the rectifier 121 and the voltage V B of the lead-acid battery 110, and the controller 160 controls the voltage V R of the rectifier 121.
  • the output current of the rectifier 121 is adjusted, and as a result, the discharge current of the lead-acid battery 110 can be adjusted.
  • the controller 160 of the energy storage system 100 may control the rectifier 121 to have a sawtooth wave shape in a state in which the discharge current of the lead-acid battery 110 maintains a predetermined discharge current amount. That is, the lead-acid battery 110 maintains the power distributed to the supply power to the load 500 as the amount of discharge current, and controls the voltage of the rectifier 121 so that the rectifier 121 shares the portion exceeding the amount of discharge current. do.
  • the controller 160 controls the amount of discharge current of the lead-acid battery 110 to be maintained at 0.1CA, for example, 0.1CA15%.
  • the value is a characteristic value according to the type of lead-acid battery 110.
  • the voltage of the lead-acid battery 110 is variable according to the type, ambient temperature, discharge time, etc. of the lead-acid battery (110). That is, the internal impedance r R of the lead acid battery 110 is changed according to the discharge characteristics, the ambient temperature, and the load 500 conditions, thereby changing the voltage V R of the lead acid battery 110. Therefore, the intensity of the required I 2 is adjusted by varying V R according to the voltage V B of the lead-acid battery 110 and the output current I 3 to the load 500, which are changed from time to time, and also through the waveform change of the voltage.
  • the discharge current of the storage battery 110 can be adjusted in the form of a sawtooth wave.
  • the energy storage system 100 may include a voltage change detection unit 170 for detecting a voltage change of the lead-acid battery (110).
  • the voltage change detector 170 includes a load current detector 171 for detecting an output current to the load 500, and a lead acid battery voltage detector 172 for detecting a voltage of the lead acid battery 110. It may include.
  • the controller 160 controls the voltage of the rectifier 121 in response to the voltage change of the lead-acid battery 110 based on the detection result of the load current detector 171 and the lead-acid battery voltage detector 172. Done.
  • the controller 160 may control the rectifier 121 so that the waveform of the charging current charged to the lead-acid battery 110 in the charging mode has a pulse wave form. Through this, regeneration of the lead acid battery 110 is possible even during charging.
  • the lead-acid battery 110 uses VGS 3000 [AH], a 2.0V 24 cell lead-acid battery 110, a total of 6000 [AH] is applied in two sets. Using rectifier 121 of input 380V and output 53.5V, load 500 is set to 1200A on average. The discharge current of the lead-acid battery 110 is 0.1CA% and is adjusted to have a sawtooth wave shape as described above.
  • FIG. 8A illustrates a current waveform in which the lead-acid battery 110 autonomously discharges in a state where the external power source 300 is not supplied in a conventional manner. At this time, since the current 1180A of the load 500 discharges from the lead-acid battery 110, it discharges to about 0.2CA.
  • FIG 8 (b) shows a current waveform discharged by the lead-acid battery 110 of the energy storage system 100 according to the present invention.
  • the lead-acid battery 110 is controlled in the range of 600A, which is 0.1CA% (reference current value), and the current insufficient in the load 500 is shared by the rectifier 121 connected in parallel to about 580A. That is, the load 500 receives the current of the rectifier 121 and the lead-acid battery 110 at the same time.
  • the total discharge possible time can be increased by about 3.33 times based on FIG. 3. That is, when the lead-acid battery 110 is autonomous discharge is possible to discharge for about 3 hours, in the energy storage system 100 according to the present invention it is possible to discharge for about 10 hours. In addition, it can be seen that the total discharge current is increased by about 150% from 2000A to 3000A based on FIG. 2.
  • the rest time is made through the sawtooth wave generated within the range of 0.1CA, which is the discharge current of the lead acid battery 110, so that the lead acid battery 110 can be regenerated even during operation. It is known that the battery is regenerated when discharged to the output current of the pulse waveform having an output current section of '0'.
  • the lead-acid battery 110 discharges a pulse waveform current
  • the lead-acid battery 110 is regenerated.
  • This is called a differential pulse voltammetry (DPV) method.
  • the principle of the differential pulse voltammetry (DPV) method is to have a procedure in which the lead-acid battery 110 is recovered through a rest time, which is an output current section of '0' during discharge. This relaxes the nodularity of sulfate.
  • the lead-acid battery 110 is discharged with a sawtooth wave-type output current having no output current section of '0', thereby providing the same effect.
  • 9 (a) shows a state in which the sulfate crystallized on the electrode surface of the lead-acid battery 110 through the autonomous discharge
  • Figure 9 (b) is a sawtooth wave form in the energy storage system 100 according to the present invention The surface of the electrode after discharging the lead-acid battery 110 at the output current is shown, and it can be confirmed that crystallization is relaxed.
  • the discharge current of the lead-acid battery 110 is supplied to the load 500 within the range of 0.1CA of the total capacity without a section of '0' and the rest is supplied through the rectifier 121, the uninterruptible energy storage system 100 Implementation of.
  • control unit 160 may operate in the charge limit mode to limit the charge to the lead-acid battery (110).
  • the charging may be limited at the present time, which will be described in detail later.
  • the concept is to
  • the discharge switch 141 interrupts the power supplied from the lead acid battery 110 to the load 500.
  • the bypass switch 151 is provided in the bypass line 150 connected in parallel with the lead-acid battery 110 and the rectifier 121 to interrupt the bypass line 150.
  • the discharge switch 141 when supplying power to the load 500 in a state in which the discharge of the lead-acid battery 110 is cut off, the discharge switch 141 is turned off and the bypass switch 151 is turned on to turn on the external power source 300. ) May be bypassed and supplied to the load 500.
  • FIG. 10 An energy storage system 100a according to another embodiment of the present invention will be described with reference to FIG. 10.
  • a control block diagram of the energy storage system 100a according to another embodiment of the present invention will be described with reference to FIG. 6.
  • Energy storage system 100a includes a lead-acid battery 110, a power converter 120a and the controller 160.
  • the lead-acid battery 110 is charged and discharged by using the external power source 300 to supply power to the load 500.
  • the power converter 120a rectifies the external power supply 300 to charge the lead-acid battery 110, converts the DC power discharged from the lead-acid battery 110 into AC power, and supplies the load 500 to the load 500.
  • the controller 160 controls the power converter 120 so that the waveform of the discharge current of the lead-acid battery 110 has a sawtooth wave form when operating in the discharge mode for discharging the lead-acid battery 110.
  • the power converter 120a according to another embodiment of the present invention is provided in the form of a bidirectional converter connected in series to the lead acid battery 110.
  • the power converter 120a according to another embodiment of the present invention converts the DC power output from the lead-acid battery 110 into an AC power source in the discharge mode, thereby sharing the power supply to the load 500 with the external power source 300. do.
  • the controller 160 controls the conversion of the power converter 120a to AC power so that the discharge current of the lead-acid battery 110 has a sawtooth wave shape in the discharge mode. That is, in the above-described embodiment, the controller 160 controls the output voltage of the rectifier 121 of the power converter 120 to control the waveform of the discharge current of the lead-acid battery 110 as an example. In the example, the waveform of the discharge current of the lead-acid battery 110 is controlled by controlling the AC-DC function of the power converter 120a of the controller 160.
  • control unit 160 converts the power converter 120a into an AC power source so that the discharge current of the lead-acid battery 110 has a sawtooth wave shape while maintaining the discharge current amount in the discharge mode as in the above-described embodiment. Can be controlled.
  • the controller 160 may control the discharge current to maintain a state of 0.1CA.
  • the controller 160 by adjusting the discharge current of the lead-acid battery 110 to be linked to the voltage change of the lead-acid battery 110 is detected by the voltage change detection unit 170,
  • the power converter 120a may be controlled such that the discharge current of the lead storage battery 110 maintains the discharge current amount.
  • controller 160 may control the power converter 120a such that the waveform of the charging current charged to the lead-acid battery 110 in the charging mode has a pulse wave shape. Through this, regeneration of the lead acid battery 110 is possible even during charging.
  • the present invention proposes a three-stage algorithm for estimating consumption, preparing indicators through the most inefficient calculation, and power system tracking and discharging them.
  • the prediction and guidance may be applied to a variety of known methods, the following briefly describes an example of the prediction and guidance.
  • the present invention predicts the power consumption of the target date using a prediction algorithm using the LS-SVR, which can be divided into three parts.
  • the first process predicts the power consumption of the target date by using the historical data (LS-SVR) algorithm.
  • the second process finds a dynamic model between power consumption and temperature change and applies it to the data predicted in the first process.
  • the standard deviation is used to compare the difference between the correction result of the second process and the actual value to determine the result of the correction in the second process.
  • the lead-acid battery in the section 1 is applicable. (110) is discharged, and the section (2) is restrained from being charged in the discharged state, and charging is performed in section (3), which is the cheapest section.
  • the limited energy storage system 100, 100a corresponding to the amount of power corresponding to section 4 is controlled to be optimally discharged.
  • the discharge amount of the lead-acid battery 110 available in the most expensive section can be used. This can be expressed as shown in [Equation 5].
  • the discharge of the lead-acid battery 110 is controlled such that an output current in the form of a sawtooth wave is formed by the control of the power converters 120 and 120a, and the rectifier 121 of the power converter 120 or the external power source ( 300 and the amount of current is supplied to supply power to the load 500.
  • v b and i b are the voltage and current of the lead-acid battery 110, respectively.
  • the left term is the total discharge capacity in the contracted power plan for each time zone, and the discharge time of the lead-acid battery 110 may be multiplied in the right term.
  • the equivalent circuit shown in FIG. 7 will be described as an example. Since the lead acid battery 110 is discharged, the rectifier 121 is connected to the rectifier 121 in parallel, and thus the rectifier 121 is charged. Power is supplied only to the load 500, and the lead-acid battery 110 is controlled not to be charged.
  • section 2 is controlled by the method of waiting to charge in section 3, which is a cheap section of the home.
  • the controller 160 operates in the charge limit mode as described above, and by controlling the output voltage V R of the rectifier 121 so that the discharge current I 2 of the lead-acid battery 110 is maintained as a result,
  • the technical standard of IEEE Std 1188-1996 was applied.
  • the indirect and non-destructive method by measuring the internal impedance of the lead-acid battery 110 is measured. Judging the replacement time. In general, when the impedance of the lead-acid battery 110 is increased by 20% or more based on the initial steady state 100%, it is recommended to replace the battery.
  • the lifespan of the lead-acid battery 110 is measured by measuring the impedance of the lead-acid battery 110 of the group to which the energy storage system 100 and 100a according to the present invention is applied and the group using the conventional autonomous charging and discharging. Was verified.
  • the impedance increases from December to January in the verification period, because the impedance decreases when the temperature decreases due to seasonal factors, and the impedance decreases when the temperature rises, so the impedance is applied at the time of application. It was verified using the recovery.
  • the lead-acid battery 110 to which the energy storage systems 100 and 100a according to the present invention are applied is named Facility-A to D for convenience, and the impedance of the first cell of each group was measured.
  • 12 (a) shows an impedance change graph of Facility-A as an example, and was changed from 0.31 [m] to 0.31 [m]. That is, it can be confirmed that the result is recovered from the change according to the season.
  • the comparison target group to which the energy storage system (100, 100a) according to the present invention is not applied was used lead-acid batteries produced at the same capacity and the same date of the same manufacturer, and CC-A, CC-B, CC-C, CC- It was named D-1, CC-D-2, CC-E-1, CC-E-2, and CC-F.
  • Figure 12 (b) shows a graph of the impedance change of the lead-acid battery of CC-A, it can be seen that increased from 0.156 [m] to 0.158 [m].
  • [Table 1] shows the change of the impedance of Facility-A, Facility-B, Facility-C, Facility-D, [Table 2] CC-A, CC-B, CC-C, CC-D-1 , Impedance changes of CC-D-2, CC-E-1, CC-E-2, and CC-F are shown.
  • the energy storage systems 100 and 100a according to the present invention can significantly increase the life of the lead-acid battery.
  • the discharge current of the lead-acid battery 110 of the energy storage systems 100 and 100a according to the present invention is controlled to have a sawtooth wave shape, as shown in FIG.
  • the discharge current of the lead-acid battery 110 of the energy storage system (100, 100a) according to the present invention is a pulse wave form without a section of '0', for example, as shown in Figure 13, to have a square wave form Not only can it be controlled, but also the effect of the sawtooth-type discharge current can be obtained.
  • the charging current of the lead-acid battery 110 of the energy storage system 100, 100a also has a pulse wave form without a section of '0', for example, as shown in FIG. Of course, it can be controlled to have.
  • control unit 170 voltage change detection unit
  • load current detection unit 172 lead acid battery voltage detection unit
  • the present invention can be applied to the field of charge and discharge of lead-acid batteries, and can be applied to energy storage systems using lead-acid batteries.

Abstract

본 발명은 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법에 관한 것이다. 본 발명에 따른 에너지 저장 시스템은 연축전지와; 외부 전원을 정류하여 상기 연축전지를 충전하고, 상기 연축전지로부터 방전되는 직류 전원을 교류 전원으로 변환하여 부하에 공급하는 전력 변환기와; 상기 연축전지를 방전시키는 방전 모드로 동작할 때, 상기 연축전지의 방전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 전력 변환기를 제어하는 제어부를 포함하는 것을 특징으로 한다. 이에 따라, 연축전지의 수명과 방전효율을 향상시키면서도 '0' 전류 구간 없이 상시 전원 공급용 설비에도 적용이 가능하며, 연축전지를 에너지 저장 시스템에 활용하면서도 연축전지의 재생이 가능하게 된다.

Description

연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법
본 발명은 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법에 관한 것으로서, 보다 상세하게는 연축전지의 충전 및 방전 효율과 수명을 향상시키면서도 '0' 전류 구간 없이 상시 전원 공급용 설비에도 적용이 가능하며, 연축전지를 에너지 저장 시스템에 적용하면서도 연축전지의 재생이 가능한 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법에 관한 것이다.
최근 여름 시즌의 전력공급 예비율 부족으로 인해 발생한 블랙아웃(Blackout)이 사회적으로 큰 이슈가 되고 있다. 블랙아웃을 예방하는 방법은 다양하게 존재하고 있는데, 전력 공급자 측면에서는 최대전력공급을 위한 인프라를 증설하고, 전력 수요자 입장에서는 전력량 절감뿐 만 아니라 피크전력시간에 전력소비를 효과적으로 억제해야 할 것이다.
한국의 여름 시즌의 주간과 야간의 소비전력 차이는 57% 정도이고, 에너지피크에 따른 수요전력을 감당하기 위해 고비용(LPG, 유류)의 수입 원료를 통한 발전시설을 이용하고 있다. 즉 원자력 발전이 감당하는 기저부하를 제외한 57%에 해당하는 변동부하를 고가의 발전원료로 충당하고 있는 실정이다. 이 때문에, 최근에 한국을 비롯한 많은 국가에서 시간대별 전력요금의 차등을 더욱 크게 하고 있다.
도 1은 한국의 최대 공급 전력과 전력 예비율, 및 에너지 저장 시스템(ESS : Energy Storage System)의 효과를 설명하기 위한 도면이다. 도 1의 실선은 여름 시즌의 한국 전체의 일일 시간대별 전력사용량의 예를 나타내고 있다. 도 1의 1점 쇄선은 한국의 최대발전가능용량으로 대략 87GW 정도이다. 도 1에서 확인할 수 있듯이, 여름 시즌에서는 5% 미만의 전력 예비율(Reserve Rate)로 인하여 항상 블랙아웃의 위험에 노출되어 있는 실정이다.
만일, 연축전지에 저장된 전력을, 도 1에 도시된 바와 같이 전력 소비가 여유로운 구간에 충전을 하고, 전력피크시 방전을 수행하는 에너지 저장 시스템을 활용할 수 있다면, 2점 쇄선과 같이 충분한 전력 예비율을 확보할 수 있고, 이는 사회경제적으로 많은 효과를 얻을 수 있을 것이다.
한편, IT 인프라의 증가로 통신사, 은행, IDC, 산업단지, 정부기관 등에서는 안정적인 서비스를 위한 비상전력용 2차전지로 연축전지(Lead-Acid Battery)를 대량 보유하고 있다. 연축전지는 리튬(Lithium) 계열의 전지와 대비할 때 상대적으로 가격이 저렴하고, 내구성과 안전성 등의 장점이 있으며 기존에 설치되어 있기 때문에 에너지 저장 시스템으로 활용한다면 추가적인 투자없이도 많은 효과를 기대할 수 있다.
그러나, 연축전지를 에너지 저장 시스템의 용도로 사용하는데 있어, 주기적인 충전 및 방전이 진행되는 경우 효율이 급격히 저하될 뿐만 아니라, 방전회수가 증가함에 따라 수명 또한 급격히 하락하는 문제점이 있다.
포이케르트 법칙(Peukert's law)에 의하면 연축전지의 최대방전가능용량은 방전전류와 방전시간에 비례하는데, 연축전지의 방전시간당 전류방전 총 용량은 [수학식 1]과 같이 나타낼 수 있다.
[수학식 1]
CP = Ikt
여기서, CP는 방전가능 용량으로 [AH] ampere-hours로 표현하고, I는 부하로부터 요구되는 실제 방전전류(A)이고, k는 포이케르트 상수이고, t는 연축전지의 방전을 위한 실제 시간[H]이다.
도 2는 연축전지의 하나인 VGS 3000의 포이케르트 법칙에 따른 방전시간에 비례하는 방전전류를 나타낸 그래프이고, 도 3은 VGS 3000의 방전시간과 방전가능 총 전류와의 관계를 나타낸 그래프이다.
25를 기준으로 VGS 3000의 경우 1CA, 1204A로 방전하면 60[min]안에 방전종지전압 1.80V에 도달하지만, 0.1CA 300A이하로 방전하면 600[min]동안 총 3060A방전 가능하여, 약 2.5배의 총 방전가능전류의 차이가 있다.
만일 Battery가 방전전류를 0.1CA로 방전하는 경우에는 지속 가능한 방전 유지전압 및 시간이 1CA로 방전할 때보다 상대적으로 크다. 즉, 부하가 크면(예컨대, 큰 전류를 급속히 방전하면) 연축전지의 효율이 급속히 저하되어. 설계효율 대비 최대 9.8%(15min)~39.7%(60min)로 저하되게 된다.
현재 산업계에서는 일반적으로 투자비를 고려해서, 최대부하전류를 기준으로 하여, 연축전지의 방전 전류량을 0.5CA~1CA로 설계(방전가능시간 1~3hr)하는 바, 이를 기준으로 에너지 저장 시스템으로 활용한다면 효율이 크게 저하됨을 확인할 수 있다.
연축전지의 방전횟수 및 방전심도(DOD)와 수명과의 관계를 살펴보면, 다양한 연축전지의 종류별로 음극, 양극, 전해질, 분리막 등에 사용되는 재료, 연축전지의 용량, 전압, 전류 등에 따라 방전심도가 수명에 미치는 영향이 상이하기 때문에, 본 명세서에서는 장수명 밀폐형 연축전지의 일종인 VGS(Valve regulated Gel type Stationary), VRLA(Valve Regulated Lead-Acid)를 대상으로 설명한다.
연축전지의 방전심도와 방전가능횟수와의 관계는 일반적으로 알려진 바와 같이, 방전심도를 100%로 하였을 경우 방전가능횟수는 350회이며, 방전심도를 60%, 40%로 하였을 경우 각각 최대 1,100회, 1,550회 방전을 실시하게 되면 연축전지의 수명의 교체시기인 80[%] 용량수준에 도달한다.
이러한 현상이 발생되는 원인이 되는 연축전지의 반응 메커니즘을 설명하면 다음과 같다.
연축전지는 충전 및 방전이 가능한 2차 전지로서 애노드 플레이트(Anode plate)로는 이산화납(PbO2)을 사용하고, 캐소드 플레이트(Cathode plate)로는 납( Pb)을 사용하여, 전해액으로 황산(H2SO4)을 사용한다. [화학식 1] 내지 [화학식 3]을 참조하면 납이 이온화하고, 분리된 자유전자(e-)가 캐소드 플레이트 상에 남는다. 이 때, 생성된 납의 양이온(Pb2+)은 묽은 황산 중에 이온화하여 있는 황산이온(SO4 2-)과 화합하여 황산납(PbSO4)이 된다.
이산화납(PbO2)과 묽은 황산이 반응하여 이온화되고, 4가의 납이온(Pb4+), 2가의 황산이온(SO4 2-), 그리고 물이 환원되고, 4가의 납이온은 애노드에 전자를 빼앗고, 자신은 2가의 납이온이 된다. 그리고, 2가의 납이온이 2가의 황산이온과 반응하여 전기적으로 중선인 황산납이 된다.
[화학식 1]
Pb + SO4 2- <-> PbSO4 + 2e-
[화학식 2]
PbO2 + SO4 2- + 4H+ + 2e- <-> PbSO4 + 2H2O
[화학식 3]
PbO2 + Pb + 2H2SO4 <-> 2PbSO4 + 2H2O
방전은 [화학식 1]과 같이 연축전지에 저장되어 있던 전기에너지를 빼내어 쓰는 것을 의미한다. 충전과정은 [화학식 2]와 같이 방전의 역반응이며 황산납이 전기에너지에 의해 이산화납과 납으로 변하고, 전해액은 극판(Pole plage)의 활물질(Active materials)과 반응하여 비중이 규정치까지 증가하고, 기전력(Electromotive force)이 발생한다.
상기와 같은 과정이 반복되면서 방전과정에서의 황산납이 완전히 분해되지 못하고 재결정을 이룬다. 분해가 되지 않은 재결정의 황산납은 전극에서 피막을 형성하게 된다. 이는 황산납을 형성하는데 사용되었던 황산이온이 다시 황산으로 돌아가지 못하는 결과를 낮게 되어 황산이 점점 줄어들어서 전극 활물질(Active materials) 주위에 황산은 희박해진다. 그리고 전극에 재결정된 황산납으로 인해 전압이 저하되고, 전류의 흐름이 감소되어 연축전지의 전체 성능이 저하된다.
상기와 같이 연축전지가 충전 및 방전을 지속적으로 진행하게 되면, 도 4의 확대 영역에 도시된 바와 같이, 유산연화막(Salt of sulfuric acid), 인황산염(MI 2SO4) 산화막이 황산납의 표면에 결착된다.
황산납의 결정화 단계는 초기의 스폰지 황산화(Spongy sulfation) 단에서 시간이 지날수록 점차 일부 결정화가 진행되어 배리어 황산화(Barrier sulfation) 상태가 되고, 결정화가 고착화되면 크리스탈라이즈드 황산화(Crystallized sulfation) 상태가 된다.
황산염은 급격한 충방전(Start-up) 전류와 방전심도(DOD)에 크게 영향을 받게 되며, 수년간 균등충전(Equality charge) 상태를 유지하거나 자연 상태로 보관되더라도, 속도는 다르지만 자가 방전(Self-discharge)에 의한 황산화 현상은 발생한다.
따라서, 연축전지에 있어 상술한 바와 같은 연축전지의 효율 문제와 황산염에 의한 문제를 해결하지 않고서는 연축전지를 에너지 저장 시스템에 사용하기 어렵게 된다.
[선행기술문헌]
한국등록특허 제10-0811608호
한국등록특허 제10-0793666호
이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 연축전지의 수명과 방전효율을 향상시키면서도 0 전류 구간 없이 상시 전원 공급용 설비에도 적용이 가능하며, 연축전지를 에너지 저장 시스템에 적용하면서도 연축전지의 재생이 가능한 연축전지를 이용한 에너지 저장 시스템을 제공하는데 그 목적이 있다.
상기 목적은 본 발명에 따라, 연축전지와; 외부 전원을 정류하여 상기 연축전지를 충전하고, 상기 연축전지로부터 방전되는 직류 전원을 교류 전원으로 변환하여 부하에 공급하는 전력 변환기와; 상기 연축전지를 방전시키는 방전 모드로 동작할 때, 상기 연축전지의 방전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 전력 변환기를 제어하는 제어부를 포함하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템에 의해서 달성된다.
여기서, 상기 연축전지의 방전 전류의 파형은 '0'의 구간이 없는 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 가질 수 있다.
또한, 상기 전력 변환기는 상기 방전 모드에서 상기 외부 전원을 정류하여 부하로의 전원 공급을 상기 연축전지와 분담하고, 상기 연축전지를 충전하는 충전 모드에서 상기 외부 전원을 정류하여 상기 연축전지를 충전하는 정류기와, 상기 정류기로부터의 직류 전원과 상기 연축전지로부터 방전되는 직류 전원 중 적어도 하나를 교류 전원으로 변환하여 부하로 공급하는 인버터를 포함하며; 상기 제어부는 상기 방전 모드에서 상기 정류기의 출력 전압을 제어하여 상기 연축전지의 방전 전류의 세기와 파형을 제어하되, 상기 연축전지의 방전 전류의 파형이 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 갖도록 상기 정류기를 제어할 수 있다.
그리고, 상기 제어부는 상기 방전 모드에서 상기 연축전지의 방전 전류가 기 설정된 방전 전류량을 유지하는 상태로 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 갖도록 상기 정류기를 제어할 수 있다.
그리고, 상기 제어부는 상기 방전 전류량이 0.1CA가 유지되는 상태로 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 갖도록 상기 정류기를 제어할 수 있다.
또한, 상기 연축전지의 전압 변화를 감지하는 전압 변화 감지부를 더 포함하며; 상기 제어부는 상기 전압 변화 감지부에 의해 감지되는 상기 연축전지의 전압 변화에 연동되게 상기 정류기의 출력 전압을 조절하여, 상기 연축전지의 방전 전류가 상기 방전 전류량을 유지하도록 제어할 수 있다.
또한, 상기 제어부는 상기 연축전지의 충전을 제한하는 충전 제한 모드로 동작 가능하게 마련되고; 상기 충전 제한 모드에서 상기 연축전지의 방전 전류가 0을 유지하도록 상기 정류기를 출력 전압을 제어할 수 있다.
또한, 상기 제어부는 상기 충전 모드에서 상기 연축전지로 충전되는 충전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 정류기를 제어할 수 있다.
여기서, 상기 충전 전류의 파형은 '0'의 구간이 없는 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 가질 수 있다.
또한, 상기 전력 변환기는 상기 연축전지에 직렬로 연결되는 양방향 컨버터 형태로 마련되어, 상기 방전 모드에서 상기 연축전지로부터 출력되는 직류 전원을 교류 전원으로 변환하여 상기 부하로의 전원 공급을 외부 전원과 분담하며; 상기 제어부는 상기 방전 모드에서 상기 연축전지의 방전 전류가 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 갖도록 상기 전력 변환기의 교류 전원으로의 변환을 제어할 수 있다.
그리고, 상기 제어부는 상기 방전 모드에서 상기 연축전지의 방전 전류가 기 설정된 방전 전류량을 유지하는 상태로 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 갖도록 상기 전력 변환기의 교류 전원으로의 변환을 제어할 수 있다.
그리고, 상기 제어부는 상기 방전 전류량이 0.1CA가 유지되는 상태로 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 갖도록 상기 전력 변환기의 상기 전력 변환기의 교류 전원으로의 변환을 제어할 수 있다.
또한, 상기 연축전지의 전압 변화를 감지하는 전압 변화 감지부를 더 포함하며; 상기 제어부는 상기 전압 변화 감지부에 의해 감지되는 상기 연축전지의 전압 변화에 연동되게 상기 연축전지의 방전 전류를 조절하여, 상기 연축전지의 방전 전류가 상기 방전 전류량을 유지하도록 상기 전력 변환기를 제어할 수 있다.
또한, 상기 제어부는 상기 연축전지를 충전하는 충전 모드에서 상기 연축전지로 충전되는 충전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 전력 변환기를 제어할 수 있다.
여기서, 상기 충전 전류의 파형은 '0'의 구간이 없는 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 가질 수 있다.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 연축전지로 충전되는 충전 전류와 상기 연축전지로부터 방전되는 방전 전류 중 적어도 하나의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 제어하는 단계를 포함하는 것을 특징으로 하는 연축전지의 충방전 방법에 의해서도 달성된다.
여기서, 상기 충전 전류 또는 상기 방전 전류의 파형은 '0'의 구간이 없는 펄스파로, 예를 들어 톱니파 또는 구형파 형태를 가질 수 있다.
상기와 같은 구성에 따라, 본 발명에 따르면 연축전지의 수명과 방전효율을 향상시키면서도 0 전류 구간 없이 상시 전원 공급용 설비에도 적용이 가능하며, 연축전지를 에너지 저장 시스템에 적용하면서도 연축전지의 재생이 가능한 연축전지를 이용한 에너지 저장 시스템이 제공된다.
도 1은 한국의 최대 공급 전력과 전력 예비율, 및 에너지 저장 시스템의 효과를 설명하기 위한 도면이고,
도 2는 연축전지의 하나인 VGS 3000의 포이케르트 법칙에 따른 방전시간에 비례하는 방전전류를 나타낸 그래프이고,
도 3은 VGS 3000의 방전시간과 방전가능 총 전류와의 관계를 나타낸 그래프이고,
도 4는 황산납의 표면에 결착된 황산염의 현미경 사진이고,
도 5는 본 발명의 일 실시예에 따른 연축전지를 이용한 에너지 저장 시스템의 구성을 나타낸 도면이고,
도 6은 본 발명의 일 실시예에 따른 연축전지를 이용한 에너지 저장 시스템의 제어블럭도이고,
도 7은 도 5에 도시된 에너지 저장 시스템의 등가회로를 나타낸 도면이고,
도 8 및 도 9는 본 발명의 일 실시예에 따른 연축전지를 이용한 에너지 저장 시스템의 실험 결과를 설명하기 위한 도면이고,
도 10은 본 발명의 다른 실시예에 따른 연축전지를 이용한 에너지 저장 시스템의 구성을 나타낸 도면이고,
도 11은 본 발명에 따른 에너지 저장 시스템의 운영 방법을 설명하기 위한 도면이고,
도 12는 본 발명에 따른 에너지 저장 시스템의 효과를 설명하기 위한 도면이고,
도 13은 본 발명에 따른 에너지 저장 시스템의 연축전지의 방전 전류의 파형의 다른 예를 나타낸 도면이다.
본 발명에 따른 연축전지를 이용한 에너지 저장 시스템은 연축전지와; 외부 전원을 정류하여 상기 연축전지를 충전하고, 상기 연축전지로부터 방전되는 직류 전원을 교류 전원으로 변환하여 부하에 공급하는 전력 변환기와; 상기 연축전지를 방전시키는 방전 모드로 동작할 때, 상기 연축전지의 방전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 전력 변환기를 제어하는 제어부를 포함하는 것을 특징으로 한다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 따른 실시예들에 대해 상세히 설명한다.
도 5는 본 발명의 일 실시예에 따른 연축전지(110)를 이용한 에너지 저장 시스템(100)의 구성을 나타낸 도면이고, 도 6은 본 발명의 일 실시예에 따른 연축전지(110)를 이용한 에너지 저장 시스템(100)의 제어블럭도이다.
도 5 및 도 6을 참조하여 설명하면, 본 발명에 따른 연축전지(110)를 이용한 에너지 저장 시스템(100)은, 연축전지(110), 전력 변환기(120) 및 제어부(160)를 포함한다. 또한, 본 발명의 일 실시예에 따른 에너지 저장 시스템(100)은 방전 스위치(141) 및 바이패스 스위치(151)를 포함할 수 있다.
연축전지(110)는 외부 전원(300)을 이용하여 충전되고, 방전되어 부하(500)에 전원을 공급한다.
전력 변환기(120)는 외부 전원(300)을 정류하여 연축전지(110)를 충전하고, 연축전지(110)로부터 방전되는 직류 전원을 교류 전원으로 변환하여 부하(500)에 공급한다.
여기서, 제어부(160)는 연축전지(110)를 방전시키는 방전 모드로 동작할 때, 연축전지(110)의 방전 전류의 파형이 톱니파 형태를 갖도록 전력 변환기(120)를 제어한다.
도 5 및 도 6을 참조하여 보다 구체적으로 설명하면, 본 발명의 일 실시예에 따른 전력 변환기(120)는 정류기(121)와 인버터(122)를 포함할 수 있다.
정류기(121)은 연축전지(110)와 병렬로 연결되어, 충전 모드에서 외부 전원(300)을 정류하여 연축전지(110)를 충전한다. 또한, 정류기(121)은 방전 모드에서 외부 전원(300)을 정류하여 부하(500)로의 전원 공급을 연축전지(110)와 분담한다.
인버터(122)는 연축전지(110)의 방전 모드에서 연축전지(110)로부터 출력되는 직류 전원을 교류 전원으로 변환하여 부하(500)에 공급하고, 정류기(121)로부터의 직류 전원 또한 교류 전원을 변환하여 부하(500)에 공급한다.
제어부(160)는 연축전지(110)의 방전 모드에서 정류기(121)의 출력 전압을 제어하여 연축전지(110)의 방전 전류의 세기와 파형을 제어한다. 이 때, 제어부(160)는 상술한 바와 같이, 연축전지(110)의 방전 전류의 파형이 톱니파 형태를 갖도록 정류기(121)을 제어하게 된다.
도 7은 도 5에 도시된 에너지 저장 시스템(100)의 등가회로를 나타낸 것이다. 도 7을 참조하여 설명하면, VB는 연축전지(110)의 전압이고, VR은 정류기(121)의 전압이고, I1은 정류기(121)의 출력 전류이고, I2은 연축전지(110)의 방전 전류이고, I3은 부하(500)로의 출력 전류이고, rR은 정류기(121)의 내부 임피던스이고, rB은 연축전지(110)의 내부 임피던스이고, R은 부하(500)의 임피던스이다.
여기서, 연축전지(110)는 자체적으로 방전 전류를 조절할 수 없기 때문에, 본 발명에서는 상술한 바와 같이, 제어부(160)가 전력 변환기(120)의 정류기(121)를 제어하여 연축전지(110)의 과방전과 과충전을 방지하게 된다.
도 7을 참조하여 보다 구체적으로 설명하면, 키르히호프(Kirchhoff)의 법칙에 의해 회로에 관한 각 저항에 흐르는 전류는 제1 법칙과 제2 법칙을 수학식으로 나타낸 연립방정식의 해로 구할 수 있다. 이를 통해, 도 7에 도시된 각각의 임피던스에 흐르는 전압 및 전류 방정식은 [수학식 2]와 같이 나타낼 수 있다.
[수학식 2]
VR + (I1 rR) + (I1+I2)R = 0
이를 전류 방정식으로 나타내면 [수학식 3]과 같다.
[수학식 3]
Figure PCTKR2016000807-appb-I000001
여기서, rR과 rB는 정류기(121)의 주변온도 등에 의해 미세하게 변화될 수 있으나, 동일 장소에 구축되어 있는 조건으로 주변온도가 일정하다고 가정할 때 상수(k)로 지정할 수 있으며, 이를 통해 [수학식 3]은 [수학식 4]와 같이 나타낼 수 있다.
[수학식 4]
I1 = k(VR - VB)
결과적으로 정류기(121)의 출력 전류 I1은 정류기(121)의 전압 VR과 연축전지(110)의 전압 VB에 의해 결정되며, 제어부(160)가 정류기(121)의 전압 VR을 제어하는 경우, 정류기(121)의 출력 전류가 조절되고, 결과적으로 연축전지(110)의 방전 전류가 조절 가능하게 된다.
여기서, 본 발명에 따른 에너지 저장 시스템(100)의 제어부(160)는 연축전지(110)의 방전 전류가 기 설정된 방전 전류량을 유지하는 상태로 톱니파 형태를 갖도록 정류기(121)을 제어할 수 있다. 즉, 연축전지(110)가 부하(500)로의 공급 전원에 분담하는 전원을 방전 전류량으로 유지하고 방전 전류량을 초과하는 부분을 정류기(121)이 분담할 수 있도록 정류기(121)의 전압을 제어하게 된다.
본 발명에서는 제어부(160)가 연축전지(110)의 방전 전류량이 0.1CA, 예컨대, 0.1CA15%로 유지되도록 제어하는 것을 일 예로 한다. 여기서, 값은 연축전지(110)의 종류에 따른 특성값이다.
한편, 연축전지(110)의 전압은 연축전지(110)의 종류, 주변온도, 방전시간 등에 따라 가변적이다. 즉, 방전특성과 주변온도, 부하(500)조건에 따라 연축전지(110)의 내부 인피던스 rR가 변화되어 연축전지(110)의 전압 VR이 변화한다. 따라서, 수시로 변동하는 연축전지(110)의 전압 VB와 부하(500)로의 출력 전류 I3에 따라 VR을 변동시켜서 요구되는 I2의 세기를 조절하게 되고, 또한 전압의 파형 변화를 통해 연축전지(110)의 방전 전류를 톱니파 형태로 조절 가능하게 된다.
이를 위해, 본 발명에 따른 에너지 저장 시스템(100)은, 도 6에 도시된 바와 같이, 연축전지(110)의 전압 변화를 감지하는 전압 변화 감지부(170)를 포함할 수 있다. 상술한 바와 같이, 전압 변화 감지부(170)는 부하(500)로의 출력 전류를 감지하는 부하 전류 감지부(171)와, 연축전지(110)의 전압을 감지하는 연축전지 전압 감지부(172)를 포함할 수 있다. 이 때, 제어부(160)는 부하 전류 감지부(171)와 연축전지 전압 감지부(172)의 감지 결과에 기초하여, 연축전지(110)의 전압 변화에 대응하여 정류기(121)의 전압을 제어하게 된다.
한편, 제어부(160)는 충전 모드에서 연축전지(110)로 충전되는 충전 전류의 파형이 펄스파 형태를 갖도록 정류기(121)를 제어할 수 있다. 이를 통해, 충전 중에도 연축전지(110)의 재생이 가능하게 된다.
상기와 같은 구성에 따라 본 발명에 따른 에너지 저장 시스템(100)의 시뮬레이션 결과를 도 8을 참조하여 설명한다.
연축전지(110)는 VGS 3000[AH]를 사용하는데, 2.0V 24 cell 연축전지(110)로, 2조로 총 6000[AH]가 적용된다. 입력 380V와 출력 53.5V의 정류기(121)을 사용하여, 부하(500)는 평균 1200A로 설정한다. 연축전지(110)의 방전 전류는 0.1CA%로 하며 상술한 바와 같이 톱니파 형태를 갖도록 조절된다.
도 8의 (a)는 종래의 방식대로 외부 전원(300)이 공급되지 않은 상태로 연축전지(110)가 자율 방전하는 전류 파형을 나타낸 것이다. 이 때 부하(500)의 전류 1180A는 모두 연축전지(110)로부터 방전하기 때문에 약 0.2CA로 방전하게 된다.
도 8의 (b)는 본 발명에 따른 에너지 저장 시스템(100)의 연축전지(110)가 방전하는 전류 파형을 나타낸 것이다. 연축전지(110)는 0.1CA%(기준 전류값)인 600A 범위에서 통제되고, 부하(500)에서 부족한 전류는 병렬로 연결된 정류기(121)이 약 580A를 분담하게 된다. 즉, 부하(500)는 정류기(121)과 연축전지(110)의 전류를 동시에 공급받게 된다.
상기와 같은 실험을 통해 연축전지(110)의 자율 방전에 대비할 때 본 발명에 따른 에너지 저장 시스템(100)의 효과를 설명하면 다음과 같다.
첫째, 총 방전 가능 시간은, 도 3을 기준으로 약 3.33배가 증가할 수 있음을 알 수 있다. 즉, 연축전지(110)가 자율 방전하는 경우 3시간 정도 방전이 가능한 반면, 본 발명에 따른 에너지 저장 시스템(100)에서는 10시간 정도 방전이 가능하게 된다. 또한, 총 방전 가능 전류는 도 2를 기준으로 2000A에서 3000A로 150% 정도 증가함을 확인할 수 있다.
둘째, 연축전지(110)의 방전 전류인 0.1CA의 % 범위 내에서 생성되는 톱니파를 통해 레스트 타임(Rest time)을 만들어 주어 운용 중에도 연축전지(110)의 재생이 가능하게 된다. '0'의 출력 전류 구간을 갖는 펄스 파형의 출력 전류로 방전하는 경우 배터리가 재생된다는 것은 공지된 바와 같다.
보다 구체적으로 설명하면, 연축전지(110)가 펄스 파형의 전류를 방전하면 연축전지(110)가 재생되는 효과가 발생하는데, 이를 DPV(Differential Pulse Voltammetry) 방법이라 한다. DPV(Differential Pulse Voltammetry) 방법의 원리는 방전 중 '0'의 출력 전류 구간인 레스트 타임(Rest time)을 통해 연축전지(110)가 회복되는 절차를 갖는 것이다. 이를 통해 황산염의 결절성이 많이 이완된다.
본 발명은 '0'의 출력 전류 구간이 없는 톱니파 형태의 출력 전류로 연축전지(110)가 방전되는 것으로 동일한 효과가 제공됨을 확인할 수 있다. 도 9의 (a)는 자율 방전을 통해 연축전지(110)의 전극 표면에 황산염이 결정화된 상태를 나타낸 것이고, 도 9의 (b)는 본 발명에 따른 에너지 저장 시스템(100)에서 톱니파 형태의 출력 전류로 연축전지(110)를 방전한 후의 전극 표면을 나타낸 것으로, 결정화가 완화되었음을 확인할 수 있다.
셋째, 연축전지(110)의 방전 전류가 '0'의 구간없이 총 용량의 0.1CA 범위 내에서 부하(500)에 공급되고 나머지가 정류기(121)을 통해 공급됨으로써, 무정전 에너지 저장 시스템(100)의 구현이 가능하게 된다.
한편, 본 발명의 일 실시예에 따른 에너지 저장 시스템(100)에서는 제어부(160)가 연축전지(110)로의 충전을 제한하는 충전 제한 모드로 동작할 수 있다. 일 예로, 연축전지(110)로의 충전이 가능한 상태이나 전력 요금이 상대적으로 저렴한 시기에 충전하기 위해 현 시점에서 충전을 제한할 수 있는데, 이에 대한 상세한 설명은 후술한다.
제어부(160)는 충전 제한 모드에서 연축전지(110)의 방전 전류가 0을 유지하도록 정류기(121)의 출력 전류를 제어할 수 있다. 즉, 도 7의 등가 회로에서 연축전지(110)의 방전 전류 I2가 0을 유지하도록 정류기(121)의 출력 전압 VR을 제어함으로써, 결과적으로 정류기(121)로부터의 출력 전류 I1이 모두 부하(500)로 공급되도록 제어할 수 있다. 즉, I1 = I3 상태가 된다. 이 때, 연축전지(110)의 방전 전류 I2를 0으로 유지하는 것은 항상 0이 되는 상태만을 의미하지 않고, 연축전지(110)의 방전 전류 I2의 변동을 0이 되도록 제어하는 상태 또한 포함하는 개념이다.
상기와 같은 구성에 따라, 전력 변환기(120)의 정류기(121)의 제어를 통해 연축전지(110)를 충전 제한 모드로 동작시킴으로써, 전력 요금이 저렴한 시간대에 충전이 되도록 유지할 수 있게 된다.
다시, 도 5 및 도 6을 참조하여 설명하면, 방전 스위치(141)는 연축전지(110)로부터 부하(500)로 공급되는 전원을 단속한다. 그리고, 바이패스 스위치(151)는 연축전지(110) 및 정류기(121)과 병렬로 연결되는 바이패스 라인(150)에 마련되어 바이패스 라인(150)을 단속한다.
상기와 같은 구성을 통해, 연축전지(110)의 방전을 차단한 상태에서 부하(500)에 전원을 공급할 때, 방전 스위치(141)를 오프시키고 바이패스 스위치(151)를 온시켜 외부 전원(300)이 바이패스되어 부하(500)로 공급되도록 할 수 있다.
이하에서는, 도 10을 참조하여 본 발명의 다른 실시예에 따른 에너지 저장 시스템(100a)에 대해 설명한다. 여기서, 본 발명의 다른 실시예에 따른 에너지 저장 시스템(100a)의 제어 블럭도는 도 6을 참조하여 설명한다.
본 발명의 다른 실시예에 따른 에너지 저장 시스템(100a)은 전술한 실시예와 마찬가지로, 연축전지(110), 전력 변환기(120a) 및 제어부(160)를 포함한다.
연축전지(110)는 외부 전원(300)을 이용하여 충전되고, 방전되어 부하(500)에 전원을 공급한다.
전력 변환기(120a)는 외부 전원(300)을 정류하여 연축전지(110)를 충전하고, 연축전지(110)로부터 방전되는 직류 전원을 교류 전원으로 변환하여 부하(500)에 공급한다.
여기서, 제어부(160)는 연축전지(110)를 방전시키는 방전 모드로 동작할 때, 연축전지(110)의 방전 전류의 파형이 톱니파 형태를 갖도록 전력 변환기(120)를 제어한다.
본 발명의 다른 실시예에 따른 전력 변환기(120a)는, 도 10에 도시된 바와 같이, 연축전지(110)에 직렬로 연결되는 양방향 컨버터 형태로 마련된다. 그리고, 본 발명의 다른 실시예에 따른 전력 변환기(120a)는 방전 모드에서 연축전지(110)로부터 출력되는 직류 전원을 교류 전원으로 변환하여 부하(500)로의 전원 공급을 외부 전원(300)과 분담한다.
이 때, 제어부(160)는 방전 모드에서 연축전지(110)의 방전 전류가 톱니파 형태를 갖도록 전력 변환기(120a)의 교류 전원으로의 변환을 제어하게 된다. 즉, 전술한 실시예에서는 제어부(160)가 전력 변환기(120)의 정류기(121)의 출력 전압을 제어하여 연축전지(110)의 방전 전류의 파형을 제어하는 것을 예로 하였으나, 본 발명의 다른 실시예에서는 제어부(160)의 전력 변환기(120a)의 AC-DC 기능의 제어를 통해 연축전지(110)의 방전 전류의 파형을 제어하는 것을 예로 하고 있다.
여기서, 제어부(160)는, 전술한 실시예에서와 마찬가지로, 방전 모드에서 연축전지(110)의 방전 전류가 방전 전류량을 유지하는 상태로 톱니파 형태를 갖도록 전력 변환기(120a)의 교류 전원으로의 변환을 제어할 수 있다. 예를 들어, 제어부(160)는 방전 전류량이 0.1CA가 유지되는 상태가 되도록 제어할 수 있다.
여기서, 제어부(160)는, 도 6에 도시된 바와 같이, 전압 변화 감지부(170)에 의해 감지되는 연축전지(110)의 전압 변화에 연동되게 연축전지(110)의 방전 전류를 조절하여, 연축전지(110)의 방전 전류가 방전 전류량을 유지하도록 전력 변환기(120a)를 제어할 수 있음은 물론이다.
또한, 제어부(160)는 충전 모드에서 연축전지(110)로 충전되는 충전 전류의 파형이 펄스파 형태를 갖도록 전력 변환기(120a)를 제어할 수 있다. 이를 통해, 충전 중에도 연축전지(110)의 재생이 가능하게 된다.
이하에서는, 도 11을 참조하여 본 발명에 따른 에너지 저장 시스템(100,100a)의 운영 방법에 대해 상세히 설명한다.
만일 에너지 저장 시스템(100,100a)을 사용하여 스마트 그리드 RTP(Real Time Price)에서 건물, 산업, 부하(500) 설비의 에너지 사용을 절감하고자 하는 경우, 첫째, 전력 요금이 가장 비싼 구간이 언제인지를 알아야 하며, 둘째, 해당 부하(500) 설비에서 사용하게 될 에너지를 예측하여야 한다. 그리고, 예측된 사용전력에 맞게 보유하고 있는 한정된 에너지 저장 시스템(100,100a)의 에너지를 가장 비싼 구간에서 효율적으로 사용할 수 있도록 해야 한다.
이를 위해, 본 발명에서는 소비를 예측(Estimator)하고, 가장 비요효율적인 계산을 통해 지침(Indicator)을 마련하고, 전력 시스템은 이를 추정(Tracking) 하여 방전하는 3단계 알고리즘을 제안한다. 여기서, 예측과 지침은 기 공지된 다양한 방법이 적용될 수 있으며, 이하에서는 예측 및 지침의 예에 대해 간략히 설명한다.
먼저, 예측 과정과 관련하여, 본 발명에서는 LS-SVR을 이용한 예측 알고리즘을 이용하여 타겟 일자의 전력 소비량을 예측하는데, 크게 세 부분으로 구분될 수 있다.
첫 번째 과정은 히스토리컬 데이터(Historical Data)를 LS-SVR 알고리즘을 이용하여 타겟 일자의 전력 소비량을 예측한다. 두 번째 과정은 전력 소비량과 기온변화 사이의 다이나믹 모델(Dynamic Model) 을 구하고 이를 첫 번째 과정에서 예측한 데이터에 적용한다.
세 번째 과정은 표준편차를 통해 예측의 결과에 두 번째 과정의 보정 결과와 실제값 사이의 차이를 비교하여 두 번째 과정에서의 보정 결과에 반영 여부를 결정하게 된다.
상기와 같은 방법을 통해 에너지 소비가 예측되면, 예측 결과를 기준으로 가장 비용 효율적인 계산을 통해 지침이 마련된다. 현재의 요금체계는 이전 사용 최대 전력 피크를 넘으면, 이후에는 1년간 최고의 피크를 기준으로 기본요금이 부과되기 때문에, 만일 해당 부하(500) 설비에서 1년간의 에너지 소비를 예측한다면, 가장 최적의 피크가 산출될 것이고, 이를 레벨(Level)-4라고 명명한다. 이를 기준으로 도 11을 참조하여 설명하면 다음과 같다.
첫째, 다음날 예측에 의한 에너지 전력 소비가 레벨(Level)-4보다 낮은 경우, 시간별 에너지 요금이 가장 싼 구간에서 충전하여, 가장 비싼 구간에서 방전함으로써 소비를 억제하는 방법이 적용되며, 이를 모드(Mode)-0이라 한다. 둘째, 다음날 예측이 레벨(Level)-4보다 높은 경우, 비싼 구간의 방전보다는 피크를 억제하고자 하는 방법이 적용되며, 이를 모드(Mode)-0이라 한다.
도 11을 참조하여 설명하면, 모드(Mode)-0 상태이고 에너지 비용이 가장 높은 시간이 8:30~11:30, 12:40~16:30분까지 라면, 해당구간인 ①구간에서 연축전지(110)를 방전하고, ②구간에서는 방전상태로 충전되지 않도록 억제시키고 있다가, 가장 싼 구간인 ③구간에서 충전을 실시한다. 그리고, Mode-1이면 ④구간에 해당되는 전력량만큼의 한정된 에너지 저장 시스템(100,100a)이 최적으로 방전되도록 제어하게 된다.
상기와 같이 지침이 마련되면, 실제 전력 사용에서의 추종 과정이 진행된다. 도 11을 참조하여 설명하면, ①구간에서, 가장 비싼 구간에 가용된 연축전지(110)의 방전량을 모두 사용 가능하도록 방전한다. 이는 [수학식 5]와 같이 표현할 수 있다. 여기서, 연축전지(110)의 방전은 상술한 바와 같이, 전력 변환기(120,120a)의 제어에 의해 톱니파 형태의 출력 전류가 형성되도록 제어되며, 전력 변환기(120)의 정류기(121) 또는 외부 전원(300)과 전류량을 분단하여 부하(500)에 전원을 공급하게 된다.
[수학식 5]
Figure PCTKR2016000807-appb-I000002
여기서, vb와 ib는 각각 연축전지(110)의 전압과 전류이다. [수학식 5]에서 좌측 항은 시간대별 계약전력요금제에서 총방전 용량이고, 우측 항에서는 연축전지(110)의 방전시간이 곱해질 수 있다.
②구간에서는 도 7에 도시된 등가회로를 예로 하여 설명하면, 연축전지(110)가 방전되기 때문에, 정류기(121)와 병렬 연결된 연축전지(110)는 충전이 가능한 상태이기 때문에 정류기(121)은 부하(500)에만 전원을 공급하고, 연축전지(110)는 충전되지 않도록 제어된다.
또한, 종래의 피크 억제 방식으로 연축전지(110)를 방전한 후 종료하게 되면, 피크 억제를 통한 이득은 다소 얻을 수 있으나, 전력 요금의 손실은 불가피하게 된다. 따라서, ②구간에서는 가정 저렴한 구간인 ③구간에서 충전하도록 대기하는 방법으로 제어된다.
이 때, 제어부(160)는 상술한 바와 같이, 충전 제한 모드로 동작하는데, 연축전지(110)의 방전 전류 I2가 0을 유지하도록 정류기(121)의 출력 전압 VR을 제어함으로써, 결과적으로 정류기(121)로부터의 출력 전류 I1이 모두 부하(500)로 공급되도록 제어할 수 있다. 즉, I1 = I3 상태가 된다.
④구간에서는, 일정 중 최고의 피크를 억제하기 위해 최적화 솔루션(Gold Pointing Method)을 통해 연중 피크 전력(레벨 4)을 설정하고 일정하게 피크를 제어하는 기 공지된 방법들이 적용될 수 있으며, 일 예로 [수학식 6]과 같이 제어될 수 있다.
[수학식 6]
Figure PCTKR2016000807-appb-I000003
한편, ①구간에서 최적의 방전을 시행하고도 남는 전력이 있는 경우, 중간 부하(500), 즉 실시간 전력 요금이 중간인 시간 구간에서의 부하(500)에 사용하는 방법은 [수학식 7]과 같이 나타낼 수 있다.
[수학식 7]
Figure PCTKR2016000807-appb-I000004
이하에서는, 도 12를 참조하여 본 발명에 따른 에너지 저장 시스템(100,100a)을 운영할 때의 연축전지(110)의 수명에 대한 효과를 설명한다.
연축전지(110)의 충전가능용량을 확인하기 위한 방법으로는 IEEE Std 1188-1996의 기술 기준을 적용하였으며, 본 발명에서는 연축전지(110)의 내부 임피던스(Impedance)를 측정함으로써 간접적이고 비파괴적인 방법으로 교체 시기를 판단하였다. 통상 연축전지(110)의 임피던스가 최초 정상상태 100%를 기준으로 20% 이상 증가하게 되면 교체를 해줘야 하는 시점으로 권고하고 있다.
이를 기준으로 본 발명에 따른 에너지 저장 시스템(100,100a)을 적용한 군과, 기존의 자율 충전 및 방전을 이용하는 군의 연축전지(110)의 임피던스를 측정하는 방법으로 연축전지(110)의 수명의 변화를 검증하였다.
도 12에 도시된 바와 같이, 검증 구간 중 12월에서 1월 사이의 임피던스의 증가는 계절적인 요인에 의해 온도가 저하하면 임피던스 또한 증가되고, 온도가 상승하면 임피던스가 낮아지기 때문에, 임피던스가 적용시점기준으로 회복되는지 여부를 이용하여 검증하였다.
먼저, 본 발명에 따른 에너지 저장 시스템(100,100a)이 적용된 연축전지(110)를 편의상 Facility-A~D로 명명하고, 각 조의 첫 번째 셀(cell)의 임피던스를 측정하였다. 도 12의 (a)는 Facility-A의 임피던스 변화 그래프를 예로 나타내고 있으며, 0.31[m]에서 0.31[m]으로 변화되었다. 즉, 계절에 따른 변화에서 결과적으로 회복되었음을 확인할 수 있다.
본 발명에 따른 에너지 저장 시스템(100,100a)이 적용되지 않은 비교대상 군은 동일한 제작사의 동일용량, 동일날짜에 생산된 연축전지를 이용하였으며, CC-A, CC-B, CC-C, CC-D-1, CC-D-2, CC-E-1, CC-E-2 및 CC-F로 명명하였다. 도 12의 (b)는 CC-A의 연축전지의 임피던스의 변화 그래프를 나타낸 것으로, 0.156[m]에서 0.158[m]로 증가하였음을 확인할 수 있다.
[표 1]은 Facility-A, Facility-B, Facility-C, Facility-D의 임피던스의 변화를 나타내고 있으며, [표 2]는 CC-A, CC-B, CC-C, CC-D-1, CC-D-2, CC-E-1, CC-E-2 및 CC-F의 임피던스 변화를 나타내고 있다.
표 1
Oct Nov Dec Jan Fab Mar Rate
Facility-A 0.3366 0.3445 0.3410 0.3373 0.3351 0.3487 99.90%
Facility-B 0.3482 0.3573 0.3542 0.3495 0.3479 0.3616 99.93%
Facility-C 0.3453 0.3551 0.3519 0.3474 0.3444 0.3570 99.67%
Facility-D 0.3462 0.3543 0.3644 0.34686 0.3572 0.3486 98.85%
Average 0.3441 0.3528 0.3529 0.3453 0.3462 0.3540 99.58%
표 2
Oct Nov Dec Jan Fab Mar Rate
CC-A 0.1561 0.1571 0.1591 0.1589 0.1582 0.1575 100.49%
CC-B 0.1415 0.1419 0.1432 0.1434 0.1438 0.1433 100.91%
CC-C 0.1401 0.1408 0.1419 0.1416 0.1423 0.1412 100.54%
CC-D-1 0.3229 0.3303 0.3357 0.3341 0.3289 0.3286 100.27%
CC-D-2 0.3380 0.3442 0.3507 0.3490 0.3458 0.3461 100.77%
CC-E-1 0.1617 0.1621 0.1635 0.1641 0.1638 0.1623 100.60%
CC-E-2 0.1615 0.1617 0.1630 0.1635 0.1636 0.1621 100.62%
CC-F 0.2022 0.2028 0.2050 0.2072 0.2085 0.2083 102.30%
Average 0.2030 0.2051 0.2077 0.2077 0.2068 0.2062 100.79%
[표 1] 및 [표 2]에 나타난 바와 같이, 종래의 자율 충전 및 방전 기술이 적용된 경우, 평균적으로 0.79%의 임피던스 증가가 발생한 반면, 본 발명의 경우 평균 0.42%의 임피던스 감소가 나타남을 확인할 수 있다.
이는, 일반적으로 임피던스가 20% 증가할 때 연축전지를 교체한다고 가정할 때, 6개월 간 0.78%의 임피던스 증가와, 0.42%의 임피던스의 감소는 연축전지의 수명에 큰 영향을 준다는 점은 쉽게 확인할 수 있으며, 따라서, 본 발명에 따른 에너지 저장 시스템(100,100a)이 연축전지의 수명을 현저히 증가시킬 수 있음을 확인할 수 있다.
전술한 실시예들에서는 본 발명에 따른 에너지 저장 시스템(100,100a)의 연축전지(110)의 방전 전류가, 도 8의 (b)에 도시된 바와 같이, 톱니파 형태를 갖도록 제어되는 것을 예로 하였다. 이외에도, 본 발명에 따른 에너지 저장 시스템(100,100a)의 연축전지(110)의 방전 전류는 '0'의 구간이 없는 펄스파 형태, 예를 들어, 도 13에 도시된 바와 같이, 구형파 형태를 갖도록 제어 가능함은 물론이며, 이를 통해 톱니파 형태의 방전 전류에서 나타나는 효과를 얻을 수 있다.
마찬가지로, 본 발명에 따른 에너지 저장 시스템(100,100a)의 연축전지(110)의 충전 전류 또한, '0'의 구간이 없는 펄스파 형태, 예를 들어, 도 13에 도시된 바와 같이, 구형파 형태를 갖도록 제어 가능함은 물론이다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다.
[부호의 설명]
100,100a : 에너지 저장 시스템
110 : 연축전지 120,120a : 전력 변환기
121 : 정류기 131 : 인버터
141 : 방전 스위치 150 : 바이패스 라인
151 : 바이패스 스위치
160 : 제어부 170 : 전압 변화 감지부
171 : 부하 전류 감지부 172 : 연축전지 전압 감지부
300 : 외부 전원 500 : 부하
본 발명은 연축전지의 충방전 분야에 적용 가능하며, 연축전지를 이용한 에너지 저장 시스템에 적용될 수 있다.

Claims (17)

  1. 연축전지와;
    외부 전원을 정류하여 상기 연축전지를 충전하고, 상기 연축전지로부터 방전되는 직류 전원을 교류 전원으로 변환하여 부하에 공급하는 전력 변환기와;
    상기 연축전지를 방전시키는 방전 모드로 동작할 때, 상기 연축전지의 방전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 전력 변환기를 제어하는 제어부를 포함하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  2. 제1항에 있어서,
    상기 연축전지의 방전 전류의 파형은 '0'의 구간이 없는 펄스파로, 톱니파 또는 구형파 형태를 갖는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  3. 제2항에 있어서,
    상기 전력 변환기는
    상기 방전 모드에서 상기 외부 전원을 정류하여 부하로의 전원 공급을 상기 연축전지와 분담하고, 상기 연축전지를 충전하는 충전 모드에서 상기 외부 전원을 정류하여 상기 연축전지를 충전하는 정류기와,
    상기 정류기로부터의 직류 전원과 상기 연축전지로부터 방전되는 직류 전원 중 적어도 하나를 교류 전원으로 변환하여 부하로 공급하는 인버터를 포함하며;
    상기 제어부는 상기 방전 모드에서 상기 정류기의 출력 전압을 제어하여 상기 연축전지의 방전 전류의 세기와 파형을 제어하되, 상기 연축전지의 방전 전류의 파형이 펄스파로, 톱니파 또는 구형파 형태를 갖도록 상기 정류기를 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  4. 제3항에 있어서,
    상기 제어부는
    상기 방전 모드에서 상기 연축전지의 방전 전류가 기 설정된 방전 전류량을 유지하는 상태로 펄스파로, 톱니파 또는 구형파 형태를 갖도록 상기 정류기를 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  5. 제4항에 있어서,
    상기 제어부는
    상기 방전 전류량이 0.1CA가 유지되는 상태로 펄스파로, 톱니파 또는 구형파 형태를 갖도록 상기 정류기를 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  6. 제4항에 있어서,
    상기 연축전지의 전압 변화를 감지하는 전압 변화 감지부를 더 포함하며;
    상기 제어부는 상기 전압 변화 감지부에 의해 감지되는 상기 연축전지의 전압 변화에 연동되게 상기 정류기의 출력 전압을 조절하여, 상기 연축전지의 방전 전류가 상기 방전 전류량을 유지하도록 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  7. 제4항에 있어서,
    상기 제어부는
    상기 연축전지의 충전을 제한하는 충전 제한 모드로 동작 가능하게 마련되고;
    상기 충전 제한 모드에서 상기 연축전지의 방전 전류가 0을 유지하도록 상기 정류기를 출력 전압을 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  8. 제3항에 있어서,
    상기 제어부는
    상기 충전 모드에서 상기 연축전지로 충전되는 충전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 정류기를 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  9. 제8항에 있어서,
    상기 충전 전류의 파형은 '0'의 구간이 없는 펄스파로, 톱니파 또는 구형파 형태를 갖는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  10. 제2항에 있어서,
    상기 전력 변환기는 상기 연축전지에 직렬로 연결되는 양방향 컨버터 형태로 마련되어, 상기 방전 모드에서 상기 연축전지로부터 출력되는 직류 전원을 교류 전원으로 변환하여 상기 부하로의 전원 공급을 외부 전원과 분담하며;
    상기 제어부는 상기 방전 모드에서 상기 연축전지의 방전 전류가 펄스파로, 톱니파 또는 구형파 형태를 갖도록 상기 전력 변환기의 교류 전원으로의 변환을 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  11. 제10항에 있어서,
    상기 제어부는
    상기 방전 모드에서 상기 연축전지의 방전 전류가 기 설정된 방전 전류량을 유지하는 상태로 펄스파로, 톱니파 또는 구형파 형태를 갖도록 상기 전력 변환기의 교류 전원으로의 변환을 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  12. 제11항에 있어서,
    상기 제어부는
    상기 방전 전류량이 0.1CA가 유지되는 상태로 펄스파로, 톱니파 또는 구형파 형태를 갖도록 상기 전력 변환기의 교류 전원으로의 변환을 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  13. 제11항에 있어서,
    상기 연축전지의 전압 변화를 감지하는 전압 변화 감지부를 더 포함하며;
    상기 제어부는 상기 전압 변화 감지부에 의해 감지되는 상기 연축전지의 전압 변화에 연동되게 상기 연축전지의 방전 전류를 조절하여, 상기 연축전지의 전류가 상기 방전 전류량을 유지하도록 상기 전력 변환기를 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  14. 제10항에 있어서,
    상기 제어부는
    상기 연축전지를 충전하는 충전 모드에서 상기 연축전지로 충전되는 충전 전류의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 상기 전력 변환기를 제어하는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  15. 제14항에 있어서,
    상기 충전 전류의 파형은 '0'의 구간이 없는 펄스파로, 톱니파 또는 구형파 형태를 갖는 것을 특징으로 하는 연축전지를 이용한 에너지 저장 시스템.
  16. 연축전지로 충전되는 충전 전류와 상기 연축전지로부터 방전되는 방전 전류 중 적어도 하나의 파형이 '0'의 구간이 없는 펄스파 형태를 갖도록 제어하는 단계를 포함하는 것을 특징으로 하는 연축전지의 충방전 방법.
  17. 제16항에 있어서,
    상기 충전 전류 또는 상기 방전 전류의 파형은 '0'의 구간이 없는 펄스파로, 톱니파 또는 구형파 형태를 갖는 것을 특징으로 하는 연축전지의 충방전 방법.
PCT/KR2016/000807 2015-02-09 2016-01-26 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법 WO2016129825A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0019471 2015-02-09
KR1020150019471A KR101963930B1 (ko) 2015-02-09 2015-02-09 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법

Publications (1)

Publication Number Publication Date
WO2016129825A1 true WO2016129825A1 (ko) 2016-08-18

Family

ID=56614436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000807 WO2016129825A1 (ko) 2015-02-09 2016-01-26 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법

Country Status (2)

Country Link
KR (1) KR101963930B1 (ko)
WO (1) WO2016129825A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683235C1 (ru) * 2017-11-28 2019-03-27 Закрытое Акционерное Общество "Бэттэри Фактор" Устройство для восстановления и заряда кислотной аккумуляторной батареи

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920022613A (ko) * 1991-05-24 1992-12-19 정용문 연축전지 과방전 방지회로 및 그 제어방법
JP2004327338A (ja) * 2003-04-25 2004-11-18 Kyushu Electric Power Co Inc 鉛電池の容量規制極の判定方法及びその装置
JP2005127894A (ja) * 2003-10-24 2005-05-19 Auto Network Gijutsu Kenkyusho:Kk 鉛蓄電池の状態管理装置及び鉛蓄電池の劣化状態検出方法
KR20120008927A (ko) * 2010-07-21 2012-02-01 김순자 자동차용 축전 배터리 수명 연장 재생 장치
JP2013207981A (ja) * 2012-03-29 2013-10-07 Furukawa Battery Co Ltd:The 分散電源蓄電システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564458B2 (ja) * 2002-02-12 2004-09-08 有限会社テクノ・プロジェクト バッテリ再生装置
KR100520292B1 (ko) * 2003-04-04 2005-10-13 한국전기연구원 전지전력 저장장치 및 그를 이용한 복합 운전방법
KR100793666B1 (ko) 2006-06-28 2008-01-10 한양대학교 산학협력단 축전지 진단장치 및 방법
KR100811608B1 (ko) 2006-06-28 2008-03-11 한양대학교 산학협력단 축전지 진단장치 및 방법
KR101202165B1 (ko) * 2011-02-08 2012-11-15 한찬희 배터리 진단 및 재생을 통해 배터리의 수명을 연장할 수 있는 전력 저장 및 공급 장치
KR101497549B1 (ko) * 2013-06-27 2015-03-02 강원도 배터리의 충전용량 복원방법 및 이를 위한 충전장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920022613A (ko) * 1991-05-24 1992-12-19 정용문 연축전지 과방전 방지회로 및 그 제어방법
JP2004327338A (ja) * 2003-04-25 2004-11-18 Kyushu Electric Power Co Inc 鉛電池の容量規制極の判定方法及びその装置
JP2005127894A (ja) * 2003-10-24 2005-05-19 Auto Network Gijutsu Kenkyusho:Kk 鉛蓄電池の状態管理装置及び鉛蓄電池の劣化状態検出方法
KR20120008927A (ko) * 2010-07-21 2012-02-01 김순자 자동차용 축전 배터리 수명 연장 재생 장치
JP2013207981A (ja) * 2012-03-29 2013-10-07 Furukawa Battery Co Ltd:The 分散電源蓄電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683235C1 (ru) * 2017-11-28 2019-03-27 Закрытое Акционерное Общество "Бэттэри Фактор" Устройство для восстановления и заряда кислотной аккумуляторной батареи

Also Published As

Publication number Publication date
KR101963930B1 (ko) 2019-03-29
KR20160097598A (ko) 2016-08-18

Similar Documents

Publication Publication Date Title
US20130187466A1 (en) Power management system
WO2018026096A1 (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
US9269989B2 (en) Electric power supply system
US20140268943A1 (en) Arc prevention in dc power systems
CN113507162A (zh) 一种变电站直流供电系统的自动核容装置及核容方法
KR101253600B1 (ko) 통합 무정전 전원공급장치
WO2016129825A1 (ko) 연축전지를 이용한 에너지 저장 시스템 및 연축전지의 충방전 방법
JP2012147529A (ja) 作業所電力制御システム
CN111092471B (zh) 一种储能电池组用过充过放保护电路的使用方法
WO2012102461A1 (ko) 마이콤을 사용한 배터리 충전/방전 제어회로
CN116316761A (zh) 一种储能柜和储能系统
CN113013980B (zh) 一种ups系统、ups系统的控制方法及装置
WO2022196846A1 (ko) 에너지저장시스템 계층형 관리시스템
RU62485U1 (ru) Система гарантированного электропитания постоянного тока
JP6076381B2 (ja) 電力供給システム
US10826320B2 (en) Solar power system
Reynaud et al. A novel distributed photovoltaic power architecture using advanced Li-ion batteries
CN219627402U (zh) 一种用于消防系统的备用电源
WO2018026252A1 (ko) 직류 고전압 대용량 무접점 스위칭 장치 및 이를 이용한 이차 전지 충방전 전원 장치
WO2013105825A2 (ko) 이차전지를 이용한 전원장치의 충방전 전환장치
RU223266U1 (ru) Устройство зарядной станции постоянным током на базе тяговой подстанции электрического транспорта
WO2013105823A2 (ko) 이차전지를 이용한 전원장치 및 상기 전원장치의 배터리 모드 전환방법
CN115842345B (zh) 能源路由器控制方法和能源路由器
RU203237U1 (ru) Устройство зарядной станции постоянным током на базе тяговой подстанции электрического транспорта
RU2740796C1 (ru) Система и способ бесперебойного электроснабжения постоянного тока

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749365

Country of ref document: EP

Kind code of ref document: A1