WO2016129661A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2016129661A1
WO2016129661A1 PCT/JP2016/054082 JP2016054082W WO2016129661A1 WO 2016129661 A1 WO2016129661 A1 WO 2016129661A1 JP 2016054082 W JP2016054082 W JP 2016054082W WO 2016129661 A1 WO2016129661 A1 WO 2016129661A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
region
per unit
end side
gas
Prior art date
Application number
PCT/JP2016/054082
Other languages
French (fr)
Japanese (ja)
Inventor
岳人 木全
祐介 藤堂
祐輔 河本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016003130A external-priority patent/JP6485364B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/550,469 priority Critical patent/US10866210B2/en
Priority to DE112016000730.2T priority patent/DE112016000730T9/en
Publication of WO2016129661A1 publication Critical patent/WO2016129661A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a gas sensor that detects the concentration of a predetermined gas component in a gas containing oxygen.
  • a gas sensor formed by laminating a plate-shaped heater on a plate-shaped solid electrolyte body has a plurality of current flows by a part of the solid electrolyte body and a pair of electrodes provided on a part of the solid electrolyte body. Has a type of cell. The plurality of cells are heated by a heater so that the electrode has an appropriate temperature having catalytic activity.
  • the gas sensor disclosed in Patent Document 1 is provided with an electrode on a solid electrolyte layer to form a first pumping cell for controlling the oxygen partial pressure and a second pumping cell for detecting a predetermined gas component in the gas to be measured.
  • a heater for heating the first and second pumping cells is laminated on the solid electrolyte layer.
  • the resistance value of the resistance part of the heater arranged so as to face the first pumping cell is made higher than the resistance value of the resistance part arranged so as to face the second pumping cell. Thereby, the temperature of the second pumping cell is lowered so that the offset current that is detected does not fluctuate even though the concentration of the predetermined gas component is zero.
  • the gas sensor is held in the housing by an insulating insulator (insulator), and there is a heat sink (heat escape) from the gas sensor to the insulator.
  • insulator insulating insulator
  • heat escape heat escape
  • the adverse effect on the sensor due to this heat sink cannot be ignored.
  • the adverse effect of this heat sink varies according to the variation of the gas temperature. Therefore, a technique is desired in which the temperature of each cell (electrode) in the gas sensor is less likely to fluctuate even if the gas temperature varies.
  • the present invention has been made in view of such problems, and has been obtained by providing a gas sensor that can maintain the temperature around the sensor electrode at an appropriate temperature even if the temperature of the gas varies. is there.
  • One aspect of the present invention is a plate-shaped solid electrolyte body (2) having oxygen ion conductivity, A pump electrode (21) provided on the first surface (201) exposed to the oxygen-containing gas (G) in the solid electrolyte body and used for adjusting the oxygen concentration in the gas; In order to detect the concentration of a predetermined gas component in the gas after the oxygen concentration is adjusted by the pump electrode provided at the position on the proximal end side of the pump electrode on the first surface of the solid electrolyte body A sensor electrode (22) used; In a gas sensor (1) comprising: a plate-like heater (3) disposed opposite to the solid electrolyte body and heating the solid electrolyte body, In the gas sensor, the distal end side in the longitudinal direction (L) is exposed to the gas, and the proximal end side in the longitudinal direction is held by an insulating insulator (6).
  • the heater is composed of a heater base (31) and a conductive conductor layer (32) provided on the heater base,
  • the conductor layer is connected to the pair of leads (40) disposed on the base end side and the pair of leads on the distal end side of the pair of leads, and has a cross-sectional area larger than the cross-sectional area of the leads.
  • a small heating element (4) In the heater base, the entire region (R) of the tip side portion (11) provided with the heating element is divided into three regions arranged in the longitudinal direction, and the three regions are divided into the sensor electrodes.
  • the resistance value per unit area of the heating element provided in the base end side region and the resistance per unit area of the heating element provided in the tip end side region The value is in the gas sensor characterized in that the value is higher than the resistance value per unit area of the heating element provided in the intermediate region.
  • the method of forming the heating element of the conductor layer in the heater is devised. Specifically, in the heater base of the heater, when the entire region of the distal end portion provided with the heating element is divided into three regions, an intermediate region, a distal end region, and a proximal end region, the proximal end The resistance value per unit area of the heating element provided in the side region is set higher than the resistance value per unit area of the heating element provided in the intermediate region. As a result, the portion of the solid electrolyte body facing the proximal end region closest to the insulating insulator among the three regions is heated more strongly than the portion of the solid electrolyte body facing the intermediate region and the periphery of the sensor electrode. Can do.
  • the sensor electrode is located on the proximal side where the insulating insulator is located. It is possible to make it less susceptible to heat sinking (heat escape).
  • the resistance value per unit area of the heating element provided in the tip side region is higher than the resistance value per unit area of the heating element provided in the intermediate region. Accordingly, the portion of the solid electrolyte body facing the tip region and the periphery of the pump electrode can be heated more strongly than the portion of the solid electrolyte body facing the intermediate region and the periphery of the sensor electrode. Therefore, the temperature around the pump electrode can be easily heated to an appropriate temperature having catalytic activity. Therefore, according to the gas sensor, even if the gas temperature varies, the temperature around the sensor electrode can be maintained at an appropriate temperature. And the detection accuracy of the density
  • FIG. 1 is a cross-sectional view showing a gas sensor according to Example 1.
  • FIG. The top view which shows the layout of the heat generating body in the heater base
  • FIG. The graph which shows the relationship between the distance from the front-end
  • the top view which shows the layout of the heat generating body in the heater base
  • FIG. which shows the layout of the heat generating body in the heater base
  • FIG. 1 The top view which shows the layout of the heat generating body in the heater base
  • the “resistance value per unit area” means a value obtained by dividing the resistance value of the heating element in each of a plurality of predetermined regions of the gas sensor by the area of the region. “Resistance value” means a value obtained by measuring the current flowing through a heating element provided in each region when a predetermined voltage is applied and dividing the predetermined voltage by the measured current.
  • the “intermediate region” refers to a region on the heater base that exists between the tip of the sensor electrode and the base end facing the tip.
  • the “front end side region” indicates the entire region on the front side of the heater base further than the front end of the sensor electrode in the heater base.
  • the “proximal end region” refers to the entire region of the heater base that is located further to the base end side of the heater base than the base end of the sensor electrode in the tip side portion where the heating element is provided. Further, the tip side portion of the heater base where the heating element is provided indicates the entire region of the heater base located on the tip side of the end where the heating element is connected to the lead.
  • the entire heating element has a constant cross-sectional area along the width direction of the heating element, the length per unit area of the heating element provided in the proximal end region, and the distal end side
  • the length per unit area of the heating element provided in the region can be longer than the length per unit area of the heating element provided in the intermediate region.
  • the resistance value per unit area of the heating element provided in the base end region is higher than the resistance value per unit area of the heating element provided in the intermediate region by forming the heating element long. can do.
  • the resistance value per unit area of the heating element provided in the tip side region should be higher than the resistance value per unit area of the heating element provided in the intermediate region by forming the heating element long. Can do.
  • the “length per unit area” refers to a value obtained by dividing the total length of the heating element provided in each region by the area of each region.
  • the average value of the cross-sectional area per unit length of the heating element provided in the base end side region, and the average value of the cross-sectional area per unit length of the heating element provided in the distal end side region are:
  • the average value of the cross-sectional area per unit length of the heating element provided in the intermediate region can be reduced.
  • the resistance value per unit area of the heating element provided in the base end region is smaller than the resistance value per unit area of the heating element provided in the intermediate region by reducing the cross-sectional area of the heating element. Can also be high.
  • the resistance value per unit area of the heating element provided in the tip side region is higher than the resistance value per unit area of the heating element provided in the intermediate region by reducing the cross-sectional area of the heating element. can do.
  • the “average value of the cross-sectional area per unit area” means a value obtained by dividing the average value of the cross-sectional areas in the width direction of the heating elements provided in each region by the area of each region.
  • the “heating element having a constant cross-sectional area” may include a change in cross-sectional area within ⁇ 10%.
  • the gas sensor 1 includes a solid electrolyte body 2, a pump electrode 21, a sensor electrode 22, and a heater 3.
  • the solid electrolyte body 2 has oxygen ion conductivity and is formed in a plate shape.
  • the pump electrode 21 is provided on the first surface 201 of the solid electrolyte body 2 exposed to the gas G containing oxygen, and is used to adjust the oxygen concentration in the gas G.
  • the sensor electrode 22 is provided on the first surface 201 of the solid electrolyte body 2 on the proximal end side of the solid electrolyte body 2 with respect to the pump electrode 21.
  • the sensor electrode 22 is used for detecting the concentration of a predetermined gas component in the gas G after the oxygen concentration is adjusted by the pump electrode 21.
  • the heater 3 is formed in a plate shape and faces the solid electrolyte body 2, and heats the solid electrolyte body 2 and the electrodes 21 and 22.
  • the gas sensor 1 has a predetermined length and has two end portions facing each other in the longitudinal direction (longitudinal direction).
  • one of the two ends exposed to the gas G is referred to as a distal end side
  • the other held by the insulator 6 is referred to as a proximal end side.
  • the gas sensor 1 is formed in a long shape, and the “tip side” is also a free end of the gas sensor 1.
  • the “base end side” of the gas sensor 1 is opposed to the distal end side in the longitudinal direction L of the gas sensor 1 and is held by the insulator 6 as described above.
  • the heater 3 includes an insulating heater base 31 and a conductive conductor layer 32 provided on the heater base 31.
  • the conductor layer 32 is closer to the distal end side than the pair of leads 40 arranged on the base end side, connects the pair of leads 40 to each other, and generates heat in a cross-sectional area smaller than the cross-sectional area of the lead 40. It has a body 4.
  • the heater base 31 of the gas sensor 1 has a portion close to the distal end side of the gas sensor 1 and provided with a heating element 4.
  • this portion is referred to as the tip end portion 11.
  • the entire region of the tip end portion 11 is defined as region R, which is divided into three regions R1, R2, and R3 arranged in the longitudinal direction L as shown in the figure.
  • the region R2 is located between the distal end 222 and the proximal end 221 of the sensor electrode 22, and is hereinafter referred to as an intermediate region R2.
  • the region R3 is closer to the tip side than the intermediate region R2, and is referred to as a tip side region R3.
  • the region R1 is closer to the base end side than the intermediate region R2, and is referred to as a base end region R1.
  • the resistance value per unit area of the heating element 41 provided in the base end region R1 and the per unit area of the heating element 43 provided in the tip end region R3. Is set to be higher than the resistance value per unit area of the heating element 42 provided in the intermediate region R2. That is, the heating element 4 has three portions 41, 42, and 43.
  • the portion 41 is located in the region R1, the portion 42 is located in the region R2, and the portion 43 is located in the region R30.
  • the “resistance value per unit area” is represented by a value obtained by dividing the resistance values of the heating elements 41, 42, and 43 provided in the regions R1, R2, and R3 by the areas of the regions R1, R2, and R3. .
  • the tip end portion 11 of the heater base 31 provided with the heating element 4 is the region of the heater base 31 closer to the tip end side than the end 401 where the heating element 4 is connected to the lead 40. Show the whole thing.
  • the gas sensor 1 is disposed and used in an exhaust pipe or the like of an internal combustion engine.
  • the gas G contains oxygen and is exhaust gas that passes through an exhaust pipe extending from the internal combustion engine, and the predetermined gas component is NOx (nitrogen oxide) contained in the exhaust gas.
  • the gas sensor 1 is held in the housing by the insulator 6, and the housing is fixed to the exhaust pipe. Further, the gas sensor 1 has a tip portion protruding from the insulator 6, and the tip portion is covered with a protective cover provided with a through hole through which the gas G passes.
  • the solid electrolyte body 2 has a first surface 201 and a second surface 202 that face each other in the thickness direction of the solid electrolyte body 2.
  • a reference electrode 24 is provided on the second surface 202 exposed to the atmosphere as the reference gas A.
  • the reference electrode 24 matches the pump electrode 21 and the sensor electrode 22 provided on the first surface 201 of the solid electrolyte body 2 in the thickness direction of the solid electrolyte body 2, in other words, the second electrode that overlaps.
  • a part of the surface 202 is provided.
  • the reference electrode 24 includes a single electrode and can be configured to have a size that completely overlaps the pump electrode 21 and the sensor electrode 22. Further, the reference electrode 24 may be constituted by a combination of a plurality of independent electrodes, or one reference electrode 24 may be provided for each of the pump electrode 21 and the sensor electrode 22.
  • the pump electrode 21, the sensor electrode 22 and the reference electrode 24 are provided for one solid electrolyte body 2.
  • a plate-like insulator 52 is stacked on the first surface 201 of the solid electrolyte body 2 with a spacer 51 interposed therebetween.
  • a gas chamber 501 into which the gas G is introduced is formed by the solid electrolyte body 2, the spacer 51, and the insulator 52.
  • a diffusion resistance layer 511 for introducing the gas G into the gas chamber 501 under a predetermined diffusion resistance is provided in the hole provided in the spacer 51.
  • the heater 3 is stacked on the second surface 202 of the solid electrolyte body 2 with a spacer 53 interposed therebetween.
  • a reference gas chamber 502 into which the reference gas A is introduced is formed by the solid electrolyte body 2, the spacer 53, and the heater 3.
  • the pump electrode 21 and the reference electrode 24 are made of a material having catalytic activity for oxygen such as platinum and gold.
  • the sensor electrode 22 is made of a material obtained by adding rhodium or the like having catalytic activity for NOx to platinum.
  • a pump cell is formed by the pump electrode 21 and the reference electrode 24 (a part of the reference electrode 24 in this example) and a part of the solid electrolyte body 2 sandwiched therebetween.
  • the pump cell is configured to remove oxygen in the gas G by applying a voltage between the pump electrode 21 and the reference electrode 24 and causing an oxygen ion current to flow between the pump electrode 21 and the reference electrode 24. ing.
  • a sensor cell is formed by the sensor electrode 22 and the reference electrode 24 (in this example, a part of the reference electrode 24) and a part of the solid electrolyte body 2 sandwiched therebetween.
  • the sensor cell is configured to detect an oxygen ion current flowing between the sensor electrode 22 and the reference electrode 24 in a state where a voltage is applied between the sensor electrode 22 and the reference electrode 24. Then, the NOx concentration in the gas G is calculated as a function of the level of this oxygen ion current.
  • the heater base 31, the insulator 52, and the spacers 51 and 53 are made of ceramics such as alumina.
  • the conductor layer 32 is made of a conductive material provided on the heater base 31 with a constant thickness.
  • the conductor layer 32 is formed so as to be sandwiched between a pair of heater bases 31.
  • the pair of leads 40 in the conductor layer 32 extend in parallel to each other at the proximal end portion of the heater base 31.
  • the heating element 4 in the conductor layer 32 generates a Joule heat larger than that of the leads 40 when energizing between the pair of leads 40 due to the reduced cross-sectional area compared to the leads 40.
  • the heating element 4 has a certain width over its entire length. Furthermore, the heating element 4 has a constant cross-sectional area over its entire length.
  • the formation pattern that is, the layout of the heating element 4 changes in the base end region R1, the intermediate region R2, and the distal end region R3.
  • the length per unit area of the heating elements 41, 42, and 43 provided in each of the regions R1, R2, and R3 is made different depending on the layout of the heating element 4.
  • the “length per unit area” is a value obtained by dividing the total length of the heating elements 41, 42, 43 provided in the regions R1, R2, R3 by the areas of the regions R1, R2, R3. expressed.
  • the length per unit area of the heating element 41 provided in the base end region R1 and the length per unit area of the heating element 43 provided in the tip end region R3 are provided in the intermediate region R2. It is larger than the length per unit area of the heating element 42. Further, the length per unit area of the heating element 41 provided in the base end side region R1 is larger than the length per unit area of the heating element 43 provided in the distal end side region R3.
  • the heating element 41 in the proximal end region R1 meanders in the width direction W by a portion parallel to the longitudinal direction L of the heater 3 and a portion parallel to the width direction W orthogonal to the longitudinal direction L.
  • the heating element 41 in the base end side region R1 is configured by two conductors extending symmetrically in the width direction W.
  • the heating element 42 in the intermediate region R2 is composed of two conductors parallel to the longitudinal direction L and symmetrical in the width direction W.
  • the two conductors of the heating element 42 located in the intermediate region R2 are a part of the intermediate region R2 and coincide with the sensor electrode 22 in the thickness direction of the heater base 31, that is, both regions in the width direction W of the overlapping region. Located on the outside.
  • the heating element 43 in the distal end side region R3 meanders in the longitudinal direction L by a portion parallel to the longitudinal direction L and a portion parallel to the width direction W.
  • the heating element 43 in the distal end side region R3 is composed of two conductors symmetrical in the width direction W. That is, the heating element 43 in the distal end side region R3 is composed of two outer portions 431 extending in parallel to the longitudinal direction L and two inner portions 432 extending in parallel to the longitudinal direction L, and each is connected at the distal end side.
  • the inner portions 432 are connected to each other on the proximal end side.
  • the entire region R of the distal end portion 11 provided with the heating element 4 of the heater base 31 is divided into three regions arranged in the longitudinal direction L of the gas sensor 1.
  • the heat generation characteristics (heat generation amount) of the heating element 4 in the region are different.
  • the three regions are a distal end region R3 facing the pump electrode 21, an intermediate region R2 positioned between the distal end 222 and the proximal end 221 of the sensor electrode 22, and a proximal end side positioned closer to the proximal end than the sensor electrode 22 Region R1.
  • the resistance value per unit area of the heating element 41 provided in the proximal end region R1 and the resistance value per unit area of the heating element 43 provided in the distal end region R3 are provided in the intermediate region R2.
  • the heating amount in the base end side region R1 and the distal end side region R3 is made larger than the heating amount in the intermediate region R2.
  • the portion of the solid electrolyte body 2 facing the proximal end region R1 closest to the insulator 6 in the thickness direction of the heater base 31 is changed to the portion of the solid electrolyte body 2 facing the intermediate region R2. And it can heat more strongly than the periphery of the sensor electrode 22.
  • the resistance value per unit area of the heating element 41 provided in the base end region R1 or the resistance value per unit area of the heating element 43 provided in the distal end region R3 may be increased. Is possible.
  • the influence of heat sinking (heat escape) toward the proximal end where the insulator 6 is located is small, and the periphery of the pump electrode 21 corresponding to the distal end side region R3 is in the longitudinal direction L of the gas sensor 1. It becomes the highest temperature.
  • the influence of the heat sink to the base end side in which the insulator 6 is located is large. Therefore, in the gas sensor 1, the resistance value per unit area of the heating element 41 provided in the proximal end region R1 is set higher than the resistance value per unit area of the heating element 43 provided in the distal end region R3. Thus, the portion of the solid electrolyte body 2 facing the base end region R1 is heated more strongly.
  • the periphery of the sensor electrode 22 corresponding to the intermediate region R2 and the portion on the base end side of the sensor electrode 22 are maintained at an appropriate temperature lower than the temperature of the periphery of the pump electrode 21. Further, the temperature around the pump electrode 21 is maintained at an appropriate temperature having catalytic activity.
  • the temperature of the gas (exhaust gas) G exhausted from the internal combustion engine is often lower than the target temperature at which the solid electrolyte body 2 is heated by the heater 3.
  • the temperature of the gas (exhaust gas) G may be significantly lower than the target temperature for heating the solid electrolyte body 2.
  • heat sink heat escape
  • the temperature of the gas (exhaust gas) G flowing through the exhaust pipe of the internal combustion engine in which the gas sensor 1 is disposed is repeatedly increased and decreased under the influence of the combustion cycle of the internal combustion engine. And when the temperature of gas G falls, the heat
  • the sensor electrode 22 is heated to the proximal side where the insulator 6 is located. It can be made less susceptible to shrinkage (heat escape). Therefore, according to the gas sensor 1, even if the temperature of the gas G varies, the temperature around the sensor electrode 22 is maintained at an appropriate temperature. And the detection accuracy of the density
  • FIG. 3 shows the relationship between the distance (mm) from the tip of the gas sensor 1 and the temperature (° C.) of the portion at the distance from the tip of the gas sensor 1 for comparison with the gas sensor 1 (FIG. 2).
  • a conventional gas sensor 9 (FIG. 9) will be described.
  • the heating element 94 of the heater 93 of the conventional gas sensor 9 is not provided with the heating element 41 in the proximal end region R ⁇ b> 1 of the heater base 31.
  • the graph of FIG. 3 shows the result of simulation for the temperature of the gas sensors 1 and 9.
  • the temperature change of the gas sensor 1 when the temperature of the gas G is 500 ° C. is indicated by a symbol E 1
  • the temperature change of the gas sensor 9 when the temperature of the gas G is 500 ° C. is denoted by reference numeral F1
  • the temperature change of the gas sensor 9 when the temperature of the gas G is 200 ° C. is denoted by This is indicated by F2.
  • the temperature near the sensor electrode 22 hardly changes.
  • the effect of suppressing the temperature change in the vicinity of the sensor electrode 22 is that the portion of the solid electrolyte body 2 facing the proximal end region R1 closest to the insulator 6 is replaced with the portion of the solid electrolyte body 2 facing the intermediate region R2 and the sensor electrode. It is obtained by heating more strongly than the vicinity of 22. That is, the gas sensor 1 can maintain the temperature around the sensor electrode 22 at an appropriate temperature even if the temperature of the gas G varies. Further, in the gas sensor 1, when a monitor electrode 23 (monitor cell) described later is formed (Example 2), the temperature of the monitor electrode 23 is equal to the temperature of the sensor electrode 22.
  • Example 2 In this example, a sensor electrode 22 and a monitor electrode 23 arranged in the width direction W of the solid electrolyte body 2 are provided on the first surface 201 of the solid electrolyte body 2 at a position closer to the base end side than the pump electrode 21. (See FIG. 1).
  • the monitor electrode 23 is used for detecting the oxygen concentration in the gas G after the oxygen concentration is adjusted by the pump electrode 21.
  • the distance from the center of the pump electrode 21 to the center of the sensor electrode 22 and the distance from the center of the pump electrode 21 to the center of the monitor electrode 23 are substantially equal.
  • the monitor electrode 23 is made of a material having catalytic activity for oxygen such as platinum or gold.
  • the reference electrode 24 is provided on the second surface 202 of the solid electrolyte body 2 and faces the monitor electrode 23 in the thickness direction of the solid electrolyte body 2.
  • a monitor cell is formed by the monitor electrode 23 and the reference electrode 24 (in this example, a part of the reference electrode 24) and a part of the solid electrolyte body 2 sandwiched therebetween.
  • the monitor cell is configured to detect an oxygen ion current flowing between the monitor electrode 23 and the reference electrode 24 in a state where a voltage is applied between the monitor electrode 23 and the reference electrode 24.
  • the sensor cell generates an oxygen ion current caused by NOx and residual oxygen, while the monitor cell generates an oxygen ion current caused by residual oxygen. Then, the NOx concentration in the gas G is detected by subtracting the value of the oxygen ion current in the monitor cell from the value of the oxygen ion current in the sensor cell.
  • the pump electrode 21, sensor electrode 22, monitor electrode 23, and reference electrode 24 are formed by a single solid electrolyte body 2.
  • Other configurations of the gas sensor 1 of this example and the reference numerals in the figure are the same as those of the first embodiment, and the same effects as those of the first embodiment are obtained.
  • Example 3 the layout of the heating element 4 in the heater base 31 is different from that in the first embodiment.
  • the central portion 415 of the heating element 41 in the base region R1 can be formed in a state connected to the inner portion 422 of the heating element 42 in the intermediate region R2.
  • the volume of the heating element 42 present in the intermediate region R2 is larger than that in the case of the first embodiment (FIG.), And the periphery of the sensor electrode 22 can be strongly heated as compared with the case of the first embodiment. .
  • the heating element 43 in the distal end side region R3 includes a portion parallel to the longitudinal direction L and a portion parallel to the width direction W, similarly to the heating element 41 in the proximal end region R1. These are continuous and can be formed to meander in the width direction W.
  • the heating elements 42 in the intermediate region R2 are provided on both sides (outside) in the width direction W of the region facing the sensor electrode 22 in the thickness direction of the solid electrolyte body 2.
  • the heating element 41 in the proximal end region R ⁇ b> 1 meanders in the longitudinal direction L by a portion parallel to the longitudinal direction L and a portion parallel to the width direction W. It can also be formed.
  • the width of at least a part of the heating element 42 in the intermediate region R2 is set to be larger than the width of the heating element 4 in the proximal end region R1 and the width of the heating element 4 in the distal end region R3. May be larger.
  • the heating element 4 includes an outer portion 411 and an inner portion 412 provided in a pair in parallel to the longitudinal direction L in the entire base end region R1, intermediate region R2, and tip end region R3. And meandering in the longitudinal direction L.
  • region R2 can be enlarged compared with the width
  • the width of the pair of inner portions 412 in the intermediate region R ⁇ b> 2 can be made larger than the width of other portions of the heating element 4.
  • the average value of the hit area is smaller than the average value of the cross-sectional area per unit length of the heating element 42 provided in the intermediate region R2.
  • the average value of the cross-sectional area per unit area means the average value of the cross-sectional areas of the heating elements 41, 42, 43 provided in the regions R1, R2, R3, and the regions R1, R2, R3. It is represented by the value divided by the area.
  • the resistance value per unit area of the heating element 41 in the proximal end region R1 and the resistance value per unit area of the heating element 43 in the distal end region R3 are the same as the resistance value per unit area of the heating element 42 in the intermediate region R2. It becomes higher than the resistance value.
  • the heating amount in the base end side region R1 and the leading end side region R3 can be made larger than the heating amount in the intermediate region R2.
  • the other configurations and the reference numerals in the figure are the same as those in the first embodiment, and the same effects as those in the first embodiment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 This gas sensor is equipped with a solid electrolyte body, a pump electrode, a sensor electrode, and a heater. In the gas sensor, the entire region R of the distal end-side portion provided with heating elements in a heater base is considered to be divided into three regions: an intermediate region R2 positioned between the distal end and the proximal end of the sensor electrode; a distal end-side region R3 positioned nearer the distal end than the intermediate region R2; and a proximal end-side region R1 positioned nearer the proximal end than the intermediate region R2. The resistance value per unit area of a heating element provided to the proximal end-side region R1 and the resistance value per unit area of a heating element provided to the distal end-side region R3 are higher than the resistance value per unit area of a heating element provided to the intermediate region R2. Thus, even if the temperature of a gas changes, the temperature near the sensor electrode will be maintained at the appropriate temperature.

Description

ガスセンサGas sensor
 本発明は、酸素を含むガスにおける所定ガス成分の濃度を検出するガスセンサに関する。 The present invention relates to a gas sensor that detects the concentration of a predetermined gas component in a gas containing oxygen.
 板状の固体電解質体に板状のヒータを積層して形成されるガスセンサは、固体電解質体の一部と、固体電解質体の一部に設けられた一対の電極とによって、電流が流れる複数のタイプのセルを有している。この複数のセルは、電極が触媒活性を有する適切な温度になるよう、ヒータによって加熱されている。 A gas sensor formed by laminating a plate-shaped heater on a plate-shaped solid electrolyte body has a plurality of current flows by a part of the solid electrolyte body and a pair of electrodes provided on a part of the solid electrolyte body. Has a type of cell. The plurality of cells are heated by a heater so that the electrode has an appropriate temperature having catalytic activity.
 例えば、特許文献1のガスセンサは、固体電解質層に電極を設けて、酸素分圧を制御するための第1ポンピングセルと、被測定ガス中の所定ガス成分を検出する第2ポンピングセルとを形成するとともに、固体電解質層に第1および第2ポンピングセルを加熱するヒータを積層している。そして、第1ポンピングセルに対向するように配置される、ヒータの抵抗部の抵抗値を、第2ポンピングセルに対向するように配置される抵抗部の抵抗値よりも高くしている。これにより、第2ポンピングセルの温度を低くして、所定ガス成分の濃度がゼロであるにも拘らず、検出されてしまうオフセット電流に変動が生じないようにしている。 For example, the gas sensor disclosed in Patent Document 1 is provided with an electrode on a solid electrolyte layer to form a first pumping cell for controlling the oxygen partial pressure and a second pumping cell for detecting a predetermined gas component in the gas to be measured. In addition, a heater for heating the first and second pumping cells is laminated on the solid electrolyte layer. And the resistance value of the resistance part of the heater arranged so as to face the first pumping cell is made higher than the resistance value of the resistance part arranged so as to face the second pumping cell. Thereby, the temperature of the second pumping cell is lowered so that the offset current that is detected does not fluctuate even though the concentration of the predetermined gas component is zero.
特開2009-265085号公報JP 2009-265085 A
 しかしながら、ガスセンサは、絶縁性の碍子(インシュレータ)によってハウジングに保持されており、ガスセンサから碍子への熱引け(熱の逃げ)がある。この熱引けによるセンサに及ぼす悪影響を無視することはできない。この熱引けの悪影響は、ガスの温度の変動に応じて変動する。そのため、ガスの温度の変動があっても、ガスセンサにおける各セル(電極)の温度が変動しにくい技術が望まれる。 However, the gas sensor is held in the housing by an insulating insulator (insulator), and there is a heat sink (heat escape) from the gas sensor to the insulator. The adverse effect on the sensor due to this heat sink cannot be ignored. The adverse effect of this heat sink varies according to the variation of the gas temperature. Therefore, a technique is desired in which the temperature of each cell (electrode) in the gas sensor is less likely to fluctuate even if the gas temperature varies.
 本発明は、かかる問題に鑑みてなされたもので、ガスの温度に変動があっても、センサ電極の周辺の温度を適切な温度に維持することができるガスセンサを提供しようとして得られたものである。 The present invention has been made in view of such problems, and has been obtained by providing a gas sensor that can maintain the temperature around the sensor electrode at an appropriate temperature even if the temperature of the gas varies. is there.
 本発明の一態様は、酸素イオン伝導性を有する板状の固体電解質体(2)と、
 該固体電解質体における、酸素を含むガス(G)に晒される第1の表面(201)に設けられ、上記ガスにおける酸素濃度を調整するために用いられるポンプ電極(21)と、
 上記固体電解質体の上記第1の表面における、上記ポンプ電極よりも基端側の位置に設けられ、該ポンプ電極によって酸素濃度が調整された後のガスにおける所定ガス成分の濃度を検出するために用いられるセンサ電極(22)と、
 上記固体電解質体に対向して配置され、該固体電解質体を加熱する板状のヒータ(3)と、を備えるガスセンサ(1)において、
 該ガスセンサは、その長尺方向(L)の先端側が上記ガスに晒されるとともに、長尺方向の基端側が絶縁性の碍子(6)に保持されるものであり、
 上記ヒータは、ヒータ基盤(31)と、該ヒータ基盤に設けられた導電性の導体層(32)とによって構成されており、
 該導体層は、上記基端側に配置された一対のリード(40)と、該一対のリードよりも先端側において、該一対のリードに接続され、かつ該リードの断面積よりも断面積が小さい発熱体(4)とを有しており、
 上記ヒータ基盤における、上記発熱体が設けられた先端側部分(11)の全体の領域(R)を、上記長尺方向に並ぶ3つの領域に分けるとともに、該3つの領域を、上記センサ電極の先端(222)と基端(221)との間に位置する中間領域(R2)、該中間領域よりも先端側に位置する先端側領域(R3)、及び上記中間領域よりも基端側に位置する基端側領域(R1)としたとき、上記基端側領域に設けられた上記発熱体の単位面積当たりの抵抗値、及び上記先端側領域に設けられた上記発熱体の単位面積当たりの抵抗値は、上記中間領域に設けられた上記発熱体の単位面積当たりの抵抗値よりも高いことを特徴とするガスセンサにある。
One aspect of the present invention is a plate-shaped solid electrolyte body (2) having oxygen ion conductivity,
A pump electrode (21) provided on the first surface (201) exposed to the oxygen-containing gas (G) in the solid electrolyte body and used for adjusting the oxygen concentration in the gas;
In order to detect the concentration of a predetermined gas component in the gas after the oxygen concentration is adjusted by the pump electrode provided at the position on the proximal end side of the pump electrode on the first surface of the solid electrolyte body A sensor electrode (22) used;
In a gas sensor (1) comprising: a plate-like heater (3) disposed opposite to the solid electrolyte body and heating the solid electrolyte body,
In the gas sensor, the distal end side in the longitudinal direction (L) is exposed to the gas, and the proximal end side in the longitudinal direction is held by an insulating insulator (6).
The heater is composed of a heater base (31) and a conductive conductor layer (32) provided on the heater base,
The conductor layer is connected to the pair of leads (40) disposed on the base end side and the pair of leads on the distal end side of the pair of leads, and has a cross-sectional area larger than the cross-sectional area of the leads. A small heating element (4),
In the heater base, the entire region (R) of the tip side portion (11) provided with the heating element is divided into three regions arranged in the longitudinal direction, and the three regions are divided into the sensor electrodes. An intermediate region (R2) located between the distal end (222) and the proximal end (221), a distal end side region (R3) located closer to the distal end than the intermediate region, and a proximal end side relative to the intermediate region When the base end side region (R1) is set, the resistance value per unit area of the heating element provided in the base end side region and the resistance per unit area of the heating element provided in the tip end side region The value is in the gas sensor characterized in that the value is higher than the resistance value per unit area of the heating element provided in the intermediate region.
 上記ガスセンサにおいては、ヒータにおける導体層の発熱体の形成の仕方に工夫をしている。
 具体的には、ヒータのヒータ基盤における、発熱体が設けられた先端側部分の全体の領域を、中間領域、先端側領域及び基端側領域の3つの領域に分けて見たとき、基端側領域に設けられた発熱体の単位面積当たりの抵抗値を、中間領域に設けられた発熱体の単位面積当たりの抵抗値よりも高くしている。これにより、3つの領域のうち絶縁性の碍子に最も近い基端側領域に対向する固体電解質体の部分を、中間領域に対向する固体電解質体の部分及びセンサ電極の周辺よりも強く加熱することができる。
In the above gas sensor, the method of forming the heating element of the conductor layer in the heater is devised.
Specifically, in the heater base of the heater, when the entire region of the distal end portion provided with the heating element is divided into three regions, an intermediate region, a distal end region, and a proximal end region, the proximal end The resistance value per unit area of the heating element provided in the side region is set higher than the resistance value per unit area of the heating element provided in the intermediate region. As a result, the portion of the solid electrolyte body facing the proximal end region closest to the insulating insulator among the three regions is heated more strongly than the portion of the solid electrolyte body facing the intermediate region and the periphery of the sensor electrode. Can do.
 そして、絶縁性の碍子に近い固体電解質体の部分を強く加熱することにより、ガスの温度が低い場合あるいはガスの温度が低下する際に、センサ電極が、絶縁性の碍子が位置する基端側への熱引け(熱の逃げ)の影響を受けにくくすることができる。 Then, by strongly heating the portion of the solid electrolyte body close to the insulating insulator, when the gas temperature is low or when the gas temperature is lowered, the sensor electrode is located on the proximal side where the insulating insulator is located. It is possible to make it less susceptible to heat sinking (heat escape).
 また、先端側領域に設けられた発熱体の単位面積当たりの抵抗値を、中間領域に設けられた発熱体の単位面積当たりの抵抗値よりも高くしている。これにより、先端側領域に対向する固体電解質体の部分及びポンプ電極の周辺を、中間領域に対向する固体電解質体の部分及びセンサ電極の周辺よりも強く加熱することができる。そのため、ポンプ電極の周辺の温度を、触媒活性を有する適切な温度に容易に加熱することができる。
 それ故、上記ガスセンサによれば、ガスの温度に変動があっても、センサ電極の周辺の温度を適切な温度に維持することができる。そして、センサ電極による所定ガス成分の濃度の検出精度を高く維持することができる。
In addition, the resistance value per unit area of the heating element provided in the tip side region is higher than the resistance value per unit area of the heating element provided in the intermediate region. Accordingly, the portion of the solid electrolyte body facing the tip region and the periphery of the pump electrode can be heated more strongly than the portion of the solid electrolyte body facing the intermediate region and the periphery of the sensor electrode. Therefore, the temperature around the pump electrode can be easily heated to an appropriate temperature having catalytic activity.
Therefore, according to the gas sensor, even if the gas temperature varies, the temperature around the sensor electrode can be maintained at an appropriate temperature. And the detection accuracy of the density | concentration of the predetermined gas component by a sensor electrode can be maintained highly.
実施例1にかかる、ガスセンサを示す断面図。1 is a cross-sectional view showing a gas sensor according to Example 1. FIG. 実施例1にかかる、ガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of a gas sensor concerning Example 1. FIG. 実施例1にかかる、ガスセンサの先端からの距離と、その位置でのガスセンサの温度との関係を示すグラフ。The graph which shows the relationship between the distance from the front-end | tip of a gas sensor concerning Example 1, and the temperature of the gas sensor in the position. 実施例3にかかる、ガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of a gas sensor concerning Example 3. FIG. 実施例3にかかる、他のガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of the other gas sensor concerning Example 3. FIG. 実施例3にかかる、他のガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of the other gas sensor concerning Example 3. FIG. 実施例3にかかる、他のガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of the other gas sensor concerning Example 3. FIG. 実施例3にかかる、他のガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of the other gas sensor concerning Example 3. FIG. 比較例にかかる、ガスセンサのヒータ基盤における発熱体のレイアウトを示す平面図。The top view which shows the layout of the heat generating body in the heater base | substrate of a gas sensor concerning a comparative example.
 上述したガスセンサにおける好ましい実施の形態について説明する。
 本開示において、「単位面積当たりの抵抗値」とは、ガスセンサの複数の所定の領域の各々における発熱体の抵抗値を、その領域の面積で割った値のことをいう。「抵抗値」とは、各領域に設けられた発熱体に所定の電圧を加えたときに、この発熱体に流れる電流を測定し、所定の電圧を測定された電流で割った値のことをいう。
A preferred embodiment of the gas sensor described above will be described.
In the present disclosure, the “resistance value per unit area” means a value obtained by dividing the resistance value of the heating element in each of a plurality of predetermined regions of the gas sensor by the area of the region. “Resistance value” means a value obtained by measuring the current flowing through a heating element provided in each region when a predetermined voltage is applied and dividing the predetermined voltage by the measured current. Say.
 また、「中間領域」とは、ヒータ基盤における、センサ電極の先端とこの先端に対向する基端との間に存在する領域のことを示す。「先端側領域」とは、ヒータ基盤における、センサ電極の先端よりも、さらにヒータ基盤の先端側の領域の全体のことを示す。「基端側領域」とは、ヒータ基盤の、発熱体が設けられた先端側部分における、センサ電極の基端よりも、さらにヒータ基盤の基端側に位置する領域の全体のことを示す。また、ヒータ基盤の、発熱体が設けられた先端側部分とは、ヒータ基盤において、発熱体がリードに接続される端部よりも先端側に位置する領域の全体のことを示す。 In addition, the “intermediate region” refers to a region on the heater base that exists between the tip of the sensor electrode and the base end facing the tip. The “front end side region” indicates the entire region on the front side of the heater base further than the front end of the sensor electrode in the heater base. The “proximal end region” refers to the entire region of the heater base that is located further to the base end side of the heater base than the base end of the sensor electrode in the tip side portion where the heating element is provided. Further, the tip side portion of the heater base where the heating element is provided indicates the entire region of the heater base located on the tip side of the end where the heating element is connected to the lead.
 また、上記発熱体の全体は、発熱体の幅方向に沿った断面積が一定となっており、上記基端側領域に設けられた上記発熱体の単位面積当たりの長さ、及び上記先端側領域に設けられた上記発熱体の単位面積当たりの長さは、上記中間領域に設けられた上記発熱体の単位面積当たりの長さよりも長くすることができる。 In addition, the entire heating element has a constant cross-sectional area along the width direction of the heating element, the length per unit area of the heating element provided in the proximal end region, and the distal end side The length per unit area of the heating element provided in the region can be longer than the length per unit area of the heating element provided in the intermediate region.
 これにより、基端側領域に設けられた発熱体の単位面積当たりの抵抗値は、この発熱体を長く形成することによって、中間領域に設けられた発熱体の単位面積当たりの抵抗値よりも高くすることができる。また、先端側領域に設けられた発熱体の単位面積当たりの抵抗値は、この発熱体を長く形成することによって、中間領域に設けられた発熱体の単位面積当たりの抵抗値よりも高くすることができる。
 なお、「単位面積当たりの長さ」とは、各領域に設けられた発熱体の全長を、各領域の面積で割った値のことをいう。
Thereby, the resistance value per unit area of the heating element provided in the base end region is higher than the resistance value per unit area of the heating element provided in the intermediate region by forming the heating element long. can do. Also, the resistance value per unit area of the heating element provided in the tip side region should be higher than the resistance value per unit area of the heating element provided in the intermediate region by forming the heating element long. Can do.
The “length per unit area” refers to a value obtained by dividing the total length of the heating element provided in each region by the area of each region.
 また、上記基端側領域に設けられた上記発熱体の単位長さ当たりの横断面積の平均値、及び上記先端側領域に設けられた上記発熱体の単位長さ当たりの横断面積の平均値は、上記中間領域に設けられた上記発熱体の単位長さ当たりの横断面積の平均値よりも小さくすることができる。 Further, the average value of the cross-sectional area per unit length of the heating element provided in the base end side region, and the average value of the cross-sectional area per unit length of the heating element provided in the distal end side region are: The average value of the cross-sectional area per unit length of the heating element provided in the intermediate region can be reduced.
 これにより、基端側領域に設けられた発熱体の単位面積当たりの抵抗値は、この発熱体の断面積を小さくすることによって、中間領域に設けられた発熱体の単位面積当たりの抵抗値よりも高くすることができる。また、先端側領域に設けられた発熱体の単位面積当たりの抵抗値は、この発熱体の断面積を小さくすることによって、中間領域に設けられた発熱体の単位面積当たりの抵抗値よりも高くすることができる。
 なお、「単位面積当たりの断面積の平均値」とは、各領域に設けられた発熱体の幅方向の横断面積の平均値を、各領域の面積で割った値のことをいう。また、「一定の断面積の発熱体」は、±10%以内の断面積の変化を含んでいてもよい。
Thereby, the resistance value per unit area of the heating element provided in the base end region is smaller than the resistance value per unit area of the heating element provided in the intermediate region by reducing the cross-sectional area of the heating element. Can also be high. In addition, the resistance value per unit area of the heating element provided in the tip side region is higher than the resistance value per unit area of the heating element provided in the intermediate region by reducing the cross-sectional area of the heating element. can do.
The “average value of the cross-sectional area per unit area” means a value obtained by dividing the average value of the cross-sectional areas in the width direction of the heating elements provided in each region by the area of each region. Further, the “heating element having a constant cross-sectional area” may include a change in cross-sectional area within ± 10%.
 以下に、本実施例にかかるガスセンサついて、図面を参照して説明する。
(実施例1)
 ガスセンサ1は、図1、図2に示すように、固体電解質体2、ポンプ電極21、センサ電極22及びヒータ3を備えている。
Hereinafter, the gas sensor according to the present embodiment will be described with reference to the drawings.
(Example 1)
As shown in FIGS. 1 and 2, the gas sensor 1 includes a solid electrolyte body 2, a pump electrode 21, a sensor electrode 22, and a heater 3.
 固体電解質体2は、酸素イオン伝導性を有しており、板状に形成されている。ポンプ電極21は、固体電解質体2における、酸素を含むガスGに晒される第1の表面201に設けられており、ガスGにおける酸素濃度を調整するために用いられる。センサ電極22は、固体電解質体2の第1の表面201における、ポンプ電極21よりも固体電解質体2の基端側に設けられている。センサ電極22は、ポンプ電極21によって酸素濃度が調整された後のガスGにおける所定ガス成分の濃度を検出するために用いられる。ヒータ3は、板状に形成されて、固体電解質体2に対向しており、固体電解質体2及び各電極21,22を加熱する。 The solid electrolyte body 2 has oxygen ion conductivity and is formed in a plate shape. The pump electrode 21 is provided on the first surface 201 of the solid electrolyte body 2 exposed to the gas G containing oxygen, and is used to adjust the oxygen concentration in the gas G. The sensor electrode 22 is provided on the first surface 201 of the solid electrolyte body 2 on the proximal end side of the solid electrolyte body 2 with respect to the pump electrode 21. The sensor electrode 22 is used for detecting the concentration of a predetermined gas component in the gas G after the oxygen concentration is adjusted by the pump electrode 21. The heater 3 is formed in a plate shape and faces the solid electrolyte body 2, and heats the solid electrolyte body 2 and the electrodes 21 and 22.
 ガスセンサ1は、所定の長さを有し、その長手方向(長尺方向)において互いに対向する二つの端部を有する。この開示において、この二つの端部のガスGに晒される一方を先端側といい、碍子6に保持される他方を基端側という。ガスセンサ1は、上記したように、長尺形状に形成されており、その「先端側」とは、ガスセンサ1の自由端でもある。一方、ガスセンサ1の「基端側」とは、ガスセンサ1の長尺方向Lにおいて、先端側と対向し、上記したように、碍子6に保持される。 The gas sensor 1 has a predetermined length and has two end portions facing each other in the longitudinal direction (longitudinal direction). In this disclosure, one of the two ends exposed to the gas G is referred to as a distal end side, and the other held by the insulator 6 is referred to as a proximal end side. As described above, the gas sensor 1 is formed in a long shape, and the “tip side” is also a free end of the gas sensor 1. On the other hand, the “base end side” of the gas sensor 1 is opposed to the distal end side in the longitudinal direction L of the gas sensor 1 and is held by the insulator 6 as described above.
 図1、図2に示すように、ヒータ3は、絶縁性のヒータ基盤31と、ヒータ基盤31に設けられた導電性の導体層32とによって構成されている。導体層32は、基端側に配置された一対のリード40と、一対のリード40よりも先端側に近く、一対のリード40同士を接続し、リード40の横断面積よりも小さな横断面積の発熱体4とを有している。 As shown in FIGS. 1 and 2, the heater 3 includes an insulating heater base 31 and a conductive conductor layer 32 provided on the heater base 31. The conductor layer 32 is closer to the distal end side than the pair of leads 40 arranged on the base end side, connects the pair of leads 40 to each other, and generates heat in a cross-sectional area smaller than the cross-sectional area of the lead 40. It has a body 4.
 図2に示すように、ガスセンサ1のヒータ基盤31は、ガスセンサ1の先端側に近く、発熱体4がもうけられた部分を有する。以下の説明において、この部分を先端側部分11と言う。先端側部分11の全体の領域を領域Rとし、これを図に示すように、長手方向Lに並ぶ、三つの領域R1,R2,R3に分ける。領域R2は、センサ電極22の先端222と基端221との間に位置し、以下中間領域R2という。領域R3は、中間領域R2よりも先端側に近く、先端側領域R3という。領域R1は、中間領域R2よりも基端側に近く、基端側領域R1という。発熱体4のパターン、すなわちレイアウトを変化させることにより、基端側領域R1に設けられた発熱体41の単位面積当たりの抵抗値、及び先端側領域R3に設けられた発熱体43の単位面積当たりの抵抗値を、中間領域R2に設けられた発熱体42の単位面積当たりの抵抗値よりも高くしている。すなわち、発熱体4は、三つの部分41,42,43を有している。部分41は領域R1に位置し、部分42は領域R2に位置し、部分43は領域R30に位置している。「単位面積当たりの抵抗値」は、各領域R1,R2,R3に設けられた発熱体41,42,43の抵抗値を、各領域R1,R2,R3の面積で割った値で表される。
 ここで、ヒータ基盤31の、発熱体4が設けられた先端側部分11とは、ヒータ基盤31において、発熱体4がリード40に接続される端部401よりも先端側に近い、領域Rの全体のことを示す。
As shown in FIG. 2, the heater base 31 of the gas sensor 1 has a portion close to the distal end side of the gas sensor 1 and provided with a heating element 4. In the following description, this portion is referred to as the tip end portion 11. The entire region of the tip end portion 11 is defined as region R, which is divided into three regions R1, R2, and R3 arranged in the longitudinal direction L as shown in the figure. The region R2 is located between the distal end 222 and the proximal end 221 of the sensor electrode 22, and is hereinafter referred to as an intermediate region R2. The region R3 is closer to the tip side than the intermediate region R2, and is referred to as a tip side region R3. The region R1 is closer to the base end side than the intermediate region R2, and is referred to as a base end region R1. By changing the pattern of the heating element 4, that is, the layout, the resistance value per unit area of the heating element 41 provided in the base end region R1 and the per unit area of the heating element 43 provided in the tip end region R3. Is set to be higher than the resistance value per unit area of the heating element 42 provided in the intermediate region R2. That is, the heating element 4 has three portions 41, 42, and 43. The portion 41 is located in the region R1, the portion 42 is located in the region R2, and the portion 43 is located in the region R30. The “resistance value per unit area” is represented by a value obtained by dividing the resistance values of the heating elements 41, 42, and 43 provided in the regions R1, R2, and R3 by the areas of the regions R1, R2, and R3. .
Here, the tip end portion 11 of the heater base 31 provided with the heating element 4 is the region of the heater base 31 closer to the tip end side than the end 401 where the heating element 4 is connected to the lead 40. Show the whole thing.
 以下、ガスセンサ1について、図1~図3を参照して詳説する。
 ガスセンサ1は、内燃機関の排気管等に配置されて使用される。ガスGは、酸素を含み、内燃機関から伸びる排気管を通過する排ガスであり、所定ガス成分は排ガスに含まれるNOx(窒素酸化物)である。ガスセンサ1は、碍子6によってハウジングに保持され、ハウジングは、排気管に固定される。また、ガスセンサ1は、碍子6から突出する先端側の部分を有しており、この先端側の部分は、ガスGを通過させる貫通孔が設けられた保護カバーによって覆われている。
Hereinafter, the gas sensor 1 will be described in detail with reference to FIGS.
The gas sensor 1 is disposed and used in an exhaust pipe or the like of an internal combustion engine. The gas G contains oxygen and is exhaust gas that passes through an exhaust pipe extending from the internal combustion engine, and the predetermined gas component is NOx (nitrogen oxide) contained in the exhaust gas. The gas sensor 1 is held in the housing by the insulator 6, and the housing is fixed to the exhaust pipe. Further, the gas sensor 1 has a tip portion protruding from the insulator 6, and the tip portion is covered with a protective cover provided with a through hole through which the gas G passes.
 図1に示すように、固体電解質体2は、固体電解質体2の厚み方向に互いに対向する第1の表面201と第2の表面202を有する。基準ガスAとしての大気に晒される第2の表面202には、基準電極24が設けられている。基準電極24は、固体電解質体2の第1の表面201に設けられたポンプ電極21及びセンサ電極22に対して、固体電解質体2の厚み方向において一致する、言い換えれば、オーバーラップする第2の表面202の一部に設けられている。基準電極24は、単一の電極からなり、ポンプ電極21及びセンサ電極22と完全にオーバーラップするサイズを有するように構成することができる。また、基準電極24は、独立した複数の電極の組み合わせで構成してもよく、ポンプ電極21及びセンサ電極22対して一つずつ設けてもよい。 As shown in FIG. 1, the solid electrolyte body 2 has a first surface 201 and a second surface 202 that face each other in the thickness direction of the solid electrolyte body 2. A reference electrode 24 is provided on the second surface 202 exposed to the atmosphere as the reference gas A. The reference electrode 24 matches the pump electrode 21 and the sensor electrode 22 provided on the first surface 201 of the solid electrolyte body 2 in the thickness direction of the solid electrolyte body 2, in other words, the second electrode that overlaps. A part of the surface 202 is provided. The reference electrode 24 includes a single electrode and can be configured to have a size that completely overlaps the pump electrode 21 and the sensor electrode 22. Further, the reference electrode 24 may be constituted by a combination of a plurality of independent electrodes, or one reference electrode 24 may be provided for each of the pump electrode 21 and the sensor electrode 22.
 ポンプ電極21、センサ電極22及び基準電極24は、1枚の固体電解質体2に対して設けられている。固体電解質体2の第1の表面201には、スペーサ51を介して板状の絶縁体52が積層されている。固体電解質体2の第1の表面201の側には、固体電解質体2、スペーサ51及び絶縁体52によって、ガスGが導入されるガス室501が形成されている。スペーサ51に設けられた穴には、所定の拡散抵抗下においてガス室501にガスGを導入するための拡散抵抗層511が設けられている。固体電解質体2の第2の表面202には、スペーサ53を介してヒータ3が積層されている。固体電解質体2の第2の表面202の側には、固体電解質体2、スペーサ53及びヒータ3によって、基準ガスAが導入される基準ガス室502が形成されている。 The pump electrode 21, the sensor electrode 22 and the reference electrode 24 are provided for one solid electrolyte body 2. A plate-like insulator 52 is stacked on the first surface 201 of the solid electrolyte body 2 with a spacer 51 interposed therebetween. On the first surface 201 side of the solid electrolyte body 2, a gas chamber 501 into which the gas G is introduced is formed by the solid electrolyte body 2, the spacer 51, and the insulator 52. A diffusion resistance layer 511 for introducing the gas G into the gas chamber 501 under a predetermined diffusion resistance is provided in the hole provided in the spacer 51. The heater 3 is stacked on the second surface 202 of the solid electrolyte body 2 with a spacer 53 interposed therebetween. On the second surface 202 side of the solid electrolyte body 2, a reference gas chamber 502 into which the reference gas A is introduced is formed by the solid electrolyte body 2, the spacer 53, and the heater 3.
 ポンプ電極21及び基準電極24は、白金、金等の酸素に対する触媒活性を有する材料によって構成されている。センサ電極22は、白金に対して、NOxに対する触媒活性を有するロジウム等を加えた材料によって構成されている。 The pump electrode 21 and the reference electrode 24 are made of a material having catalytic activity for oxygen such as platinum and gold. The sensor electrode 22 is made of a material obtained by adding rhodium or the like having catalytic activity for NOx to platinum.
 ガスセンサ1においては、ポンプ電極21及び基準電極24(本例では基準電極24の一部)と、これらの間に挟まれた固体電解質体2の一部とによって、ポンプセルが形成されている。ポンプセルは、ポンプ電極21と基準電極24との間に電圧を印加して、ポンプ電極21と基準電極24との間に酸素イオン電流を流すことによって、ガスG中の酸素を除去するよう構成されている。 In the gas sensor 1, a pump cell is formed by the pump electrode 21 and the reference electrode 24 (a part of the reference electrode 24 in this example) and a part of the solid electrolyte body 2 sandwiched therebetween. The pump cell is configured to remove oxygen in the gas G by applying a voltage between the pump electrode 21 and the reference electrode 24 and causing an oxygen ion current to flow between the pump electrode 21 and the reference electrode 24. ing.
 また、ガスセンサ1においては、センサ電極22及び基準電極24(本例では基準電極24の一部)と、これらの間に挟まれた固体電解質体2の一部とによって、センサセルが形成されている。センサセルは、センサ電極22と基準電極24との間に電圧を印加した状態において、センサ電極22と基準電極24との間に流れる酸素イオン電流を検出するよう構成されている。そして、この酸素イオン電流にレベルの関数として、ガスG中のNOx濃度を算出する。 Further, in the gas sensor 1, a sensor cell is formed by the sensor electrode 22 and the reference electrode 24 (in this example, a part of the reference electrode 24) and a part of the solid electrolyte body 2 sandwiched therebetween. . The sensor cell is configured to detect an oxygen ion current flowing between the sensor electrode 22 and the reference electrode 24 in a state where a voltage is applied between the sensor electrode 22 and the reference electrode 24. Then, the NOx concentration in the gas G is calculated as a function of the level of this oxygen ion current.
 ヒータ基盤31、絶縁体52及びスペーサ51,53は、アルミナ等のセラミックスによって構成されている。導体層32は、ヒータ基盤31に一定の厚みで設けられた導電性材料によって構成されている。導体層32は、一対のヒータ基盤31の間に挟まれる状態で形成されている。導体層32における一対のリード40は、ヒータ基盤31における基端側部分において、互いに平行に延びている。導体層32における発熱体4は、リード40に比べて横断面積が縮小していることにより、一対のリード40の間に通電を行う際に、リード40に比べて大きなジュール熱を発生させる。 The heater base 31, the insulator 52, and the spacers 51 and 53 are made of ceramics such as alumina. The conductor layer 32 is made of a conductive material provided on the heater base 31 with a constant thickness. The conductor layer 32 is formed so as to be sandwiched between a pair of heater bases 31. The pair of leads 40 in the conductor layer 32 extend in parallel to each other at the proximal end portion of the heater base 31. The heating element 4 in the conductor layer 32 generates a Joule heat larger than that of the leads 40 when energizing between the pair of leads 40 due to the reduced cross-sectional area compared to the leads 40.
 図2に示すように、発熱体4は、その全長に亘って一定の幅を有する。さらに、発熱体4は、その全長に亘って一定の横断面積を有する。発熱体4の形成パターン、すなわちレイアウトは、基端側領域R1と中間領域R2と先端側領域R3とにおいて変化している。発熱体4のレイアウトの変化によって、各領域R1,R2,R3に設けられた発熱体41,42,43の単位面積当たりの長さを互いに異ならせている。ここで、「単位面積当たりの長さ」とは、各領域R1,R2,R3に設けられた発熱体41,42,43の全長を、各領域R1,R2,R3の面積で割った値で表される。 As shown in FIG. 2, the heating element 4 has a certain width over its entire length. Furthermore, the heating element 4 has a constant cross-sectional area over its entire length. The formation pattern, that is, the layout of the heating element 4 changes in the base end region R1, the intermediate region R2, and the distal end region R3. The length per unit area of the heating elements 41, 42, and 43 provided in each of the regions R1, R2, and R3 is made different depending on the layout of the heating element 4. Here, the “length per unit area” is a value obtained by dividing the total length of the heating elements 41, 42, 43 provided in the regions R1, R2, R3 by the areas of the regions R1, R2, R3. expressed.
 すなわち、基端側領域R1に設けられた発熱体41の単位面積当たりの長さ、及び先端側領域R3に設けられた発熱体43の単位面積当たりの長さは、中間領域R2に設けられた発熱体42の単位面積当たりの長さよりも大きい。また、基端側領域R1に設けられた発熱体41の単位面積当たりの長さは、先端側領域R3に設けられた発熱体43の単位面積当たりの長さよりも大きい。 That is, the length per unit area of the heating element 41 provided in the base end region R1 and the length per unit area of the heating element 43 provided in the tip end region R3 are provided in the intermediate region R2. It is larger than the length per unit area of the heating element 42. Further, the length per unit area of the heating element 41 provided in the base end side region R1 is larger than the length per unit area of the heating element 43 provided in the distal end side region R3.
 基端側領域R1における発熱体41は、ヒータ3の長尺方向Lに平行な部分と、長尺方向Lに直交する幅方向Wに平行な部分とによって、幅方向Wに蛇行している。基端側領域R1における発熱体41は、幅方向Wに対称に延びる二つの導体により構成されている。中間領域R2における発熱体42は、長尺方向Lに平行に、幅方向Wに対称な二つの導体から構成されている。中間領域R2に位置する発熱体42の二つの導体は、中間領域R2の一部であって、ヒータ基盤31の厚み方向においてセンサ電極22に一致、すなわちオーバーラップする領域の、幅方向Wにおける両外側に位置している。先端側領域R3における発熱体43は、長尺方向Lに平行な部分と幅方向Wに平行な部分とによって、長尺方向Lに蛇行している。言い方を代えれば、先端側領域R3における発熱体43は、幅方向Wに対称な二つの導体からなる。すなわち、先端側領域R3における発熱体43は、長尺方向Lに平行に延びる二つの外側部分431と、長尺方向Lに平行に延びる二つの内側部分432とからなり、それぞれ先端側においてつながり、内側部分432同士が基端側においてつながっている。 The heating element 41 in the proximal end region R1 meanders in the width direction W by a portion parallel to the longitudinal direction L of the heater 3 and a portion parallel to the width direction W orthogonal to the longitudinal direction L. The heating element 41 in the base end side region R1 is configured by two conductors extending symmetrically in the width direction W. The heating element 42 in the intermediate region R2 is composed of two conductors parallel to the longitudinal direction L and symmetrical in the width direction W. The two conductors of the heating element 42 located in the intermediate region R2 are a part of the intermediate region R2 and coincide with the sensor electrode 22 in the thickness direction of the heater base 31, that is, both regions in the width direction W of the overlapping region. Located on the outside. The heating element 43 in the distal end side region R3 meanders in the longitudinal direction L by a portion parallel to the longitudinal direction L and a portion parallel to the width direction W. In other words, the heating element 43 in the distal end side region R3 is composed of two conductors symmetrical in the width direction W. That is, the heating element 43 in the distal end side region R3 is composed of two outer portions 431 extending in parallel to the longitudinal direction L and two inner portions 432 extending in parallel to the longitudinal direction L, and each is connected at the distal end side. The inner portions 432 are connected to each other on the proximal end side.
 ガスセンサ1においては、上記したように、ヒータ基盤31の発熱体4が設けられた先端側部分11の全体の領域Rを、ガスセンサ1の長尺方向Lに並ぶ3つの領域に分け、この3つの領域における、発熱体4の発熱特性(発熱量)を異ならせている。3つの領域は、ポンプ電極21と対向する先端側領域R3、センサ電極22の先端222と基端221との間に位置する中間領域R2、センサ電極22よりも基端側に位置する基端側領域R1とする。 In the gas sensor 1, as described above, the entire region R of the distal end portion 11 provided with the heating element 4 of the heater base 31 is divided into three regions arranged in the longitudinal direction L of the gas sensor 1. The heat generation characteristics (heat generation amount) of the heating element 4 in the region are different. The three regions are a distal end region R3 facing the pump electrode 21, an intermediate region R2 positioned between the distal end 222 and the proximal end 221 of the sensor electrode 22, and a proximal end side positioned closer to the proximal end than the sensor electrode 22 Region R1.
 そして、基端側領域R1に設けられた発熱体41の単位面積当たりの抵抗値、及び先端側領域R3に設けられた発熱体43の単位面積当たりの抵抗値を、中間領域R2に設けられた発熱体42の単位面積当たりの抵抗値よりも高くすることにより、基端側領域R1及び先端側領域R3における加熱量を、中間領域R2における加熱量よりも多くしている。 Then, the resistance value per unit area of the heating element 41 provided in the proximal end region R1 and the resistance value per unit area of the heating element 43 provided in the distal end region R3 are provided in the intermediate region R2. By making it higher than the resistance value per unit area of the heating element 42, the heating amount in the base end side region R1 and the distal end side region R3 is made larger than the heating amount in the intermediate region R2.
 上記により、3つの領域のうち碍子6に最も近い基端側領域R1に対してヒータ基盤31の厚み方向において対向する固体電解質体2の部分を、中間領域R2に対向する固体電解質体2の部分及びセンサ電極22の周辺よりも強く加熱することができる。また、3つの領域のうち長尺方向Lの先端側に位置する先端側領域R3に対向する固体電解質体2の部分及びポンプ電極21の周辺を、中間領域R2に対向する固体電解質体2の部分及びセンサ電極22の周辺よりも強く加熱することができる。 As described above, of the three regions, the portion of the solid electrolyte body 2 facing the proximal end region R1 closest to the insulator 6 in the thickness direction of the heater base 31 is changed to the portion of the solid electrolyte body 2 facing the intermediate region R2. And it can heat more strongly than the periphery of the sensor electrode 22. Moreover, the part of the solid electrolyte body 2 which opposes the periphery of the pump electrode 21 and the part of the solid electrolyte body 2 which opposes front-end | tip side area | region R3 located in the front end side of the elongate direction L among three area | regions. And it can heat more strongly than the periphery of the sensor electrode 22.
 なお、基端側領域R1に設けられた発熱体41の単位面積当たりの抵抗値と、先端側領域R3に設けられた発熱体43の単位面積当たりの抵抗値とは、いずれを高くすることも可能である。 It should be noted that either the resistance value per unit area of the heating element 41 provided in the base end region R1 or the resistance value per unit area of the heating element 43 provided in the distal end region R3 may be increased. Is possible.
 先端側領域R3においては、碍子6が位置する基端側への熱引け(熱の逃げ)の影響が小さく、先端側領域R3に対応するポンプ電極21の周辺はガスセンサ1の長尺方向Lにおいて最も高温になる。また、基端側領域R1においては、碍子6が位置する基端側への熱引けの影響が大きい。そのため、ガスセンサ1においては、基端側領域R1に設けられた発熱体41の単位面積当たりの抵抗値を、先端側領域R3に設けられた発熱体43の単位面積当たりの抵抗値よりも高くして、基端側領域R1に対向する固体電解質体2の部分を、より強く加熱するようにする。こうして、中間領域R2に対応するセンサ電極22の周辺、及びセンサ電極22よりも基端側の部分は、ポンプ電極21の周辺の温度よりも低い適切な温度に維持される。また、ポンプ電極21の周辺の温度は、触媒活性を有する適切な温度に維持される。 In the distal end side region R3, the influence of heat sinking (heat escape) toward the proximal end where the insulator 6 is located is small, and the periphery of the pump electrode 21 corresponding to the distal end side region R3 is in the longitudinal direction L of the gas sensor 1. It becomes the highest temperature. Moreover, in the base end side area | region R1, the influence of the heat sink to the base end side in which the insulator 6 is located is large. Therefore, in the gas sensor 1, the resistance value per unit area of the heating element 41 provided in the proximal end region R1 is set higher than the resistance value per unit area of the heating element 43 provided in the distal end region R3. Thus, the portion of the solid electrolyte body 2 facing the base end region R1 is heated more strongly. Thus, the periphery of the sensor electrode 22 corresponding to the intermediate region R2 and the portion on the base end side of the sensor electrode 22 are maintained at an appropriate temperature lower than the temperature of the periphery of the pump electrode 21. Further, the temperature around the pump electrode 21 is maintained at an appropriate temperature having catalytic activity.
 一般に、ヒータ3によって固体電解質体2を加熱する狙いの温度に比べて、内燃機関から排気されるガス(排ガス)Gの温度は低いことが多い。ガス(排ガス)Gの温度は、内燃機関の希薄燃焼時の場合には、固体電解質体2を加熱する狙いの温度に比べて、大幅に低くなることがある。このとき、ガスセンサ1から、碍子6が位置する基端側への熱引け(熱の逃げ)が問題となる。 Generally, the temperature of the gas (exhaust gas) G exhausted from the internal combustion engine is often lower than the target temperature at which the solid electrolyte body 2 is heated by the heater 3. In the case of lean combustion of the internal combustion engine, the temperature of the gas (exhaust gas) G may be significantly lower than the target temperature for heating the solid electrolyte body 2. At this time, heat sink (heat escape) from the gas sensor 1 toward the base end where the insulator 6 is located becomes a problem.
 また、ガスセンサ1が配置される内燃機関の排気管を流れるガス(排ガス)Gの温度は、内燃機関の燃焼サイクルの影響を受けて上昇と低下を繰り返す。そして、ガスGの温度が低下する際には、ガスセンサ1から、碍子6が位置する基端側への熱引け(熱の逃げ)が問題となる。 Further, the temperature of the gas (exhaust gas) G flowing through the exhaust pipe of the internal combustion engine in which the gas sensor 1 is disposed is repeatedly increased and decreased under the influence of the combustion cycle of the internal combustion engine. And when the temperature of gas G falls, the heat | fever contraction (heat escape) from the gas sensor 1 to the base end side in which the insulator 6 is located becomes a problem.
 そこで、ガスセンサ1においては、碍子6に近い固体電解質体2の部分を強く加熱することにより、ガスGの温度が低下する場合でも、センサ電極22が、碍子6が位置する基端側への熱引け(熱の逃げ)の影響を受けにくくすることができる。
 それ故、ガスセンサ1によれば、ガスGの温度に変動があっても、センサ電極22の周辺の温度は適切な温度に維持される。そして、センサ電極22による所定ガス成分の濃度の検出精度が高く維持される。
Therefore, in the gas sensor 1, even when the temperature of the gas G is lowered by strongly heating the portion of the solid electrolyte body 2 close to the insulator 6, the sensor electrode 22 is heated to the proximal side where the insulator 6 is located. It can be made less susceptible to shrinkage (heat escape).
Therefore, according to the gas sensor 1, even if the temperature of the gas G varies, the temperature around the sensor electrode 22 is maintained at an appropriate temperature. And the detection accuracy of the density | concentration of the predetermined gas component by the sensor electrode 22 is maintained highly.
 図3には、ガスセンサ1の先端からの距離(mm)と、ガスセンサ1の先端からのその距離にある部分の温度(℃)との関係を、ガスセンサ1(図2)と、比較のための従来のガスセンサ9(図9)とについて示す。図9に示すように、従来のガスセンサ9のヒータ93の発熱体94においては、ヒータ基盤31の基端側領域R1における発熱体41が設けられていない。図3のグラフは、ガスセンサ1,9の温度について、シミュレーションを行った結果を示す。 FIG. 3 shows the relationship between the distance (mm) from the tip of the gas sensor 1 and the temperature (° C.) of the portion at the distance from the tip of the gas sensor 1 for comparison with the gas sensor 1 (FIG. 2). A conventional gas sensor 9 (FIG. 9) will be described. As shown in FIG. 9, the heating element 94 of the heater 93 of the conventional gas sensor 9 is not provided with the heating element 41 in the proximal end region R <b> 1 of the heater base 31. The graph of FIG. 3 shows the result of simulation for the temperature of the gas sensors 1 and 9.
 ここで、図3において、ガスセンサ1について、ガスGの温度が500℃の場合のガスセンサ1の温度変化を符号E1で示し、ガスGの温度が200℃の場合のガスセンサ1の温度変化を符号E2で示す。また、同図において、従来のガスセンサ9ついて、ガスGの温度が500℃の場合のガスセンサ9の温度変化を符号F1で示し、ガスGの温度が200℃の場合のガスセンサ9の温度変化を符号F2で示す。 Here, in FIG. 3, for the gas sensor 1, the temperature change of the gas sensor 1 when the temperature of the gas G is 500 ° C. is indicated by a symbol E 1, and the temperature change of the gas sensor 1 when the temperature of the gas G is 200 ° C. It shows with. Further, in the same figure, for the conventional gas sensor 9, the temperature change of the gas sensor 9 when the temperature of the gas G is 500 ° C. is denoted by reference numeral F1, and the temperature change of the gas sensor 9 when the temperature of the gas G is 200 ° C. is denoted by This is indicated by F2.
 本例のガスセンサ1及び従来のガスセンサ9のいずれにおいても、長尺方向Lにおけるポンプ電極21(ポンプセル)の中心付近に温度のピークがある。そして、センサ電極22(センサセル)の付近の温度は、ポンプ電極21の付近の温度よりも低い温度となる。
 従来のガスセンサ9においては、ガスGの温度が500℃から200℃に低下すると、センサ電極22の付近の温度が大幅に低下している。このセンサ電極22の付近の温度の低下は、ガスセンサ9の基端側への熱引けによる影響を受けるために生じる。
In both the gas sensor 1 of this example and the conventional gas sensor 9, there is a temperature peak near the center of the pump electrode 21 (pump cell) in the longitudinal direction L. The temperature near the sensor electrode 22 (sensor cell) is lower than the temperature near the pump electrode 21.
In the conventional gas sensor 9, when the temperature of the gas G is decreased from 500 ° C. to 200 ° C., the temperature in the vicinity of the sensor electrode 22 is significantly decreased. The temperature drop in the vicinity of the sensor electrode 22 is caused by being affected by heat sinking toward the base end side of the gas sensor 9.
 一方、本例のガスセンサ1においては、ガスGの温度が500℃から200℃に低下しても、センサ電極22の付近の温度はほとんど変化しない。このセンサ電極22の付近の温度変化を抑える効果は、碍子6に最も近い基端側領域R1に対向する固体電解質体2の部分を、中間領域R2に対向する固体電解質体2の部分及びセンサ電極22の周辺よりも強く加熱することによって得られる。すなわち、ガスセンサ1は、ガスGの温度に変動があっても、センサ電極22の周辺の温度を適切な温度に維持できる。
 また、ガスセンサ1は、後述するモニタ電極23(モニタセル)が形成されている場合(実施例2)には、モニタ電極23の温度は、センサ電極22の温度と同等になる。
On the other hand, in the gas sensor 1 of this example, even if the temperature of the gas G is decreased from 500 ° C. to 200 ° C., the temperature near the sensor electrode 22 hardly changes. The effect of suppressing the temperature change in the vicinity of the sensor electrode 22 is that the portion of the solid electrolyte body 2 facing the proximal end region R1 closest to the insulator 6 is replaced with the portion of the solid electrolyte body 2 facing the intermediate region R2 and the sensor electrode. It is obtained by heating more strongly than the vicinity of 22. That is, the gas sensor 1 can maintain the temperature around the sensor electrode 22 at an appropriate temperature even if the temperature of the gas G varies.
Further, in the gas sensor 1, when a monitor electrode 23 (monitor cell) described later is formed (Example 2), the temperature of the monitor electrode 23 is equal to the temperature of the sensor electrode 22.
(実施例2)
 本例は、固体電解質体2の第1の表面201における、ポンプ電極21よりも基端側の位置に、センサ電極22と、固体電解質体2の幅方向Wに並ぶモニタ電極23を設けた例である(図1参照)。
(Example 2)
In this example, a sensor electrode 22 and a monitor electrode 23 arranged in the width direction W of the solid electrolyte body 2 are provided on the first surface 201 of the solid electrolyte body 2 at a position closer to the base end side than the pump electrode 21. (See FIG. 1).
 モニタ電極23は、ポンプ電極21によって酸素濃度が調整された後のガスGにおける酸素濃度を検出するために用いられる。ポンプ電極21の中心からセンサ電極22の中心までの距離と、ポンプ電極21の中心からモニタ電極23の中心までの距離とは、ほぼ等しくなっている。 The monitor electrode 23 is used for detecting the oxygen concentration in the gas G after the oxygen concentration is adjusted by the pump electrode 21. The distance from the center of the pump electrode 21 to the center of the sensor electrode 22 and the distance from the center of the pump electrode 21 to the center of the monitor electrode 23 are substantially equal.
 モニタ電極23は、白金、金等の酸素に対する触媒活性を有する材料によって構成されている。基準電極24は、固体電解質体2の第2の表面202に設けられており、固体電解質体2の厚み方向において、モニタ電極23に対向している。ガスセンサ1においては、モニタ電極23及び基準電極24(本例では基準電極24の一部)と、これらの間に挟まれた固体電解質体2の一部とによって、モニタセルが形成されている。モニタセルは、モニタ電極23と基準電極24との間に電圧を印加した状態において、モニタ電極23と基準電極24との間に流れる酸素イオン電流を検出するよう構成されている。 The monitor electrode 23 is made of a material having catalytic activity for oxygen such as platinum or gold. The reference electrode 24 is provided on the second surface 202 of the solid electrolyte body 2 and faces the monitor electrode 23 in the thickness direction of the solid electrolyte body 2. In the gas sensor 1, a monitor cell is formed by the monitor electrode 23 and the reference electrode 24 (in this example, a part of the reference electrode 24) and a part of the solid electrolyte body 2 sandwiched therebetween. The monitor cell is configured to detect an oxygen ion current flowing between the monitor electrode 23 and the reference electrode 24 in a state where a voltage is applied between the monitor electrode 23 and the reference electrode 24.
 センサセルは、NOx及び残留酸素による生じる酸素イオン電流が発生し、一方、モニタセルは、残留酸素による酸素イオン電流を発生する。そして、センサセルにおける酸素イオン電流の値からモニタセルにおける酸素イオン電流の値を差し引くことにより、ガスG中のNOx濃度が検出される。 The sensor cell generates an oxygen ion current caused by NOx and residual oxygen, while the monitor cell generates an oxygen ion current caused by residual oxygen. Then, the NOx concentration in the gas G is detected by subtracting the value of the oxygen ion current in the monitor cell from the value of the oxygen ion current in the sensor cell.
 また、ポンプ電極21、センサ電極22、モニタ電極23及び基準電極24は、1枚の固体電解質体2によって形成されている。
 本例のガスセンサ1のその他の構成及び図中の符号は実施例1の場合と同様であり、実施例1と同様の作用効果を得る。
The pump electrode 21, sensor electrode 22, monitor electrode 23, and reference electrode 24 are formed by a single solid electrolyte body 2.
Other configurations of the gas sensor 1 of this example and the reference numerals in the figure are the same as those of the first embodiment, and the same effects as those of the first embodiment are obtained.
(実施例3)
 本例は、ヒータ基盤31における発熱体4のレイアウトが、実施例1の場合と異なる。
 図4に示すように、基端側領域R1における発熱体41の中心部分415は、中間領域R2における発熱体42における内側部分422からつながる状態で形成することもできる。この場合、中間領域R2に存在する発熱体42の体積が、実施例1(図)の場合と比べて多くなり、実施例1の場合に比べてセンサ電極22の周辺を強く加熱することができる。
(Example 3)
In this example, the layout of the heating element 4 in the heater base 31 is different from that in the first embodiment.
As shown in FIG. 4, the central portion 415 of the heating element 41 in the base region R1 can be formed in a state connected to the inner portion 422 of the heating element 42 in the intermediate region R2. In this case, the volume of the heating element 42 present in the intermediate region R2 is larger than that in the case of the first embodiment (FIG.), And the periphery of the sensor electrode 22 can be strongly heated as compared with the case of the first embodiment. .
 また、図5に示すように、先端側領域R3における発熱体43は、基端側領域R1における発熱体41と同様に、長尺方向Lに平行な部分と、幅方向Wに平行な部分とを有し、これらは連続しており、幅方向Wに蛇行するように形成することもできる。中間領域R2における発熱体42は、固体電解質体2の厚み方向において、センサ電極22に対向する領域の幅方向Wにおいて、両側(外側)に設けられる。また、この場合、図6に示すように、基端側領域R1における発熱体41は、長尺方向Lに平行な部分と、幅方向Wに平行な部分とによって、長尺方向Lに蛇行して形成することもできる。 Further, as shown in FIG. 5, the heating element 43 in the distal end side region R3 includes a portion parallel to the longitudinal direction L and a portion parallel to the width direction W, similarly to the heating element 41 in the proximal end region R1. These are continuous and can be formed to meander in the width direction W. The heating elements 42 in the intermediate region R2 are provided on both sides (outside) in the width direction W of the region facing the sensor electrode 22 in the thickness direction of the solid electrolyte body 2. In this case, as shown in FIG. 6, the heating element 41 in the proximal end region R <b> 1 meanders in the longitudinal direction L by a portion parallel to the longitudinal direction L and a portion parallel to the width direction W. It can also be formed.
 さらに、図7、図8に示すように、中間領域R2における発熱体42の少なくとも一部の幅を、基端側領域R1における発熱体4の幅及び先端側領域R3における発熱体4の幅よりも大きくしてもよい。この場合、発熱体4は、基端側領域R1、中間領域R2及び先端側領域R3の全体において、長尺方向Lに平行に一対に設けられた外側部分411と内側部分412とを有して、長尺方向Lに蛇行して形成することができる。そして、図7に示すように、中間領域R2における一対の外側部分411の幅を、発熱体4の他の部分の幅に比べて大きくすることができる。また、図8に示すように、中間領域R2における一対の内側部分412の幅を、発熱体4の他の部分の幅に比べて大きくすることもできる。 Further, as shown in FIGS. 7 and 8, the width of at least a part of the heating element 42 in the intermediate region R2 is set to be larger than the width of the heating element 4 in the proximal end region R1 and the width of the heating element 4 in the distal end region R3. May be larger. In this case, the heating element 4 includes an outer portion 411 and an inner portion 412 provided in a pair in parallel to the longitudinal direction L in the entire base end region R1, intermediate region R2, and tip end region R3. And meandering in the longitudinal direction L. And as shown in FIG. 7, the width | variety of a pair of outer side part 411 in intermediate | middle area | region R2 can be enlarged compared with the width | variety of the other part of the heat generating body 4. FIG. Further, as shown in FIG. 8, the width of the pair of inner portions 412 in the intermediate region R <b> 2 can be made larger than the width of other portions of the heating element 4.
 図7、図8の場合には、基端側領域R1に設けられた発熱体41の単位長さ当たりの断面積の平均値、及び先端側領域R3に設けられた発熱体43の単位長さ当たりの面積の平均値は、中間領域R2に設けられた発熱体42の単位長さ当たりの断面積の平均値よりも小さい。ここで、「単位面積当たりの断面積の平均値」とは、各領域R1,R2,R3に設けられた発熱体41,42,43の横断面積の平均値を、各領域R1,R2,R3の面積で割った値で表される。 In the case of FIGS. 7 and 8, the average value of the cross-sectional area per unit length of the heating element 41 provided in the proximal end region R1 and the unit length of the heating element 43 provided in the distal end region R3. The average value of the hit area is smaller than the average value of the cross-sectional area per unit length of the heating element 42 provided in the intermediate region R2. Here, “the average value of the cross-sectional area per unit area” means the average value of the cross-sectional areas of the heating elements 41, 42, 43 provided in the regions R1, R2, R3, and the regions R1, R2, R3. It is represented by the value divided by the area.
 これにより、基端側領域R1における発熱体41の単位面積当たりの抵抗値、及び先端側領域R3における発熱体43の単位面積当たりの抵抗値は、中間領域R2における発熱体42の単位面積当たりの抵抗値よりも高くなる。そして、基端側領域R1及び先端側領域R3における加熱量を、中間領域R2における加熱量よりも多くすることができる。
 本例のガスセンサ1においても、その他の構成及び図中の符号は実施例1の場合と同様であり、実施例1と同様の作用効果を得ることができる。
As a result, the resistance value per unit area of the heating element 41 in the proximal end region R1 and the resistance value per unit area of the heating element 43 in the distal end region R3 are the same as the resistance value per unit area of the heating element 42 in the intermediate region R2. It becomes higher than the resistance value. And the heating amount in the base end side region R1 and the leading end side region R3 can be made larger than the heating amount in the intermediate region R2.
Also in the gas sensor 1 of this example, the other configurations and the reference numerals in the figure are the same as those in the first embodiment, and the same effects as those in the first embodiment can be obtained.

Claims (3)

  1.  酸素イオン伝導性を有する板状の固体電解質体(2)と、
     該固体電解質体における、酸素を含むガス(G)に晒される第1の表面(201)に設けられ、上記ガスにおける酸素濃度を調整するために用いられるポンプ電極(21)と、
     上記固体電解質体の上記第1の表面における、上記ポンプ電極よりも基端側の位置に設けられ、該ポンプ電極によって酸素濃度が調整された後のガスにおける所定ガス成分の濃度を検出するために用いられるセンサ電極(22)と、
     上記固体電解質体に対向して配置され、該固体電解質体を加熱する板状のヒータ(3)と、を備えるガスセンサ(1)において、
     該ガスセンサは、その長尺方向(L)の先端側が上記ガスに晒されるとともに、長尺方向の基端側が絶縁性の碍子(6)に保持されるものであり、
     上記ヒータは、ヒータ基盤(31)と、該ヒータ基盤に設けられた導電性の導体層(32)とによって構成されており、
     該導体層は、上記基端側に配置された一対のリード(40)と、該一対のリードよりも先端側において、該一対のリードに接続され、かつ該リードの断面積よりも断面積が小さい発熱体(4)とを有しており、
     上記ヒータ基盤における、上記発熱体が設けられた先端側部分(11)の全体の領域(R)を、上記長尺方向に並ぶ3つの領域に分けるとともに、該3つの領域を、上記センサ電極の先端(222)と基端(221)との間に位置する中間領域(R2)、該中間領域よりも先端側に位置する先端側領域(R3)、及び上記中間領域よりも基端側に位置する基端側領域(R1)としたとき、上記基端側領域に設けられた上記発熱体の単位面積当たりの抵抗値、及び上記先端側領域に設けられた上記発熱体の単位面積当たりの抵抗値は、上記中間領域に設けられた上記発熱体の単位面積当たりの抵抗値よりも高いことを特徴とするガスセンサ。
    A plate-like solid electrolyte body (2) having oxygen ion conductivity;
    A pump electrode (21) provided on the first surface (201) exposed to the oxygen-containing gas (G) in the solid electrolyte body and used for adjusting the oxygen concentration in the gas;
    In order to detect the concentration of a predetermined gas component in the gas after the oxygen concentration is adjusted by the pump electrode provided at the position on the proximal end side of the pump electrode on the first surface of the solid electrolyte body A sensor electrode (22) used;
    In a gas sensor (1) comprising: a plate-like heater (3) disposed opposite to the solid electrolyte body and heating the solid electrolyte body,
    In the gas sensor, the distal end side in the longitudinal direction (L) is exposed to the gas, and the proximal end side in the longitudinal direction is held by an insulating insulator (6).
    The heater is composed of a heater base (31) and a conductive conductor layer (32) provided on the heater base,
    The conductor layer is connected to the pair of leads (40) disposed on the base end side and the pair of leads on the distal end side of the pair of leads, and has a cross-sectional area larger than the cross-sectional area of the leads. A small heating element (4),
    In the heater base, the entire region (R) of the tip side portion (11) provided with the heating element is divided into three regions arranged in the longitudinal direction, and the three regions are divided into the sensor electrodes. An intermediate region (R2) located between the distal end (222) and the proximal end (221), a distal end side region (R3) located closer to the distal end than the intermediate region, and a proximal end side relative to the intermediate region When the base end side region (R1) is set, the resistance value per unit area of the heating element provided in the base end side region and the resistance per unit area of the heating element provided in the tip end side region A gas sensor characterized in that a value is higher than a resistance value per unit area of the heating element provided in the intermediate region.
  2.  上記発熱体の全体は、一定の断面積で形成されており、
     上記基端側領域に設けられた上記発熱体の単位面積当たりの長さ、及び上記先端側領域に設けられた上記発熱体の単位面積当たりの長さは、上記中間領域に設けられた上記発熱体の単位面積当たりの長さよりも長いことを特徴とする請求項1に記載のガスセンサ。
    The entire heating element is formed with a constant cross-sectional area,
    The length per unit area of the heating element provided in the proximal end region and the length per unit area of the heating element provided in the distal end region are the heat generation provided in the intermediate region. The gas sensor according to claim 1, wherein the gas sensor is longer than a length per unit area of the body.
  3.  上記基端側領域に設けられた上記発熱体の単位長さ当たりの断面積の平均値、及び上記先端側領域に設けられた上記発熱体の単位長さ当たりの断面積の平均値は、上記中間領域に設けられた上記発熱体の単位長さ当たりの断面積の平均値よりも小さいことを特徴とする請求項1又は2に記載のガスセンサ。 The average value of the cross-sectional area per unit length of the heating element provided in the base end side region and the average value of the cross-sectional area per unit length of the heating element provided in the distal end side region are The gas sensor according to claim 1 or 2, wherein the gas sensor is smaller than an average value of a cross-sectional area per unit length of the heating element provided in the intermediate region.
PCT/JP2016/054082 2015-02-12 2016-02-12 Gas sensor WO2016129661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/550,469 US10866210B2 (en) 2015-02-12 2016-02-12 Gas sensor
DE112016000730.2T DE112016000730T9 (en) 2015-02-12 2016-02-12 gas sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-025775 2015-02-12
JP2015025775 2015-02-12
JP2016003130A JP6485364B2 (en) 2015-02-12 2016-01-11 Gas sensor
JP2016-003130 2016-01-11

Publications (1)

Publication Number Publication Date
WO2016129661A1 true WO2016129661A1 (en) 2016-08-18

Family

ID=56614347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054082 WO2016129661A1 (en) 2015-02-12 2016-02-12 Gas sensor

Country Status (1)

Country Link
WO (1) WO2016129661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087863A (en) * 2020-02-17 2022-09-20 株式会社电装 Gas sensor element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318979A (en) * 1997-05-20 1998-12-04 Ngk Insulators Ltd Gas sensor
JP2003149199A (en) * 2001-11-16 2003-05-21 Nissan Motor Co Ltd Gas sensor
JP2009265085A (en) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd Gas sensor
JP2010271283A (en) * 2009-05-25 2010-12-02 Ngk Spark Plug Co Ltd NOx SENSOR
JP2011099712A (en) * 2009-11-04 2011-05-19 Ngk Spark Plug Co Ltd Gas sensor
JP2012177687A (en) * 2011-02-04 2012-09-13 Ngk Spark Plug Co Ltd NOx SENSOR CONTROL DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318979A (en) * 1997-05-20 1998-12-04 Ngk Insulators Ltd Gas sensor
JP2003149199A (en) * 2001-11-16 2003-05-21 Nissan Motor Co Ltd Gas sensor
JP2009265085A (en) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd Gas sensor
JP2010271283A (en) * 2009-05-25 2010-12-02 Ngk Spark Plug Co Ltd NOx SENSOR
JP2011099712A (en) * 2009-11-04 2011-05-19 Ngk Spark Plug Co Ltd Gas sensor
JP2012177687A (en) * 2011-02-04 2012-09-13 Ngk Spark Plug Co Ltd NOx SENSOR CONTROL DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087863A (en) * 2020-02-17 2022-09-20 株式会社电装 Gas sensor element

Similar Documents

Publication Publication Date Title
JP6101669B2 (en) Gas sensor
JP6573783B2 (en) Sensor element and gas sensor
JP6321968B2 (en) Gas sensor element
JP5425833B2 (en) Gas sensor
JP4999894B2 (en) Gas sensor
JP6561719B2 (en) Gas sensor
JP6596535B2 (en) Gas sensor
JP6485364B2 (en) Gas sensor
JP2009236868A (en) Gas sensor, nox sensor and method of manufacturing gas sensor
JP2009222561A (en) Gas sensing element
JP6350359B2 (en) Gas sensor
JP6525487B2 (en) Gas sensor
US9651517B2 (en) Ceramic heater and gas sensor element using the same
WO2016129661A1 (en) Gas sensor
US11047825B2 (en) Ceramic heater, sensor element, and gas sensor
JP2007010564A (en) Gas sensor
JP5014938B2 (en) Contact combustion type gas sensor
US10393693B2 (en) Flat plate-type oxygen sensor element
JP6382178B2 (en) Gas sensor
JP2015230178A (en) Gas sensor element
JP2009287939A (en) Nox sensor element
WO2016067975A1 (en) Gas sensor
JP2023033155A (en) Sensor element and gas sensor
WO2017126190A1 (en) Gas sensor
JP2021032812A (en) Sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016000730

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749304

Country of ref document: EP

Kind code of ref document: A1