WO2016129530A1 - Heat exchanger, heat exchanger assembly device, and heat exchanger assembly method - Google Patents

Heat exchanger, heat exchanger assembly device, and heat exchanger assembly method Download PDF

Info

Publication number
WO2016129530A1
WO2016129530A1 PCT/JP2016/053555 JP2016053555W WO2016129530A1 WO 2016129530 A1 WO2016129530 A1 WO 2016129530A1 JP 2016053555 W JP2016053555 W JP 2016053555W WO 2016129530 A1 WO2016129530 A1 WO 2016129530A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tubes
tube
assembling
tank
Prior art date
Application number
PCT/JP2016/053555
Other languages
French (fr)
Japanese (ja)
Inventor
弘規 加藤
靖行 篠原
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016008445A external-priority patent/JP2016153718A/en
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US15/550,430 priority Critical patent/US20180031325A1/en
Priority to EP16749174.5A priority patent/EP3258202B1/en
Priority to CN201680010101.4A priority patent/CN107250702A/en
Publication of WO2016129530A1 publication Critical patent/WO2016129530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger, a heat exchanger assembly apparatus, and a heat exchanger assembly method.
  • a heat exchanger used for a radiator or the like of a car includes a plurality of tubes and fins to be stacked, and a pair of tanks connected to the open end of each tube. When assembling this kind of heat exchanger automatically, it is necessary to hold each tube to be stacked in place.
  • JP 02-035630 U discloses a heat exchanger core assembling apparatus including compression claws for alternately arranging a plurality of tubes and fins on a set plate and compressing the tubes and fins in the stacking direction. There is.
  • JP 61-025734 A a plurality of tubes and fins are alternately stacked and arranged on a table, and each tube and fins are compressed in the stacking direction with the upper and lower guide plates sandwiched between the upper and lower guide plates.
  • a plate assembling device for a heat exchanger core is disclosed, which inserts the open end of each tube into the hole of the side plate (tank).
  • An object of the present invention is to provide a heat exchanger, an assembling apparatus for the heat exchanger, and a method for assembling the heat exchanger, in which assembling of the tank to each of the stacked tubes is accurately performed.
  • a heat exchanger having a tank connected to the open ends of the plurality of stacked tubes, wherein the tank is connected near the open end of each tube.
  • a heat exchanger is provided having a pressing portion for holding the tube.
  • an assembling apparatus of a heat exchanger for connecting a tank to the open ends of a plurality of stacked tubes, wherein the respective tubes are stacked on the table and the table.
  • a lamination direction compression part for compressing a plurality of tubes in the lamination direction
  • a thickness direction compression part for compressing the plurality of tubes in the thickness direction orthogonal to the table, the thickness direction compression part being a lamination direction compression part
  • a holding unit for pressing the vicinity of the open end of the plurality of tubes compressed in the stacking direction with the table, and the holding unit holds the plurality of tubes when connecting the tank to the plurality of tubes
  • a method of assembling a heat exchanger in which a tank is connected to the open end of a plurality of stacked tubes, the stacking step of stacking the plurality of tubes, and stacking the plurality of tubes.
  • a plurality of tubes are held in a state in which a plurality of tubes are held by pressing the main compression step of compressing in the direction and holding portions for holding the tubes in the vicinity of the open end of the plurality of tubes compressed in the stacking direction.
  • an assembling step of connecting the tank to the heat exchanger in which a tank is connected to the open end of a plurality of stacked tubes, the stacking step of stacking the plurality of tubes, and stacking the plurality of tubes.
  • the pressing portion in the vicinity of the open end of each tube is pressed, thereby suppressing occurrence of positional deviation in each tube. . For this reason, assembling the tank to each of the stacked tubes is accurately performed.
  • FIG. 1 is a front view showing a schematic configuration of a heat exchanger core according to an embodiment of the present invention.
  • FIG. 2A is an explanatory view showing a process of assembling the heat exchanger core.
  • FIG. 2B is an explanatory view showing a process of assembling the heat exchanger core.
  • FIG. 2C is an explanatory view showing a process of assembling the heat exchanger core.
  • FIG. 2D is an explanatory view showing a process of assembling the heat exchanger core.
  • FIG. 3A is a configuration diagram showing an operation of the assembling apparatus in the stacking process.
  • FIG. 3B is a block diagram showing the operation of the assembling apparatus in the main compression process.
  • FIG. 3C is a configuration diagram showing an operation of the assembling device in the assembling process.
  • FIG. 4A is a configuration diagram showing an operation of the assembling apparatus in the stacking process.
  • FIG. 4B is a configuration diagram showing an operation of the assembling device in the main compression process.
  • FIG. 4C is a configuration diagram showing an operation of the assembly apparatus in the assembly process.
  • FIG. 5A is a cross-sectional view of a tube showing the operation of the assembling apparatus in the stacking process.
  • FIG. 5B is a cross-sectional view of the tube showing the operation of the assembling apparatus in the present compression process.
  • FIG. 5C is a cross-sectional view of the tube showing the operation of the assembling apparatus in the assembling process.
  • FIG. 6 is a front view showing a modified example of the heat exchanger core.
  • FIG. 7 is a configuration diagram showing the operation of the assembling apparatus according to the comparative example.
  • FIG. 1 is a front view showing a schematic configuration of a heat exchanger 10 according to an embodiment of the present invention.
  • the heat exchanger 10 performs heat exchange between the medium flowing inside and the outside air or the like.
  • the heat exchanger 10 is used for a radiator through which a coolant of an internal combustion engine flows as a medium.
  • the heat exchanger 10 is not limited to this, and may be used as a charge air cooler through which intake air flows as a medium, an air conditioner through which refrigerant gas flows as a medium, a condenser of a cooling device, or the like.
  • the heat exchanger 10 is arranged so as to line up at both ends of a plurality of tubes 11 in which the medium flows inside, corrugated plate-like fins 12 alternately arranged with each tube 11, and each tube 11 and each fin 12 laminated body Left and right reinforcements 17 and upper and lower tanks 13 and 14 to which the open end 11 d of each tube 11 is connected.
  • the flat cylindrical tube 11 is formed, for example, by bending a metal plate such as aluminum into a cylindrical shape.
  • the tube 11 is not limited to this, and may be formed by extruding a molten metal material in a cylindrical shape.
  • the tanks 13 and 14 include tank plates 23 and 24 to which the open end 11 d of each tube 11 is connected, and dome-shaped tank bodies 25 and 26 assembled to the tank plates 23 and 24, respectively.
  • the tank plates 23, 24 have tube insertion holes 23a, 24a (see FIG. 2D) into which the open end 11d of each tube 11 is inserted.
  • the tank plates 23 and 24 are formed of, for example, a metal material such as aluminum.
  • the tank bodies 25 and 26 are formed of, for example, a resin material.
  • the tube 11, the fins 12, the reinforcements 17, and the tank plates 23, 24 are assembled by using an assembling device 50 which will be described later.
  • the assembled members constitute the heat exchange core 9 by being joined by brazing.
  • the heat exchanger 10 is completed by assembling the tank bodies 25 and 26 to the heat exchange core 9.
  • the medium is supplied from the medium inlet 15 of the tank body 25 to the tank 13, and after flowing from the tank 13 to each tube 11, is discharged from the medium outlet 16 of the tank body 26 through the tank 14. Ru.
  • the medium circulating through the heat exchanger 10 exchanges heat with air through the fins 12 in the process of flowing through the tubes 11.
  • FIGS. 2A to 2D illustrate the process of assembling the heat exchange core 9.
  • the process of assembling the heat exchange core 9 will be described.
  • a plurality of tubes 11 and fins 12 are alternately stacked (see FIG. 2A). Subsequently, the tubes 11 and the fins 12 are compressed in the stacking direction (see FIG. 2B) using the assembly apparatus 50 (see FIGS. 3A to 3C and 4A to 4C). At this time, the fins 12 are in close contact with the adjacent tubes 11.
  • the laminated body 18 what the tube 11 of predetermined number and the fin 12 laminated
  • the stacked body 18 composed of the tubes 11 and the fins 12 is compressed by using an assembling device 50 described later until the distance between the tubes 11 adjacent in the stacking direction becomes a predetermined distance.
  • the predetermined distance is a distance between the tube insertion holes 23a and 24a of the tank plates 23 and 24 (see FIG. 2C).
  • interval of the adjacent tubes 11 is called "tube pitch.”
  • each tube 11 is press-fit into each tube insertion hole 23a, 24a of the tank plates 23, 24 in a state where the tube pitch of the laminated body 18 is compressed to a predetermined interval (see FIG. 2D).
  • the members are brazed by melting the clad layer applied to the surfaces of the tube 11, the fins 12 and the tank plates 23, 24 by heat treatment. Thereby, the tube 11, the fins 12, the reinforcements 17, and the tank plates 23, 24 are integrated to form the heat exchange core 9.
  • FIGS. 4A to 4C are schematic configuration diagrams showing the assembly apparatus 50.
  • FIGS. 4A to 4C are schematic configuration views showing the assembling apparatus 50 as viewed in the direction of arrow J in FIG. 3A.
  • the configuration of the assembling device 50 will be described.
  • the assembling apparatus 50 includes a table 51, a stacking direction compression unit 55, a thickness direction compression unit 60, and a tank assembly unit (not shown).
  • the table 51 has a planar portion on which the laminate 18 including the tube 11 and the fins 12 which are parts of the heat exchanger 10 is placed.
  • the stacking direction compression unit 55 is a mechanism that compresses the stacked body 18 placed on the table 51 in the stacking direction.
  • the stacking direction compression unit 55 includes a fixed portion 56 fixed to the table 51, a movable portion 57 supported movably in the stacking direction with respect to the table 51, and an actuator (not shown) for moving the movable portion 57. Equipped with
  • the thickness direction compression unit 60 is a mechanism that compresses the stacked body 18 in the thickness direction orthogonal to the table 51.
  • the thickness direction compression unit 60 includes a leveling plate 61 moved in the thickness direction by the drive mechanism 62 and a pair of hold units 63 moved in the thickness direction by the drive mechanism 64.
  • the direction orthogonal to the surface in which the laminated body 18 of the table 51 is mounted is called "thickness direction.”
  • the drive mechanism 62 of the leveling plate 61 moves the leveling plate 61 by raising and lowering the guide rod 69 (see FIGS. 4A to 4C) and the support base 65 supporting the leveling plate 61 so as to be able to move up and down.
  • an actuator 66 is constituted by, for example, a hydraulic cylinder.
  • the leveling plate 61 extends in parallel with the table 51 and has a planar portion for pressing each of the tubes 11 placed on the table 51.
  • the drive mechanism 64 of the holding unit 63 has a pair of guide units 67 supporting the holding units 63 so as to be able to move up and down with respect to the support base 65 and a pair of moving the holding units 63 by moving the guide units 67 up and down. And an actuator 68.
  • Each actuator 68 is constituted by, for example, a hydraulic cylinder.
  • the holding part 63 is a convex part which protrudes from each guide part 67 and presses each tube 11.
  • Each tube 11 has a pressing portion 11g in the vicinity of the opening end 11d, to which the holding portion 63 is pressed. As shown in FIG. 5C described later, when the holding portion 63 is pressed by the tube 11, the recess 11 a (pressing mark) recessed in the surface 11 b of the tube 11 is formed in the pressing portion 11 g. .
  • the respective holding parts 63 are arranged across the table 51 in the longitudinal direction of the tube 11 and extend in parallel with both ends of the table 51.
  • Each holding unit 63 is disposed to face a predetermined position of each tube 11 placed on the table 51.
  • the pressing portion 11 g is provided at a predetermined distance L from the tank plates 23 and 24 of the tube 11.
  • the hold portion 63 is integrally formed with the guide portion 67, the present invention is not limited to this.
  • the hold portion 63 may be formed separately from the guide portion 67.
  • the leveling plate 61 and the respective holding portions 63 are formed of a metal material such as iron, for example, whose hardness is higher than that of the tube 11.
  • the area of the leveling plate 61 in contact with each tube 11 is set to be larger than the area of each holding portion 63 in contact with each tube 11. Thereby, it is comprised so that a plastic deformation may not arise in the site
  • 5C corresponds to the cross section of the tube 11 along the VC-VC line in FIG.
  • a stacking step of stacking the stacked body 18 at a predetermined position on the table 51 is performed (see FIGS. 3A, 4A, and 5A).
  • the laminated body 18 in which a predetermined number of tubes 11 and fins 12 are arranged is placed on the table 51, and the support table 65 is directed to the table 51 by the operation of the drive mechanism 62 of the thickness direction compression unit 60.
  • the stack 18 is pressed in the thickness direction by the driving force B by the leveling plate 61 and the holding portions 63 (see FIG. 3A).
  • Each hold portion 63 is held at a position extending on the same plane (horizontal surface) as the leveling plate 61, and presses the stack 18 together with the leveling plate 61.
  • the pressing portions 11g pressed by the respective holding portions 63 of the tube 11 do not plastically deform (see FIG. 5A).
  • the holding portion 63 may be moved upward away from the laminated body 18 and the laminated body 18 may be pressed only by the leveling plate 61.
  • the movable portion 57 is moved toward the fixed portion 56 by the operation of the stacking direction compression portion 55, and the stack 18 is compressed in the stacking direction by the driving force A (see FIG. 4A).
  • the compression by the stacking direction compression unit 55 in the stacking process is performed until the tube pitch is, for example, about 90% closer to the predetermined interval described above.
  • the driving force B by which the driving mechanism 62 presses the stacked body 18 on the table 51 is set so that the tube 11 and the fin 12 pressed by the movable portion 57 of the stacking direction compression portion 55 move smoothly toward the fixed portion 56 Ru.
  • the driving force B of the driving mechanism 62 may be controlled based on the stroke amount for moving the leveling plate 61 relative to the table 51. . In that case, for example, the stroke amount is set such that the distance between the table 51 and the leveling plate 61 is equal to the thickness of the stack 18.
  • the stacked body 18 is placed in a predetermined position on the table 51 without being lifted from the table 51 by being compressed in both the thickness direction and the stacking direction.
  • a main compression step of compressing the stack 18 until the tube pitch reaches the above-described predetermined interval is performed (see FIGS. 3B, 4B, and 5B).
  • FIG. 7 is a block diagram showing the operation of the assembling apparatus 150 as a comparative example.
  • the thickness direction compression unit 160 of the assembling apparatus 150 does not include the hold unit, and compresses the stacked body 18 in the thickness direction with only the leveling plate 161.
  • the thickness direction compressed portion 160 receives the frictional force M from the stacked body 18.
  • the guide rod 169 supporting the leveling plate 161 is bent so as to incline at an angle ⁇ by the frictional force M, and the leveling plate 161 is displaced by the distance N in the stacking direction. Together with the table 51.
  • the posture of the leveling plate 161 changes, there is a possibility that positional deviation may occur in which some of the tubes 11 rise from the table 51.
  • the support base 65 is lowered toward the table 51 by the operation of the drive mechanism 62 of the thickness direction compression unit 60, and the stack 18 is driven by the leveling plate 61. It is pressed in the thickness direction by force E (see FIG. 3B). On the other hand, each hold unit 63 moves upward away from the stack 18 as indicated by the arrow F.
  • the stack 18 is compressed in the stacking direction by the driving force D by the operation of the stacking direction compression unit 55, and the tube pitch is set to the above-mentioned predetermined interval (see FIG. 4B).
  • the driving force D in the main compression process is set larger than the driving force A in the stacking process.
  • the driving force E by which the driving mechanism 62 presses the stack 18 onto the table 51 is larger than the driving force B in the stacking step, and the tube 11 and the fin 12 pressed by the movable portion 57 of the stacking direction compression portion 55 are fixed portions It is set to move smoothly toward 56.
  • the driving force E of the driving mechanism 62 may be controlled based on the stroke amount for moving the leveling plate 61 relative to the table 51. . In that case, for example, the distance between the table 51 and the leveling plate 61 is set to be slightly smaller than the thickness of the laminate 18.
  • each hold portion 63 is separated from the stack 18 (see FIG. 5B), and the pressure with which the hold portion 63 presses the stack 18 is made zero. For this reason, when the stacking direction compression unit 55 compresses the stacked body 18 in the stacking direction, the frictional force C received from the stacked body 18 by the drive mechanism 62 of the thickness direction compressed portion 60 is suppressed small. As a result, bending of the guide rod 69 and the like supporting the leveling plate 61 is suppressed, and the posture of the leveling plate 61 facing the table 51 in parallel is maintained. In this way, since the posture of the leveling plate 61 is maintained in the main compression process, it is possible to prevent the occurrence of positional deviation in which some of the tubes 11 are lifted from the table 51.
  • the laminated body 18 is compressed in the laminating direction by the driving force G by the operation of the laminating direction compression unit 55 (see FIG. 4C), and the laminated plate 18 is driven by the leveling plate 61 by the operation of the actuator 66 of the driving mechanism 62.
  • the force H is pressed in the thickness direction.
  • the laminated body 18 is pressed in the thickness direction by the driving force I by the hold portion 63 by the operation of the actuator 68 of the driving mechanism 64 (see FIG. 3C).
  • the concave portion 11a is formed by pressing the driving force I by the holding portion 63 on the surface 11b of the pressing portion 11g of the tube 11 curved in an arc shape.
  • the recess 11 a has a pair of step portions 11 c facing each other. Each step 11 c extends in a direction (lateral direction) orthogonal to the longitudinal direction of the tube 11.
  • the driving force I for moving the holding portion 63 by the driving mechanism 64 causes the tube 11 pressed by the holding portion 63 to be plastically deformed, and the recessed portion 11 a recessed by a predetermined depth on the surface 11 b of the pressing portion 11 g of the tube 11 Set to be formed.
  • the load with which the holding part 63 presses each tube 11 is set larger than the load with which the leveling board 161 presses the laminated body 18 in the comparative example shown in FIG. 7.
  • the drive force I of the drive mechanism 64 may be controlled based on the stroke amount for moving the hold unit 63 relative to the table 51.
  • the stroke amount is set such that the distance between the table 51 and the hold portion 63 is smaller than the thickness of the tube 11 by a predetermined amount.
  • a recess 11 a of a predetermined depth is formed on the surface of the pressing portion 11 g of the tube 11.
  • the depth of the concave portion 11 a can be changed by adjusting the load or the stroke amount by which the holding portion 63 presses each tube 11.
  • the pressing portion 11g of the tube 11 can be configured such that the concave portion 11a is not formed because the surface 11b of the tube 11 is not plastically deformed.
  • the tank assembling portion (not shown) is operated to assemble the tank plates 23, 24 into the stack 18.
  • movement of the stacked body 18 in the stacking direction is restricted by being compressed by the stacking direction compression unit 55.
  • the hold part 63 is pressed by the recessed part 11a, it is controlled that each tube 11 moves in the thickness direction and the longitudinal direction of the tube 11.
  • press-fitting the open end 11d of each tube 11 into the tube insertion holes 23a and 24a of the tank plates 23 and 24 is performed with high accuracy.
  • each tube 11 is provided with the heat exchanger 10 having the pressing portion 11 g for holding the tube 11 when the tanks 13 and 14 are connected in the vicinity of the open end 11 d. .
  • the table 51 on which the tubes 11 are stacked the stacking direction compression unit 55 that compresses the tubes 11 stacked on the table 51 in the stacking direction, and the thickness of the tubes 11 orthogonal to the table 51
  • the thickness direction compression unit 60 includes the table 51 and the vicinity of the open end 11 d of each tube 11 compressed in the stacking direction by the stacking direction compression unit 55.
  • the holding unit 63 is provided with an assembly device 50 that holds the plurality of tubes 11 when connecting the tanks 13 and 14 to each tube 11.
  • the tubes 11 are stacked by pressing the vicinity of the open end 11 d of each tube 11 by the holding unit 63. It is possible to suppress the occurrence of positional deviation. For this reason, assembling the tanks 13 and 14 to the stacked tubes 11 is performed with high accuracy. This prevents the tube 11 and the tube insertion holes 23a and 24a of the tanks 13 and 14 from being damaged. As a result, in the heat exchanger 10, brazing for joining the tube 11 and the tube insertion holes 23a and 24a is performed without a gap, and the yield at the time of assembly can be improved.
  • the heat exchanger 10 is provided in which the recess 11 a is formed in the surface 11 b of the tube 11 as a trace of pressing on the pressing portion 11 g.
  • the hold portion 63 presses the surface 11b of each tube 11 until it plastically deforms and fits in the recessed recess 11a. The occurrence of positional deviation in each tube 11 is suppressed.
  • the heat exchanger 10 is provided in which the pressing portion 11 g is formed at a predetermined distance L from the tanks 13 and 14 in the longitudinal direction of the tube 11.
  • the holding portion 63 pressed against the pressing portion 11 g is prevented from interfering with the tanks 13 and 14.
  • the tanks 13 and 14 can be smoothly assembled to the tube 11 in a state in which the holding portion 63 is pressed against the recess 11 a.
  • the thickness direction compression unit 60 includes a leveling plate 61 for pressing the tubes 11 with the table 11 side by side with the holding unit 63, and the leveling plate 61 includes the holding units 63 for each tube.
  • An assembly device 50 for the heat exchanger 10 is provided which compresses each tube 11 in the thickness direction away from 51.
  • the stacking direction compression unit 55 compresses the stack 18 in the stacking direction
  • the leveling plate 61 is in sliding contact with the stack 18 and the frictional force received by the leveling plate 61 from the stack 18 is small.
  • the posture of the leveling plate 61 is maintained. In this way, since the posture of the leveling plate 61 is maintained in the main compression process, it is possible to prevent the occurrence of positional deviation in which some of the tubes 11 are lifted from the table 51.
  • a pressing mark portion 11 f is formed as a pressing mark formed on the surface of each tube 11.
  • each tube 11 In the assembling process, by appropriately setting the load or the stroke amount for pressing the holding portion 63 to each tube 51, the surface of each tube 11 is pressed by the holding portion 63 (see FIGS. 3C and 4C). Even if it bends, it has composition which returns to original surface shape, without plastic deformation. As a result, the pressing portion 11 g of each tube 11 is formed with a pressing mark portion 11 f whose surface roughness is partially changed without forming a recess by pressing the holding portion 63.
  • the holding portion 63 presses the surface of each tube 11 so that the positional deviation of the tubes 11 stacked on the table 51 can be suppressed. For this reason, assembling the tanks 13 and 14 to the stacked tubes 11 is performed with high accuracy.
  • the pressing portion 11 g is pressed against the surface of each tube 11 It may be configured so as not to leave a trace.
  • the leveling plate 61 and the holding unit 63 are configured to press the stacked body 18 by vertically moving the table 51.
  • the present invention is not limited thereto.
  • the stack 18 may be pressed from an oblique direction.
  • the tube 18 and the fin 12 were comprised laminated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided are a heat exchanger, a heat exchanger assembly device, and a heat exchanger assembly method in which a tank is accurately mounted onto stacked tubes. The heat exchanger (10), in which a tank (13, 14) is connected to the open end part (11d) of the stacked tubes (11), has a pressing part (11g) in the vicinity of the open end part of each of the tubes. The pressing part (11g) holds the tube when the tank is connected.

Description

熱交換器、熱交換器の組立装置、及び熱交換器の組立方法Heat exchanger, assembling apparatus for heat exchanger, and method for assembling heat exchanger
 本発明は、熱交換器、熱交換器の組立装置、及び熱交換器の組立方法に関する。 The present invention relates to a heat exchanger, a heat exchanger assembly apparatus, and a heat exchanger assembly method.
 自動車のラジエータなどに用いられる熱交換器は、積層される複数のチューブ及びフィンと、各チューブの開口端部に接続される一対のタンクと、を備える。この種の熱交換器を自動的に組み立てる場合には、積層される各チューブを所定位置に保持する必要がある。 A heat exchanger used for a radiator or the like of a car includes a plurality of tubes and fins to be stacked, and a pair of tanks connected to the open end of each tube. When assembling this kind of heat exchanger automatically, it is necessary to hold each tube to be stacked in place.
 JP02-035630Uには、セット板の上に複数のチューブ及びフィンを交互に積層して並べ、各チューブ及びフィンを積層方向に圧縮する圧縮爪を備える熱交換器コア用組付装置が開示されている。 JP 02-035630 U discloses a heat exchanger core assembling apparatus including compression claws for alternately arranging a plurality of tubes and fins on a set plate and compressing the tubes and fins in the stacking direction. There is.
 JP61-025734Aには、テーブルの上に複数のチューブ及びフィンを交互に積層して並べ、各チューブ及びフィンを上面ガイドプレートと下面ガイドプレートとの間に上下から挟んだ状態で積層方向に圧縮し、各チューブの開口端部をサイドプレート(タンク)の孔に挿入する熱交換器用コアのプレート組付け装置が開示されている。 In JP 61-025734 A, a plurality of tubes and fins are alternately stacked and arranged on a table, and each tube and fins are compressed in the stacking direction with the upper and lower guide plates sandwiched between the upper and lower guide plates. A plate assembling device for a heat exchanger core is disclosed, which inserts the open end of each tube into the hole of the side plate (tank).
 しかしながら、JP02-035630U及びJP61-025734Aに記載の発明では、テーブルなどの上に積層された各チューブに位置ズレが生じるため、各チューブの開口端部をタンクの孔に挿入する組み付けを精度良く行うことが難しいという問題があった。 However, in the inventions described in JP 02-035630 U and JP 61-025734 A, positional deviations occur in the tubes stacked on a table or the like, so the opening end of each tube is accurately inserted into the hole of the tank. There was a problem that it was difficult.
 本発明は、積層された各チューブにタンクを組み付けることが精度良く行われる熱交換器、熱交換器の組立装置、及び熱交換器の組立方法を提供することを目的とする。 An object of the present invention is to provide a heat exchanger, an assembling apparatus for the heat exchanger, and a method for assembling the heat exchanger, in which assembling of the tank to each of the stacked tubes is accurately performed.
 本発明のある態様によれば、積層された複数のチューブの開口端部にタンクが接続される熱交換器であって、各々のチューブの開口端部の近傍に、タンクが接続される際に当該チューブが保持されるための押し当て部を有する熱交換器が提供される。 According to an aspect of the present invention, there is provided a heat exchanger having a tank connected to the open ends of the plurality of stacked tubes, wherein the tank is connected near the open end of each tube. A heat exchanger is provided having a pressing portion for holding the tube.
 本発明の他の態様によれば、積層された複数のチューブの開口端部にタンクを接続する熱交換器の組立装置であって、各々のチューブが積層されるテーブルと、テーブルに積層される複数のチューブを積層方向に圧縮する積層方向圧縮部と、複数のチューブをテーブルに直交する厚さ方向に圧縮する厚さ方向圧縮部と、を備え、厚さ方向圧縮部は、積層方向圧縮部によって積層方向に圧縮された複数のチューブの開口端部の近傍をテーブルとの間で押圧するホールド部を備え、ホールド部は、複数のチューブにタンクを接続する際に、複数のチューブを保持する熱交換器の組立装置が提供される。 According to another aspect of the present invention, there is provided an assembling apparatus of a heat exchanger for connecting a tank to the open ends of a plurality of stacked tubes, wherein the respective tubes are stacked on the table and the table. A lamination direction compression part for compressing a plurality of tubes in the lamination direction, and a thickness direction compression part for compressing the plurality of tubes in the thickness direction orthogonal to the table, the thickness direction compression part being a lamination direction compression part And a holding unit for pressing the vicinity of the open end of the plurality of tubes compressed in the stacking direction with the table, and the holding unit holds the plurality of tubes when connecting the tank to the plurality of tubes An assembly device for a heat exchanger is provided.
 本発明の他の態様によれば、積層された複数のチューブの開口端部にタンクを接続する熱交換器の組立方法であって、複数のチューブを積層する積層工程と、複数のチューブを積層方向に圧縮する本圧縮工程と、積層方向に圧縮された複数のチューブの開口端部の近傍に当該チューブを保持するためのホールド部を押し当てて複数のチューブを保持した状態で、複数のチューブにタンクを接続する組み付け工程と、を備える熱交換器の組立方法が提供される。 According to another aspect of the present invention, there is provided a method of assembling a heat exchanger in which a tank is connected to the open end of a plurality of stacked tubes, the stacking step of stacking the plurality of tubes, and stacking the plurality of tubes. A plurality of tubes are held in a state in which a plurality of tubes are held by pressing the main compression step of compressing in the direction and holding portions for holding the tubes in the vicinity of the open end of the plurality of tubes compressed in the stacking direction. And an assembling step of connecting the tank to the heat exchanger.
 上記の態様によれば、タンクを積層された各チューブに接続する際に、各チューブの開口端部の近傍の押し当て部が押圧されることにより、各チューブに位置ズレが生じることが抑えられる。このため、積層された各チューブにタンクを組み付けることが精度良く行われる。 According to the above aspect, when the tank is connected to the stacked tubes, the pressing portion in the vicinity of the open end of each tube is pressed, thereby suppressing occurrence of positional deviation in each tube. . For this reason, assembling the tank to each of the stacked tubes is accurately performed.
図1は、本発明の実施形態に係る熱交換器コアの概略構成を示す正面図である。FIG. 1 is a front view showing a schematic configuration of a heat exchanger core according to an embodiment of the present invention. 図2Aは、熱交換器コアを組み立てる過程を示す説明図である。FIG. 2A is an explanatory view showing a process of assembling the heat exchanger core. 図2Bは、熱交換器コアを組み立てる過程を示す説明図である。FIG. 2B is an explanatory view showing a process of assembling the heat exchanger core. 図2Cは、熱交換器コアを組み立てる過程を示す説明図である。FIG. 2C is an explanatory view showing a process of assembling the heat exchanger core. 図2Dは、熱交換器コアを組み立てる過程を示す説明図である。FIG. 2D is an explanatory view showing a process of assembling the heat exchanger core. 図3Aは、積層工程における組立装置の動作を示す構成図である。FIG. 3A is a configuration diagram showing an operation of the assembling apparatus in the stacking process. 図3Bは、本圧縮工程における組立装置の動作を示す構成図である。FIG. 3B is a block diagram showing the operation of the assembling apparatus in the main compression process. 図3Cは、組み付け工程における組立装置の動作を示す構成図である。FIG. 3C is a configuration diagram showing an operation of the assembling device in the assembling process. 図4Aは、積層工程における組立装置の動作を示す構成図である。FIG. 4A is a configuration diagram showing an operation of the assembling apparatus in the stacking process. 図4Bは、本圧縮工程における組立装置の動作を示す構成図である。FIG. 4B is a configuration diagram showing an operation of the assembling device in the main compression process. 図4Cは、組み付け工程における組立装置の動作を示す構成図である。FIG. 4C is a configuration diagram showing an operation of the assembly apparatus in the assembly process. 図5Aは、積層工程における組立装置の動作を示すチューブの断面図である。FIG. 5A is a cross-sectional view of a tube showing the operation of the assembling apparatus in the stacking process. 図5Bは、本圧縮工程における組立装置の動作を示すチューブの断面図である。FIG. 5B is a cross-sectional view of the tube showing the operation of the assembling apparatus in the present compression process. 図5Cは、組み付け工程における組立装置の動作を示すチューブの断面図である。FIG. 5C is a cross-sectional view of the tube showing the operation of the assembling apparatus in the assembling process. 図6は、熱交換器コアの変形例を示す正面図である。FIG. 6 is a front view showing a modified example of the heat exchanger core. 図7は、比較例に係る組立装置の動作を示す構成図である。FIG. 7 is a configuration diagram showing the operation of the assembling apparatus according to the comparative example.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の実施形態に係る熱交換器10の概略構成を示す正面図である。 FIG. 1 is a front view showing a schematic configuration of a heat exchanger 10 according to an embodiment of the present invention.
 熱交換器10は、内部を流れる媒体と外部の空気などとの間で熱交換を行うものである。熱交換器10は、媒体として内燃機関の冷却液が流れるラジエータに用いられる。なお、熱交換器10は、これに限らず、媒体として吸気が流れるチャージエアクーラ、あるいは媒体として冷媒ガスが流れるエアコンや冷却装置のコンデンサなどに用いられるものであってもよい。 The heat exchanger 10 performs heat exchange between the medium flowing inside and the outside air or the like. The heat exchanger 10 is used for a radiator through which a coolant of an internal combustion engine flows as a medium. The heat exchanger 10 is not limited to this, and may be used as a charge air cooler through which intake air flows as a medium, an air conditioner through which refrigerant gas flows as a medium, a condenser of a cooling device, or the like.
 熱交換器10は、内部を媒体が流れる複数のチューブ11と、各チューブ11と交互に並ぶ波板状のフィン12と、各チューブ11及び各フィン12の積層体の両端に並ぶように配置される左右のレインフォース17と、各チューブ11の開口端部11dがそれぞれ接続される上下のタンク13,14と、を備える。 The heat exchanger 10 is arranged so as to line up at both ends of a plurality of tubes 11 in which the medium flows inside, corrugated plate-like fins 12 alternately arranged with each tube 11, and each tube 11 and each fin 12 laminated body Left and right reinforcements 17 and upper and lower tanks 13 and 14 to which the open end 11 d of each tube 11 is connected.
 扁平筒状のチューブ11は、例えばアルミニウムなどの金属板を筒状に折り曲げて形成される。なお、チューブ11は、これに限らず、溶融金属材を筒状に押し出して形成されるものであってもよい。 The flat cylindrical tube 11 is formed, for example, by bending a metal plate such as aluminum into a cylindrical shape. The tube 11 is not limited to this, and may be formed by extruding a molten metal material in a cylindrical shape.
 タンク13,14は、各チューブ11の開口端部11dがそれぞれ接続されるタンクプレート23,24と、タンクプレート23,24に組み付けられるドーム状のタンク本体25,26と、を備える。タンクプレート23,24は、各チューブ11の開口端部11dが挿入されるチューブ挿入孔23a,24a(図2D参照)を有する。タンクプレート23,24は、例えばアルミニウムなどの金属材によって形成される。タンク本体25,26は、例えば樹脂材によって形成される。 The tanks 13 and 14 include tank plates 23 and 24 to which the open end 11 d of each tube 11 is connected, and dome- shaped tank bodies 25 and 26 assembled to the tank plates 23 and 24, respectively. The tank plates 23, 24 have tube insertion holes 23a, 24a (see FIG. 2D) into which the open end 11d of each tube 11 is inserted. The tank plates 23 and 24 are formed of, for example, a metal material such as aluminum. The tank bodies 25 and 26 are formed of, for example, a resin material.
 熱交換器10の製造時には、後述する組立装置50を用いて、チューブ11、フィン12、レインフォース17、及びタンクプレート23,24が組み立てられる。組み立てられた各部材は、ロウ付けによって接合されることによって熱交換コア9を構成する。熱交換コア9にタンク本体25,26が組み付けられることによって、熱交換器10が完成する。 At the time of manufacture of the heat exchanger 10, the tube 11, the fins 12, the reinforcements 17, and the tank plates 23, 24 are assembled by using an assembling device 50 which will be described later. The assembled members constitute the heat exchange core 9 by being joined by brazing. The heat exchanger 10 is completed by assembling the tank bodies 25 and 26 to the heat exchange core 9.
 熱交換器10の作動時には、媒体がタンク本体25の媒体入口15からタンク13に供給され、タンク13から各チューブ11へと流通した後に、タンク14を経てタンク本体26の媒体出口16から排出される。こうして、熱交換器10を循環する媒体は、各チューブ11を流れる過程で、フィン12を介して空気との間で熱交換を行う。 At the time of operation of the heat exchanger 10, the medium is supplied from the medium inlet 15 of the tank body 25 to the tank 13, and after flowing from the tank 13 to each tube 11, is discharged from the medium outlet 16 of the tank body 26 through the tank 14. Ru. Thus, the medium circulating through the heat exchanger 10 exchanges heat with air through the fins 12 in the process of flowing through the tubes 11.
 図2Aから図2Dは、熱交換コア9を組み立てる過程を説明する図である。以下、熱交換コア9を組み立てる過程を説明する。 FIGS. 2A to 2D illustrate the process of assembling the heat exchange core 9. Hereinafter, the process of assembling the heat exchange core 9 will be described.
 まず、複数のチューブ11とフィン12とを交互に積層する(図2A参照)。続いて、組立装置50(図3Aから図3C,及び図4Aから図4C参照)を用いて、これらチューブ11とフィン12とを積層方向に圧縮する(図2B参照)。このとき、各フィン12が隣接する各チューブ11に密着する。なお、以下では、所定数のチューブ11とフィン12とが交互に積層されたものを、「積層体18」と称する。また、チューブ11及びフィン12が並ぶ方向を「積層方向」と称する。 First, a plurality of tubes 11 and fins 12 are alternately stacked (see FIG. 2A). Subsequently, the tubes 11 and the fins 12 are compressed in the stacking direction (see FIG. 2B) using the assembly apparatus 50 (see FIGS. 3A to 3C and 4A to 4C). At this time, the fins 12 are in close contact with the adjacent tubes 11. In addition, below, what the tube 11 of predetermined number and the fin 12 laminated | stacked alternately is called "the laminated body 18". Further, the direction in which the tubes 11 and the fins 12 are arranged is referred to as a “stacking direction”.
 チューブ11及びフィン12からなる積層体18は、後述する組立装置50を用いて、積層方向に隣り合うチューブ11どうしの間隔が所定の間隔となるまで圧縮される。この所定の間隔は、タンクプレート23,24のチューブ挿入孔23a,24aどうしの間隔である(図2C参照)。なお、以下では、隣り合うチューブ11どうしの間隔を、「チューブピッチ」と称する。 The stacked body 18 composed of the tubes 11 and the fins 12 is compressed by using an assembling device 50 described later until the distance between the tubes 11 adjacent in the stacking direction becomes a predetermined distance. The predetermined distance is a distance between the tube insertion holes 23a and 24a of the tank plates 23 and 24 (see FIG. 2C). In addition, below, the space | interval of the adjacent tubes 11 is called "tube pitch."
 積層体18のチューブピッチが所定の間隔となるまで圧縮された状態で、各チューブ11の開口端部11dをタンクプレート23,24の各チューブ挿入孔23a,24aに圧入する(図2D参照)。 The open end 11d of each tube 11 is press-fit into each tube insertion hole 23a, 24a of the tank plates 23, 24 in a state where the tube pitch of the laminated body 18 is compressed to a predetermined interval (see FIG. 2D).
 この後、熱処理によりチューブ11、フィン12、及びタンクプレート23,24の表面に施されたクラッド層を溶融させることによって、各部材間がロウ付けされる。これにより、チューブ11、フィン12、レインフォース17、及びタンクプレート23,24が一体となり、熱交換コア9が形成される。 Thereafter, the members are brazed by melting the clad layer applied to the surfaces of the tube 11, the fins 12 and the tank plates 23, 24 by heat treatment. Thereby, the tube 11, the fins 12, the reinforcements 17, and the tank plates 23, 24 are integrated to form the heat exchange core 9.
 図3Aから図3Cは、組立装置50を示す概略構成図である。図4Aから図4Cは、図3Aの矢印J方向から見た組立装置50を示す概略構成図である。以下、組立装置50の構成について説明する。 3A to 3C are schematic configuration diagrams showing the assembly apparatus 50. FIGS. 4A to 4C are schematic configuration views showing the assembling apparatus 50 as viewed in the direction of arrow J in FIG. 3A. Hereinafter, the configuration of the assembling device 50 will be described.
 組立装置50は、テーブル51、積層方向圧縮部55、厚さ方向圧縮部60、及びタンク組付部(図示省略)を備える。 The assembling apparatus 50 includes a table 51, a stacking direction compression unit 55, a thickness direction compression unit 60, and a tank assembly unit (not shown).
 テーブル51は、熱交換器10の部品となるチューブ11とフィン12とからなる積層体18が載置される平面状の部位を有する。 The table 51 has a planar portion on which the laminate 18 including the tube 11 and the fins 12 which are parts of the heat exchanger 10 is placed.
 積層方向圧縮部55は、テーブル51に載置された積層体18を積層方向に圧縮する機構である。積層方向圧縮部55は、テーブル51に固定される固定部56と、テーブル51に対して積層方向に移動自在に支持される可動部57と、可動部57を移動させるアクチュエータ(図示省略)と、を備える。 The stacking direction compression unit 55 is a mechanism that compresses the stacked body 18 placed on the table 51 in the stacking direction. The stacking direction compression unit 55 includes a fixed portion 56 fixed to the table 51, a movable portion 57 supported movably in the stacking direction with respect to the table 51, and an actuator (not shown) for moving the movable portion 57. Equipped with
 厚さ方向圧縮部60は、積層体18をテーブル51と直交する厚さ方向に圧縮する機構である。厚さ方向圧縮部60は、駆動機構62によって厚さ方向に移動する均し板61と、駆動機構64によって厚さ方向に移動する一対のホールド部63と、を備える。なお、以下では、テーブル51の積層体18が載置される面に対して直交する方向を「厚さ方向」と称する。 The thickness direction compression unit 60 is a mechanism that compresses the stacked body 18 in the thickness direction orthogonal to the table 51. The thickness direction compression unit 60 includes a leveling plate 61 moved in the thickness direction by the drive mechanism 62 and a pair of hold units 63 moved in the thickness direction by the drive mechanism 64. In addition, below, the direction orthogonal to the surface in which the laminated body 18 of the table 51 is mounted is called "thickness direction."
 均し板61の駆動機構62は、均し板61を昇降自在に支持するガイドロッド69(図4Aから図4C参照)及び支持台65と、支持台65を昇降させて均し板61を移動させるアクチュエータ66と、を備える。アクチュエータ66は、例えば、油圧シリンダによって構成される。 The drive mechanism 62 of the leveling plate 61 moves the leveling plate 61 by raising and lowering the guide rod 69 (see FIGS. 4A to 4C) and the support base 65 supporting the leveling plate 61 so as to be able to move up and down. And an actuator 66. The actuator 66 is constituted by, for example, a hydraulic cylinder.
 均し板61は、テーブル51と平行に延び、テーブル51に載置された各チューブ11を押圧する平面状の部位を有する。 The leveling plate 61 extends in parallel with the table 51 and has a planar portion for pressing each of the tubes 11 placed on the table 51.
 ホールド部63の駆動機構64は、支持台65に対して各ホールド部63をそれぞれ昇降自在に支持する一対のガイド部67と、各ガイド部67をそれぞれ昇降させてホールド部63を移動させる一対のアクチュエータ68と、を備える。各アクチュエータ68は、例えば、油圧シリンダによって構成される。 The drive mechanism 64 of the holding unit 63 has a pair of guide units 67 supporting the holding units 63 so as to be able to move up and down with respect to the support base 65 and a pair of moving the holding units 63 by moving the guide units 67 up and down. And an actuator 68. Each actuator 68 is constituted by, for example, a hydraulic cylinder.
 ホールド部63は、各ガイド部67から突出し、各チューブ11を押圧する凸状の部位である。なお、各チューブ11は、開口端部11dの近傍に、ホールド部63が押し当てられる押し当て部11gを有する。後述する図5Cに示すように、押し当て部11gには、チューブ11にホールド部63が押圧されることによって、チューブ11の表面11bに凹状に窪む凹部11a(押し当て跡)が形成される。 The holding part 63 is a convex part which protrudes from each guide part 67 and presses each tube 11. Each tube 11 has a pressing portion 11g in the vicinity of the opening end 11d, to which the holding portion 63 is pressed. As shown in FIG. 5C described later, when the holding portion 63 is pressed by the tube 11, the recess 11 a (pressing mark) recessed in the surface 11 b of the tube 11 is formed in the pressing portion 11 g. .
 各ホールド部63は、チューブ11の長手方向にテーブル51を挟んで並び、テーブル51の両端と平行に延びている。各ホールド部63は、テーブル51に載置された各チューブ11の所定位置にそれぞれ対峙するように配置される。図1に示すように、押し当て部11gはチューブ11のタンクプレート23,24から所定距離Lだけ離れた位置に設けられる。 The respective holding parts 63 are arranged across the table 51 in the longitudinal direction of the tube 11 and extend in parallel with both ends of the table 51. Each holding unit 63 is disposed to face a predetermined position of each tube 11 placed on the table 51. As shown in FIG. 1, the pressing portion 11 g is provided at a predetermined distance L from the tank plates 23 and 24 of the tube 11.
 ホールド部63は、ガイド部67と一体に形成されるが、これに限らず、ガイド部67と別体に形成される構成としてもよい。 Although the hold portion 63 is integrally formed with the guide portion 67, the present invention is not limited to this. The hold portion 63 may be formed separately from the guide portion 67.
 均し板61及び各ホールド部63は、その硬度がチューブ11より高い例えば鉄などの金属材によって形成される。各チューブ11に対して均し板61が接触する面積は、各チューブ11に対して各ホールド部63が接触する面積より大きく設定される。これにより、均し板61が押圧されるチューブ11の部位に塑性変形が生じないように構成される。 The leveling plate 61 and the respective holding portions 63 are formed of a metal material such as iron, for example, whose hardness is higher than that of the tube 11. The area of the leveling plate 61 in contact with each tube 11 is set to be larger than the area of each holding portion 63 in contact with each tube 11. Thereby, it is comprised so that a plastic deformation may not arise in the site | part of the tube 11 by which the leveling board 61 is pressed.
 次に、図3Aから図3C,図4Aから図4C,及び図5Aから図5Cを参照して、組立装置50の動作を説明する。なお、図5Cは、図1のVC-VC線に沿うチューブ11の断面に相当する。 Next, the operation of the assembling apparatus 50 will be described with reference to FIGS. 3A to 3C, 4A to 4C, and 5A to 5C. 5C corresponds to the cross section of the tube 11 along the VC-VC line in FIG.
 まず、組立装置50では、積層体18をテーブル51上の所定位置に積層する積層工程が行われる(図3A,図4A,及び図5A参照)。 First, in the assembling apparatus 50, a stacking step of stacking the stacked body 18 at a predetermined position on the table 51 is performed (see FIGS. 3A, 4A, and 5A).
 積層工程では、テーブル51上に所定数のチューブ11とフィン12とをそれぞれ並べた積層体18を載置し、厚さ方向圧縮部60の駆動機構62の作動により支持台65をテーブル51に向けて下降させ、均し板61及び各ホールド部63により積層体18を駆動力Bで厚さ方向に押圧する(図3A参照)。各ホールド部63は、均し板61と同一平面上(水平面上)に延びる位置に保持され、均し板61と一緒に積層体18を押圧する。このときに、チューブ11の各ホールド部63によって押圧される押し当て部11gは、塑性変形しない(図5A参照)。なお、上述した構成に限らず、積層工程では、ホールド部63を積層体18から離れる上方に移動して、均し板61のみによって積層体18を押圧するようにしてもよい。 In the laminating step, the laminated body 18 in which a predetermined number of tubes 11 and fins 12 are arranged is placed on the table 51, and the support table 65 is directed to the table 51 by the operation of the drive mechanism 62 of the thickness direction compression unit 60. The stack 18 is pressed in the thickness direction by the driving force B by the leveling plate 61 and the holding portions 63 (see FIG. 3A). Each hold portion 63 is held at a position extending on the same plane (horizontal surface) as the leveling plate 61, and presses the stack 18 together with the leveling plate 61. At this time, the pressing portions 11g pressed by the respective holding portions 63 of the tube 11 do not plastically deform (see FIG. 5A). In the laminating step, the holding portion 63 may be moved upward away from the laminated body 18 and the laminated body 18 may be pressed only by the leveling plate 61.
 そして、積層工程では、積層方向圧縮部55の作動により可動部57を固定部56に向けて移動し、積層体18を駆動力Aで積層方向に圧縮する(図4A参照)。積層工程における積層方向圧縮部55による圧縮は、チューブピッチが前述の所定の間隔に対して例えば9割程度近づいた状態となるまで圧縮を行うものとする。 Then, in the stacking step, the movable portion 57 is moved toward the fixed portion 56 by the operation of the stacking direction compression portion 55, and the stack 18 is compressed in the stacking direction by the driving force A (see FIG. 4A). The compression by the stacking direction compression unit 55 in the stacking process is performed until the tube pitch is, for example, about 90% closer to the predetermined interval described above.
 駆動機構62が積層体18をテーブル51上に押し付ける駆動力Bは、積層方向圧縮部55の可動部57に押されるチューブ11及びフィン12が固定部56に向けて円滑に移動するように設定される。なお、駆動機構62の駆動力Bを設定するのではなく、駆動機構62が均し板61をテーブル51に対して移動させるストローク量に基づいて駆動機構62の駆動力Bを制御してもよい。その場合には、例えば、テーブル51と均し板61との間隔が積層体18の厚さと同等となるようにストローク量を設定する。 The driving force B by which the driving mechanism 62 presses the stacked body 18 on the table 51 is set so that the tube 11 and the fin 12 pressed by the movable portion 57 of the stacking direction compression portion 55 move smoothly toward the fixed portion 56 Ru. Instead of setting the driving force B of the driving mechanism 62, the driving force B of the driving mechanism 62 may be controlled based on the stroke amount for moving the leveling plate 61 relative to the table 51. . In that case, for example, the stroke amount is set such that the distance between the table 51 and the leveling plate 61 is equal to the thickness of the stack 18.
 こうして、積層工程において、積層体18は、厚さ方向と積層方向との両方について圧縮されることにより、テーブル51から浮き上がることがなく、テーブル51上の所定位置に載置される。 Thus, in the stacking step, the stacked body 18 is placed in a predetermined position on the table 51 without being lifted from the table 51 by being compressed in both the thickness direction and the stacking direction.
 次に、組立装置50では、積層体18をチューブピッチが前述の所定の間隔となるまで圧縮する本圧縮工程が行われる(図3B,図4B,及び図5B参照)。 Next, in the assembling apparatus 50, a main compression step of compressing the stack 18 until the tube pitch reaches the above-described predetermined interval is performed (see FIGS. 3B, 4B, and 5B).
 図7は、比較例として組立装置150の動作を示す構成図である。組立装置150の厚さ方向圧縮部160は、ホールド部を備えず、均し板161のみによって積層体18を厚さ方向に圧縮する。積層方向圧縮部155によって積層体18が積層方向に圧縮されるときに、厚さ方向圧縮部160が積層体18から摩擦力Mを受ける。摩擦力Mが大きい場合には、摩擦力Mによって均し板161を支持するガイドロッド169が角度θだけ傾斜するように撓む変形をし、均し板161が積層方向に距離Nだけ変位するとともにテーブル51に対して傾斜する。こうして、均し板161の姿勢が変化すると、一部のチューブ11がテーブル51から浮き上がる位置ズレが生じるおそれがある。 FIG. 7 is a block diagram showing the operation of the assembling apparatus 150 as a comparative example. The thickness direction compression unit 160 of the assembling apparatus 150 does not include the hold unit, and compresses the stacked body 18 in the thickness direction with only the leveling plate 161. When the stacked body 18 is compressed in the stacking direction by the stacking direction compressed portion 155, the thickness direction compressed portion 160 receives the frictional force M from the stacked body 18. When the frictional force M is large, the guide rod 169 supporting the leveling plate 161 is bent so as to incline at an angle θ by the frictional force M, and the leveling plate 161 is displaced by the distance N in the stacking direction. Together with the table 51. Thus, when the posture of the leveling plate 161 changes, there is a possibility that positional deviation may occur in which some of the tubes 11 rise from the table 51.
 これに対して、本実施形態の本圧縮工程では、厚さ方向圧縮部60の駆動機構62の作動により支持台65をテーブル51へと向けて下降させ、均し板61によって積層体18を駆動力Eで厚さ方向に押圧する(図3B参照)。一方、各ホールド部63は、矢印Fで示すように積層体18から離れる上方に移動する。 On the other hand, in the main compression process of the present embodiment, the support base 65 is lowered toward the table 51 by the operation of the drive mechanism 62 of the thickness direction compression unit 60, and the stack 18 is driven by the leveling plate 61. It is pressed in the thickness direction by force E (see FIG. 3B). On the other hand, each hold unit 63 moves upward away from the stack 18 as indicated by the arrow F.
 そして、本圧縮工程では、積層方向圧縮部55の作動により積層体18を駆動力Dで積層方向に圧縮して、チューブピッチを前述の所定の間隔にする(図4B参照)。本圧縮工程における駆動力Dは、積層工程における駆動力Aよりも大きく設定される。 Then, in the main compression step, the stack 18 is compressed in the stacking direction by the driving force D by the operation of the stacking direction compression unit 55, and the tube pitch is set to the above-mentioned predetermined interval (see FIG. 4B). The driving force D in the main compression process is set larger than the driving force A in the stacking process.
 駆動機構62が積層体18をテーブル51上に押し付ける駆動力Eは、積層工程における駆動力Bよりも大きく、かつ、積層方向圧縮部55の可動部57に押されるチューブ11及びフィン12が固定部56に向けて円滑に移動するように設定される。なお、駆動機構62の駆動力Eを設定するのではなく、駆動機構62が均し板61をテーブル51に対して移動させるストローク量に基づいて駆動機構62の駆動力Eを制御してもよい。その場合には、例えば、テーブル51と均し板61との間隔が積層体18の厚さよりも僅かに小さい間隔となるように設定する。 The driving force E by which the driving mechanism 62 presses the stack 18 onto the table 51 is larger than the driving force B in the stacking step, and the tube 11 and the fin 12 pressed by the movable portion 57 of the stacking direction compression portion 55 are fixed portions It is set to move smoothly toward 56. Instead of setting the driving force E of the driving mechanism 62, the driving force E of the driving mechanism 62 may be controlled based on the stroke amount for moving the leveling plate 61 relative to the table 51. . In that case, for example, the distance between the table 51 and the leveling plate 61 is set to be slightly smaller than the thickness of the laminate 18.
 本圧縮工程では、各ホールド部63が積層体18から離れ(図5B参照)、ホールド部63が積層体18を押圧する押圧力を零にする。このため、積層方向圧縮部55が積層体18を積層方向に圧縮するときに、厚さ方向圧縮部60の駆動機構62が積層体18から受ける摩擦力Cが小さく抑えられる。これにより、均し板61を支持するガイドロッド69などが撓むことが抑えられ、テーブル51に平行に対峙する均し板61の姿勢が保たれる。こうして、本圧縮工程において均し板61の姿勢が維持されるため、一部のチューブ11がテーブル51から浮き上がる位置ズレが生じることを防止できる。 In the main compression process, each hold portion 63 is separated from the stack 18 (see FIG. 5B), and the pressure with which the hold portion 63 presses the stack 18 is made zero. For this reason, when the stacking direction compression unit 55 compresses the stacked body 18 in the stacking direction, the frictional force C received from the stacked body 18 by the drive mechanism 62 of the thickness direction compressed portion 60 is suppressed small. As a result, bending of the guide rod 69 and the like supporting the leveling plate 61 is suppressed, and the posture of the leveling plate 61 facing the table 51 in parallel is maintained. In this way, since the posture of the leveling plate 61 is maintained in the main compression process, it is possible to prevent the occurrence of positional deviation in which some of the tubes 11 are lifted from the table 51.
 次に、テーブル51上に保持された積層体18にタンクプレート23,24を組み付ける組み付け工程を行う(図3C,図4C,及び図5C参照)。 Next, an assembling process of assembling the tank plates 23, 24 to the stack 18 held on the table 51 is performed (see FIGS. 3C, 4C, and 5C).
 組み付け工程では、積層方向圧縮部55の作動により積層体18を駆動力Gで積層方向に圧縮し(図4C参照)、駆動機構62のアクチュエータ66の作動により均し板61によって積層体18を駆動力Hで厚さ方向に押圧している。この状態で、駆動機構64のアクチュエータ68の作動によりホールド部63によって積層体18を駆動力Iで厚さ方向に押圧する(図3C参照)。 In the assembling process, the laminated body 18 is compressed in the laminating direction by the driving force G by the operation of the laminating direction compression unit 55 (see FIG. 4C), and the laminated plate 18 is driven by the leveling plate 61 by the operation of the actuator 66 of the driving mechanism 62. The force H is pressed in the thickness direction. In this state, the laminated body 18 is pressed in the thickness direction by the driving force I by the hold portion 63 by the operation of the actuator 68 of the driving mechanism 64 (see FIG. 3C).
 図5Cに示すように、円弧状に湾曲したチューブ11の押し当て部11gの表面11bは、ホールド部63によって駆動力Iで押圧されることにより、凹部11aが成形される。凹部11aは、互いに対向する一対の段部11cを有する。各段部11cは、チューブ11の長手方向に直交する方向(横方向)に延びる。 As shown in FIG. 5C, the concave portion 11a is formed by pressing the driving force I by the holding portion 63 on the surface 11b of the pressing portion 11g of the tube 11 curved in an arc shape. The recess 11 a has a pair of step portions 11 c facing each other. Each step 11 c extends in a direction (lateral direction) orthogonal to the longitudinal direction of the tube 11.
 駆動機構64がホールド部63を移動させる駆動力Iは、ホールド部63によって押圧されるチューブ11が塑性変形し、チューブ11の押し当て部11gの表面11bに所定の深さで窪む凹部11aが形成されるように設定される。ホールド部63が各チューブ11を押圧する荷重は、図7に示す比較例において均し板161が積層体18を押圧する荷重より大きく設定される。また、駆動機構64の駆動力Iを設定するのではなく、駆動機構64がホールド部63をテーブル51に対して移動させるストローク量に基づいて駆動機構64の駆動力Iを制御してもよい。その場合には、例えば、テーブル51とホールド部63との間隔がチューブ11の厚みよりも所定量だけ小さい間隔となるようにストローク量を設定する。このようにストローク量を設定することによって、チューブ11の押し当て部11gの表面に所定の深さの凹部11aが形成される。なお、ホールド部63が各チューブ11を押圧する荷重、若しくはストローク量を調整することにより、凹部11aの深さを変えられる。また、後述するように、チューブ11の押し当て部11gはチューブ11の表面11bが塑性変形しないで、凹部11aが形成されないようにすることもできる。 The driving force I for moving the holding portion 63 by the driving mechanism 64 causes the tube 11 pressed by the holding portion 63 to be plastically deformed, and the recessed portion 11 a recessed by a predetermined depth on the surface 11 b of the pressing portion 11 g of the tube 11 Set to be formed. The load with which the holding part 63 presses each tube 11 is set larger than the load with which the leveling board 161 presses the laminated body 18 in the comparative example shown in FIG. 7. Further, instead of setting the drive force I of the drive mechanism 64, the drive force I of the drive mechanism 64 may be controlled based on the stroke amount for moving the hold unit 63 relative to the table 51. In that case, for example, the stroke amount is set such that the distance between the table 51 and the hold portion 63 is smaller than the thickness of the tube 11 by a predetermined amount. By setting the stroke amount in this manner, a recess 11 a of a predetermined depth is formed on the surface of the pressing portion 11 g of the tube 11. The depth of the concave portion 11 a can be changed by adjusting the load or the stroke amount by which the holding portion 63 presses each tube 11. Further, as described later, the pressing portion 11g of the tube 11 can be configured such that the concave portion 11a is not formed because the surface 11b of the tube 11 is not plastically deformed.
 こうして、テーブル51上に積層体18が保持された状態において、タンク組付部(図示省略)を作動させて、タンクプレート23,24を積層体18に組み付ける。このとき、積層方向圧縮部55によって圧縮されることで積層体18が積層方向に移動することが規制されている。そして、ホールド部63が凹部11aに押圧されているため、各チューブ11が厚さ方向とチューブ11の長手方向とに移動することが規制される。こうして、各チューブ11がテーブル51上の所定位置に保持されるため、各チューブ11の開口端部11dをタンクプレート23,24のチューブ挿入孔23a,24aに圧入することが精度良く行われる。 Thus, in a state in which the stack 18 is held on the table 51, the tank assembling portion (not shown) is operated to assemble the tank plates 23, 24 into the stack 18. At this time, movement of the stacked body 18 in the stacking direction is restricted by being compressed by the stacking direction compression unit 55. And since the hold part 63 is pressed by the recessed part 11a, it is controlled that each tube 11 moves in the thickness direction and the longitudinal direction of the tube 11. Thus, since each tube 11 is held at a predetermined position on the table 51, press-fitting the open end 11d of each tube 11 into the tube insertion holes 23a and 24a of the tank plates 23 and 24 is performed with high accuracy.
 この後、熱処理によりチューブ11、フィン12、及びタンクプレート23,24の表面に予め施されたクラッド層を溶融させて、各部位が互いにロウ付けされることで、熱交換コア9が形成される。この後、タンクプレート23,24にタンク本体25,26が結合され、熱交換器10が完成する。 Thereafter, a clad layer previously applied to the surfaces of the tube 11, the fins 12 and the tank plates 23 and 24 is melted by heat treatment, and the heat exchange core 9 is formed by brazing the respective portions to each other. . Thereafter, the tank bodies 25 and 26 are coupled to the tank plates 23 and 24, and the heat exchanger 10 is completed.
 次に、本実施形態の効果について説明する。 Next, the effects of the present embodiment will be described.
 本実施形態では、各チューブ11は、開口端部11dの近傍に、タンク13,14が接続される際に当該チューブ11を保持するための押し当て部11gを有する熱交換器10が提供される。 In the present embodiment, each tube 11 is provided with the heat exchanger 10 having the pressing portion 11 g for holding the tube 11 when the tanks 13 and 14 are connected in the vicinity of the open end 11 d. .
 また、本実施形態では、各チューブ11が積層されるテーブル51と、テーブル51に積層される各チューブ11を積層方向に圧縮する積層方向圧縮部55と、各チューブ11をテーブル51に直交する厚さ方向に圧縮する厚さ方向圧縮部60と、を備え、厚さ方向圧縮部60は、積層方向圧縮部55によって積層方向に圧縮された各チューブ11の開口端部11dの近傍をテーブル51との間で押圧するホールド部63を備え、ホールド部63は、各チューブ11にタンク13,14を接続する際に複数のチューブ11を保持する組立装置50が提供される。 Further, in the present embodiment, the table 51 on which the tubes 11 are stacked, the stacking direction compression unit 55 that compresses the tubes 11 stacked on the table 51 in the stacking direction, and the thickness of the tubes 11 orthogonal to the table 51 The thickness direction compression unit 60 includes the table 51 and the vicinity of the open end 11 d of each tube 11 compressed in the stacking direction by the stacking direction compression unit 55. The holding unit 63 is provided with an assembly device 50 that holds the plurality of tubes 11 when connecting the tanks 13 and 14 to each tube 11.
 また、本実施形態では、各チューブ11を積層する積層工程と、各チューブ11を積層方向に圧縮する本圧縮工程と、積層方向に圧縮された各チューブ11の開口端部11dの近傍に当該チューブ11を保持するためのホールド部63を押し当てて各チューブ11を保持した状態で、各チューブ11にタンク13,14を接続する組み付け工程と、を備える組立方法が提供される。 Further, in the present embodiment, the stacking step of stacking the tubes 11, the main compression step of compressing the tubes 11 in the stacking direction, and the tubes in the vicinity of the open end 11d of each tube 11 compressed in the stacking direction. And an assembling step of connecting the tanks 13 and 14 to the respective tubes 11 in a state of holding the respective tubes 11 by pressing the holding portions 63 for holding the tubes 11.
 上記構成によれば、タンク13,14を積層された各チューブ11に接続する際に、各チューブ11の開口端部11dの近傍がホールド部63によって押圧されることにより、積層された各チューブ11に位置ズレが生じることが抑えられる。このため、積層された各チューブ11にタンク13,14を組み付けることが精度良く行われる。これにより、チューブ11やタンク13,14のチューブ挿入孔23a,24aが損傷することが防止される。この結果、熱交換器10は、チューブ11とチューブ挿入孔23a,24aとを接合するロウ付けが隙間なく行われ、組み立て時の歩留まりを向上させることができる。 According to the above configuration, when the tanks 13 and 14 are connected to the stacked tubes 11, the tubes 11 are stacked by pressing the vicinity of the open end 11 d of each tube 11 by the holding unit 63. It is possible to suppress the occurrence of positional deviation. For this reason, assembling the tanks 13 and 14 to the stacked tubes 11 is performed with high accuracy. This prevents the tube 11 and the tube insertion holes 23a and 24a of the tanks 13 and 14 from being damaged. As a result, in the heat exchanger 10, brazing for joining the tube 11 and the tube insertion holes 23a and 24a is performed without a gap, and the yield at the time of assembly can be improved.
 本実施形態では、押し当て部11gに押し当て跡としてチューブ11の表面11bに凹状に窪む凹部11aが形成される熱交換器10が提供される。 In the present embodiment, the heat exchanger 10 is provided in which the recess 11 a is formed in the surface 11 b of the tube 11 as a trace of pressing on the pressing portion 11 g.
 上記構成によれば、ホールド部63が各チューブ11の表面11bを塑性変形させるまで押圧して、窪ませた凹部11aに嵌合することにより、タンク13,14が接続される際に積層された各チューブ11に位置ズレが生じることが抑えられる。 According to the above-described configuration, when the tanks 13 and 14 are connected, the hold portion 63 presses the surface 11b of each tube 11 until it plastically deforms and fits in the recessed recess 11a. The occurrence of positional deviation in each tube 11 is suppressed.
 本実施形態では、押し当て部11gがチューブ11の長手方向についてタンク13,14から所定距離Lだけ離れた位置に形成される熱交換器10が提供される。 In the present embodiment, the heat exchanger 10 is provided in which the pressing portion 11 g is formed at a predetermined distance L from the tanks 13 and 14 in the longitudinal direction of the tube 11.
 上記構成によれば、チューブ11にタンク13,14を組み付ける際に、押し当て部11gに押し当てられたホールド部63がタンク13,14に干渉することが回避される。これにより、ホールド部63を凹部11aに押し当てた状態で、チューブ11にタンク13,14を組み付けることが円滑に行われる。 According to the above configuration, when the tanks 13 and 14 are assembled to the tube 11, the holding portion 63 pressed against the pressing portion 11 g is prevented from interfering with the tanks 13 and 14. Thus, the tanks 13 and 14 can be smoothly assembled to the tube 11 in a state in which the holding portion 63 is pressed against the recess 11 a.
 本実施形態では、厚さ方向圧縮部60は、ホールド部63と並んで各チューブ11をテーブル11との間で押圧する均し板61を備え、均し板61は、ホールド部63を各チューブ51から離した状態で、各チューブ11を厚さ方向に圧縮する熱交換器10の組立装置50が提供される。 In the present embodiment, the thickness direction compression unit 60 includes a leveling plate 61 for pressing the tubes 11 with the table 11 side by side with the holding unit 63, and the leveling plate 61 includes the holding units 63 for each tube. An assembly device 50 for the heat exchanger 10 is provided which compresses each tube 11 in the thickness direction away from 51.
 上記構成によれば、積層方向圧縮部55が積層体18を積層方向に圧縮するときに、均し板61が積層体18に摺接し、均し板61が積層体18から受ける摩擦力が小さく抑えられることにより、均し板61の姿勢が保たれる。こうして、本圧縮工程において均し板61の姿勢が維持されるため、一部のチューブ11がテーブル51から浮き上がる位置ズレが生じることを防止できる。 According to the above configuration, when the stacking direction compression unit 55 compresses the stack 18 in the stacking direction, the leveling plate 61 is in sliding contact with the stack 18 and the frictional force received by the leveling plate 61 from the stack 18 is small. By being suppressed, the posture of the leveling plate 61 is maintained. In this way, since the posture of the leveling plate 61 is maintained in the main compression process, it is possible to prevent the occurrence of positional deviation in which some of the tubes 11 are lifted from the table 51.
 次に、図6に示す熱交換器10の変形例について説明する。 Next, a modification of the heat exchanger 10 shown in FIG. 6 will be described.
 押し当て部11gには、各チューブ11の表面に形成される押し当て跡として、押し当て跡部11fが形成される。 In the pressing portion 11 g, a pressing mark portion 11 f is formed as a pressing mark formed on the surface of each tube 11.
 組み付け工程では、ホールド部63を各チューブ51に押圧する荷重、若しくはストローク量を適度に設定することにより、各チューブ11はホールド部63(図3C及び図4C参照)が押し当てられることによって表面が撓んでも、塑性変形せずに元の表面形状に戻る構成とする。これにより、各チューブ11の押し当て部11gは、ホールド部63が押圧されることによって凹部が形成されることなく、表面の粗さが部分的に変わる押し当て跡部11fが形成される。 In the assembling process, by appropriately setting the load or the stroke amount for pressing the holding portion 63 to each tube 51, the surface of each tube 11 is pressed by the holding portion 63 (see FIGS. 3C and 4C). Even if it bends, it has composition which returns to original surface shape, without plastic deformation. As a result, the pressing portion 11 g of each tube 11 is formed with a pressing mark portion 11 f whose surface roughness is partially changed without forming a recess by pressing the holding portion 63.
 組み付け工程では、タンク13,14が接続される際に、ホールド部63が各チューブ11の表面を押し当てられることにより、テーブル51に積層された各チューブ11に位置ズレが生じることが抑えられる。このため、積層された各チューブ11にタンク13,14を組み付けることが精度良く行われる。 In the assembling step, when the tanks 13 and 14 are connected, the holding portion 63 presses the surface of each tube 11 so that the positional deviation of the tubes 11 stacked on the table 51 can be suppressed. For this reason, assembling the tanks 13 and 14 to the stacked tubes 11 is performed with high accuracy.
 なお、上述した構成に限らず、組み付け工程において、ホールド部63が各チューブ11を押圧する荷重、若しくはストローク量を適度に設定することにより、押し当て部11gには各チューブ11の表面に押し当て跡が残らないようにする構成としてもよい。 In addition, not only the configuration described above, but by appropriately setting the load or the stroke amount by which the holding portion 63 presses each tube 11 in the assembling step, the pressing portion 11 g is pressed against the surface of each tube 11 It may be configured so as not to leave a trace.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although embodiment of this invention was described, the said embodiment is only what showed one of the application examples of this invention, and the meaning which limits the technical scope of this invention to the specific structure of the said embodiment is not.
 上気実施形態では、均し板61及びホールド部63は、テーブル51の鉛直に昇降することで積層体18を押圧するように構成したが、これに限られず、例えばヒンジを介して回動することで斜め方向から積層体18を押圧するように構成してもよい。 In the upper air embodiment, the leveling plate 61 and the holding unit 63 are configured to press the stacked body 18 by vertically moving the table 51. However, the present invention is not limited thereto. Thus, the stack 18 may be pressed from an oblique direction.
 また、上記実施形態では、積層体18はチューブ11とフィン12とが積層される構成したが、これに限られず、フィンを備えず、チューブのみが積層される構成にしてもよい。 Moreover, in the said embodiment, although the tube 18 and the fin 12 were comprised laminated | stacked in the laminated body 18, it is not restricted to this, You may make it the structure which does not have a fin but is laminated | stacked only.
 本願は2015年2月12日に日本国特許庁に出願された特願2015-025527,及び2016年1月20日に日本国特許庁に出願された特願2016-008445に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-025527 filed on Feb. 12, 2015 in the Japanese Patent Office, and Japanese Patent Application No. 2016-008445 filed on January 20, 2016 in the Japanese Patent Office. And the entire content of this application is incorporated herein by reference.

Claims (9)

  1.  積層された複数のチューブの開口端部にタンクが接続される熱交換器であって、
     各々の前記チューブの前記開口端部の近傍に、前記タンクが接続される際に前記チューブが保持されるための押し当て部を有する熱交換器。
    A heat exchanger having a tank connected to the open ends of a plurality of stacked tubes, the heat exchanger comprising:
    A heat exchanger having a pressing portion near the open end of each of the tubes for holding the tubes when the tank is connected.
  2.  請求項1に記載の熱交換器であって、
     前記押し当て部は、前記チューブの表面に形成される押し当て跡を有する熱交換器。
    The heat exchanger according to claim 1, wherein
    The heat exchanger having a pressing mark formed on a surface of the tube.
  3.  請求項2に記載の熱交換器であって、
     前記押し当て跡は、前記チューブの表面に窪む凹部である熱交換器。
    The heat exchanger according to claim 2, wherein
    The heat exchanger according to claim 1, wherein the pressing mark is a recess recessed in the surface of the tube.
  4.  請求項1から3のいずれか一つに記載の熱交換器であって、
     前記押し当て部は、前記チューブの長手方向について前記タンクから離れた位置に形成される熱交換器。
    The heat exchanger according to any one of claims 1 to 3, wherein
    The heat exchanger according to claim 1, wherein the pressing portion is formed at a position away from the tank in the longitudinal direction of the tube.
  5.  積層された複数のチューブの開口端部にタンクを接続する熱交換器の組立装置であって、
     各々の前記チューブが積層されるテーブルと、
     前記テーブルに積層される前記複数のチューブを積層方向に圧縮する積層方向圧縮部と、
     前記複数のチューブを前記テーブルに直交する厚さ方向に圧縮する厚さ方向圧縮部と、を備え、
     前記厚さ方向圧縮部は、前記積層方向圧縮部によって積層方向に圧縮された前記複数のチューブの前記開口端部の近傍を前記テーブルとの間で押圧するホールド部を備え、
     前記ホールド部は、前記複数のチューブに前記タンクを接続する際に、前記複数のチューブを保持する熱交換器の組立装置。
    What is claimed is: 1. A heat exchanger assembly apparatus comprising: a tank connected to the open end of a plurality of stacked tubes, the heat exchanger comprising:
    A table on which each of the tubes is stacked;
    A stacking direction compression unit configured to compress the plurality of tubes stacked on the table in the stacking direction;
    A thickness direction compression section for compressing the plurality of tubes in a thickness direction orthogonal to the table;
    The thickness direction compression unit includes a hold unit that presses the vicinity of the open end of the plurality of tubes compressed in the stacking direction by the stacking direction compression unit with the table.
    The said holding | maintenance part is an assembly apparatus of the heat exchanger which hold | maintains these tubes, when connecting the said tank to these tubes.
  6.  請求項5に記載の熱交換器の組立装置であって、
     前記厚さ方向圧縮部は、前記ホールド部によって前記複数のチューブの表面に押し当て跡を形成する熱交換器の組立装置。
    The heat exchanger assembly apparatus according to claim 5, wherein
    The assembly apparatus of a heat exchanger, wherein the thickness direction compression unit presses the surfaces of the plurality of tubes by the hold unit and forms marks.
  7.  請求項6に記載の熱交換器の組立装置であって、
     前記厚さ方向圧縮部は、前記ホールド部と並んで前記複数のチューブを前記テーブルとの間で押圧する均し板をさらに備え、
     前記均し板は、前記ホールド部を前記複数のチューブから離した状態で、前記複数のチューブを厚さ方向に圧縮する熱交換器の組立装置。
    The heat exchanger assembly apparatus according to claim 6, wherein
    The thickness direction compression unit further includes a leveling plate for pressing the plurality of tubes between the table and the table in parallel with the hold unit,
    The heat exchanger assembling apparatus according to claim 1, wherein the leveling plate compresses the plurality of tubes in a thickness direction in a state where the holding portion is separated from the plurality of tubes.
  8.  積層された複数のチューブの開口端部にタンクを接続する熱交換器の組立方法であって、
     前記複数のチューブを積層する積層工程と、
     前記複数のチューブを積層方向に圧縮する本圧縮工程と、
     積層方向に圧縮された前記複数のチューブの前記開口端部の近傍に当該チューブを保持するためのホールド部を押し当てて前記複数のチューブを保持した状態で、前記複数のチューブに前記タンクを接続する組み付け工程と、を備える熱交換器の組立方法。
    What is claimed is: 1. A method of assembling a heat exchanger, comprising: connecting a tank to open ends of a plurality of stacked tubes, the method comprising:
    Stacking the plurality of tubes;
    A main compression step of compressing the plurality of tubes in a stacking direction;
    The tank is connected to the plurality of tubes while holding the plurality of tubes by pressing the holding portion for holding the tubes in the vicinity of the open end of the plurality of tubes compressed in the stacking direction And an assembling process for assembling the heat exchanger.
  9.  請求項8に記載の熱交換器の組立方法であって、
     前記組み付け工程では、前記ホールド部によって前記複数のチューブの表面に押し当て跡を形成する熱交換器の組立方法。
    A method of assembling a heat exchanger according to claim 8, wherein
    A method of assembling a heat exchanger, wherein in the assembling step, the hold portion presses and forms marks on the surfaces of the plurality of tubes.
PCT/JP2016/053555 2015-02-12 2016-02-05 Heat exchanger, heat exchanger assembly device, and heat exchanger assembly method WO2016129530A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/550,430 US20180031325A1 (en) 2015-02-12 2016-02-05 Heat exchanger, heat exchanger assembling apparatus, and heat exchanger assembling method
EP16749174.5A EP3258202B1 (en) 2015-02-12 2016-02-05 Heat exchanger, heat exchanger assembling apparatus and heat exchanger assembling method
CN201680010101.4A CN107250702A (en) 2015-02-12 2016-02-05 The assemble method of heat exchanger, the assembling device of heat exchanger and heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-025527 2015-02-12
JP2015025527 2015-02-12
JP2016-008445 2016-01-20
JP2016008445A JP2016153718A (en) 2015-02-12 2016-01-20 Heat exchanger, heat exchanger assembling device, and heat exchanger assembling method

Publications (1)

Publication Number Publication Date
WO2016129530A1 true WO2016129530A1 (en) 2016-08-18

Family

ID=56615395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053555 WO2016129530A1 (en) 2015-02-12 2016-02-05 Heat exchanger, heat exchanger assembly device, and heat exchanger assembly method

Country Status (1)

Country Link
WO (1) WO2016129530A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235630U (en) * 1988-08-26 1990-03-07
JPH02139035U (en) * 1989-04-25 1990-11-20
JPH04354631A (en) * 1991-05-29 1992-12-09 Toshiba Corp Pipe inserting device
JP2002206884A (en) * 2000-12-28 2002-07-26 Calsonic Kansei Corp Fin inserter
JP2014237186A (en) * 2013-06-07 2014-12-18 カルソニックカンセイ株式会社 Apparatus and method for assembling of heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235630U (en) * 1988-08-26 1990-03-07
JPH02139035U (en) * 1989-04-25 1990-11-20
JPH04354631A (en) * 1991-05-29 1992-12-09 Toshiba Corp Pipe inserting device
JP2002206884A (en) * 2000-12-28 2002-07-26 Calsonic Kansei Corp Fin inserter
JP2014237186A (en) * 2013-06-07 2014-12-18 カルソニックカンセイ株式会社 Apparatus and method for assembling of heat exchanger

Similar Documents

Publication Publication Date Title
JP6564033B2 (en) Flat tube insertion device for heat exchanger fins
CN1129157A (en) Flat tube for heat exchanger and manufacturing method thereof
JP2008238223A (en) Brazing method
CN1771424A (en) Heat exchanger, especially a charge-air cooler for motor vehicles
CN103697632B (en) The parallel flow fin stator bending mechanism away from bending part
JP2008036650A (en) Method of manufacturing heat exchanger
WO2004033978A1 (en) Flat hollow body for passing fluid therethrough, heat exchanger comprising the hollow body and process for fabricating the heat exchanger
KR20140020699A (en) Heat exchanger tube, heat exchanger tube assembly, and methods of making the same
US20020134529A1 (en) Heat exchanger
KR102277669B1 (en) Flat tube insertion into fins for heat exchangers
US8973420B2 (en) Corrugated fin manufacturing apparatus
WO2009104659A1 (en) Heat exchanger fin and method of manufacturing heat exchanger fin
WO2016129530A1 (en) Heat exchanger, heat exchanger assembly device, and heat exchanger assembly method
JP2016153718A (en) Heat exchanger, heat exchanger assembling device, and heat exchanger assembling method
US20160054072A1 (en) A heat exchanger with a dual-function dispensing head connection assembly
WO2018021030A1 (en) Method for producing heat exchanger
JP2014237186A (en) Apparatus and method for assembling of heat exchanger
JPH06154924A (en) Press working method
JP2007301618A (en) Method of forming tube for heat exchanger
JP5701073B2 (en) Temporary assembly apparatus for heat exchanger core and provisional assembly method thereof
JP2012112562A (en) Drawn cup-type heat exchanger
KR101100118B1 (en) Manifold for heat exchanger and method for manufacturing the same
JP2019015445A (en) Heat exchanger and assembly method of the same
US20200103172A1 (en) Heat transfer device and method for manufacturing same
JP2007007672A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016749174

Country of ref document: EP