WO2016129185A1 - Moving image coding device, moving image decoding device, moving image processing system, moving image coding method, moving image decoding method, and program - Google Patents

Moving image coding device, moving image decoding device, moving image processing system, moving image coding method, moving image decoding method, and program Download PDF

Info

Publication number
WO2016129185A1
WO2016129185A1 PCT/JP2015/085739 JP2015085739W WO2016129185A1 WO 2016129185 A1 WO2016129185 A1 WO 2016129185A1 JP 2015085739 W JP2015085739 W JP 2015085739W WO 2016129185 A1 WO2016129185 A1 WO 2016129185A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter coefficient
prediction
prediction value
error
intra prediction
Prior art date
Application number
PCT/JP2015/085739
Other languages
French (fr)
Japanese (ja)
Inventor
知伸 吉野
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Publication of WO2016129185A1 publication Critical patent/WO2016129185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/154Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Definitions

  • the present invention relates to a moving image encoding device, a moving image decoding device, a moving image processing system, a moving image encoding method, a moving image decoding method, and a program.
  • Non-Patent Document 1 In a standard method related to video compression represented by Non-Patent Document 1, a predictive coding method is adopted, and a prediction error is quantized after being converted into a frequency domain. For this reason, quantization errors (noise) occur in the encoded image during the quantization process. Therefore, a method for directly or indirectly suppressing the coding error has been proposed.
  • Non-Patent Document 1 proposes SAO (Sample Adaptive Offset).
  • SAO is a type of filter that controls an offset value for each local region with respect to an encoded frame.
  • Non-Patent Document 2 proposes ALF (Adaptive Loop Filter).
  • ALF Adaptive Loop Filter
  • HEVC High Efficiency Video Coding
  • SAO in Non-Patent Document 1 and ALF in Non-Patent Document 2 are techniques for encoded frames, that is, techniques for frames that have already been encoded, and strongly affect the compression performance in predictive encoding. It is not a technology that improves prediction performance. For this reason, the compression performance could not be improved sufficiently.
  • the present invention has been made in view of the above-described problems, and an object thereof is to improve the compression performance.
  • the present invention proposes the following items in order to solve the above problems.
  • the present invention is a video encoding device (for example, the video code shown in FIG. 1) that allows predictive encoding using an encoded local decoded image (eg, equivalent to the local decoded image SIG17 shown in FIG. 2). Between the inter prediction based on integer-precision motion compensation and the intra prediction using the input image (e.g., equivalent to the input image SIG1 in FIG. 2) and the local decoded image.
  • Pre-prediction value generation means for example, equivalent to the pre-intra prediction value calculation unit 21 in FIG. 3) that generates a prediction value by at least one of the above, the input image, and the prediction value generated by the prior prediction value generation means
  • error minimizing filter coefficient calculating means for example, the error minimizing filter shown in FIG.
  • the moving picture coding apparatus is provided with the pre-predicted value generating means, the error minimizing filter coefficient calculating means, and the filter processing means.
  • the pre-prediction value generation means generates the prediction value by at least one of inter prediction based on integer precision motion compensation and intra prediction, using the input image and the local decoded image.
  • the error minimizing filter coefficient calculating means calculates the filter coefficient that minimizes the error based on the input image and the predicted value generated by the prior predicted value generating means.
  • the filter processing means performs the filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means.
  • the filtering process is performed on the frame before being encoded, that is, on the frame before the encoding process is performed. Therefore, it is possible to improve the prediction performance that strongly affects the compression performance in predictive coding, and as a result, it is possible to improve the compression performance.
  • a filter coefficient that minimizes at least one of an error based on the input image and a prediction value based on inter prediction based on integer-precision motion compensation and an error based on the prediction value based on the input image and intra prediction is calculated. Will be.
  • errors in integer pixel position motion compensation and intra prediction can be reduced, and as a result, compression performance can be further improved.
  • the error minimizing filter coefficient calculation unit is a difference between the input image and the prediction value generated by the prior prediction value generation unit.
  • a filter that minimizes any one of a prediction error and an encoding error obtained by performing orthogonal transform processing, quantization processing, inverse quantization processing, and inverse transform processing on the prediction error A moving picture coding apparatus characterized by calculating coefficients is proposed.
  • the filter coefficient for minimizing either the prediction error or the coding error is calculated by the error minimizing filter coefficient calculation means. For this reason, the prediction error or the coding error can be minimized by the filter processing by the filter processing means.
  • the filter coefficient can be obtained in consideration of not only the prediction error but also the quantization error. For this reason, it is possible to simultaneously realize the suppression of the code amount of the prediction residual and the suppression of the direct error in the decoded image. Therefore, compared with the case where the prediction error is minimized, the compression performance can be particularly improved in intra coding in which a large amount of prediction residual code is generated, high bit rate coding, or the like.
  • the present invention relates to the moving picture coding apparatus according to (1) or (2), wherein the error minimizing filter coefficient calculating means calculates the filter coefficient based on a Wiener filter method.
  • a video encoding device is proposed.
  • the filter coefficient can be calculated based on the Wiener filter method in the moving picture coding apparatus of (1) or (2).
  • the present invention relates to the moving picture encoding apparatus according to any one of (1) to (3), wherein the prior prediction value generation means performs prediction by intra prediction using the input image and the local decoded image. A value is generated, and the error minimizing filter coefficient calculation means proposes a moving picture coding apparatus characterized in that the filter coefficient is calculated according to an intra prediction mode.
  • H. H.264 and H.264 In the standard method related to video compression represented by H.265, an intra prediction value corresponding to the intra prediction mode is generated in the intra prediction. For this reason, the intra prediction value is easily affected by the intra prediction mode.
  • the filter coefficient is calculated according to the intra prediction mode by the prior prediction value generation means. For this reason, compared with the case where one filter coefficient common to all intra prediction modes is calculated, a prediction error can be made small or encoding performance can be improved.
  • the present invention relates to the moving picture coding apparatus according to (4), wherein the error minimizing filter coefficient calculation means includes m intra prediction modes (where m is smaller than the number of types of intra prediction modes, A moving picture coding apparatus has been proposed in which a filter coefficient is calculated for each classified group.
  • the filter coefficient is calculated according to each of the intra prediction modes, the amount of information regarding the filter coefficient becomes enormous, and as a result, the encoding performance may be degraded.
  • the intra prediction mode is classified into m groups by the error minimizing filter coefficient calculation means, and the filter coefficient is calculated for each classified group. It was decided. For this reason, compared with the case where one filter coefficient common to all intra prediction modes is calculated, it is possible to improve the encoding performance by suppressing an increase in the amount of information regarding the filter coefficient while reducing the prediction error. it can.
  • the present invention is a video decoding device (for example, equivalent to the video decoding device 100 in FIG. 1) that allows predictive decoding using a decoded image (eg, equivalent to the decoded image SIG64 in FIG. 4).
  • Entropy decoding means for example, corresponding to the interpolation filter coefficient SIG54 in the intra prediction of FIG. 4 by entropy decoding the encoded data (for example, corresponding to the encoded data SIG2 of FIG. 4) (for example, 4 corresponding to the entropy decoding unit 110 in FIG.
  • the moving picture decoding apparatus is provided with entropy decoding means and filter processing means.
  • the entropy decoding means entropy decodes the encoded data to obtain filter coefficients.
  • the filter processing unit generates a prediction value using the decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction, and entropy decoding is performed on the generated prediction value.
  • the filter processing is performed using the filter coefficient acquired by the means.
  • the filter coefficient used when generating the encoded data is used for the prediction value generated by at least one of inter prediction based on integer precision motion compensation and intra prediction. Processing can be performed. Therefore, errors in motion compensation at integer pixel positions and intra prediction can be reduced, and as a result, compression performance can be improved.
  • the entropy decoding unit performs entropy decoding on the encoded data, obtains a filter coefficient calculated according to an intra prediction mode, and performs the filtering process
  • the means proposes a moving picture decoding apparatus characterized in that a predicted value is generated by intra prediction using the decoded picture.
  • H. H.264 and H.264 In the standard method related to video compression represented by H.265, an intra prediction value corresponding to the intra prediction mode is generated in the intra prediction. For this reason, the intra prediction value is easily affected by the intra prediction mode.
  • the encoded data is entropy decoded by the entropy decoding means, and the filter coefficient calculated according to the intra prediction mode is obtained.
  • a prediction value is generated by intra prediction using the decoded image by the filter processing means.
  • the present invention relates to the moving picture decoding apparatus according to (7), wherein the number of intra prediction modes is m in advance (where m is a natural number that is smaller than the number of types of intra prediction modes and does not include zero).
  • the filter coefficient is calculated for each group that is classified, and the entropy decoding means performs entropy decoding on the encoded data to obtain the filter coefficient calculated for each group.
  • a moving image decoding apparatus having a feature is proposed.
  • the filter coefficient is calculated according to each intra prediction mode, the amount of information regarding the filter coefficient becomes enormous, and as a result, the encoding performance may be degraded.
  • the intra prediction modes are classified into m groups in advance, and the filter coefficients are calculated for each classified group, and entropy decoding is performed.
  • the means entropy-decodes the encoded data and obtains a filter coefficient calculated for each group. For this reason, compared with the case where filter processing is performed using one filter coefficient common to all intra prediction modes, an increase in the amount of information regarding the filter coefficient is suppressed while reducing the prediction error, and the encoding performance is reduced. Can be improved.
  • the present invention encodes a moving image to generate encoded data (for example, equivalent to the encoded data SIG2 in FIG. 2) (for example, the moving image encoding device 1 in FIG. 1).
  • a moving picture decoding apparatus for example, equivalent to the moving picture decoding apparatus 100 in FIG. 1) that decodes encoded data generated by the moving picture encoding apparatus. 1 is equivalent to the moving image processing system AA
  • the moving image encoding apparatus includes an input image (for example, corresponding to the input image SIG1 in FIG. 2) and a local decoded image (for example, the local decoded image SIG17 in FIG. 2).
  • a pre-prediction value generation unit for example, the pre-intra prediction unit of FIG.
  • Entropy encoding means for generating encoded data by entropy encoding the filtered filter coefficients (for example, equivalent to the entropy encoding unit 40 in FIG. 2)
  • the moving picture decoding apparatus entropy-decodes the encoded data generated by the entropy encoding means and obtains the filter coefficient calculated by the error minimizing filter coefficient calculation means ( For example, it is equivalent to the entropy decoding unit 110 in FIG. 4), inter prediction based on integer-precision motion compensation, and intra prediction, which is used when the predicted value is generated by the prior predicted value generation unit. 4 generates a predicted value using the decoded image, and performs a filtering process on the generated predicted value using the filter coefficient acquired by the entropy decoding unit (for example, the intra filter in FIG. 4). And a predicted value generation unit 140).
  • the moving image processing system is provided with a moving image encoding device and a moving image decoding device, and the moving image encoding device includes pre-predicted value generation means, error minimizing filter coefficient calculation means, and encoding side filter. Processing means and entropy encoding means are provided.
  • the pre-prediction value generation means generates the prediction value by at least one of inter prediction based on integer precision motion compensation and intra prediction, using the input image and the local decoded image.
  • the error minimizing filter coefficient calculating means calculates the filter coefficient that minimizes the error based on the input image and the predicted value generated by the prior predicted value generating means.
  • the encoding-side filter processing means performs filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means. Further, the entropy encoding unit entropy encodes the filter coefficient calculated by the error minimizing filter coefficient calculation unit to generate encoded data.
  • the moving picture decoding apparatus is provided with entropy decoding means and decoding side filter processing means. The entropy decoding unit entropy-decodes the encoded data generated by the entropy encoding unit, and obtains the filter coefficient calculated by the error minimizing filter coefficient calculation unit.
  • the decoding-side filter processing means uses the decoded image by the one used when the prediction value is generated by the prior prediction value generation means among inter prediction based on integer-precision motion compensation and intra prediction. A prediction value is generated, and filter processing is performed on the generated prediction value using the filter coefficient acquired by the entropy decoding unit. According to this, an effect similar to the effect mentioned above can be produced.
  • the present invention is based on prior prediction value generation means (for example, equivalent to the prior intra prediction value calculation section 21 in FIG. 3) and error minimization filter coefficient calculation means (for example, error minimization filter coefficient calculation section 22 in FIG. 3). ) And filter processing means (for example, equivalent to the filter processing unit 23 in FIG. 3), and a prediction code using an encoded local decoded image (for example, equivalent to the local decoded image SIG17 in FIG. 2)
  • the prior prediction value generation means is configured to input the input picture (for example, FIG. 2).
  • the error minimizing filter coefficient calculation means minimizes an error (e.g., corresponding to a prediction error or an encoding error described later) based on the input image and the prediction value generated by the first step.
  • a second step of calculating a filter coefficient to be converted, and the filter processing means performs a filtering process on the prediction value generated in the first step using the filter coefficient calculated in the second step and a third step of performing a video encoding method.
  • a predicted value is generated by at least one of inter prediction based on integer precision motion compensation and intra prediction using an input image and a locally decoded image.
  • a filter coefficient that minimizes an error based on the input image and the predicted value described above is calculated, and the filter process is performed on the predicted value using the calculated filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
  • the present invention includes entropy decoding means (for example, equivalent to the entropy decoding unit 110 in FIG. 4) and filter processing means (for example, equivalent to the intra-predicted value generation unit 140 in FIG. 4).
  • 4 is a moving picture decoding method in a moving picture decoding apparatus (for example, equivalent to the moving picture decoding apparatus 100 in FIG. 1) that allows predictive decoding using the decoded picture SIG64 in FIG.
  • a first step of entropy decoding encoded data (for example, equivalent to the encoded data SIG2 in FIG. 4) to obtain filter coefficients (for example, equivalent to the interpolation filter coefficient SIG54 in the intra prediction in FIG. 4);
  • the filter processing means is at least one of inter prediction based on integer precision motion compensation and intra prediction.
  • a moving image decoding method is proposed.
  • encoded data is entropy decoded to obtain a filter coefficient, and a prediction value is obtained using a decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction.
  • the generated prediction value is subjected to filter processing using the acquired filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
  • the present invention is based on prior prediction value generation means (for example, equivalent to the prior intra prediction value calculation section 21 in FIG. 3) and error minimization filter coefficient calculation means (for example, error minimization filter coefficient calculation section 22 in FIG. 3). ) And filter processing means (for example, equivalent to the filter processing unit 23 in FIG. 3), and a prediction code using an encoded local decoded image (for example, equivalent to the local decoded image SIG17 in FIG. 2)
  • a program for causing a computer to execute a moving picture coding method in a moving picture coding apparatus for example, equivalent to the moving picture coding apparatus 1 in FIG. 1) that permits the encoding, the prior prediction value generation means
  • an input image e.g., equivalent to the input image SIG1 in FIG.
  • the number of inter predictions based on integer-precision motion compensation and intra predictions is small.
  • the first step of generating a predicted value, and the error minimizing filter coefficient calculation means calculates an error based on the input image and the predicted value generated by the first step (for example, described later).
  • a second step of calculating a filter coefficient that minimizes a prediction error or a coding error of the second step, and the filter processing means for the predicted value generated by the first step A program for causing a computer to execute a third step of performing filter processing using the filter coefficient calculated in the step is proposed.
  • a prediction value is determined by at least one of inter prediction based on integer-precision motion compensation and intra prediction using an input image and a locally decoded image. It was decided to generate.
  • a filter coefficient that minimizes an error based on the input image and the predicted value described above is calculated, and the filter process is performed on the predicted value using the calculated filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
  • the present invention includes an entropy decoding unit (for example, equivalent to the entropy decoding unit 110 in FIG. 4) and a filter processing unit (for example, equivalent to the intra prediction value generation unit 140 in FIG. 4), and a decoded image (for example, , A program for causing a computer to execute a moving picture decoding method in a moving picture decoding apparatus (for example, equivalent to the moving picture decoding apparatus 100 in FIG. 1) that allows predictive decoding using the decoded picture SIG64 in FIG.
  • the entropy decoding means entropy-decodes the encoded data (for example, equivalent to the encoded data SIG2 in FIG.
  • filter coefficients for example, equivalent to the interpolation filter coefficient SIG54 in the intra prediction in FIG. 4.
  • a first step of obtaining and inter-prediction wherein the filtering means is based on integer precision motion compensation
  • the prediction value is generated using the decoded image by at least one of intra prediction and intra-prediction, and the generated prediction value is subjected to filter processing using the filter coefficient acquired in the first step.
  • a program for causing a computer to execute the second step is proposed.
  • the encoded data is entropy-decoded to obtain filter coefficients, and at least one of inter prediction based on integer precision motion compensation and intra prediction is used.
  • a predicted value is generated using the decoded image, and a filter process is performed on the generated predicted value using the acquired filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
  • the compression performance can be improved.
  • 1 is a block diagram of a moving image processing system according to a first embodiment of the present invention.
  • 1 is a block diagram of a video encoding apparatus according to a first embodiment of the present invention. It is a block diagram of the intra estimated value production
  • FIG. 1 is a block diagram of a moving image processing system AA according to the first embodiment of the present invention.
  • the moving image processing system AA encodes a moving image to generate encoded data (see encoded data SIG2 in FIGS. 2 and 4), and a code generated by the moving image encoding device 1.
  • a moving picture decoding apparatus 100 for decoding the digitized data.
  • These moving image encoding apparatus 1 and moving image decoding apparatus 100 transmit and receive the above-described encoded data via a transmission path, for example.
  • FIG. 2 is a block diagram of the moving picture encoding apparatus 1.
  • the moving image encoding apparatus 1 includes an inter prediction value generation unit 10, an intra prediction value generation unit 20, a DCT / quantization unit 30, an entropy encoding unit 40, an inverse DCT / inverse quantization unit 50, and a local memory 60. .
  • the inter prediction value generation unit 10 includes a decimal accuracy MC prediction value generation unit 11 and an integer accuracy MC prediction value generation unit 12.
  • the decimal precision MC predicted value generation unit 11 receives an input image SIG1 and a later-described local decoded image SIG17 supplied from the local memory 60 as inputs. First, the decimal precision MC prediction value generation unit 11 adaptively calculates an interpolation filter coefficient that minimizes a prediction error caused by decimal precision motion compensation (MC) using the input image SIG1 and the local decoded image SIG17. In addition to outputting as an interpolation filter coefficient SIG3, control information (including a decimal precision motion vector) SIG4 relating to decimal precision inter prediction is output. As a method for calculating the interpolation filter coefficient, for example, a calculation method based on the Wiener filter method can be used. Next, the decimal precision MC prediction value generation unit 11 generates a prediction value based on the decimal precision MC using the calculated interpolation filter coefficient, and outputs the prediction value as an inter prediction value SIG5 based on the decimal precision MC.
  • MC decimal precision motion compensation
  • the integer precision MC predicted value generation unit 12 receives the input image SIG1 and the locally decoded image SIG17 supplied from the local memory 60.
  • the integer accuracy MC predicted value generation unit 12 generates a predicted value based on the integer accuracy MC using the input image SIG1 and the local decoded image SIG17, and outputs the predicted value as an inter predicted value SIG7 based on the integer accuracy MC.
  • Control information (including an integer-precision motion vector) SIG6 is output.
  • the intra predicted value generation unit 20 receives the input image SIG1 and the local decoded image SIG17 supplied from the local memory 60 as inputs.
  • the intra prediction value generation unit 20 generates a prediction value based on intra prediction using the input image SIG1 and the locally decoded image SIG17, and then performs an error minimization filter process described later to output an intra prediction value SIG9. Then, an interpolation filter coefficient SIG8, which will be described later, and control information (including an intra prediction mode) SIG10 related to intra prediction are output.
  • the intra predicted value generation unit 20 will be described in detail below with reference to FIG.
  • FIG. 3 is a block diagram of the intra prediction value generation unit 20.
  • the intra prediction value generation unit 20 includes a prior intra prediction value calculation unit 21, an error minimization filter coefficient calculation unit 22, and a filter processing unit 23.
  • the prior intra prediction value calculation unit 21 receives the input image SIG1 and the locally decoded image SIG17.
  • the pre-intra prediction value calculation unit 21 generates a prediction value by intra prediction based on the intra prediction mode using the input image SIG1 and the locally decoded image SIG17, and outputs the prediction value as the pre-intra prediction value SIG18.
  • the control information SIG10 regarding is output.
  • the error minimizing filter coefficient calculation unit 22 receives the input image SIG1 and the prior intra prediction value SIG18.
  • the error minimizing filter coefficient calculation unit 22 calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-intra prediction value SIG18, and outputs the interpolation filter coefficient SIG8.
  • the error based on the input image SIG1 and the pre-intra prediction value SIG18 is a prediction error or a coding error.
  • the prediction error is a difference between the input image SIG1 and the prior intra prediction value SIG18 (an error caused by intra prediction).
  • the error minimization filter coefficient calculation unit 22 calculates an interpolation filter coefficient that minimizes the difference between the input image SIG1 and the prior intra prediction value SIG18.
  • a method for calculating the interpolation filter coefficient for example, a calculation method based on the Wiener filter method can be used.
  • the coding error is an error obtained by combining the above-described prediction error and the quantization error generated in the quantization process.
  • the error minimizing filter coefficient calculation unit 22 first obtains a difference between the input image SIG1 and the prior intra prediction value SIG18. Next, after the same processing as the DCT / quantization unit 30 is performed on the obtained difference, the same processing as that of the inverse DCT / inverse quantization unit 50 is performed to obtain the above-described encoding error. Next, an interpolation filter coefficient that minimizes the obtained coding error is calculated.
  • a method for calculating the interpolation filter coefficient for example, a calculation method based on the Wiener filter method can be used.
  • the filter processing unit 23 receives the interpolation filter coefficient SIG8 and the prior intra predicted value SIG18 as inputs.
  • the filter processing unit 23 performs an error minimizing filter process on the previous intra predicted value SIG18 using the interpolation filter coefficient SIG8, and outputs the predicted value after the filter process as a final intra predicted value SIG9.
  • interpolation filter coefficient SIG8 a method for calculating one interpolation filter coefficient common to all intra prediction modes (for example, DC prediction, Planar prediction, and 33 kinds of direction predictions), intra, There is a method of calculating the interpolation filter coefficient according to the prediction mode.
  • H. H.264 and H.264 In the standard method related to video compression represented by H.265, an intra prediction value corresponding to the intra prediction mode is generated in the intra prediction. For this reason, the intra prediction value is easily affected by the intra prediction mode. Therefore, when the interpolation filter coefficient is calculated according to each intra prediction mode, the prediction error can be reduced compared to the case where one interpolation filter coefficient common to all intra prediction modes is calculated. The effect and the effect that the encoding performance can be improved can be expected.
  • the interpolation filter coefficient is calculated according to each intra prediction mode, the amount of information related to the interpolation filter coefficient becomes enormous, and as a result, the encoding performance may be degraded.
  • the intra prediction value generation unit 20 classifies the intra prediction modes into m groups (where m is a natural number that is smaller than the number of types of intra prediction modes and does not include zero), and interpolates for each group. Calculate filter coefficients.
  • the intra prediction value generation unit 20 uses the interpolation filter coefficient SIG8 to indicate not only the interpolation filter coefficient calculated for each group but also which group each of all intra prediction modes belongs to among the m groups. Also output.
  • the DCT / quantization unit 30 receives the prediction residual signal SIG12 as an input.
  • the prediction residual signal SIG12 is a difference signal between the input image SIG1 and the prediction value SIG11.
  • the prediction value SIG11 is an inter prediction value SIG5 based on decimal precision MC and inter prediction based on integer precision MC. Of the value SIG7 and the intra prediction value SIG9, it is a prediction value calculated by a prediction method that is expected to have the highest coding performance.
  • the DCT / quantization unit 30 performs an orthogonal transform process on the prediction residual signal SIG12, performs a quantization process on the transform coefficient obtained by the orthogonal transform process, and outputs the quantized transform coefficient SIG13. To do.
  • the entropy encoding unit 40 receives the quantized transform coefficient SIG13, the interpolation filter coefficients SIG3 and SIG8, and the control information SIG14.
  • the control information SIG14 is expected to have the above-described highest encoding performance among the control information SIG4 related to decimal precision inter prediction, the control information SIG6 related to integer precision inter prediction, and the control information SIG10 related to intra prediction. This is control information obtained by the prediction method.
  • the entropy encoding unit 40 performs entropy encoding processing on the input information, describes the result in the encoded data according to the description rule (encoding syntax) for the encoded data, Output as encoded data SIG2.
  • the inverse DCT / inverse quantization unit 50 receives the quantized transform coefficient SIG13 as input.
  • the inverse DCT / inverse quantization unit 50 performs an inverse quantization process on the quantized transform coefficient SIG13, performs an inverse transform process on the transform coefficient obtained by the inverse quantization process, and performs an inverse process.
  • the local memory 60 receives the locally decoded image SIG16.
  • the local decoded image SIG16 is a signal obtained by adding the predicted value SIG11 and the transform coefficient SIG15 subjected to inverse orthogonal transform.
  • the local memory 60 accumulates the input local decoded image SIG16, and when it is necessary to refer to the past local decoded image SIG16 after the next coding processing unit block, the decimal precision MC prediction value generation unit is appropriately selected. 11 and the integer accuracy MC prediction value generation unit 12 and the intra prediction value generation unit 20 are supplied as a locally decoded image SIG17.
  • FIG. 4 is a block diagram of the video decoding device 100.
  • the moving picture decoding apparatus 100 includes an entropy decoding unit 110, an inverse DCT / inverse quantization unit 120, an inter prediction value generation unit 130, an intra prediction value generation unit 140, and a local memory 150.
  • the entropy decoding unit 110 receives the encoded data SIG2.
  • the entropy decoding unit 110 analyzes the content described in the encoded data SIG2 according to the encoded data structure and performs entropy decoding, and performs the residual signal SIG51 and the interpolation filter coefficient SIG52 (interpolation filter coefficient SIG3 in the decimal precision MC). ), Control information SIG53, and interpolation filter coefficient SIG54 (interpolation filter coefficient SIG8) in the intra prediction are acquired and output.
  • the inverse DCT / inverse quantization unit 120 receives the residual signal SIG51.
  • the inverse DCT / inverse quantization unit 120 performs an inverse quantization process on the residual signal SIG51, performs an inverse transform process on the result obtained from the inverse quantization process, and performs an inverse orthogonal transform result SIG55. Output as.
  • the inter prediction value generation unit 130 includes a decimal accuracy MC prediction value generation unit 131 and an integer accuracy MC prediction value generation unit 132.
  • the decimal precision MC predicted value generation unit 131 includes an interpolation filter coefficient SIG52 in the decimal precision MC, control information SIG56 (control information SIG4 related to decimal precision inter prediction) included in the control information SIG53, A decoded image SIG64 (described later) supplied from the local memory 150 is used as an input.
  • the decimal accuracy MC predicted value generation unit 131 first generates a predicted value based on the decimal accuracy MC in the processing block by referring to the decoded image SIG64 based on the control information SIG56 related to the decimal prediction inter prediction.
  • the generated prediction value based on the decimal precision MC is subjected to filter processing using the interpolation filter coefficient SIG52 in the decimal precision MC, and the prediction value after the filter processing is set as an inter prediction value SIG59 based on the decimal precision MC. Output.
  • the integer precision MC predicted value generation unit 132 includes control information SIG57 (control information SIG6 related to integer precision inter prediction) included in the control information SIG53, and a decoded image SIG64 supplied from the local memory 150. And are input.
  • the integer precision MC predicted value generation unit 132 refers to the decoded image SIG64 based on the control information SIG57 related to integer precision inter prediction, generates a predicted value based on the integer precision MC in the processing block, and is based on the integer precision MC. It outputs as inter prediction value SIG60.
  • the intra prediction value generation unit 140 includes control information SIG58 related to intra prediction (control information SIG10 related to intra prediction) included in the control information SIG53, an interpolation filter coefficient SIG54 for intra prediction, and a decoded image supplied from the local memory 150. SIG64 as an input.
  • the intra prediction value generation unit 140 refers to the decoded image SIG64 based on the control information SIG58 related to intra prediction, and generates an intra prediction value in the processing block.
  • the generated intra prediction value is filtered using the interpolation filter coefficient SIG54 in the intra prediction, and the prediction value after the filter processing is output as the intra prediction value SIG61.
  • the interpolation filter coefficient SIG54 in intra prediction includes m interpolation filter coefficients and information indicating to which of the m groups the m interpolation filter coefficients belong. It is. For this reason, the intra prediction value generation unit 140 determines which group of the m groups the intra prediction mode of the processing block belongs to, and selects the interpolation filter coefficient belonging to the determined group from the m interpolation filter coefficients. The filter processing in the processing block is performed using the selected interpolation filter coefficient.
  • a signal obtained by adding the inverse orthogonal transform result SIG55 and the predicted value SIG62 is output from the video decoding device 100 as a decoded image SIG63 and also supplied to the local memory 150.
  • the predicted value SIG62 is a predicted method that is expected to have the highest coding performance among the inter predicted value SIG59 based on the decimal precision MC, the inter predicted value SIG60 based on the integer precision MC, and the intra predicted value SIG61. Is the predicted value calculated by
  • the local memory 150 receives the decoded image SIG63.
  • the local memory 150 stores the input decoded image SIG63, and when it is necessary to refer to the past decoded image SIG63 after the next decoding processing unit block, the decimal precision MC predicted value generation unit 131 and the integer are appropriately selected.
  • the decoded image SIG64 is supplied to the accuracy MC prediction value generation unit 132 and the intra prediction value generation unit 140.
  • the moving image encoding apparatus 1 performs filtering processing on the frame before encoding, that is, the frame before encoding processing is performed by the filter processing unit 23. For this reason, the prediction performance that strongly affects the compression performance in predictive coding can be improved, and as a result, the compression performance can be improved.
  • the moving image encoding apparatus 1 calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-intra prediction value SIG18 by the error minimizing filter coefficient calculation unit 22, and the filter processing unit 23 calculates the error Filter processing is performed using the interpolation filter coefficient calculated by the minimized filter coefficient calculation unit 22.
  • the intra prediction value generation unit 140 performs filter processing using the interpolation filter coefficient SIG54 in intra prediction, that is, the interpolation filter coefficient SIG8 calculated by the intra prediction value generation unit 20. For this reason, errors in intra prediction can be reduced, and as a result, compression performance can be further improved.
  • the moving picture coding apparatus 1 applies a prediction error or a coding error as an error based on the input image SIG1 and the pre-intra prediction value SIG18 by the error minimizing filter coefficient calculation unit 22. For this reason, when applying prediction errors, it is not necessary to perform orthogonal transformation processing, quantization processing, inverse quantization processing, and inverse transformation processing, compared to the case of applying coding errors, so error minimization is achieved. The processing amount in the filter coefficient calculation unit 22 can be reduced. In addition, when coding errors are applied, compression performance is particularly improved in intra coding that generates a large amount of prediction residual code, high bit rate coding, etc., compared to the case where prediction errors are applied. Can be made.
  • the moving picture encoding apparatus 1 can calculate the filter coefficient based on the Wiener filter method by the error minimizing filter coefficient calculation unit 22.
  • the intra prediction value generation unit 20 classifies the intra prediction mode into m groups, and calculates an interpolation filter coefficient for each of the classified groups. For this reason, compared with the case where one filter coefficient common to all intra prediction modes is calculated, it is possible to improve the encoding performance by suppressing an increase in the amount of information regarding the filter coefficient while reducing the prediction error. it can.
  • FIG. 5 is a block diagram of a moving image processing system BB according to the second embodiment of the present invention.
  • the moving image processing system BB is different from the moving image processing system AA according to the first embodiment of the present invention shown in FIG. 1 in that a moving image encoding device 1A is provided instead of the moving image encoding device 1, and a moving image
  • a moving image decoding apparatus 100A is provided instead of the decoding apparatus 100.
  • FIG. 6 is a block diagram of the video encoding apparatus 1A.
  • the moving image encoding device 1A is different from the moving image encoding device 1 according to the first embodiment of the present invention shown in FIG. 2 in that an inter prediction value generation unit 10A is provided instead of the inter prediction value generation unit 10.
  • the difference is that an intra prediction value generation unit 20A is provided instead of the intra prediction value generation unit 20.
  • the same components as those in the moving image encoding device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • Inter prediction value generation unit 10A includes a decimal accuracy MC prediction value generation unit 11 and an integer accuracy MC prediction value generation unit 12A.
  • the integer precision MC predicted value generation unit 12A receives the input image SIG1 and the locally decoded image SIG17 supplied from the local memory 60.
  • the integer precision MC predicted value generation unit 12A generates a predicted value based on the integer precision MC using the input image SIG1 and the local decoded image SIG17, and then performs error minimization filter processing described later to obtain the integer precision MC. It outputs as the inter prediction value SIG7 based on it, and outputs the below-mentioned interpolation filter coefficient SIG21 and the control information SIG6 regarding the inter prediction of integer precision.
  • the integer precision MC predicted value generation unit 12A will be described in detail below with reference to FIG.
  • FIG. 7 is a block diagram of the integer precision MC predicted value generation unit 12A.
  • the integer accuracy MC predicted value generation unit 12 ⁇ / b> A includes a prior MC predicted value calculation unit 13, an error minimization filter coefficient calculation unit 14, and a filter processing unit 15.
  • the prior MC prediction value calculation unit 13 receives the input image SIG1 and the locally decoded image SIG17.
  • the prior MC prediction value calculation unit 13 generates a prediction value by inter prediction based on integer accuracy MC using the input image SIG1 and the local decoded image SIG17, and outputs the prediction value as the prior inter prediction value SIG22.
  • the control information SIG6 related to the inter prediction is output.
  • the error minimizing filter coefficient calculation unit 14 receives the input image SIG1 and the prior inter prediction value SIG22.
  • the error minimizing filter coefficient calculation unit 14 calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-inter prediction value SIG22, and outputs the interpolation filter coefficient SIG21.
  • the error based on the input image SIG1 and the pre-intra prediction value SIG18 is a prediction error or a coding error.
  • the prediction error is a difference between the input image SIG1 and the prior inter prediction value SIG22 (an error generated by inter prediction).
  • the error minimization filter coefficient calculation unit 14 calculates an interpolation filter coefficient that minimizes the difference between the input image SIG1 and the pre-inter prediction value SIG22.
  • a method for calculating the interpolation filter coefficient for example, a calculation method based on the Wiener filter method can be used.
  • the coding error is an error obtained by combining the above-described prediction error and the quantization error generated in the quantization process.
  • the error minimizing filter coefficient calculation unit 14 first obtains a difference between the input image SIG1 and the prior inter prediction value SIG22. Next, after the same processing as the DCT / quantization unit 30 is performed on the obtained difference, the same processing as that of the inverse DCT / inverse quantization unit 50 is performed to obtain the above-described encoding error. Next, an interpolation filter coefficient that minimizes the obtained coding error is calculated.
  • a method for calculating the interpolation filter coefficient for example, a calculation method based on the Wiener filter method can be used.
  • the filter processing unit 15 receives the interpolation filter coefficient SIG21 and the pre-inter prediction value SIG22 as inputs.
  • the filter processing unit 15 performs an error minimizing filter process on the inter prediction value SIG22 using the interpolation filter coefficient SIG21, and outputs the predicted value after the filter process as an inter prediction value SIG7 based on integer precision MC. To do.
  • the intra predicted value generation unit 20A receives the input image SIG1 and the local decoded image SIG17 supplied from the local memory 60 as inputs. This intra prediction value generation unit 20A generates a prediction value based on intra prediction using the input image SIG1 and the local decoded image SIG17, outputs the prediction value as the intra prediction value SIG9, and outputs control information SIG10 related to intra prediction.
  • FIG. 8 is a block diagram of the video decoding device 100A.
  • the video decoding device 100A is different from the video decoding device 100 according to the first embodiment of the present invention shown in FIG. 4 in that an entropy decoding unit 110A is provided instead of the entropy decoding unit 110, and an inter prediction value generation unit.
  • the difference is that the inter prediction value generation unit 130 ⁇ / b> A is provided instead of 130, and the point that the intra prediction value generation unit 140 ⁇ / b> A is provided instead of the intra prediction value generation unit 140.
  • the same components as those in the moving picture decoding apparatus 100 are denoted by the same reference numerals, and the description thereof is omitted.
  • the entropy decoding unit 110A receives the encoded data SIG2.
  • the entropy decoding unit 110A analyzes the content described in the encoded data SIG2 according to the encoded data structure and performs entropy decoding, and performs the residual signal SIG51 and the interpolation filter coefficient SIG52 (interpolation filter coefficient SIG3 in the decimal precision MC). ), Control information SIG53, and interpolation filter coefficient SIG71 (interpolation filter coefficient SIG21) with integer precision MC are acquired and output.
  • the inter prediction value generation unit 130A includes a decimal accuracy MC prediction value generation unit 131 and an integer accuracy MC prediction value generation unit 132A.
  • the integer precision MC predicted value generation unit 132A includes control information SIG57 (control information SIG6 related to integer precision inter prediction) included in the control information SIG53, interpolation filter coefficient SIG71 in integer precision MC, The decoded image SIG64 supplied from the local memory 150 is used as an input.
  • This integer precision MC predicted value generation unit 132A first refers to the decoded image SIG64 based on the control information SIG57 related to integer precision inter prediction, and generates a predicted value based on the integer precision MC in the processing block.
  • the prediction value based on the generated integer accuracy MC is subjected to filter processing using the interpolation filter coefficient SIG71 in the integer accuracy MC, and the prediction value after the filter processing is set as an inter prediction value SIG60 based on the integer accuracy MC. Output.
  • the intra predicted value generation unit 140A receives as input the control information SIG58 related to intra prediction (control information SIG10 related to intra prediction) included in the control information SIG53 and the decoded image SIG64 supplied from the local memory 150.
  • the intra predicted value generation unit 140A refers to the decoded image SIG64 based on the control information SIG58 related to intra prediction, generates an intra predicted value in the processing block, and outputs the intra predicted value SIG61.
  • the moving image encoding apparatus 1A performs filtering processing on a frame before encoding, that is, a frame before encoding processing is performed by the filter processing unit 15. For this reason, the prediction performance that strongly affects the compression performance in predictive coding can be improved, and as a result, the compression performance can be improved.
  • the moving image encoding apparatus 1A calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-inter prediction value SIG22 by the error minimizing filter coefficient calculation unit 14, and the filter processing unit 15 calculates the error Filter processing is performed using the interpolation filter coefficient calculated by the minimizing filter coefficient calculation unit 14.
  • the moving picture decoding apparatus 100A uses the integer accuracy MC prediction value generation unit 132A to filter the interpolation filter coefficient SIG71 in integer accuracy MC, that is, the interpolation filter coefficient SIG21 calculated by the integer accuracy MC prediction value generation unit 12A. Process. For this reason, errors in motion compensation at integer pixel positions can be reduced, and as a result, compression performance can be further improved.
  • the moving picture encoding apparatus 1A applies a prediction error or a coding error as an error based on the input image SIG1 and the pre-inter prediction value SIG22 by the error minimizing filter coefficient calculation unit 14. For this reason, when applying prediction errors, it is not necessary to perform orthogonal transformation processing, quantization processing, inverse quantization processing, and inverse transformation processing, compared to the case of applying coding errors, so error minimization is achieved. The processing amount in the filter coefficient calculation unit 14 can be reduced. In addition, when coding errors are applied, compression performance is particularly improved in intra coding that generates a large amount of prediction residual code, high bit rate coding, etc., compared to the case where prediction errors are applied. Can be made.
  • the moving image encoding apparatus 1A can calculate the filter coefficient based on the Wiener filter method by the error minimizing filter coefficient calculation unit 14.
  • the processing of the moving image encoding device 1, 1A or the moving image decoding device 100, 100A of the present invention is recorded on a computer-readable non-transitory recording medium, and the program recorded on this recording medium is recorded as a moving image.
  • the present invention can be realized by causing the encoding apparatus 1 or 1A or the moving image decoding apparatus 100 or 100A to read and execute the apparatus.
  • a nonvolatile memory such as an EPROM or a flash memory, a magnetic disk such as a hard disk, a CD-ROM, or the like can be applied to the above-described recording medium. Further, reading and execution of the program recorded on the recording medium is performed by a processor provided in the moving image encoding device 1, 1A or the moving image decoding device 100, 100A.
  • the above-described program may be transmitted from the moving image encoding device 1 or 1A or the moving image decoding device 100 or 100A storing the program in a storage device or the like via a transmission medium or by a transmission wave in the transmission medium. May be transmitted to other computer systems.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above-described program may be for realizing a part of the above-described function. Furthermore, what can implement
  • the moving picture encoding apparatus 1 in the first embodiment described above is provided with the integer accuracy MC predicted value generation unit 12A in the second embodiment described above instead of the integer accuracy MC predicted value generation unit 12, and the first
  • the moving picture decoding apparatus 100 according to the first embodiment may be provided with the integer accuracy MC predicted value generation unit 132A according to the second embodiment described above, instead of the integer accuracy MC predicted value generation unit 132.

Abstract

A moving image coding device 1 is provided with a prior intra prediction value calculation unit 21, an error minimization filter coefficient calculation unit 22, and a filter processing unit 23. The prior intra prediction value calculation unit 21 generates a prediction value by intra prediction based on an intra prediction mode using an input image SIG1 and a locally decoded image SIG17, and outputs the prediction value as a prior intra prediction value SIG18. The error minimization filter coefficient calculation unit 22 calculates an interpolation filter coefficient for minimizing an error based on the input image SIG1 and the prior intra prediction value SIG18, and outputs the interpolation filter coefficient as an interpolation filter coefficient SIG8. The filter processing unit 23 performs error minimization filter processing on the prior intra prediction value SIG18 using the interpolation filter coefficient SIG8.

Description

動画像符号化装置、動画像復号装置、動画像処理システム、動画像符号化方法、動画像復号方法、およびプログラムMoving picture coding apparatus, moving picture decoding apparatus, moving picture processing system, moving picture coding method, moving picture decoding method, and program
 本発明は、動画像符号化装置、動画像復号装置、動画像処理システム、動画像符号化方法、動画像復号方法、およびプログラムに関する。 The present invention relates to a moving image encoding device, a moving image decoding device, a moving image processing system, a moving image encoding method, a moving image decoding method, and a program.
 非特許文献1に代表される映像圧縮に関する標準方式では、予測符号化方式が採用されており、予測誤差を周波数領域に変換した上で量子化する。このため、符号化された画像には、量子化の過程で量子化誤差(ノイズ)が発生してしまう。そこで、符号化誤差を直接的または間接的に抑制する手法が提案されている。 In a standard method related to video compression represented by Non-Patent Document 1, a predictive coding method is adopted, and a prediction error is quantized after being converted into a frequency domain. For this reason, quantization errors (noise) occur in the encoded image during the quantization process. Therefore, a method for directly or indirectly suppressing the coding error has been proposed.
 例えば、非特許文献1には、SAO(Sample Adaptive Offset)が提案されている。SAOは、符号化されたフレームに対して、局所領域ごとにオフセット値を制御するフィルタの一種である。 For example, Non-Patent Document 1 proposes SAO (Sample Adaptive Offset). SAO is a type of filter that controls an offset value for each local region with respect to an encoded frame.
 また、非特許文献2には、ALF(Adaptive Loop Filter)が提案されている。ALFでは、符号化されたフレームに対して、局所領域ごとに誤差を最小化するフィルタ処理が施される。 Also, Non-Patent Document 2 proposes ALF (Adaptive Loop Filter). In ALF, a filter process that minimizes an error for each local region is performed on an encoded frame.
 非特許文献1におけるSAOや非特許文献2におけるALFは、符号化されたフレームに対する技術、すなわち既に符号化処理が行われた後のフレームに対する技術であり、予測符号化における圧縮性能に強く影響する予測性能を向上させる技術ではない。このため、圧縮性能を十分には向上させることができなかった。 SAO in Non-Patent Document 1 and ALF in Non-Patent Document 2 are techniques for encoded frames, that is, techniques for frames that have already been encoded, and strongly affect the compression performance in predictive encoding. It is not a technology that improves prediction performance. For this reason, the compression performance could not be improved sufficiently.
 そこで、本発明は、上述の課題に鑑みてなされたものであり、圧縮性能を向上させることを目的とする。 Therefore, the present invention has been made in view of the above-described problems, and an object thereof is to improve the compression performance.
 本発明は、上記の課題を解決するために、以下の事項を提案している。 The present invention proposes the following items in order to solve the above problems.
 (1) 本発明は、符号化済みの局所復号画像(例えば、図2の局所復号画像SIG17に相当)を用いた予測符号化を許容する動画像符号化装置(例えば、図1の動画像符号化装置1に相当)であって、入力画像(例えば、図2の入力画像SIG1に相当)および前記局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する事前予測値生成手段(例えば、図3の事前イントラ予測値算出部21に相当)と、前記入力画像と、前記事前予測値生成手段により生成された予測値と、に基づく誤差(例えば、後述の予測誤差または符号化誤差に相当)を最小化するフィルタ係数を算出する誤差最小化フィルタ係数算出手段(例えば、図3の誤差最小化フィルタ係数算出部22に相当)と、前記事前予測値生成手段により生成された予測値に対して、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を用いてフィルタ処理を行うフィルタ処理手段(例えば、図3のフィルタ処理部23に相当)と、を備えることを特徴とする動画像符号化装置を提案している。 (1) The present invention is a video encoding device (for example, the video code shown in FIG. 1) that allows predictive encoding using an encoded local decoded image (eg, equivalent to the local decoded image SIG17 shown in FIG. 2). Between the inter prediction based on integer-precision motion compensation and the intra prediction using the input image (e.g., equivalent to the input image SIG1 in FIG. 2) and the local decoded image. Pre-prediction value generation means (for example, equivalent to the pre-intra prediction value calculation unit 21 in FIG. 3) that generates a prediction value by at least one of the above, the input image, and the prediction value generated by the prior prediction value generation means And error minimizing filter coefficient calculating means (for example, the error minimizing filter shown in FIG. 3) for calculating a filter coefficient for minimizing an error based on Filter processing means for performing filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means. (For example, corresponding to the filter processing unit 23 in FIG. 3) is proposed.
 この発明によれば、動画像符号化装置に、事前予測値生成手段、誤差最小化フィルタ係数算出手段、およびフィルタ処理手段を設けることとした。また、事前予測値生成手段により、入力画像および局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成することとした。また、誤差最小化フィルタ係数算出手段により、入力画像と、事前予測値生成手段により生成された予測値と、に基づく誤差を最小化するフィルタ係数を算出することとした。また、フィルタ処理手段により、事前予測値生成手段により生成された予測値に対して、誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を用いてフィルタ処理を行うこととした。 According to the present invention, the moving picture coding apparatus is provided with the pre-predicted value generating means, the error minimizing filter coefficient calculating means, and the filter processing means. In addition, the pre-prediction value generation means generates the prediction value by at least one of inter prediction based on integer precision motion compensation and intra prediction, using the input image and the local decoded image. Further, the error minimizing filter coefficient calculating means calculates the filter coefficient that minimizes the error based on the input image and the predicted value generated by the prior predicted value generating means. Further, the filter processing means performs the filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means.
 このため、符号化される前のフレームに対して、すなわち符号化処理が行われる前のフレームに対して、フィルタ処理を行うことになる。したがって、予測符号化における圧縮性能に強く影響する予測性能を向上させることができ、その結果、圧縮性能を向上させることができる。 For this reason, the filtering process is performed on the frame before being encoded, that is, on the frame before the encoding process is performed. Therefore, it is possible to improve the prediction performance that strongly affects the compression performance in predictive coding, and as a result, it is possible to improve the compression performance.
 また、入力画像と整数精度の動き補償に基づくインター予測による予測値とに基づく誤差と、入力画像とイントラ予測による予測値とに基づく誤差と、のうち少なくともいずれかを最小化するフィルタ係数が算出されることになる。このため、整数画素位置の動き補償やイントラ予測における誤差を低減することができるので、その結果、圧縮性能をさらに向上させることができる。 Also, a filter coefficient that minimizes at least one of an error based on the input image and a prediction value based on inter prediction based on integer-precision motion compensation and an error based on the prediction value based on the input image and intra prediction is calculated. Will be. As a result, errors in integer pixel position motion compensation and intra prediction can be reduced, and as a result, compression performance can be further improved.
 (2) 本発明は、(1)の動画像符号化装置について、前記誤差最小化フィルタ係数算出手段は、前記入力画像と、前記事前予測値生成手段により生成された予測値と、の差分である予測誤差と、前記予測誤差に対して、直交変換処理、量子化処理、逆量子化処理、および逆変換処理を行って得られた符号化誤差と、のうちいずれかを最小化するフィルタ係数を算出することを特徴とする動画像符号化装置を提案している。 (2) In the moving picture coding apparatus according to (1), the error minimizing filter coefficient calculation unit is a difference between the input image and the prediction value generated by the prior prediction value generation unit. A filter that minimizes any one of a prediction error and an encoding error obtained by performing orthogonal transform processing, quantization processing, inverse quantization processing, and inverse transform processing on the prediction error A moving picture coding apparatus characterized by calculating coefficients is proposed.
 この発明によれば、(1)の動画像符号化装置において、誤差最小化フィルタ係数算出手段により、予測誤差および符号化誤差のうちいずれかを最小化するフィルタ係数を算出することとした。このため、フィルタ処理手段によるフィルタ処理により、予測誤差または符号化誤差を最小化することができる。 According to the present invention, in the moving picture coding apparatus of (1), the filter coefficient for minimizing either the prediction error or the coding error is calculated by the error minimizing filter coefficient calculation means. For this reason, the prediction error or the coding error can be minimized by the filter processing by the filter processing means.
 なお、予測誤差を最小化する場合には、符号化誤差を最小化する場合と比べて、直交変換処理、量子化処理、逆量子化処理、および逆変換処理を行う必要がないので、誤差最小化フィルタ係数算出手段における処理量を低減させることができる。 Note that when the prediction error is minimized, it is not necessary to perform orthogonal transformation processing, quantization processing, inverse quantization processing, and inverse transformation processing as compared with the case of minimizing the coding error. It is possible to reduce the amount of processing in the calculation filter coefficient calculation means.
 一方、符号化誤差を最小化する場合には、予測誤差だけでなく量子化誤差も考慮した上で、フィルタ係数を求めることができる。このため、予測残差の符号量の抑制と、復号画像における直接的な誤差の抑制と、を同時に実現することができる。したがって、予測誤差を最小化する場合と比べて、多くの予測残差符号量が発生するイントラ符号化や、高ビットレート符号化などにおいて、圧縮性能を特に向上させることができる。 On the other hand, when the coding error is minimized, the filter coefficient can be obtained in consideration of not only the prediction error but also the quantization error. For this reason, it is possible to simultaneously realize the suppression of the code amount of the prediction residual and the suppression of the direct error in the decoded image. Therefore, compared with the case where the prediction error is minimized, the compression performance can be particularly improved in intra coding in which a large amount of prediction residual code is generated, high bit rate coding, or the like.
 (3) 本発明は、(1)または(2)の動画像符号化装置について、前記誤差最小化フィルタ係数算出手段は、前記フィルタ係数を、Wiener filter法に基づいて算出することを特徴とする動画像符号化装置を提案している。 (3) The present invention relates to the moving picture coding apparatus according to (1) or (2), wherein the error minimizing filter coefficient calculating means calculates the filter coefficient based on a Wiener filter method. A video encoding device is proposed.
 この発明によれば、(1)または(2)の動画像符号化装置において、Wiener filter法に基づいてフィルタ係数を算出することができる。 According to the present invention, the filter coefficient can be calculated based on the Wiener filter method in the moving picture coding apparatus of (1) or (2).
 (4) 本発明は、(1)から(3)のいずれかの動画像符号化装置について、前記事前予測値生成手段は、前記入力画像および前記局所復号画像を用いて、イントラ予測により予測値を生成し、前記誤差最小化フィルタ係数算出手段は、前記フィルタ係数を、イントラ予測モードに応じて算出することを特徴とする動画像符号化装置を提案している。 (4) The present invention relates to the moving picture encoding apparatus according to any one of (1) to (3), wherein the prior prediction value generation means performs prediction by intra prediction using the input image and the local decoded image. A value is generated, and the error minimizing filter coefficient calculation means proposes a moving picture coding apparatus characterized in that the filter coefficient is calculated according to an intra prediction mode.
 ここで、H.264やH.265に代表される映像圧縮に関する標準方式では、イントラ予測において、イントラ予測モードに応じたイントラ予測値が生成される。このため、イントラ予測値は、イントラ予測モードの影響を受けやすい。 Where H. H.264 and H.264. In the standard method related to video compression represented by H.265, an intra prediction value corresponding to the intra prediction mode is generated in the intra prediction. For this reason, the intra prediction value is easily affected by the intra prediction mode.
 そこで、この発明によれば、(1)から(3)のいずれかの動画像符号化装置において、事前予測値生成手段により、イントラ予測モードに応じてフィルタ係数を算出することとした。このため、全てのイントラ予測モードに共通する1つのフィルタ係数を算出する場合と比べて、予測誤差を小さくしたり、符号化性能を改善したりすることができる。 Therefore, according to the present invention, in any one of the video encoding apparatuses (1) to (3), the filter coefficient is calculated according to the intra prediction mode by the prior prediction value generation means. For this reason, compared with the case where one filter coefficient common to all intra prediction modes is calculated, a prediction error can be made small or encoding performance can be improved.
 (5) 本発明は、(4)の動画像符号化装置について、前記誤差最小化フィルタ係数算出手段は、イントラ予測モードをm個(ただし、mは、イントラ予測モードの種類数よりも小さく、ゼロを含まない自然数)のグループに分類し、分類したグループごとに前記フィルタ係数を算出することを特徴とする動画像符号化装置を提案している。 (5) The present invention relates to the moving picture coding apparatus according to (4), wherein the error minimizing filter coefficient calculation means includes m intra prediction modes (where m is smaller than the number of types of intra prediction modes, A moving picture coding apparatus has been proposed in which a filter coefficient is calculated for each classified group.
 ここで、イントラ予測モードのそれぞれに応じてフィルタ係数を算出する場合には、フィルタ係数に関する情報量が膨大になるので、その結果、符号化性能が低下してしまうおそれがある。 Here, when the filter coefficient is calculated according to each of the intra prediction modes, the amount of information regarding the filter coefficient becomes enormous, and as a result, the encoding performance may be degraded.
 そこで、この発明によれば、(4)の動画像符号化装置において、誤差最小化フィルタ係数算出手段により、イントラ予測モードをm個のグループに分類し、分類したグループごとにフィルタ係数を算出することとした。このため、全てのイントラ予測モードに共通する1つのフィルタ係数を算出する場合と比べて、予測誤差を小さくしつつ、フィルタ係数に関する情報量の増加を抑制して、符号化性能を改善することができる。 Therefore, according to the present invention, in the moving picture encoding apparatus of (4), the intra prediction mode is classified into m groups by the error minimizing filter coefficient calculation means, and the filter coefficient is calculated for each classified group. It was decided. For this reason, compared with the case where one filter coefficient common to all intra prediction modes is calculated, it is possible to improve the encoding performance by suppressing an increase in the amount of information regarding the filter coefficient while reducing the prediction error. it can.
 (6) 本発明は、復号済み画像(例えば、図4のデコード画像SIG64に相当)を用いた予測復号を許容する動画像復号装置(例えば、図1の動画像復号装置100に相当)であって、符号化データ(例えば、図4の符号化データSIG2に相当)をエントロピー復号してフィルタ係数(例えば、図4のイントラ予測における補間フィルタ係数SIG54に相当)を取得するエントロピー復号手段(例えば、図4のエントロピー復号部110に相当)と、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより前記復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記エントロピー復号手段により取得されたフィルタ係数を用いてフィルタ処理を行うフィルタ処理手段(例えば、図4のイントラ予測値生成部140に相当)と、を備えることを特徴とする動画像復号装置を提案している。 (6) The present invention is a video decoding device (for example, equivalent to the video decoding device 100 in FIG. 1) that allows predictive decoding using a decoded image (eg, equivalent to the decoded image SIG64 in FIG. 4). Entropy decoding means (for example, corresponding to the interpolation filter coefficient SIG54 in the intra prediction of FIG. 4) by entropy decoding the encoded data (for example, corresponding to the encoded data SIG2 of FIG. 4) (for example, 4 corresponding to the entropy decoding unit 110 in FIG. 4), inter prediction based on integer-precision motion compensation, and intra prediction, and generating a prediction value using the decoded image, and generating the prediction value Filter processing means (for example, performing filter processing using the filter coefficients obtained by the entropy decoding means) Proposes a moving picture decoding apparatus, characterized in that it comprises a corresponding) to the intra prediction value generation unit 140 of FIG. 4, a.
 この発明によれば、動画像復号装置に、エントロピー復号手段およびフィルタ処理手段を設けることとした。また、エントロピー復号手段により、符号化データをエントロピー復号してフィルタ係数を取得することとした。また、フィルタ処理手段により、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより復号済み画像を用いて予測値を生成し、生成した予測値に対して、エントロピー復号手段により取得されたフィルタ係数を用いてフィルタ処理を行うこととした。 According to the present invention, the moving picture decoding apparatus is provided with entropy decoding means and filter processing means. In addition, the entropy decoding means entropy decodes the encoded data to obtain filter coefficients. Further, the filter processing unit generates a prediction value using the decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction, and entropy decoding is performed on the generated prediction value. The filter processing is performed using the filter coefficient acquired by the means.
 このため、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより生成した予測値に対して、符号化データを生成する際に用いられたフィルタ係数を用いて、フィルタ処理を行うことができる。したがって、整数画素位置の動き補償やイントラ予測における誤差を低減することができるので、その結果、圧縮性能を向上させることができる。 For this reason, the filter coefficient used when generating the encoded data is used for the prediction value generated by at least one of inter prediction based on integer precision motion compensation and intra prediction. Processing can be performed. Therefore, errors in motion compensation at integer pixel positions and intra prediction can be reduced, and as a result, compression performance can be improved.
 (7) 本発明は、(6)の動画像復号装置について、前記エントロピー復号手段は、符号化データをエントロピー復号して、イントラ予測モードに応じて算出されたフィルタ係数を取得し、前記フィルタ処理手段は、前記復号済み画像を用いて、イントラ予測により予測値を生成することを特徴とする動画像復号装置を提案している。 (7) In the video decoding device according to (6), the entropy decoding unit performs entropy decoding on the encoded data, obtains a filter coefficient calculated according to an intra prediction mode, and performs the filtering process The means proposes a moving picture decoding apparatus characterized in that a predicted value is generated by intra prediction using the decoded picture.
 ここで、H.264やH.265に代表される映像圧縮に関する標準方式では、イントラ予測において、イントラ予測モードに応じたイントラ予測値が生成される。このため、イントラ予測値は、イントラ予測モードの影響を受けやすい。 Where H. H.264 and H.264. In the standard method related to video compression represented by H.265, an intra prediction value corresponding to the intra prediction mode is generated in the intra prediction. For this reason, the intra prediction value is easily affected by the intra prediction mode.
 そこで、この発明によれば、(6)の動画像復号装置において、エントロピー復号手段により、符号化データをエントロピー復号して、イントラ予測モードに応じて算出されたフィルタ係数を取得することとした。また、フィルタ処理手段により、復号済み画像を用いて、イントラ予測により予測値を生成することとした。このため、イントラ予測モードに応じて算出されたフィルタ係数を用いてフィルタ処理を行うことができるので、全てのイントラ予測モードに共通する1つのフィルタ係数を用いてフィルタ処理を行う場合と比べて、予測誤差を小さくしたり、符号化性能を改善したりすることができる。 Therefore, according to the present invention, in the moving picture decoding apparatus of (6), the encoded data is entropy decoded by the entropy decoding means, and the filter coefficient calculated according to the intra prediction mode is obtained. In addition, a prediction value is generated by intra prediction using the decoded image by the filter processing means. For this reason, since it is possible to perform the filter processing using the filter coefficient calculated according to the intra prediction mode, compared to the case of performing the filter processing using one filter coefficient common to all intra prediction modes, The prediction error can be reduced and the encoding performance can be improved.
 (8) 本発明は、(7)の動画像復号装置について、前記イントラ予測モードは、予めm個(ただし、mは、イントラ予測モードの種類数よりも小さく、ゼロを含まない自然数)のグループに分類され、前記フィルタ係数は、分類されているグループごとに算出されており、前記エントロピー復号手段は、符号化データをエントロピー復号して、前記グループごとに算出されたフィルタ係数を取得することを特徴とする動画像復号装置を提案している。 (8) The present invention relates to the moving picture decoding apparatus according to (7), wherein the number of intra prediction modes is m in advance (where m is a natural number that is smaller than the number of types of intra prediction modes and does not include zero). The filter coefficient is calculated for each group that is classified, and the entropy decoding means performs entropy decoding on the encoded data to obtain the filter coefficient calculated for each group. A moving image decoding apparatus having a feature is proposed.
 ここで、イントラ予測モードのそれぞれに応じてフィルタ係数が算出されている場合には、フィルタ係数に関する情報量が膨大になるので、その結果、符号化性能が低下してしまうおそれがある。 Here, when the filter coefficient is calculated according to each intra prediction mode, the amount of information regarding the filter coefficient becomes enormous, and as a result, the encoding performance may be degraded.
 そこで、この発明によれば、(7)の動画像復号装置において、イントラ予測モードは、予めm個のグループに分類され、フィルタ係数は、分類されているグループごとに算出されており、エントロピー復号手段は、符号化データをエントロピー復号して、グループごとに算出されたフィルタ係数を取得することとした。このため、全てのイントラ予測モードに共通する1つのフィルタ係数を用いてフィルタ処理を行う場合と比べて、予測誤差を小さくしつつ、フィルタ係数に関する情報量の増加を抑制して、符号化性能を改善することができる。 Therefore, according to the present invention, in the moving picture decoding apparatus of (7), the intra prediction modes are classified into m groups in advance, and the filter coefficients are calculated for each classified group, and entropy decoding is performed. The means entropy-decodes the encoded data and obtains a filter coefficient calculated for each group. For this reason, compared with the case where filter processing is performed using one filter coefficient common to all intra prediction modes, an increase in the amount of information regarding the filter coefficient is suppressed while reducing the prediction error, and the encoding performance is reduced. Can be improved.
 (9) 本発明は、動画像を符号化して符号化データ(例えば、図2の符号化データSIG2に相当)を生成する動画像符号化装置(例えば、図1の動画像符号化装置1に相当)と、当該動画像符号化装置により生成された符号化データを復号する動画像復号装置(例えば、図1の動画像復号装置100に相当)と、を備える動画像処理システム(例えば、図1の動画像処理システムAAに相当)であって、前記動画像符号化装置は、入力画像(例えば、図2の入力画像SIG1に相当)および局所復号画像(例えば、図2の局所復号画像SIG17に相当)を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する事前予測値生成手段(例えば、図3の事前イントラ予測値算出部21に相当)と、前記入力画像と、前記事前予測値生成手段により生成された予測値と、に基づく誤差(例えば、後述の予測誤差または符号化誤差に相当)を最小化するフィルタ係数を算出する誤差最小化フィルタ係数算出手段(例えば、図3の誤差最小化フィルタ係数算出部22に相当)と、前記事前予測値生成手段により生成された予測値に対して、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を用いてフィルタ処理を行う符号化側フィルタ処理手段(例えば、図3のフィルタ処理部23に相当)と、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数をエントロピー符号化して、符号化データを生成するエントロピー符号化手段(例えば、図2のエントロピー符号化部40に相当)と、を備え、前記動画像復号装置は、前記エントロピー符号化手段により生成された符号化データをエントロピー復号して、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を取得するエントロピー復号手段(例えば、図4のエントロピー復号部110に相当)と、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち前記事前予測値生成手段により予測値を生成する際に用いられたものにより復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記エントロピー復号手段により取得されたフィルタ係数を用いてフィルタ処理を行う復号側フィルタ処理手段(例えば、図4のイントラ予測値生成部140に相当)と、を備えることを特徴とする動画像処理システムを提案している。 (9) The present invention encodes a moving image to generate encoded data (for example, equivalent to the encoded data SIG2 in FIG. 2) (for example, the moving image encoding device 1 in FIG. 1). And a moving picture decoding apparatus (for example, equivalent to the moving picture decoding apparatus 100 in FIG. 1) that decodes encoded data generated by the moving picture encoding apparatus. 1 is equivalent to the moving image processing system AA), and the moving image encoding apparatus includes an input image (for example, corresponding to the input image SIG1 in FIG. 2) and a local decoded image (for example, the local decoded image SIG17 in FIG. 2). 3), a pre-prediction value generation unit (for example, the pre-intra prediction unit of FIG. 3) that generates a prediction value by at least one of inter prediction based on integer-precision motion compensation and intra prediction. An error (e.g., corresponding to a prediction error or an encoding error described later) based on the input image and the prediction value generated by the prior prediction value generation means. With respect to the prediction value generated by the error minimization filter coefficient calculation means (for example, equivalent to the error minimization filter coefficient calculation unit 22 in FIG. 3) for calculating the filter coefficient, and the prediction value generated by the prior prediction value generation means, the error An encoding-side filter processing means (for example, corresponding to the filter processing unit 23 in FIG. 3) that performs filter processing using the filter coefficient calculated by the minimizing filter coefficient calculating means, and the error minimizing filter coefficient calculating means. Entropy encoding means for generating encoded data by entropy encoding the filtered filter coefficients (for example, equivalent to the entropy encoding unit 40 in FIG. 2) And the moving picture decoding apparatus entropy-decodes the encoded data generated by the entropy encoding means and obtains the filter coefficient calculated by the error minimizing filter coefficient calculation means ( For example, it is equivalent to the entropy decoding unit 110 in FIG. 4), inter prediction based on integer-precision motion compensation, and intra prediction, which is used when the predicted value is generated by the prior predicted value generation unit. 4 generates a predicted value using the decoded image, and performs a filtering process on the generated predicted value using the filter coefficient acquired by the entropy decoding unit (for example, the intra filter in FIG. 4). And a predicted value generation unit 140).
 この発明によれば、動画像処理システムに、動画像符号化装置および動画像復号装置を設け、動画像符号化装置に、事前予測値生成手段、誤差最小化フィルタ係数算出手段、符号化側フィルタ処理手段、およびエントロピー符号化手段を設けることとした。また、事前予測値生成手段により、入力画像および局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成することとした。また、誤差最小化フィルタ係数算出手段により、入力画像と、事前予測値生成手段により生成された予測値と、に基づく誤差を最小化するフィルタ係数を算出することとした。また、符号化側フィルタ処理手段により、事前予測値生成手段により生成された予測値に対して、誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を用いてフィルタ処理を行うこととした。また、エントロピー符号化手段により、誤差最小化フィルタ係数算出手段により算出されたフィルタ係数をエントロピー符号化して、符号化データを生成することとした。また、動画像復号装置に、エントロピー復号手段および復号側フィルタ処理手段を設けることとした。また、エントロピー復号手段により、エントロピー符号化手段により生成された符号化データをエントロピー復号して、誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を取得することとした。また、復号側フィルタ処理手段により、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち事前予測値生成手段により予測値を生成する際に用いられたものにより復号済み画像を用いて予測値を生成し、生成した予測値に対して、エントロピー復号手段により取得されたフィルタ係数を用いてフィルタ処理を行うこととした。これによれば、上述した効果と同様の効果を奏することができる。 According to the present invention, the moving image processing system is provided with a moving image encoding device and a moving image decoding device, and the moving image encoding device includes pre-predicted value generation means, error minimizing filter coefficient calculation means, and encoding side filter. Processing means and entropy encoding means are provided. In addition, the pre-prediction value generation means generates the prediction value by at least one of inter prediction based on integer precision motion compensation and intra prediction, using the input image and the local decoded image. Further, the error minimizing filter coefficient calculating means calculates the filter coefficient that minimizes the error based on the input image and the predicted value generated by the prior predicted value generating means. Further, the encoding-side filter processing means performs filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means. Further, the entropy encoding unit entropy encodes the filter coefficient calculated by the error minimizing filter coefficient calculation unit to generate encoded data. The moving picture decoding apparatus is provided with entropy decoding means and decoding side filter processing means. The entropy decoding unit entropy-decodes the encoded data generated by the entropy encoding unit, and obtains the filter coefficient calculated by the error minimizing filter coefficient calculation unit. Further, the decoding-side filter processing means uses the decoded image by the one used when the prediction value is generated by the prior prediction value generation means among inter prediction based on integer-precision motion compensation and intra prediction. A prediction value is generated, and filter processing is performed on the generated prediction value using the filter coefficient acquired by the entropy decoding unit. According to this, an effect similar to the effect mentioned above can be produced.
 (10) 本発明は、事前予測値生成手段(例えば、図3の事前イントラ予測値算出部21に相当)、誤差最小化フィルタ係数算出手段(例えば、図3の誤差最小化フィルタ係数算出部22に相当)、およびフィルタ処理手段(例えば、図3のフィルタ処理部23に相当)、を備え、符号化済みの局所復号画像(例えば、図2の局所復号画像SIG17に相当)を用いた予測符号化を許容する動画像符号化装置(例えば、図1の動画像符号化装置1に相当)における動画像符号化方法であって、前記事前予測値生成手段が、入力画像(例えば、図2の入力画像SIG1に相当)および前記局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する第1のステップと、前記誤差最小化フィルタ係数算出手段が、前記入力画像と、前記第1のステップにより生成された予測値と、に基づく誤差(例えば、後述の予測誤差または符号化誤差に相当)を最小化するフィルタ係数を算出する第2のステップと、前記フィルタ処理手段が、前記第1のステップにより生成された予測値に対して、前記第2のステップにより算出されたフィルタ係数を用いてフィルタ処理を行う第3のステップと、を備えることを特徴とする動画像符号化方法を提案している。 (10) The present invention is based on prior prediction value generation means (for example, equivalent to the prior intra prediction value calculation section 21 in FIG. 3) and error minimization filter coefficient calculation means (for example, error minimization filter coefficient calculation section 22 in FIG. 3). ) And filter processing means (for example, equivalent to the filter processing unit 23 in FIG. 3), and a prediction code using an encoded local decoded image (for example, equivalent to the local decoded image SIG17 in FIG. 2) In the moving picture coding method in the moving picture coding apparatus (for example, equivalent to the moving picture coding apparatus 1 in FIG. 1) that permits the conversion, the prior prediction value generation means is configured to input the input picture (for example, FIG. 2). 1) and a local decoded image, and a first step for generating a prediction value by at least one of inter prediction based on integer-precision motion compensation and intra prediction. And the error minimizing filter coefficient calculation means minimizes an error (e.g., corresponding to a prediction error or an encoding error described later) based on the input image and the prediction value generated by the first step. A second step of calculating a filter coefficient to be converted, and the filter processing means performs a filtering process on the prediction value generated in the first step using the filter coefficient calculated in the second step And a third step of performing a video encoding method.
 この発明によれば、入力画像および局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成することとした。また、入力画像と、上述の予測値と、に基づく誤差を最小化するフィルタ係数を算出し、上述の予測値に対して、算出したフィルタ係数を用いてフィルタ処理を行うこととした。これによれば、上述した効果と同様の効果を奏することができる。 According to the present invention, a predicted value is generated by at least one of inter prediction based on integer precision motion compensation and intra prediction using an input image and a locally decoded image. In addition, a filter coefficient that minimizes an error based on the input image and the predicted value described above is calculated, and the filter process is performed on the predicted value using the calculated filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
 (11) 本発明は、エントロピー復号手段(例えば、図4のエントロピー復号部110に相当)およびフィルタ処理手段(例えば、図4のイントラ予測値生成部140に相当)を備え、復号済み画像(例えば、図4のデコード画像SIG64に相当)を用いた予測復号を許容する動画像復号装置(例えば、図1の動画像復号装置100に相当)における動画像復号方法であって、前記エントロピー復号手段が、符号化データ(例えば、図4の符号化データSIG2に相当)をエントロピー復号してフィルタ係数(例えば、図4のイントラ予測における補間フィルタ係数SIG54に相当)を取得する第1のステップと、前記フィルタ処理手段が、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより前記復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記第1のステップにより取得されたフィルタ係数を用いてフィルタ処理を行う第2のステップと、を備えることを特徴とする動画像復号方法を提案している。 (11) The present invention includes entropy decoding means (for example, equivalent to the entropy decoding unit 110 in FIG. 4) and filter processing means (for example, equivalent to the intra-predicted value generation unit 140 in FIG. 4). 4 is a moving picture decoding method in a moving picture decoding apparatus (for example, equivalent to the moving picture decoding apparatus 100 in FIG. 1) that allows predictive decoding using the decoded picture SIG64 in FIG. A first step of entropy decoding encoded data (for example, equivalent to the encoded data SIG2 in FIG. 4) to obtain filter coefficients (for example, equivalent to the interpolation filter coefficient SIG54 in the intra prediction in FIG. 4); The filter processing means is at least one of inter prediction based on integer precision motion compensation and intra prediction. A second step of generating a prediction value using the decoded image, and performing a filtering process on the generated prediction value using the filter coefficient acquired in the first step. A moving image decoding method is proposed.
 この発明によれば、符号化データをエントロピー復号してフィルタ係数を取得し、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより復号済み画像を用いて予測値を生成し、生成した予測値に対して、取得したフィルタ係数を用いてフィルタ処理を行うこととした。これによれば、上述した効果と同様の効果を奏することができる。 According to the present invention, encoded data is entropy decoded to obtain a filter coefficient, and a prediction value is obtained using a decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction. The generated prediction value is subjected to filter processing using the acquired filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
 (12) 本発明は、事前予測値生成手段(例えば、図3の事前イントラ予測値算出部21に相当)、誤差最小化フィルタ係数算出手段(例えば、図3の誤差最小化フィルタ係数算出部22に相当)、およびフィルタ処理手段(例えば、図3のフィルタ処理部23に相当)、を備え、符号化済みの局所復号画像(例えば、図2の局所復号画像SIG17に相当)を用いた予測符号化を許容する動画像符号化装置(例えば、図1の動画像符号化装置1に相当)における動画像符号化方法を、コンピュータに実行させるためのプログラムであって、前記事前予測値生成手段が、入力画像(例えば、図2の入力画像SIG1に相当)および前記局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する第1のステップと、前記誤差最小化フィルタ係数算出手段が、前記入力画像と、前記第1のステップにより生成された予測値と、に基づく誤差(例えば、後述の予測誤差または符号化誤差に相当)を最小化するフィルタ係数を算出する第2のステップと、前記フィルタ処理手段が、前記第1のステップにより生成された予測値に対して、前記第2のステップにより算出されたフィルタ係数を用いてフィルタ処理を行う第3のステップと、をコンピュータに実行させるためのプログラムを提案している。 (12) The present invention is based on prior prediction value generation means (for example, equivalent to the prior intra prediction value calculation section 21 in FIG. 3) and error minimization filter coefficient calculation means (for example, error minimization filter coefficient calculation section 22 in FIG. 3). ) And filter processing means (for example, equivalent to the filter processing unit 23 in FIG. 3), and a prediction code using an encoded local decoded image (for example, equivalent to the local decoded image SIG17 in FIG. 2) A program for causing a computer to execute a moving picture coding method in a moving picture coding apparatus (for example, equivalent to the moving picture coding apparatus 1 in FIG. 1) that permits the encoding, the prior prediction value generation means However, using an input image (e.g., equivalent to the input image SIG1 in FIG. 2) and the local decoded image, the number of inter predictions based on integer-precision motion compensation and intra predictions is small. In either case, the first step of generating a predicted value, and the error minimizing filter coefficient calculation means calculates an error based on the input image and the predicted value generated by the first step (for example, described later). A second step of calculating a filter coefficient that minimizes a prediction error or a coding error of the second step, and the filter processing means for the predicted value generated by the first step A program for causing a computer to execute a third step of performing filter processing using the filter coefficient calculated in the step is proposed.
 この発明によれば、コンピュータを用いてプログラムを実行することで、入力画像および局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成することとした。また、入力画像と、上述の予測値と、に基づく誤差を最小化するフィルタ係数を算出し、上述の予測値に対して、算出したフィルタ係数を用いてフィルタ処理を行うこととした。これによれば、上述した効果と同様の効果を奏することができる。 According to the present invention, by executing a program using a computer, a prediction value is determined by at least one of inter prediction based on integer-precision motion compensation and intra prediction using an input image and a locally decoded image. It was decided to generate. In addition, a filter coefficient that minimizes an error based on the input image and the predicted value described above is calculated, and the filter process is performed on the predicted value using the calculated filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
 (13) 本発明は、エントロピー復号手段(例えば、図4のエントロピー復号部110に相当)およびフィルタ処理手段(例えば、図4のイントラ予測値生成部140に相当)を備え、復号済み画像(例えば、図4のデコード画像SIG64に相当)を用いた予測復号を許容する動画像復号装置(例えば、図1の動画像復号装置100に相当)における動画像復号方法を、コンピュータに実行させるためのプログラムであって、前記エントロピー復号手段が、符号化データ(例えば、図4の符号化データSIG2に相当)をエントロピー復号してフィルタ係数(例えば、図4のイントラ予測における補間フィルタ係数SIG54に相当)を取得する第1のステップと、前記フィルタ処理手段が、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより前記復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記第1のステップにより取得されたフィルタ係数を用いてフィルタ処理を行う第2のステップと、をコンピュータに実行させるためのプログラムを提案している。 (13) The present invention includes an entropy decoding unit (for example, equivalent to the entropy decoding unit 110 in FIG. 4) and a filter processing unit (for example, equivalent to the intra prediction value generation unit 140 in FIG. 4), and a decoded image (for example, , A program for causing a computer to execute a moving picture decoding method in a moving picture decoding apparatus (for example, equivalent to the moving picture decoding apparatus 100 in FIG. 1) that allows predictive decoding using the decoded picture SIG64 in FIG. The entropy decoding means entropy-decodes the encoded data (for example, equivalent to the encoded data SIG2 in FIG. 4) to obtain filter coefficients (for example, equivalent to the interpolation filter coefficient SIG54 in the intra prediction in FIG. 4). A first step of obtaining and inter-prediction wherein the filtering means is based on integer precision motion compensation In addition, the prediction value is generated using the decoded image by at least one of intra prediction and intra-prediction, and the generated prediction value is subjected to filter processing using the filter coefficient acquired in the first step. A program for causing a computer to execute the second step is proposed.
 この発明によれば、コンピュータを用いてプログラムを実行することで、符号化データをエントロピー復号してフィルタ係数を取得し、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより復号済み画像を用いて予測値を生成し、生成した予測値に対して、取得したフィルタ係数を用いてフィルタ処理を行うこととした。これによれば、上述した効果と同様の効果を奏することができる。 According to the present invention, by executing a program using a computer, the encoded data is entropy-decoded to obtain filter coefficients, and at least one of inter prediction based on integer precision motion compensation and intra prediction is used. Thus, a predicted value is generated using the decoded image, and a filter process is performed on the generated predicted value using the acquired filter coefficient. According to this, an effect similar to the effect mentioned above can be produced.
 本発明によれば、圧縮性能を向上させることができる。 According to the present invention, the compression performance can be improved.
本発明の第1実施形態に係る動画像処理システムのブロック図である。1 is a block diagram of a moving image processing system according to a first embodiment of the present invention. 本発明の第1実施形態に係る動画像符号化装置のブロック図である。1 is a block diagram of a video encoding apparatus according to a first embodiment of the present invention. 本発明の第1実施形態に係る動画像符号化装置が備えるイントラ予測値生成部のブロック図である。It is a block diagram of the intra estimated value production | generation part with which the moving image encoder which concerns on 1st Embodiment of this invention is provided. 本発明の第1実施形態に係る動画像復号装置のブロック図である。It is a block diagram of the moving image decoding apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る動画像処理システムのブロック図である。It is a block diagram of the moving image processing system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る動画像符号化装置のブロック図である。It is a block diagram of the moving image encoder which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る動画像符号化装置が備える整数精度MC予測値生成部のブロック図である。It is a block diagram of the integer precision MC prediction value production | generation part with which the moving image encoder which concerns on 2nd Embodiment of this invention is provided. 本発明の第2実施形態に係る動画像復号装置のブロック図である。It is a block diagram of the moving image decoding apparatus which concerns on 2nd Embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施形態における構成要素は適宜、既存の構成要素などとの置き換えが可能であり、また、他の既存の構成要素との組み合せを含む様々なバリエーションが可能である。したがって、以下の実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the constituent elements in the following embodiments can be appropriately replaced with existing constituent elements, and various variations including combinations with other existing constituent elements are possible. Accordingly, the description of the following embodiments does not limit the contents of the invention described in the claims.
 <第1実施形態>
 図1は、本発明の第1実施形態に係る動画像処理システムAAのブロック図である。動画像処理システムAAは、動画像を符号化して符号化データ(図2、4の符号化データSIG2参照)を生成する動画像符号化装置1と、動画像符号化装置1により生成された符号化データを復号する動画像復号装置100と、を備える。これら動画像符号化装置1と動画像復号装置100とは、上述の符号化データを、例えば伝送路を介して送受信する。
<First Embodiment>
FIG. 1 is a block diagram of a moving image processing system AA according to the first embodiment of the present invention. The moving image processing system AA encodes a moving image to generate encoded data (see encoded data SIG2 in FIGS. 2 and 4), and a code generated by the moving image encoding device 1. And a moving picture decoding apparatus 100 for decoding the digitized data. These moving image encoding apparatus 1 and moving image decoding apparatus 100 transmit and receive the above-described encoded data via a transmission path, for example.
 [動画像符号化装置1の構成および動作]
 図2は、動画像符号化装置1のブロック図である。動画像符号化装置1は、インター予測値生成部10、イントラ予測値生成部20、DCT/量子化部30、エントロピー符号化部40、逆DCT/逆量子化部50、およびローカルメモリ60を備える。
[Configuration and Operation of Video Encoding Device 1]
FIG. 2 is a block diagram of the moving picture encoding apparatus 1. The moving image encoding apparatus 1 includes an inter prediction value generation unit 10, an intra prediction value generation unit 20, a DCT / quantization unit 30, an entropy encoding unit 40, an inverse DCT / inverse quantization unit 50, and a local memory 60. .
 インター予測値生成部10は、小数精度MC予測値生成部11および整数精度MC予測値生成部12を備える。 The inter prediction value generation unit 10 includes a decimal accuracy MC prediction value generation unit 11 and an integer accuracy MC prediction value generation unit 12.
 小数精度MC予測値生成部11は、入力画像SIG1と、ローカルメモリ60から供給される後述の局所復号画像SIG17と、を入力とする。この小数精度MC予測値生成部11は、まず、入力画像SIG1および局所復号画像SIG17を用いて、小数精度動き補償(MC:Motion Compensation)による予測誤差を最小化する補間フィルタ係数を適応的に算出し、補間フィルタ係数SIG3として出力するとともに、小数精度のインター予測に関する制御情報(小数精度の動きベクトルなどを含む)SIG4を出力する。補間フィルタ係数の算出方法としては、例えば、Wiener filter法に基づく算出方法を用いることができる。小数精度MC予測値生成部11は、次に、算出した補間フィルタ係数を用いて、小数精度MCに基づく予測値を生成し、小数精度MCに基づくインター予測値SIG5として出力する。 The decimal precision MC predicted value generation unit 11 receives an input image SIG1 and a later-described local decoded image SIG17 supplied from the local memory 60 as inputs. First, the decimal precision MC prediction value generation unit 11 adaptively calculates an interpolation filter coefficient that minimizes a prediction error caused by decimal precision motion compensation (MC) using the input image SIG1 and the local decoded image SIG17. In addition to outputting as an interpolation filter coefficient SIG3, control information (including a decimal precision motion vector) SIG4 relating to decimal precision inter prediction is output. As a method for calculating the interpolation filter coefficient, for example, a calculation method based on the Wiener filter method can be used. Next, the decimal precision MC prediction value generation unit 11 generates a prediction value based on the decimal precision MC using the calculated interpolation filter coefficient, and outputs the prediction value as an inter prediction value SIG5 based on the decimal precision MC.
 整数精度MC予測値生成部12は、入力画像SIG1と、ローカルメモリ60から供給される局所復号画像SIG17と、を入力とする。この整数精度MC予測値生成部12は、入力画像SIG1および局所復号画像SIG17を用いて、整数精度MCに基づく予測値を生成し、整数精度MCに基づくインター予測値SIG7として出力するとともに、整数精度のインター予測に関する制御情報(整数精度の動きベクトルなどを含む)SIG6を出力する。 The integer precision MC predicted value generation unit 12 receives the input image SIG1 and the locally decoded image SIG17 supplied from the local memory 60. The integer accuracy MC predicted value generation unit 12 generates a predicted value based on the integer accuracy MC using the input image SIG1 and the local decoded image SIG17, and outputs the predicted value as an inter predicted value SIG7 based on the integer accuracy MC. Control information (including an integer-precision motion vector) SIG6 is output.
 イントラ予測値生成部20は、入力画像SIG1と、ローカルメモリ60から供給される局所復号画像SIG17と、を入力とする。このイントラ予測値生成部20は、入力画像SIG1および局所復号画像SIG17を用いて、イントラ予測に基づく予測値を生成した後に後述の誤差最小化フィルタ処理を行って、イントラ予測値SIG9を出力するとともに、後述の補間フィルタ係数SIG8と、イントラ予測に関する制御情報(イントラ予測モードなどを含む)SIG10と、を出力する。イントラ予測値生成部20について、図3を用いて以下に詳述する。 The intra predicted value generation unit 20 receives the input image SIG1 and the local decoded image SIG17 supplied from the local memory 60 as inputs. The intra prediction value generation unit 20 generates a prediction value based on intra prediction using the input image SIG1 and the locally decoded image SIG17, and then performs an error minimization filter process described later to output an intra prediction value SIG9. Then, an interpolation filter coefficient SIG8, which will be described later, and control information (including an intra prediction mode) SIG10 related to intra prediction are output. The intra predicted value generation unit 20 will be described in detail below with reference to FIG.
 図3は、イントラ予測値生成部20のブロック図である。イントラ予測値生成部20は、事前イントラ予測値算出部21、誤差最小化フィルタ係数算出部22、およびフィルタ処理部23を備える。 FIG. 3 is a block diagram of the intra prediction value generation unit 20. The intra prediction value generation unit 20 includes a prior intra prediction value calculation unit 21, an error minimization filter coefficient calculation unit 22, and a filter processing unit 23.
 事前イントラ予測値算出部21は、入力画像SIG1と、局所復号画像SIG17と、を入力とする。この事前イントラ予測値算出部21は、入力画像SIG1および局所復号画像SIG17を用いて、イントラ予測モードに基づくイントラ予測により予測値を生成し、事前イントラ予測値SIG18として出力するとともに、上述のイントラ予測に関する制御情報SIG10を出力する。 The prior intra prediction value calculation unit 21 receives the input image SIG1 and the locally decoded image SIG17. The pre-intra prediction value calculation unit 21 generates a prediction value by intra prediction based on the intra prediction mode using the input image SIG1 and the locally decoded image SIG17, and outputs the prediction value as the pre-intra prediction value SIG18. The control information SIG10 regarding is output.
 誤差最小化フィルタ係数算出部22は、入力画像SIG1と、事前イントラ予測値SIG18と、を入力とする。この誤差最小化フィルタ係数算出部22は、入力画像SIG1および事前イントラ予測値SIG18に基づく誤差を最小化する補間フィルタ係数を算出し、上述の補間フィルタ係数SIG8として出力する。 The error minimizing filter coefficient calculation unit 22 receives the input image SIG1 and the prior intra prediction value SIG18. The error minimizing filter coefficient calculation unit 22 calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-intra prediction value SIG18, and outputs the interpolation filter coefficient SIG8.
 なお、入力画像SIG1および事前イントラ予測値SIG18に基づく誤差とは、予測誤差または符号化誤差のことである。 Note that the error based on the input image SIG1 and the pre-intra prediction value SIG18 is a prediction error or a coding error.
 予測誤差とは、入力画像SIG1と事前イントラ予測値SIG18との差分(イントラ予測により発生する誤差)のことである。この予測誤差を最小化する補間フィルタ係数を算出する場合には、誤差最小化フィルタ係数算出部22は、入力画像SIG1と事前イントラ予測値SIG18との差分を最小化する補間フィルタ係数を算出する。補間フィルタ係数の算出方法としては、例えば、Wiener filter法に基づく算出方法を用いることができる。 The prediction error is a difference between the input image SIG1 and the prior intra prediction value SIG18 (an error caused by intra prediction). When calculating an interpolation filter coefficient that minimizes the prediction error, the error minimization filter coefficient calculation unit 22 calculates an interpolation filter coefficient that minimizes the difference between the input image SIG1 and the prior intra prediction value SIG18. As a method for calculating the interpolation filter coefficient, for example, a calculation method based on the Wiener filter method can be used.
 一方、符号化誤差とは、上述の予測誤差と、量子化の過程で発生する量子化誤差と、を合わせた誤差のことである。符号化誤差を最小化する補間フィルタ係数を算出する場合には、誤差最小化フィルタ係数算出部22は、まず、入力画像SIG1と事前イントラ予測値SIG18との差分を求める。次に、求めた差分に対して、DCT/量子化部30と同様の処理を行った後に、逆DCT/逆量子化部50と同様の処理を行って、上述の符号化誤差を求める。次に、求めた符号化誤差を最小化する補間フィルタ係数を算出する。補間フィルタ係数の算出方法としては、例えば、Wiener filter法に基づく算出方法を用いることができる。 On the other hand, the coding error is an error obtained by combining the above-described prediction error and the quantization error generated in the quantization process. When calculating the interpolation filter coefficient that minimizes the coding error, the error minimizing filter coefficient calculation unit 22 first obtains a difference between the input image SIG1 and the prior intra prediction value SIG18. Next, after the same processing as the DCT / quantization unit 30 is performed on the obtained difference, the same processing as that of the inverse DCT / inverse quantization unit 50 is performed to obtain the above-described encoding error. Next, an interpolation filter coefficient that minimizes the obtained coding error is calculated. As a method for calculating the interpolation filter coefficient, for example, a calculation method based on the Wiener filter method can be used.
 フィルタ処理部23は、補間フィルタ係数SIG8と、事前イントラ予測値SIG18と、を入力とする。このフィルタ処理部23は、事前イントラ予測値SIG18に対して、補間フィルタ係数SIG8を用いて誤差最小化フィルタ処理を行い、フィルタ処理後の予測値を、最終的なイントラ予測値SIG9として出力する。 The filter processing unit 23 receives the interpolation filter coefficient SIG8 and the prior intra predicted value SIG18 as inputs. The filter processing unit 23 performs an error minimizing filter process on the previous intra predicted value SIG18 using the interpolation filter coefficient SIG8, and outputs the predicted value after the filter process as a final intra predicted value SIG9.
 なお、補間フィルタ係数SIG8を算出する手法としては、全てのイントラ予測モード(例えば、DC予測、Planar予測、および33種類の方向性予測)に共通する1つの補間フィルタ係数を算出する手法と、イントラ予測モードに応じて補間フィルタ係数を算出する手法と、がある。 In addition, as a method for calculating the interpolation filter coefficient SIG8, a method for calculating one interpolation filter coefficient common to all intra prediction modes (for example, DC prediction, Planar prediction, and 33 kinds of direction predictions), intra, There is a method of calculating the interpolation filter coefficient according to the prediction mode.
 ここで、H.264やH.265に代表される映像圧縮に関する標準方式では、イントラ予測において、イントラ予測モードに応じたイントラ予測値が生成される。このため、イントラ予測値は、イントラ予測モードの影響を受けやすい。したがって、イントラ予測モードのそれぞれに応じて補間フィルタ係数を算出する場合には、全てのイントラ予測モードに共通する1つの補間フィルタ係数を算出する場合と比べて、予測誤差を小さくすることができるという効果や、符号化性能を改善できるという効果を、期待することができる。 Where H. H.264 and H.264. In the standard method related to video compression represented by H.265, an intra prediction value corresponding to the intra prediction mode is generated in the intra prediction. For this reason, the intra prediction value is easily affected by the intra prediction mode. Therefore, when the interpolation filter coefficient is calculated according to each intra prediction mode, the prediction error can be reduced compared to the case where one interpolation filter coefficient common to all intra prediction modes is calculated. The effect and the effect that the encoding performance can be improved can be expected.
 しかし、イントラ予測モードのそれぞれに応じて補間フィルタ係数を算出する場合には、補間フィルタ係数に関する情報量が膨大になるので、その結果、符号化性能が低下してしまうおそれがある。 However, when the interpolation filter coefficient is calculated according to each intra prediction mode, the amount of information related to the interpolation filter coefficient becomes enormous, and as a result, the encoding performance may be degraded.
 そこで、イントラ予測値生成部20は、イントラ予測モードをm個(ただし、mは、イントラ予測モードの種類数よりも小さく、ゼロを含まない自然数)のグループに分類し、分類したグループごとに補間フィルタ係数を算出する。また、イントラ予測値生成部20は、補間フィルタ係数SIG8として、グループごとに算出した補間フィルタ係数だけでなく、全てのイントラ予測モードのそれぞれがm個のグループのうちどのグループに属するのかを示す情報も、出力する。 Therefore, the intra prediction value generation unit 20 classifies the intra prediction modes into m groups (where m is a natural number that is smaller than the number of types of intra prediction modes and does not include zero), and interpolates for each group. Calculate filter coefficients. In addition, the intra prediction value generation unit 20 uses the interpolation filter coefficient SIG8 to indicate not only the interpolation filter coefficient calculated for each group but also which group each of all intra prediction modes belongs to among the m groups. Also output.
 図2に戻って、DCT/量子化部30は、予測残差信号SIG12を入力とする。予測残差信号SIG12とは、入力画像SIG1と、予測値SIG11と、の差分信号のことであり、予測値SIG11とは、小数精度MCに基づくインター予測値SIG5と、整数精度MCに基づくインター予測値SIG7と、イントラ予測値SIG9と、のうち、最も高い符号化性能の期待される予測方法により算出された予測値のことである。このDCT/量子化部30は、予測残差信号SIG12に対して直交変換処理を行い、この直交変換処理により得られた変換係数について量子化処理を行って、量子化された変換係数SIG13として出力する。 2, the DCT / quantization unit 30 receives the prediction residual signal SIG12 as an input. The prediction residual signal SIG12 is a difference signal between the input image SIG1 and the prediction value SIG11. The prediction value SIG11 is an inter prediction value SIG5 based on decimal precision MC and inter prediction based on integer precision MC. Of the value SIG7 and the intra prediction value SIG9, it is a prediction value calculated by a prediction method that is expected to have the highest coding performance. The DCT / quantization unit 30 performs an orthogonal transform process on the prediction residual signal SIG12, performs a quantization process on the transform coefficient obtained by the orthogonal transform process, and outputs the quantized transform coefficient SIG13. To do.
 エントロピー符号化部40は、量子化された変換係数SIG13と、補間フィルタ係数SIG3、SIG8と、制御情報SIG14と、を入力とする。制御情報SIG14とは、小数精度のインター予測に関する制御情報SIG4と、整数精度のインター予測に関する制御情報SIG6と、イントラ予測に関する制御情報SIG10と、のうち、上述の最も高い符号化性能の期待される予測方法において求められた制御情報のことである。このエントロピー符号化部40は、これら入力された情報に対してエントロピー符号化処理を行って、その結果について、符号化データへの記述規則(符号化シンタックス)にしたがって符号化データに記述し、符号化データSIG2として出力する。 The entropy encoding unit 40 receives the quantized transform coefficient SIG13, the interpolation filter coefficients SIG3 and SIG8, and the control information SIG14. The control information SIG14 is expected to have the above-described highest encoding performance among the control information SIG4 related to decimal precision inter prediction, the control information SIG6 related to integer precision inter prediction, and the control information SIG10 related to intra prediction. This is control information obtained by the prediction method. The entropy encoding unit 40 performs entropy encoding processing on the input information, describes the result in the encoded data according to the description rule (encoding syntax) for the encoded data, Output as encoded data SIG2.
 逆DCT/逆量子化部50は、量子化された変換係数SIG13を入力とする。この逆DCT/逆量子化部50は、量子化された変換係数SIG13に対して逆量子化処理を行い、この逆量子化処理により得られた変換係数に対して逆変換処理を行って、逆直交変換された変換係数SIG15として出力する。 The inverse DCT / inverse quantization unit 50 receives the quantized transform coefficient SIG13 as input. The inverse DCT / inverse quantization unit 50 performs an inverse quantization process on the quantized transform coefficient SIG13, performs an inverse transform process on the transform coefficient obtained by the inverse quantization process, and performs an inverse process. Output as transform coefficient SIG15 subjected to orthogonal transform.
 ローカルメモリ60は、局所復号画像SIG16を入力とする。局所復号画像SIG16とは、予測値SIG11と、逆直交変換された変換係数SIG15と、を加算した信号のことである。このローカルメモリ60は、入力された局所復号画像SIG16を蓄積し、次の符号化処理単位ブロック以降において過去の局所復号画像SIG16を参照する必要がある場合に、適宜、小数精度MC予測値生成部11と整数精度MC予測値生成部12とイントラ予測値生成部20とに局所復号画像SIG17として供給する。 The local memory 60 receives the locally decoded image SIG16. The local decoded image SIG16 is a signal obtained by adding the predicted value SIG11 and the transform coefficient SIG15 subjected to inverse orthogonal transform. The local memory 60 accumulates the input local decoded image SIG16, and when it is necessary to refer to the past local decoded image SIG16 after the next coding processing unit block, the decimal precision MC prediction value generation unit is appropriately selected. 11 and the integer accuracy MC prediction value generation unit 12 and the intra prediction value generation unit 20 are supplied as a locally decoded image SIG17.
 [動画像復号装置100の構成および動作]
 図4は、動画像復号装置100のブロック図である。動画像復号装置100は、エントロピー復号部110、逆DCT/逆量子化部120、インター予測値生成部130、イントラ予測値生成部140、およびローカルメモリ150を備える。
[Configuration and Operation of Video Decoding Device 100]
FIG. 4 is a block diagram of the video decoding device 100. The moving picture decoding apparatus 100 includes an entropy decoding unit 110, an inverse DCT / inverse quantization unit 120, an inter prediction value generation unit 130, an intra prediction value generation unit 140, and a local memory 150.
 エントロピー復号部110は、符号化データSIG2を入力とする。このエントロピー復号部110は、符号化データSIG2に記載されている内容を符号化データ構造にしたがって解析してエントロピー復号し、残差信号SIG51と、小数精度MCにおける補間フィルタ係数SIG52(補間フィルタ係数SIG3)と、制御情報SIG53と、イントラ予測における補間フィルタ係数SIG54(補間フィルタ係数SIG8)と、を取得して出力する。 The entropy decoding unit 110 receives the encoded data SIG2. The entropy decoding unit 110 analyzes the content described in the encoded data SIG2 according to the encoded data structure and performs entropy decoding, and performs the residual signal SIG51 and the interpolation filter coefficient SIG52 (interpolation filter coefficient SIG3 in the decimal precision MC). ), Control information SIG53, and interpolation filter coefficient SIG54 (interpolation filter coefficient SIG8) in the intra prediction are acquired and output.
 逆DCT/逆量子化部120は、残差信号SIG51を入力とする。この逆DCT/逆量子化部120は、残差信号SIG51に対して逆量子化処理を行い、この逆量子化処理より得られた結果に対して逆変換処理を行って、逆直交変換結果SIG55として出力する。 The inverse DCT / inverse quantization unit 120 receives the residual signal SIG51. The inverse DCT / inverse quantization unit 120 performs an inverse quantization process on the residual signal SIG51, performs an inverse transform process on the result obtained from the inverse quantization process, and performs an inverse orthogonal transform result SIG55. Output as.
 インター予測値生成部130は、小数精度MC予測値生成部131および整数精度MC予測値生成部132を備える。 The inter prediction value generation unit 130 includes a decimal accuracy MC prediction value generation unit 131 and an integer accuracy MC prediction value generation unit 132.
 小数精度MC予測値生成部131は、小数精度MCにおける補間フィルタ係数SIG52と、制御情報SIG53に含まれている小数精度のインター予測に関する制御情報SIG56(小数精度のインター予測に関する制御情報SIG4)と、ローカルメモリ150から供給される後述のデコード画像SIG64と、を入力とする。この小数精度MC予測値生成部131は、まず、小数精度のインター予測に関する制御情報SIG56に基づいて、デコード画像SIG64を参照し、処理ブロックにおける小数精度MCに基づく予測値を生成する。次に、生成した小数精度MCに基づく予測値に対して、小数精度MCにおける補間フィルタ係数SIG52を用いてフィルタ処理を行い、フィルタ処理後の予測値を、小数精度MCに基づくインター予測値SIG59として出力する。 The decimal precision MC predicted value generation unit 131 includes an interpolation filter coefficient SIG52 in the decimal precision MC, control information SIG56 (control information SIG4 related to decimal precision inter prediction) included in the control information SIG53, A decoded image SIG64 (described later) supplied from the local memory 150 is used as an input. The decimal accuracy MC predicted value generation unit 131 first generates a predicted value based on the decimal accuracy MC in the processing block by referring to the decoded image SIG64 based on the control information SIG56 related to the decimal prediction inter prediction. Next, the generated prediction value based on the decimal precision MC is subjected to filter processing using the interpolation filter coefficient SIG52 in the decimal precision MC, and the prediction value after the filter processing is set as an inter prediction value SIG59 based on the decimal precision MC. Output.
 整数精度MC予測値生成部132は、制御情報SIG53に含まれている整数精度のインター予測に関する制御情報SIG57(整数精度のインター予測に関する制御情報SIG6)と、ローカルメモリ150から供給されるデコード画像SIG64と、を入力とする。この整数精度MC予測値生成部132は、整数精度のインター予測に関する制御情報SIG57に基づいて、デコード画像SIG64を参照し、処理ブロックにおける整数精度MCに基づく予測値を生成し、整数精度MCに基づくインター予測値SIG60として出力する。 The integer precision MC predicted value generation unit 132 includes control information SIG57 (control information SIG6 related to integer precision inter prediction) included in the control information SIG53, and a decoded image SIG64 supplied from the local memory 150. And are input. The integer precision MC predicted value generation unit 132 refers to the decoded image SIG64 based on the control information SIG57 related to integer precision inter prediction, generates a predicted value based on the integer precision MC in the processing block, and is based on the integer precision MC. It outputs as inter prediction value SIG60.
 イントラ予測値生成部140は、制御情報SIG53に含まれているイントラ予測に関する制御情報SIG58(イントラ予測に関する制御情報SIG10)と、イントラ予測における補間フィルタ係数SIG54と、ローカルメモリ150から供給されるデコード画像SIG64と、を入力とする。このイントラ予測値生成部140は、まず、イントラ予測に関する制御情報SIG58に基づいて、デコード画像SIG64を参照し、処理ブロックにおけるイントラ予測値を生成する。次に、生成したイントラ予測値に対して、イントラ予測における補間フィルタ係数SIG54を用いてフィルタ処理を行い、フィルタ処理後の予測値を、イントラ予測値SIG61として出力する。 The intra prediction value generation unit 140 includes control information SIG58 related to intra prediction (control information SIG10 related to intra prediction) included in the control information SIG53, an interpolation filter coefficient SIG54 for intra prediction, and a decoded image supplied from the local memory 150. SIG64 as an input. First, the intra prediction value generation unit 140 refers to the decoded image SIG64 based on the control information SIG58 related to intra prediction, and generates an intra prediction value in the processing block. Next, the generated intra prediction value is filtered using the interpolation filter coefficient SIG54 in the intra prediction, and the prediction value after the filter processing is output as the intra prediction value SIG61.
 なお、イントラ予測における補間フィルタ係数SIG54には、m個の補間フィルタ係数と、これらm個の補間フィルタ係数のそれぞれが上述のm個のグループのうちどのグループに属するのかを示す情報と、が含まれている。このため、イントラ予測値生成部140は、処理ブロックのイントラ予測モードがm個のグループのうちどのグループに属するのかを求め、求めたグループに属する補間フィルタ係数をm個の補間フィルタ係数の中から選択し、選択した補間フィルタ係数を用いて、処理ブロックにおけるフィルタ処理を行うことになる。 Note that the interpolation filter coefficient SIG54 in intra prediction includes m interpolation filter coefficients and information indicating to which of the m groups the m interpolation filter coefficients belong. It is. For this reason, the intra prediction value generation unit 140 determines which group of the m groups the intra prediction mode of the processing block belongs to, and selects the interpolation filter coefficient belonging to the determined group from the m interpolation filter coefficients. The filter processing in the processing block is performed using the selected interpolation filter coefficient.
 逆直交変換結果SIG55と、予測値SIG62と、を加算した信号は、デコード画像SIG63として、動画像復号装置100から出力されるとともに、ローカルメモリ150に供給される。なお、予測値SIG62とは、小数精度MCに基づくインター予測値SIG59と、整数精度MCに基づくインター予測値SIG60と、イントラ予測値SIG61と、のうち、最も高い符号化性能の期待される予測方法により算出された予測値のことである。 A signal obtained by adding the inverse orthogonal transform result SIG55 and the predicted value SIG62 is output from the video decoding device 100 as a decoded image SIG63 and also supplied to the local memory 150. Note that the predicted value SIG62 is a predicted method that is expected to have the highest coding performance among the inter predicted value SIG59 based on the decimal precision MC, the inter predicted value SIG60 based on the integer precision MC, and the intra predicted value SIG61. Is the predicted value calculated by
 ローカルメモリ150は、デコード画像SIG63を入力とする。このローカルメモリ150は、入力されたデコード画像SIG63を蓄積し、次の復号処理単位ブロック以降において過去のデコード画像SIG63を参照する必要がある場合に、適宜、小数精度MC予測値生成部131と整数精度MC予測値生成部132とイントラ予測値生成部140とにデコード画像SIG64として供給する。 The local memory 150 receives the decoded image SIG63. The local memory 150 stores the input decoded image SIG63, and when it is necessary to refer to the past decoded image SIG63 after the next decoding processing unit block, the decimal precision MC predicted value generation unit 131 and the integer are appropriately selected. The decoded image SIG64 is supplied to the accuracy MC prediction value generation unit 132 and the intra prediction value generation unit 140.
 以上の動画像符号化装置1および動画像復号装置100によれば、以下の効果を奏することができる。 According to the above video encoding device 1 and video decoding device 100, the following effects can be obtained.
 動画像符号化装置1は、フィルタ処理部23により、符号化される前のフレームに対して、すなわち符号化処理が行われる前のフレームに対して、フィルタ処理を行う。このため、予測符号化における圧縮性能に強く影響する予測性能を向上させることができ、その結果、圧縮性能を向上させることができる。 The moving image encoding apparatus 1 performs filtering processing on the frame before encoding, that is, the frame before encoding processing is performed by the filter processing unit 23. For this reason, the prediction performance that strongly affects the compression performance in predictive coding can be improved, and as a result, the compression performance can be improved.
 また、動画像符号化装置1は、誤差最小化フィルタ係数算出部22により、入力画像SIG1および事前イントラ予測値SIG18に基づく誤差を最小化する補間フィルタ係数を算出し、フィルタ処理部23により、誤差最小化フィルタ係数算出部22により算出された補間フィルタ係数を用いてフィルタ処理を行う。また、動画像復号装置100は、イントラ予測値生成部140により、イントラ予測における補間フィルタ係数SIG54、すなわちイントラ予測値生成部20で算出された補間フィルタ係数SIG8を用いて、フィルタ処理を行う。このため、イントラ予測における誤差を低減することができるので、その結果、圧縮性能をさらに向上させることができる。 Further, the moving image encoding apparatus 1 calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-intra prediction value SIG18 by the error minimizing filter coefficient calculation unit 22, and the filter processing unit 23 calculates the error Filter processing is performed using the interpolation filter coefficient calculated by the minimized filter coefficient calculation unit 22. In the moving image decoding apparatus 100, the intra prediction value generation unit 140 performs filter processing using the interpolation filter coefficient SIG54 in intra prediction, that is, the interpolation filter coefficient SIG8 calculated by the intra prediction value generation unit 20. For this reason, errors in intra prediction can be reduced, and as a result, compression performance can be further improved.
 また、動画像符号化装置1は、誤差最小化フィルタ係数算出部22により、入力画像SIG1および事前イントラ予測値SIG18に基づく誤差として、予測誤差または符号化誤差を適用する。このため、予測誤差を適用する場合には、符号化誤差を適用する場合と比べて、直交変換処理、量子化処理、逆量子化処理、および逆変換処理を行う必要がないので、誤差最小化フィルタ係数算出部22における処理量を低減させることができる。また、符号化誤差を適用する場合には、予測誤差を適用する場合と比べて、多くの予測残差符号量が発生するイントラ符号化や、高ビットレート符号化などにおいて、圧縮性能を特に向上させることができる。 Also, the moving picture coding apparatus 1 applies a prediction error or a coding error as an error based on the input image SIG1 and the pre-intra prediction value SIG18 by the error minimizing filter coefficient calculation unit 22. For this reason, when applying prediction errors, it is not necessary to perform orthogonal transformation processing, quantization processing, inverse quantization processing, and inverse transformation processing, compared to the case of applying coding errors, so error minimization is achieved. The processing amount in the filter coefficient calculation unit 22 can be reduced. In addition, when coding errors are applied, compression performance is particularly improved in intra coding that generates a large amount of prediction residual code, high bit rate coding, etc., compared to the case where prediction errors are applied. Can be made.
 また、動画像符号化装置1は、誤差最小化フィルタ係数算出部22により、Wiener filter法に基づいてフィルタ係数を算出することができる。 Also, the moving picture encoding apparatus 1 can calculate the filter coefficient based on the Wiener filter method by the error minimizing filter coefficient calculation unit 22.
 また、動画像符号化装置1は、イントラ予測値生成部20により、イントラ予測モードをm個のグループに分類し、分類したグループごとに補間フィルタ係数を算出する。このため、全てのイントラ予測モードに共通する1つのフィルタ係数を算出する場合と比べて、予測誤差を小さくしつつ、フィルタ係数に関する情報量の増加を抑制して、符号化性能を改善することができる。 Also, in the video encoding device 1, the intra prediction value generation unit 20 classifies the intra prediction mode into m groups, and calculates an interpolation filter coefficient for each of the classified groups. For this reason, compared with the case where one filter coefficient common to all intra prediction modes is calculated, it is possible to improve the encoding performance by suppressing an increase in the amount of information regarding the filter coefficient while reducing the prediction error. it can.
 <第2実施形態>
 図5は、本発明の第2実施形態に係る動画像処理システムBBのブロック図である。動画像処理システムBBは、図1に示した本発明の第1実施形態における動画像処理システムAAとは、動画像符号化装置1の代わりに動画像符号化装置1Aを備える点と、動画像復号装置100の代わりに動画像復号装置100Aを備える点と、で異なる。
Second Embodiment
FIG. 5 is a block diagram of a moving image processing system BB according to the second embodiment of the present invention. The moving image processing system BB is different from the moving image processing system AA according to the first embodiment of the present invention shown in FIG. 1 in that a moving image encoding device 1A is provided instead of the moving image encoding device 1, and a moving image The difference is that a moving image decoding apparatus 100A is provided instead of the decoding apparatus 100.
 [動画像符号化装置1Aの構成および動作]
 図6は、動画像符号化装置1Aのブロック図である。動画像符号化装置1Aは、図2に示した本発明の第1実施形態に係る動画像符号化装置1とは、インター予測値生成部10の代わりにインター予測値生成部10Aを備える点と、イントラ予測値生成部20の代わりにイントラ予測値生成部20Aを備える点と、で異なる。なお、動画像符号化装置1Aにおいて、動画像符号化装置1と同一構成要件については、同一符号を付し、その説明を省略する。
[Configuration and Operation of Moving Image Encoding Device 1A]
FIG. 6 is a block diagram of the video encoding apparatus 1A. The moving image encoding device 1A is different from the moving image encoding device 1 according to the first embodiment of the present invention shown in FIG. 2 in that an inter prediction value generation unit 10A is provided instead of the inter prediction value generation unit 10. The difference is that an intra prediction value generation unit 20A is provided instead of the intra prediction value generation unit 20. Note that in the moving image encoding device 1A, the same components as those in the moving image encoding device 1 are denoted by the same reference numerals, and description thereof is omitted.
 インター予測値生成部10Aは、小数精度MC予測値生成部11および整数精度MC予測値生成部12Aを備える。 Inter prediction value generation unit 10A includes a decimal accuracy MC prediction value generation unit 11 and an integer accuracy MC prediction value generation unit 12A.
 整数精度MC予測値生成部12Aは、入力画像SIG1と、ローカルメモリ60から供給される局所復号画像SIG17と、を入力とする。この整数精度MC予測値生成部12Aは、入力画像SIG1および局所復号画像SIG17を用いて、整数精度MCに基づく予測値を生成した後に、後述の誤差最小化フィルタ処理を行って、整数精度MCに基づくインター予測値SIG7として出力するとともに、後述の補間フィルタ係数SIG21と、整数精度のインター予測に関する制御情報SIG6と、を出力する。整数精度MC予測値生成部12Aについて、図7を用いて以下に詳述する。 The integer precision MC predicted value generation unit 12A receives the input image SIG1 and the locally decoded image SIG17 supplied from the local memory 60. The integer precision MC predicted value generation unit 12A generates a predicted value based on the integer precision MC using the input image SIG1 and the local decoded image SIG17, and then performs error minimization filter processing described later to obtain the integer precision MC. It outputs as the inter prediction value SIG7 based on it, and outputs the below-mentioned interpolation filter coefficient SIG21 and the control information SIG6 regarding the inter prediction of integer precision. The integer precision MC predicted value generation unit 12A will be described in detail below with reference to FIG.
 図7は、整数精度MC予測値生成部12Aのブロック図である。整数精度MC予測値生成部12Aは、事前MC予測値算出部13、誤差最小化フィルタ係数算出部14、およびフィルタ処理部15を備える。 FIG. 7 is a block diagram of the integer precision MC predicted value generation unit 12A. The integer accuracy MC predicted value generation unit 12 </ b> A includes a prior MC predicted value calculation unit 13, an error minimization filter coefficient calculation unit 14, and a filter processing unit 15.
 事前MC予測値算出部13は、入力画像SIG1と、局所復号画像SIG17と、を入力とする。この事前MC予測値算出部13は、入力画像SIG1および局所復号画像SIG17を用いて、整数精度MCに基づくインター予測により予測値を生成し、事前インター予測値SIG22として出力するとともに、上述の整数精度のインター予測に関する制御情報SIG6を出力する。 The prior MC prediction value calculation unit 13 receives the input image SIG1 and the locally decoded image SIG17. The prior MC prediction value calculation unit 13 generates a prediction value by inter prediction based on integer accuracy MC using the input image SIG1 and the local decoded image SIG17, and outputs the prediction value as the prior inter prediction value SIG22. The control information SIG6 related to the inter prediction is output.
 誤差最小化フィルタ係数算出部14は、入力画像SIG1と、事前インター予測値SIG22と、を入力とする。この誤差最小化フィルタ係数算出部14は、入力画像SIG1および事前インター予測値SIG22に基づく誤差を最小化する補間フィルタ係数を算出し、上述の補間フィルタ係数SIG21として出力する。 The error minimizing filter coefficient calculation unit 14 receives the input image SIG1 and the prior inter prediction value SIG22. The error minimizing filter coefficient calculation unit 14 calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-inter prediction value SIG22, and outputs the interpolation filter coefficient SIG21.
 なお、入力画像SIG1および事前イントラ予測値SIG18に基づく誤差とは、予測誤差または符号化誤差のことである。 Note that the error based on the input image SIG1 and the pre-intra prediction value SIG18 is a prediction error or a coding error.
 予測誤差とは、入力画像SIG1と事前インター予測値SIG22との差分(インター予測により発生する誤差)のことである。この予測誤差を最小化する補間フィルタ係数を算出する場合には、誤差最小化フィルタ係数算出部14は、入力画像SIG1と事前インター予測値SIG22との差分を最小化する補間フィルタ係数を算出する。補間フィルタ係数の算出方法としては、例えば、Wiener filter法に基づく算出方法を用いることができる。 The prediction error is a difference between the input image SIG1 and the prior inter prediction value SIG22 (an error generated by inter prediction). When calculating an interpolation filter coefficient that minimizes the prediction error, the error minimization filter coefficient calculation unit 14 calculates an interpolation filter coefficient that minimizes the difference between the input image SIG1 and the pre-inter prediction value SIG22. As a method for calculating the interpolation filter coefficient, for example, a calculation method based on the Wiener filter method can be used.
 一方、符号化誤差とは、上述の予測誤差と、量子化の過程で発生する量子化誤差と、を合わせた誤差のことである。符号化誤差を最小化する補間フィルタ係数を算出する場合には、誤差最小化フィルタ係数算出部14は、まず、入力画像SIG1と事前インター予測値SIG22との差分を求める。次に、求めた差分に対して、DCT/量子化部30と同様の処理を行った後に、逆DCT/逆量子化部50と同様の処理を行って、上述の符号化誤差を求める。次に、求めた符号化誤差を最小化する補間フィルタ係数を算出する。補間フィルタ係数の算出方法としては、例えば、Wiener filter法に基づく算出方法を用いることができる。 On the other hand, the coding error is an error obtained by combining the above-described prediction error and the quantization error generated in the quantization process. When calculating an interpolation filter coefficient that minimizes the coding error, the error minimizing filter coefficient calculation unit 14 first obtains a difference between the input image SIG1 and the prior inter prediction value SIG22. Next, after the same processing as the DCT / quantization unit 30 is performed on the obtained difference, the same processing as that of the inverse DCT / inverse quantization unit 50 is performed to obtain the above-described encoding error. Next, an interpolation filter coefficient that minimizes the obtained coding error is calculated. As a method for calculating the interpolation filter coefficient, for example, a calculation method based on the Wiener filter method can be used.
 フィルタ処理部15は、補間フィルタ係数SIG21と、事前インター予測値SIG22と、を入力とする。このフィルタ処理部15は、事前インター予測値SIG22に対して、補間フィルタ係数SIG21を用いて誤差最小化フィルタ処理を行い、フィルタ処理後の予測値を、整数精度MCに基づくインター予測値SIG7として出力する。 The filter processing unit 15 receives the interpolation filter coefficient SIG21 and the pre-inter prediction value SIG22 as inputs. The filter processing unit 15 performs an error minimizing filter process on the inter prediction value SIG22 using the interpolation filter coefficient SIG21, and outputs the predicted value after the filter process as an inter prediction value SIG7 based on integer precision MC. To do.
 図6に戻って、イントラ予測値生成部20Aは、入力画像SIG1と、ローカルメモリ60から供給される局所復号画像SIG17と、を入力とする。このイントラ予測値生成部20Aは、入力画像SIG1および局所復号画像SIG17を用いて、イントラ予測に基づく予測値を生成し、イントラ予測値SIG9として出力するとともに、イントラ予測に関する制御情報SIG10を出力する。 6, the intra predicted value generation unit 20A receives the input image SIG1 and the local decoded image SIG17 supplied from the local memory 60 as inputs. This intra prediction value generation unit 20A generates a prediction value based on intra prediction using the input image SIG1 and the local decoded image SIG17, outputs the prediction value as the intra prediction value SIG9, and outputs control information SIG10 related to intra prediction.
 [動画像復号装置100Aの構成および動作]
 図8は、動画像復号装置100Aのブロック図である。動画像復号装置100Aは、図4に示した本発明の第1実施形態に係る動画像復号装置100とは、エントロピー復号部110の代わりにエントロピー復号部110Aを備える点と、インター予測値生成部130の代わりにインター予測値生成部130Aを備える点と、イントラ予測値生成部140の代わりにイントラ予測値生成部140Aを備える点と、で異なる。なお、動画像復号装置100Aにおいて、動画像復号装置100と同一構成要件については、同一符号を付し、その説明を省略する。
[Configuration and Operation of Video Decoding Device 100A]
FIG. 8 is a block diagram of the video decoding device 100A. The video decoding device 100A is different from the video decoding device 100 according to the first embodiment of the present invention shown in FIG. 4 in that an entropy decoding unit 110A is provided instead of the entropy decoding unit 110, and an inter prediction value generation unit. The difference is that the inter prediction value generation unit 130 </ b> A is provided instead of 130, and the point that the intra prediction value generation unit 140 </ b> A is provided instead of the intra prediction value generation unit 140. In the moving picture decoding apparatus 100A, the same components as those in the moving picture decoding apparatus 100 are denoted by the same reference numerals, and the description thereof is omitted.
 エントロピー復号部110Aは、符号化データSIG2を入力とする。このエントロピー復号部110Aは、符号化データSIG2に記載されている内容を符号化データ構造にしたがって解析してエントロピー復号し、残差信号SIG51と、小数精度MCにおける補間フィルタ係数SIG52(補間フィルタ係数SIG3)と、制御情報SIG53と、整数精度MCにおける補間フィルタ係数SIG71(補間フィルタ係数SIG21)と、を取得して出力する。 The entropy decoding unit 110A receives the encoded data SIG2. The entropy decoding unit 110A analyzes the content described in the encoded data SIG2 according to the encoded data structure and performs entropy decoding, and performs the residual signal SIG51 and the interpolation filter coefficient SIG52 (interpolation filter coefficient SIG3 in the decimal precision MC). ), Control information SIG53, and interpolation filter coefficient SIG71 (interpolation filter coefficient SIG21) with integer precision MC are acquired and output.
 インター予測値生成部130Aは、小数精度MC予測値生成部131および整数精度MC予測値生成部132Aを備える。 The inter prediction value generation unit 130A includes a decimal accuracy MC prediction value generation unit 131 and an integer accuracy MC prediction value generation unit 132A.
 整数精度MC予測値生成部132Aは、制御情報SIG53に含まれている整数精度のインター予測に関する制御情報SIG57(整数精度のインター予測に関する制御情報SIG6)と、整数精度MCにおける補間フィルタ係数SIG71と、ローカルメモリ150から供給されるデコード画像SIG64と、を入力とする。この整数精度MC予測値生成部132Aは、まず、整数精度のインター予測に関する制御情報SIG57に基づいて、デコード画像SIG64を参照し、処理ブロックにおける整数精度MCに基づく予測値を生成する。次に、生成した整数精度MCに基づく予測値に対して、整数精度MCにおける補間フィルタ係数SIG71を用いてフィルタ処理を行い、フィルタ処理後の予測値を、整数精度MCに基づくインター予測値SIG60として出力する。 The integer precision MC predicted value generation unit 132A includes control information SIG57 (control information SIG6 related to integer precision inter prediction) included in the control information SIG53, interpolation filter coefficient SIG71 in integer precision MC, The decoded image SIG64 supplied from the local memory 150 is used as an input. This integer precision MC predicted value generation unit 132A first refers to the decoded image SIG64 based on the control information SIG57 related to integer precision inter prediction, and generates a predicted value based on the integer precision MC in the processing block. Next, the prediction value based on the generated integer accuracy MC is subjected to filter processing using the interpolation filter coefficient SIG71 in the integer accuracy MC, and the prediction value after the filter processing is set as an inter prediction value SIG60 based on the integer accuracy MC. Output.
 イントラ予測値生成部140Aは、制御情報SIG53に含まれているイントラ予測に関する制御情報SIG58(イントラ予測に関する制御情報SIG10)と、ローカルメモリ150から供給されるデコード画像SIG64と、を入力とする。このイントラ予測値生成部140Aは、イントラ予測に関する制御情報SIG58に基づいて、デコード画像SIG64を参照し、処理ブロックにおけるイントラ予測値を生成し、イントラ予測値SIG61として出力する。 The intra predicted value generation unit 140A receives as input the control information SIG58 related to intra prediction (control information SIG10 related to intra prediction) included in the control information SIG53 and the decoded image SIG64 supplied from the local memory 150. The intra predicted value generation unit 140A refers to the decoded image SIG64 based on the control information SIG58 related to intra prediction, generates an intra predicted value in the processing block, and outputs the intra predicted value SIG61.
 以上の動画像符号化装置1Aおよび動画像復号装置100Aによれば、以下の効果を奏することができる。 According to the above moving picture coding apparatus 1A and moving picture decoding apparatus 100A, the following effects can be obtained.
 動画像符号化装置1Aは、フィルタ処理部15により、符号化される前のフレームに対して、すなわち符号化処理が行われる前のフレームに対して、フィルタ処理を行う。このため、予測符号化における圧縮性能に強く影響する予測性能を向上させることができ、その結果、圧縮性能を向上させることができる。 The moving image encoding apparatus 1A performs filtering processing on a frame before encoding, that is, a frame before encoding processing is performed by the filter processing unit 15. For this reason, the prediction performance that strongly affects the compression performance in predictive coding can be improved, and as a result, the compression performance can be improved.
 また、動画像符号化装置1Aは、誤差最小化フィルタ係数算出部14により、入力画像SIG1および事前インター予測値SIG22に基づく誤差を最小化する補間フィルタ係数を算出し、フィルタ処理部15により、誤差最小化フィルタ係数算出部14により算出された補間フィルタ係数を用いてフィルタ処理を行う。また、動画像復号装置100Aは、整数精度MC予測値生成部132Aにより、整数精度MCにおける補間フィルタ係数SIG71、すなわち整数精度MC予測値生成部12Aで算出された補間フィルタ係数SIG21を用いて、フィルタ処理を行う。このため、整数画素位置の動き補償における誤差を低減することができるので、その結果、圧縮性能をさらに向上させることができる。 Also, the moving image encoding apparatus 1A calculates an interpolation filter coefficient that minimizes an error based on the input image SIG1 and the pre-inter prediction value SIG22 by the error minimizing filter coefficient calculation unit 14, and the filter processing unit 15 calculates the error Filter processing is performed using the interpolation filter coefficient calculated by the minimizing filter coefficient calculation unit 14. Also, the moving picture decoding apparatus 100A uses the integer accuracy MC prediction value generation unit 132A to filter the interpolation filter coefficient SIG71 in integer accuracy MC, that is, the interpolation filter coefficient SIG21 calculated by the integer accuracy MC prediction value generation unit 12A. Process. For this reason, errors in motion compensation at integer pixel positions can be reduced, and as a result, compression performance can be further improved.
 また、動画像符号化装置1Aは、誤差最小化フィルタ係数算出部14により、入力画像SIG1および事前インター予測値SIG22に基づく誤差として、予測誤差または符号化誤差を適用する。このため、予測誤差を適用する場合には、符号化誤差を適用する場合と比べて、直交変換処理、量子化処理、逆量子化処理、および逆変換処理を行う必要がないので、誤差最小化フィルタ係数算出部14における処理量を低減させることができる。また、符号化誤差を適用する場合には、予測誤差を適用する場合と比べて、多くの予測残差符号量が発生するイントラ符号化や、高ビットレート符号化などにおいて、圧縮性能を特に向上させることができる。 Also, the moving picture encoding apparatus 1A applies a prediction error or a coding error as an error based on the input image SIG1 and the pre-inter prediction value SIG22 by the error minimizing filter coefficient calculation unit 14. For this reason, when applying prediction errors, it is not necessary to perform orthogonal transformation processing, quantization processing, inverse quantization processing, and inverse transformation processing, compared to the case of applying coding errors, so error minimization is achieved. The processing amount in the filter coefficient calculation unit 14 can be reduced. In addition, when coding errors are applied, compression performance is particularly improved in intra coding that generates a large amount of prediction residual code, high bit rate coding, etc., compared to the case where prediction errors are applied. Can be made.
 また、動画像符号化装置1Aは、誤差最小化フィルタ係数算出部14により、Wiener filter法に基づいてフィルタ係数を算出することができる。 Also, the moving image encoding apparatus 1A can calculate the filter coefficient based on the Wiener filter method by the error minimizing filter coefficient calculation unit 14.
 なお、本発明の動画像符号化装置1、1Aや動画像復号装置100、100Aの処理を、コンピュータ読み取り可能な非一時的な記録媒体に記録し、この記録媒体に記録されたプログラムを動画像符号化装置1、1Aや動画像復号装置100、100Aに読み込ませ、実行することによって、本発明を実現できる。 It should be noted that the processing of the moving image encoding device 1, 1A or the moving image decoding device 100, 100A of the present invention is recorded on a computer-readable non-transitory recording medium, and the program recorded on this recording medium is recorded as a moving image. The present invention can be realized by causing the encoding apparatus 1 or 1A or the moving image decoding apparatus 100 or 100A to read and execute the apparatus.
 ここで、上述の記録媒体には、例えば、EPROMやフラッシュメモリといった不揮発性のメモリ、ハードディスクといった磁気ディスク、CD-ROMなどを適用できる。また、この記録媒体に記録されたプログラムの読み込みおよび実行は、動画像符号化装置1、1Aや動画像復号装置100、100Aに設けられたプロセッサによって行われる。 Here, for example, a nonvolatile memory such as an EPROM or a flash memory, a magnetic disk such as a hard disk, a CD-ROM, or the like can be applied to the above-described recording medium. Further, reading and execution of the program recorded on the recording medium is performed by a processor provided in the moving image encoding device 1, 1A or the moving image decoding device 100, 100A.
 また、上述のプログラムは、このプログラムを記憶装置などに格納した動画像符号化装置1、1Aや動画像復号装置100、100Aから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネットなどのネットワーク(通信網)や電話回線などの通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。 In addition, the above-described program may be transmitted from the moving image encoding device 1 or 1A or the moving image decoding device 100 or 100A storing the program in a storage device or the like via a transmission medium or by a transmission wave in the transmission medium. May be transmitted to other computer systems. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
 また、上述のプログラムは、上述の機能の一部を実現するためのものであってもよい。さらに、上述の機能を動画像符号化装置1、1Aや動画像復号装置100、100Aにすでに記録されているプログラムとの組み合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the above-described program may be for realizing a part of the above-described function. Furthermore, what can implement | achieve the above-mentioned function in combination with the program already recorded on the moving image encoder 1, 1A or the moving image decoder 100, 100A, what is called a difference file (difference program) may be sufficient.
 以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計なども含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiments, and includes a design that does not depart from the gist of the present invention.
 例えば、上述の第1実施形態における動画像符号化装置1に、整数精度MC予測値生成部12の代わりに上述の第2実施形態における整数精度MC予測値生成部12Aを設けるとともに、上述の第1実施形態における動画像復号装置100に、整数精度MC予測値生成部132の代わりに上述の第2実施形態における整数精度MC予測値生成部132Aを設けることとしてもよい。 For example, the moving picture encoding apparatus 1 in the first embodiment described above is provided with the integer accuracy MC predicted value generation unit 12A in the second embodiment described above instead of the integer accuracy MC predicted value generation unit 12, and the first The moving picture decoding apparatus 100 according to the first embodiment may be provided with the integer accuracy MC predicted value generation unit 132A according to the second embodiment described above, instead of the integer accuracy MC predicted value generation unit 132.

Claims (13)

  1.  符号化済みの局所復号画像を用いた予測符号化を許容する動画像符号化装置であって、
     入力画像および前記局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する事前予測値生成手段と、
     前記入力画像と、前記事前予測値生成手段により生成された予測値と、に基づく誤差を最小化するフィルタ係数を算出する誤差最小化フィルタ係数算出手段と、
     前記事前予測値生成手段により生成された予測値に対して、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を用いてフィルタ処理を行うフィルタ処理手段と、を備えることを特徴とする動画像符号化装置。
    A video encoding device that allows predictive encoding using an encoded local decoded image,
    Pre-prediction value generation means for generating a prediction value by at least one of inter prediction based on integer precision motion compensation and intra prediction using the input image and the local decoded image;
    An error minimizing filter coefficient calculating means for calculating a filter coefficient for minimizing an error based on the input image and the predicted value generated by the prior predicted value generating means;
    Filter processing means for performing filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means. Video encoding device.
  2.  前記誤差最小化フィルタ係数算出手段は、
     前記入力画像と、前記事前予測値生成手段により生成された予測値と、の差分である予測誤差と、
     前記予測誤差に対して、直交変換処理、量子化処理、逆量子化処理、および逆変換処理を行って得られた符号化誤差と、
     のうちいずれかを最小化するフィルタ係数を算出することを特徴とする請求項1に記載の動画像符号化装置。
    The error minimizing filter coefficient calculation means includes
    A prediction error that is a difference between the input image and the prediction value generated by the prior prediction value generation unit;
    Encoding error obtained by performing orthogonal transformation processing, quantization processing, inverse quantization processing, and inverse transformation processing on the prediction error,
    The moving picture encoding apparatus according to claim 1, wherein a filter coefficient that minimizes one of the two is calculated.
  3.  前記誤差最小化フィルタ係数算出手段は、前記フィルタ係数を、Wiener filter法に基づいて算出することを特徴とする請求項1または2に記載の動画像符号化装置。 3. The moving picture coding apparatus according to claim 1, wherein the error minimizing filter coefficient calculating means calculates the filter coefficient based on a Wiener filter method.
  4.  前記事前予測値生成手段は、前記入力画像および前記局所復号画像を用いて、イントラ予測により予測値を生成し、
     前記誤差最小化フィルタ係数算出手段は、前記フィルタ係数を、イントラ予測モードに応じて算出することを特徴とする請求項1から3のいずれかに記載の動画像符号化装置。
    The prior prediction value generation means generates a prediction value by intra prediction using the input image and the local decoded image,
    4. The moving picture encoding apparatus according to claim 1, wherein the error minimizing filter coefficient calculating unit calculates the filter coefficient in accordance with an intra prediction mode. 5.
  5.  前記誤差最小化フィルタ係数算出手段は、イントラ予測モードをm個(ただし、mは、イントラ予測モードの種類数よりも小さく、ゼロを含まない自然数)のグループに分類し、分類したグループごとに前記フィルタ係数を算出することを特徴とする請求項4に記載の動画像符号化装置。 The error minimizing filter coefficient calculating means classifies the intra prediction modes into m groups (where m is a natural number smaller than the number of types of intra prediction modes and does not include zero), and for each classified group, The moving image encoding apparatus according to claim 4, wherein a filter coefficient is calculated.
  6.  復号済み画像を用いた予測復号を許容する動画像復号装置であって、
     符号化データをエントロピー復号してフィルタ係数を取得するエントロピー復号手段と、
     整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより前記復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記エントロピー復号手段により取得されたフィルタ係数を用いてフィルタ処理を行うフィルタ処理手段と、を備えることを特徴とする動画像復号装置。
    A video decoding device that allows predictive decoding using a decoded image,
    Entropy decoding means for entropy decoding encoded data to obtain filter coefficients;
    A prediction value is generated using the decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction, and the generated prediction value is acquired by the entropy decoding unit. And a filter processing means for performing filter processing using the filter coefficient.
  7.  前記エントロピー復号手段は、符号化データをエントロピー復号して、イントラ予測モードに応じて算出されたフィルタ係数を取得し、
     前記フィルタ処理手段は、前記復号済み画像を用いて、イントラ予測により予測値を生成することを特徴とする請求項6に記載の動画像復号装置。
    The entropy decoding means performs entropy decoding on the encoded data to obtain a filter coefficient calculated according to the intra prediction mode,
    The moving image decoding apparatus according to claim 6, wherein the filter processing unit generates a prediction value by intra prediction using the decoded image.
  8.  前記イントラ予測モードは、予めm個(ただし、mは、イントラ予測モードの種類数よりも小さく、ゼロを含まない自然数)のグループに分類され、前記フィルタ係数は、分類されているグループごとに算出されており、
     前記エントロピー復号手段は、符号化データをエントロピー復号して、前記グループごとに算出されたフィルタ係数を取得することを特徴とする請求項7に記載の動画像復号装置。
    The intra prediction modes are classified in advance into m groups (where m is a natural number that is smaller than the number of types of intra prediction modes and does not include zero), and the filter coefficient is calculated for each classified group. Has been
    The moving picture decoding apparatus according to claim 7, wherein the entropy decoding unit performs entropy decoding on the encoded data to obtain a filter coefficient calculated for each group.
  9.  動画像を符号化して符号化データを生成する動画像符号化装置と、当該動画像符号化装置により生成された符号化データを復号する動画像復号装置と、を備える動画像処理システムであって、
     前記動画像符号化装置は、
     入力画像および局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する事前予測値生成手段と、
     前記入力画像と、前記事前予測値生成手段により生成された予測値と、に基づく誤差を最小化するフィルタ係数を算出する誤差最小化フィルタ係数算出手段と、
     前記事前予測値生成手段により生成された予測値に対して、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を用いてフィルタ処理を行う符号化側フィルタ処理手段と、
     前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数をエントロピー符号化して、符号化データを生成するエントロピー符号化手段と、を備え、
     前記動画像復号装置は、
     前記エントロピー符号化手段により生成された符号化データをエントロピー復号して、前記誤差最小化フィルタ係数算出手段により算出されたフィルタ係数を取得するエントロピー復号手段と、
     整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち前記事前予測値生成手段により予測値を生成する際に用いられたものにより復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記エントロピー復号手段により取得されたフィルタ係数を用いてフィルタ処理を行う復号側フィルタ処理手段と、を備えることを特徴とする動画像処理システム。
    A moving image processing system comprising: a moving image encoding device that encodes a moving image to generate encoded data; and a moving image decoding device that decodes encoded data generated by the moving image encoding device. ,
    The moving image encoding device is:
    Pre-prediction value generating means for generating a prediction value by at least one of inter prediction based on integer precision motion compensation and intra prediction using an input image and a local decoded image;
    An error minimizing filter coefficient calculating means for calculating a filter coefficient for minimizing an error based on the input image and the predicted value generated by the prior predicted value generating means;
    Encoding side filter processing means for performing filter processing on the prediction value generated by the prior prediction value generation means using the filter coefficient calculated by the error minimization filter coefficient calculation means;
    Entropy encoding means for entropy encoding the filter coefficient calculated by the error minimizing filter coefficient calculation means to generate encoded data, and
    The moving picture decoding device comprises:
    Entropy decoding means for entropy decoding the encoded data generated by the entropy encoding means and obtaining the filter coefficient calculated by the error minimizing filter coefficient calculation means;
    A prediction value is generated using a decoded image generated by inter prediction based on motion compensation of integer precision and intra prediction, which is used when the prediction value is generated by the prior prediction value generation unit, and is generated. And a decoding-side filter processing unit that performs a filter process on the predicted value using the filter coefficient acquired by the entropy decoding unit.
  10.  事前予測値生成手段、誤差最小化フィルタ係数算出手段、およびフィルタ処理手段、を備え、符号化済みの局所復号画像を用いた予測符号化を許容する動画像符号化装置における動画像符号化方法であって、
     前記事前予測値生成手段が、入力画像および前記局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する第1のステップと、
     前記誤差最小化フィルタ係数算出手段が、前記入力画像と、前記第1のステップにより生成された予測値と、に基づく誤差を最小化するフィルタ係数を算出する第2のステップと、
     前記フィルタ処理手段が、前記第1のステップにより生成された予測値に対して、前記第2のステップにより算出されたフィルタ係数を用いてフィルタ処理を行う第3のステップと、を備えることを特徴とする動画像符号化方法。
    A moving picture coding method in a moving picture coding apparatus that includes a predictive value generating means, an error minimizing filter coefficient calculating means, and a filter processing means, and that allows predictive coding using a coded local decoded image There,
    A first step of generating a prediction value by at least one of inter prediction based on integer-precision motion compensation and intra prediction, using the input image and the locally decoded image; When,
    A second step in which the error minimizing filter coefficient calculating means calculates a filter coefficient that minimizes an error based on the input image and the predicted value generated in the first step;
    The filter processing means includes a third step of performing filter processing on the prediction value generated in the first step using the filter coefficient calculated in the second step. A video encoding method.
  11.  エントロピー復号手段およびフィルタ処理手段を備え、復号済み画像を用いた予測復号を許容する動画像復号装置における動画像復号方法であって、
     前記エントロピー復号手段が、符号化データをエントロピー復号してフィルタ係数を取得する第1のステップと、
     前記フィルタ処理手段が、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより前記復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記第1のステップにより取得されたフィルタ係数を用いてフィルタ処理を行う第2のステップと、を備えることを特徴とする動画像復号方法。
    A moving picture decoding method in a moving picture decoding apparatus that includes entropy decoding means and filter processing means and allows predictive decoding using decoded pictures,
    A first step in which the entropy decoding means obtains a filter coefficient by entropy decoding the encoded data;
    The filter processing means generates a prediction value using the decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction, and for the generated prediction value, the first And a second step of performing a filter process using the filter coefficient acquired in the first step.
  12.  事前予測値生成手段、誤差最小化フィルタ係数算出手段、およびフィルタ処理手段、を備え、符号化済みの局所復号画像を用いた予測符号化を許容する動画像符号化装置における動画像符号化方法を、コンピュータに実行させるためのプログラムであって、
     前記事前予測値生成手段が、入力画像および前記局所復号画像を用いて、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより予測値を生成する第1のステップと、
     前記誤差最小化フィルタ係数算出手段が、前記入力画像と、前記第1のステップにより生成された予測値と、に基づく誤差を最小化するフィルタ係数を算出する第2のステップと、
     前記フィルタ処理手段が、前記第1のステップにより生成された予測値に対して、前記第2のステップにより算出されたフィルタ係数を用いてフィルタ処理を行う第3のステップと、をコンピュータに実行させるためのプログラム。
    A moving picture coding method in a moving picture coding apparatus that includes a pre-prediction value generation means, an error minimization filter coefficient calculation means, and a filter processing means, and that allows predictive coding using a coded local decoded image A program for causing a computer to execute,
    A first step of generating a prediction value by at least one of inter prediction based on integer-precision motion compensation and intra prediction, using the input image and the locally decoded image; When,
    A second step in which the error minimizing filter coefficient calculating means calculates a filter coefficient that minimizes an error based on the input image and the predicted value generated in the first step;
    The filter processing means causes the computer to execute a third step of performing filter processing on the prediction value generated in the first step using the filter coefficient calculated in the second step. Program for.
  13.  エントロピー復号手段およびフィルタ処理手段を備え、復号済み画像を用いた予測復号を許容する動画像復号装置における動画像復号方法を、コンピュータに実行させるためのプログラムであって、
     前記エントロピー復号手段が、符号化データをエントロピー復号してフィルタ係数を取得する第1のステップと、
     前記フィルタ処理手段が、整数精度の動き補償に基づくインター予測と、イントラ予測と、のうち少なくともいずれかにより前記復号済み画像を用いて予測値を生成し、生成した予測値に対して、前記第1のステップにより取得されたフィルタ係数を用いてフィルタ処理を行う第2のステップと、をコンピュータに実行させるためのプログラム。
    A program for causing a computer to execute a moving picture decoding method in a moving picture decoding apparatus that includes entropy decoding means and filter processing means and allows predictive decoding using decoded pictures,
    A first step in which the entropy decoding means obtains a filter coefficient by entropy decoding the encoded data;
    The filter processing means generates a prediction value using the decoded image by at least one of inter prediction based on integer-precision motion compensation and intra prediction, and for the generated prediction value, the first A program for causing a computer to execute a second step of performing a filtering process using the filter coefficient acquired in the first step.
PCT/JP2015/085739 2015-02-09 2015-12-22 Moving image coding device, moving image decoding device, moving image processing system, moving image coding method, moving image decoding method, and program WO2016129185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023071A JP2016146572A (en) 2015-02-09 2015-02-09 Moving picture encoder, moving picture decoder, moving picture processing system, moving picture encoding method, moving picture decoding method, and program
JP2015-023071 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129185A1 true WO2016129185A1 (en) 2016-08-18

Family

ID=56615390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085739 WO2016129185A1 (en) 2015-02-09 2015-12-22 Moving image coding device, moving image decoding device, moving image processing system, moving image coding method, moving image decoding method, and program

Country Status (2)

Country Link
JP (1) JP2016146572A (en)
WO (1) WO2016129185A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030175A (en) * 2009-07-01 2011-02-10 Sony Corp Image processing unit and method
WO2011039931A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Image encoding device, image decoding device, image encoding method and image decoding method
WO2012042720A1 (en) * 2010-09-30 2012-04-05 三菱電機株式会社 Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030175A (en) * 2009-07-01 2011-02-10 Sony Corp Image processing unit and method
WO2011039931A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Image encoding device, image decoding device, image encoding method and image decoding method
WO2012042720A1 (en) * 2010-09-30 2012-04-05 三菱電機株式会社 Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method

Also Published As

Publication number Publication date
JP2016146572A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
KR102165340B1 (en) Methods of determination for chroma quantization parameter and apparatuses for using the same
KR102512053B1 (en) Methods of decoding using skip mode and apparatuses for using the same
KR101493140B1 (en) Flexible band offset mode in sample adaptive offset in hevc
JP6352141B2 (en) Moving picture encoding apparatus, moving picture decoding apparatus, moving picture compression transmission system, moving picture encoding method, moving picture decoding method, and program
WO2014157172A1 (en) Dynamic-image coding device, dynamic-image decoding device, dynamic-image coding method, dynamic-image decoding method, and program
JP2017513326A (en) Deblock filtering using pixel distance
JP2008283303A (en) Image encoding device, and image encoding method
TW201631974A (en) Video coding device, video decoding device, video coding method, video decoding method and program
US20140247865A1 (en) Video encoding method and apparatus, video decoding method and apparatus, and program therefor
JP5707261B2 (en) Moving picture encoding apparatus, moving picture decoding apparatus, moving picture encoding method, moving picture decoding method, and program
US20140044167A1 (en) Video encoding apparatus and method using rate distortion optimization
JP2011135460A (en) Moving image encoding apparatus and moving image decoding apparatus
WO2016129185A1 (en) Moving image coding device, moving image decoding device, moving image processing system, moving image coding method, moving image decoding method, and program
US8731057B2 (en) Video encoding apparatus, video decoding apparatus, video encoding method, video decoding method, and computer program
JP2014017621A (en) Video compression format converter, video compression format conversion method and program
US20130322535A1 (en) Method for encoding and decoding images using plurality of reference images and device using method
JP7387806B2 (en) Image decoding device, image decoding method and program
JP6154753B2 (en) Moving picture decoding apparatus, moving picture decoding method, and program
JP5872929B2 (en) Moving picture encoding apparatus, moving picture decoding apparatus, moving picture encoding method, moving picture decoding method, and program
JP7083971B1 (en) Image decoder, image decoding method and program
JP7061737B1 (en) Image decoder, image decoding method and program
JP7034363B2 (en) Image decoder, image decoding method and program
WO2020184262A1 (en) Image decoding device, image decoding method, and program
JP5969408B2 (en) Video compression format conversion apparatus, video compression format conversion method, and program
TW201626797A (en) Video image encoding device, video image decoding device, video image encoding method, video image decoding method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882058

Country of ref document: EP

Kind code of ref document: A1