WO2016127748A1 - 一种天线校准的方法及装置 - Google Patents

一种天线校准的方法及装置 Download PDF

Info

Publication number
WO2016127748A1
WO2016127748A1 PCT/CN2016/070497 CN2016070497W WO2016127748A1 WO 2016127748 A1 WO2016127748 A1 WO 2016127748A1 CN 2016070497 W CN2016070497 W CN 2016070497W WO 2016127748 A1 WO2016127748 A1 WO 2016127748A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
group
transmission
radio frequency
channels
Prior art date
Application number
PCT/CN2016/070497
Other languages
English (en)
French (fr)
Inventor
李传军
苏昕
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP16748549.9A priority Critical patent/EP3258615B1/en
Priority to US15/550,326 priority patent/US10536247B2/en
Publication of WO2016127748A1 publication Critical patent/WO2016127748A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method and apparatus for antenna calibration.
  • Smart antenna technology brings great advantages to mobile communication systems. For example, smart antennas can be combined with baseband digital signal processing technology for joint detection. Because in the system that constitutes the smart antenna, the characteristics of various components used, especially active devices, are very sensitive to the operating frequency and ambient temperature, and the characteristics of each link are not changed due to the above reasons. The same, so the antenna needs to be calibrated periodically in the actual network.
  • Antenna calibration is divided into transmit calibration and receive calibration.
  • the prior art generally uses a Frequency Division Multiplexing (FDM) method to map the transmitted calibration pilot sequence to the frequency domain of each RF channel.
  • FDM Frequency Division Multiplexing
  • the calibration pilot sequence to be transmitted is mapped in different frequency domains of each radio channel, and the spacing length ⁇ d of each adjacent two transmission calibration pilot sequences on each radio channel must be met. The requirement is greater than or equal to the total number of RF channels. Therefore, at this time, the number of transmit calibration pilot sequences that can only be mapped on each RF channel is That is, only two transmit calibration pilot sequences can be used for channel estimation of the RF channel within the 20 MHz operating bandwidth of each RF channel.
  • Embodiments of the present invention provide a method and apparatus for antenna calibration to improve accuracy of transmission calibration.
  • Embodiments of the present invention provide a method for antenna calibration, including the following steps:
  • the inter-channel compensation coefficient of the radio frequency channel in each transmitting direction is determined.
  • each group of transmission direction radio channels includes N transmission direction radio frequency channels;
  • N is 1;
  • N is an integer greater than 1, and the frequency domain resources used to transmit the calibration pilot sequence in each of the transmission direction radio channel transmission groups in a group are different.
  • the inter-channel compensation coefficient of the radio channel in each transmitting direction is determined, which specifically includes:
  • one reference channel is selected from each group of transmission direction radio frequency channels to obtain M reference channels;
  • the inter-channel compensation coefficient of each transmitting direction RF channel is determined.
  • a reference channel is selected from each group of transmission direction RF channels, including:
  • sending the calibration pilot sequence between groups by using the M reference channels specifically includes:
  • sending the calibration pilot sequence between groups by using the M reference channels specifically includes:
  • the channel estimation is performed on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, which specifically includes:
  • channel estimation is performed on the M reference channels, and the mapping of the inter-group transmission calibration pilot sequences on each reference channel is obtained.
  • the channel information of the radio frequency channel corresponding to each of the reference channels is corrected according to the channel information of each reference channel, and specifically includes:
  • channel estimation is performed on each group of the transmitting direction radio frequency channel, and the channel information of the M group transmitting direction radio frequency channel is obtained, which specifically includes:
  • Channel estimation is performed for each group of transmission direction radio frequency channels according to the feedback signal of the transmission calibration pilot sequence received in the group receiving the calibration receiving channel, and corresponding to the subcarriers mapped by the transmission calibration pilot sequence in the group on the radio frequency channel of each group of transmission directions.
  • Channel information ;
  • the sending of the calibration pilot sequence in the group is sent by using the sending direction radio channel in the corresponding group, which specifically includes:
  • the third subcarrier offset is greater than or equal to the number of channels in the RF direction of a group of transmission directions, and the adjacent two transmission directions are reflected by the RF channel.
  • the spacing between the transmitted subcarriers is a fourth subcarrier offset, and the fourth subcarrier offset is less than the third subcarrier offset.
  • the sending time slot is a protection time slot; the first group of transmitting directions sends a calibration pilot sequence corresponding to the first transmission time slot in the RF channel transmission group, and the second group of transmission direction RF channel transmission group sends the calibration pilot channel.
  • the second transmission time slot corresponding to the sequence is two adjacent protection time slots, or X protection time slots are separated between the first transmission time slot and the second transmission time slot; wherein the first group of transmission direction radio frequency channels and The second group of transmission direction radio frequency channels are any two sets of transmission direction radio frequency channels adjacent to the transmission time slot in which the calibration pilot sequence is transmitted in the group, and X is an integer greater than or equal to 1.
  • the RF channel of the antenna array is grouped in the transmission direction, and each group of the transmission direction radio channel transmits the calibration pilot sequence only in the corresponding transmission slot transmission group of the group, that is, one time
  • the gap has only one set of transmit direction radio frequency channel transmit group to send a calibration pilot sequence, and the transmit calibration pilot sequence is sent compared to all transmit direction radio frequency channels in one slot antenna array, since the calibration pilot sequence is transmitted by one slot reduction
  • the number of RF channels such that the length of the intra-group transmit calibration pilot sequence mapped on each RF channel used for channel estimation is increased, thereby determining the accuracy of the inter-channel compensation coefficients for each of the transmit direction RF channels. Improved.
  • An embodiment of the present invention provides an apparatus for antenna calibration, including:
  • the acquiring unit is configured to obtain the radio frequency channel grouping information in the sending direction, and the transmitting direction radio frequency channel in the antenna array is divided into M groups, where M is an integer greater than one;
  • a first processing unit configured to send a transmission time slot of the calibration pilot sequence in each group corresponding to each group of transmission direction radio frequency channels, and send a calibration pilot sequence in the group by using a transmission direction radio frequency channel in the corresponding group, according to the calibration
  • the feedback signal of the calibration pilot sequence transmitted in the group received by the receiving channel performs channel estimation on each group of transmitting direction radio frequency channels, and obtains channel information of the M group transmitting direction radio frequency channel; wherein, the group corresponding to the different groups transmits the calibration pilot
  • the transmission slots of the sequence are different;
  • the first determining unit is configured to determine, according to channel information of the M group transmitting direction radio frequency channel, an inter-channel compensation coefficient of each transmitting direction radio frequency channel.
  • each group of transmission direction radio channels includes N transmission direction radio frequency channels;
  • N is 1;
  • N is an integer greater than 1, and the frequency domain resources used to transmit the calibration pilot sequence in each of the transmission direction radio channel transmission groups in a group are different.
  • the first determining unit specifically includes:
  • the selecting unit is configured to select one reference channel from each group of sending direction radio frequency channels according to channel information of each group of transmitting direction radio frequency channels, to obtain M reference channels;
  • a second processing unit configured to send an inter-group transmission calibration pilot sequence through the M reference channels, and perform channel estimation on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, to obtain M Channel information of the reference channel;
  • a second determining unit configured to correct, according to the channel information of each reference channel, channel information of a group of transmitting direction radio frequency channels corresponding to each reference channel; according to the modified channel information of each group of transmitting directions of the radio frequency channel Determine the inter-channel compensation coefficient of the RF channel for each transmission direction.
  • the unit is selected, specifically for:
  • the second processing unit is specifically configured to:
  • the second processing unit is specifically configured to:
  • the second processing unit is specifically configured to:
  • Channel estimation is performed on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, and channel information corresponding to the subcarriers mapped by the transmission calibration pilot sequence between the groups on each reference channel is obtained. ;
  • the second determining unit is specifically configured to:
  • the second processing unit is specifically configured to:
  • Channel estimation is performed for each group of transmission direction radio frequency channels according to the feedback signal of the transmission calibration pilot sequence received in the group receiving the calibration receiving channel, and corresponding to the subcarriers mapped by the transmission calibration pilot sequence in the group on the radio frequency channel of each group of transmission directions.
  • Channel information ;
  • the first processing unit is specifically configured to:
  • the third subcarrier offset is greater than or The number of channels in the RF channel is equal to the number of channels in the sending direction.
  • the spacing between the subcarriers mapped by the adjacent two transmitting directions is the fourth subcarrier offset, and the fourth subcarrier offset is smaller than the third subcarrier. Offset.
  • the sending time slot is a protection time slot; the first group of transmitting directions sends a calibration pilot sequence corresponding to the first transmission time slot in the RF channel transmission group, and the second group of transmission direction RF channel transmission group sends the calibration pilot channel.
  • the second transmission time slot corresponding to the sequence is two adjacent protection time slots, or X protection time slots are separated between the first transmission time slot and the second transmission time slot; wherein the first group of transmission direction radio frequency channels and The second group of transmission direction radio frequency channels are any two sets of transmission direction radio frequency channels adjacent to the transmission time slot in which the calibration pilot sequence is transmitted in the group, and X is an integer greater than or equal to 1.
  • the RF channel in the transmission direction of the antenna array is divided into M groups, and when the transmission calibration is performed, the calibration pilot sequence is sent in each corresponding group of the RF channels in each group of the transmission directions.
  • each group of transmission direction radio channels transmits the calibration pilot sequence only in the corresponding transmission slot transmission group of the group, that is, only one set of transmission direction RF channels are sent in one slot.
  • the length of the intra-group transmit calibration pilot sequence mapped on each of the used RF channels is increased, thereby improving the accuracy of the inter-channel compensation coefficients of the determined RF channels for each of the transmission directions.
  • FIG. 1 is a schematic flowchart of a method for antenna calibration according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of mapping, in a group, a transmission calibration pilot sequence on a subcarrier in an entire working bandwidth of a radio channel in a transmitting direction according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of sending, by each group, a transmission calibration pilot sequence in a transmission time slot according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a radio frequency channel in a sending direction according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another method for antenna calibration according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of mapping, by using an inter-group transmission calibration pilot sequence, on subcarriers within a whole working bandwidth of a reference channel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an apparatus for calibrating an antenna according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another apparatus for antenna calibration according to an embodiment of the present invention.
  • Embodiments of the present invention are suitable for transmitting and calibrating an antenna.
  • the embodiment of the present invention is applicable to a system including multiple antennas.
  • each antenna unit has a radio frequency channel in a transmitting direction.
  • the embodiment of the present invention does not limit the number of radio frequency channels in a transmitting direction possessed by one antenna unit.
  • the RF channel in the transmission direction in the antenna array is divided into M groups, and M is an integer greater than 1.
  • the number of RF channels in each group of transmission directions may be the same or different.
  • an antenna unit having a transmission direction radio frequency channel may be used to divide one or more rows of antenna units into a group, or one or more columns of antenna units may be divided into a group.
  • the transmitting calibration pilot sequence for performing transmission calibration may include transmitting a calibration sequence in a group. Further, the transmitting calibration pilot sequence for performing transmission calibration in the embodiment of the present invention may further include an inter-group transmission calibration sequence.
  • the method of using the calibration sequence and the inter-group transmission calibration sequence in the group can be found in the following.
  • the intra-group transmission calibration pilot sequence and the inter-group transmission calibration sequence described in the embodiments of the present invention may have various determination manners.
  • a method for determining a transmit calibration pilot sequence c In (i) in a group according to an embodiment of the present invention is specifically described below.
  • a ZC (Zadoff-Chu) sequence with better correlation can be used to transmit the calibration pilot sequence in the group.
  • a ZC (Zadoff-Chu) sequence with better correlation can be used to transmit the calibration pilot sequence in the group.
  • K is the total number of subcarriers in the frequency domain in the RF channel of all transmission directions
  • N RB is the number of resource blocks in the system operating bandwidth of a single transmit direction radio channel, The number of subcarriers within each resource block.
  • K is the total number of subcarriers
  • the spacing between subcarriers mapped by the RF channel for each transmission direction that is, the interval at which the calibration pilot sequence is transmitted in two adjacent groups in the RF channel in a single transmission direction; Indicates rounding down.
  • the calibration pilot sequence when the intra-group transmission calibration pilot sequence is mapped to each group of transmission direction radio frequency channels, the calibration pilot sequence needs to be transmitted within the group within the entire working bandwidth.
  • the working bandwidth of the RF channel in each transmission direction may be 20MHz or 40MHz; at the same time, it is necessary to determine the interval for transmitting the calibration pilot sequence in the adjacent two groups in the RF channel of a single transmission direction, in order to ensure that the intra-group transmission calibration pilot sequences are respectively mapped to each RF in the frequency division manner.
  • the interval for transmitting the calibration pilot sequence in the adjacent two groups should be greater than or equal to N, and N is the total number of RF channels in the transmission direction in each group of transmission directions.
  • c In (i) indicates that the calibration pilot sequence is transmitted in the i-th group
  • i is the index number, and i is a positive integer.
  • a method for determining a sequence of transmitting a calibration pilot sequence between reference channels is specifically described below.
  • the reference channel is a transmission direction radio frequency channel selected from each group of transmission direction radio frequency channels, for each reference channel, the number of subcarriers in the frequency domain in the transmission direction radio frequency channel is within the system operating bandwidth. K is still determined by the above formula (1).
  • K is the total number of subcarriers
  • the interval at which the calibration pilot sequence is transmitted in the adjacent two groups in the RF channel for the transmission direction of the single reference channel Indicates rounding down.
  • c Ref (j) represents a calibration pilot sequence transmitted between the jth groups corresponding to the reference channel
  • a calibration pilot sequence is transmitted between all groups in each reference channel, specifically, a calibration pilot is transmitted in all groups in each transmission direction radio channel.
  • the sequences are:
  • each group of transmission direction radio frequency channels separately transmits a calibration pilot sequence in one group, and different groups of transmission direction radio frequency channels correspond to different groups to transmit calibration pilot sequences. It is also possible that each group of transmission direction radio channels correspond to the same transmission calibration pilot sequence.
  • the time for determining the transmission of the calibration pilot sequence in the group and the transmission of the calibration pilot sequence between the groups may be determined by the user, such as pre-determining the transmission of the calibration pilot sequence in the group, when performing channel on the RF channel for each group of transmission directions. After the estimation, when it is necessary to perform channel estimation on the reference channel, it is also determined that the calibration pilot sequence is transmitted between the groups.
  • FIG. 1 shows a method for antenna calibration provided by an embodiment of the present invention. As shown in the figure, the method includes the following steps:
  • Step 101 Obtain radio frequency channel grouping information in the sending direction, and the radio frequency channel in the transmitting direction in the antenna array is divided into M groups, where M is an integer greater than 1.
  • Step 102 Send a transmission pilot slot of the calibration pilot sequence in each group corresponding to each group of transmission direction radio frequency channels, and send a calibration pilot sequence in the group by using the transmission direction radio frequency channel in the corresponding group, and receive the calibration pilot sequence according to the calibration receiving channel.
  • the feedback signal of the calibration pilot sequence in the group is used for channel estimation of each group of transmission direction radio frequency channels, and the channel information of the M group transmission direction radio frequency channel is obtained; wherein, when transmitting the calibration pilot sequence in the group corresponding to different groups Gap varies;
  • Step 103 Determine channel compensation coefficients of the RF channels in each transmitting direction according to channel information of the M group transmitting direction radio frequency channels.
  • each group of transmission direction radio channels includes N transmission direction radio frequency channels, N is 1 or N is an integer greater than 1.
  • N is an integer greater than 1
  • the frequency domain resources used for transmitting the calibration pilot sequence in each transmission direction radio frequency channel transmission group in a group are different, that is, the frequency division method is used to transmit in a group within a group. Send a calibration pilot sequence.
  • N 1, that is, only one transmitting direction radio frequency channel is included in one group.
  • time-division is adopted for each of the transmitting directions of the RF channels in all the transmitting directions.
  • the mode is sent on each transmission slot.
  • a calibration pilot sequence may be sent in a group corresponding to each transmission direction radio frequency channel, and the mapping is performed in the transmission direction.
  • a calibration pilot sequence may be transmitted in a group with a large number of mappings on the frequency domain resources of the radio frequency channel in the transmission direction, and may also be used in each frequency domain resource of the radio channel in the transmission direction.
  • the mapping has an intra-group transmit calibration pilot sequence to improve the accuracy of channel estimation for the transmit direction RF channel.
  • each group of transmission direction radio frequency channels includes multiple transmission direction radio frequency channels, and all transmission direction radio frequency channels in the group of transmission direction radio frequency channels need to be transmitted in one transmission time slot.
  • the calibration pilot sequence is sent in the corresponding group, so that the group transmitting calibration pilot sequence corresponding to the radio channel can be mapped to different frequency domain resources of the group of transmission direction radio channels by using a frequency division method, thereby The frequency domain resources used to transmit the calibration pilot sequence in each transmit direction RF channel transmission group within a group are different.
  • Another implementation manner is that channel estimation of multiple transmit direction radio channels in a group can be implemented by using a code division method.
  • the RF channel of the transmission direction of the antenna array is grouped, and each group of the transmission direction radio channel transmits the calibration pilot sequence only in the corresponding transmission slot transmission group of the group, that is, only one group of one slot
  • the transmitting direction radio frequency channel transmitting group sends a calibration pilot sequence, and sends a calibration pilot sequence to all the transmitting direction radio frequency channels in one slot antenna array.
  • the embodiment of the present invention reduces the transmission of the calibration pilot sequence by one slot.
  • the number of RF channels, such that the length of the transmittable calibration pilot sequences that can be mapped on each RF channel in a group increases accordingly, further due to the intra-group transmit calibration mapped for channel estimation for each transmit direction RF channel.
  • the length of the pilot sequence is increased, so that the accuracy of the inter-channel compensation coefficient of each of the transmission direction RF channels determined according to the channel information of the M group transmission direction RF channel is improved.
  • each group of transmission direction radio frequency channels corresponds to one group transmitting calibration pilot sequences, and the transmission calibration pilot sequences corresponding to different groups may be the same or different.
  • Each group sends a calibration pilot sequence in the group corresponding to the radio frequency channel for channel estimation of the group of transmission direction radio channels.
  • the calibration pilot sequence is sent in the group mapped on the radio channel of each group of the transmission direction, and the intra-group transmission calibration pilot sequence corresponding to each group of the transmission direction radio channel is mapped in the transmission direction radio channel.
  • the spacing between the mapped subcarriers is a fourth subcarrier offset, and the fourth subcarrier offset is less than the third subcarrier offset.
  • the figure exemplarily shows a schematic diagram of mapping a transmit calibration pilot sequence within a group onto subcarriers within the entire operating bandwidth of the transmit direction radio frequency channel.
  • the group of transmission directions includes five antennas in the RF channel, which are the first transmission direction RF channel 201 and the second transmission.
  • the direction of the RF channel 202, the third transmission direction RF channel 203, the fourth transmission direction RF channel 204, and the fifth transmission direction RF channel 205, each of the transmission direction RF channels corresponds to a working bandwidth 209, and the corresponding transmission is included in one working bandwidth. All subcarriers in the direction RF channel.
  • the spacing between subcarriers mapped by each of the transmission direction radio frequency channels is a third subcarrier offset 210.
  • the spacing between the first set of transmit calibration pilot sequences 206 and the second set of transmit calibration pilot sequences 207 mapped in the first transmit direction radio frequency channel 201 in FIG. 2 is the third subcarrier offset. Amount 210.
  • the spacing between the subcarriers mapped by the adjacent two transmission direction radio frequency channels is the fourth subcarrier offset 211.
  • the calibration pilot sequences transmitted in all groups in the group corresponding to each group of transmission direction radio frequency channels determined in the foregoing part are respectively Where c In (i) indicates that the calibration pilot sequence is transmitted in the i-th group; i is an index number, and i is a positive integer. The length of the calibration pilot sequence is sent within the group. All of the intra-group transmit calibration pilot sequences are mapped to each of the transmit direction radio channels. As shown in FIG. 2, c In (0) is first mapped in each transmit direction radio frequency channel, that is, the calibration pilot sequence sequence 206 is transmitted in the first group, and then c In is mapped in each transmit direction radio channel.
  • the frequency division method is used to map the transmission calibration pilot sequences corresponding to each group of the transmission direction radio frequency channels to the subcarriers in the entire working bandwidth of the RF channel in the transmission direction.
  • the distance shown by the three subcarrier offset 210 may be the spacing between subcarriers mapped by the radio frequency channel in each transmission direction. Therefore, in the third subcarrier offset 210, it is required to ensure that each of the transmission direction radio channels in the transmission direction is mapped to an intra-group transmission calibration pilot sequence in different frequency domain resources, so in FIG. 2
  • each of the five transmission direction radio channels one intra-group transmission calibration pilot sequence is mapped, and each of the group transmission calibration pilot sequences is mapped on different frequency domain resources.
  • the intra-group transmission calibration pilot sequence mapped in each of the transmission direction radio frequency channels may be uniformly arranged in the third subcarrier offset 210.
  • the fourth subcarrier offset 211 now shown in FIG. 2 is the pitch of one subcarrier.
  • the fourth sub-carrier offset 211 may also be a plurality of sub-carriers, and the specific value is not limited in the embodiment of the present invention.
  • FIG. 2 only shows a mapping manner of transmitting calibration pilot sequences in a group in a group.
  • there are a group of transmission direction radio frequency channels in the group and mapping manners of transmitting calibration pilot sequences in groups in other groups may be performed.
  • the mapping manner of the intra-group transmission calibration pilot sequence shown in FIG. 2 is the same as that of the group, and may be inconsistent, which is not limited in the embodiment of the present invention.
  • the calibration is sent in each group corresponding to each group of transmission direction radio frequency channels.
  • the calibration pilot sequence is transmitted within the transmission group in the transmission slot of the pilot sequence.
  • FIG. 3 exemplarily shows that each group of transmitted calibration pilot sequences is transmitted.
  • FIG. 3 includes a plurality of subframes 303, and further includes a plurality of transmission slots, such as a transmission slot 305, a transmission slot 307, a transmission slot 308, and the like.
  • a transmit time slot is used only for transmitting a group of transmitted calibration pilot sequences mapped on a set of transmit direction radio channels.
  • Antenna calibration is performed throughout the transmit calibration period 301 by transmitting a set of transmit calibration pilot sequences on each transmit time slot.
  • the previous frame 304 of the transmission slot and the subsequent frame 306 of the transmission slot are subframes of a special structure.
  • the transmission time slot is a protection time slot
  • the previous frame 304 of the transmission time slot is a downlink pilot time slot
  • the next frame 306 of the transmission time slot is an uplink pilot time slot.
  • the transmission slot 305 is used for transmitting the transmission calibration pilot sequence of the first group of transmission direction radio channels
  • the transmission slot 307 is for transmitting the transmission calibration pilot sequence of the second group of transmission direction radio channels
  • transmitting The time slot three 308 is used to transmit a transmission calibration pilot sequence of the Mth group transmission direction radio frequency channel. Then, the interval between the transmission slots corresponding to the two sets of transmission direction radio frequency channels becomes the inter-group transmission calibration offset 302.
  • another sending manner may be: sending a time slot 305 for transmitting a first set of transmitting direction radio frequency channel transmission calibration pilot sequence, and transmitting time slot two not transmitting a set of sending direction radio frequency channel transmitting calibration guide
  • the frequency sequence sequentially transmits the transmission calibration pilot sequence of each group of transmission direction radio frequency channels sequentially on the transmission time slot until the transmission time slot three 308 is used to transmit the transmission calibration pilot sequence of the Mth group transmission direction radio frequency channel. That is, one or more transmission slots may be spaced between transmission slots corresponding to each of the two sets of transmission direction radio frequency channels.
  • there are multiple ways of transmitting on a transmission time slot as long as one transmission time slot is only used to transmit a calibration pilot sequence in a transmission group mapped on a radio channel of a group of transmission directions.
  • the sending time slot is a protection time slot; the first group of transmitting directions sends a calibration pilot sequence corresponding to the sending of the calibration pilot sequence in the group, and the second group of transmitting directions sends the calibration pilot sequence in the group.
  • the corresponding transmission slot 2 is two adjacent protection slots, or between the transmission slot 1 and the transmission slot 2, X guard slots; wherein the first group of transmission direction radio channels and the second group transmission
  • the direction radio frequency channel is any two sets of transmission direction radio frequency channels adjacent to the transmission time slot in which the calibration pilot sequence is transmitted in the group, and X is an integer greater than or equal to 1.
  • the interval of the transmission slots between the two sets of transmitting direction radio frequency channels may be the inter-group transmission calibration offset ⁇ T In .
  • the antenna array includes a calibration receiving channel in addition to one transmitting direction RF channel for each antenna, as shown in FIG.
  • FIG. 4 is a schematic diagram showing a transmission direction radio frequency channel according to an embodiment of the present invention.
  • a total of M groups of transmission direction radio frequency channels are assumed, and each group of transmission direction radio frequency channels includes N transmission direction radio frequency channels.
  • FIG. 4 is a schematic diagram showing a transmission direction radio frequency channel according to an embodiment of the present invention.
  • a total of M groups of transmission direction radio frequency channels are assumed, and each group of transmission direction radio frequency channels includes N transmission direction radio frequency channels.
  • the first group of transmission direction radio frequency channels 401, the first group of transmission direction radio frequency channels 401 includes a total of N transmission direction radio frequency channels, respectively, the transmission direction RF channel 1 (406), the transmission mode RF channel 2 ( 407), until the transmission direction RF channel N (408); the second group of transmission direction RF channel 402, the second group of transmission direction RF channel 402 includes a total of N transmission direction RF channels, respectively, the transmission direction RF channel N+1 (409
  • a coupling network 405, and a calibration receive channel 404 Also included in FIG. 4 is a coupling network 40
  • the transmission direction radio frequency channel is sent through the transmission direction in the group in one transmission time slot.
  • a calibration pilot sequence is transmitted in the group, and the intra-group transmission calibration pilot sequence transmitted in the N transmission direction radio frequency channels in the group is processed by the coupling network 405, and the calibration guide of the group is received according to the calibration reception channel 404.
  • the frequency sequence feedback signal performs channel estimation on the set of transmission direction radio frequency channels.
  • the intra-group transmission calibration pilot sequence corresponding to the first group of transmission direction radio frequency channels is determined.
  • each set of transmitting direction radio frequency channels corresponds to the same group of transmitting calibration pilot sequences, and those skilled in the art may also select different groups of transmitting calibration pilot sequences for other groups of transmitting direction radio frequency channels.
  • determining a mapping manner of the intra-group transmission calibration pilot sequence corresponding to the first group of transmission direction radio frequency channels in the first group of transmission direction radio frequency channels is determined.
  • the third step is to send the calibration pilot sequence in the group corresponding to the first group of transmission direction radio frequency channels according to the spacing between the subcarriers mapped by the RF channel in each transmission direction and the mapping of the adjacent two transmission direction RF channels.
  • the spacing between the carriers is mapped in the RF channel of each transmitting direction of the first group of transmitting directions, and the transmitting signals of the RF channels of the N transmitting directions are generated, and the transmitting signals of the RF channels of the N transmitting directions are determined according to formula (8). :
  • i is the index number, and i is a positive integer.
  • c In (i) indicates that the calibration pilot sequence is transmitted in the i-th group
  • n is the index number of the RF channel in each transmitting direction of each group of transmitting RF channels, n is a positive integer, and n ranges from [1, N];
  • k is the index number of each subcarrier, and The spacing between subcarriers mapped by the RF channel for each transmit direction; The spacing between subcarriers mapped by the adjacent two transmit directions RF channels.
  • generating a transmission signal of the above-mentioned N transmission direction radio frequency channels It can be a signal processor, which can be located on the RF side of the physical structure or on the baseband side.
  • the first group of transmission direction radio channels includes N transmission direction radio frequency channels, The sequence can be written as
  • the fourth step is in the first to the Nth transmission direction radio frequency channels in the first group of transmission direction radio frequency channels, respectively Performing an IFFT (Inverse Fast Fourier Transform) process and adding a corresponding CP (Cyclic Prefix) to form a time domain signal of the first to Nth transmission direction RF channels. among them, a time domain signal indicating a radio channel of the nth transmission direction, where t is a sequence number of a OFDM (Orthogonal Frequency Division Multiplex) symbol;
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • the fifth step is to form a time domain signal of the first to the Nth transmission direction RF channels. After that, they are respectively sent through the transmission direction radio frequency channel in the first group. Coupling network received After that, Processing is performed to form a combined signal, and the combined signal is sent to the calibration receiving channel to form a feedback signal y In (t) for transmitting the calibration pilot sequence in the group corresponding to the first group of transmitting direction RF channels.
  • the received feedback signal y In (t) of the calibration pilot sequence is sent in the group corresponding to the first group of the transmission direction radio frequency channels, and the CP is removed, and subjected to FFT (Fast Fourier Transform) transform processing. Forming a frequency domain upper frequency domain signal within the received bandwidth.
  • the processing y In (t) may be a signal processor, which may be located on the radio frequency side in the physical structure or on the baseband side.
  • channel estimation is performed on the first group of transmission direction radio frequency channels according to the feedback signal of the calibration pilot sequence transmitted in the group received by the calibration receiving channel, and the calibration pilot sequence transmitted by the first group of transmission direction radio channels.
  • k is the index number of each subcarrier, i is the index number, and i is a positive integer.
  • the length of the calibration pilot sequence is sent in the group; n is the index number of the RF channel in each direction of the RF channel of each group, n is a positive integer, and the value range of n is [1, N];
  • z In (k) is a frequency domain frequency domain signal in a frequency domain of the feedback signal corresponding to the transmitted calibration pilot sequence in the group corresponding to the kth subcarrier of the first set of transmission direction radio frequency channels;
  • Channel information indicating the corresponding subcarriers in the i-th group mapped in the radio channel of each of the transmitting directions in the first group of transmitting directions.
  • channel estimation is performed on each group of transmission direction radio frequency channels according to the feedback signal of the calibration pilot sequence transmitted in the group received by the calibration receiving channel, and the calibration pilot sequence is sent in the group on the radio channel of each group of transmission directions.
  • Channel information corresponding to the mapped subcarriers performing interpolation processing according to the channel information corresponding to the subcarriers mapped by the transmitting calibration pilot sequence in the group on the radio frequency channel of each group of transmission directions, and obtaining all the radio channels on each group of transmission directions Channel information corresponding to the subcarrier.
  • the mapping information is mapped by the calibration calibration sequence in the group.
  • the subcarrier index number is Where i is the index number and i is a positive integer.
  • the length of the calibration pilot sequence is sent in the group; n is the index number of the RF channel in each direction of the RF channel in each group of transmission directions, n is a positive integer, and the value range of n is [1, N];
  • the subcarriers transmitting the calibration pilot sequence in the unmapped group do not perform corresponding channel estimation. Therefore, based on the already determined channel information of the corresponding subcarriers of the calibration pilot sequence transmitted in the group mapped in the RF channel of each of the transmission direction RF channels, the RF directions of all the transmission directions in the RF channel of the first group of transmission directions are All the remaining subcarriers of the channel are interpolated to obtain channel information of all subcarriers in the entire working bandwidth of all the transmission direction radio channels in the first group of transmission direction radio channels.
  • the channel information of all subcarriers in the entire working bandwidth of all the transmitting RF channels in the first group of transmitting direction radio channels is completed through the above steps. Calculation.
  • the group of transmitting calibration pilot sequences corresponding to the second group of transmission direction radio frequency channels is sent on the transmission time slot corresponding to the second group of transmission direction radio frequency channels, and the receiver feedback signal is further determined to further determine the first group of transmissions.
  • Channel information of all subcarriers in the entire working bandwidth of all transmit directions RF channels in the direction of the RF channel Channel information of all subcarriers in the entire working bandwidth of all transmitting directions of the radio channel in the transmitting direction of the mth group is determined in sequence.
  • m is the group number of the RF channel in the sending direction.
  • the value of m ranges from [1, M]. Until the channel information of all subcarriers in the entire working bandwidth of all the transmitting direction radio channels in the transmitting direction of the Mth group is determined
  • the inter-channel compensation coefficient of the radio frequency channel in each transmitting direction is determined.
  • the inter-channel compensation coefficient of the radio frequency channel in each of the sending directions is determined according to the channel information of the radio frequency channel in each of the sending directions, and there are multiple modes. this.
  • M is the total number of groups of transmission direction radio frequency channels in the antenna array
  • N is the total number of RF channels in the transmit direction of each group of transmit RF channels
  • the mth group transmits channel information of the kth subcarrier of the radio channel of the nth transmission direction of the radio channel;
  • Cal_factor q (k) is the inter-channel compensation coefficient of the kth subcarrier of the mth transmission direction RF channel of the mth group.
  • M is the total number of groups of transmission direction radio frequency channels in the antenna array
  • N is the total number of RF channels in the transmit direction of each group of transmit RF channels
  • the mth group transmits channel information of the kth subcarrier of the radio channel of the nth transmission direction of the radio channel;
  • Cal_factor q (k) is the inter-channel compensation coefficient of the kth subcarrier of the mth transmission direction RF channel of the mth group.
  • the inter-channel compensation coefficient on each carrier of the RF channel in each transmission direction is the minimum value of the channel information of the kth subcarrier of all the transmission direction RF channels.
  • the Field-Programmable Gate Array (FPGA) interface is filled in according to the inter-channel compensation coefficient on each carrier of the RF channel in each transmission direction, and the information of the effective transmission direction RF channel and the invalid transmission are sent.
  • the information of the direction RF channel is written into the FPGA port, and each channel information is sent to the BBU.
  • the embodiment of the present invention further provides another implementation manner, and determining, according to the reference channel, an inter-channel compensation coefficient of the radio frequency channel in each transmitting direction. The details are described below.
  • FIG. 5 is a schematic flow chart of another method for calibrating an antenna according to an embodiment of the present invention. As shown in FIG. 5, the method specifically includes:
  • Step 501, step 501 is consistent with the process performed by step 101 in the foregoing embodiment
  • Step 502 is consistent with the process performed by step 102 in the foregoing embodiment
  • Step 503 Select one reference channel from each group of transmission direction radio frequency channels according to channel information of each group of transmission direction radio frequency channels, and obtain M reference channels; send inter-group transmission calibration pilot sequences through M reference channels, according to calibration The feedback signal of the calibration pilot sequence transmitted between the groups received by the receiving channel performs channel estimation on the M reference channels to obtain channel information of the M reference channels; respectively, according to the channel information of each reference channel, corresponding to each reference channel Correction of channel information of a group of transmitting directions to the RF channel;
  • Step 504 Determine, according to the corrected channel information of each group of transmission direction radio frequency channels, an inter-channel compensation coefficient of each transmission direction radio frequency channel.
  • a transmit direction radio frequency channel is selected from each group of transmit direction radio frequency channels as a reference channel of the group, and M group transmit direction radio frequency channels can determine a total of M reference channels.
  • a calibration pilot sequence is transmitted between groups for channel estimation of M reference channels.
  • each reference channel may respectively send a calibration pilot sequence between one group, and different reference channels correspond to different groups to send a calibration pilot sequence; or M reference channels may jointly transmit a calibration pilot between groups. sequence. The method for determining the transmission of the calibration pilot sequence between groups can be found in the foregoing section.
  • a reference channel is selected from each group of transmission direction RF channels, including:
  • each channel in the first group of transmission direction radio frequency channels is determined according to channel information of each of the transmission direction radio frequency channels in the first group of transmission direction radio frequency channels.
  • the received power of the RF channel is determined according to formula (12):
  • k is the index number of each subcarrier
  • N RB is the number of resource blocks in the system operating bandwidth of a single transmit direction radio channel, The number of subcarriers within each resource block;
  • P n is the received power of the nth transmission direction radio frequency channel in the first group of transmission direction radio frequency channels
  • the first threshold is determined. If the received power of a channel is less than the first threshold, the channel is considered to be an invalid transmit direction radio channel, and the transmit direction radio frequency channel whose received power is not less than the first threshold is determined to be a valid transmit direction radio frequency. aisle. Invalid antenna channels may be caused by faults and other factors. Therefore, when the reference channel is selected, the part of the invalid transmit direction RF channel can be discarded.
  • Method 1 Calculate the average of the received power of all valid transmit directions RF channels in the group, and sort the effective channel powers of the first set of transmit directions in the RF channel that are greater than the average of the received power, and from greater than the received power
  • the effective transmission direction of the average is the channel closest to the average power in the RF channel as the reference channel n Ref (1) of the first group of transmission direction RF channels.
  • Method 2 The channel with the largest received power in the first group of transmission direction RF channels can be selected as the reference channel n Ref (1) of the first group of transmission direction RF channels.
  • Channel information of each radio transmission channel in each of the second set of transmission direction radio channels Determining a reference channel n Ref (2) of the second group of transmission direction radio frequency channels; channel information of each of the transmission direction radio frequency channels according to the mth group transmission direction radio frequency channel Determining the reference channel n Ref (m) of the first group of transmission direction RF channels, m is the group number of each group of transmission direction RF channels; until the channel information of each transmission direction RF channel according to the transmission direction of the group M transmission direction Determine the reference channel n Ref (M) of the first set of transmit direction RF channels.
  • n Ref (m) of each group of transmitting direction radio frequency channels is determined, m is the group number of each group of transmitting direction radio frequency channels, m is a positive integer, and m has a value range of [1, M].
  • the information about the radio channel of the effective transmission direction of each group of the transmission direction radio channel is stored, and then sent to the indoor baseband processing unit (BBU) for the BBU to perform corresponding processing.
  • BBU indoor baseband processing unit
  • the BBU knows that If the RF channel is in the invalid transmission direction, the RF channel is invalid. In the subsequent transmission of the signal, the RF channel in the invalid transmission direction can be discarded, or the fault status can be reported.
  • the foregoing content of the embodiment of the present invention has determined that the inter-group transmission calibration pilot sequence of the reference channel has been determined, and the reference channel of each group of transmission direction radio frequency channels has been determined.
  • mapping manner of the inter-group transmission calibration pilot sequence corresponding to the reference channel in the reference channel Since there are a total of M reference channels, the number is smaller than the total number of all antennas in the large-scale antenna array, so there are many ways to map the inter-group transmission calibration pilot sequences in the reference channel.
  • Manner 1 Send the transmission time slot of the calibration pilot sequence between groups in the current calibration period, send the inter-group transmission calibration pilot sequence through the M reference channels, and send the M reference channels to send the calibration pilot sequence between the groups.
  • Frequency domain resources vary.
  • the inter-group transmission calibration pilot sequence when transmitting the inter-group transmission calibration pilot sequence mapped on the group of reference channels on one transmission time slot, the inter-group transmission calibration pilot sequence needs to be mapped in a frequency division manner to correspond to each reference channel. On the frequency domain resources.
  • the inter-group transmission calibration pilot sequence mapped on the reference channel is transmitted on the transmission slot 309, and the inter-group transmission calibration pilot sequence and the M-th transmission direction radio frequency mapped on the reference channel are transmitted.
  • the time interval between transmitting the calibration pilot sequences mapped on the channel is the reference channel calibration offset 310 ⁇ T Ref , assuming that the interval between the time slots transmitted by each adjacent two sets of transmitting directions RF channels is a calibration offset between the groups.
  • the transmit time slot is a guard time slot.
  • the inter-group transmission calibration pilot sequence mapped on each reference channel is separately sent on different time slots in a time division manner to estimate each reference channel information channel.
  • the inter-group transmission calibration pilot sequence can be arbitrarily mapped on the frequency domain resource of each reference channel.
  • each reference channel information channel is estimated by a code division method.
  • the frequency division method based on the first method is introduced in the embodiment of the present invention, but the manner of performing channel estimation on the reference channel is not limited thereto.
  • the reference channel is regarded as a group, and the inter-group transmission calibration pilot sequence corresponding to the reference channel is sent on one transmission time slot.
  • the inter-group transmission calibration pilot sequence is mapped on subcarriers within the entire working bandwidth of each reference channel; wherein the spacing between the subcarriers mapped by each reference channel is the first subcarrier offset
  • the first subcarrier offset is greater than or equal to M
  • the spacing between subcarriers mapped by two adjacent reference channels is a second subcarrier offset
  • the second subcarrier offset is less than The first subcarrier offset
  • determining a spacing between subcarriers mapped by each reference channel, and a spacing between subcarriers mapped by two adjacent reference channels, and transmitting a calibration guide between the groups corresponding to the reference channel The frequency sequence is mapped in each reference channel according to the spacing between the subcarriers mapped by each reference channel and the spacing between the subcarriers mapped by the adjacent two reference channels.
  • the spacing between subcarriers mapped by two adjacent reference channels is determined according to formula (13):
  • M is the total number of RF channels in the transmission direction
  • FIG. 6 exemplarily shows a schematic diagram of mapping inter-group transmission calibration pilot sequences onto subcarriers within the entire working bandwidth of the reference channel.
  • the figure shows a schematic diagram of a reference channel. It is assumed that there are five sets of reference channels in the antenna array, that is, M is 5. Since each reference channel corresponds to one reference channel, the antenna array has five references.
  • the channels are respectively a first reference channel 601, a second reference channel 602, a third reference channel 603, a fourth reference channel 604, and a fifth reference channel 605.
  • Each reference channel corresponds to a working bandwidth 609, and includes a working bandwidth. This corresponds to all subcarriers in the reference channel.
  • the spacing between the subcarriers mapped by each reference channel is the first subcarrier offset 610.
  • the spacing between the first inter-group transmit calibration pilot sequence 606 and the second inter-packet transmit calibration pilot sequence 607 mapped in the first reference channel 601 in FIG. 6 is the first sub-carrier offset 610.
  • the spacing between subcarriers mapped by two adjacent reference channels is a second subcarrier offset 611.
  • the spacing between the first set of transmit calibration pilot sequences 606 in the first reference channel 601 and the first set of transmit calibration pilot sequences 606 in the second reference channel 602 in FIG. 6 is the second subcarrier offset.
  • the amount of shift 611 is the amount of shift 611.
  • the inter-group transmission calibration pilot sequence corresponding to each reference channel determined in the foregoing part is
  • c Ref (j) represents a calibration pilot sequence transmitted between the jth groups corresponding to the reference channel, where j is an index number, The length of the calibration pilot sequence is sent between groups.
  • the inter-group transmit calibration pilot sequences are mapped to each reference channel separately.
  • c Ref (0) is first mapped in each reference channel, ie a sequence of calibration pilot sequences 606 is transmitted between the first group, and then c Ref (1) is mapped in each reference channel, ie A calibration pilot sequence 607 is transmitted between the second group, and the determined inter-group transmission calibration pilot sequences are sequentially mapped into each reference channel, respectively, until the last mapping in each reference channel That is A calibration pilot sequence 608 is transmitted between the groups.
  • the first subcarrier offset in FIG. 6 may be the spacing between subcarriers mapped by each reference channel. Since it is necessary to ensure that the inter-group transmission calibration pilot sequence is mapped on different frequency domain resources in each of the reference channel in the first subcarrier offset 610, in FIG. 6, only the content is satisfied.
  • each of the five reference channels is mapped with an inter-group transmission calibration pilot sequence, and each The inter-group transmission calibration pilot sequences are mapped on different frequency domain resources.
  • the inter-group transmission calibration pilot sequence mapped in each reference channel may be uniformly arranged in the first subcarrier offset 610.
  • the second subcarrier offset 611 now shown in FIG. 6 is the pitch of one subcarrier.
  • the second sub-carrier offset 611 may also be a plurality of sub-carriers, and the specific value is not limited in the embodiment of the present invention.
  • the second subcarrier offset 611 in FIG. 6 is the spacing between subcarriers mapped by the adjacent two transmission direction radio frequency channels.
  • the inter-group transmission calibration pilot sequence corresponding to the reference channel is mapped in each reference channel to generate transmission signals of M reference channels, and the transmission signals of the M reference channels are determined according to formula (14);
  • j is the index number, Transmitting the length of the calibration pilot sequence between groups;
  • c Ref (j) sends a calibration pilot sequence between the jth groups corresponding to the reference channel
  • n is the group number of the RF channel in the transmission direction as the reference channel, m is a positive integer, and the value range of m is [1, M];
  • k is the index number of each subcarrier, The range of k is N RB is the number of resource blocks in the system operating bandwidth of a single transmit direction radio channel, The number of subcarriers within each resource block; The spacing between subcarriers mapped for each reference channel; The spacing between subcarriers mapped for two adjacent reference channels;
  • the signal generated by generating the transmission signals of the M transmit direction radio frequency channels may be a signal processor, and the signal processor may be located on the radio frequency side in the physical structure or on the baseband side.
  • the transmit signal sequence of the M transmit direction radio frequency channels can be written as
  • the fourth step in the first to the Mth reference channels in the reference channel, respectively Perform IFFT conversion processing and add corresponding CP to form time domain signals of the first to Mth reference channels among them, a time domain signal representing the mth reference channel, t being the sequence number of the time-series OFDM symbol;
  • the fifth step forms a time domain signal of the first to the Mth reference channels After that, they are sent separately through the reference channel.
  • the feedback signal y Ref (t) of the calibration pilot sequence is sent between the groups corresponding to the received reference channel, the CP is removed, and the FFT transform process is performed to form the frequency domain upper frequency domain signal in the received entire bandwidth.
  • the processing y Ref (t) can be a signal processor, which can be located on the RF side of the physical structure or on the baseband side.
  • the seventh step is to send a feedback signal of the calibration pilot sequence between the groups received according to the calibration receiving channel.
  • the frequency domain signal in the frequency domain and the transmission signal of the reference channel corresponding to the RF channel transmitted through the reference channel are used to perform channel estimation on the reference channel, and the mapping in the RF channel of each transmission direction in the reference channel is obtained.
  • the channel information of the corresponding subcarriers of the calibration pilot sequence is sent between the groups, and the channel information of the corresponding subcarriers of the inter-group transmission calibration pilot sequence mapped in the reference channel corresponding to the radio channel of each group of the transmission direction is determined according to formula (15):
  • k is the index number of each subcarrier, The range of k is N RB is the number of resource blocks in the system operating bandwidth of a single transmit direction radio channel, The number of subcarriers within each resource block; j is the index number, The length of the calibration pilot sequence is sent between groups, where m is the group number of the RF channel in the transmission direction as the reference channel, m is a positive integer, and the value range of m is [1, M]; The spacing between subcarriers mapped for each reference channel; The spacing between subcarriers mapped for two adjacent reference channels.
  • z Ref (k) is a frequency domain frequency domain signal in a frequency domain of a feedback signal corresponding to a feedback pilot sequence transmitted between groups corresponding to the kth subcarrier of the received reference channel;
  • the channel estimation is performed on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, which specifically includes:
  • Channel estimation is performed on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, and channel information corresponding to the subcarriers mapped by the transmission calibration pilot sequence between the groups on each reference channel is obtained. Interpolating according to the channel information corresponding to the subcarriers mapped by the calibration pilot sequence transmitted between the groups on each reference channel, and obtaining all the information on each reference channel Channel information corresponding to the subcarrier.
  • the channel information of the corresponding subcarrier that transmits the calibration pilot sequence between the groups is mapped, because the index number of the subcarrier is Where j is the index number,
  • the length of the calibration pilot sequence is sent between the groups.
  • m is the group number of the RF channel in the transmission direction as the reference channel.
  • m is a positive integer.
  • the value range of m is [1, M]; the value range of k is N RB is the number of resource blocks in the system operating bandwidth of a single transmit direction radio channel, The number of subcarriers within each resource block; The spacing between subcarriers mapped for each reference channel; The spacing between subcarriers mapped for two adjacent reference channels.
  • the subcarriers transmitting the calibration pilot sequence between the unmapped groups do not perform corresponding channel estimation. Therefore, based on the already determined channel information of the corresponding subcarriers of the inter-group transmission calibration pilot sequence mapped in the reference channel corresponding to each group of the transmission direction radio frequency channels, all the remaining subcarriers in the reference channel are interpolated to obtain a reference. Channel information for all subcarriers within the entire working bandwidth within the channel.
  • the channel information of the radio frequency channel corresponding to each of the reference channels may be corrected according to the channel information of each reference channel. Specifically, the following steps are performed for each group of the transmission direction radio channels. :
  • M-1N+n Ref (m) where n Ref (m) represents the index number of the RF channel in the transmission direction of the reference channel of the m-th transmission direction RF channel in the original group, and the value of n Ref (m)
  • the range is [1, N].
  • the channel information obtained by transmitting the calibration pilot sequence between the groups according to the transmission channel of each group of the transmission direction, and the channel information obtained by transmitting the calibration pilot sequence in the group according to the reference channel of each group of the transmission direction, according to the formula (16) Calculate the correction factor for determining the RF channel for each group of transmission directions:
  • k is the index number of each subcarrier, and the value range of k is N RB is the number of resource blocks in the system operating bandwidth of a single transmit direction radio channel, The number of subcarriers within each resource block;
  • the reference channel indicating the transmission direction of the mth group of the radio channel is based on channel information of the kth subcarrier obtained by transmitting the calibration pilot sequence between groups;
  • the reference channel indicating the transmission direction of the mth group to the radio channel is based on channel information of the kth subcarrier obtained by transmitting the calibration pilot sequence in the group;
  • F m (k) represents the correction coefficient of the kth subcarrier of the mth transmission direction radio frequency channel.
  • the channel information of each subcarrier in each of the transmission direction radio frequency channels in each of the transmission direction radio frequency channels is calculated according to formula (17):
  • F m (k) represents a correction coefficient of the kth subcarrier of the mth transmission direction radio frequency channel
  • Channel information indicating the kth subcarrier of the nth transmission direction radio frequency channel of the mth direction of the radio channel
  • the mth group transmits channel information of the kth subcarrier of the radio channel of the nth transmission direction of the radio channel.
  • the inter-channel compensation coefficient of the radio frequency channel in each of the sending directions is determined according to the modified channel information of the radio frequency channel in each of the sending directions, and there are various manners, and several methods are listed in the embodiment of the present invention. But it is not limited to this.
  • Method 1 Determine the inter-channel compensation coefficient on each carrier of the RF channel in each transmission direction by formula (18):
  • M is the total number of groups of transmission direction radio frequency channels in the antenna array
  • N is the total number of RF channels in the transmit direction of each group of transmit RF channels
  • the mth group transmits the channel information of the kth subcarrier of the radio channel of the nth transmission direction of the radio channel;
  • Cal_factor q (k) is the inter-channel compensation coefficient of the kth subcarrier of the mth transmission direction RF channel of the mth group.
  • M is the total number of groups of transmission direction radio frequency channels in the antenna array
  • N is the total number of RF channels in the transmit direction of each group of transmit RF channels
  • the mth group transmits the channel information of the kth subcarrier of the radio channel of the nth transmission direction of the radio channel;
  • Cal_factor q (k) is the inter-channel compensation coefficient of the kth subcarrier of the mth transmission direction RF channel of the mth group.
  • the inter-channel compensation coefficient on each carrier of the RF channel in each transmission direction is the minimum value of the corrected channel information of the kth subcarrier of all the transmission direction RF channels.
  • the FPGA interface is filled in according to the inter-channel compensation coefficient cal_factor q (k) on each carrier of the RF channel in each transmission direction, and the information of the effective transmission direction RF channel and the information of the invalid transmission direction RF channel are written into the FPGA. Port and send each channel information to the BBU.
  • the Q transmit direction radio frequency channels are divided into M groups, and each group of transmit direction radio frequency channels adopts FDM mode to map the intra-group transmit calibration pilot sequences in the group transmit direction radio frequency.
  • the M-group transmission direction uses the Time Division Multiplexing (TDM) mode between the RF channels to send different groups of transmission direction RF channels in different transmission slots.
  • TDM Time Division Multiplexing
  • the RF channel in the transmission direction of the antenna array is divided into M groups, and the calibration pilot sequences are transmitted in the group corresponding to each group of the transmission slots corresponding to the RF channels in each group of transmission directions.
  • the sending time slots of the calibration pilot sequences sent by the different groups are different. That is, when the M group sends the direction RF channels, the time-division mode is used to transmit the calibration in each group of the transmitting direction RF channels in different sending time slots. Pilot sequence, therefore, channel estimation can be performed independently for each group of transmission direction radio channels, and when frequency division is used for channel estimation for each group of transmission direction radio channels, only one transmission direction radio channel in one group is satisfied.
  • the frequency domain resources used for sending the calibration pilot sequence in the transmission group may be different, that is, for each group of transmission direction radio frequency channels, each group of corresponding group transmission calibration pilot sequences may be mapped to the group by frequency division method.
  • the group sends directions to the RF channel. Therefore, since the number of RF channels in each group is small, the frequency division method can be used.
  • Guide within the group transmit calibration pilot sequence is mapped onto each radio frequency channel within the group, further The length of the intra-group transmission calibration pilot sequence mapped on each radio channel used for channel estimation is increased, thereby determining the accuracy of the inter-channel compensation coefficient of each radio channel in each transmission direction.
  • Fig. 7 exemplarily shows a schematic structural view of an apparatus for antenna calibration.
  • the embodiment of the present invention further provides an apparatus for aligning an antenna.
  • the apparatus includes an obtaining unit 701, a first processing unit 702, and a first determining unit 703.
  • the first determining unit 703 further includes a selecting unit. 704.
  • the obtaining unit 701 is configured to obtain the radio frequency channel grouping information in the sending direction, and the radio frequency channel in the sending direction of the antenna array is divided into M groups, where M is an integer greater than 1.
  • the first processing unit 702 is configured to send a transmission time slot of the calibration pilot sequence in each group corresponding to each group of the transmission direction radio frequency channels, and send the calibration pilot sequence in the group by using the transmission direction radio frequency channel in the corresponding group, according to
  • the feedback signal of the calibration pilot sequence transmitted in the group received by the calibration receiving channel is channel-estimated for each group of transmitting direction radio frequency channels, and the channel information of the M group transmitting direction RF channel is obtained; wherein the group is sent to the calibration guide corresponding to the different groups
  • the transmission slots of the frequency sequence are different;
  • the first determining unit 703 is configured to determine, according to the channel information of the M group transmitting direction radio frequency channel, an inter-channel compensation coefficient of each transmitting direction radio frequency channel.
  • each group of transmission direction radio frequency channels includes N transmission direction radio frequency channels; N is 1 or N is an integer greater than 1. In the case where N is an integer greater than 1, it is necessary to satisfy each transmission direction in a group.
  • the frequency domain resources used for transmitting the calibration pilot sequence in the radio channel transmission group are different.
  • the first determining unit 703 specifically includes:
  • the selecting unit 704 is configured to select one reference channel from each group of sending direction radio frequency channels according to channel information of each group of transmitting direction radio frequency channels, to obtain M reference channels;
  • the second processing unit 705 is configured to send the inter-group transmission calibration pilot sequence through the M reference channels, and perform channel estimation on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, to obtain M.
  • Channel information of reference channels
  • a second determining unit 706, configured to separately reference each channel according to channel information of each reference channel Channel information of a set of transmitting direction RF channels corresponding to the channel is corrected; and the inter-channel compensation coefficient of each transmitting direction RF channel is determined according to the corrected channel information of each set of transmitting direction radio frequency channels.
  • the selecting unit 704 is specifically configured to:
  • the second processing unit 705 is specifically configured to:
  • the second processing unit 705 is specifically configured to:
  • the second processing unit 705 is specifically configured to:
  • Channel estimation is performed on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, and channel information corresponding to the subcarriers mapped by the transmission calibration pilot sequence between the groups on each reference channel is obtained. ;
  • the second determining unit 706 is specifically configured to:
  • the second processing unit 705 is specifically configured to:
  • Channel estimation is performed for each group of transmission direction radio frequency channels according to the feedback signal of the transmission calibration pilot sequence received in the group receiving the calibration receiving channel, and corresponding to the subcarriers mapped by the transmission calibration pilot sequence in the group on the radio frequency channel of each group of transmission directions.
  • Channel information ;
  • the first processing unit 702 is specifically configured to:
  • the third subcarrier offset is greater than or equal to the number of channels in a set of transmit direction radio frequency channels, and the spacing between subcarriers mapped by the adjacent two transmit directions radio frequency channels is fourth.
  • the subcarrier offset, the fourth subcarrier offset is less than the third subcarrier offset.
  • the sending time slot is a protection time slot; the first group of transmitting directions sends a calibration pilot sequence corresponding to the first transmission time slot in the RF channel transmission group, and the second group of transmission direction RF channel transmission group sends the calibration pilot channel.
  • the second transmission time slot corresponding to the sequence is two adjacent protection time slots, or X protection time slots are separated between the first transmission time slot and the second transmission time slot; wherein the first group of transmission direction radio frequency channels and The second group of transmission direction radio frequency channels are any two sets of transmission direction radio frequency channels adjacent to the transmission time slot in which the calibration pilot sequence is transmitted in the group, and X is an integer greater than or equal to 1.
  • the RF channel in the transmission direction of the antenna array is divided into M groups, and the calibration pilot sequences are transmitted in the group corresponding to each group of the transmission slots corresponding to the RF channels in each group of transmission directions.
  • the sending time slots of the calibration pilot sequences sent by the different groups are different. That is, when the M group sends the direction RF channels, the time-division mode is used to transmit the calibration in each group of the transmitting direction RF channels in different sending time slots. Pilot sequence, therefore, channel estimation can be performed independently for each group of transmission direction radio channels, and when frequency division is used for channel estimation for each group of transmission direction radio channels, only one transmission direction radio channel in one group is satisfied.
  • the frequency domain resources used for sending the calibration pilot sequence in the transmission group may be different, that is, for each group of transmission direction radio frequency channels, each group of corresponding group transmission calibration pilot sequences may be mapped to the group by frequency division method.
  • the group sends directions to the RF channel. Therefore, since the number of RF channels in each group is small, the frequency division method can be used.
  • the intra-group transmit calibration pilot sequence is mapped to each radio channel in the group, further increasing the length of the intra-group transmit calibration pilot sequence mapped on each radio channel used for channel estimation, thereby determining each The accuracy of the inter-channel compensation coefficient of the transmit direction RF channel is improved.
  • Fig. 8 exemplarily shows a schematic structural view of an apparatus for antenna calibration.
  • an embodiment of the present invention further provides an apparatus for antenna calibration, as shown in FIG. 8, including a transceiver 801, a processor 802, and a memory 803, where:
  • the processor 802 is configured to read a program in the memory 803 and perform the following process:
  • the transceiver 801 may include a baseband processing component, a radio frequency processing component, and the like according to an actual requirement, and configured to send the intra-group transmission calibration pilot sequence through the transmission direction radio frequency channel in the corresponding group, and send the calibration pilot sequence in the group through the calibration reception channel. Feedback signal.
  • each group of transmission direction radio frequency channels includes N transmission direction radio frequency channels; N is 1 or N is an integer greater than 1. In the case where N is an integer greater than 1, it is necessary to satisfy each transmission direction in a group.
  • the frequency domain resources used for transmitting the calibration pilot sequence in the radio channel transmission group are different.
  • the processor 802 is specifically configured to:
  • one reference channel is selected from each group of transmission direction radio frequency channels to obtain M reference channels;
  • the processor 802 is specifically configured to:
  • the processor 802 is specifically configured to:
  • the processor 802 is specifically configured to:
  • the processor 802 is specifically configured to:
  • Channel estimation is performed on the M reference channels according to the feedback signal of the inter-group transmission calibration pilot sequence received by the calibration receiving channel, and channel information corresponding to the subcarriers mapped by the transmission calibration pilot sequence between the groups on each reference channel is obtained. ;
  • the processor 802 is specifically configured to:
  • the processor 802 is specifically configured to:
  • Channel estimation is performed for each group of transmission direction radio frequency channels according to the feedback signal of the transmission calibration pilot sequence received in the group receiving the calibration receiving channel, and corresponding to the subcarriers mapped by the transmission calibration pilot sequence in the group on the radio frequency channel of each group of transmission directions.
  • Channel information ;
  • the processor 802 is specifically configured to:
  • the third subcarrier offset is greater than or equal to the number of channels in a set of transmit direction radio frequency channels, and the spacing between subcarriers mapped by the adjacent two transmit directions radio frequency channels is fourth.
  • the subcarrier offset, the fourth subcarrier offset is less than the third subcarrier offset.
  • the sending time slot is a protection time slot; the first group of transmitting directions sends a calibration pilot sequence corresponding to the first transmission time slot in the RF channel transmission group, and the second group of transmission direction RF channel transmission group sends the calibration pilot channel.
  • the second transmission time slot corresponding to the sequence is two adjacent protection time slots, or X protection time slots are separated between the first transmission time slot and the second transmission time slot; wherein the first group of transmission direction radio frequency channels and The second group of transmission direction radio frequency channels are any two sets of transmission direction radio frequency channels adjacent to the transmission time slot in which the calibration pilot sequence is transmitted in the group, and X is an integer greater than or equal to 1.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 802 and various circuits of memory represented by memory 803.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 801 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 802 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 802 in performing operations.
  • the RF channel in the transmission direction of the antenna array is divided into M groups, and the calibration pilot sequences are transmitted in the group corresponding to each group of the transmission slots corresponding to the RF channels in each group of transmission directions.
  • the sending time slots of the calibration pilot sequences sent by the different groups are different. That is, when the M group sends the direction RF channels, the time-division mode is used to transmit the calibration in each group of the transmitting direction RF channels in different sending time slots. Pilot sequence, therefore, channel estimation can be performed independently for each group of transmission direction radio channels, and when frequency division is used for channel estimation for each group of transmission direction radio channels, only one transmission direction radio channel in one group is satisfied.
  • the frequency domain resources used by the pilot sequences may be different, that is, for each group of transmission direction radio frequency channels, each group of corresponding group transmission calibration pilot sequences may be mapped to the group of transmission direction radio frequency channels by frequency division. Therefore, since the number of radio channels in each group is small, the frequency division method can map more intra-group transmit calibration pilot sequences to each radio channel in the group, further due to channel estimation. The length of the intra-group transmit calibration pilot sequence mapped on each of the used RF channels is increased, thereby determining the accuracy of the inter-channel compensation coefficient for each of the transmit direction RF channels.
  • embodiments of the present invention can be provided as a method, or a computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation in the flowchart The steps of a process or a plurality of processes and/or block diagrams of a function specified in a block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种天线校准的方法及装置,用以提高发送校准的准确度。本发明实施例中将天线阵列中的发送方向射频通道被分为M组,采用时分方式在不同发送时隙发送每组发送方向射频通道的组内发送校准导频序列,随着每组的发送方向射频通道数量变少,使得进行信道估计所使用的每个射频通道上映射的组内发送校准导频序列的长度增大,从而确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。

Description

一种天线校准的方法及装置
本申请要求在2015年02月11日提交中国专利局、申请号为201510073800.0、发明名称为“一种天线校准的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,尤其涉及一种天线校准的方法及装置。
背景技术
智能天线技术给移动通信系统带来了巨大的优势,例如,可将智能天线与基带数字信号处理技术结合使用,以进行联合检测等工作。由于在组成智能天线的系统中,所使用的各种元器件特别是有源器件的特性,对工作频率、环境温度都非常敏感,而每条链路的特性因上述原因所产生的变化也不相同,所以在实际网络中需周期性对天线进行校准。
天线校准分为发送校准和接收校准。当对天线的射频通道进行发送校准时,现有技术通常采用频分(Frequency Division Multiplexing,简称FDM)方式将发送校准导频序列映射在每个射频通道的频域上。当天线阵列为大规模智能天线阵列时,由于每个射频通道上映射的发送校准导频序列数量较少,因此,根据每个射频通道上映射的发送校准导频序列进行信道估计,所得到每个射频通道的信道信息精确度较低。
举一个例子,以每个射频通道为20MHz带宽,有Nsc=1200个带宽为15kHz的子载波的LTE(Long Term evolution,长期演进)系统为例,假设智能天线阵列具有512个天线的射频通道,为了实现频分方式的映射,即将发送校准导频序列映射在每个射频通道的不同频域上,则必须符合每一个射频通道上的每相邻两个发送校准导频序列的间距长度Δd大于等于射频通道总数量的要求,因此,此时,每个射频通道上仅能映射的发送校准导频序列的数量为
Figure PCTCN2016070497-appb-000001
即在每个射频通道的20MHz的工作带宽内仅能采用两个发送校准导频序列进行射频通道的信道估计。
综上所述,亟需一种天线校准的方法及装置,用于提高发送校准的准确度。
发明内容
本发明实施例提供一种天线校准的方法及装置,用以提高发送校准的准确度。
本发明实施例提供一种天线校准的方法,包括以下步骤:
获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,每组发送方向射频通道包括N个发送方向射频通道;
N为1;或者
N为大于1的整数,且一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。
实施中,根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数,具体包括:
分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;
通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收 到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,得到M个参考通道的信道信息;
分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正;
根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,具体包括:
针对每组发送方向射频通道,执行以下步骤:
确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
实施中,通过M个参考通道发送组间发送校准导频序列,具体包括:
将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,第二子载波偏移量小于第一子载波偏移量。
实施中,通过M个参考通道发送组间发送校准导频序列,具体包括:
在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考通道发送组间发送校准导频序列,M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
实施中,根据校准接收通道接收到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,具体包括:
根据校准接收通道接收到的组间发送校准导频序列的反馈信号,对M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射 的子载波所对应的信道信息;
根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每个参考通道上的所有子载波对应的信道信息。
实施中,分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正,具体包括:
针对每组发送方向射频通道,执行以下步骤:
计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
实施中,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息,具体包括:
根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;
根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
实施中,通过相应组内的发送方向射频通道发送组内发送校准导频序列,具体包括:
将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量,第三子载波偏移量大于或等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映 射的子载波之间的间距为第四子载波偏移量,第四子载波偏移量小于第三子载波偏移量。
实施中,发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的第一发送时隙,与第二组发送方向射频通道发送组内发送校准导频序列所对应的第二发送时隙为相邻的两个保护时隙,或者第一发送时隙和第二发送时隙之间间隔X个保护时隙;其中,第一组发送方向射频通道与第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。
在本发明实施例提供的技术方案中将天线阵列的发送方向射频通道进行了分组,每组发送方向射频通道仅在该组对应的发送时隙发送组内发送校准导频序列,即,一个时隙仅有一组发送方向射频通道发送组内发送校准导频序列,相比于一个时隙天线阵列中的所有发送方向射频通道发送发送校准导频序列,由于减少了一个时隙发送校准导频序列的射频通道数量,这样,进行信道估计所使用的每个射频通道上映射的组内发送校准导频序列的长度增大,从而使得确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。
本发明实施例提供一种天线校准的装置,包括:
获取单元,用于获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
第一处理单元,用于分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
第一确定单元,用于根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,每组发送方向射频通道包括N个发送方向射频通道;
N为1;或者
N为大于1的整数,且一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。
实施中,第一确定单元,具体包括:
选取单元,用于分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;
第二处理单元,用于通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,得到M个参考通道的信道信息;
第二确定单元,用于分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正;根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,选取单元,具体用于:
针对每组发送方向射频通道,执行以下步骤:
确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
实施中,第二处理单元,具体用于:
将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,第二子载波偏移量小于第一子载波偏移量。
实施中,第二处理单元,具体用于:
在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考 通道发送组间发送校准导频序列,M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
实施中,第二处理单元,具体用于:
根据校准接收通道接收到的组间发送校准导频序列的反馈信号,对M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息;
根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每个参考通道上的所有子载波对应的信道信息。
实施中,第二确定单元,具体用于:
针对每组发送方向射频通道,执行以下步骤:
计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
实施中,第二处理单元,具体用于:
根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;
根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
实施中,第一处理单元,具体用于:
将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量,第三子载波偏移量大于或 等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量,第四子载波偏移量小于第三子载波偏移量。
实施中,发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的第一发送时隙,与第二组发送方向射频通道发送组内发送校准导频序列所对应的第二发送时隙为相邻的两个保护时隙,或者第一发送时隙和第二发送时隙之间间隔X个保护时隙;其中,第一组发送方向射频通道与第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。
在本发明实施例提供的技术方案中,天线阵列中的发送方向射频通道被分为M组,在进行发送校准时,分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息,其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。由于将天线阵列的发送方向射频通道进行了分组,每组发送方向射频通道仅在该组对应的发送时隙发送组内发送校准导频序列,即,一个时隙仅有一组发送方向射频通道发送组内发送校准导频序列,相比于一个时隙天线阵列中的所有发送方向射频通道发送发送校准导频序列,减少了一个时隙发送校准导频序列的射频通道数量,这样,进行信道估计所使用的每个射频通道上映射的组内发送校准导频序列的长度增大,从而使得确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中 所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种天线校准的方法流程示意图;
图2为本发明实施例提供的一种将组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上的示意图;
图3为本发明实施例提供的每组发送校准导频序列在发送时隙中进行发送的示意图;
图4为本发明实施例提供的发送方向射频通道的示意图;
图5为本发明实施例提供的另一种天线校准的方法流程示意图;
图6为本发明实施例提供的一种将组间发送校准导频序列映射在参考通道的整个工作带宽内的子载波上的示意图;
图7为本发明实施例提供的一种天线校准的装置的结构示意图;
图8为本发明实施例提供的另一种天线校准的装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例适用于对天线进行发送校准。本发明实施例适用于包括多个天线的系统,通常,每个天线单元具有一个发送方向射频通道,本发明实施例对一个天线单元拥有的发送方向射频通道数量不作限制。
本发明实施例中,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数。每组发送方向射频通道的数量可相同也可不同。以一个天线单元具有一个发送方向射频通道为例,可将一行或多行天线单元划分为一组,也可将一列或多列天线单元划分为一组,本发明实施例对如何分组不作限制。 比如,对于具有Q个天线单元的天线阵列,可以分为M组发送方向射频通道,每组发送方向射频通道中均有N个发送方向射频通道,M×N=Q。
本发明实施例中,进行发送校准用的发送校准导频序列可包括组内发送校准序列。进一步地,本发明实施例中进行发送校准用的发送校准导频序列还可包括组间发送校准序列。组内发送校准序列和组间发送校准序列的使用方法可参见后续内容。
本发明实施例中所述的组内发送校准导频序列和组间发送校准序列可有多种确定方式。
下面具体介绍本发明实施例提供的一种确定组内发送校准导频序列cIn(i)的方法。
首先,组内发送校准导频序列可采用相关性较好的ZC(Zadoff-Chu)序列。在系统工作带宽内,根据公式(1)确定所有发送方向射频通道中频域上子载波总个数:
Figure PCTCN2016070497-appb-000002
上述公式(1)中:
K为所有发送方向射频通道中频域上子载波总个数;
NRB为单个发送方向射频通道的系统工作带宽内资源块(resource block)的数量,
Figure PCTCN2016070497-appb-000003
为每个资源块内的子载波个数。
其次,通过公式(2)确定组内发送校准导频序列的长度:
Figure PCTCN2016070497-appb-000004
上述公式(2)中:
Figure PCTCN2016070497-appb-000005
为组内发送校准导频序列的长度;
K为子载波总个数;
Figure PCTCN2016070497-appb-000006
为每个发送方向射频通道所映射的子载波之间的间距,即单个发送方向射频通道内相邻两个组内发送校准导频序列的间隔;
Figure PCTCN2016070497-appb-000007
表示向下取整。
具体来说,当将组内发送校准导频序列映射到每组发送方向射频通道时,需要将组内发送校准导频序列在整个工作带宽内,例如每个发送方向射频通道的工作带宽可为20MHz或40MHz;同时,需要确定在单个发送方向射频通道内,相邻两个组内发送校准导频序列的间隔,为了保证通过频分方式将组内发送校准导频序列分别映射在每个射频通道的不同频域资源上,相邻两个组内发送校准导频序列的间隔要满足大于等于N,N为每组发送方向射频通道内发送方向射频通道的总数量。
最后,通过公式(3)确定组内发送校准导频序列:
cIn(i)=xg(w)      (3)
上述公式(3)中:
cIn(i)表示第i个组内发送校准导频序列;
i为索引号,i为正整数,
Figure PCTCN2016070497-appb-000008
Figure PCTCN2016070497-appb-000009
为组内发送校准导频序列的长度;
Figure PCTCN2016070497-appb-000010
Figure PCTCN2016070497-appb-000011
Figure PCTCN2016070497-appb-000012
表示向下取整;
Figure PCTCN2016070497-appb-000013
为用于组内发送导频序列的ZC序列的长度,且
Figure PCTCN2016070497-appb-000014
为满足条件
Figure PCTCN2016070497-appb-000015
的最大质数;
Figure PCTCN2016070497-appb-000016
u=0
v=0。
进一步的,由于
Figure PCTCN2016070497-appb-000017
并将
Figure PCTCN2016070497-appb-000018
代入上述公式(3)中,得到公式(4):
Figure PCTCN2016070497-appb-000019
上述公式(4)中:mod表示取余。
下面举一个具体例子用以说明上述确定组内发送校准导频序列的方法。
假设每个发送方向射频通道的工作带宽为20MHz,且该工作带宽内该发 送方向射频通道中频域上子载波个数K=1200,每组发送方向射频通道中发送方向射频通道的数量N=8,因为需要满足
Figure PCTCN2016070497-appb-000020
的要求,因此可设置
Figure PCTCN2016070497-appb-000021
首先根据上述公式(2)确定组内发送校准导频序列的长度
Figure PCTCN2016070497-appb-000022
Figure PCTCN2016070497-appb-000023
接着确定用于组内发送导频序列的ZC序列的长度
Figure PCTCN2016070497-appb-000024
由于
Figure PCTCN2016070497-appb-000025
为满足条件
Figure PCTCN2016070497-appb-000026
的最大质数,而
Figure PCTCN2016070497-appb-000027
因此满足条件
Figure PCTCN2016070497-appb-000028
的最大质数为99,即
Figure PCTCN2016070497-appb-000029
之后根据公式(3)和公式(4)确定出每个发送方向射频通道内的所有组内发送校准导频序列,具体来说,每个发送方向射频通道内的所有组内发送校准导频序列分别为:
Figure PCTCN2016070497-appb-000030
下面具体介绍本发明实施例提供的一种确定参考通道的组间发送校准导频序列的方法。
首先,由于参考通道是从每组发送方向射频通道中挑选出的一个发送方向射频通道,因此,针对每个参考通道中,在系统工作带宽内,该发送方向射频通道中频域上子载波个数为K依然通过上述公式(1)确定。
其次,通过公式(5)确定参考通道的组间发送校准导频序列的长度:
Figure PCTCN2016070497-appb-000031
上述公式(5)中:
Figure PCTCN2016070497-appb-000032
为参考通道的组间发送校准导频序列的长度;
K为子载波的总个数;
Figure PCTCN2016070497-appb-000033
为单个参考通道的发送方向射频通道内相邻两个组内发送校准导频序列的间隔;
Figure PCTCN2016070497-appb-000034
表示向下取整。
具体来说,当将组间发送校准导频序列映射到M个参考通道的发送方向 射频通道时,需要将组间发送校准导频序列在整个工作带宽内,例如每个参考通道的发送方向射频通道的工作带宽可为20MHz或40MHz。同时,需要确定在单个参考通道的发送方向射频通道内,相邻两个组间发送校准导频序列的间隔,为了保证通过频分方式将组间发送校准导频序列分别映射在每个参考通道的射频通道的不同频域资源上,相邻两个组间发送校准导频序列的间隔要满足大于等于M,M为发送方向射频通道组的总数量。
最后,通过公式(6)确定组间发送校准导频序列:
cRef(j)=xl(r)     (6)
上述公式(6)中:
其中,j为索引号,
Figure PCTCN2016070497-appb-000035
Figure PCTCN2016070497-appb-000036
为组间发送校准导频序列的长度;
cRef(j)表示参考通道对应的第j个组间发送校准导频序列;
Figure PCTCN2016070497-appb-000037
Figure PCTCN2016070497-appb-000038
Figure PCTCN2016070497-appb-000039
为用于组间发送导频序列的ZC序列的长度,且
Figure PCTCN2016070497-appb-000040
为满足条件
Figure PCTCN2016070497-appb-000041
的最大质数;
Figure PCTCN2016070497-appb-000042
u=0
v=0。
进一步由于
Figure PCTCN2016070497-appb-000043
并将
Figure PCTCN2016070497-appb-000044
代入上述公式(6)中,得到公式(7):
Figure PCTCN2016070497-appb-000045
上述公式(7)中:mod表示取余。
具体来说,根据公式(6)和公式(7)确定出每个参考通道内的所有组间发送校准导频序列,具体来说,每个发送方向射频通道内的所有组内发送校准导频序列分别为:
Figure PCTCN2016070497-appb-000046
本发明实施例中确定组内发送校准导频序列和组间发送校准导频序列的方式可以有多种,并不限于上述所介绍的方式。实施中,每组发送方向射频通道单独对应一个组内发送校准导频序列,不同组的发送方向射频通道对应不同的组内发送校准导频序列。也可每组发送方向射频通道均对应同一个发送校准导频序列。本发明实施例中确定组内发送校准导频序列和组间发送校准导频序列的时间可由用户自己确定,如预先确定组内发送校准导频序列,当在对每组发送方向射频通道进行信道估计之后,在需要对参考通道进行信道估计时,再确定组间发送校准导频序列也可。
图1示出了本发明实施例提供的一种天线校准的方法,如图所示,包括以下步骤:
步骤101,获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
步骤102,分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
步骤103,根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,每组发送方向射频通道包括N个发送方向射频通道,N为1或者N为大于1的整数。当N为大于1的整数时,一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同,即,在一个组内采用频分方式发送组内发送校准导频序列。
具体来说,当N为1时,即一个组内仅包含一个发送方向射频通道,这种情况下采用上述实施例,可实现针对所有发送方向射频通道中的每一个发送方向射频通道均采用时分方式在每个发送时隙上进行发送。此时,可将每个发送方向射频通道所对应的组内发送校准导频序列,映射在该发送方向射 频通道的频域资源上。为了提高得到的信道信息的准确性,可在发送方向射频通道的频域资源上映射数量较多的组内发送校准导频序列,最多也可在发送方向射频通道的每个频域资源上均映射有组内发送校准导频序列,以提高对发送方向射频通道的信道估计的准确性的。
另一方面,当N为大于1的整数时,由于每组发送方向射频通道包括多个发送方向射频通道,且需要在一个发送时隙中发送该组发送方向射频通道中的所有发送方向射频通道对应的组内发送校准导频序列,因此可采用频分方式将该组发送方向射频通道对应的组内发送校准导频序列映射到该组发送方向射频通道的不同的频域资源上,从而使得一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。另一种实现方式为,可使用码分方式实现一个组内的多个发送方向射频通道的信道估计。
由于本发明实施例中将天线阵列的发送方向射频通道进行了分组,每组发送方向射频通道仅在该组对应的发送时隙发送组内发送校准导频序列,即,一个时隙仅有一组发送方向射频通道发送组内发送校准导频序列,相比于一个时隙天线阵列中的所有发送方向射频通道发送发送校准导频序列,本发明实施例减少了一个时隙发送校准导频序列的射频通道数量,这样,一个组内的每个射频通道上可映射的组内发送校准导频序列的长度相应增加,进一步由于对每个发送方向射频通道进行信道估计时所映射的组内发送校准导频序列的长度增加,从而根据M组发送方向射频通道的信道信息确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。
本发明实施例中,每组发送方向射频通道均对应一个组内发送校准导频序列,不同组所对应的发送校准导频序列可以相同也可以不同。每组发送方向射频通道所对应的组内发送校准导频序列用于对该组发送方向射频通道进行信道估计。
在步骤102中,实施中,针对每组发送方向射频通道上映射的组内发送校准导频序列,将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方 向射频通道所映射的子载波之间的间距为第三子载波偏移量,第三子载波偏移量大于或等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量,第四子载波偏移量小于第三子载波偏移量。
图2示例性示出了一种将组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上的示意图。如图所示,假设图中所示为一组发送方向射频通道的示意图,该组发送方向射频通道内包括5个天线的发送方向射频通道,分别为第一发送方向射频通道201、第二发送方向射频通道202、第三发送方向射频通道203、第四发送方向射频通道204、第五发送方向射频通道205,每个发送方向射频通道均对应一个工作带宽209,一个工作带宽内包括该对应发送方向射频通道中的所有子载波。每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量210。
具体来说,图2中第一发送方向射频通道201中所映射的第一组内发送校准导频序列206与第二组内发送校准导频序列207之间的间距为第三子载波偏移量210。相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量211。具体来说,图2中第一发送方向射频通道201中第一组内发送校准导频序列206与第二发送方向射频通道202中第一组内发送校准导频序列206之间的间距为第四子载波偏移量211。
结合前述部分确定出的每组发送方向射频通道所对应的组内所有组内发送校准导频序列分别为
Figure PCTCN2016070497-appb-000047
其中,cIn(i)表示第i个组内发送校准导频序列;i为索引号,i为正整数,
Figure PCTCN2016070497-appb-000048
Figure PCTCN2016070497-appb-000049
为组内发送校准导频序列的长度。将该所有组内发送校准导频序列分别映射到每个发送方向射频通道中。如图2中所示的,在每个发送方向射频通道中首先映射cIn(0),即第一组内发送校准导频序列序列206,接着在每个发送方向射频通道中映射cIn(1),即第二组内发送校准导频序列207,依次将确定出的组内发送校准导频序列分别映射到每个发送方向射频通道中,直至,在每个 发送方向射频通道中的最后映射
Figure PCTCN2016070497-appb-000050
即第
Figure PCTCN2016070497-appb-000051
组内发送校准导频序列208。
从图2中可看出,采用频分方式将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上时,图2中第三子载波偏移量210所示出的距离可为每个发送方向射频通道所映射的子载波之间的间距。由于在第三子载波偏移量210内需要保证该组发送方向射频通道中的每一个发送方向射频通道中均在不同的频域资源上映射有组内发送校准导频序列,因此在图2中,只有满足每个发送方向射频通道所映射的子载波之间的间距大于等于5时,才能保证图2中的该组发送方向射频通道中在每一个第三子载波偏移量210的间距中,5个发送方向射频通道中每一个均映射有一个组内发送校准导频序列,且每一个组内发送校准导频序列均映射在不同的频域资源上。
实施中,当第三子载波偏移量210设置较大时,可在第三子载波偏移量210中均匀布置各个发送方向射频通道中所映射的组内发送校准导频序列。例如,图2中现在所示的第四子载波偏移量211为一个子载波的间距。实施中,第四子载波偏移量211也可为多个子载波的间距,具体数值本发明实施例不做限制。
图2仅示出了一个组中的组内发送校准导频序列的映射方式,本发明实施例中共有M组的发送方向射频通道,其它组中的组内发送校准导频序列的映射方式可与图2中所示出的该组的组内发送校准导频序列的映射方式一致,也可不一致,本发明实施例不做限制。
进一步,采用频分方式将每组发送方向射频通道各自对应的组内发送校准导频序列映射到相应组的发送方向射频通道中之后,分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙中发送组内发送校准导频序列。
具体来说,如图3所示,图3示例性示出了每组发送校准导频序列在发 送时隙中进行发送的示意图。图3中包括多个子帧303,还包括多个发送时隙,如发送时隙一305,发送时隙二307,发送时隙三308等。一个发送时隙最多仅用于发送一组发送方向射频通道上映射的组内发送校准导频序列。在整个发送校准周期301内通过在每一个发送时隙上发送一组发送校准导频序列以进行天线校准。在帧结构中,发送时隙的前一帧304和发送时隙的后一帧306为特殊结构的子帧。当发送时隙为保护时隙时,发送时隙的前一帧304为下行导频时隙,发送时隙的后一帧306为上行导频时隙。图3中,假设发送时隙一305用于发送第一组发送方向射频通道的发送校准导频序列,发送时隙二307用于发送第二组发送方向射频通道的发送校准导频序列,发送时隙三308用于发送第M组发送方向射频通道的发送校准导频序列。则相邻两组发送方向射频通道所对应的发送时隙之间的间距成为组间发送校准偏移302。
实施中,另一种发送方式可为,发送时隙一305用于发送第一组发送方向射频通道的发送校准导频序列,发送时隙二不发送任何一组发送方向射频通道的发送校准导频序列,依序在发送时隙上相继发送每组发送方向射频通道的发送校准导频序列,直至发送时隙三308用于发送第M组发送方向射频通道的发送校准导频序列。即每相邻两组发送方向射频通道所对应的发送时隙之间可间隔一个或多个发送时隙。具体在发送时隙上进行发送的方式有多种,只要保证一个发送时隙最多仅用于发送一组发送方向射频通道上映射的发送组内发送校准导频序列即可。
实施中,发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的发送时隙一,与第二组发送方向射频通道发送组内发送校准导频序列所对应的发送时隙二为相邻的两个保护时隙,或者发送时隙一和发送时隙二之间间隔X个保护时隙;其中,第一组发送方向射频通道与第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。实施中,本发明实施例中相邻两组发送方向射频通道之间的发送时隙的间隔可以为组间发送校准偏移ΔTIn
进一步,天线阵列除了每个天线对应一个发送方向射频通道之外,整个天线阵列还包括一个校准接收通道,如图4所示。图4示意性示出了本发明实施例提供的发送方向射频通道的示意图,本发明实施例中假设共有M组发送方向射频通道,每组发送方向射频通道均包括N个发送方向射频通道。则如图4所示,第一组发送方向射频通道401,第一组发送方向射频通道401中共包括N个发送方向射频通道,分别为发送方向射频通道1(406),发送方式射频通道2(407),直至发送方向射频通道N(408);第二组发送方向射频通道402,第二组发送方向射频通道402中共包括N个发送方向射频通道,分别为发送方向射频通道N+1(409),发送方式射频通道N+2(410),直至发送方向射频通道2N(411);直至第M组发送方向射频通道403,第一组发送方向射频通道403中共包括N个发送方向射频通道,分别为发送方向射频通道(M-1)×N+1(412),发送方式射频通道(M-1)×N+2(413),直至发送方向射频通道M×N(414)。图4中还包括耦合网络405,以及校准接收通道404。
如图4所示,当将每组发送方向射频通道对应的组内发送校准导频序列映射在该组发送方向射频通道上之后,在一个发送时隙中通过该组内的发送方向射频通道发送组内发送校准导频序列,该组内N个发送方向射频通道中发送的组内发送校准导频序列经过耦合网络405的处理,根据校准接收通道404接收到的该组的组内发送校准导频序列的反馈信号对该组发送方向射频通道进行信道估计。
下面以第一组发送方向射频通道为例详细介绍对每组发送方向射频通道进行信道估计的过程。本领域技术人员可知,其它组的发送方向射频通道的信道估计与第一组类似,不再赘述。
首先依据前述内容确定出第一组发送方向射频通道对应的组内发送校准导频序列。本发明实施例中假设每组发送方向射频通道均对应同一个组内发送校准导频序列,本领域技术人员也可为其它组发送方向射频通道分别选用不同的组内发送校准导频序列。
其次,确定第一组发送方向射频通道对应的组内发送校准导频序列在第一组发送方向射频通道中的映射方式。实施中,基于前述内容,确定出每个发送方向射频通道所映射的子载波之间的间距,以及相邻两个发送方向射频通道所映射的子载波之间的间距。
第三步,将第一组发送方向射频通道对应的组内发送校准导频序列按照每个发送方向射频通道所映射的子载波之间的间距和相邻两个发送方向射频通道所映射的子载波之间的间距在第一组发送方向射频通道的每个发送方向射频通道中进行映射,生成N个发送方向射频通道的发送信号,根据公式(8)确定N个发送方向射频通道的发送信号:
Figure PCTCN2016070497-appb-000052
上述公式(8)中:
Figure PCTCN2016070497-appb-000053
表示每组发送方向射频通道中第n个发送方向射频通道的第k个子载波的发送信号;
i为索引号,i为正整数,
Figure PCTCN2016070497-appb-000054
Figure PCTCN2016070497-appb-000055
为组内发送校准导频序列的长度;
cIn(i)表示第i个组内发送校准导频序列;
n为每组发送方向射频通道中每个发送方向射频通道的索引号,n为正整数,n的取值范围为[1,N];
k为每个子载波的索引号,且
Figure PCTCN2016070497-appb-000056
Figure PCTCN2016070497-appb-000057
为每个发送方向射频通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000058
为相邻两个发送方向射频通道所映射的子载波之间的间距。
具体来说,生成上述N个发送方向射频通道的发送信号
Figure PCTCN2016070497-appb-000059
的可为信号处理器,该信号处理器可位于实体结构中的射频侧,也可位于基带侧。具体来说,因为第一组发送方向射频通道包括N个发送方向射频通道,因此
Figure PCTCN2016070497-appb-000060
序列可写为
Figure PCTCN2016070497-appb-000061
第四步,在第一组发送方向射频通道中第一个至第N个发送方向射频通道中,分别对
Figure PCTCN2016070497-appb-000062
进行IFFT(Inverse Fast Fourier Transform,快速傅立叶逆变换)处理,并加上相应CP(Cyclic Prefix,循环 前缀),形成第一个至第N个发送方向射频通道的时域信号
Figure PCTCN2016070497-appb-000063
其中,
Figure PCTCN2016070497-appb-000064
表示第n个发送方向射频通道的时域信号,t为时序OFDM(Orthogonal Frequency Division Multiplex,正交频分复用)符号的序号;
第五步,形成第一个至第N个发送方向射频通道的时域信号
Figure PCTCN2016070497-appb-000065
之后,分别通过第一组内的发送方向射频通道发送。耦合网络接收到
Figure PCTCN2016070497-appb-000066
之后,将
Figure PCTCN2016070497-appb-000067
进行处理,形成一个合路信号,并将该合路信号发送至校准接收通道,以便形成第一组发送方向射频通道对应的组内发送校准导频序列的反馈信号yIn(t)。
第六步,将接收到的第一组发送方向射频通道对应的组内发送校准导频序列的反馈信号yIn(t),去掉CP,经过FFT(Fast Fourier Transform,快速傅立叶变换)变换处理,形成接收到的整个带宽内的频域上频域信号。处理yIn(t)的可为信号处理器,该信号处理器可位于实体结构中的射频侧,也可位于基带侧。
第七步,根据校准接收通道接收到的组内发送校准导频序列的反馈信号,以及通过第一组发送方向射频通道发送的校准导频序列,对第一组发送方向射频通道进行信道估计,得到第一组发送方向射频通道中每一个发送方向射频通道中映射有组内发送校准导频序列的相应子载波的信道信息,根据公式(9)确定发送方向射频通道中每一个发送方向射频通道中映射的组内发送校准导频序列的相应子载波的信道信息:
Figure PCTCN2016070497-appb-000068
上述公式(9)中:
k为每个子载波的索引号,
Figure PCTCN2016070497-appb-000069
i为索引号,i为正整数,
Figure PCTCN2016070497-appb-000070
Figure PCTCN2016070497-appb-000071
为组内发送校准导频序列的长度;n为每组发送方向射频通道 中每个发送方向射频通道的索引号,n为正整数,n的取值范围为[1,N];
Figure PCTCN2016070497-appb-000072
为每个发送方向射频通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000073
为相邻两个发送方向射频通道所映射的子载波之间的间距;
zIn(k)为接收到的第一组发送方向射频通道的第k个子载波对应的组内发送校准导频序列所对应反馈信号在整个带宽内的频域上频域信号;
Figure PCTCN2016070497-appb-000074
表示第一组发送方向射频通道中第n个发送方向射频通道的第k个子载波的发送信号;
Figure PCTCN2016070497-appb-000075
表示第一组发送方向射频通道中每一个发送方向射频通道中映射的第i个组内发送校准导频序列的相应子载波的信道信息。
第八步,实施中,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
具体来说,根据计算出的第一组发送方向射频通道中每一个发送方向射频通道中映射有组内发送校准导频序列的相应子载波的信道信息,由于组内发送校准校准序列所映射的子载波的索引号为
Figure PCTCN2016070497-appb-000076
其中i为索引号,i为正整数,
Figure PCTCN2016070497-appb-000077
Figure PCTCN2016070497-appb-000078
为组内发送校准导频序列的长度;n为每组发送方向射频通道中每个发送方向射频通道的索引号,n为正整数,n的取值范围为[1,N];
Figure PCTCN2016070497-appb-000079
为每个发送方向射频通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000080
为相邻两个发送方向射频通道所映射的子载波之间的间距。
可看出,未映射组内发送校准导频序列的子载波并未进行相应的信道估计。因此,基于已经确定出的发送方向射频通道中每一个发送方向射频通道中映射的组内发送校准导频序列的相应子载波的信道信息,对第一组发送方向射频通道内的所有发送方向射频通道的其余所有子载波进行插值处理,得到第一组发送方向射频通道内的所有发送方向射频通道的整个工作带宽内的所有子载波的信道信息。
至此,通过上述步骤完成了对第一组发送方向射频通道内的所有发送方 向射频通道的整个工作带宽内的所有子载波的信道信息
Figure PCTCN2016070497-appb-000081
的计算。依照上述类似方法,在第二组发送方向射频通道对应的发送时隙上发送第二组发送方向射频通道对应的组内发送校准导频序列,并接收器反馈信号,进一步确定出第一组发送方向射频通道内的所有发送方向射频通道的整个工作带宽内的所有子载波的信道信息
Figure PCTCN2016070497-appb-000082
依序确定出第m组发送方向射频通道内的所有发送方向射频通道的整个工作带宽内的所有子载波的信道信息
Figure PCTCN2016070497-appb-000083
m为发送方向射频通道的组号,m的取值范围为[1,M]。直至确定出第M组发送方向射频通道内的所有发送方向射频通道的整个工作带宽内的所有子载波的信道信息
Figure PCTCN2016070497-appb-000084
根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,本发明实施例中根据每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数,方式有多种,本发明实施例中列举几种方式,但不限于此。
方式一:通过公式(10)确定每个发送方向射频通道的每个载波上的通道间补偿系数:
Figure PCTCN2016070497-appb-000085
公式(10)中:
M为天线阵列中的发送方向射频通道的组的总数量;
N为每组发送方向射频通道中发送方向射频通道的总数量;
q=(m-1)N+n,q表示每一个发送方向射频通道的索引号,q为正整数;
Figure PCTCN2016070497-appb-000086
第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的信道信息;
cal_factorq(k)为第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的通道间补偿系数。
方式二:通过公式(11)确定每个发送方向射频通道的每个载波上的通道间补偿系数:
Figure PCTCN2016070497-appb-000087
公式(11)中:
M为天线阵列中的发送方向射频通道的组的总数量;
N为每组发送方向射频通道中发送方向射频通道的总数量;
q=(m-1)N+n,q表示每一个发送方向射频通道的索引号,q为正整数;
Figure PCTCN2016070497-appb-000088
第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的信道信息;
cal_factorq(k)为第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的通道间补偿系数。
方式三:每个发送方向射频通道的每个载波上的通道间补偿系数为所有发送方向射频通道的第k个子载波的的信道信息中最小值。
实施中,依据每个发送方向射频通道的每个载波上的通道间补偿系数填写现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)接口,并将有效发送方向射频通道的信息和无效发送方向射频通道的信息均写入FPGA口,并向BBU发送各个信道信息。
实施中,本发明实施例还提供另一种实现方式,结合参考通道确定每个发送方向射频通道的通道间补偿系数。下面进行详细介绍。
图5示例性示出了本发明实施例提供的另一种天线校准的方法流程示意图,如图5所示,具体包括:
步骤501,步骤501与前述实施例中的步骤101所执行的流程一致;
步骤502,步骤502与前述实施例中的步骤102所执行的流程一致;
步骤503,分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,得到M个参考通道的信道信息;分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正;
步骤504,根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
具体来说,从每组发送方向射频通道中选出一个发送方向射频通道作为该组的参考通道,M组发送方向射频通道共可确定出M个参考通道。组间发送校准导频序列用于对M个参考通道进行信道估计。实施中,每个参考通道可分别对应一个组间发送校准导频序列,不同的参考通道对应不同的组间发送校准导频序列;也可使M个参考通道共同对应一个组间发送校准导频序列。组间发送校准导频序列的确定方法可以参见前述部分。
实施中,分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,具体包括:
针对每组发送方向射频通道,执行以下步骤:
确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
具体以第一组发送方向射频通道为例进行详细介绍,首先根据第一组发送方向射频通道中的每个发送方向射频通道的信道信息,确定第一组发送方向射频通道中的每个发送方向射频通道的接收功率,根据公式(12)确定:
Figure PCTCN2016070497-appb-000089
公式(12)中:
k为每个子载波的索引号;
NRB为单个发送方向射频通道的系统工作带宽内资源块(resource block)的数量,
Figure PCTCN2016070497-appb-000090
为每个资源块内的子载波个数;
Pn为第一组发送方向射频通道中的第n个发送方向射频通道的接收功率;
Figure PCTCN2016070497-appb-000091
为第一组发送方向射频通道中的第n个发送方向射频通道的第k个子载波的信道信息。
实施中,确定第一阈值,如果某个通道接收功率小于第一阈值,则认为该通道为无效发送方向射频通道,而将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道。无效的天线通道可能是出现故障等因素造成的,因此,在选取参考通道时可舍弃该部分无效发送方向射频通道。
具体来说,根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道的方法有很多种,下面列举两种常用方法。
方法一:可计算该组中所有有效发送方向射频通道的接收功率的平均值,并将第一组发送方向射频通道中大于接收功率的平均值的有效通道功率进行排序,并从大于接收功率的平均值的有效发送方向射频通道中取最接近于平均功率的通道作为第一组发送方向射频通道的参考通道nRef(1)。
方法二:可选取第一组发送方向射频通道中接收功率最大的通道作为第一组发送方向射频通道的参考通道nRef(1)。
按照上述类似方法分别根据第二组发送方向射频通道中的每个发送方向射频通道的信道信息
Figure PCTCN2016070497-appb-000092
确定出第二组发送方向射频通道的参考通道nRef(2);根据第m组发送方向射频通道中的每个发送方向射频通道的信道信息
Figure PCTCN2016070497-appb-000093
确定出第一组发送方向射频通道的参考通道nRef(m),m为每组发送方向射频通道的组号;直至根据第M组发送方向射频通道中的每个发送 方向射频通道的信道信息
Figure PCTCN2016070497-appb-000094
确定出第一组发送方向射频通道的参考通道nRef(M)。
可见,通过上述方式,分别确定出每组发送方向射频通道的参考通道nRef(m),m为每组发送方向射频通道的组号,m为正整数,m的取值范围为[1,M]。
实施中,存储每组发送方向射频通道的有效发送方向射频通道的相关信息,在后续可发送给室内基带处理单元(Building Baseband Unit,简称BBU),以使BBU进行相应处理,例如,BBU知道某些发送方向射频通道为无效发送方向射频通道,则在后续发送信号时,就可舍弃该无效发送方向射频通道,或者可将该故障状态上报等。
下面详细介绍对参考通道进行信道估计的过程。
首先本发明实施例的前述内容已确定出参考通道的组间发送校准导频序列,且已确定出每组发送方向射频通道的参考通道。
其次,确定参考通道对应的组间发送校准导频序列在参考通道中的映射方式。由于参考通道共有M个,数量比大规模天线阵列中所有天线的总数量少,因此将组间发送校准导频序列在参考通道中进行映射时方式可有多种。
方式一:在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考通道发送组间发送校准导频序列,M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
具体来说,当在一个发送时隙上发送该组参考通道上映射的组间发送校准导频序列时,需通过频分方式将组间发送校准导频序列映射在每个参考通道对应的不同频域资源上。
实施中,如图3所示,在发送时隙四309上发送参考通道上映射的组间发送校准导频序列,发送参考通道上映射的组间发送校准导频序列与第M组发送方向射频通道上映射的组内发送校准导频序列之间的时间间隔为参考通道校准偏移310ΔTRef,假设每相邻两组发送方向射频通道发送的时隙之间的 间隔为组间发送校准偏移302ΔTIn,则从开始通过第一组发送方向射频通道发送组内发送校准导频序列至通过发送通道发送组间发送校准导频序列之间的时间为发送校准偏移311ΔT,且ΔT=(M-1)ΔTIn+ΔTRef。实施中,发送时隙为保护时隙。
方式二,通过时分方式,分别在不同的时隙上分别发送每个参考通道上映射的组间发送校准导频序列,以便对各个参考信道信息信道估计。此时,可将组间发送校准导频序列任意映射在每个参考通道的频域资源上。
方式三,通过码分方式对各个参考信道信息信道估计。
为介绍方便,本发明实施例中基于方式一的频分方式进行介绍,但对参考通道进行信道估计的方式不限于此。本发明实施例中将参考通道视为一组,并在一个发送时隙上发送该参考通道对应的组间发送校准导频序列。
将组间发送校准导频序列映射在每个参考通道对应的不同频域资源上时,方式有多种。实施中,将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,所述第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,所述第二子载波偏移量小于所述第一子载波偏移量。将组间发送校准导频序列映射在每个参考通道对应的不同频域资源上的方式与前述将组内发送校准导频序列映射在每组发送方向射频通道的每个发送方向射频通道对应的不同频域资源上的方法类似。
实施中,基于前述内容,确定出每个参考通道所映射的子载波之间的间距,以及相邻两个参考通道所映射的子载波之间的间距,将参考通道对应的组间发送校准导频序列按照每个参考通道所映射的子载波之间的间距和相邻两个参考通道所映射的子载波之间的间距在每个参考通道中进行映射。根据公式(13)确定相邻两个参考通道所映射的子载波之间的间距:
Figure PCTCN2016070497-appb-000095
上述公式(13)中:
Figure PCTCN2016070497-appb-000096
为每个参考通道所映射的子载波之间的间距;
M为发送方向射频通道的总数量;
Figure PCTCN2016070497-appb-000097
表示向下取整;
Figure PCTCN2016070497-appb-000098
为相邻两个参考通道所映射的子载波之间的间距。
具体如图6所示,图6示例性示出了一种将组间发送校准导频序列映射在参考通道的整个工作带宽内的子载波上的示意图。如图所示,假设图中所示为参考通道的示意图,该天线阵列中假设共有五组参考通道,即M为5,由于每组参考通道对应一个参考通道,因此该天线阵列共有五个参考通道,分别为第一参考通道601、第二参考通道602、第三参考通道603、第四参考通道604、第五参考通道605,每个参考通道均对应一个工作带宽609,一个工作带宽内包括该对应参考通道中的所有子载波。
每个参考通道所映射的子载波之间的间距为第一子载波偏移量610。具体来说,图6中第一参考通道601中所映射的第一组间发送校准导频序列606与第二组间发送校准导频序列607之间的间距为第一子载波偏移量610。相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量611。具体来说,图6中第一参考通道601中第一组间发送校准导频序列606与第二参考通道602中第一组间发送校准导频序列606之间的间距为第二子载波偏移量611。
结合前述部分确定出的每个参考通道所对应的组间发送校准导频序列分别为
Figure PCTCN2016070497-appb-000099
其中,cRef(j)表示参考通道对应的第j个组间发送校准导频序列,j为索引号,
Figure PCTCN2016070497-appb-000100
Figure PCTCN2016070497-appb-000101
为组间发送校准导频序列的长度。将该所有组间发送校准导频序列分别映射到每个参考通道中。如图6中所示的,在每个参考通道中首先映射cRef(0),即第一组间发送校准导频序列序列606,接着在每个参考通道中映射cRef(1),即第二组间发送校准导频序列607,依次将确定出的组间发送校准导频序列分 别映射到每个参考通道中,直至,在每个参考通道中的最后映射
Figure PCTCN2016070497-appb-000102
即第
Figure PCTCN2016070497-appb-000103
组间发送校准导频序列608。
从图6中可看出,采用频分方式将每组参考通道各自对应的组间发送校准导频序列映射在参考通道的整个工作带宽内的子载波上时,图6中第一子载波偏移量610所示出的距离可为每个参考通道所映射的子载波之间的间距
Figure PCTCN2016070497-appb-000104
由于在第一子载波偏移量610内需要保证该组参考通道中的每一个参考通道中均在不同的频域资源上映射有组间发送校准导频序列,因此在图6中,只有满足
Figure PCTCN2016070497-appb-000105
时,才能保证图6中的参考通道中在每一个第一子载波偏移量610的间距中,五个参考通道中每一个参考通道均映射有一个组间发送校准导频序列,且每一个组间发送校准导频序列均映射在不同的频域资源上。
实施中,当第一子载波偏移量610设置较大时,可在第一子载波偏移量610中均匀布置各个参考通道中所映射的组间发送校准导频序列。例如,图6中现在所示的第二子载波偏移量611为一个子载波的间距。实施中,第二子载波偏移量611也可为多个子载波的间距,具体数值本发明实施例不做限制。图6中的第二子载波偏移量611即为相邻两个发送方向射频通道所映射的子载波之间的间距。
第三步,将参考通道对应的组间发送校准导频序列在每个参考通道中进行映射,生成M个参考通道的发送信号,根据公式(14)确定M个参考通道的发送信号;
Figure PCTCN2016070497-appb-000106
上述公式(14)中:
j为索引号,
Figure PCTCN2016070497-appb-000107
Figure PCTCN2016070497-appb-000108
为组间发送校准导频序列的长度;
cRef(j)为参考通道对应的第j个组间发送校准导频序列;
m为作为参考通道的发送方向射频通道的组号,m为正整数,m的取值范围为[1,M];
k为每个子载波的索引号,
Figure PCTCN2016070497-appb-000109
k的取值范围为
Figure PCTCN2016070497-appb-000110
Figure PCTCN2016070497-appb-000111
NRB为单个发送方向射频通道的系统工作带宽内资源块(resource block)的数量,
Figure PCTCN2016070497-appb-000112
为每个资源块内的子载波个数;
Figure PCTCN2016070497-appb-000113
为每个参考通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000114
为相邻两个参考通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000115
表示第m组发送方向射频通道对应的参考通道的第k个子载波的发送信号。
具体来说,生成上述M个发送方向射频通道的发送信号的可为信号处理器,该信号处理器可位于实体结构中的射频侧,也可位于基带侧。具体来说,因为参考通道包括M个发送方向射频通道,因此M个发送方向射频通道的发送信号序列可写为
Figure PCTCN2016070497-appb-000116
第四步,在参考通道中第一个至第M个参考通道中,分别对
Figure PCTCN2016070497-appb-000117
进行IFFT变换处理,并加上相应CP,形成第一个至第M个参考通道的时域信号
Figure PCTCN2016070497-appb-000118
其中,
Figure PCTCN2016070497-appb-000119
表示第m个参考通道的时域信号,t为时序OFDM符号的序号;
第五步,形成第一个至第M个参考通道的时域信号
Figure PCTCN2016070497-appb-000120
之后,分别通过参考通道发送。
耦合网络接收到
Figure PCTCN2016070497-appb-000121
之后,将
Figure PCTCN2016070497-appb-000122
进行处理,形成一个合路信号,并将该合路信号发送至校准接收通道,以便形成参考通道对应的组间发送校准导频序列的反馈信号yRef(t)。
第六步,将接收到的参考通道对应的组间发送校准导频序列的反馈信号yRef(t),去掉CP,经过FFT变换处理,形成接收到的整个带宽内的频域上频域信号。处理yRef(t)的可为信号处理器,该信号处理器可位于实体结构中的射频侧,也可位于基带侧。
第七步,根据校准接收通道接收到的组间发送校准导频序列的反馈信号 在整个带宽内的频域上频域信号,以及通过参考通道发送的发送方向射频通道对应的参考通道的发送信号,对参考通道进行信道估计,得到参考通道中每一个发送方向射频通道中映射有组间发送校准导频序列的相应子载波的信道信息,根据公式(15)确定每组发送方向射频通道对应的参考通道中映射的组间发送校准导频序列的相应子载波的信道信息:
Figure PCTCN2016070497-appb-000123
上述公式(15)中:
k为每个子载波的索引号,
Figure PCTCN2016070497-appb-000124
k的取值范围为
Figure PCTCN2016070497-appb-000125
Figure PCTCN2016070497-appb-000126
NRB为单个发送方向射频通道的系统工作带宽内资源块(resource block)的数量,
Figure PCTCN2016070497-appb-000127
为每个资源块内的子载波个数;j为索引号,
Figure PCTCN2016070497-appb-000128
Figure PCTCN2016070497-appb-000129
为组间发送校准导频序列的长度,m为作为参考通道的发送方向射频通道的组号,m为正整数,m的取值范围为[1,M];
Figure PCTCN2016070497-appb-000130
为每个参考通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000131
为相邻两个参考通道所映射的子载波之间的间距。
Figure PCTCN2016070497-appb-000132
表示第m组发送方向射频通道对应的参考通道的第k个子载波的发送信号;
zRef(k)为接收到的参考通道的第k个子载波对应的组间发送校准导频序列所对应反馈信号在整个带宽内的频域上频域信号;
Figure PCTCN2016070497-appb-000133
表示第m组发送方向射频通道对应的参考通道中映射的第j个组间发送校准导频序列的相应子载波的信道信息。
第八步,实施中,根据校准接收通道接收到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,具体包括:
根据校准接收通道接收到的组间发送校准导频序列的反馈信号,对M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息;根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每个参考通道上的所有 子载波对应的信道信息。
具体来说,根据计算出的参考通道中映射有组间发送校准导频序列的相应子载波的信道信息,由于子载波的索引号为
Figure PCTCN2016070497-appb-000134
其中,j为索引号,
Figure PCTCN2016070497-appb-000135
Figure PCTCN2016070497-appb-000136
为组间发送校准导频序列的长度,m为作为参考通道的发送方向射频通道的组号,m为正整数,m的取值范围为[1,M];k的取值范围为
Figure PCTCN2016070497-appb-000137
NRB为单个发送方向射频通道的系统工作带宽内资源块(resource block)的数量,
Figure PCTCN2016070497-appb-000138
为每个资源块内的子载波个数;
Figure PCTCN2016070497-appb-000139
为每个参考通道所映射的子载波之间的间距;
Figure PCTCN2016070497-appb-000140
为相邻两个参考通道所映射的子载波之间的间距。可看出,未映射组间发送校准导频序列的子载波并未进行相应的信道估计。因此,基于已经确定出的每组发送方向射频通道对应的参考通道中映射的组间发送校准导频序列的相应子载波的信道信息,对参考通道内的其余所有子载波进行插值处理,得到参考通道内的整个工作带宽内的所有子载波的信道信息。
至此,通过上述步骤完成了对参考通道内的整个工作带宽内的所有子载波的信道信息的计算。
实施中,可以分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正,具体来说,需要针对每组发送方向射频通道,执行以下步骤:
计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
具体来说,根据M个参考通道内的整个工作带宽内的所有子载波的信道信息,每组发送方向射频通道的参考通道在所有发送方向射频通道中的索引 号为qRef(m)=(m-1)N+nRef(m),其中,nRef(m)表示第m组发送方向射频通道的参考通道在原组内的发送方向射频通道的索引号,nRef(m)的取值范围为[1,N]。
因此,根据每组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息,以及每组发送方向射频通道的参考通道基于组内发送校准导频序列得到的信道信息,根据公式(16)计算确定每组发送方向射频通道的修正系数:
Figure PCTCN2016070497-appb-000141
公式(16)中:
k为每个子载波的索引号,k的取值范围为
Figure PCTCN2016070497-appb-000142
NRB为单个发送方向射频通道的系统工作带宽内资源块(resource block)的数量,
Figure PCTCN2016070497-appb-000143
为每个资源块内的子载波个数;
Figure PCTCN2016070497-appb-000144
表示第m组发送方向射频通道的参考通道基于组间发送校准导频序列得到的第k个子载波的信道信息;
Figure PCTCN2016070497-appb-000145
表示第m组发送方向射频通道的参考通道基于组内发送校准导频序列得到的第k个子载波的信道信息;
Fm(k)表示第m组发送方向射频通道的第k个子载波的修正系数。
接着,利用每组发送方向射频通道的修正系数,根据公式(17)计算修正每组发送方向射频通道中的每个发送方向射频通道中的每个子载波的信道信息:
Figure PCTCN2016070497-appb-000146
公式(17)中:
Fm(k)表示第m组发送方向射频通道的第k个子载波的修正系数;
Figure PCTCN2016070497-appb-000147
表示第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的信道信息;
Figure PCTCN2016070497-appb-000148
修正后第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的信道信息。
实施中,本发明实施例中根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数,方式有多种,本发明实施例中列举几种方式,但不限于此。
方式一:通过公式(18)确定每个发送方向射频通道的每个载波上的通道间补偿系数:
Figure PCTCN2016070497-appb-000149
公式(18)中:
M为天线阵列中的发送方向射频通道的组的总数量;
N为每组发送方向射频通道中发送方向射频通道的总数量;
q=(m-1)N+n,q表示每一个发送方向射频通道的索引号,q为正整数;
Figure PCTCN2016070497-appb-000150
修正后第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的信道信息;
cal_factorq(k)为第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的通道间补偿系数。
方式二:通过公式(19)确定每个发送方向射频通道的每个载波上的通道间补偿系数:
Figure PCTCN2016070497-appb-000151
公式(19)中:
M为天线阵列中的发送方向射频通道的组的总数量;
N为每组发送方向射频通道中发送方向射频通道的总数量;
q=(m-1)N+n,q表示每一个发送方向射频通道的索引号,q为正整数;
Figure PCTCN2016070497-appb-000152
修正后第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的信道信息;
cal_factorq(k)为第m组发送方向射频通道的第n个发送方向射频通道的第k个子载波的通道间补偿系数。
方式三:每个发送方向射频通道的每个载波上的通道间补偿系数为所有发送方向射频通道的第k个子载波的修正后的信道信息中最小值。
实施中,依据每个发送方向射频通道的每个载波上的通道间补偿系数cal_factorq(k)填写FPGA接口,并将有效发送方向射频通道的信息和无效发送方向射频通道的信息均写入FPGA口,并向BBU发送各个信道信息。
通过上述论述可知,实施中,本发明实施例中将Q个发送方向射频通道分为M组,每组发送方向射频通道内采用FDM方式将组内发送校准导频序列映射在该组发送方向射频通道的不同资源上。M组发送方向射频通道之间采用时分(Time Division Multiplexing,简称TDM)方式,在不同的发送时隙中发送不同组的发送方向射频通道。
从上述内容可以看出:由于天线阵列中的发送方向射频通道被分为M组,且在每组发送方向射频通道各自对应的发送时隙上分别发送相应组的组内发送校准导频序列,不同组所对应的组内发送校准导频序列的发送时隙各不相同,即针对M组发送方向射频通道时,采用时分方式在不同发送时隙发送每组发送方向射频通道的组内发送校准导频序列,因此,可独立对每一组发送方向射频通道进行信道估计,且当针对每一组发送方向射频通道采用频分进行信道估计时,仅满足一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同即可,即,针对每组发送方向射频通道,可采用频分方式将每组对应的组内发送校准导频序列映射到该组发送方向射频通道中,因此,由于每组的发送方向射频通道数量较少,因此采用频分方式可将较长的组内发送校准导频序列映射到组内的每个射频通道上,进一步 的,由于进行信道估计所使用的每个射频通道上映射的组内发送校准导频序列的长度增加,从而确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。
图7示例性示出了一种天线校准的装置的结构示意图。
基于相同构思,本发明实施例还提供一种天线校准的装置,如图7所示,包括获取单元701、第一处理单元702、第一确定单元703,其中第一确定单元703还包括选取单元704、第二处理单元705、第二确定单元706:
获取单元701,用于获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
第一处理单元702,用于分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
第一确定单元703,用于根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,每组发送方向射频通道包括N个发送方向射频通道;N为1或者N为大于1的整数。在N为大于1的整数的情况下需满足一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。
实施中,第一确定单元703,具体包括:
选取单元704,用于分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;
第二处理单元705,用于通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,得到M个参考通道的信道信息;
第二确定单元706,用于分别根据每个参考通道的信道信息,对每个参考 通道所对应的一组发送方向射频通道的信道信息进行修正;根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,选取单元704,具体用于:
针对每组发送方向射频通道,执行以下步骤:
确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
第二处理单元705,具体用于:
将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,所述第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,所述第二子载波偏移量小于所述第一子载波偏移量。
实施中,第二处理单元705,具体用于:
在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考通道发送组间发送校准导频序列,M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
实施中,第二处理单元705,具体用于:
根据校准接收通道接收到的组间发送校准导频序列的反馈信号,对M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息;
根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每个参考通道上的所有子载波对应的信道信息。
实施中,第二确定单元706,具体用于:
针对每组发送方向射频通道,执行以下步骤:
计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
实施中,第二处理单元705,具体用于:
根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;
根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
实施中,第一处理单元702,具体用于:
将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量,第三子载波偏移量大于或等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量,第四子载波偏移量小于第三子载波偏移量。
实施中,发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的第一发送时隙,与第二组发送方向射频通道发送组内发送校准导频序列所对应的第二发送时隙为相邻的两个保护时隙,或者第一发送时隙和第二发送时隙之间间隔X个保护时隙;其中,第一组发送方向射频通道与第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。
从上述内容可以看出:由于天线阵列中的发送方向射频通道被分为M组,且在每组发送方向射频通道各自对应的发送时隙上分别发送相应组的组内发送校准导频序列,不同组所对应的组内发送校准导频序列的发送时隙各不相同,即针对M组发送方向射频通道时,采用时分方式在不同发送时隙发送每组发送方向射频通道的组内发送校准导频序列,因此,可独立对每一组发送方向射频通道进行信道估计,且当针对每一组发送方向射频通道采用频分进行信道估计时,仅满足一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同即可,即,针对每组发送方向射频通道,可采用频分方式将每组对应的组内发送校准导频序列映射到该组发送方向射频通道中,因此,由于每组的发送方向射频通道数量较少,因此采用频分方式可将较多的组内发送校准导频序列映射到组内的每个射频通道上,进一步由于进行信道估计所使用的每个射频通道上映射的组内发送校准导频序列的长度增加,从而确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。
图8示例性示出了一种天线校准的装置的结构示意图。
基于相同构思,本发明实施例还提供一种天线校准的装置,如图8所示,包括收发机801、处理器802和存储器803,其中:
处理器802,用于读取存储器803中的程序,执行下列过程:
获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
根据M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数;
收发机801根据实际需要可以包括基带处理部件、射频处理部件等设备,用于通过相应组内的发送方向射频通道发送组内发送校准导频序列,通过校准接收通道接收组内发送校准导频序列的反馈信号。
实施中,每组发送方向射频通道包括N个发送方向射频通道;N为1或者N为大于1的整数。在N为大于1的整数的情况下需满足一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。
实施中,处理器802,具体用于:
分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;
通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收到的组间发送校准导频序列的反馈信号对M个参考通道进行信道估计,得到M个参考通道的信道信息;
分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正;根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
实施中,处理器802,具体用于:
针对每组发送方向射频通道,执行以下步骤:
确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
处理器802,具体用于:
将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,所述第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,所述第二子载波偏移量小于所述第一子载波 偏移量。
实施中,处理器802,具体用于:
在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考通道发送组间发送校准导频序列,M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
实施中,处理器802,具体用于:
根据校准接收通道接收到的组间发送校准导频序列的反馈信号,对M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息;
根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每个参考通道上的所有子载波对应的信道信息。
实施中,处理器802,具体用于:
针对每组发送方向射频通道,执行以下步骤:
计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
实施中,处理器802,具体用于:
根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;
根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
实施中,处理器802,具体用于:
将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量,第三子载波偏移量大于或等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量,第四子载波偏移量小于第三子载波偏移量。
实施中,发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的第一发送时隙,与第二组发送方向射频通道发送组内发送校准导频序列所对应的第二发送时隙为相邻的两个保护时隙,或者第一发送时隙和第二发送时隙之间间隔X个保护时隙;其中,第一组发送方向射频通道与第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器802代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机801可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器802负责管理总线架构和通常的处理,存储器803可以存储处理器802在执行操作时所使用的数据。
从上述内容可以看出:由于天线阵列中的发送方向射频通道被分为M组,且在每组发送方向射频通道各自对应的发送时隙上分别发送相应组的组内发送校准导频序列,不同组所对应的组内发送校准导频序列的发送时隙各不相同,即针对M组发送方向射频通道时,采用时分方式在不同发送时隙发送每组发送方向射频通道的组内发送校准导频序列,因此,可独立对每一组发送方向射频通道进行信道估计,且当针对每一组发送方向射频通道采用频分进行信道估计时,仅满足一个组内的每个发送方向射频通道发送组内发送校准 导频序列所使用的频域资源各不相同即可,即,针对每组发送方向射频通道,可采用频分方式将每组对应的组内发送校准导频序列映射到该组发送方向射频通道中,因此,由于每组的发送方向射频通道数量较少,因此采用频分方式可将较多的组内发送校准导频序列映射到组内的每个射频通道上,进一步由于进行信道估计所使用的每个射频通道上映射的组内发送校准导频序列的长度增加,从而确定出的每个发送方向射频通道的通道间补偿系数精确性得到提高。
本领域内的技术人员应明白,本发明的实施例可提供为方法、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种天线校准的方法,其特征在于,包括以下步骤:
    获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
    分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
    根据所述M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
  2. 如权利要求1所述的方法,其特征在于,每组发送方向射频通道包括N个发送方向射频通道;其中:
    N为1;或者,N为大于1的整数,且一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。
  3. 如权利要求1所述的方法,其特征在于,所述根据所述M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数,包括:
    分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;
    通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收到的所述组间发送校准导频序列的反馈信号对所述M个参考通道进行信道估计,得到所述M个参考通道的信道信息;
    分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正;
    根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
  4. 如权利要求3所述的方法,其特征在于,所述分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,包括:
    针对每组发送方向射频通道,执行以下步骤:
    确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
    将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
  5. 如权利要求3所述的方法,其特征在于,所述通过M个参考通道发送组间发送校准导频序列,包括:
    将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,所述第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,所述第二子载波偏移量小于所述第一子载波偏移量。
  6. 如权利要求3所述的方法,其特征在于,所述通过M个参考通道发送组间发送校准导频序列,包括:
    在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考通道发送组间发送校准导频序列,所述M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
  7. 如权利要求3所述的方法,其特征在于,所述根据校准接收通道接收到的所述组间发送校准导频序列的反馈信号对所述M个参考通道进行信道估计,包括:
    根据校准接收通道接收到的所述组间发送校准导频序列的反馈信号,对所述M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息;
    根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信 道信息进行插值处理,得到每个参考通道上的所有子载波对应的信道信息。
  8. 如权利要求3所述的方法,其特征在于,所述分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正,包括:
    针对每组发送方向射频通道,执行以下步骤:
    计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
    计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
  9. 如权利要求1所述的方法,其特征在于,所述根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息,包括:
    根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;
    根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述通过相应组内的发送方向射频通道发送组内发送校准导频序列,包括:
    将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量,所述第三子载波偏移量大于或等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量,所述第四子载波偏移量小 于所述第三子载波偏移量。
  11. 如权利要求1至9中任一项所述的方法,其特征在于,所述发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的第一发送时隙,与第二组发送方向射频通道发送组内发送校准导频序列所对应的第二发送时隙为相邻的两个保护时隙,或者所述第一发送时隙和所述第二发送时隙之间间隔X个保护时隙;其中,所述第一组发送方向射频通道与所述第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。
  12. 一种天线校准的装置,其特征在于,包括:
    获取单元,用于获取发送方向射频通道分组信息,天线阵列中的发送方向射频通道被分为M组,M为大于1的整数;
    第一处理单元,用于分别在每组发送方向射频通道各自对应的组内发送校准导频序列的发送时隙,通过相应组内的发送方向射频通道发送组内发送校准导频序列,根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到M组发送方向射频通道的信道信息;其中,不同组所对应的组内发送校准导频序列的发送时隙各不相同;
    第一确定单元,用于根据所述M组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
  13. 如权利要求12所述的装置,其特征在于,每组发送方向射频通道包括N个发送方向射频通道;其中:
    N为1;或者,N为大于1的整数,且一个组内的每个发送方向射频通道发送组内发送校准导频序列所使用的频域资源各不相同。
  14. 如权利要求12所述的装置,其特征在于,所述第一确定单元包括:
    选取单元,用于分别根据每组发送方向射频通道的信道信息,从每组发送方向射频通道中选取一个参考通道,得到M个参考通道;
    第二处理单元,用于通过M个参考通道发送组间发送校准导频序列,根据校准接收通道接收到的所述组间发送校准导频序列的反馈信号对所述M个 参考通道进行信道估计,得到所述M个参考通道的信道信息;
    第二确定单元,用于分别根据每个参考通道的信道信息,对每个参考通道所对应的一组发送方向射频通道的信道信息进行修正;根据修正后的每组发送方向射频通道的信道信息,确定每个发送方向射频通道的通道间补偿系数。
  15. 如权利要求14所述的装置,其特征在于,所述选取单元进一步用于针对每组发送方向射频通道:
    确定该组发送方向射频通道中每个发送方向射频通道的接收功率;
    将接收功率不小于第一阈值的发送方向射频通道确定为有效发送方向射频通道,并根据该组发送方向射频通道中的所有有效发送方向射频通道的接收功率,从该组发送方向射频通道中的所有有效发送方向射频通道中选取一个参考通道。
  16. 如权利要求14所述的装置,其特征在于,所述第二处理单元进一步用于将组间发送校准导频序列映射在每个参考通道的整个工作带宽内的子载波上;其中,每个参考通道所映射的子载波之间的间距为第一子载波偏移量,所述第一子载波偏移量大于或等于M,相邻两个参考通道所映射的子载波之间的间距为第二子载波偏移量,所述第二子载波偏移量小于所述第一子载波偏移量。
  17. 如权利要求14所述的装置,其特征在于,所述第二处理单元进一步用于在当前校准周期内的组间发送校准导频序列的发送时隙,通过M个参考通道发送组间发送校准导频序列,所述M个参考通道发送组间发送校准导频序列所使用的频域资源各不相同。
  18. 如权利要求14所述的装置,其特征在于,所述第二处理单元进一步用于根据校准接收通道接收到的所述组间发送校准导频序列的反馈信号,对所述M个参考通道进行信道估计,得到每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息;根据每个参考通道上组间发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每个参考通道 上的所有子载波对应的信道信息。
  19. 如权利要求14所述的装置,其特征在于,所述第二确定单元进一步用于针对每组发送方向射频通道:
    计算该组发送方向射频通道的参考通道基于组间发送校准导频序列得到的信道信息和基于组内发送校准导频序列得到的信道信息之间的比值,得到该组发送方向射频通道对应的修正系数;
    计算该组发送方向射频通道对应的修正系数与该组发送方向射频通道中的每个发送方向射频通道基于组内校准导频信令得到的信道信息的乘积,得到该组发送方向射频通道中的每个发送方向射频通道修正后的信道信息。
  20. 如权利要求12所述的装置,其特征在于,所述第二处理单元进一步用于根据校准接收通道接收到的组内发送校准导频序列的反馈信号对每组发送方向射频通道进行信道估计,得到每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息;根据每组发送方向射频通道上组内发送校准导频序列所映射的子载波所对应的信道信息进行插值处理,得到每组发送方向射频通道上的所有子载波对应的信道信息。
  21. 如权利要求12至20中任一项所述的装置,其特征在于,所述第一处理单元进一步用于将每组发送方向射频通道各自对应的组内发送校准导频序列映射在发送方向射频通道的整个工作带宽内的子载波上;其中,每个发送方向射频通道所映射的子载波之间的间距为第三子载波偏移量,所述第三子载波偏移量大于或等于一组发送方向射频通道中的通道数量,相邻两个发送方向射频通道所映射的子载波之间的间距为第四子载波偏移量,所述第四子载波偏移量小于所述第三子载波偏移量。
  22. 如权利要求12至20中任一项所述的装置,其特征在于,所述发送时隙为保护时隙;第一组发送方向射频通道发送组内发送校准导频序列所对应的第一发送时隙,与第二组发送方向射频通道发送组内发送校准导频序列所对应的第二发送时隙为相邻的两个保护时隙,或者所述第一发送时隙和所述第二发送时隙之间间隔X个保护时隙;其中,所述第一组发送方向射频通 道与所述第二组发送方向射频通道为组内发送校准导频序列的发送时隙相邻的任意两组发送方向射频通道,X为大于或等于1的整数。
PCT/CN2016/070497 2015-02-11 2016-01-08 一种天线校准的方法及装置 WO2016127748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16748549.9A EP3258615B1 (en) 2015-02-11 2016-01-08 Antenna calibration method and apparatus
US15/550,326 US10536247B2 (en) 2015-02-11 2016-01-08 Method and apparatus for calibration of an antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510073800.0A CN105991177B (zh) 2015-02-11 2015-02-11 一种天线校准的方法及装置
CN201510073800.0 2015-02-11

Publications (1)

Publication Number Publication Date
WO2016127748A1 true WO2016127748A1 (zh) 2016-08-18

Family

ID=56615292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070497 WO2016127748A1 (zh) 2015-02-11 2016-01-08 一种天线校准的方法及装置

Country Status (4)

Country Link
US (1) US10536247B2 (zh)
EP (1) EP3258615B1 (zh)
CN (1) CN105991177B (zh)
WO (1) WO2016127748A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936522B (zh) * 2017-02-13 2020-08-28 京信通信系统(中国)有限公司 一种智能天线通道校准方法及校准装置
CN108964795B (zh) * 2018-07-20 2021-11-02 京信网络系统股份有限公司 天线互易性校准方法、装置及系统
US10909438B1 (en) * 2019-07-12 2021-02-02 The Florida International University Board Of Trustees Passive RFID temperature sensors with liquid crystal elastomers
CN114079517B (zh) * 2020-08-20 2024-01-26 北京佰才邦技术股份有限公司 一种天线校准的方法、装置及控制设备
CN114189291B (zh) * 2020-09-15 2023-12-05 北京佰才邦技术股份有限公司 一种天线校准方法、射频拉远单元及基带处理单元
CN115314129A (zh) * 2022-07-15 2022-11-08 成都爱旗科技有限公司 一种射频功率校准方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854323A (zh) * 2009-04-03 2010-10-06 中兴通讯股份有限公司 天线校准方法和系统
CN102014094A (zh) * 2009-09-07 2011-04-13 大唐移动通信设备有限公司 智能天线发射通道及接收通道的校准方法及相关装置
CN102386953A (zh) * 2010-08-31 2012-03-21 普天信息技术研究院有限公司 一种宽带ofdm系统中的天线发送和接收校准方法
WO2014032271A1 (en) * 2012-08-31 2014-03-06 Nec(China) Co., Ltd. Method and apparatus for antenna calibration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875889B1 (ko) * 2005-08-08 2008-12-24 삼성전자주식회사 다중 안테나를 사용하는 다중반송파 통신 시스템에서 송신경로 보정 장치 및 방법
WO2014204868A1 (en) * 2013-06-20 2014-12-24 Ntt Docomo, Inc. Method and apparatus for relative transceiver calibration for wireless communication systems
EP3142188B1 (en) * 2014-06-06 2020-01-01 Huawei Technologies Co., Ltd. Array antenna calibration method, device and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854323A (zh) * 2009-04-03 2010-10-06 中兴通讯股份有限公司 天线校准方法和系统
CN102014094A (zh) * 2009-09-07 2011-04-13 大唐移动通信设备有限公司 智能天线发射通道及接收通道的校准方法及相关装置
CN102386953A (zh) * 2010-08-31 2012-03-21 普天信息技术研究院有限公司 一种宽带ofdm系统中的天线发送和接收校准方法
WO2014032271A1 (en) * 2012-08-31 2014-03-06 Nec(China) Co., Ltd. Method and apparatus for antenna calibration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258615A4 *

Also Published As

Publication number Publication date
EP3258615B1 (en) 2020-10-14
EP3258615A4 (en) 2018-08-01
CN105991177B (zh) 2019-11-08
US10536247B2 (en) 2020-01-14
CN105991177A (zh) 2016-10-05
US20180026766A1 (en) 2018-01-25
EP3258615A1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2016127748A1 (zh) 一种天线校准的方法及装置
EP2052472B1 (en) Uplink access request in an ofdm communication environment
CN105391671B (zh) 用于信道估计和均衡的方法和装置
KR101963819B1 (ko) 복수의 요청에 대한 응답에서 사용자 단말로부터의 사운딩 기준 신호의 전송
CN110999187B (zh) 无线通信系统中分配相位跟踪参考信号的方法和装置
EP2777337B1 (en) Multi-stage timing and frequency synchronization
US20170331599A1 (en) Wireless communication apparatus and the method thereof
US10700833B2 (en) Transmission parameter configuration method and base station, information transmission method and terminal, and storage medium
US20100157937A1 (en) Uplink Reference Signal for Time and Frequency Scheduling of Transmissions
US11050595B2 (en) Reference signal for phase tracking insertion
WO2011095009A1 (zh) 测量参考信号的发送方法及系统
CN102934374A (zh) 发送上行探测参考信号的方法、估计信道的方法、移动终端、基站和无线通信系统
CN107210808B (zh) 估计上行链路sinr的方法及估计信道误差等级的方法
WO2020164461A1 (zh) 一种下行传输方法及其装置
CN109219980A (zh) 传输数据的方法和装置
CN108029019A (zh) 数据传输方法及装置
CN108809554B (zh) 一种解调参考信号的资源映射方法及基站
CN110856096B (zh) 定位参考信号生成方法、相关装置、通信系统及存储介质
WO2015176660A1 (zh) 测量参考信号传输的方法、用户设备及演进基站
JP2012170070A (ja) 無線通信システムにおけるチャンネル推定方法及び装置
CN106576025A (zh) 增强的随机接入信道过程
EP3713125B1 (en) Method, apparatus and system for transmitting uplink control information, and storage medium
CN114142977A (zh) 导频处理方法及相关设备
CN104243366A (zh) 一种多用户接入下的频偏估计方法和装置
WO2018127213A1 (zh) 一种上行传输方法、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550326

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016748549

Country of ref document: EP