WO2016126127A1 - 하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 mems 장치 - Google Patents

하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 mems 장치 Download PDF

Info

Publication number
WO2016126127A1
WO2016126127A1 PCT/KR2016/001264 KR2016001264W WO2016126127A1 WO 2016126127 A1 WO2016126127 A1 WO 2016126127A1 KR 2016001264 W KR2016001264 W KR 2016001264W WO 2016126127 A1 WO2016126127 A1 WO 2016126127A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
sawing
photoresist
support substrate
deep
Prior art date
Application number
PCT/KR2016/001264
Other languages
English (en)
French (fr)
Inventor
박종삼
이종성
이성호
우종창
Original Assignee
주식회사 스탠딩에그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스탠딩에그 filed Critical 주식회사 스탠딩에그
Publication of WO2016126127A1 publication Critical patent/WO2016126127A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity

Definitions

  • the present invention relates to a micromachining method that solves the half sawing problem and a MEMS device manufactured using the same, and more particularly, to the problem of the conventional half sawing, namely, particle problems and particles generated during sawing. Secondary reliability or stability in the subsequent process caused by contamination, weak parts of the structure such as the spring break during the half sawing process, poor productivity, dicing film contamination problem, during the process after half sowing
  • the present invention relates to a micromachining method and a MEMS device manufactured using the same by solving a simple deep dry etching problem in which a half-sawed portion acts as a notch and breaks a wafer.
  • 1 is a process chart for explaining a conventional SBM process.
  • FIG. 1 (a) Applying a hard mask on the SOI wafer as shown in FIG. 1 (a), etching the hard mask using the primary photoresist as shown in FIG. 1 (b), the photoresist is then Remove Applying the secondary photoresist as shown in FIG. 1C, etching the primary upper silicon layer as shown in FIG. 1D, and as shown in FIG. The photoresist is removed, and the upper silicon layer is etched secondly as shown in FIG. 1F to form a trench. As shown in FIG. 1 (g), oxidation passivation is performed on the sidewalls of the trench, and the oxide layer at the bottom of the trench is etched as shown in FIG. 1 (h). As shown in FIG.
  • the upper silicon layer is etched and half sawed in third order. As shown in FIG. 1 (j), the upper silicon layer is wet etched using TMAH. The oxide or insulating layer is etched as shown in Fig. 1 (k) to release the MESM portion.
  • the conventional half-sawing process is a secondary reliability or stability problem in the subsequent process caused by particle problems generated during sawing and contamination due to particles, problems of poor mass productivity due to broken structures, dicing film contamination Problems and wafer cracking problems are more likely to occur.
  • FIG. 2 is a diagram illustrating a problem of the conventional SOI process.
  • This process is widely used because of the simple process, but there are many disadvantages. For example, during silicon etching, over-etching squeezes into the side of the silicon, leaving residues or particles out of the silicon, and insulating the sacrificial layer (intermediate green layer in FIG. 1). Even when the layer (oxide) was removed, the silicon particles or residues were not removed, so that they did not become neat, and furthermore, they had a disadvantage of being easily broken or broken by mechanical notches.
  • the acceleration sensor manufactured by the conventional SOI process is limited to movement in the up and down direction.
  • the limitation of the movement is the thickness of the sacrificial layer, that is, the thickness of the insulating layer (usually 1 to 2 micrometers, very special). 4 micrometers or less) is the limit. For this reason, there have been many conventional problems when detecting high G.
  • Patent Document 1 Republic of Korea Patent No. 332360 (registered on March 30, 2002), micro-angerometer made by single crystal silicon micromachining technique
  • the present invention has been made to solve the above-described problems, and the present invention is a secondary reliability in the subsequent process caused by the problem of the conventional half-sawing, that is, particle problems generated during sawing and contamination by particles. Stability problems, weak parts of structures such as springs are broken during half sawing process, resulting in poor productivity, dicing film contamination problems, half sawed parts acting as notches in the process after half sawing, and wafers broken It is an object of the present invention to provide a micromachining method and a MEMS device manufactured using the same by using a simple deep dry etching.
  • SOI silicon on insulator
  • step S100 applying and etching a first photoresist and a second photoresist on the upper silicon layer (S200); A second deep etching (S400) for etching the upper silicon layer through an open portion to expose the insulating layer through etching in the step S200; Forming an oxide layer on a side surface of the second deep etched upper silicon layer in step S400 and etching the insulating layer exposed to the bottom in a depth direction (S500); Performing a third deep etching process on the support substrate exposed in step S500 (S600); And removing the support substrate, which is a sacrificial layer, to release a MEMS unit through the support substrate exposed through the third deep etching in step S600.
  • the removing of the supporting substrate may include moving structure of the MEMS unit through XeF2 etching or TMAH etching with respect to the supporting substrate exposed through the third deep etching in step S600. Etching the support substrate including a lower position of the (S700).
  • step S800 in order to remove the insulating layer and the oxide layer Vapor HF or HF wet etching step (S800); further includes.
  • step S200 through the steps S500, S600 and S700, the first photo to be applied on the moving structure and the stop of the MEMS part so that the vertical thickness difference between the moving structure and the stop of the MEMS part occurs.
  • the resist and the second photoresist are formed different from each other.
  • the third deep etching in the step S600 is performed in consideration of the expected movement range or damping characteristics of the Z-axis direction of the MEMS portion to be released.
  • the third photoresist is applied in a discontinuous pattern, so that the first deep etching is also performed in a discontinuous pattern.
  • the MEMS device according to the second embodiment of the present invention is manufactured by a micromachining method which solves the above-described half sawing problem.
  • the problem of the conventional half-sawing that is, the problem of particles (particles) generated during sawing and the secondary reliability or stability in the subsequent process caused by the contamination caused by particles, the problem of poor mass productivity due to the broken structure, dicing film It is possible to solve the problem of contamination and wafer breaking through simple deep dry etching.
  • the acceleration sensor manufactured by the conventional SOI process is limited to movement in the up and down direction.
  • the limitation of the movement is the thickness of the insulating layer, which is a sacrificial layer, usually 1 to 2 micrometers, even in very special cases, 4 micrometers.
  • the meter has become a limit of movement in the up and down direction, and thus, there have been many problems in detecting high G.
  • the present invention adjusts the etching thickness of the support substrate according to the desired movement range in the up and down direction (Z axis direction). It is possible to freely adjust the movement range in the z-axis direction.
  • FIG. 3 is a process chart for explaining a micromachining method according to the present invention.
  • the micromachining method which solves the half-sawing problem according to the first embodiment of the present invention, first, the SOI (Silicon) consisting of a support substrate made of silicon (Si), an upper silicon layer and an insulating layer between the support substrate and the upper silicon layer On Insulator) to prepare a wafer (S100, see Fig. 3 (a))
  • a third photoresist is applied to the SOI wafer to replace the existing half sawing, and the first deep etching is performed using the third photoresist. (S300, see FIG. 3 (c)).
  • the third photoresist is applied in a discontinuous pattern, although a continuous pattern is also possible, so that the first deep etching is also performed in a discontinuous pattern. Because, in order to solve the problem that the conventional structure is broken or the wafer is broken, it is more preferable to secure structural stability by performing deep etching in a discontinuous pattern rather than continuous deep etching.
  • the first deep etching is a dry etching, and it is possible to fundamentally solve problems such as particle problems caused by conventional half sawing and secondary reliability or stability problems in subsequent processes caused by contamination due to particles. .
  • the first deep etching includes removing the upper silicon layer, removing the insulating layer, and removing the lower support substrate through photoresist coating and etching.
  • step S100 the first photoresist and the second photoresist are applied and etched on the upper silicon layer (S200, see FIG. 3B).
  • the first photoresist and the second photo applied on the moving structure and the stop of the MEMS part so that a vertical thickness difference between the moving structure and the stop of the MEMS part occurs.
  • the resists are formed different from each other. This is a vertical thickness so that the MEMS unit can sense by using the difference in the area where the stop unit (pad of FIG. 3) and the moving structure (comb of FIG. 3) which face the MEMS unit face each other, that is, the capacitance change between them. Make a difference.
  • step S200 the second silicon layer is etched through the open portion to etch a second deep etching to expose the insulating layer (S400, see (d) of FIG. 3).
  • step S400 an oxide layer is formed on the side surface of the second deep etched upper silicon layer in step S400, and the insulating layer exposed to the bottom is etched in the depth direction (S500, see FIG. 3E).
  • a third deep etching is performed on the support substrate exposed in step S500 (S600, see FIG. 3 (f)).
  • the third deep etching is performed in consideration of the expected movement range or the damping characteristic of the Z-axis direction of the MEMS portion to be released, and performs the third deep etching. Through this, it is possible to freely solve the movement limitation in the z-axis direction in the prior art. As the space removed from the support substrate increases, damping characteristics are improved due to internal air.
  • step S600 removing the support substrate which is a sacrificial layer to release the MEMS unit through the support substrate exposed through the third deep etching in step S600.
  • the supporting substrate is etched with respect to the supporting substrate exposed through the third deep etching in step S600, including the lower position of the moving structure in the MEMS part through XeF2 etching or TMAH etching (S700, (G) of FIG. 3). At this time, it can be etched until it meets the (111) direction which is an etch stop.
  • step S700 Vapor HF or HF wet etching is further added to remove the insulating layer and the oxide layer (S800, see FIG. 3 (h)).
  • the MEMS device according to the second embodiment of the present invention is manufactured by a micromachining method which solves the above-described half sawing problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Micromachines (AREA)

Abstract

본 발명은, 실리콘으로 이루어진 지지기판, 상부 실리콘층 및 상기 지지기판 및 상부 실리콘층 사이의 절연층으로 이루어진 SOI(Silicon On Insulator) 웨이퍼를 준비하는 단계(S100); 및 상기 SOI 웨이퍼에 대하여, 기존의 하프 소잉(half sawing)을 대체하기 위하여, 제 3 포토 레지스트를 도포하고, 상기 제 3 포토 레지스트를 이용하여 제 1 딥 에칭(deep etching)하는 단계(S300);를 포함하는, 하프 소잉 문제를 해결한 마이크로머시닝 방법를 제공한다.

Description

하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 MEMS 장치
본 발명은 하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 MEMS 장치에 관한 것으로, 좀 더 구체적으로는, 종래 하프 소잉의 문제점, 즉 소잉시 발생되는 파티클(particle) 문제 및 파티클로 인한 오염 때문에 발생하는 이후 공정에서의 2차적인 신뢰성 내지 안정성 문제, 스프링 등의 구조물의 약한 부분이 하프 소잉 공정 중에 부서져서 양산성이 떨어지는 문제점, 다이싱 필름 오염 문제, 하프 소잉 이후 공정을 진행하는 과정에서 하프 소잉된 부분이 노치로 작용해서 웨이퍼가 깨지는 문제점을 간단한 딥 드라이 에칭을 통해서 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 MEMS 장치에 관한 것이다.
도 1은 종래 SBM 공정을 설명하기 위한 공정도이다.
도 1의 (a)에 도시된 바와 같이 SOI 웨이퍼 상에 하드 마스크를 도포하고, 도 1의 (b)에 도시된 바와 같이 1차 포토 레지스트를 이용하여, 하드 마스크를 에칭하고, 포토 레지스트는 이후 제거한다. 도 1의 (c)에 도시된 바와 같이 2차 포토 레지스트를 도포하고, 도 1의 (d)에 도시된 바와 같이 1차 상부 실리콘층을 에칭하고, 도 1의 (e)에 도시된 바와 같이 포토 레지스트를 제거하고, 도 1의 (f)에 도시된 바와 같이 2차로 상부 실리콘층을 에칭하여 트렌치를 형성한다. 도 1의 (g)에 도시된 바와 같이, 트렌치의 측벽에 산화 패시베이션(passvation)을 하고, 도 1의 (h)에 도시된 바와 같이 트렌치 하부 바닥의 산화층을 에칭한다. 도 1의 (i)에 도시된 바와 같이 3차로 상부 실리콘층을 에칭하고, 하프 소잉(half sawing)한다. 도 1의 (j)에 도시된 바와 같이 TMAH을 이용하여 상부 실리콘층을 습식 에칭한다. 도 1의 (k)에 도시된 바와 같이 산화물 또는 절연층을 에칭하여, MESM부를 릴리스(release)한다.
여기서, 종래의 하프 소잉 공정은 소잉시 발생되는 파티클(particle) 문제 및 파티클로 인한 오염 때문에 발생하는 이후 공정에서의 2차적인 신뢰성 내지 안정성 문제, 구조가 부서져서 양산성이 떨어지는 문제점, 다이싱 필름 오염 문제, 웨이퍼 깨지는 문제점이 발생할 가능성이 높아진다.
한편, 도 2는 종래 SOI 공정의 문제점을 나타낸 도면이다. 이와 같은 공정은 간단한 공정 때문에 널리 사용되고 있으나, 단점들이 많이 존재한다. 예를 들어, 실리콘 에칭시에 오버 에칭(over-etching)으로 인해 실리콘 측면으로 치고 들어가서 실리콘으로부터 잔류물(residues)이나 파티클(particle)이 나오게 되고, 희생층(도 1에서 중간의 녹색 층의 절연층(산화물))을 제거할 때에도 실리콘 파티클이나 잔류물들은 제거가 되지 않아서, 깔끔한 상태가 되지 못하고, 나아가 기계적인 노치(notch)로 인해 부러지거나 깨지기 쉬운 단점을 가졌었다.
또한, 기존의 SOI 공정으로 제조되는 가속도 센서의 경우, 위아래 방향으로 움직임에 제약을 받게 되는데, 그 움직임의 한계는 희생층의 두께, 즉 절연층의 두께(통상, 1~2마이크로미터, 아주 특수한 경우라도 4마이크로미터 이하)가 한계가 된다. 이로 인해, high G를 검출할 때 종래 문제가 많았다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 특허 제332360호(2002.03.30. 등록), 단결정 실리콘 마이크로머시닝 기법으로 제작된 미세각속도계
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명은 종래 하프 소잉의 문제점, 즉 소잉시 발생되는 파티클(particle) 문제 및 파티클로 인한 오염 때문에 발생하는 이후 공정에서의 2차적인 신뢰성 내지 안정성 문제, 스프링 등의 구조물의 약한 부분이 하프 소잉 공정 중에 부서져서 양산성이 떨어지는 문제점, 다이싱 필름 오염 문제, 하프 소잉 이후 공정을 진행하는 과정에서 하프 소잉된 부분이 노치로 작용해서 웨이퍼가 깨지는 문제점을 간단한 딥 드라이 에칭을 통해서 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 MEMS 장치를 제공하는 것을 목적으로 한다.
상기의 목적을 달성하기 위한 본 발명의 제 1 실시예에 따른 하프 소잉 문제를 해결한 마이크로머시닝 방법은, 실리콘으로 이루어진 지지기판, 상부 실리콘층 및 상기 지지기판 및 상부 실리콘층 사이의 절연층으로 이루어진 SOI(Silicon On Insulator) 웨이퍼를 준비하는 단계(S100); 및 상기 SOI 웨이퍼에 대하여, 기존의 하프 소잉(half sawing)을 대체하기 위하여, 제 3 포토 레지스트를 도포하고, 상기 제 3 포토 레지스트를 이용하여 제 1 딥 에칭(deep etching)하는 단계(S300);를 포함한다.
또한, 상기 S100 단계 이후에, 상기 상부 실리콘층 상에 제 1 포토 레지스트 및 제 2 포토 레지스트를 도포하여 에칭하는 단계(S200); 상기 S200단계에서의 에칭을 통하여, 개방된 부분을 통해서 상기 상부 실리콘층을 에칭하여 상기 절연층이 노출되도록 하는 제 2 딥 에칭(deep etching)하는 단계(S400); 상기 S400단계에서의 제 2 딥 에칭된 상부 실리콘층의 측면에 산화층을 형성시키고, 하부에 노출된 상기 절연층을 깊이 방향으로 에칭하는 단계(S500); 상기 S500단계에서 노출된 상기 지지기판에 대해서 제 3 딥 에칭하는 단계(S600); 및 상기 S600단계에서의 제 3 딥 에칭을 통해서 노출된 상기 지지기판을 통해서 MEMS부가 릴리스(release)되도록 희생층인 상기 지지기판을 제거하는 단계;를 포함한다.
또한, 상기 희생층인 상기 지지기판을 제거하는 단계는, 상기 S600단계에서 제 3 딥 에칭을 통해서 노출된 상기 지지기판에 대해서, XeF2 에칭 또는 TMAH 에칭을 통해서 상기 MEMS부 중 움직이는 구조(moving structure)의 하부 위치를 포함하여 상기 지지기판을 에칭하는 단계(S700)를 포함한다.
또한, 상기 S700 단계 이후에, 상기 절연층 및 상기 산화층을 제거하기 위해 Vapor HF 또는 HF 습식 에칭을 하는 단계(S800);를 더 포함한다.
또한, 상기 S200 단계에서, 상기 S500 단계, S600 단계 및 S700 단계를 통해서, 상기 MEMS부의 움직이는 구조 및 정지부 간의 수직 두께 차이가 발생하도록, 상기 MEMS부의 움직이는 구조 및 정지부 상에 도포하는 제 1 포토 레지스트 및 제 2 포토 레지스트를 서로 상이하게 형성한다.
또한, 상기 S600 단계에서의 제 3 딥 에칭은, 상기 릴리스되는 MEMS부의 Z축 방향 예상 움직임 범위 또는 댐핑 특성을 고려하여, 제 3 딥 에칭을 한다.
또한, 상기 제 1 딥 에칭을 할 때, 제 3 포토 레지스트가 불연속적인 패턴으로 도포되도록 하여, 상기 제 1 딥 에칭도 불연속적인 패턴으로 실행되도록 한다.
한편, 본 발명에 따른 제 2 실시예인 MEMS 장치는, 상술한 하프 소잉 문제를 해결한 마이크로머시닝 방법에 의하여 제조된다.
본 발명에 따른 하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 MEMS 장치에 의하면,
첫째, 종래 하프 소잉의 문제점, 즉 소잉시 발생되는 파티클(particle) 문제 및 파티클로 인한 오염 때문에 발생하는 이후 공정에서의 2차적인 신뢰성 내지 안정성 문제, 구조가 부서져서 양산성이 떨어지는 문제점, 다이싱 필름 오염 문제, 웨이퍼가 깨지는 문제점을 간단한 딥 드라이 에칭을 통해서 해결하는 것이 가능하다.
둘째, 종래 기술의 경우, 실리콘 에칭 시에 오버 에칭으로 인해 실리콘 측벽으로 치고 들어가서 실리콘으로부터 잔류물 또는 파티클이 발생하게 되고, 희생층인 도 1에서 중간의 녹색 층의 절연층(산화물)을 제거할 때에도 실리콘 파티클이나 잔류물들은 제거가 되지 않아서, 깔끔한 상태가 되지 못하고, 나아가 기계적인 노치(notch)로 인해 부러지거나 깨지기 쉬운 단점을 가졌지만, 본 발명은 이와 같은 문제점을 해결하는 것이 가능하다.
셋째, 기존의 SOI 공정으로 제조되는 가속도 센서의 경우, 위아래 방향으로 움직임에 제약을 받게 되는데, 그 움직임의 한계는 희생층인 절연층의 두께, 통상 1~2 마이크로미터, 아주 특수한 경우라도 4마이크로미터가 위아래 방향의 움직임의 한계가 되었고, 이로 인해, high G를 검출할 때 종래 문제가 많았지만, 본 발명은 원하는 위아래 방향(Z축 방향)의 움직임 범위에 따라 지지기판의 에칭 두께를 조절하여 z축 방향 움직임 범위를 자유롭게 조절하는 것이 가능하다.
도 1은 종래 SBM 공정을 설명하기 위한 공정도,
도 2는 종래 SOI 공정의 문제점을 설명하기 위한 공정도,
도 3은 본 발명에 따른 마이크로머시닝 방법을 설명하기 위한 공정도이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
(제 1 실시예)
본 발명의 제 1 실시예에 따른 하프 소잉 문제를 해결한 마이크로머시닝 방법은, 먼저 실리콘(Si)으로 이루어진 지지기판, 상부 실리콘층 및 상기 지지기판 및 상부 실리콘층 사이의 절연층으로 이루어진 SOI(Silicon On Insulator) 웨이퍼를 준비한다(S100, 도 3의 (a) 참조)
다음으로, 이와 같은 SOI 웨이퍼에 대하여, 기존의 하프 소잉(half sawing)을 대체하기 위하여, 제 3 포토 레지스트(photo resist)를 도포하고, 제 3 포토 레지스트를 이용하여 제 1 딥 에칭(deep etching)한다(S300, 도 3의 (c) 참조).
여기서, 제 1 딥 에칭을 할 때, 제 3 포토 레지스트가 연속적 패턴도 가능하지만, 불연속적인 패턴으로 도포되도록 하여, 제 1 딥 에칭도 불연속적인 패턴으로 실행되도록 하는 것이 더욱 바람직하다. 왜냐하면, 종래 구조가 부서거나 웨이퍼가 깨지는 문제점을 해결하기 위해서 연속적인 딥 에칭보다는 불연속적인 패턴으로 딥 에칭을 하여 구조적 안정성을 확보하는 것이 더욱 바람직하다.
제 1 딥 에칭은 드라이 에칭으로, 종래 하프 소잉시 발생되는 파티클(particle) 문제 및 파티클로 인한 오염 때문에 발생하는 이후 공정에서의 2차적인 신뢰성 내지 안정성 문제 등의 문제점을 근본적으로 해결하는 것이 가능하다.
또한, 제 1 딥 에칭은, 포토 레지스트 도포 및 에칭 등을 통해서, 상부 실리콘층 제거, 절연층 제거 및 하부의 지지기판을 제거하는 단계를 포함하여 이루어진다.
또한, S100 단계 이후에, 상부 실리콘층 상에 제 1 포토 레지스트 및 제 2 포토 레지스트를 도포하여 에칭한다(S200, 도 3의 (b) 참조).
여기서, 후술할 S500 단계, S600 단계 및 S700 단계를 통해서, MEMS부의 움직이는 구조 및 정지부 간의 수직 두께 차이가 발생하도록, 상기 MEMS부의 움직이는 구조 및 정지부 상에 도포하는 제 1 포토 레지스트 및 제 2 포토 레지스트를 서로 상이하게 형성한다. 이것은 MEMS부를 이루는 정지부(도 3의 패드(pad)) 및 움직이는 구조(도 3의 comb)이 서로 대면하는 면적의 차이, 즉 양자 간의 커패시턴스의 변화를 이용하여 MEMS부가 센싱을 할 수 있도록 수직 두께 차이가 발생하도록 만든다.
다음으로, S200단계에서의 에칭을 통하여, 개방된 부분을 통해서 상부 실리콘층을 에칭하여 절연층이 노출되도록 하는 제 2 딥 에칭(deep etching)한다(S400, 도 3의 (d) 참조).
다음으로, S400단계에서의 제 2 딥 에칭된 상부 실리콘층의 측면에 산화층을 형성시키고, 하부에 노출된 상기 절연층을 깊이 방향으로 에칭한다(S500, 도 3의 (e) 참조).
다음으로, S500단계에서 노출된 상기 지지기판에 대해서 제 3 딥 에칭한다(S600, 도 3의 (f) 참조). 여기서, 제 3 딥 에칭은, 상기 릴리스되는 MEMS부의 Z축 방향 예상 움직임 범위 또는 댐핑(damping) 특성을 고려하여, 제 3 딥 에칭을 한다. 이를 통해서, 종래 기술에서의 z축 방향으로 움직임 제한을 자유롭게 해결하는 것이 가능하다. 지지기판에서의 제거되는 공간이 클수록 내부 공기로 인해 댐핑 특성이 향상되게 된다.
다음으로, S600단계에서의 제 3 딥 에칭을 통해서 노출된 지지기판을 통해서 MEMS부가 릴리스(release)되도록 희생층인 지지기판을 제거하는 단계;를 포함한다.
구체적으로는, S600단계에서 제 3 딥 에칭을 통해서 노출된 지지기판에 대해서, XeF2 에칭 또는 TMAH 에칭을 통해서 MEMS부 중 움직이는 구조(moving structure)의 하부 위치를 포함하여 지지기판을 에칭한다(S700, 도 3의 (g) 참조). 이 때, 에치 스톱(etch stop)인 (111) 방향을 만나게 될 때까지 에칭되게 할 수 있다.
또한, S700 단계 이후에, 절연층 및 산화층을 제거하기 위해 Vapor HF 또는 HF 습식 에칭을 더 한다(S800, 도 3의 (h) 참조).
(제 2 실시예)
한편, 본 발명에 따른 제 2 실시예인 MEMS 장치는, 상술한 하프 소잉 문제를 해결한 마이크로머시닝 방법에 의하여 제조된다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (8)

  1. 실리콘으로 이루어진 지지기판, 상부 실리콘층 및 상기 지지기판 및 상부 실리콘층 사이의 절연층으로 이루어진 SOI(Silicon On Insulator) 웨이퍼를 준비하는 단계(S100); 및
    상기 SOI 웨이퍼에 대하여, 기존의 하프 소잉(half sawing)을 대체하기 위하여, 제 3 포토 레지스트를 도포하고, 상기 제 3 포토 레지스트를 이용하여 제 1 딥 에칭(deep etching)하는 단계(S300);를 포함하는,
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  2. 제 1 항에 있어서,
    상기 S100 단계 이후에, 상기 상부 실리콘층 상에 제 1 포토 레지스트 및 제 2 포토 레지스트를 도포하여 에칭하는 단계(S200);
    상기 S200단계에서의 에칭을 통하여, 개방된 부분을 통해서 상기 상부 실리콘층을 에칭하여 상기 절연층이 노출되도록 하는 제 2 딥 에칭(deep etching)하는 단계(S400);
    상기 S400단계에서의 제 2 딥 에칭된 상부 실리콘층의 측면에 산화층을 형성시키고, 하부에 노출된 상기 절연층을 깊이 방향으로 에칭하는 단계(S500);
    상기 S500단계에서 노출된 상기 지지기판에 대해서 제 3 딥 에칭하는 단계(S600); 및
    상기 S600단계에서의 제 3 딥 에칭을 통해서 노출된 상기 지지기판을 통해서 MEMS부가 릴리스(release)되도록 희생층인 상기 지지기판을 제거하는 단계;를 포함하는
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  3. 제 2 항에 있어서,
    상기 희생층인 상기 지지기판을 제거하는 단계는,
    상기 S600단계에서 제 3 딥 에칭을 통해서 노출된 상기 지지기판에 대해서, XeF2 에칭 또는 TMAH 에칭 등의 건식 또는 습식 에칭을 통해서 상기 MEMS부 중 움직이는 구조(moving structure)의 하부 위치를 포함하여 상기 지지기판을 에칭하는 단계(S700)를 포함하는,
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  4. 제 3 항에 있어서,
    상기 S700 단계 이후에, 상기 절연층 및 상기 산화층을 제거하기 위해 Vapor HF 또는 HF 습식 에칭을 하는 단계(S800);를 더 포함하는,
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  5. 제 3 항에 있어서,
    상기 S200 단계에서,
    상기 S500 단계, S600 단계 및 S700 단계를 통해서, 상기 MEMS부의 움직이는 구조 및 정지부 간의 수직 두께 차이가 발생하도록, 상기 MEMS부의 움직이는 구조 및 정지부 상에 도포하는 제 1 포토 레지스트 및 제 2 포토 레지스트를 서로 상이하게 형성하는 단계인,
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  6. 제 2 항에 있어서,
    상기 S600 단계에서의 제 3 딥 에칭은,
    상기 릴리스되는 MEMS부의 Z축 방향 예상 움직임 범위 또는 댐핑 특성을 고려하여, 제 3 딥 에칭을 하는,
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  7. 제 2 항에 있어서,
    상기 제 1 딥 에칭을 할 때, 제 3 포토 레지스트가 불연속적인 패턴으로 도포되도록 하여, 상기 제 1 딥 에칭도 불연속적인 패턴으로 실행되도록 하는,
    하프 소잉 문제를 해결한 마이크로머시닝 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 기재된 하프 소잉 문제를 해결한 마이크로머시닝 방법에 의하여 제조되는 MEMS 장치.
PCT/KR2016/001264 2015-02-05 2016-02-04 하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 mems 장치 WO2016126127A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0018177 2015-02-05
KR1020150018177A KR101539198B1 (ko) 2015-02-05 2015-02-05 딥 드라이 에칭을 이용한 마이크로머시닝 방법 및 이를 이용하여 제조된 mems 장치

Publications (1)

Publication Number Publication Date
WO2016126127A1 true WO2016126127A1 (ko) 2016-08-11

Family

ID=53876068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001264 WO2016126127A1 (ko) 2015-02-05 2016-02-04 하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 mems 장치

Country Status (2)

Country Link
KR (1) KR101539198B1 (ko)
WO (1) WO2016126127A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174087A (zh) * 2020-09-30 2021-01-05 南京大学 一种仿猪笼草结构的超疏水高疏油表面的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040023498A1 (en) * 2002-08-02 2004-02-05 Harchanko John S. Method of making multilevel MEMS structures
US6846724B2 (en) * 2001-09-28 2005-01-25 Rockwell Automation Technologies, Inc. Method for fabricating a microelectromechanical system (MEMS) device using a pre-patterned bridge
US7166488B2 (en) * 2003-04-16 2007-01-23 The Regents Of The University Of California Metal MEMS devices and methods of making same
US7550358B2 (en) * 2004-12-10 2009-06-23 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences MEMS device including a laterally movable portion with piezo-resistive sensing elements and electrostatic actuating elements on trench side walls, and methods for producing the same
KR20110079222A (ko) * 2009-12-31 2011-07-07 삼성전자주식회사 테라헤르츠 발진기용 멤스 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846724B2 (en) * 2001-09-28 2005-01-25 Rockwell Automation Technologies, Inc. Method for fabricating a microelectromechanical system (MEMS) device using a pre-patterned bridge
US20040023498A1 (en) * 2002-08-02 2004-02-05 Harchanko John S. Method of making multilevel MEMS structures
US7166488B2 (en) * 2003-04-16 2007-01-23 The Regents Of The University Of California Metal MEMS devices and methods of making same
US7550358B2 (en) * 2004-12-10 2009-06-23 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences MEMS device including a laterally movable portion with piezo-resistive sensing elements and electrostatic actuating elements on trench side walls, and methods for producing the same
KR20110079222A (ko) * 2009-12-31 2011-07-07 삼성전자주식회사 테라헤르츠 발진기용 멤스 소자 및 그 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174087A (zh) * 2020-09-30 2021-01-05 南京大学 一种仿猪笼草结构的超疏水高疏油表面的制备方法

Also Published As

Publication number Publication date
KR101539198B1 (ko) 2015-07-24

Similar Documents

Publication Publication Date Title
US20060278942A1 (en) Antistiction MEMS substrate and method of manufacture
US7629263B2 (en) Semiconductor sensor production method and semiconductor sensor
JP2008519695A (ja) ばね解放ブリッジを備えたマイクロ電気機械(mem)装置およびその製造方法
US8319254B2 (en) Micro-electromechanical system devices
EP1049143A2 (en) Etching method
US6694504B2 (en) Method of fabricating an electrostatic vertical and torsional actuator using one single-crystalline silicon wafer
JP2006007407A (ja) Mems構造体とその製造方法
US20090176370A1 (en) Single soi wafer accelerometer fabrication process
EP2019081B1 (en) Boron doped shell for MEMS device
WO2016126127A1 (ko) 하프 소잉 문제를 해결한 마이크로머시닝 방법 및 이를 이용하여 제조된 mems 장치
KR102332391B1 (ko) 반응성 이온 에칭
EP2682363A1 (en) Method for producing a mems device including a vapour release step
EP3409639B1 (en) Method for recess etching in micromechanical devices
US7192868B2 (en) Method of obtaining release-standing micro structures and devices by selective etch removal of protective and sacrificial layer using the same
KR19980070286A (ko) 실리콘 미세가공 장치 및 그의 제조방법
KR100817813B1 (ko) 실리콘 기판 상에 상이한 수직 단차를 갖는 미세구조물의제조 방법
WO2016126126A1 (ko) Z축 움직임 성능을 개선하고 구조물 깊이 편차를 최소화하는 마이크로머시닝 방법 및 이를 이용한 가속도 센서
KR101847793B1 (ko) 전기 기계 장치를 제조하기 위한 방법 및 해당 장치
US20070128757A1 (en) Method for forming comb electrodes using self-alignment etching
WO2003001565A2 (en) Method for improved die release of a semiconductor device from a wafer
KR101606372B1 (ko) 반도체장치의 제조방법
CN110837157B (zh) 光学装置封装及其制造方法
US9373772B2 (en) CMOS integrated method for the release of thermopile pixel on a substrate by using anisotropic and isotropic etching
US8481354B2 (en) Methods of creating a micro electro-mechanical systems accelerometer using a single double silicon-on-insulator wafer
JP2002350259A (ja) 半導体圧力センサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.01.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16746868

Country of ref document: EP

Kind code of ref document: A1