WO2016125898A1 - Motorized roller, controller for motorized roller, motorized roller system, and geared motor - Google Patents

Motorized roller, controller for motorized roller, motorized roller system, and geared motor Download PDF

Info

Publication number
WO2016125898A1
WO2016125898A1 PCT/JP2016/053526 JP2016053526W WO2016125898A1 WO 2016125898 A1 WO2016125898 A1 WO 2016125898A1 JP 2016053526 W JP2016053526 W JP 2016053526W WO 2016125898 A1 WO2016125898 A1 WO 2016125898A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
magnetic pole
roller
built
voltage signal
Prior art date
Application number
PCT/JP2016/053526
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 一夫
橘 俊之
利公 榎
Original Assignee
伊東電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊東電機株式会社 filed Critical 伊東電機株式会社
Priority to JP2016573436A priority Critical patent/JP6746055B2/en
Publication of WO2016125898A1 publication Critical patent/WO2016125898A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a motor built-in roller, and particularly to a motor built-in roller incorporating a brushless motor.
  • the present invention also relates to a controller for controlling a motor built-in roller.
  • the present invention also relates to a motor built-in roller system in which a motor built-in roller and a controller are combined.
  • the present invention also relates to a geared motor.
  • a motor built-in roller is known as a component part of a roller conveyor device or the like.
  • the motor built-in roller has a motor and a speed reducer built in the roller body, and rotates the outer roller body by driving the internal motor.
  • the motor built-in roller is driven by receiving power supply from a controller provided outside the roller body.
  • a brushless motor is employed as a built-in motor.
  • the brushless motor disclosed in Patent Document 1 includes a stator configured by winding a conductive wire around an iron core, a rotor having magnetic poles, and a Hall IC.
  • the brushless motor disclosed in Patent Document 1 is a three-phase four-pole brushless motor, and the stator is constituted by three windings.
  • three Hall ICs are provided in accordance with the number of windings.
  • the detection signals of the three Hall ICs are taken out of the roller body through signal lines and input to the controller.
  • the controller has a drive circuit that supplies power to the windings.
  • the drive circuit of the controller and the winding in the roller body are connected by a power line.
  • the rotation position of the rotor is detected by a Hall IC, and this detection signal is input to an external controller through a signal line.
  • the controller switches the drive circuit in accordance with the detection signal of the Hall IC, sequentially supplies power to the windings of the stator, forms a rotating magnetic field, and maintains the rotation of the rotor.
  • the motor built-in roller is connected to an external controller and driven as described above.
  • the conventional motor built-in roller system has the number of lines connecting the motor built-in roller and the controller (total of signal lines and power lines). ) was a complaint.
  • the motor built-in roller disclosed in Patent Document 1 requires nine lines connecting the motor built-in roller and the controller. That is, in the motor built-in roller disclosed in Patent Document 1, three Hall ICs are built in, and the signals of each Hall IC are input to the controller through individual signal lines. A line is needed. Further, in the motor built-in roller disclosed in Patent Document 1, the stator is configured by three windings, and it is necessary to supply power to each winding, so three wires are necessary as power lines.
  • the present invention focuses on the above-described problems of the prior art, and an object thereof is to develop a motor built-in roller and a controller for the motor built-in roller that require fewer wires than conventional ones. Another object of the present invention is to develop a motor built-in roller system in which the number of lines connecting the motor built-in roller and the controller is small.
  • At least a motor is built in the roller main body, and in the motor built-in roller in which the rotational force of the motor is transmitted to the roller main body to rotate the roller main body, electric power and signals are transferred to the inside and outside of the roller main body.
  • the motor has a stator constituted by a plurality of windings, a rotor, and a plurality of magnetic pole detection means, and a roller according to the rotational position of the rotor.
  • a brushless motor that switches a winding to be supplied with power outside the main body, and includes a magnetic pole corresponding switching element that turns on and off at least according to the output from the magnetic pole detection means in the roller main body, and a voltage constituted by a plurality of resistors
  • a signal forming circuit is built in, and the combined resistance of the voltage signal forming circuit has a different resistance value depending on the combination of the magnetic pole detecting means that detects the magnetic pole.
  • a voltage signal forming circuit is built in the roller body.
  • the voltage signal forming circuit outputs different voltages to the input / output unit depending on the combination of magnetic pole detection means that have detected the magnetic poles. Therefore, if the voltage signal is analyzed on the controller side, it is possible to know which magnetic pole detection means has detected the magnetic pole, and it is possible to appropriately select the winding to which power is to be supplied. Moreover, since this aspect transmits the information which magnetic pole detection means detected the magnetic pole by the magnitude of voltage to the controller side, one signal line is enough. For this reason, the number of lines connecting the roller with built-in motor and the controller is smaller than in the prior art.
  • the inside of the roller body is a closed space and the stator generates heat when energized, the temperature inside the roller body rises and falls. Although the current flowing through each part changes due to the internal temperature change, the voltage is not easily affected by the temperature change.
  • This aspect pays attention to this point, and converts the detection state of the magnetic pole detection means into a change in voltage and outputs it to the output unit. For this reason, according to this aspect, the detection status of the magnetic pole detection means is rarely erroneously detected.
  • the abnormal temperature detecting means for detecting the abnormally high temperature and the temperature corresponding switching element that turns on / off according to the output from the abnormal temperature detecting means are incorporated in the voltage signal forming circuit, and the abnormal temperature detecting means is abnormal.
  • the combined resistance of the voltage signal forming circuit be in a resistance value region different from normal.
  • the circuit for detecting the abnormal temperature is also incorporated in the voltage signal forming circuit. Therefore, in addition to the information on which magnetic pole detection means has detected the magnetic pole, the information detected by the abnormal temperature detection means can be transmitted to the controller side with a single signal line.
  • the input / output unit has a plurality of power supply lines that supply power to each winding
  • the magnetic pole detection means is a Hall IC that includes a power supply voltage input unit, a signal voltage output unit, and a ground unit. It is desirable that the ground portions of the magnetic pole detection means are connected to each other and connected to a plurality of power supply lines via rectifiers.
  • the motor built-in roller of this aspect has a plurality of power supply lines for supplying power to each winding.
  • the plurality of power supply lines are sequentially on the positive electrode side and sequentially on the negative electrode (ground) side. For this reason, at least one of the plurality of power supply lines has a timing on the negative electrode (ground) side.
  • the ground portions of the magnetic pole detection means are connected to each other and are connected to the plurality of power supply lines via the rectifiers, the ground portions are connected via any rectifier at all times. Thus, the magnetic pole detection means is energized by connecting to the negative electrode (ground) side.
  • the voltage signal forming circuit is preferably a ladder-type resistor circuit or a part of a ladder-type resistor circuit.
  • the plurality of resistors include a first resistor and a second resistor, and each of the magnetic pole corresponding switching elements has the same or different resistance value.
  • each magnetic pole corresponding switching element and the first resistor corresponding to the magnetic pole corresponding switching element constitute a magnetic pole corresponding switching part, and the magnetic pole corresponding switching parts are connected in parallel. It is desirable that at least one second resistor is provided at least between the magnetic pole corresponding switching units.
  • the resistance value of the second resistor is smaller than the resistance value of each of the first resistors.
  • the resistance values of the first resistors are different.
  • the abnormal temperature detecting means for detecting the abnormally high temperature and the temperature corresponding switching element that turns on / off according to the output from the abnormal temperature detecting means are incorporated in the voltage signal forming circuit, and the abnormal temperature detecting means is abnormal.
  • the combined resistance of the voltage signal forming circuit becomes a resistance value region different from normal
  • the plurality of resistors further include a third resistor, and the third resistor is connected in series to the temperature corresponding switching element.
  • a temperature-corresponding switching unit is composed of the temperature-corresponding switching element and the third resistor, and the temperature-corresponding switching unit is connected in parallel with each of the magnetic pole-corresponding switching units, and the third resistor It is desirable that the resistance value is smaller than the resistance value of the first resistor and the resistance value of the second resistor.
  • a motor controller for a roller with a built-in motor that supplies power to a motor in the roller body outside the roller body, and supplies power to the windings while switching the winding to be supplied with power.
  • a motor built-in roller comprising: a driving circuit that performs power control, and a voltage signal analyzing unit, wherein the voltage signal analyzing unit controls the driving circuit in accordance with the input voltage signal and selects a winding for supplying power. Controller.
  • the controller for a roller with a built-in motor of this aspect has voltage signal analysis means, controls the drive circuit according to the input voltage signal, and selects the winding for supplying power.
  • the motor-integrated roller includes at least a motor in the roller body, and the rotational force of the motor is transmitted to the roller body.
  • the roller with a built-in motor has an input / output unit that inputs and outputs power and signals inside and outside the roller body, and the motor has a stator composed of a plurality of windings.
  • a brushless motor having a rotor and a plurality of magnetic pole detection means, and switching a winding for supplying electric power to the outside of the roller body in accordance with the rotational position of the rotor.
  • the combined resistance of the voltage signal forming circuit has a different resistance value depending on the combination of the magnetic pole detection means detecting the magnetic pole, and the voltage signal forming circuit generates different voltages depending on the combination of the magnetic pole detection means detecting the magnetic pole.
  • the controller outputs to the input / output unit, the controller supplies power to a motor in the roller body outside the roller body, a switching circuit for switching a winding to be supplied with power, and a voltage signal
  • the voltage signal analyzing means is a roller system with a built-in motor, wherein the voltage signal analyzing means controls the switching circuit according to the input voltage signal and selects a winding for supplying power.
  • the number of lines connecting the roller with built-in motor and the controller can be reduced as compared with the conventional case.
  • Another aspect of the present invention is a geared motor in which a motor and a speed reducer are built in a housing, and the rotational force of the motor is decelerated by the speed reducer and is output.
  • the motor includes an output unit, and the motor includes a stator constituted by a plurality of windings, a rotor, and a plurality of magnetic pole detection means.
  • a geared motor that switches a winding to be supplied with a magnetic pole corresponding switching element that is turned on and off according to an output from at least the magnetic pole detection means, and a voltage signal forming circuit configured by a plurality of resistors.
  • the combined resistance of the voltage signal forming circuit has a different resistance value depending on the combination of the magnetic pole detection means detecting the magnetic pole, and the voltage signal forming circuit is a combination of the magnetic pole detection means detecting the magnetic pole.
  • a geared motor characterized in that output different voltages to the output unit.
  • the roller with a built-in motor of the present invention has a smaller number of lines for connecting to the controller than in the prior art. For this reason, there is little trouble in assembling the motor built-in roller itself or in incorporating the motor built-in roller into the conveyor device or the like. The same applies to the geared motor of the present invention.
  • the motor built-in roller, the motor built-in roller controller, and the motor built-in roller system according to the present invention have an effect of reducing the number of lines connecting the motor built-in roller and the controller.
  • FIG. 2 is a part of the circuit diagram of the motor built-in roller in FIG. 1 and a circuit diagram of a power feeding portion to the Hall IC.
  • FIG. 2 is a circuit diagram of the motor built-in roller controller in FIG. 1.
  • the motor built-in roller system 100 of the present invention includes a motor built-in roller 3 and a motor built-in roller controller (hereinafter referred to as controller) 50.
  • controller motor built-in roller controller
  • the motor built-in roller 3 and the controller 50 according to the present embodiment are characterized by an internal circuit. Prior to these descriptions, their basic structures will be described.
  • FIG. 1 shows a roller 3 with a built-in motor according to an embodiment of the present invention.
  • the motor built-in roller of this embodiment has a cylindrical roller main body 11 and a motor 12 and a speed reducer 13 are built in the same, as is well known.
  • the motor built-in roller 3 of the present embodiment has a motor 12, a speed reducer 13, and a circuit board 15 as a unit. That is, the motor built-in roller 3 of the present embodiment is a roller body 11 in which a motor unit for motor with built-in roller (hereinafter simply referred to as a motor unit) 1 is built.
  • the motor unit 1 includes a motor 12, a speed reducer 13, and a circuit board 15 housed in a cylindrical case 2.
  • the motor unit 1 is a kind of geared motor, and a motor 12 and a speed reducer 13 are built in a housing (case 2), and the rotational force of the motor 12 is decelerated by the speed reducer to output shaft (drive side shaft 8).
  • the motor unit 1 of the present embodiment includes a case 2, a fixed short shaft 4 protruding from the case 2, a drive unit 5 and a circuit board 15 built in the case 2, and a drive unit 5.
  • the driving side shaft 8 is rotated by receiving power and protrudes from the case 2. That is, the motor unit 1 of the present embodiment is covered with the cylindrical case 2.
  • a drive unit 5 is housed inside the case 2.
  • the drive unit 5 is specifically a motor 12 and a speed reducer 13.
  • the drive side shaft 8 is exposed at one end of the case 2, and the fixed short shaft 4 is exposed at the other end.
  • the drive side shaft 8 and the fixed side short shaft 4 described above are attached to the end of the case 2 by a drive side shaft holder 7 and a fixed shaft holder 10, respectively.
  • the drive side shaft holder 7 has a bearing 14 inside.
  • the fixed short shaft 4 is an end of the motor unit 1 and is provided on the central shaft, and is fixed to the case 2 integrally by a fixed shaft holder 10.
  • the fixed short shaft 4 is hollow inside, and a cable 26 is inserted into the inside.
  • the motor unit 1 inside side of the cable 26 is connected to the circuit board 15 via the lead wire 31, and power is supplied from the circuit board 15 to the motor 12.
  • a motor-side connector piece (input / output unit) 25 is connected to the tip of the other end of the cable 26 (outside of the motor unit 1). Therefore, the motor side connector piece (input / output unit) 25 is connected to the circuit board 15 via the cable 26 and the lead wire 31.
  • the drive unit 5 is composed of the motor 12 and the speed reducer 13 as described above.
  • the motor 12 is a brushless motor including a stator 18 and a rotor 19.
  • the stator 18 is integrally fixed to the inner surface of the case 2.
  • a rotor 19 of the motor is rotatably held at the center of the stator 18.
  • a permanent magnet is used for the rotor 19.
  • the stator 18 is a three-system (U-phase, V-phase, W-phase) coil (winding). That is, the motor employed in this embodiment is a brushless motor, and the stator 18 has three coils (U phase, V phase, W phase) as shown in the circuit diagram of FIG.
  • magnetic pole detection means H1, H2, and H3 for detecting the rotational position of the permanent magnet as the rotor 19 are provided.
  • the magnetic pole detection means H1, H2, and H3 are specifically Hall ICs.
  • the Hall IC is configured by integrating all or part of the Hall element and the power switching circuit.
  • the Hall IC includes a Hall element that detects the magnitude of the magnetic field, an amplifier that amplifies a minute signal detected by the Hall element, and a Schmitt trigger that shapes the signal amplified by the amplifier into a square wave.
  • a circuit a stabilized power supply circuit, and a temperature compensation circuit.
  • a Hall IC is employed to detect the position of the magnetic pole.
  • the present invention is not limited to this, and a photo interrupter type using a light emitting diode and a photo sensor or a magnetic saturation element is used. Any type of magnetic pole position detection means such as an inductance type may be employed.
  • the stator 18 is formed by connecting three coils (U phase, V phase, W phase) in a Y shape as shown in the circuit diagram of FIG. That is, one end of each coil (U phase, V phase, W phase) is connected to each other. The other end of each coil (U-phase, V-phase, W-phase) is connected to a second terminal and a third terminal of the motor-side connector piece 25 as an input / output unit as shown in FIG. 5 via a power line (power supply line). The terminal is connected to the fourth terminal.
  • the speed reducer 13 is located between the motor 12 and the drive side shaft 8 and is used to reduce the rotational speed of the motor 12 and transmit it to the drive side shaft 8.
  • each member in the case 2 is as shown in FIG. 4.
  • the fixed short shaft 4 is fixed to one end of the case 2 by the fixed shaft holder 10, and the fixed short shaft 4 is at the end of the case 2. It is interrupted and does not enter the back of case 2.
  • a circuit board 15 is disposed behind the fixed shaft holder 10. Further, a motor 12 and a speed reducer 13 are provided in the back of the circuit board 15. The output shaft of the speed reducer 13 protrudes from the other end side of the case 2 as the drive side shaft 8.
  • the motor built-in roller 3 in which the motor unit 1 is incorporated will be described.
  • the motor built-in roller 3 includes a roller body 11, a roller inner shaft support member 23, and lid members 16 and 17 (FIG. 3).
  • the roller body 11 is a cylinder having both ends opened.
  • the roller inner shaft support member 23 is integrally provided inside the roller main body 11 as shown in FIG. 3, and a hexagonal opening 34 is provided at the center.
  • One lid member 16 is formed by integrating a cylindrical roller body fitting member 52, two bearings 54, and a body-side short shaft member 53 as shown at the left end of FIG.
  • the other lid member 17 has a structure as shown at the right end of FIG. 2, in which the roller body fitting member 55 and the bearing 22 are integrated.
  • the motor unit 1 is inserted into the roller body 11, and the drive side shaft 8 of the motor unit 1 is engaged with the opening 34 of the roller inner shaft support member 23.
  • lid members 16 and 17 are attached to both ends of the roller body 11.
  • the distal end side of the fixed short shaft 4 protruding from the roller body 11 constitutes one fixed shaft 20 of the motor built-in roller 3 itself.
  • a roller body fitting member 52, a lid member 16 in which a bearing 54 and a body-side short shaft member 53 are integrated are attached.
  • the main body side short shaft member 53 of the lid member 16 constitutes the other fixed shaft 21 of the motor built-in roller 3 itself.
  • the fixed shaft (fixed-side short shaft) 20 on the motor unit 1 side is hollow, and a cable 26 connected to the motor-side connector piece 25 is incorporated therein.
  • the motor-side connector piece 25 is an input / output unit that inputs and outputs power and signals to and from the roller body 11 and is a female-side connector having five terminals.
  • the motor-side connector piece 25 is a piece of a waterproof round connector, and has five built-in terminals. Of the five terminals, the first terminal functions as a power input terminal for driving a transistor or the like as shown in the circuit diagram of FIG.
  • the second terminal to the fourth terminal function as power input terminals for supplying power to the coils (windings) (U phase, V phase, W phase) of the stator 18.
  • the fifth terminal functions as a voltage signal output terminal that outputs a voltage signal.
  • a lead wire 31 connected to the rear end of the motor-side connector piece 25 is connected to the circuit board 15, and power is supplied from the circuit board 15 to the motor 12.
  • the controller 50 includes five terminals corresponding to the first to fifth terminals of the motor-side connector piece 25 on the motor built-in roller 3 side.
  • the five terminals are connected to an external connector piece 33.
  • the connector piece 33 is connected to the motor-side connector piece 25 on the motor built-in roller 3 side.
  • the first terminal of the controller 50 serves as a power source for driving a transistor or the like on the motor built-in roller 3 side.
  • the second terminal to the fourth terminal function as power output terminals for supplying power to the coils (U phase, V phase, W phase) U, V, W of the stator 18 on the motor built-in roller 3 side.
  • the fifth terminal functions as a voltage signal input terminal for inputting a voltage signal.
  • the motor 12 built in the roller body 11 is a brushless motor, and the stator 18 has three coils (U phase, V phase, W phase) as shown in the circuit diagram of FIG. is doing. Further, magnetic pole detection means (Hall ICs) H1, H2, and H3 for detecting the rotational position of the permanent magnet as the rotor 19 are provided.
  • a drive circuit 43 that supplies current to each coil (U phase, V phase, W phase) in order is required.
  • the drive circuit 43 is accommodated in the controller 50.
  • the drive circuit 43 includes a circuit that drives a current and a switching circuit that obtains a switching signal. As shown in FIG. 7, the drive circuit 43 in the controller 50 includes an upper arm control unit 41 and a lower arm control unit 42.
  • the upper arm control unit 41 is a circuit extending from the second terminal to the motor built-in roller 3 side via the fourth terminal via the switching elements T1, T2, and T3 formed of FETs.
  • the lower arm control unit 42 is a circuit that reaches the ground potential (negative power supply side) via the switching elements T4, T5, and T6.
  • the drive circuit 43 includes signal input units 45 and 46, Uu, Vu, and Wu terminals connected to the switching elements T1, T2, and T3 of the upper arm control unit 41, and the switching element T4 of the lower arm control unit 42. There are UL, VL and WL terminals connected to T5 and T6.
  • the switching elements T1, T2, T3 of the upper arm control unit 41 are sequentially turned on, and the lower arm control unit 42 is turned on.
  • the switching elements T4, T5, and T6 are sequentially turned on, and the U, V, and W phase coils of the brushless motor 12 are sequentially switched and energized to rotate the motor 12.
  • a voltage signal forming circuit 56 is constructed on the circuit board 15 in the roller body 11.
  • the voltage signal forming circuit 56 is as shown in FIG. 5, and the magnetic pole corresponding switching elements Q 1, Q 2, and Q 3 that are turned on and off according to the outputs from the magnetic pole detection means H 1, H 2, and H 3, It is composed of a temperature-compatible switching element Q4 that is turned on and off in response to this and a plurality of resistors R1 to R7.
  • the magnetic pole corresponding switching elements Q1, Q2, Q3 and the temperature corresponding switching element Q4 are specifically NPN transistors.
  • the abnormal temperature detection means 57 is a thermal relay that detects when an overcurrent flows, and the resistance value extremely increases when a high temperature is detected.
  • the output lines of the magnetic pole detection means (Hall ICs) H1, H2, and H3 are connected to the bases of the NPN transistors that are the magnetic pole corresponding switching elements Q1, Q2, and Q3.
  • a power supply line is connected to the collectors of the magnetic pole corresponding switching elements Q1, Q2, and Q3.
  • the power supply line is a line connected to the first terminal among the five terminals of the motor-side connector piece 25 described above.
  • the power supply line is divided by the resistor R7 and the abnormal temperature detecting means 57, and an intermediate point between the resistor R7 and the abnormal temperature detecting means 57 is connected to the base of the NPN transistor which is the temperature corresponding switching element Q4.
  • a power supply line is connected to the collector of the temperature corresponding switching element Q4.
  • the emitters of the magnetic pole corresponding switching elements Q1, Q2, Q3 and the temperature corresponding switching element Q4 are resistors R1 (first resistance), R2 (first resistance), R3 (first resistance), R4 (second resistance), R5 ( 2nd resistor) and R6 (third resistor).
  • the magnetic pole corresponding switching unit SW1 is configured by R1 and Q1.
  • R2 and Q2 constitute a magnetic pole corresponding switching unit SW2.
  • R3 and Q3 constitute a magnetic pole corresponding switching unit SW3.
  • R6 and Q4 constitute a temperature corresponding switching unit SW4.
  • the resistors R1 to R6 constitute a ladder type resistor circuit together with a resistor R8 described later.
  • one ends of the resistors R1, R2, and R3 are connected to the emitters of the magnetic pole corresponding switching elements Q1, Q2, and Q3, respectively. Further, one end of the resistor R6 is connected to the temperature corresponding switching element Q4. Further, the other ends of the resistors R1 to R3 and the resistor R6 are connected in series with the resistors R4 and R5 interposed therebetween, and are connected to the fifth terminal of the motor-side connector piece 25. That is, the resistor R6 connected to the temperature corresponding switching element Q4 is connected to the resistor R1 connected to the magnetic pole corresponding switching element Q1, and the resistor R1 is further connected to the magnetic pole corresponding switching element Q2 across the resistor R4. Further, the resistor R2 is connected to the resistor R3 connected to the switching element Q3 across the resistor R5, and the terminal is connected to the fifth terminal of the motor side connector piece 25 via the lead wire 31 and the cable 26. Yes.
  • the resistors R1 to R6 have different resistance values. Each of the resistors R1 to R6 constitutes a part of a ladder type anti-circuit. The relationship between the resistance values is as follows.
  • the ratios of R3, R2, and R1 are all about twice.
  • the ratio of the resistance value of R6 and the resistance values of R3, R2, and R1 is 8 times or more, which is extremely large.
  • the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, and H3 are connected to each coil (U phase, V phase, W phase) and a power input terminal (second phase) through rectifiers as shown in FIG. Terminal to the fourth terminal).
  • the magnetic pole detection means H1, H2, and H3 incorporate Hall elements, and have a power supply voltage input terminal (VCC), an output terminal (OUT), and a ground terminal (GND).
  • the ground terminals H1, H2 and H3 are connected to each other, thereby forming a ground line.
  • the power supply line is connected to the power supply voltage input terminal (VCC), and the output terminal (OUT) is connected to the bases of the magnetic pole corresponding switching elements Q1, Q2, and Q3 as described above.
  • the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, H3 are connected to the power lines of the coils (U phase, V phase, W phase) via rectifiers.
  • the direction of the rectifier is a direction that allows energization from the magnetic pole detection means (Hall IC) H1, H2, H3 side to the power supply line side and prevents the reverse.
  • each U, V, and W phase coil of the motor 12 is sequentially switched and energized to rotate the motor 12. That is, each coil (U phase, V phase, W phase) is supplied with current by three power lines, but at least one of the coils (U phase, V phase, W phase) is energized. One power line must be in the ground state.
  • the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, and H3 are connected to the power lines of the respective coils (U phase, V phase, and W phase) through rectifiers, and H1, H2 , H3 ground terminals are connected to each other, thereby forming a ground line.
  • the direction of the rectifier allows the energization from the magnetic pole detection means (Hall ICs) H1, H2, H3 side to the power line side. Since the reverse direction is to be prevented, a current flows from the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, and H3 to the power line in the ground state. Therefore, power is supplied to the magnetic pole detection means (Hall ICs) H1, H2, and H3, and the magnetic pole detection means (Hall ICs) H1, H2, and H3 function.
  • the controller 50 includes the drive circuit 43 as described above, and is provided with the voltage signal analysis means 60.
  • the voltage signal analyzing means 60 has one input terminal 61 and six output terminals 62, and selectively generates voltages at the six output terminals 62 according to the input voltage. Circuit.
  • the fifth terminal (voltage signal input terminal) of the controller 50 is connected to the input terminal 61 of the voltage signal analyzing means 60.
  • One end of a voltage dividing resistor R8 is connected to the fifth terminal and the input terminal 61.
  • the other end of the resistor R8 is grounded. Therefore, the voltage divided by the resistor R8 is applied to the input terminal 61 of the voltage signal analyzing means 60.
  • the motor built-in roller 3 and the controller 50 are electrically connected by connecting the male connector piece 33 on the controller 50 side to the motor side connector piece 25 on the motor built-in roller 3 side. Therefore, electric power for driving the transistor and the like is supplied from the first terminal on the controller 50 side into the motor built-in roller 3.
  • a predetermined voltage signal is input from the voltage signal forming circuit 56 to the controller 50 side from the motor built-in roller 3 side.
  • a ladder-type resistor circuit is configured by the voltage signal forming circuit 56 and the voltage dividing resistor R8 in the controller 50.
  • the voltage signal generated between the voltage signal forming circuit 56 and the voltage dividing resistor R8 is analyzed by the voltage signal analyzing means 60 of the controller 50. Then, the drive circuit 43 is controlled so that current is sequentially supplied to each coil (U phase, V phase, W phase) on the motor built-in roller 3 side, the motor 12 rotates, and the roller body 11 of the motor built-in roller 3. Rotates.
  • the roller 3 with built-in motor of this embodiment is provided with a voltage signal forming circuit 56 inside the roller body 11, and the voltage signal forming circuit 56 detects the magnetic pole detection means (Hall ICs) H1, H2, H3. Then, a voltage corresponding to the detection status of the abnormal temperature detection means 57 is generated at the input terminal 61 of the voltage signal analysis means 60. That is, the combined resistance of the voltage signal forming circuit 56 changes according to the detection status of the magnetic pole detection means (Hall ICs) H1, H2, and H3, and is divided by the combined resistance and the voltage dividing resistor R8 in the controller 50. The voltage input to the input terminal 61 changes.
  • the rotation angle of the rotor 19 of the motor 12 and the on / off states of the three magnetic pole detection means H1, H2, and H3 are as shown in the upper graph of FIG.
  • the magnetic pole detection means H1 and H3 are turned on and the magnetic pole detection means H2 is turned off between 0 degrees and 30 degrees with reference to an appropriate rotation angle. For the subsequent 30 to 60 degrees, only the magnetic pole detection means H1 is turned on, and the magnetic pole detection means H2 and H3 are turned off. During the subsequent 60 to 90 degrees, the magnetic pole detection means H1 and H2 are turned on and the magnetic pole detection means H3 is turned off. During the subsequent 90 degrees to 120 degrees, the magnetic pole detection means H2 is turned on, and the magnetic pole detection means H1 and H3 are turned off. During the subsequent 120 to 150 degrees, the magnetic pole detection means H2 and H3 are in the on state, and the magnetic pole detection means H1 is in the off state.
  • the magnetic pole detection means H3 is turned on and the magnetic pole detection means H1 and H2 are turned off.
  • the state from 0 degrees to 180 degrees is repeated.
  • the graph exemplifies a case where the temperature corresponding switching element (thermal relay) Q4 is turned on when the rotation angle is between 180 degrees and 360 degrees.
  • the magnetic pole detecting means H1 is turned on and the magnetic pole detecting means H2 and H3 are turned off between 30 degrees and 60 degrees. Only the magnetic pole corresponding switching element Q1 is turned on, and the 12-volt voltage supplied to the magnetic pole corresponding switching element Q1 is decompressed by the resistors R1, R4, R5 and output from the voltage signal forming circuit 56. In the subsequent 60 to 90 degrees, the magnetic pole detection means H1 and H2 are turned on and H3 is turned off, so that the magnetic pole corresponding switching elements Q1 and Q2 are turned on.
  • the voltage derived from the magnetic pole corresponding switching element Q1 and the voltage derived from the magnetic pole corresponding switching element Q2 are combined with the voltage of 12 volts supplied to the magnetic pole corresponding switching element Q1, and the voltage is reduced by the resistors R1, R4, and R5. 56.
  • the combination of the magnetic pole detection means (Hall ICs) H1, H2, and H3 detecting the magnetic poles is changed according to the rotation angle of the rotor 19 of the motor 12, and the voltage signal forming circuit 56 is changed accordingly.
  • a specific voltage is generated between the voltage dividing resistor R8 in the controller 50. Specifically, the following voltage shown in FIG. 8 is generated between the voltage signal forming circuit 56 and the voltage dividing resistor R8 in accordance with the combination in which the magnetic pole detection means (Hall ICs) H1, H2, and H3 detect the magnetic pole. To do.
  • This voltage signal is input to the input terminal 61 of the voltage signal analyzing means 60 of the controller 50.
  • a signal from the voltage signal forming circuit 56 is input from one input terminal 61.
  • the signal from the voltage signal forming circuit 56 is divided with the voltage dividing resistor R 8 to generate a specific voltage, and the voltage signal is input to the voltage signal analyzing means 60.
  • the voltage signal analyzing means 60 selectively generates voltages at the six output terminals 62 according to the input voltage. That is, the six output terminals 62 are turned on and off so that the drive circuit 43 can be switched so that the rotor 19 of the motor 12 continues to rotate. As a result, the energized coils (U phase, V phase, W phase) are switched according to the rotation angle of the rotor 19.
  • the temperature corresponding switching element Q4 is turned on. Therefore, the voltage derived from the temperature corresponding switching element Q4 is added and output from the voltage signal forming circuit 56.
  • the resistance value of the resistor R6 connected to the temperature-corresponding switching element Q4 is lower than other resistors, so that the voltage derived from the temperature-corresponding switching element Q4 (from the voltage signal forming circuit 56 in the controller 50). Voltage generated by voltage division between the voltage signal and the voltage dividing resistor R8 is higher than voltages derived from the other magnetic pole corresponding switching elements Q1, Q2, and Q3.
  • the abnormal temperature detection means 57 functions, a clearly high voltage is input to the voltage signal analysis means 60 as shown in FIG. That is, when the abnormal temperature detecting means 57 functions (when an abnormality occurs), the divided voltage (voltage) based on the signal output from the voltage signal forming circuit 56 is equal to or greater than a certain threshold value, and the abnormal temperature detecting means 57 functions.
  • the voltage division (voltage) based on the signal output from the voltage signal forming circuit 56 when it is not (normal time) is less than a certain threshold.
  • the voltage output from the voltage signal forming circuit 56 when the abnormal temperature detecting means 57 functions is a voltage in a voltage region different from the normal case.
  • the motor side connector piece 25 on the motor built-in roller 3 side and the connector piece 33 on the controller 50 side are one piece of a waterproof round connector.
  • waterproof connectors have a small number of terminals, and those having nine terminals are not practically commercialized. For this reason, it has been difficult to employ a waterproof connector in the conventional motor built-in roller, but in this embodiment, since the number of terminals is sufficient, it is possible to employ a waterproof connector. It became.
  • resistors having values smaller than those of the first resistors R1, R2, and R3 are used for the second resistors R4 and R5, but may be the same value or a larger value.
  • the outputs of the magnetic pole detection means H1, H2, and H3 are assumed to be “high level” outputs in the on state.
  • the present invention is not limited to this, and a Hall IC that outputs “low level” in the on state may be used. That is, as shown in FIG. 13, it is possible to cope with this by using PNP transistors for the magnetic pole corresponding switching elements Q1 ′, Q2 ′, Q3 ′.
  • the temperature corresponding switching element Q4 ′ is also a PNP type, and the collector side output voltage in the on state of Q4 ′ is set to the same level as the collector side output level in the on state of the magnetic pole corresponding switching elements Q1 ′ to Q3 ⁇ ′.
  • the temperature corresponding switching element has a two-stage configuration of Q4 ′ and Q5, and when the resistance value of the abnormal temperature detecting means 57 becomes extremely large, Q5 is turned on, and accordingly Q4 ′ is turned on.
  • Q4 ′ is turned on.
  • FIG. 5 only Q4 may be used, and a temperature-compatible switching configuration in which an NPN transistor is used for Q4 may be used.
  • the output of the voltage forming circuit 76 can be superimposed on the first terminal as shown in FIG. In this case, the fifth terminal is not necessary, and four terminals are sufficient.
  • the first terminal is connected to + 12V (power supply line) via a resistor r having a small resistance value. From the voltage fluctuation across the resistor, the detection state of the magnetic pole detection means H1, H2, H3 and the detection state of the abnormal temperature detection means can be known.
  • the voltage forming circuit 86 of FIG. 16 (a circuit that does not use R4 and R5 in FIG. 14) may be used.
  • the motor built-in roller 3 described above is a roller body 11 in which a motor 12 and a speed reducer 13 are built, but the speed reducer 13 is not necessarily required.
  • the first terminal of the motor-side connector piece 25 or the like is used as a power input terminal for driving a transistor or the like.
  • the power source for driving the transistor or the like may be branched from a power line that supplies power to the stator 18. .
  • Each of the switching elements Q1, Q2, Q3, Q4, T1, T2, T3, T4, T5, and T6 described above includes an output signal from the Hall IC, a resistor R7, and an abnormal temperature detecting means 57 directly on the base. It is turned on and off by inputting a divided voltage signal or the like. For example, a signal output from the Hall IC or a signal voltage generated by the resistor R7 and the abnormal temperature detection means 57 is input to another buffer transistor or the like. The output of the buffer transistor may be input to the switching elements Q1, Q2, Q3, Q4, T1, T2, T3, T4, T5, and T6.
  • the voltage signal forming circuit 56 is made separately from the Hall IC (magnetic pole detection means H1, H2, H3).
  • the voltage signal formation is performed by incorporating a switching circuit built in the Hall IC.
  • the circuit 70 may be configured. That is, since the Hall IC is configured by integrating all or part of the Hall element and the power switching circuit, the Hall IC has a switching circuit therein.
  • FIG. 9 is a circuit diagram in the case where the voltage signal forming circuit 70 is configured by taking in the switching elements q1, q2, and q3 built in the Hall ICs (H1, H2, and H3). In addition, the same number is attached
  • h1, h2, and h3 are Hall elements provided in the Hall ICs (H1, H2, and H3).
  • the Hall element h1 detects the magnetic pole and becomes energized
  • the voltage derived from the magnetic pole detection means H1 disappears.
  • the Hall element h2 detects the magnetic pole and enters the energized state
  • the voltage derived from the magnetic pole detecting means H2 disappears.
  • the Hall element h3 detects the magnetic pole and enters the energized state
  • the voltage derived from the magnetic pole detecting means H3 disappears. To do.
  • the combination of the magnetic pole detection means (Hall elements h1, h2, h3) in the Hall IC detecting the magnetic poles is changed according to the rotation angle of the rotor 19 of the motor 12, and the voltage signal is changed accordingly.
  • a unique voltage is generated in the forming circuit 70. Specifically, different voltages are generated according to combinations in which the magnetic pole detection means H1, H2, and H3 detect the magnetic poles. This voltage signal is input to the controller 50.
  • the motor unit 1 employed in the above-described embodiment is a kind of guard motor as described above, and the present invention can also be applied to a guard motor. Further, the present invention is not limited to the one built in the roller 3 with built-in roller motor, and can also be applied to a normal guard motor.
  • FIG. 11 and FIG. 12 show a guarded motor 71 according to an embodiment of the present invention. In addition, the same number is attached
  • the geared motor 71 includes a motor 12 and a speed reducer 13 built in a housing 72, and the rotational force of the motor 12 is decelerated by the speed reducer and output from the output shaft (drive side shaft 8). is there.
  • the geared motor 71 is rotated by receiving power from the housing 72, the fixed short shaft 4 protruding from the housing 72, the drive unit 5 and the circuit board 15 built in the case 2, and the drive unit 5.
  • the drive side shaft 8 protrudes from the case 2.
  • the voltage signal forming circuits 56, 66, 70, 76 and 86 are constructed on the circuit board 15.

Abstract

The present invention addresses the problem of developing a motorized roller and a controller for a motorized roller, the motorized roller requiring a smaller number of wires in comparison to the prior art. In the invention, a motorized roller has a cylindrical roller main body, and has a motor 12 and a decelerator built into the inside thereof. A voltage signal forming circuit 56 is constructed within the roller main body. The voltage signal forming circuit 56 is configured by magnetic pole-corresponding switching elements Q1, Q2, Q3 for switching ON and OFF according to output from magnetic pole detection means H1, H2, H3, a temperature-dependent switching element Q4 for switching ON and OFF according to output from an abnormal temperature detection means 57, and a plurality of resistors R1-R7. The voltage signal forming circuit generates voltage according to the detection condition of the magnetic pole detection means H1, H2, H3, and the detection condition of the abnormal temperature detection means 57.

Description

モータ内蔵ローラ、モータ内蔵ローラ用コントローラ、モータ内蔵ローラシステム及びギャードモータMotor built-in roller, motor built-in roller controller, motor built-in roller system, and guarded motor
 本発明は、モータ内蔵ローラに関するものであり、特にブラシレスモータを内蔵するモータ内蔵ローラに関するものである。また本発明は、モータ内蔵ローラを制御するコントローラに関するものである。また本発明は、モータ内蔵ローラとコントローラとが組み合わされたモータ内蔵ローラシステムに関するものである。また本発明は、ギャードモータに関するものである。 The present invention relates to a motor built-in roller, and particularly to a motor built-in roller incorporating a brushless motor. The present invention also relates to a controller for controlling a motor built-in roller. The present invention also relates to a motor built-in roller system in which a motor built-in roller and a controller are combined. The present invention also relates to a geared motor.
 ローラコンベア装置等の構成部品として、モータ内蔵ローラが知られている。モータ内蔵ローラは、ローラ本体内にモータと減速機とが内蔵され、内部のモータを駆動することによって、外側のローラ本体を回転させるものである。
 モータ内蔵ローラは、ローラ本体の外に設けられたコントローラから電力供給を受けて駆動される。
A motor built-in roller is known as a component part of a roller conveyor device or the like. The motor built-in roller has a motor and a speed reducer built in the roller body, and rotates the outer roller body by driving the internal motor.
The motor built-in roller is driven by receiving power supply from a controller provided outside the roller body.
 特許文献1に開示されたモータ内蔵ローラでは、内蔵されるモータとして、ブラシレスモータが採用されている。特許文献1に開示されたブラシレスモータは、鉄心に導線を巻き付けて構成された固定子と、磁極を有する回転子と、ホールICを備えている。
 特許文献1に開示されたブラシレスモータは、3相4極のブラシレスモータであり、固定子は、3系統の巻線によって構成されている。また特許文献1では、巻線の数に合わせて、ホールICが3つ設けられている。
 3つのホールICの検出信号は、信号線を通じてローラ本体の外部に取り出され、前記したコントローラに入力される。
 コントローラは、巻線に電力を供給する駆動回路を有している。コントローラの駆動回路と、ローラ本体内の巻線は、電力線で接続されている。
In the motor built-in roller disclosed in Patent Document 1, a brushless motor is employed as a built-in motor. The brushless motor disclosed in Patent Document 1 includes a stator configured by winding a conductive wire around an iron core, a rotor having magnetic poles, and a Hall IC.
The brushless motor disclosed in Patent Document 1 is a three-phase four-pole brushless motor, and the stator is constituted by three windings. In Patent Document 1, three Hall ICs are provided in accordance with the number of windings.
The detection signals of the three Hall ICs are taken out of the roller body through signal lines and input to the controller.
The controller has a drive circuit that supplies power to the windings. The drive circuit of the controller and the winding in the roller body are connected by a power line.
 特許文献1に開示されたモータ内蔵ローラでは、回転子の回転位置をホールICで検知し、この検知信号が信号線によって外部のコントローラに入力される。
 コントローラは、ホールICの検知信号に応じて駆動回路を切り替え、固定子の巻線に順次電力を供給し、回転磁界を形成させて回転子の回転を維持させる。
In the roller with a built-in motor disclosed in Patent Document 1, the rotation position of the rotor is detected by a Hall IC, and this detection signal is input to an external controller through a signal line.
The controller switches the drive circuit in accordance with the detection signal of the Hall IC, sequentially supplies power to the windings of the stator, forms a rotating magnetic field, and maintains the rotation of the rotor.
特開2007-68393号公報JP 2007-68393 A
 モータ内蔵ローラは、前記した様に外部のコントローラと接続されて駆動されるが、従来技術のモータ内蔵ローラシステムは、モータ内蔵ローラとコントローラとの間を繋ぐ線の数(信号線と電力線の合計)が多いという不満があった。
 例えば、特許文献1に開示されたモータ内蔵ローラでは、モータ内蔵ローラとコントローラとを繋ぐ線が9本必要である。
 即ち特許文献1に開示されたモータ内蔵ローラでは、内部にホールICが3個内蔵されており、各ホールICの信号がそれぞれ個別の信号線によってコントローラに入力されるから、信号線として3本の線が必要である。
 また特許文献1に開示されたモータ内蔵ローラでは、固定子は、3系統の巻線によって構成されており、各巻線に電力を供給する必要から、電力線として3本の線が必要である。
The motor built-in roller is connected to an external controller and driven as described above. However, the conventional motor built-in roller system has the number of lines connecting the motor built-in roller and the controller (total of signal lines and power lines). ) Was a complaint.
For example, the motor built-in roller disclosed in Patent Document 1 requires nine lines connecting the motor built-in roller and the controller.
That is, in the motor built-in roller disclosed in Patent Document 1, three Hall ICs are built in, and the signals of each Hall IC are input to the controller through individual signal lines. A line is needed.
Further, in the motor built-in roller disclosed in Patent Document 1, the stator is configured by three windings, and it is necessary to supply power to each winding, so three wires are necessary as power lines.
 さらに前記したホールICを駆動するための電源2線(正負の2線)と、過電流が流れた場合等の内部の異常昇温を検知するための信号線が必要である。
 そのため特許文献1に開示されたモータ内蔵ローラでは、ホールIC用の信号線が3本、電力線が3本、その他の線が3本必要であり、合計9本の線が必要である。そのため従来技術のモータ内蔵ローラは、電線の束が太くならざるを得ず、電線の束をコンベアフレームの孔に通すといった電線の引回し作業が困難であった。
 またモータ内蔵ローラを組み立てる際におけるはんだ付け等の電線接続箇所が多く、組み立てが手間であった。
Further, two power lines (two positive and negative lines) for driving the Hall IC described above and a signal line for detecting an abnormal temperature rise inside when an overcurrent flows are necessary.
For this reason, the roller with a built-in motor disclosed in Patent Document 1 requires three signal lines for Hall IC, three power lines, and three other lines, for a total of nine lines. For this reason, the roller with a built-in motor of the prior art has to have a thick bundle of electric wires, and it has been difficult to route the electric wires such as passing the bundle of electric wires through the holes in the conveyor frame.
Moreover, when assembling the motor built-in roller, there are many wire connection points such as soldering, and the assembly is troublesome.
 そこで本発明は、従来技術の上記した問題点に注目し、必要な電線の数が従来に比べて少ないモータ内蔵ローラ及びモータ内蔵ローラ用コントローラを開発することを課題とするものである。また本発明は、モータ内蔵ローラとコントローラとを繋ぐ線の数が少ないモータ内蔵ローラシステムを開発することを課題とするものである。 Therefore, the present invention focuses on the above-described problems of the prior art, and an object thereof is to develop a motor built-in roller and a controller for the motor built-in roller that require fewer wires than conventional ones. Another object of the present invention is to develop a motor built-in roller system in which the number of lines connecting the motor built-in roller and the controller is small.
 上記した課題を解決するための態様は、ローラ本体内に少なくともモータが内蔵され、モータの回転力がローラ本体に伝動されてローラ本体を回転させるモータ内蔵ローラにおいて、ローラ本体の内外に電力及び信号を入出力する入出力部を有し、前記モータは、複数の巻線によって構成される固定子と、回転子と、複数の磁極検出手段とを有し、回転子の回転位置に応じてローラ本体の外部で電力を供給する対象となる巻線を切り替えるブラシレスモータであり、ローラ本体内に少なくとも磁極検出手段からの出力に応じてオンオフする磁極対応スイッチング素子と、複数の抵抗によって構成された電圧信号形成回路が内蔵され、前記電圧信号形成回路の合成抵抗は、磁極を検知した磁極検出手段の組み合わせによって異なる抵抗値となり、電圧信号形成回路が、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を前記入出力部に出力することを特徴とするモータ内蔵ローラである。 In an aspect for solving the above-described problem, at least a motor is built in the roller main body, and in the motor built-in roller in which the rotational force of the motor is transmitted to the roller main body to rotate the roller main body, electric power and signals are transferred to the inside and outside of the roller main body. The motor has a stator constituted by a plurality of windings, a rotor, and a plurality of magnetic pole detection means, and a roller according to the rotational position of the rotor. A brushless motor that switches a winding to be supplied with power outside the main body, and includes a magnetic pole corresponding switching element that turns on and off at least according to the output from the magnetic pole detection means in the roller main body, and a voltage constituted by a plurality of resistors A signal forming circuit is built in, and the combined resistance of the voltage signal forming circuit has a different resistance value depending on the combination of the magnetic pole detecting means that detects the magnetic pole. , The voltage signal forming circuit, a motorized roller, characterized in that output different voltages depending on the combination of the magnetic pole detecting means detects the magnetic poles to the input-output unit.
 本態様のモータ内蔵ローラでは、ローラ本体内に電圧信号形成回路が内蔵されている。電圧信号形成回路は、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を入出力部に出力する。そのためコントローラ側で電圧信号を解析すれば、いずれの磁極検出手段が磁極を検知したかを知ることができ、電力を供給すべき巻線を適切に選択することができる。また本態様は、電圧の大小によっていずれの磁極検出手段が磁極を検知したかという情報をコントローラ側に送信するものであるから、信号線は1本で足りる。そのためモータ内蔵ローラとコントローラとの間を繋ぐ線の数が従来に比べて少ない。
 またローラ本体内は閉塞された空間であり、且つ通電によって固定子が発熱するから、ローラ本体内の温度が昇降する。
 内部の温度変化によって各部を流れる電流が変化するが、電圧は温度変化の影響を受けにくい。
 本態様はこの点に注目し、磁極検出手段の検知状況を電圧の変化に変換して出力部に出力している。そのため本態様によると、磁極検出手段の検知状況を誤検出することが少ない。
In the motor built-in roller of this aspect, a voltage signal forming circuit is built in the roller body. The voltage signal forming circuit outputs different voltages to the input / output unit depending on the combination of magnetic pole detection means that have detected the magnetic poles. Therefore, if the voltage signal is analyzed on the controller side, it is possible to know which magnetic pole detection means has detected the magnetic pole, and it is possible to appropriately select the winding to which power is to be supplied. Moreover, since this aspect transmits the information which magnetic pole detection means detected the magnetic pole by the magnitude of voltage to the controller side, one signal line is enough. For this reason, the number of lines connecting the roller with built-in motor and the controller is smaller than in the prior art.
Further, since the inside of the roller body is a closed space and the stator generates heat when energized, the temperature inside the roller body rises and falls.
Although the current flowing through each part changes due to the internal temperature change, the voltage is not easily affected by the temperature change.
This aspect pays attention to this point, and converts the detection state of the magnetic pole detection means into a change in voltage and outputs it to the output unit. For this reason, according to this aspect, the detection status of the magnetic pole detection means is rarely erroneously detected.
 上記した態様においては、異常高温を検知する異常温度検知手段と、異常温度検知手段からの出力に応じてオンオフする温度対応スイッチング素子が電圧信号形成回路に組み込まれており、異常温度検知手段が異常高温を検知すると電圧信号形成回路の合成抵抗が通常とは異なる抵抗値領域となることが望ましい。 In the above aspect, the abnormal temperature detecting means for detecting the abnormally high temperature and the temperature corresponding switching element that turns on / off according to the output from the abnormal temperature detecting means are incorporated in the voltage signal forming circuit, and the abnormal temperature detecting means is abnormal. When a high temperature is detected, it is desirable that the combined resistance of the voltage signal forming circuit be in a resistance value region different from normal.
 本態様のモータ内蔵ローラでは、異常温度を検知する回路についても、電圧信号形成回路に組み込まれている。そのためいずれの磁極検出手段が磁極を検知したかという情報に加えて、異常温度検知手段が検知する情報についても一本の信号線でコントローラ側に送信することができる。 In the motor built-in roller of this aspect, the circuit for detecting the abnormal temperature is also incorporated in the voltage signal forming circuit. Therefore, in addition to the information on which magnetic pole detection means has detected the magnetic pole, the information detected by the abnormal temperature detection means can be transmitted to the controller side with a single signal line.
 上記した態様においては、入出力部は、各巻線に電力を供給する複数の電力供給ラインを有し、磁極検出手段は、ホールICであって電源電圧入力部と信号電圧出力部とグランド部を有し、各磁極検出手段のグランド部は、互いに接続されており、かつそれぞれ整流器を介して複数の電力供給ラインに接続されていることが望ましい。 In the aspect described above, the input / output unit has a plurality of power supply lines that supply power to each winding, and the magnetic pole detection means is a Hall IC that includes a power supply voltage input unit, a signal voltage output unit, and a ground unit. It is desirable that the ground portions of the magnetic pole detection means are connected to each other and connected to a plurality of power supply lines via rectifiers.
 本態様のモータ内蔵ローラでは、各巻線に電力を供給する複数の電力供給ラインを有している。ここでブラシレスモータは、複数の巻線に順次電力を供給するものであるから、複数の電力供給ラインは、順番に正極側となり、順番に負極(グランド)側となる。そのため、複数の電力供給ラインの少なくとも一本は、負極(グランド)側のタイミングとなっている。
 本態様では、各磁極検出手段のグランド部は、互いに接続されており、かつそれぞれ整流器を介して複数の電力供給ラインに接続されているから、すべての時間においてグランド部がどれかの整流器を介して負極(グランド)側と繋がり、各磁極検出手段に通電される。
The motor built-in roller of this aspect has a plurality of power supply lines for supplying power to each winding. Here, since the brushless motor supplies power to the plurality of windings sequentially, the plurality of power supply lines are sequentially on the positive electrode side and sequentially on the negative electrode (ground) side. For this reason, at least one of the plurality of power supply lines has a timing on the negative electrode (ground) side.
In this aspect, since the ground portions of the magnetic pole detection means are connected to each other and are connected to the plurality of power supply lines via the rectifiers, the ground portions are connected via any rectifier at all times. Thus, the magnetic pole detection means is energized by connecting to the negative electrode (ground) side.
 上記した態様においては、電圧信号形成回路はラダー形抵抗回路またはラダー形抵抗回路の一部であることが望ましい。 In the above aspect, the voltage signal forming circuit is preferably a ladder-type resistor circuit or a part of a ladder-type resistor circuit.
 上記した態様においては、前記磁極対応スイッチング素子が複数あり、前記複数の抵抗は、第1抵抗と第2抵抗を含み、前記各磁極対応スイッチング素子には、各々抵抗値が同一又は異なる第1抵抗が直列に接続されており、各磁極対応スイッチング素子と、当該磁極対応スイッチング素子に対応する第1抵抗とで磁極対応スイッチング部が構成されており、前記磁極対応スイッチング部同士が並列に接続されており、磁極対応スイッチング部同士の間の少なくともいずれかに、少なくとも一つの第2抵抗が設けられていることが望ましい。 In the aspect described above, there are a plurality of the magnetic pole corresponding switching elements, and the plurality of resistors include a first resistor and a second resistor, and each of the magnetic pole corresponding switching elements has the same or different resistance value. Are connected in series, and each magnetic pole corresponding switching element and the first resistor corresponding to the magnetic pole corresponding switching element constitute a magnetic pole corresponding switching part, and the magnetic pole corresponding switching parts are connected in parallel. It is desirable that at least one second resistor is provided at least between the magnetic pole corresponding switching units.
 上記した態様においては、前記第2抵抗の抵抗値は、前記各第1抵抗の抵抗値よりも小さいことが望ましい。 In the aspect described above, it is desirable that the resistance value of the second resistor is smaller than the resistance value of each of the first resistors.
 上記した態様においては、前記各第1抵抗の抵抗値が異なることが望ましい。 In the above aspect, it is desirable that the resistance values of the first resistors are different.
 上記した態様においては、異常高温を検知する異常温度検知手段と、異常温度検知手段からの出力に応じてオンオフする温度対応スイッチング素子が電圧信号形成回路に組み込まれており、異常温度検知手段が異常高温を検知すると電圧信号形成回路の合成抵抗が通常とは異なる抵抗値領域となり、前記複数の抵抗は、さらに第3抵抗を含み、前記温度対応スイッチング素子には前記第3抵抗が直列に接続されており、前記温度対応スイッチング素子と第3抵抗とで温度対応スイッチング部が構成されており、前記温度対応スイッチング部が、前記各磁極対応スイッチング部と並列に接続されており、前記第3抵抗の抵抗値が、前記第1抵抗の抵抗値並びに第2抵抗の抵抗値よりも小さいことが望ましい。 In the above aspect, the abnormal temperature detecting means for detecting the abnormally high temperature and the temperature corresponding switching element that turns on / off according to the output from the abnormal temperature detecting means are incorporated in the voltage signal forming circuit, and the abnormal temperature detecting means is abnormal. When a high temperature is detected, the combined resistance of the voltage signal forming circuit becomes a resistance value region different from normal, the plurality of resistors further include a third resistor, and the third resistor is connected in series to the temperature corresponding switching element. A temperature-corresponding switching unit is composed of the temperature-corresponding switching element and the third resistor, and the temperature-corresponding switching unit is connected in parallel with each of the magnetic pole-corresponding switching units, and the third resistor It is desirable that the resistance value is smaller than the resistance value of the first resistor and the resistance value of the second resistor.
 本発明の他の態様は、ローラ本体の外部にあってローラ本体内のモータに電力を供給するモータ内蔵ローラ用コントローラにおいて、電力を供給する対象となる巻線を切り替えつつ巻線に電力を供給する駆動回路と、電圧信号解析手段を有し、電圧信号解析手段は、入力された電圧信号に応じて駆動回路を制御し、電力を供給する巻線を選択することを特徴とするモータ内蔵ローラ用コントローラである。 Another aspect of the present invention is a motor controller for a roller with a built-in motor that supplies power to a motor in the roller body outside the roller body, and supplies power to the windings while switching the winding to be supplied with power. A motor built-in roller, comprising: a driving circuit that performs power control, and a voltage signal analyzing unit, wherein the voltage signal analyzing unit controls the driving circuit in accordance with the input voltage signal and selects a winding for supplying power. Controller.
 本態様のモータ内蔵ローラ用コントローラは、電圧信号解析手段を有し、入力された電圧信号に応じて駆動回路を制御し、電力を供給する巻線を選択する。 The controller for a roller with a built-in motor of this aspect has voltage signal analysis means, controls the drive circuit according to the input voltage signal, and selects the winding for supplying power.
 本発明の他の態様は、モータ内蔵ローラと、コントローラによって構成されるモータ内蔵ローラシステムにおいて、前記モータ内蔵ローラは、ローラ本体内に少なくともモータが内蔵され、モータの回転力がローラ本体に伝動されてローラ本体を回転させるものであり、前記モータ内蔵ローラは、ローラ本体の内外に電力及び信号を入出力する入出力部を有し、前記モータは、複数の巻線によって構成される固定子と、回転子と、複数の磁極検出手段とを有し、回転子の回転位置に応じてローラ本体の外部で電力を供給する巻線を切り替えるブラシレスモータであり、前記モータ内蔵ローラは、ローラ本体内に少なくとも磁極検出手段からの出力に応じてオンオフする磁極対応スイッチング素子と、複数の抵抗によって構成された電圧信号形成回路が内蔵され、前記電圧信号形成回路の合成抵抗は、磁極を検知した磁極検出手段の組み合わせによって異なる抵抗値となり、電圧信号形成回路が、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を前記入出力部に出力し、前記コントローラは、ローラ本体の外部にあってローラ本体内のモータに電力を供給するものであり、電力を供給する対象となる巻線を切り替える切り替え回路と、電圧信号解析手段を有し、電圧信号解析手段は、入力された電圧信号に応じて切り替え回路を制御し、電力を供給する巻線を選択することを特徴とするモータ内蔵ローラシステムである。 Another aspect of the present invention is a motor-integrated roller system constituted by a motor-integrated roller and a controller. The motor-integrated roller includes at least a motor in the roller body, and the rotational force of the motor is transmitted to the roller body. The roller with a built-in motor has an input / output unit that inputs and outputs power and signals inside and outside the roller body, and the motor has a stator composed of a plurality of windings. A brushless motor having a rotor and a plurality of magnetic pole detection means, and switching a winding for supplying electric power to the outside of the roller body in accordance with the rotational position of the rotor. A voltage signal composed of a magnetic pole corresponding switching element that turns on and off at least according to the output from the magnetic pole detection means, and a plurality of resistors The combined resistance of the voltage signal forming circuit has a different resistance value depending on the combination of the magnetic pole detection means detecting the magnetic pole, and the voltage signal forming circuit generates different voltages depending on the combination of the magnetic pole detection means detecting the magnetic pole. The controller outputs to the input / output unit, the controller supplies power to a motor in the roller body outside the roller body, a switching circuit for switching a winding to be supplied with power, and a voltage signal The voltage signal analyzing means is a roller system with a built-in motor, wherein the voltage signal analyzing means controls the switching circuit according to the input voltage signal and selects a winding for supplying power.
 本態様によると、モータ内蔵ローラとコントローラとの間を繋ぐ線の数を従来に比べて少なくすることができる。 According to this aspect, the number of lines connecting the roller with built-in motor and the controller can be reduced as compared with the conventional case.
 上記した態様においては、電圧信号解析手段に前記電圧信号形成回路から磁極を検知した磁極検出手段の組み合わせによって異なる電圧が入力され、電力を供給する巻線を選択することが望ましい。 In the above-described aspect, it is desirable to select a winding for supplying power by inputting a different voltage depending on the combination of the magnetic pole detection means that has detected the magnetic pole from the voltage signal forming circuit to the voltage signal analysis means.
 本発明の他の態様は、筐体内にモータと減速機とが内蔵され、モータの回転力が減速機で減速されて出力されるギャードモータにおいて、筐体の内外に電力及び信号を入出力する入出力部を有し、前記モータは、複数の巻線によって構成される固定子と、回転子と、複数の磁極検出手段とを有し、回転子の回転位置に応じて筐体の外部で電力を供給する対象となる巻線を切り替えるギャードモータであり、筐体内に少なくとも磁極検出手段からの出力に応じてオンオフする磁極対応スイッチング素子と、複数の抵抗によって構成された電圧信号形成回路が内蔵され、前記電圧信号形成回路の合成抵抗は、磁極を検知した磁極検出手段の組み合わせによって異なる抵抗値となり、電圧信号形成回路が、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を前記入出力部に出力することを特徴とするギャードモータである。 Another aspect of the present invention is a geared motor in which a motor and a speed reducer are built in a housing, and the rotational force of the motor is decelerated by the speed reducer and is output. The motor includes an output unit, and the motor includes a stator constituted by a plurality of windings, a rotor, and a plurality of magnetic pole detection means. Is a geared motor that switches a winding to be supplied with a magnetic pole corresponding switching element that is turned on and off according to an output from at least the magnetic pole detection means, and a voltage signal forming circuit configured by a plurality of resistors. The combined resistance of the voltage signal forming circuit has a different resistance value depending on the combination of the magnetic pole detection means detecting the magnetic pole, and the voltage signal forming circuit is a combination of the magnetic pole detection means detecting the magnetic pole. By a geared motor, characterized in that output different voltages to the output unit.
 本発明のモータ内蔵ローラは、コントローラと接続するための線の数が従来に比べて少ない。そのためモータ内蔵ローラ自体を組み立てる際の手間や、モータ内蔵ローラをコンベア装置等に組み込む際の手間が少ない。
 本発明のギャードモータについても同様である。
 また本発明のモータ内蔵ローラ、モータ内蔵ローラ用コントローラ及びモータ内蔵ローラシステムは、モータ内蔵ローラとコントローラとの間を繋ぐ線の数を少なくすることができる効果がある。
The roller with a built-in motor of the present invention has a smaller number of lines for connecting to the controller than in the prior art. For this reason, there is little trouble in assembling the motor built-in roller itself or in incorporating the motor built-in roller into the conveyor device or the like.
The same applies to the geared motor of the present invention.
In addition, the motor built-in roller, the motor built-in roller controller, and the motor built-in roller system according to the present invention have an effect of reducing the number of lines connecting the motor built-in roller and the controller.
本発明の実施形態のモータ内蔵ローラ及びモータ内蔵ローラ用コントローラの正面図である。It is a front view of the motor built-in roller and controller for motor built-in roller of the embodiment of the present invention. 図1のモータ内蔵ローラの断面図である。It is sectional drawing of the roller with a built-in motor of FIG. 図1のモータ内蔵ローラの分解斜視図である。It is a disassembled perspective view of the roller with a built-in motor of FIG. 図1のモータ内蔵ローラに内蔵されているモータユニットの断面図である。It is sectional drawing of the motor unit incorporated in the roller with a built-in motor of FIG. 図1のモータ内蔵ローラの回路図である。It is a circuit diagram of the roller with a built-in motor of FIG. 図1のモータ内蔵ローラの回路図の一部であってホールICへの給電部分の回路図である。FIG. 2 is a part of the circuit diagram of the motor built-in roller in FIG. 1 and a circuit diagram of a power feeding portion to the Hall IC. 図1のモータ内蔵ローラ用コントローラの回路図である。FIG. 2 is a circuit diagram of the motor built-in roller controller in FIG. 1. 図1のモータ内蔵ローラ内のホールICの検知状況と、電圧信号形成回路から出力される電圧との関係を示すグラフである。It is a graph which shows the relationship between the detection condition of Hall IC in the roller with a built-in motor of FIG. 1, and the voltage output from a voltage signal formation circuit. 本発明の他の実施形態のモータ内蔵ローラの回路図である。It is a circuit diagram of the roller with a built-in motor of other embodiments of the present invention. 本発明の実施形態のギャードモータの正面図である。It is a front view of the guard motor of the embodiment of the present invention. 本発明の実施形態のギャードモータの平面図である。It is a top view of the guard motor of the embodiment of the present invention. 本発明の実施形態のギャードモータの断面図である。It is sectional drawing of the geared motor of embodiment of this invention. 本発明の他の実施形態に係るモータ内蔵ローラの回路図である。It is a circuit diagram of the roller with a built-in motor concerning other embodiments of the present invention. 本発明の他の実施形態に係るモータ内蔵ローラの回路図である。It is a circuit diagram of the roller with a built-in motor concerning other embodiments of the present invention. 本発明の他の実施形態に係るモータ内蔵ローラ用コントローラの回路図である。It is a circuit diagram of the controller for motor built-in rollers concerning other embodiments of the present invention. 本発明の他の実施形態に係るモータ内蔵ローラの回路図である。It is a circuit diagram of the roller with a built-in motor concerning other embodiments of the present invention.
 以下さらに本発明の実施形態について説明する。本発明のモータ内蔵ローラシステム100は、モータ内蔵ローラ3と、モータ内蔵ローラ用コントローラ(以下 コントローラ)50によって構成されている。
 本実施形態のモータ内蔵ローラ3及びコントローラ50は、内部の回路に特徴があるが、これらの説明に先立って、これらの基本構造について説明する。
Embodiments of the present invention will be further described below. The motor built-in roller system 100 of the present invention includes a motor built-in roller 3 and a motor built-in roller controller (hereinafter referred to as controller) 50.
The motor built-in roller 3 and the controller 50 according to the present embodiment are characterized by an internal circuit. Prior to these descriptions, their basic structures will be described.
 図1は、本発明の実施形態のモータ内蔵ローラ3を示す。本実施形態のモータ内蔵ローラは公知のそれと同様に、円筒形のローラ本体11を持ち、その内部にモータ12と減速機13が内蔵されている。ただし本実施形態のモータ内蔵ローラ3は、モータ12と減速機13及び回路基板15がユニット化されている。即ち本実施形態のモータ内蔵ローラ3は、ローラ本体11内にモータ内蔵ローラ用モータユニット(以下、単にモータユニットという)1が内蔵されたものである。そしてモータユニット1は、図4の様にモータ12と減速機13及び回路基板15が、円筒形のケース2内に収納されたものである。 FIG. 1 shows a roller 3 with a built-in motor according to an embodiment of the present invention. The motor built-in roller of this embodiment has a cylindrical roller main body 11 and a motor 12 and a speed reducer 13 are built in the same, as is well known. However, the motor built-in roller 3 of the present embodiment has a motor 12, a speed reducer 13, and a circuit board 15 as a unit. That is, the motor built-in roller 3 of the present embodiment is a roller body 11 in which a motor unit for motor with built-in roller (hereinafter simply referred to as a motor unit) 1 is built. As shown in FIG. 4, the motor unit 1 includes a motor 12, a speed reducer 13, and a circuit board 15 housed in a cylindrical case 2.
 モータユニット1は、一種のギャードモータであり、筐体(ケース2)内にモータ12と減速機13とが内蔵され、モータ12の回転力が減速機で減速されて出力軸(駆動側軸8)から出力するものである。
 本実施形態のモータユニット1は、図4に示すようにケース2と、ケース2から突出する固定側短軸4と、ケース2に内蔵された駆動部5及び回路基板15と、駆動部5の動力を受けて回転しケース2から突出する駆動側軸8によって構成されている。
 即ち本実施形態のモータユニット1は、円筒状のケース2で覆われている。そしてケース2の内部には駆動部5が収められている。駆動部5は、具体的には、モータ12と減速機13である。
The motor unit 1 is a kind of geared motor, and a motor 12 and a speed reducer 13 are built in a housing (case 2), and the rotational force of the motor 12 is decelerated by the speed reducer to output shaft (drive side shaft 8). Is output from
As shown in FIG. 4, the motor unit 1 of the present embodiment includes a case 2, a fixed short shaft 4 protruding from the case 2, a drive unit 5 and a circuit board 15 built in the case 2, and a drive unit 5. The driving side shaft 8 is rotated by receiving power and protrudes from the case 2.
That is, the motor unit 1 of the present embodiment is covered with the cylindrical case 2. A drive unit 5 is housed inside the case 2. The drive unit 5 is specifically a motor 12 and a speed reducer 13.
 ケース2の一端部には駆動側軸8が露出しており、他端部には固定側短軸4が露出している。
 前記した駆動側軸8と固定側短軸4は、それぞれ駆動側軸ホルダ7と固定軸ホルダ10によってケース2の端部に取り付けられている。
 駆動側軸ホルダ7は内部に軸受け14を有している。
The drive side shaft 8 is exposed at one end of the case 2, and the fixed short shaft 4 is exposed at the other end.
The drive side shaft 8 and the fixed side short shaft 4 described above are attached to the end of the case 2 by a drive side shaft holder 7 and a fixed shaft holder 10, respectively.
The drive side shaft holder 7 has a bearing 14 inside.
 固定側短軸4はモータユニット1の端部であって中心軸上に設けられ、固定軸ホルダ10によりケース2に一体的に固定されている。固定側短軸4は、内部が中空であり、その内部にはケーブル26が挿入されている。ケーブル26のモータユニット1内部側は、リード線31を介して前記した回路基板15に接続されており、回路基板15からモータ12に対して給電される。
 またケーブル26の他端側(モータユニット1の外側)の先端にはモータ側コネクタ片(入出力部)25が接続されている。
 従ってモータ側コネクタ片(入出力部)25は、ケーブル26及びリード線31を介して回路基板15に接続されている。
The fixed short shaft 4 is an end of the motor unit 1 and is provided on the central shaft, and is fixed to the case 2 integrally by a fixed shaft holder 10. The fixed short shaft 4 is hollow inside, and a cable 26 is inserted into the inside. The motor unit 1 inside side of the cable 26 is connected to the circuit board 15 via the lead wire 31, and power is supplied from the circuit board 15 to the motor 12.
A motor-side connector piece (input / output unit) 25 is connected to the tip of the other end of the cable 26 (outside of the motor unit 1).
Therefore, the motor side connector piece (input / output unit) 25 is connected to the circuit board 15 via the cable 26 and the lead wire 31.
 駆動部5は前記した様にモータ12と減速機13で構成されている。モータ12は、固定子18と回転子19によって構成されるブラシレスモータである。本実施形態では、固定子18は、ケース2の内面に一体的に固定されている。また固定子18の中心にモータの回転子19が回転可能に保持されている。 The drive unit 5 is composed of the motor 12 and the speed reducer 13 as described above. The motor 12 is a brushless motor including a stator 18 and a rotor 19. In the present embodiment, the stator 18 is integrally fixed to the inner surface of the case 2. A rotor 19 of the motor is rotatably held at the center of the stator 18.
 本実施形態では、回転子19に永久磁石が使用されている。また固定子18は3系統(U相,V相,W相)のコイル(巻線)である。
 即ち本実施形態で採用するモータは、ブラシレスモータであり、固定子18は図5の回路図の様に3個のコイル(U相,V相,W相)を有している。また回転子19たる永久磁石の回転位置を検出する磁極検出手段H1,H2,H3を備えている。磁極検出手段H1,H2,H3は、具体的にはホールICである。
 ホールICは、ホール素子とパワースイッチング回路の全部あるいは一部を一体化して構成されている。さらに具体的には、ホールICは、磁界の大きさを検知するホール素子と、該ホール素子により検出された微小信号を増幅する増幅器と、増幅器において増幅された信号を方形波に成型するシュミットトリガ回路と、安定化電源回路と、温度補償回路とを備えている。本実施の形態では、磁極の位置を検知するためにホールICを採用する例を示したが、これに限らず発光ダイオードとフォトセンサを用いたフォト・インタラプタ式のものや磁気飽和素子を用いたインダクタンス式のものなど、いかなる方式の磁極位置検知手段を採用してもよい。
In the present embodiment, a permanent magnet is used for the rotor 19. The stator 18 is a three-system (U-phase, V-phase, W-phase) coil (winding).
That is, the motor employed in this embodiment is a brushless motor, and the stator 18 has three coils (U phase, V phase, W phase) as shown in the circuit diagram of FIG. In addition, magnetic pole detection means H1, H2, and H3 for detecting the rotational position of the permanent magnet as the rotor 19 are provided. The magnetic pole detection means H1, H2, and H3 are specifically Hall ICs.
The Hall IC is configured by integrating all or part of the Hall element and the power switching circuit. More specifically, the Hall IC includes a Hall element that detects the magnitude of the magnetic field, an amplifier that amplifies a minute signal detected by the Hall element, and a Schmitt trigger that shapes the signal amplified by the amplifier into a square wave. A circuit, a stabilized power supply circuit, and a temperature compensation circuit. In this embodiment, an example in which a Hall IC is employed to detect the position of the magnetic pole has been shown. However, the present invention is not limited to this, and a photo interrupter type using a light emitting diode and a photo sensor or a magnetic saturation element is used. Any type of magnetic pole position detection means such as an inductance type may be employed.
 固定子18は図5の回路図の様に3個のコイル(U相,V相,W相)がY形結線されたものである。即ち各コイル(U相,V相,W相)の一端は互いに接続されている。また各コイル(U相,V相,W相)の他端はそれぞれ電源線(電力供給ライン)を介して、図5の様に入出力部たるモータ側コネクタ片25の第2端子、第3端子、第4端子に接続されている。 The stator 18 is formed by connecting three coils (U phase, V phase, W phase) in a Y shape as shown in the circuit diagram of FIG. That is, one end of each coil (U phase, V phase, W phase) is connected to each other. The other end of each coil (U-phase, V-phase, W-phase) is connected to a second terminal and a third terminal of the motor-side connector piece 25 as an input / output unit as shown in FIG. 5 via a power line (power supply line). The terminal is connected to the fourth terminal.
 減速機13はモータ12と駆動側軸8の間にあり、モータ12の回転速度を減速させて駆動側軸8に伝えるためのものである。 The speed reducer 13 is located between the motor 12 and the drive side shaft 8 and is used to reduce the rotational speed of the motor 12 and transmit it to the drive side shaft 8.
 ケース2内における各部材のレイアウトは、図4の通りであり、固定側短軸4が固定軸ホルダ10によってケース2の一端に固定されており、固定側短軸4はケース2の端部で途切れていてケース2の奥には入り込んでいない。
 そして固定軸ホルダ10の奥側には、回路基板15が配置されている。また回路基板15の更に奥にモータ12と減速機13が設けられている。減速機13の出力軸は、駆動側軸8としてケース2の他端側から突出している。
The layout of each member in the case 2 is as shown in FIG. 4. The fixed short shaft 4 is fixed to one end of the case 2 by the fixed shaft holder 10, and the fixed short shaft 4 is at the end of the case 2. It is interrupted and does not enter the back of case 2.
A circuit board 15 is disposed behind the fixed shaft holder 10. Further, a motor 12 and a speed reducer 13 are provided in the back of the circuit board 15. The output shaft of the speed reducer 13 protrudes from the other end side of the case 2 as the drive side shaft 8.
 以上、モータユニット1について説明したが、次にモータユニット1が組み込まれたモータ内蔵ローラ3について説明する。
 モータ内蔵ローラ3は、前記したモータユニット1の他に、ローラ本体11と、ローラ内軸支持部材23及び蓋部材16,17によって構成されている(図3)。
The motor unit 1 has been described above. Next, the motor built-in roller 3 in which the motor unit 1 is incorporated will be described.
In addition to the motor unit 1 described above, the motor built-in roller 3 includes a roller body 11, a roller inner shaft support member 23, and lid members 16 and 17 (FIG. 3).
 ここでローラ本体11は、両端が開口した円筒である。ローラ内軸支持部材23は、図3の様にローラ本体11の内部に一体的に設けられたものであり、中心に六角形の開口34が設けられている。
 一方の蓋部材16は、図2の左端に示す様な、円筒状のローラ本体嵌合部材52と、2連の軸受け54及び本体側短軸部材53が一体化されたものである。また他の一つの蓋部材17は、図2の右端に示す様な構造であり、ローラ本体嵌合部材55と、軸受け22が一体化されたものである。
Here, the roller body 11 is a cylinder having both ends opened. The roller inner shaft support member 23 is integrally provided inside the roller main body 11 as shown in FIG. 3, and a hexagonal opening 34 is provided at the center.
One lid member 16 is formed by integrating a cylindrical roller body fitting member 52, two bearings 54, and a body-side short shaft member 53 as shown at the left end of FIG. The other lid member 17 has a structure as shown at the right end of FIG. 2, in which the roller body fitting member 55 and the bearing 22 are integrated.
 本実施形態のモータ内蔵ローラ3では、モータユニット1がローラ本体11内に挿入されており、モータユニット1の駆動側軸8がローラ内軸支持部材23の開口34と係合している。また本実施形態のモータ内蔵ローラ3では、ローラ本体11の両端に蓋部材16,17が取り付けられている。
 本実施形態では、ローラ本体11から突出したモータユニット1の固定側短軸4の先端側が、モータ内蔵ローラ3自身の一方の固定軸20を構成している。
In the motor built-in roller 3 of the present embodiment, the motor unit 1 is inserted into the roller body 11, and the drive side shaft 8 of the motor unit 1 is engaged with the opening 34 of the roller inner shaft support member 23. In the motor built-in roller 3 of the present embodiment, lid members 16 and 17 are attached to both ends of the roller body 11.
In the present embodiment, the distal end side of the fixed short shaft 4 protruding from the roller body 11 constitutes one fixed shaft 20 of the motor built-in roller 3 itself.
 一方、ローラ本体11の他端側に、ローラ本体嵌合部材52と、軸受け54及び本体側短軸部材53が一体化された蓋部材16を取り付けられている。
 本実施形態では、蓋部材16の本体側短軸部材53がモータ内蔵ローラ3自身の他方の固定軸21を構成している。
On the other hand, on the other end side of the roller body 11, a roller body fitting member 52, a lid member 16 in which a bearing 54 and a body-side short shaft member 53 are integrated are attached.
In the present embodiment, the main body side short shaft member 53 of the lid member 16 constitutes the other fixed shaft 21 of the motor built-in roller 3 itself.
 モータ内蔵ローラ3では、図2、図3の様に、モータユニット1側の固定軸(固定側短軸)20が中空形状であり、その中にモータ側コネクタ片25に繋がるケーブル26が内蔵されている。
 モータ側コネクタ片25は、ローラ本体11の内外に電力及び信号を入出力する入出力部であり、5個の端子を有するメス側コネクタである。
 モータ側コネクタ片25は、防水形の丸形コネクタの一片であり、端子が5個内蔵されている。
 5個の端子の内、第1端子は、図5の回路図の様にトランジスタ等を駆動する電源入力端子として機能する。
 第2端子から第4端子は、固定子18のコイル(巻線)(U相,V相,W相)に電力を供給する電力入力端子として機能する。第5端子は、電圧信号を出力する電圧信号出力端子として機能する。
In the motor built-in roller 3, as shown in FIGS. 2 and 3, the fixed shaft (fixed-side short shaft) 20 on the motor unit 1 side is hollow, and a cable 26 connected to the motor-side connector piece 25 is incorporated therein. ing.
The motor-side connector piece 25 is an input / output unit that inputs and outputs power and signals to and from the roller body 11 and is a female-side connector having five terminals.
The motor-side connector piece 25 is a piece of a waterproof round connector, and has five built-in terminals.
Of the five terminals, the first terminal functions as a power input terminal for driving a transistor or the like as shown in the circuit diagram of FIG.
The second terminal to the fourth terminal function as power input terminals for supplying power to the coils (windings) (U phase, V phase, W phase) of the stator 18. The fifth terminal functions as a voltage signal output terminal that outputs a voltage signal.
 ローラ本体11の内部においては、モータ側コネクタ片25の後端に繋がるリード線31が前記した回路基板15に接続されており、回路基板15からモータ12に対して給電される。 In the roller body 11, a lead wire 31 connected to the rear end of the motor-side connector piece 25 is connected to the circuit board 15, and power is supplied from the circuit board 15 to the motor 12.
 次にコントローラ50の概要について説明する。
 コントローラ50は、モータ内蔵ローラ3側のモータ側コネクタ片25の第1乃至第5端子に対応して5個の端子を備えている。5個の端子は、外部のコネクタ片33に接続されている。コネクタ片33は、モータ内蔵ローラ3側のモータ側コネクタ片25と接続されるものである。
 コントローラ50の第1端子は、モータ内蔵ローラ3側のトランジスタ等を駆動する電源となるものである。
 第2端子から第4端子は、モータ内蔵ローラ3側の固定子18のコイル(U相,V相,W相)U,V,Wに電力を供給する電力出力端子として機能する。第5端子は、電圧信号を入力する電圧信号入力端子として機能する。
Next, an outline of the controller 50 will be described.
The controller 50 includes five terminals corresponding to the first to fifth terminals of the motor-side connector piece 25 on the motor built-in roller 3 side. The five terminals are connected to an external connector piece 33. The connector piece 33 is connected to the motor-side connector piece 25 on the motor built-in roller 3 side.
The first terminal of the controller 50 serves as a power source for driving a transistor or the like on the motor built-in roller 3 side.
The second terminal to the fourth terminal function as power output terminals for supplying power to the coils (U phase, V phase, W phase) U, V, W of the stator 18 on the motor built-in roller 3 side. The fifth terminal functions as a voltage signal input terminal for inputting a voltage signal.
 前記した様に、ローラ本体11に内蔵されているモータ12は、ブラシレスモータであり、固定子18は図5の回路図の様に3個のコイル(U相,V相,W相)を有している。また回転子19たる永久磁石の回転位置を検出する磁極検出手段(ホールIC)H1,H2,H3を備えている。
 そして前記したコイル(U相,V相,W相)によって内部に回転磁界を発生させるためには、各コイル(U相,V相,W相)に順番に電流を供給する駆動回路43が必要であり、当該駆動回路43がコントローラ50に納められている。駆動回路43は、電流を駆動する回路と、切り替え信号を得る切り替え回路とを含んでいる。
 図7に示すように、コントローラ50内の駆動回路43は、上アーム制御部41および下アーム制御部42を有している。
As described above, the motor 12 built in the roller body 11 is a brushless motor, and the stator 18 has three coils (U phase, V phase, W phase) as shown in the circuit diagram of FIG. is doing. Further, magnetic pole detection means (Hall ICs) H1, H2, and H3 for detecting the rotational position of the permanent magnet as the rotor 19 are provided.
In order to generate a rotating magnetic field internally by the coils (U phase, V phase, W phase), a drive circuit 43 that supplies current to each coil (U phase, V phase, W phase) in order is required. The drive circuit 43 is accommodated in the controller 50. The drive circuit 43 includes a circuit that drives a current and a switching circuit that obtains a switching signal.
As shown in FIG. 7, the drive circuit 43 in the controller 50 includes an upper arm control unit 41 and a lower arm control unit 42.
 上アーム制御部41は、FETによって構成されるスイッチング素子T1,T2,T3を介し、第2端子から第4端子を経由してモータ内蔵ローラ3側へ至る回路である。また、下アーム制御部42は、各々スイッチング素子T4,T5,T6を介して接地電位(負電源側)へ至る回路である。
 駆動回路43には、信号入力部45,46があり、上アーム制御部41のスイッチング素子T1,T2,T3に接続されたUu,Vu,Wu端子と、下アーム制御部42のスイッチング素子T4,T5,T6に接続されたUL,VL,WL端子がある。
 そしてUu,Vu,Wu端子とUL,VL,WL端子に信号が入力されることにより、上アーム制御部41のスイッチング素子T1,T2,T3が順次オン状態にされると共に、下アーム制御部42のスイッチング素子T4,T5,T6も順次オン状態となり、ブラシレスモータ12の各U,V,W相のコイルへ順次切換通電されてモータ12の回転駆動が行われる。
The upper arm control unit 41 is a circuit extending from the second terminal to the motor built-in roller 3 side via the fourth terminal via the switching elements T1, T2, and T3 formed of FETs. The lower arm control unit 42 is a circuit that reaches the ground potential (negative power supply side) via the switching elements T4, T5, and T6.
The drive circuit 43 includes signal input units 45 and 46, Uu, Vu, and Wu terminals connected to the switching elements T1, T2, and T3 of the upper arm control unit 41, and the switching element T4 of the lower arm control unit 42. There are UL, VL and WL terminals connected to T5 and T6.
Then, by inputting signals to the Uu, Vu, Wu terminals and the UL, VL, WL terminals, the switching elements T1, T2, T3 of the upper arm control unit 41 are sequentially turned on, and the lower arm control unit 42 is turned on. The switching elements T4, T5, and T6 are sequentially turned on, and the U, V, and W phase coils of the brushless motor 12 are sequentially switched and energized to rotate the motor 12.
 次に、本実施形態の特徴的構成について説明する。本実施形態のモータ内蔵ローラ3では、ローラ本体11内の回路基板15に電圧信号形成回路56が構築されている。
 電圧信号形成回路56は、図5の通りであり、磁極検出手段H1,H2,H3からの出力に応じてオンオフする磁極対応スイッチング素子Q1,Q2,Q3と、異常温度検知手段57からの出力に応じてオンオフする温度対応スイッチング素子Q4と、複数の抵抗R1乃至R7によって構成されている。
 磁極対応スイッチング素子Q1,Q2,Q3及び温度対応スイッチング素子Q4は、具体的にはNPN形トランジスタである。異常温度検知手段57は具体的には過電流が流れた場合等を検知するサーマルリレーであり、高温を検知すると抵抗値が極端に上昇する。
Next, a characteristic configuration of the present embodiment will be described. In the motor built-in roller 3 of this embodiment, a voltage signal forming circuit 56 is constructed on the circuit board 15 in the roller body 11.
The voltage signal forming circuit 56 is as shown in FIG. 5, and the magnetic pole corresponding switching elements Q 1, Q 2, and Q 3 that are turned on and off according to the outputs from the magnetic pole detection means H 1, H 2, and H 3, It is composed of a temperature-compatible switching element Q4 that is turned on and off in response to this and a plurality of resistors R1 to R7.
The magnetic pole corresponding switching elements Q1, Q2, Q3 and the temperature corresponding switching element Q4 are specifically NPN transistors. Specifically, the abnormal temperature detection means 57 is a thermal relay that detects when an overcurrent flows, and the resistance value extremely increases when a high temperature is detected.
 磁極対応スイッチング素子Q1,Q2,Q3たるNPN形トランジスタのベースに、各磁極検出手段(ホールIC)H1,H2,H3の出力線が接続されている。磁極対応スイッチング素子Q1,Q2,Q3のコレクタには、電源ラインが接続されている。
 なお電源ラインは、前記したモータ側コネクタ片25の5個の端子の内、第1端子に繋がるラインである。
 また電源ラインが抵抗R7と異常温度検知手段57とで分圧され、抵抗R7と異常温度検知手段57の中間点が温度対応スイッチング素子Q4たるNPN形トランジスタのベースに接続されている。温度対応スイッチング素子Q4のコレクタには、電源ラインが接続されている。
The output lines of the magnetic pole detection means (Hall ICs) H1, H2, and H3 are connected to the bases of the NPN transistors that are the magnetic pole corresponding switching elements Q1, Q2, and Q3. A power supply line is connected to the collectors of the magnetic pole corresponding switching elements Q1, Q2, and Q3.
The power supply line is a line connected to the first terminal among the five terminals of the motor-side connector piece 25 described above.
The power supply line is divided by the resistor R7 and the abnormal temperature detecting means 57, and an intermediate point between the resistor R7 and the abnormal temperature detecting means 57 is connected to the base of the NPN transistor which is the temperature corresponding switching element Q4. A power supply line is connected to the collector of the temperature corresponding switching element Q4.
 磁極対応スイッチング素子Q1,Q2,Q3及び温度対応スイッチング素子Q4のエミッタは、抵抗R1(第1抵抗)、R2(第1抵抗)、R3(第1抵抗)、R4(第2抵抗)、R5(第2抵抗)、R6(第3抵抗)によって構成される抵抗回路に接続されている。またR1とQ1で磁極対応スイッチング部SW1が構成されている。R2とQ2で磁極対応スイッチング部SW2が構成されている。R3とQ3で磁極対応スイッチング部SW3が構成されている。R6とQ4で温度対応スイッチング部SW4が構成されている。
 なお抵抗R1乃至R6は、後記する抵抗R8と共にラダー型抵抗回路を構成する。
 即ち、磁極対応スイッチング素子Q1,Q2,Q3のエミッタにはそれぞれ抵抗R1,R2,R3の一端側が接続されている。
 また温度対応スイッチング素子Q4には、抵抗R6の一端側が接続されている。
 さらに、各抵抗R1乃至R3及び抵抗R6の他端側は、抵抗R4,R5を挟んで直列に接続され、モータ側コネクタ片25の第5端子に接続されている。
 即ち、温度対応スイッチング素子Q4に接続された抵抗R6は、磁極対応スイッチング素子Q1に接続された抵抗R1に接続され、さらに抵抗R1は抵抗R4を挟んで磁極対応スイッチング素子Q2に接続された抵抗R2に接続され、さらに抵抗R2は抵抗R5を挟んでスイッチング素子Q3に接続された抵抗R3に接続され、末端がリード線31及びケーブル26を介してモータ側コネクタ片25の第5端子に接続されている。
The emitters of the magnetic pole corresponding switching elements Q1, Q2, Q3 and the temperature corresponding switching element Q4 are resistors R1 (first resistance), R2 (first resistance), R3 (first resistance), R4 (second resistance), R5 ( 2nd resistor) and R6 (third resistor). Further, the magnetic pole corresponding switching unit SW1 is configured by R1 and Q1. R2 and Q2 constitute a magnetic pole corresponding switching unit SW2. R3 and Q3 constitute a magnetic pole corresponding switching unit SW3. R6 and Q4 constitute a temperature corresponding switching unit SW4.
The resistors R1 to R6 constitute a ladder type resistor circuit together with a resistor R8 described later.
That is, one ends of the resistors R1, R2, and R3 are connected to the emitters of the magnetic pole corresponding switching elements Q1, Q2, and Q3, respectively.
Further, one end of the resistor R6 is connected to the temperature corresponding switching element Q4.
Further, the other ends of the resistors R1 to R3 and the resistor R6 are connected in series with the resistors R4 and R5 interposed therebetween, and are connected to the fifth terminal of the motor-side connector piece 25.
That is, the resistor R6 connected to the temperature corresponding switching element Q4 is connected to the resistor R1 connected to the magnetic pole corresponding switching element Q1, and the resistor R1 is further connected to the magnetic pole corresponding switching element Q2 across the resistor R4. Further, the resistor R2 is connected to the resistor R3 connected to the switching element Q3 across the resistor R5, and the terminal is connected to the fifth terminal of the motor side connector piece 25 via the lead wire 31 and the cable 26. Yes.
 各抵抗R1乃至R6は、それぞれ抵抗値が相違する。各抵抗R1乃至R6は、ラダー型抗回路の一部を構成するものである。
 抵抗値の関係は、次の通りである。
The resistors R1 to R6 have different resistance values. Each of the resistors R1 to R6 constitutes a part of a ladder type anti-circuit.
The relationship between the resistance values is as follows.
 R6<R5≦R4<R3<R2<R1 R6 <R5 ≦ R4 <R3 <R2 <R1
 上記した式においてR3、R2、R1の比率は、いずれも2倍程度である。
 またR6の抵抗値と、R3、R2、R1の抵抗値の比率は、8倍以上であり、極めて大きい。
In the above formula, the ratios of R3, R2, and R1 are all about twice.
The ratio of the resistance value of R6 and the resistance values of R3, R2, and R1 is 8 times or more, which is extremely large.
 また前記した磁極検出手段(ホールIC)H1,H2,H3のグランド端子が、図6の様にそれぞれ整流器を介して各コイル(U相,V相,W相)と、電力入力端子(第2端子から第4端子)を繋ぐ電源線に接続されている。
 磁極検出手段H1,H2,H3は、ホール素子が内蔵されたものであり、電源電圧入力端子(VCC)と、出力端子(OUT)と、グランド端子(GND)を有している。なおH1,H2,H3のグランド端子は互いに接続されており、これによりグランドラインを形成している。そして電源電圧入力端子(VCC)には電源ラインが接続され、出力端子(OUT)は前記した様に磁極対応スイッチング素子Q1,Q2,Q3のベースに接続されている。
 そして磁極検出手段(ホールIC)H1,H2,H3のグランド端子は、それぞれ整流器を介して各コイル(U相,V相,W相)の電源線に接続されている。整流器の向きは、磁極検出手段(ホールIC)H1,H2,H3側から電源線側への通電を許容し、その逆を阻止する方向である。
In addition, the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, and H3 are connected to each coil (U phase, V phase, W phase) and a power input terminal (second phase) through rectifiers as shown in FIG. Terminal to the fourth terminal).
The magnetic pole detection means H1, H2, and H3 incorporate Hall elements, and have a power supply voltage input terminal (VCC), an output terminal (OUT), and a ground terminal (GND). The ground terminals H1, H2 and H3 are connected to each other, thereby forming a ground line. The power supply line is connected to the power supply voltage input terminal (VCC), and the output terminal (OUT) is connected to the bases of the magnetic pole corresponding switching elements Q1, Q2, and Q3 as described above.
The ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, H3 are connected to the power lines of the coils (U phase, V phase, W phase) via rectifiers. The direction of the rectifier is a direction that allows energization from the magnetic pole detection means (Hall IC) H1, H2, H3 side to the power supply line side and prevents the reverse.
 本実施形態では、モータ12の各U,V,W相のコイルへ順次切換通電されてモータ12の回転駆動が行われる。即ち各コイル(U相,V相,W相)には、3本の電力線によって電流が供給されるが、各コイル(U相,V相,W相)に通電するためには、少なくともいずれか一つの電力線がグランド状態になっていなければならない。本実施形態では、そして磁極検出手段(ホールIC)H1,H2,H3のグランド端子は、それぞれ整流器を介して各コイル(U相,V相,W相)の電源線に接続されかつH1,H2,H3のグランド端子は互いに接続されており、これによりグランドラインを形成しており、整流器の向きは、磁極検出手段(ホールIC)H1,H2,H3側から電源線側への通電を許容し、その逆を阻止する方向であるから、磁極検出手段(ホールIC)H1,H2,H3のグランド端子から、グランド状態となっている電力線に電流が流れる。そのため磁極検出手段(ホールIC)H1,H2,H3に通電が行われ、磁極検出手段(ホールIC)H1,H2,H3が機能する。 In the present embodiment, each U, V, and W phase coil of the motor 12 is sequentially switched and energized to rotate the motor 12. That is, each coil (U phase, V phase, W phase) is supplied with current by three power lines, but at least one of the coils (U phase, V phase, W phase) is energized. One power line must be in the ground state. In the present embodiment, the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, and H3 are connected to the power lines of the respective coils (U phase, V phase, and W phase) through rectifiers, and H1, H2 , H3 ground terminals are connected to each other, thereby forming a ground line. The direction of the rectifier allows the energization from the magnetic pole detection means (Hall ICs) H1, H2, H3 side to the power line side. Since the reverse direction is to be prevented, a current flows from the ground terminals of the magnetic pole detection means (Hall ICs) H1, H2, and H3 to the power line in the ground state. Therefore, power is supplied to the magnetic pole detection means (Hall ICs) H1, H2, and H3, and the magnetic pole detection means (Hall ICs) H1, H2, and H3 function.
 次に、コントローラ50の特徴的回路について説明する。
 コントローラ50は、前記した様に駆動回路43を有する他、電圧信号解析手段60が設けられている。図7に示すように、電圧信号解析手段60は、一つの入力端子61と、6個の出力端子62を有し、入力電圧に応じて、6個の出力端子62に選択的に電圧を発生させる回路を有している。
 本実施形態では、コントローラ50の第5端子(電圧信号入力端子)が、電圧信号解析手段60の入力端子61に接続されている。また第5端子と、入力端子61に分圧用の抵抗R8の一端が接続されている。抵抗R8の他端は、アースされている。
 従って、電圧信号解析手段60の入力端子61には、抵抗R8で分圧された電圧が印加される。
Next, characteristic circuits of the controller 50 will be described.
The controller 50 includes the drive circuit 43 as described above, and is provided with the voltage signal analysis means 60. As shown in FIG. 7, the voltage signal analyzing means 60 has one input terminal 61 and six output terminals 62, and selectively generates voltages at the six output terminals 62 according to the input voltage. Circuit.
In the present embodiment, the fifth terminal (voltage signal input terminal) of the controller 50 is connected to the input terminal 61 of the voltage signal analyzing means 60. One end of a voltage dividing resistor R8 is connected to the fifth terminal and the input terminal 61. The other end of the resistor R8 is grounded.
Therefore, the voltage divided by the resistor R8 is applied to the input terminal 61 of the voltage signal analyzing means 60.
 次に、本実施形態のモータ内蔵ローラシステム100の機能について説明する。前記したモータ内蔵ローラ3とコントローラ50は、コントローラ50側の雄側コネクタ片33をモータ内蔵ローラ3側のモータ側コネクタ片25に接続することによって電気的に接続される。
 そのためコントローラ50側の第1端子から、モータ内蔵ローラ3内に、トランジスタ等を駆動する電力が供給される。
 またモータ内蔵ローラ3側からは、電圧信号形成回路56から所定の電圧信号がコントローラ50側に入力される。
 本実施形態では、電圧信号形成回路56とコントローラ50内の分圧用の抵抗R8とによってラダー形抵抗回路が構成される。そして、電圧信号形成回路56と分圧用の抵抗R8との間で発生した電圧信号が、コントローラ50の電圧信号解析手段60で解析される。そして、駆動回路43が制御されて、モータ内蔵ローラ3側の各コイル(U相,V相,W相)に順番に電流が供給され、モータ12が回転し、モータ内蔵ローラ3のローラ本体11が回転する。
Next, functions of the motor built-in roller system 100 according to the present embodiment will be described. The motor built-in roller 3 and the controller 50 are electrically connected by connecting the male connector piece 33 on the controller 50 side to the motor side connector piece 25 on the motor built-in roller 3 side.
Therefore, electric power for driving the transistor and the like is supplied from the first terminal on the controller 50 side into the motor built-in roller 3.
A predetermined voltage signal is input from the voltage signal forming circuit 56 to the controller 50 side from the motor built-in roller 3 side.
In the present embodiment, a ladder-type resistor circuit is configured by the voltage signal forming circuit 56 and the voltage dividing resistor R8 in the controller 50. The voltage signal generated between the voltage signal forming circuit 56 and the voltage dividing resistor R8 is analyzed by the voltage signal analyzing means 60 of the controller 50. Then, the drive circuit 43 is controlled so that current is sequentially supplied to each coil (U phase, V phase, W phase) on the motor built-in roller 3 side, the motor 12 rotates, and the roller body 11 of the motor built-in roller 3. Rotates.
 即ち本実施形態のモータ内蔵ローラ3は、ローラ本体11の内部に電圧信号形成回路56が設けられており、電圧信号形成回路56で、磁極検出手段(ホールIC)H1,H2,H3の検出状況と、異常温度検知手段57の検知状況に応じた電圧を電圧信号解析手段60の入力端子61に発生させる。
 即ち磁極検出手段(ホールIC)H1,H2,H3の検出状況に応じて電圧信号形成回路56の合成抵抗が変化し、当該合成抵抗とコントローラ50内の分圧用の抵抗R8とで分圧され、入力端子61に入力される電圧が変化する。
 本実施形態では、モータ12の回転子19の回転角度と、3個の磁極検出手段H1,H2,H3のオン・オフ状況は、図8の上のグラフの通りである。
In other words, the roller 3 with built-in motor of this embodiment is provided with a voltage signal forming circuit 56 inside the roller body 11, and the voltage signal forming circuit 56 detects the magnetic pole detection means (Hall ICs) H1, H2, H3. Then, a voltage corresponding to the detection status of the abnormal temperature detection means 57 is generated at the input terminal 61 of the voltage signal analysis means 60.
That is, the combined resistance of the voltage signal forming circuit 56 changes according to the detection status of the magnetic pole detection means (Hall ICs) H1, H2, and H3, and is divided by the combined resistance and the voltage dividing resistor R8 in the controller 50. The voltage input to the input terminal 61 changes.
In the present embodiment, the rotation angle of the rotor 19 of the motor 12 and the on / off states of the three magnetic pole detection means H1, H2, and H3 are as shown in the upper graph of FIG.
 適当な回転角度を基準として、0度から30度の間は、磁極検出手段H1,H3がオン状態となり、磁極検出手段H2がオフ状態となる。
 続く30度から60度の間は、磁極検出手段H1だけがオン状態となり、磁極検出手段H2,H3がオフ状態となる。続く60度から90度の間は、磁極検出手段H1,H2がオン状態となり、磁極検出手段H3がオフ状態となる。続く90度から120度の間は、磁極検出手段H2がオン状態となり、磁極検出手段H1,H3がオフ状態となる。続く120度から150度の間は、磁極検出手段H2,H3がオン状態となり、磁極検出手段H1がオフ状態となる。続く150度から180度の間は、磁極検出手段H3がオン状態となり、磁極検出手段H1,H2がオフ状態となる。続く180度から360度の半周は、前記した0度から180度の状態が繰り返される。
 なおグラフでは、回転角度が180度から360度の間で温度対応スイッチング素子(サーマルリレー)Q4がオン状態となった場合を例示している。
The magnetic pole detection means H1 and H3 are turned on and the magnetic pole detection means H2 is turned off between 0 degrees and 30 degrees with reference to an appropriate rotation angle.
For the subsequent 30 to 60 degrees, only the magnetic pole detection means H1 is turned on, and the magnetic pole detection means H2 and H3 are turned off. During the subsequent 60 to 90 degrees, the magnetic pole detection means H1 and H2 are turned on and the magnetic pole detection means H3 is turned off. During the subsequent 90 degrees to 120 degrees, the magnetic pole detection means H2 is turned on, and the magnetic pole detection means H1 and H3 are turned off. During the subsequent 120 to 150 degrees, the magnetic pole detection means H2 and H3 are in the on state, and the magnetic pole detection means H1 is in the off state. During the subsequent 150 to 180 degrees, the magnetic pole detection means H3 is turned on and the magnetic pole detection means H1 and H2 are turned off. In the subsequent half-round from 180 degrees to 360 degrees, the state from 0 degrees to 180 degrees is repeated.
The graph exemplifies a case where the temperature corresponding switching element (thermal relay) Q4 is turned on when the rotation angle is between 180 degrees and 360 degrees.
 ここで、異常温度検知手段57が機能していないことを前提とすると、30度から60度の間は、磁極検出手段H1だけがオン状態となり、磁極検出手段H2,H3がオフ状態となるから、磁極対応スイッチング素子Q1だけがオン状態となり、磁極対応スイッチング素子Q1に供給される12ボルトの電圧は、抵抗R1,R4,R5で減圧され、電圧信号形成回路56から出力される。
 続く60度から90度の間は、磁極検出手段H1,H2がオン状態となり、H3がオフ状態となるから、磁極対応スイッチング素子Q1,Q2がオン状態となる。そのため磁極対応スイッチング素子Q1に供給される12ボルトが、抵抗R1,R4,R5で減圧された磁極対応スイッチング素子Q1由来の電圧と、磁極対応スイッチング素子Q2由来の電圧が合成され、電圧信号形成回路56から出力される。
Here, assuming that the abnormal temperature detecting means 57 is not functioning, only the magnetic pole detecting means H1 is turned on and the magnetic pole detecting means H2 and H3 are turned off between 30 degrees and 60 degrees. Only the magnetic pole corresponding switching element Q1 is turned on, and the 12-volt voltage supplied to the magnetic pole corresponding switching element Q1 is decompressed by the resistors R1, R4, R5 and output from the voltage signal forming circuit 56.
In the subsequent 60 to 90 degrees, the magnetic pole detection means H1 and H2 are turned on and H3 is turned off, so that the magnetic pole corresponding switching elements Q1 and Q2 are turned on. Therefore, the voltage derived from the magnetic pole corresponding switching element Q1 and the voltage derived from the magnetic pole corresponding switching element Q2 are combined with the voltage of 12 volts supplied to the magnetic pole corresponding switching element Q1, and the voltage is reduced by the resistors R1, R4, and R5. 56.
 この様に、モータ12の回転子19の回転角度に応じて、磁極検出手段(ホールIC)H1,H2,H3が磁極を検出する組み合わせが変化され、これに応じて、電圧信号形成回路56とコントローラ50内の分圧用の抵抗R8との間に特有の電圧が発生する。具体的には、磁極検出手段(ホールIC)H1,H2,H3が磁極を検出する組み合わせに応じて、電圧信号形成回路56と分圧用の抵抗R8との間に次の図8の電圧が発生する。そしてこの電圧信号が、コントローラ50の電圧信号解析手段60の入力端子61に入力される。 In this way, the combination of the magnetic pole detection means (Hall ICs) H1, H2, and H3 detecting the magnetic poles is changed according to the rotation angle of the rotor 19 of the motor 12, and the voltage signal forming circuit 56 is changed accordingly. A specific voltage is generated between the voltage dividing resistor R8 in the controller 50. Specifically, the following voltage shown in FIG. 8 is generated between the voltage signal forming circuit 56 and the voltage dividing resistor R8 in accordance with the combination in which the magnetic pole detection means (Hall ICs) H1, H2, and H3 detect the magnetic pole. To do. This voltage signal is input to the input terminal 61 of the voltage signal analyzing means 60 of the controller 50.
 コントローラ50では、電圧信号形成回路56からの信号が、一つの入力端子61から入力される。そしてコントローラ50では、電圧信号形成回路56からの信号が、分圧用の抵抗R8との間で分圧され、特有の電圧を発生させ、電圧信号解析手段60に電圧信号が入力される。そして電圧信号解析手段60では、入力された電圧に応じて、6個の出力端子62に選択的に電圧を発生させる。即ちモータ12の回転子19が回転を維持し続ける様に、駆動回路43の切り替えが行われるべく、6個の出力端子62をオンオフする。その結果、回転子19の回転角度に応じて、通電するコイル(U相,V相,W相)が切り替えられる。 In the controller 50, a signal from the voltage signal forming circuit 56 is input from one input terminal 61. In the controller 50, the signal from the voltage signal forming circuit 56 is divided with the voltage dividing resistor R 8 to generate a specific voltage, and the voltage signal is input to the voltage signal analyzing means 60. The voltage signal analyzing means 60 selectively generates voltages at the six output terminals 62 according to the input voltage. That is, the six output terminals 62 are turned on and off so that the drive circuit 43 can be switched so that the rotor 19 of the motor 12 continues to rotate. As a result, the energized coils (U phase, V phase, W phase) are switched according to the rotation angle of the rotor 19.
 またモータ12に過電流が流れた様な状況が発生し、異常温度検知手段57が機能すると、温度対応スイッチング素子Q4がオン状態となる。そのため温度対応スイッチング素子Q4由来の電圧が加算されて電圧信号形成回路56から出力される。
 ここで本実施形態では、温度対応スイッチング素子Q4に接続された抵抗R6の抵抗値が他の抵抗に比べて低いので、温度対応スイッチング素子Q4由来の電圧(コントローラ50内において電圧信号形成回路56からの信号と分圧用の抵抗R8との間で分圧されて発生する電圧)は、他の磁極対応スイッチング素子Q1,Q2,Q3に由来する電圧よりも高い。
 即ち温度対応スイッチング素子Q4に接続された抵抗R6の抵抗値が他の抵抗に比べて低いので、電圧信号形成回路56の合成抵抗は低下し、分圧用の抵抗R8で分圧される電圧は上昇する。
 そのため異常温度検知手段57が機能すると、図8の様に、明らかに高い電圧が電圧信号解析手段60に入力される。
 即ち異常温度検知手段57が機能した場合(異常発生時)における電圧信号形成回路56から出力される信号に基づく分圧(電圧)は、一定の閾値以上であり、異常温度検知手段57が機能していない場合(通常時)における電圧信号形成回路56から出力される信号に基づく分圧(電圧)は、一定の閾値未満である。この様に異常温度検知手段57が機能した場合における電圧信号形成回路56から出力される電圧は、通常の場合とは異なる電圧領域の電圧である。
 コントローラ50の電圧信号解析手段60がこの高い電圧信号を受信すると、図示しない非常停止回路が働き、モータ12を停止させる。
Further, when a situation in which an overcurrent flows through the motor 12 and the abnormal temperature detecting means 57 functions, the temperature corresponding switching element Q4 is turned on. Therefore, the voltage derived from the temperature corresponding switching element Q4 is added and output from the voltage signal forming circuit 56.
Here, in the present embodiment, the resistance value of the resistor R6 connected to the temperature-corresponding switching element Q4 is lower than other resistors, so that the voltage derived from the temperature-corresponding switching element Q4 (from the voltage signal forming circuit 56 in the controller 50). Voltage generated by voltage division between the voltage signal and the voltage dividing resistor R8 is higher than voltages derived from the other magnetic pole corresponding switching elements Q1, Q2, and Q3.
That is, since the resistance value of the resistor R6 connected to the temperature corresponding switching element Q4 is lower than other resistors, the combined resistance of the voltage signal forming circuit 56 is lowered, and the voltage divided by the voltage dividing resistor R8 is raised. To do.
Therefore, when the abnormal temperature detection means 57 functions, a clearly high voltage is input to the voltage signal analysis means 60 as shown in FIG.
That is, when the abnormal temperature detecting means 57 functions (when an abnormality occurs), the divided voltage (voltage) based on the signal output from the voltage signal forming circuit 56 is equal to or greater than a certain threshold value, and the abnormal temperature detecting means 57 functions. The voltage division (voltage) based on the signal output from the voltage signal forming circuit 56 when it is not (normal time) is less than a certain threshold. Thus, the voltage output from the voltage signal forming circuit 56 when the abnormal temperature detecting means 57 functions is a voltage in a voltage region different from the normal case.
When the voltage signal analyzing means 60 of the controller 50 receives this high voltage signal, an emergency stop circuit (not shown) is activated to stop the motor 12.
 本実施形態のモータ内蔵ローラシステム100では、モータ内蔵ローラ3側のモータ側コネクタ片25と、コントローラ50側のコネクタ片33は、防水形の丸形コネクタの一片である。一般に防水形のコネクタは、端子数が少なく、9端子を有するものは現実的にあまり商品化されていない。そのため従来技術のモータ内蔵ローラでは、防水形のコネクタを採用することが困難であったのに対し、本実施形態では、端子数が5本で足りるので、防水形のコネクタを採用することができることとなった。 In the motor built-in roller system 100 of the present embodiment, the motor side connector piece 25 on the motor built-in roller 3 side and the connector piece 33 on the controller 50 side are one piece of a waterproof round connector. In general, waterproof connectors have a small number of terminals, and those having nine terminals are not practically commercialized. For this reason, it has been difficult to employ a waterproof connector in the conventional motor built-in roller, but in this embodiment, since the number of terminals is sufficient, it is possible to employ a waterproof connector. It became.
 本実施形態において、第1抵抗たるR1,R2,R3に異なる値の抵抗を用いているが、同一の値を用いてもよい。また本実施形態において、第2抵抗たるR4,R5に、第1抵抗たるR1,R2,R3よりも小さい値の抵抗を用いているが、同一の値あるいは大きい値としてもよい。 In this embodiment, different resistances are used for the first resistors R1, R2, and R3, but the same values may be used. Further, in the present embodiment, resistors having values smaller than those of the first resistors R1, R2, and R3 are used for the second resistors R4 and R5, but may be the same value or a larger value.
 図5の実施形態において磁極検出手段H1,H2,H3の出力は、オン状態で「ハイレベル」の出力を想定している。しかしながら、本発明はこれに限定されるものではなく、オン状態で「ローレベル」を出力するホールICを用いてもかまわない。すなわち、図13に示すように磁極対応スイッチング素子Q1',Q2',Q3’にPNP型トランジスタを使うことで対応が可能である。なお図13において、温度対応スイッチング素子Q4'もPNP型として、Q4'のオン状態におけるコレクタ側出力電圧を磁極対応スイッチング素子Q1'~Q3・'のオン状態におけるコレクタ側出力レベルと同じにレベルになるようにしている。このため温度対応スイッチング素子はQ4'とQ5の2段構成とし、異常温度検知手段57の抵抗値が極端に大きくなった時にQ5がオンとなり、従いQ4'がオンとなる構成としている。しかしながら、図5と同じくQ4のみの構成とし、Q4にNPN型トランジスタを採用した温度対応スイッチングの構成としてもかまわない。 In the embodiment of FIG. 5, the outputs of the magnetic pole detection means H1, H2, and H3 are assumed to be “high level” outputs in the on state. However, the present invention is not limited to this, and a Hall IC that outputs “low level” in the on state may be used. That is, as shown in FIG. 13, it is possible to cope with this by using PNP transistors for the magnetic pole corresponding switching elements Q1 ′, Q2 ′, Q3 ′. In FIG. 13, the temperature corresponding switching element Q4 ′ is also a PNP type, and the collector side output voltage in the on state of Q4 ′ is set to the same level as the collector side output level in the on state of the magnetic pole corresponding switching elements Q1 ′ to Q3 · ′. It is trying to become. For this reason, the temperature corresponding switching element has a two-stage configuration of Q4 ′ and Q5, and when the resistance value of the abnormal temperature detecting means 57 becomes extremely large, Q5 is turned on, and accordingly Q4 ′ is turned on. However, as in FIG. 5, only Q4 may be used, and a temperature-compatible switching configuration in which an NPN transistor is used for Q4 may be used.
 また、電圧形成回路76の出力を図14のごとく、第1端子に重畳することもできる。この場合第5端子は不要になり、端子数が4本で足りる。なお、図15に示すように、モータ内蔵コントローラにおいて、第1端子は抵抗値の小さい抵抗rを介して、+12V(電源ライン)に接続される。この抵抗の両端間の電圧変動から、磁極検出手段H1,H2,H3の検出状態、異常温度検知手段の検知状態を知ることができる。さらに図14の電圧形成回路76の代わりに、図16の電圧形成回路86(図14においてR4およびR5を使わない回路)を用いることもできる。 Also, the output of the voltage forming circuit 76 can be superimposed on the first terminal as shown in FIG. In this case, the fifth terminal is not necessary, and four terminals are sufficient. As shown in FIG. 15, in the controller with a built-in motor, the first terminal is connected to + 12V (power supply line) via a resistor r having a small resistance value. From the voltage fluctuation across the resistor, the detection state of the magnetic pole detection means H1, H2, H3 and the detection state of the abnormal temperature detection means can be known. Furthermore, instead of the voltage forming circuit 76 of FIG. 14, the voltage forming circuit 86 of FIG. 16 (a circuit that does not use R4 and R5 in FIG. 14) may be used.
 上記したモータ内蔵ローラ3は、ローラ本体11内にモータ12と減速機13が内蔵されたものであるが、減速機13は必ずしも必要ではない。 The motor built-in roller 3 described above is a roller body 11 in which a motor 12 and a speed reducer 13 are built, but the speed reducer 13 is not necessarily required.
 上記した実施形態では、モータ側コネクタ片25等の第1端子をトランジスタ等を駆動する電源入力端子として使用したが、トランジスタ等を駆動する電源を固定子18に給電する電力線から分岐してもよい。 In the above-described embodiment, the first terminal of the motor-side connector piece 25 or the like is used as a power input terminal for driving a transistor or the like. However, the power source for driving the transistor or the like may be branched from a power line that supplies power to the stator 18. .
 以上説明した各スイッチング素子Q1,Q2,Q3,Q4,T1,T2,T3,T4,T5,T6は、ベース等に直接、ホールICからの出力信号や、抵抗R7と異常温度検知手段57とで分圧された電圧信号等を入力してオンオフされるが、例えばホールICから出力された信号や、抵抗R7及び異常温度検知手段57で作られた信号電圧を他の緩衝用トランジスタ等に入力し、緩衝用トランジスタの出力を前記したスイッチング素子Q1,Q2,Q3,Q4,T1,T2,T3,T4,T5,T6に入力してもよい。 Each of the switching elements Q1, Q2, Q3, Q4, T1, T2, T3, T4, T5, and T6 described above includes an output signal from the Hall IC, a resistor R7, and an abnormal temperature detecting means 57 directly on the base. It is turned on and off by inputting a divided voltage signal or the like. For example, a signal output from the Hall IC or a signal voltage generated by the resistor R7 and the abnormal temperature detection means 57 is input to another buffer transistor or the like. The output of the buffer transistor may be input to the switching elements Q1, Q2, Q3, Q4, T1, T2, T3, T4, T5, and T6.
 また以上説明した実施形態では、電圧信号形成回路56をホールIC(磁極検出手段H1,H2,H3)とは別途に作っているが、ホールICが内蔵するスイッチング回路を組み込んだ形で電圧信号形成回路70を構成してもよい。
 即ちホールICは、ホール素子とパワースイッチング回路の全部あるいは一部を一体化して構成されているから、内部にスイッチング回路を持っている。
 図9は、ホールIC(H1,H2,H3)が内蔵するスイッチング素子q1,q2,q3を取り込んで電圧信号形成回路70を構成した場合の回路図である。なお前記した実施形態と同一の部材には同一の番号を付している。
 図中、h1,h2,h3は、ホールIC(H1,H2,H3)に設けられたホール素子である。
In the embodiment described above, the voltage signal forming circuit 56 is made separately from the Hall IC (magnetic pole detection means H1, H2, H3). However, the voltage signal formation is performed by incorporating a switching circuit built in the Hall IC. The circuit 70 may be configured.
That is, since the Hall IC is configured by integrating all or part of the Hall element and the power switching circuit, the Hall IC has a switching circuit therein.
FIG. 9 is a circuit diagram in the case where the voltage signal forming circuit 70 is configured by taking in the switching elements q1, q2, and q3 built in the Hall ICs (H1, H2, and H3). In addition, the same number is attached | subjected to the member same as above-described embodiment.
In the figure, h1, h2, and h3 are Hall elements provided in the Hall ICs (H1, H2, and H3).
 ホール素子h1が磁極を検知して通電状態となると、磁極検出手段H1由来の電圧が消失する。同様にホール素子h2が磁極を検知して通電状態となると、磁極検出手段H2由来の電圧が消失し、ホール素子h3が磁極を検知して通電状態となると、磁極検出手段H3由来の電圧が消失する。
 この様に、モータ12の回転子19の回転角度に応じて、ホールIC内の磁極検出手段(ホール素子h1,h2,h3)が磁極を検出する組み合わせが変化され、これに応じて、電圧信号形成回路70では特有の電圧が発生する。具体的には、磁極検出手段H1,H2,H3が磁極を検出する組み合わせに応じて異なる電圧が作られる。そしてこの電圧信号が、コントローラ50に入力される。
When the Hall element h1 detects the magnetic pole and becomes energized, the voltage derived from the magnetic pole detection means H1 disappears. Similarly, when the Hall element h2 detects the magnetic pole and enters the energized state, the voltage derived from the magnetic pole detecting means H2 disappears. When the Hall element h3 detects the magnetic pole and enters the energized state, the voltage derived from the magnetic pole detecting means H3 disappears. To do.
In this way, the combination of the magnetic pole detection means (Hall elements h1, h2, h3) in the Hall IC detecting the magnetic poles is changed according to the rotation angle of the rotor 19 of the motor 12, and the voltage signal is changed accordingly. A unique voltage is generated in the forming circuit 70. Specifically, different voltages are generated according to combinations in which the magnetic pole detection means H1, H2, and H3 detect the magnetic poles. This voltage signal is input to the controller 50.
 上記した実施形態で採用するモータユニット1は、前記した様に一種のギャードモータであり、本発明はギャードモータにも応用可能である。
 また本発明は、ローラモータ内蔵ローラ3に内蔵されるものに限定されず、通常のギャードモータにも応用可能である。
 図10、図11、図12は、本発明の実施形態のギャードモータ71である。なお前記した実施形態と同一の部材には同一の番号を付している。
 ギャードモータ71は、図13の様に筐体72内にモータ12と減速機13とが内蔵され、モータ12の回転力が減速機で減速されて出力軸(駆動側軸8)から出力するものである。本実施形態のギャードモータ71は、筐体72と、筐体72から突出する固定側短軸4と、ケース2に内蔵された駆動部5及び回路基板15と、駆動部5の動力を受けて回転しケース2から突出する駆動側軸8によって構成されている。
 そして回路基板15に電圧信号形成回路56,66,70,76,86が構築されている。
The motor unit 1 employed in the above-described embodiment is a kind of guard motor as described above, and the present invention can also be applied to a guard motor.
Further, the present invention is not limited to the one built in the roller 3 with built-in roller motor, and can also be applied to a normal guard motor.
10, FIG. 11 and FIG. 12 show a guarded motor 71 according to an embodiment of the present invention. In addition, the same number is attached | subjected to the member same as above-described embodiment.
As shown in FIG. 13, the geared motor 71 includes a motor 12 and a speed reducer 13 built in a housing 72, and the rotational force of the motor 12 is decelerated by the speed reducer and output from the output shaft (drive side shaft 8). is there. The geared motor 71 according to this embodiment is rotated by receiving power from the housing 72, the fixed short shaft 4 protruding from the housing 72, the drive unit 5 and the circuit board 15 built in the case 2, and the drive unit 5. The drive side shaft 8 protrudes from the case 2.
The voltage signal forming circuits 56, 66, 70, 76 and 86 are constructed on the circuit board 15.
1 モータユニット(ギャードモータ)
3 モータ内蔵ローラ
11 ローラ本体
12 モータ
13 減速機
15 回路基板
18 固定子
19 回転子
25 モータ側コネクタ片(入出力部)
43 駆動回路
50 モータ内蔵ローラ用コントローラ
56 電圧信号形成回路
57 異常温度検知手段
60 電圧信号解析手段
70 電圧信号形成回路
71 ギャードモータ
72 筐体
100 モータ内蔵ローラシステム
Q1,Q2,Q3 磁極対応スイッチング素子
Q1’,Q2’,Q3’ 磁極対応スイッチング素子
Q4,Q4’ 温度対応スイッチング素子
H1,H2,H3 磁極検出手段(ホールIC)
R1 抵抗、第1抵抗
R2 抵抗、第1抵抗
R3 抵抗、第1抵抗
R4 抵抗、第2抵抗
R5 抵抗、第2抵抗
R6 抵抗、第3抵抗
SW1,SW2,SW3 磁極対応スイッチング部
SW4 温度対応スイッチング部
h1,h2,h3 磁極検出手段
1 Motor unit (Gard motor)
3 Motor built-in roller 11 Roller body 12 Motor 13 Reducer 15 Circuit board 18 Stator 19 Rotor 25 Motor side connector piece (input / output unit)
43 drive circuit 50 controller for motor built-in roller 56 voltage signal forming circuit 57 abnormal temperature detecting means 60 voltage signal analyzing means 70 voltage signal forming circuit 71 geared motor 72 housing 100 motor built-in roller system Q1, Q2, Q3 magnetic pole corresponding switching element Q1 ′ , Q2 ', Q3' Magnetic pole corresponding switching element Q4, Q4 'Temperature corresponding switching element H1, H2, H3 Magnetic pole detection means (Hall IC)
R1 resistor, first resistor R2 resistor, first resistor R3 resistor, first resistor R4 resistor, second resistor R5 resistor, second resistor R6 resistor, third resistor SW1, SW2, SW3 magnetic pole corresponding switching unit SW4 temperature corresponding switching unit h1, h2, h3 magnetic pole detection means

Claims (12)

  1.  ローラ本体内に少なくともモータが内蔵され、モータの回転力がローラ本体に伝動されてローラ本体を回転させるモータ内蔵ローラにおいて、
     ローラ本体の内外に電力及び信号を入出力する入出力部を有し、
     前記モータは、複数の巻線によって構成される固定子と、回転子と、複数の磁極検出手段とを有し、回転子の回転位置に応じてローラ本体の外部で電力を供給する対象となる巻線を切り替えるブラシレスモータであり、
     ローラ本体内に少なくとも磁極検出手段からの出力に応じてオンオフする磁極対応スイッチング素子と、複数の抵抗によって構成された電圧信号形成回路が内蔵され、前記電圧信号形成回路の合成抵抗は、磁極を検知した磁極検出手段の組み合わせによって異なる抵抗値となり、
     電圧信号形成回路が、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を前記入出力部に出力することを特徴とするモータ内蔵ローラ。
    At least a motor is built in the roller body, and the motor built-in roller that rotates the roller body by transmitting the rotational force of the motor to the roller body.
    It has an input / output unit that inputs and outputs power and signals inside and outside the roller body,
    The motor has a stator constituted by a plurality of windings, a rotor, and a plurality of magnetic pole detection means, and is an object to supply electric power outside the roller body in accordance with the rotational position of the rotor. A brushless motor that switches windings,
    The roller body incorporates a magnetic pole corresponding switching element that turns on and off at least according to the output from the magnetic pole detection means, and a voltage signal forming circuit constituted by a plurality of resistors. The combined resistance of the voltage signal forming circuit detects the magnetic pole. Depending on the combination of magnetic pole detection means
    The motor built-in roller, wherein the voltage signal forming circuit outputs a different voltage to the input / output unit depending on the combination of the magnetic pole detection means that detects the magnetic pole.
  2.  異常高温を検知する異常温度検知手段と、異常温度検知手段からの出力に応じてオンオフする温度対応スイッチング素子が電圧信号形成回路に組み込まれており、異常温度検知手段が異常高温を検知すると電圧信号形成回路の合成抵抗が通常とは異なる抵抗値領域となることを特徴とする請求項1に記載のモータ内蔵ローラ。 An abnormal temperature detecting means for detecting an abnormally high temperature and a temperature-compatible switching element that is turned on / off in response to an output from the abnormal temperature detecting means are incorporated in the voltage signal forming circuit. The motor built-in roller according to claim 1, wherein the combined resistance of the forming circuit is a resistance value region different from a normal value.
  3.  入出力部は、各巻線に電力を供給する複数の電力供給ラインを有し、磁極検出手段は、ホールICであって電源電圧入力部と信号電圧出力部とグランド部を有し、
     各磁極検出手段のグランド部は、互いに接続されており、かつそれぞれ整流器を介して複数の電力供給ラインに接続されていることを特徴とする請求項1又は2に記載のモータ内蔵ローラ。
    The input / output unit has a plurality of power supply lines for supplying power to each winding, and the magnetic pole detection means is a Hall IC having a power supply voltage input unit, a signal voltage output unit, and a ground unit,
    The roller with a built-in motor according to claim 1 or 2, wherein the ground portions of the magnetic pole detecting means are connected to each other and are connected to a plurality of power supply lines via rectifiers.
  4.  電圧信号形成回路はラダー形抵抗回路またはラダー形抵抗回路の一部であることを特徴とする請求項1乃至3のいずれかに記載のモータ内蔵ローラ。 The roller with built-in motor according to any one of claims 1 to 3, wherein the voltage signal forming circuit is a ladder-type resistor circuit or a part of a ladder-type resistor circuit.
  5.  前記磁極対応スイッチング素子が複数あり、
     前記複数の抵抗は、第1抵抗と第2抵抗を含み、
     前記各磁極対応スイッチング素子には、各々抵抗値が同一又は異なる第1抵抗が直列に接続されており、
     各磁極対応スイッチング素子と、当該磁極対応スイッチング素子に対応する第1抵抗とで磁極対応スイッチング部が構成されており、
     前記磁極対応スイッチング部同士が並列に接続されており、
     磁極対応スイッチング部同士の間の少なくともいずれかに、少なくとも一つの第2抵抗が設けられていることを特徴とする請求項1乃至4のいずれかに記載のモータ内蔵ローラ用コントローラ。
    There are a plurality of the magnetic pole corresponding switching elements,
    The plurality of resistors includes a first resistor and a second resistor,
    A first resistor having the same or different resistance value is connected in series to each magnetic pole corresponding switching element,
    A magnetic pole corresponding switching unit is configured by each magnetic pole corresponding switching element and the first resistor corresponding to the magnetic pole corresponding switching element,
    The magnetic pole corresponding switching parts are connected in parallel,
    The controller for a roller with a built-in motor according to any one of claims 1 to 4, wherein at least one second resistor is provided at least between the magnetic pole corresponding switching units.
  6.  前記第2抵抗の抵抗値は、前記各第1抵抗の抵抗値よりも小さいことを特徴とする請求項5に記載のモータ内蔵ローラ用コントローラ。 The motor-integrated roller controller according to claim 5, wherein a resistance value of the second resistor is smaller than a resistance value of each of the first resistors.
  7.  前記各第1抵抗の抵抗値が異なることを特徴とする請求項5又は6に記載のモータ内蔵ローラ用コントローラ。 The motor built-in roller controller according to claim 5 or 6, wherein each of the first resistors has a different resistance value.
  8.  異常高温を検知する異常温度検知手段と、異常温度検知手段からの出力に応じてオンオフする温度対応スイッチング素子が電圧信号形成回路に組み込まれており、異常温度検知手段が異常高温を検知すると電圧信号形成回路の合成抵抗が通常とは異なる抵抗値領域となり、
     前記複数の抵抗は、さらに第3抵抗を含み、
     前記温度対応スイッチング素子には前記第3抵抗が直列に接続されており、
     前記温度対応スイッチング素子と第3抵抗とで温度対応スイッチング部が構成されており、
     前記温度対応スイッチング部が、前記各磁極対応スイッチング部と並列に接続されており、
     前記第3抵抗の抵抗値が、前記第1抵抗の抵抗値並びに第2抵抗の抵抗値よりも小さいことを特徴とする請求項5乃至7のいずれかに記載のモータ内蔵ローラ用コントローラ。
    An abnormal temperature detecting means for detecting an abnormally high temperature and a temperature-compatible switching element that is turned on / off in response to an output from the abnormal temperature detecting means are incorporated in the voltage signal forming circuit. The combined resistance of the forming circuit becomes a different resistance value region,
    The plurality of resistors further includes a third resistor,
    The third resistor is connected in series to the temperature-compatible switching element,
    A temperature-compatible switching unit is configured by the temperature-compatible switching element and the third resistor,
    The temperature-compatible switching unit is connected in parallel with the magnetic pole-compatible switching unit,
    The controller for a roller with a built-in motor according to any one of claims 5 to 7, wherein a resistance value of the third resistor is smaller than a resistance value of the first resistor and a resistance value of the second resistor.
  9.  ローラ本体の外部にあってローラ本体内のモータに電力を供給するモータ内蔵ローラ用コントローラにおいて、電力を供給する対象となる巻線を切り替えつつ巻線に電力を供給する駆動回路と、電圧信号解析手段を有し、電圧信号解析手段は、入力された電圧信号に応じて駆動回路を制御し、電力を供給する巻線を選択することを特徴とするモータ内蔵ローラ用コントローラ。 In a controller for a motor built-in roller that supplies power to the motor in the roller body outside the roller body, a drive circuit that supplies power to the winding while switching the winding to be supplied with power, and voltage signal analysis And a voltage signal analyzing means for controlling the drive circuit in accordance with the input voltage signal and selecting a winding for supplying electric power.
  10.  モータ内蔵ローラと、コントローラによって構成されるモータ内蔵ローラシステムにおいて、
     前記モータ内蔵ローラは、ローラ本体内に少なくともモータが内蔵され、モータの回転力がローラ本体に伝動されてローラ本体を回転させるものであり、
     前記モータ内蔵ローラは、ローラ本体の内外に電力及び信号を入出力する入出力部を有し、
     前記モータは、複数の巻線によって構成される固定子と、回転子と、複数の磁極検出手段とを有し、回転子の回転位置に応じてローラ本体の外部で電力を供給する巻線を切り替えるブラシレスモータであり、
     前記モータ内蔵ローラは、ローラ本体内に少なくとも磁極検出手段からの出力に応じてオンオフする磁極対応スイッチング素子と、複数の抵抗によって構成された電圧信号形成回路が内蔵され、前記電圧信号形成回路の合成抵抗は、磁極を検知した磁極検出手段の組み合わせによって異なる抵抗値となり、
     電圧信号形成回路が、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を前記入出力部に出力し、
     前記コントローラは、ローラ本体の外部にあってローラ本体内のモータに電力を供給するものであり、電力を供給する対象となる巻線を切り替える切り替え回路と、電圧信号解析手段を有し、電圧信号解析手段は、入力された電圧信号に応じて切り替え回路を制御し、電力を供給する巻線を選択することを特徴とするモータ内蔵ローラシステム。
    In the motor built-in roller system composed of the motor built-in roller and the controller,
    The roller with a built-in motor has at least a motor built in the roller body, and the rotational force of the motor is transmitted to the roller body to rotate the roller body.
    The motor built-in roller has an input / output unit for inputting and outputting power and signals inside and outside the roller body,
    The motor has a stator constituted by a plurality of windings, a rotor, and a plurality of magnetic pole detection means, and has a winding for supplying electric power outside the roller body according to the rotational position of the rotor. A brushless motor to switch,
    The roller with a built-in motor includes a magnetic pole corresponding switching element that is turned on and off at least according to an output from the magnetic pole detection means in the roller body, and a voltage signal forming circuit configured by a plurality of resistors. The resistance varies depending on the combination of magnetic pole detection means that detected the magnetic pole,
    The voltage signal forming circuit outputs a different voltage to the input / output unit depending on the combination of the magnetic pole detection means that has detected the magnetic pole,
    The controller supplies power to a motor in the roller body outside the roller body, and includes a switching circuit that switches a winding to be supplied with power and voltage signal analysis means, and a voltage signal The analyzing means controls the switching circuit according to the input voltage signal, and selects a winding for supplying electric power.
  11.  電圧信号解析手段に前記電圧信号形成回路から磁極を検知した磁極検出手段の組み合わせによって異なる電圧が入力され、電力を供給する巻線を選択することを特徴とする請求項10に記載のモータ内蔵ローラシステム。 11. The motor built-in roller according to claim 10, wherein different voltages are input to the voltage signal analyzing means depending on the combination of the magnetic pole detecting means that has detected the magnetic pole from the voltage signal forming circuit, and a winding for supplying electric power is selected. system.
  12.  筐体内にモータと減速機とが内蔵され、モータの回転力が減速機で減速されて出力されるギャードモータにおいて、
     筐体の内外に電力及び信号を入出力する入出力部を有し、
     前記モータは、複数の巻線によって構成される固定子と、回転子と、複数の磁極検出手段とを有し、回転子の回転位置に応じて筐体の外部で電力を供給する対象となる巻線を切り替えるギャードモータであり、
     筐体内に少なくとも磁極検出手段からの出力に応じてオンオフする磁極対応スイッチング素子と、複数の抵抗によって構成された電圧信号形成回路が内蔵され、前記電圧信号形成回路の合成抵抗は、磁極を検知した磁極検出手段の組み合わせによって異なる抵抗値となり、
     電圧信号形成回路が、磁極を検知した磁極検出手段の組み合わせによって異なる電圧を前記入出力部に出力することを特徴とするギャードモータ。
    In a geared motor in which a motor and a speed reducer are built in the housing, and the rotational force of the motor is reduced by the speed reducer and output,
    Has an input / output unit to input and output power and signals inside and outside the housing,
    The motor has a stator composed of a plurality of windings, a rotor, and a plurality of magnetic pole detection means, and is an object to supply power outside the housing in accordance with the rotational position of the rotor. A geared motor that switches windings,
    A magnetic pole corresponding switching element that is turned on and off at least according to the output from the magnetic pole detection means and a voltage signal forming circuit composed of a plurality of resistors are built in the housing, and the combined resistance of the voltage signal forming circuit detects the magnetic pole The resistance value varies depending on the combination of magnetic pole detection means.
    The guard motor, wherein the voltage signal forming circuit outputs a different voltage to the input / output unit depending on the combination of the magnetic pole detecting means that detects the magnetic pole.
PCT/JP2016/053526 2015-02-06 2016-02-05 Motorized roller, controller for motorized roller, motorized roller system, and geared motor WO2016125898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573436A JP6746055B2 (en) 2015-02-06 2016-02-05 Roller with built-in motor, controller for roller with built-in motor, roller system with built-in motor, and geared motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-022704 2015-02-06
JP2015022704 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125898A1 true WO2016125898A1 (en) 2016-08-11

Family

ID=56564231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053526 WO2016125898A1 (en) 2015-02-06 2016-02-05 Motorized roller, controller for motorized roller, motorized roller system, and geared motor

Country Status (2)

Country Link
JP (2) JP6746055B2 (en)
WO (1) WO2016125898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106429298A (en) * 2016-08-26 2017-02-22 安徽理工大学 Tear detection device and method for belt conveyor
KR20210083645A (en) * 2019-12-27 2021-07-07 현대무벡스 주식회사 Electric Monorail System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4175129A1 (en) 2021-10-29 2023-05-03 Itoh Denki Co., Ltd. Motor unit for motor incorporating roller, geared motor, and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49131767A (en) * 1973-04-23 1974-12-17
JPH0549289A (en) * 1991-08-09 1993-02-26 Toshiba Corp Brushless motor
JP2011055635A (en) * 2009-09-01 2011-03-17 Ito Denki Kk Motor controller and roller with built-in motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49131767A (en) * 1973-04-23 1974-12-17
JPH0549289A (en) * 1991-08-09 1993-02-26 Toshiba Corp Brushless motor
JP2011055635A (en) * 2009-09-01 2011-03-17 Ito Denki Kk Motor controller and roller with built-in motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106429298A (en) * 2016-08-26 2017-02-22 安徽理工大学 Tear detection device and method for belt conveyor
KR20210083645A (en) * 2019-12-27 2021-07-07 현대무벡스 주식회사 Electric Monorail System
KR102322328B1 (en) 2019-12-27 2021-11-09 현대무벡스 주식회사 Electric Monorail System

Also Published As

Publication number Publication date
JP6746055B2 (en) 2020-08-26
JPWO2016125898A1 (en) 2017-11-16
JP2020103036A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US10906577B2 (en) Electric power steering apparatus
JP5853820B2 (en) Drive device
JP6179476B2 (en) DRIVE DEVICE AND ELECTRIC POWER STEERING DEVICE USING THE SAME
US6069428A (en) Brushless DC motor assembly
JP2020103036A (en) Motor built-in roller
JP6582568B2 (en) DRIVE DEVICE AND ELECTRIC POWER STEERING DEVICE USING THE SAME
US7663277B2 (en) Inner-rotor-type brushless motor having built-in bus bar
US10523091B2 (en) Control unit and electric power steering device employing control unit
US11046356B2 (en) Electric power steering device
JP6673615B2 (en) Electric power steering device
US20160190898A1 (en) Motor Unit
ES2245742T3 (en) DRIVE UNIT WITH AN ELECTRIC MOTOR FOR GRADUATION DEVICES IN MOTOR VEHICLES.
JP5125434B2 (en) Motor and electric power steering device
JP6503895B2 (en) Bus bar connection structure and motor unit
JP6870711B2 (en) Drive device and electric power steering device using this
JP2002101683A (en) Phase angle control method of brushless dc motor
JP6818903B2 (en) Electric power steering device
JP4878971B2 (en) Open collector type input / output interface circuit and motor drive device
JPS6271458A (en) Motor
JP2001275328A (en) Brushless motor
US9344017B2 (en) Driving circuit and driving method thereof
JP5263524B2 (en) DC motor with brush, motor circuit, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746729

Country of ref document: EP

Kind code of ref document: A1