WO2016125848A1 - Imaging lens and imaging device - Google Patents

Imaging lens and imaging device Download PDF

Info

Publication number
WO2016125848A1
WO2016125848A1 PCT/JP2016/053330 JP2016053330W WO2016125848A1 WO 2016125848 A1 WO2016125848 A1 WO 2016125848A1 JP 2016053330 W JP2016053330 W JP 2016053330W WO 2016125848 A1 WO2016125848 A1 WO 2016125848A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
imaging
imaging lens
optical
Prior art date
Application number
PCT/JP2016/053330
Other languages
French (fr)
Japanese (ja)
Inventor
佐野永悟
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016125848A1 publication Critical patent/WO2016125848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems

Definitions

  • the present invention relates to an imaging lens that can be incorporated into a projection apparatus that performs projection from a position close to a projection surface, and an imaging apparatus incorporating the imaging lens.
  • a projection apparatus for enlarging and projecting an image displayed on an image display element on a screen by a projection optical system is desired to have a wide-angle projection optical system that can be projected on a large screen even at a short projection distance while being small and light. ing. Under such circumstances, short-focus projectors that can be arranged at positions close to the screen, such as directly below or directly above the screen, have appeared.
  • the projection device projects the PC screen onto a whiteboard or the like, writes handwritten characters on the screen, records the information as an image
  • Something with interactive functions such as detecting the movement of the screen and advancing the page of the projection screen, has come out.
  • a projection apparatus that realizes this requires various correction processes according to usage conditions such as trapezoidal distortion correction of a projected image and brightness correction according to the surrounding environment.
  • trapezoidal distortion correction or brightness correction is performed, or if simple movements of a person are detected, the number of pixels in the imaging device is about VGA (Video Graphics Graphics Array).
  • VGA Video Graphics Graphics Array
  • the imaging lens When an imaging apparatus such as that described above is incorporated into a short-focus projection apparatus that is disposed close to the screen as described above, the imaging lens needs to have a very wide angle. For this reason, it may be difficult to ensure a sufficient resolving power at the periphery of the projection surface. In addition, distortion at the periphery increases, and distortion correction is performed on the captured image, which may result in a decrease in resolution at the periphery. Therefore, there is a need for an optical system that suppresses as much as possible the barrel-shaped distortion that tends to occur in a wide-angle lens while having an ultra-wide angle.
  • Patent Document 1 proposes an optical system that uses a rotationally asymmetric anamorphic aspherical surface and suppresses barrel-shaped distortion as much as possible while having a wide angle. Further, Patent Document 2 proposes a low distortion optical system suitable for imaging from an oblique position by having a reflecting surface with power as well as a refractive optical system.
  • the optical system of Patent Document 1 since the optical system of Patent Document 1 is supposed to be used in a vehicle, the horizontal angle of view is sufficiently wide, but the vertical angle of view is around 130 °, and a wide range is imaged from a very close range. Insufficient use.
  • the optical system of Patent Document 2 uses a lens having a rotationally asymmetric free-form surface as a refractive lens, and there is a problem that the difficulty of processing and assembly becomes high.
  • the image capturing range is only an image capturing range of about 14 inches with a shooting distance of about 20 cm, and it cannot be said that the angle of view is sufficiently wide.
  • the present invention has been made in view of the above-described background art, and an object of the present invention is to provide an ultra-wide-angle imaging lens that has a sufficiently high resolving power to the peripheral portion and is low in distortion.
  • an imaging lens is an imaging lens for an imaging apparatus that images an object from an oblique direction using an imaging element, and is a reflective optical device having positive power in order from the object side.
  • a first optical system including only one element, and a second optical system including only a refractive lens having a rotationally symmetric shape, and all the lenses have a common optical axis.
  • An intermediate image of the object is formed between the two optical systems, and the lens closest to the object side of the second optical system has a negative power with the concave surface facing the object side, and satisfies the following conditional expression.
  • the value FLd is the focal length of the second optical system
  • the value FLob is the focal length of the lens closest to the object of the second optical system
  • the value YDobj is the length in the diagonal direction of the imaging range of the imaging lens.
  • the value DM is the distance from the point on the optical axis of the reflective optical element to the object.
  • the optical axis means an axis that passes through the center of the aperture stop and is perpendicular to the cross section of the aperture stop.
  • having a common optical axis means a state in which all the lenses are not decentered (a state in which neither a shift nor a tilt is performed).
  • the reflective optical element has positive power means that the light beam incident on the reflecting surface from the object converges after reflecting off the reflecting surface and forms an intermediate image of the object. Means. That is, it is not determined by the definition formula of the reflecting surface shape.
  • a reflective optical element having a positive power is disposed on the object side of the refractive optical system, and an intermediate image of the object is formed on the object side of the refractive optical system, so that a very large object image is captured at once.
  • the reduction magnification can be shared between the first optical system and the second optical system without reducing the image on the surface (imaging surface). Thereby, in the imaging lens, an optical system having a wide angle and little aberration deterioration can be obtained. In addition, distortion occurring in the first optical system can be corrected by the second optical system, and a low distortion image can be obtained.
  • a wide-angle optical system is configured only by a refractive optical system, chromatic aberration of magnification is greatly generated by a strong negative power lens disposed on the object side, but chromatic aberration does not occur in the reflective optical element.
  • the chromatic aberration of magnification that occurs in can be reduced.
  • the reflective optical system by configuring the reflective optical system with a single reflective optical element having power, the optical system can be simplified and the assemblability can be improved. As a result, a high-performance optical system can be obtained. it can. Also, by making the object side surface of the most object side lens of the refractive optical system concave, the angle of view of the entire system can be widened.
  • Conditional expression (1) is a conditional expression for achieving both widening of the angle of view and downsizing of the imaging lens. By falling below the upper limit value of conditional expression (1), the negative power of the most object-side lens of the second optical system can be appropriately maintained, and a wide angle of the optical system can be achieved.
  • Conditional expression (2) is a conditional expression for achieving both a short imaging distance and a wide angle of view.
  • An imaging apparatus includes the imaging lens described above and an imaging element.
  • the above-described imaging device can capture an image of a wide range from a close distance by incorporating an imaging lens as described above, and can obtain an image in which aberrations are corrected well to the peripheral portion.
  • FIG. 2 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 1.
  • 4A and 4B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the first embodiment. It is a figure explaining the MTF evaluation position on an object surface.
  • FIG. 6 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 2.
  • 7A and 7B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the second embodiment.
  • FIG. 7 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 3.
  • FIG. 9A and 9B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the third embodiment.
  • FIG. 6 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 4.
  • 11A and 11B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 5.
  • 13A and 13B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the fifth embodiment.
  • the imaging lens 10 illustrated in FIG. 1 has the same configuration as an imaging lens 10A of Example 1 described later.
  • the imaging device 100 includes an imaging lens 10 that forms an object image (subject image), an imaging element 51 that detects an object image formed by the imaging lens 10, and the imaging element 51 from behind.
  • a wiring board 52 that holds wiring and the like, and a lens barrel portion 54 that holds the imaging lens 10 and the like and has an opening OP that allows a light beam from the object side to enter.
  • the imaging apparatus 100 can be mounted on a projection apparatus such as a projector, and in this case, the imaging apparatus 100 is integrally provided inside or outside the projection apparatus. Further, the imaging device 100 may be provided as a separate body from the projection device.
  • the imaging device 100 is provided below the object BS corresponding to the screen and captures an object image from an obliquely downward direction. For example, an image from a projection device (not shown) is projected onto the object BS.
  • the imaging lens 10 forms an object image on the imaging surface (imaging plane) I of the imaging element 51, and in order from the object side, the first optical system 11, the optical path bending mirror 13, and the second optical.
  • a system 12
  • the image sensor 51 is a sensor chip made of a solid-state image sensor.
  • the photoelectric conversion unit of the image sensor 51 is composed of a CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
  • the wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54).
  • the wiring board 52 is supplied with a voltage and a signal for driving the image sensor 51 and a driving circuit (not shown) associated therewith from an external circuit, and outputs a detection signal to the external circuit. Is possible.
  • the wiring board 52 can have various image processing functions such as gradation correction and distortion correction, and has an interface function that enables information to be exchanged with an external circuit (for example, a control unit of the projection apparatus). Can be made.
  • the infrared cut filter F or the like is disposed and fixed on the imaging lens 10 side of the imaging element 51 by a holder member (not shown) so as to cover the imaging element 51 and the like.
  • the lens barrel portion 54 houses and holds the imaging lens 10.
  • the focusing operation of the imaging lens 10 is possible by moving any one or more of the lenses constituting the second optical system 11 of the imaging lens 10 along the optical axis AX. Therefore, for example, a drive mechanism can be provided.
  • the imaging lens 10 illustrated in FIG. 1 includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12 in order from the object side.
  • the first optical system 11 of the imaging lens 10 includes only one reflective optical element 11a having a positive power.
  • the reflective optical element 11a has a reflective surface AR that reflects the light beam IR from the object surface (subject surface) PS and guides it to the second optical system 12 side.
  • the reflective surface AR of the reflective optical element 11a has a free-form surface shape or an aspheric shape. Thereby, the aberration which generate
  • the second optical system 12 is composed only of a refractive lens IL having a rotationally symmetric shape. All the lenses constituting the second optical system 12 have a common optical axis AX.
  • the reflective optical element 11a having a positive power is arranged on the object side of the second optical system 12 that is a refractive optical system, so that the first optical system 11 and the second optical system 12 are interposed. Forms an intermediate image of the object that is the subject.
  • the optical axis AX does not directly mean the optical axis (center axis) of each lens constituting the imaging lens 10, but passes through the center of the aperture stop S described later, and the cross section of the aperture stop S. It means the axis perpendicular to.
  • having a common optical axis AX means a state in which all the lenses are not decentered (a state in which no shift or tilt is performed).
  • the second optical system 12 includes, in order from the object side, a first lens group Gr1, an aperture stop S, and a second lens group Gr2.
  • the first lens group Gr1 is disposed at a position relatively farther from the aperture stop S than the most image-side lens (the sixth lens L6 in FIG. 1) of the second optical system 11. ing.
  • the first lens group Gr1 is composed of only two lenses, a first lens L1 having a negative power and a second lens L2 having a positive power in order from the object side.
  • the second optical system 12 is composed of the first lens group Gr1 and the second lens group Gr2 with the aperture stop S interposed therebetween, the light flux at each image height that is relatively far from the aperture stop S is on the lens surface.
  • the first lens group Gr1 passing through relatively different positions includes a negative lens and a positive lens.
  • the first lens group Gr1 since the first lens group Gr1 has a minimum two-lens configuration, the number of lenses having a large effective diameter can be minimized, which is advantageous in reducing the size and weight of the apparatus.
  • the first lens group Gr1 may have three or more lenses.
  • the second lens group Gr2 is composed of third to sixth lenses L3 to L6.
  • the second lens group Gr2 includes one cemented lens CS in which a negative lens (fourth lens L4 in FIG. 1) and a positive lens (fifth lens L5 in FIG. 1) are bonded together.
  • a negative lens fourth lens L4 in FIG. 1
  • a positive lens fifth lens L5 in FIG. 1
  • the cemented lens CS is disposed in the second lens group Gr2 having a relatively small effective diameter.
  • the cemented lens CS can be reduced, the size of the entire imaging lens 10 system can be reduced.
  • the lens closest to the object side of the second optical system 12 (the first lens L1 in FIG. 1) has a negative power with the concave surface facing the object side, and satisfies the following conditional expression. -0.25 ⁇ FLd / FLob ⁇ -0.05 (1) 3.5 ⁇ YDobj / DM ⁇ 14.0 (2)
  • the value FLd is the focal length of the second optical system 12
  • the value FLob is the focal length of the lens (first lens L1) closest to the object side of the second optical system 12
  • the value YDobj is taken by the imaging lens 10.
  • the length of the range IA in the diagonal direction, and the value DM is the distance from the point on the optical axis AX of the reflective optical element 11a to the object (subject) BS.
  • the shooting range IA of the imaging lens 10 is a range shot on the object plane (subject plane) PS and is determined by the size of the imaging element 51.
  • Conditional expression (1) is a conditional expression for achieving both widening of the angle of view and downsizing of the imaging lens 10.
  • the negative power of the most object side lens (first lens L1) of the second optical system 12 can be appropriately maintained, and the wide angle of the optical system is achieved. can do.
  • the negative power of the most object-side lens (first lens L1) of the second optical system 12 does not become too strong, and the effective diameter of the first optical system 11 is increased.
  • the imaging lens 10 can be reduced in the radial direction.
  • Conditional expression (2) is a conditional expression for achieving both a short imaging distance and a wide angle of view.
  • a large screen can be imaged from a short distance, and the imaging lens 10 system can be arranged closer to the object BS.
  • the imaging device 100 incorporating the imaging lens 10 obstructs a projection device or a presenter.
  • the angle at which the light beam at the end of the object BS enters the imaging lens 10 system becomes very large by falling below the upper limit value of conditional expression (2). It is possible to suppress resolution degradation and distortion fluctuation when the object BS is defocused by a small amount due to the above. Note that even if the imaging lens 10 is tilted with respect to the object plane PS, the tilt of the imaging lens 10 is allowed if the range of the conditional expression (2) is satisfied.
  • the imaging lens 10 satisfies the following conditional expression. 2.0 ⁇ MRED / FLd ⁇ 4.0 (3)
  • MRED is the maximum height from the optical axis AX of the use area of the reflective optical element 11a
  • FLd is the focal length of the second optical system 12.
  • Conditional expression (3) is a conditional expression for achieving both size reduction in the radial direction and aberration correction of the entire imaging lens 10 system. Since the size of the entire imaging lens 10 in the radial direction is determined by the size of the reflective optical element 11a arranged closest to the object side, it is desirable to keep the size of the reflective optical element 11a as small as possible. However, if the size of the reflecting optical element 11a is kept too small, the power of the negative lens (first lens L1) closest to the object side of the second optical system 12 cannot be increased, which is disadvantageous in terms of aberration correction. It becomes.
  • conditional expression (3) the size of the reflective optical element 11a does not become too large, and the size in the radial direction of the entire imaging lens 10 system can be reduced.
  • exceeding the lower limit value of the conditional expression (3) makes it possible to appropriately apply negative power to the most object side lens (first lens L1) of the second optical system 12, and the imaging lens 10 This is advantageous for aberration correction of the entire system.
  • the imaging lens 10 satisfies the following conditional expression. 0.35 ⁇ BF / FLd ⁇ 1.3 (4)
  • the value BF is the distance on the optical axis AX between the image side surface S62 of the most image side lens (sixth lens L6) of the second optical system 12 and the imaging surface I
  • the value FLd is the value of the second optical system 12.
  • Conditional expression (4) is a conditional expression for appropriately setting the back focus of the imaging lens 10. By exceeding the lower limit value of the conditional expression (4), the back focus does not become too short, and a space for inserting a member such as the infrared cut filter F can be secured. On the other hand, by falling below the upper limit value of conditional expression (4), the back focus is not excessively lengthened, and the optical total length of the imaging lens 10 can be shortened.
  • the optical path bending mirror 13 is provided between the first optical system 11 and the second optical system 12.
  • the optical path bending mirror 13 is an optical element having no power.
  • the imaging lens 10 may be arranged in the same housing as the projection optical system. In such a case, it is necessary to arrange the imaging lens 10 so as not to disturb the layout of the projection optical system. Therefore, by providing the optical path bending mirror 13 having no power between the first optical system 11 and the second optical system 12, the optical path can be bent, for example, by 90 °, and the layout of the imaging lens 10 is arranged. The degree of freedom increases.
  • the infrared cut filter F is provided between the most image-side lens (the sixth lens L6 in FIG. 1) of the second optical system 12 and the imaging surface I of the imaging element 51. Since the image pickup device 51 used for the image pickup lens 10 generally has light receiving sensitivity also in the infrared wavelength region, the infrared cut filter F is provided for the purpose of projecting colors closer to human eyes.
  • the infrared cut filter F has an oblique incidence characteristic of the light beam.
  • the incident angle of the light beam Is inserted in as small a position as possible, and the characteristic change or characteristic deterioration of the infrared cut filter F can be minimized.
  • the imaging lens 10 is arranged on the lower end side of the object BS that is a subject.
  • the imaging lens 10 is not limited to the lower end side, and may be arranged on the upper end side and the left and right end sides. Good.
  • the light ray IR corresponding to the image from the object plane PS enters the imaging apparatus 100.
  • the light ray IR incident on the imaging device 100 is reflected by the reflective optical element 11a of the first optical system 11, is bent downward by the optical path bending mirror 13, and is reflected by the lenses L1 to L2 of the second optical system 12. Pass through L6 sequentially.
  • an intermediate image of the object is formed between the first optical system 11 and the second optical system 12.
  • the light beam IR that has passed through the second optical system 12 finally forms a reduced image on the imaging surface (imaging surface) I of the imaging device 51.
  • the reflection optical element 11a having positive power is disposed on the object side of the refractive optical system, and an intermediate image of the object is formed on the object side of the refractive optical system.
  • the first optical system 11 and the second optical system 12 can share the reduction magnification without forming a large object image on the imaging surface (imaging surface) I at once. Thereby, in the imaging lens 10, an optical system with a wide angle and little aberration deterioration can be obtained. Further, the distortion generated in the first optical system 11 can be corrected by the second optical system 12, and a low distortion image can be obtained.
  • a chromatic aberration of magnification is greatly generated by a strong negative power lens (in FIG. 1, the first lens L1) disposed on the object side. Since no chromatic aberration occurs in the element 11a, lateral chromatic aberration that occurs in the entire system can be kept small. At that time, the optical system can be simplified and the assemblability can be improved by configuring the reflective optical system with a single reflective optical element 11a having power. As a result, a high-performance optical system is obtained. Can do. Further, by making the object side surface (the object side surface S11 of the first lens L1 in FIG.
  • the refraction optical system is composed of only the refraction lens IL having a rotationally symmetric shape, and all the lenses have a common optical axis AX without being decentered, thereby improving the assemblability. As a result, a high-performance optical system can be obtained.
  • the angle of view required for the imaging lens 10 is approximately 25 cm from the object BS to the imaging lens 10 (imaging distance) and the diagonal length of the imaging range IA is approximately 80 inches.
  • the angle of view required for the imaging lens 10 is approximately 25 cm from the object BS to the imaging lens 10 (imaging distance) and the diagonal length of the imaging range IA is approximately 80 inches.
  • the diagonal length of the imaging range IA is assumed as a sufficient imaging range IA as described above. Under this condition, a super wide-angle lens with an angle of view of about 160 ° is required for the imaging lens.
  • the surface described with “*” after each surface number is a surface having an aspherical shape.
  • the aspherical shape is expressed by the following “Equation 1” where the vertex of the surface is the origin, the Z axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
  • Ai i-order aspherical coefficient
  • R radius of curvature
  • K conic constant
  • a surface described with “**” after the surface number is a surface having a free-form surface shape.
  • the free-form surface shape is the same as the aspherical shape described above, with the vertex of the surface as the origin, the Z axis in the optical axis direction, the X and Y axes in the direction perpendicular to the optical axis, and the height in the direction perpendicular to the optical axis.
  • Equation 2 where h is h.
  • Cj coefficient of X m Y n R: radius of curvature
  • K conic constant
  • Example 1 The optical specification values of the imaging lens of Example 1 are shown below. Fno: 2.80 Image size: 4.88mm x 2.75mm
  • the aspheric coefficients of the imaging lens of Example 1 are shown in Table 2 below.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • Table 3 shows the free-form surface coefficients of the reflective optical elements of the imaging lens of Example 1.
  • “*” represents a product
  • “**” represents a power (the same applies to the following examples).
  • FIG. 3 is a cross-sectional view of the imaging lens 10A and the like of the first embodiment.
  • the imaging lens 10 ⁇ / b> A includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12.
  • the first optical system 11 includes a reflective optical element 11a having a positive power.
  • the reflective surface of the reflective optical element 11a has a free-form surface shape.
  • the second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2.
  • the first lens group Gr1 includes a first lens L1 and a second lens L2.
  • the second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51.
  • symbol I is an imaging surface of the imaging lens 10A and indicates an imaging surface of the imaging element 51 (the same applies to the following examples).
  • the imaging lens 10A reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 having no power provided between the first optical system 11 and the second optical system 12. 11a is bent 90 ° downward.
  • the second lens L2 and the sixth lens L6 are aspherical plastic lenses, and the other lenses are glass spherical lenses.
  • 4A and 4B are MTF (Modulation Transfer Function) characteristic diagrams on the object plane PS.
  • 4A is an MTF characteristic diagram of positions F1 to F3 in the imaging range IA of the object plane PS shown in FIG. 5, and
  • FIG. 4B is a diagram of positions F4 to F6 of the imaging range IA of the object plane PS shown in FIG. It is a MTF characteristic view (the following examples are also the same).
  • MTF is shown.
  • the wavelength weights for calculating the MTF are as follows (the same applies to the following embodiments).
  • Wavelength weight Wavelength weight 650nm 107 610nm 503 555nm 1000 510nm 503 470nm 91
  • the imaging apparatus 100 obtains sufficient resolving power up to the periphery.
  • Example 2 The optical specification values of the imaging lens of Example 2 are shown below. Fno: 2.80 Image size: 4.88mm x 2.75mm
  • Table 6 shows the free-form surface coefficients of the reflective optical elements of the imaging lens of Example 2. [Table 6]
  • FIG. 6 is a cross-sectional view of the imaging lens 10B and the like of the second embodiment.
  • the imaging lens 10 ⁇ / b> B includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12.
  • the first optical system 11 includes a reflective optical element 11a having a positive power.
  • the reflective surface of the reflective optical element 11a has a free-form surface shape.
  • the second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2.
  • the first lens group Gr1 includes a first lens L1 and a second lens L2.
  • the second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51.
  • the imaging lens 10B reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12 and having no power. 11a is bent 90 ° downward.
  • the second lens L2 and the sixth lens L6 are aspherical plastic lenses, and the other lenses are glass spherical lenses.
  • FIGS. 7A and 7B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 7A and 7B, the imaging apparatus 100 according to the second embodiment obtains sufficient resolving power up to the periphery.
  • Example 3 The optical specification values of the imaging lens of Example 3 are shown below. Fno: 2.80 Image size: 4.88mm x 2.75mm
  • Table 7 shows data such as the lens surface of the imaging lens of Example 3.
  • Table 9 shows the free-form surface coefficients of the reflective optical elements of the imaging lens of Example 3. [Table 9]
  • FIG. 8 is a cross-sectional view of the imaging lens 10C of the third embodiment.
  • the imaging lens 10 ⁇ / b> C includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12.
  • the first optical system 11 includes a reflective optical element 11a having a positive power.
  • the reflective surface of the reflective optical element 11a has a free-form surface shape.
  • the second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2.
  • the first lens group Gr1 includes a first lens L1, a second lens L2, and a third lens L3.
  • the second lens group Gr2 includes a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7.
  • An infrared cut filter F is provided between the seventh lens L7 and the image sensor 51.
  • the imaging lens 10 ⁇ / b> C reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12. 11a is bent 90 ° downward.
  • the first lens L1, the third lens L3, and the seventh lens L7 are aspherical plastic lenses, and the other lenses are glass spherical lenses.
  • FIGS. 9A and 9B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 9A and 9B, the imaging apparatus 100 according to the third embodiment obtains sufficient resolving power up to the periphery.
  • Example 4 The optical specification values of the imaging lens of Example 4 are shown below. Fno: 2.80 Imaging surface size: 3.672mm x 2.754mm
  • Table 11 below shows the aspheric coefficients of the imaging lens of Example 4.
  • FIG. 10 is a cross-sectional view of the imaging lens 10D and the like of the fourth embodiment.
  • the imaging lens 10 ⁇ / b> D includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12.
  • the first optical system 11 includes a reflective optical element 11a having a positive power.
  • the reflective surface of the reflective optical element 11a has an aspherical shape.
  • the second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2.
  • the first lens group Gr1 includes a first lens L1 and a second lens L2.
  • the second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51.
  • the imaging lens 10D reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12 and having no power. 11a is bent 90 ° downward.
  • the first lens L1 is an aspheric plastic lens, and the other lenses are glass spherical lenses.
  • FIGS. 11A and 11B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 11A and 11B, the imaging apparatus 100 according to the fourth embodiment obtains sufficient resolving power up to the periphery.
  • Example 5 The optical specification values of the imaging lens of Example 5 are shown below.
  • Fno F2.80 Imaging plane: 3.672mm ⁇ 2.754mm
  • Table 13 below shows the aspheric coefficients of the imaging lens of Example 5.
  • FIG. 12 is a cross-sectional view of the imaging lens 10E and the like of the fifth embodiment.
  • the imaging lens 10 ⁇ / b> E includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12.
  • the first optical system 11 includes a reflective optical element 11a having a positive power.
  • the reflective surface of the reflective optical element 11a has an aspherical shape.
  • the second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2.
  • the first lens group Gr1 includes a first lens L1 and a second lens L2.
  • the second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51.
  • the imaging lens 10E reflects the optical path from the first optical system 11 to the second optical system 12 by an optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12 and having no power. 11a is bent 90 ° downward.
  • the first lens L1 is an aspheric plastic lens, and the other lenses are glass spherical lenses.
  • FIGS. 13A and 13B are MTF characteristic diagrams on the object plane PS.
  • the imaging apparatus 100 according to the fifth embodiment obtains sufficient resolving power up to the periphery.
  • Table 14 summarizes the values of Examples 1 to 5 corresponding to the conditional expressions (1) to (4) for reference. [Table 14]
  • the imaging lens and the like according to the embodiments have been described above, the imaging lens and the like according to the present invention are not limited to the above.
  • the specific configuration of the imaging lens 10 and the like is not limited to the illustrated one, and can be changed as appropriate according to the application.
  • the infrared cut filter F is provided between the image-side lens of the second optical system 12 and the image sensor 51.
  • the optical low-pass filter and the image sensor 51 are formed as parallel plates. A seal glass or the like may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An imaging lens 10 is provided with, in order from an object side, a first optical system 11 including only one reflecting optical element 11a having a positive power, and a second optical system 12 configured solely from dioptric lenses IL having a rotationally symmetrical shape and all having a shared optical axis AX, an intermediate image of the object being formed between the first optical system 11 and the second optical system 12, the lens furthest toward the object in the second optical system 12 having a negative power and a concave surface thereof toward the object, and conditional expressions (1) and (2) being satisfied. (1): -0.25 < FLd/FLob < -0.05. (2): 3.5 < YDobj/DM < 14.0. (In the conditional expressions, FLd is the focal distance of the second optical system 12, FLob is the focal distance of the lens furthest toward the object in the second optical system 12, YDobj is the length of the imaging lens 10 in the diagonal direction of the imaging range IA, and DM is the distance from a point on the optical axis AX of the reflecting optical element 11a to the object BS.

Description

撮像レンズ及び撮像装置Imaging lens and imaging apparatus
 本発明は、被投影面の近接位置から投影を行う投影装置に組み込み可能な撮像レンズ、及び当該撮像レンズを組み込んだ撮像装置に関する。 The present invention relates to an imaging lens that can be incorporated into a projection apparatus that performs projection from a position close to a projection surface, and an imaging apparatus incorporating the imaging lens.
 近年、画像表示素子に表示された画像を、投影光学系によってスクリーン上に拡大投影する投影装置には、小型軽量でありながら、短い投影距離でも大画面に映し出せる広角な投影光学系が望まれている。そのような中で、スクリーンの真下や真上等、スクリーンに近接した位置に配置できる短焦点投影装置が登場してきた。 In recent years, a projection apparatus for enlarging and projecting an image displayed on an image display element on a screen by a projection optical system is desired to have a wide-angle projection optical system that can be projected on a large screen even at a short projection distance while being small and light. ing. Under such circumstances, short-focus projectors that can be arranged at positions close to the screen, such as directly below or directly above the screen, have appeared.
 また、投影装置には、単にPC画面をスクリーン等に投影するだけでなく、ホワイトボード等にPC画面を投影しながら、そこに手書きの文字を書き込み、その情報を画像として記録したり、発表者の動きを感知して投影画面のページを進ませたりする等の、インタラクティブな機能の付いたものが出てきている。また、これを実現する投影装置には投影画像の台形歪み補正や周辺環境に合わせた明るさ補正等の使用状況に応じた各種補正処理が必要となってくる。ここで、単純な台形歪み補正や明るさ補正を行う、または人物の単純な動きを検出するだけであれば、撮像装置はVGA(Video Graphics Array)程度の画素数で十分であるが、手書きの文字を投影画像に重畳させて画像データとして取り込むためには、メガクラスの解像度が必要となる。そのため、投影像の撮影に用いられる撮像レンズもさらに高性能であることが望まれる。 In addition to simply projecting a PC screen onto a screen or the like, the projection device projects the PC screen onto a whiteboard or the like, writes handwritten characters on the screen, records the information as an image, Something with interactive functions, such as detecting the movement of the screen and advancing the page of the projection screen, has come out. In addition, a projection apparatus that realizes this requires various correction processes according to usage conditions such as trapezoidal distortion correction of a projected image and brightness correction according to the surrounding environment. Here, if simple trapezoidal distortion correction or brightness correction is performed, or if simple movements of a person are detected, the number of pixels in the imaging device is about VGA (Video Graphics Graphics Array). In order to superimpose characters on a projected image and capture them as image data, mega-class resolution is required. For this reason, it is desired that the imaging lens used for photographing the projected image has higher performance.
 前述のようなスクリーンに近接した位置に配置する短焦点投影装置に、上記のような撮像装置を組み込もうとすると、撮像レンズが非常に広角である必要が出てくる。そのため、投影面の周辺部の解像力を十分に確保することが難しくなるおそれがある。また、周辺部での歪曲収差が大きくなり、取り込まれる画像に歪曲補正を行うことで、結果として周辺部の解像力低下を引き起こしてしまうおそれがある。したがって、超広角でありながら広角レンズに発生しがちな樽型の歪曲収差を極力抑えた光学系が必要となってくる。 When an imaging apparatus such as that described above is incorporated into a short-focus projection apparatus that is disposed close to the screen as described above, the imaging lens needs to have a very wide angle. For this reason, it may be difficult to ensure a sufficient resolving power at the periphery of the projection surface. In addition, distortion at the periphery increases, and distortion correction is performed on the captured image, which may result in a decrease in resolution at the periphery. Therefore, there is a need for an optical system that suppresses as much as possible the barrel-shaped distortion that tends to occur in a wide-angle lens while having an ultra-wide angle.
 特許文献1には、回転非対称なアナモルフィック非球面を使用することで、広角であるものの樽型の歪曲収差を極力抑えた光学系が提案されている。また、特許文献2には、屈折光学系だけでなく、パワーを持った反射面を有することで、斜め位置からの撮像に適した低歪曲の光学系が提案されている。 Patent Document 1 proposes an optical system that uses a rotationally asymmetric anamorphic aspherical surface and suppresses barrel-shaped distortion as much as possible while having a wide angle. Further, Patent Document 2 proposes a low distortion optical system suitable for imaging from an oblique position by having a reflecting surface with power as well as a refractive optical system.
 しかしながら、特許文献1の光学系は車載用途を想定しているため、水平方向の画角は十分広角であるが、垂直方向の画角が130°前後であり、超至近距離から広範囲を撮像する用途としては不十分である。また、特許文献2の光学系は屈折レンズにも回転非対称な自由曲面形状を有するレンズを使用しており、加工や組み立ての難易度が高くなってしまうという問題がある。また、撮影できる範囲も撮影距離が約20cmで14インチ(inch)程度の撮像範囲でしかなく、十分広角な画角であるとはいえない。 However, since the optical system of Patent Document 1 is supposed to be used in a vehicle, the horizontal angle of view is sufficiently wide, but the vertical angle of view is around 130 °, and a wide range is imaged from a very close range. Insufficient use. Moreover, the optical system of Patent Document 2 uses a lens having a rotationally asymmetric free-form surface as a refractive lens, and there is a problem that the difficulty of processing and assembly becomes high. Also, the image capturing range is only an image capturing range of about 14 inches with a shooting distance of about 20 cm, and it cannot be said that the angle of view is sufficiently wide.
特開2013-109268号公報JP 2013-109268 A 特開2012-133175号公報JP 2012-133175 A
 本発明は、上記背景技術に鑑みてなされたものであり、周辺部まで解像力が十分確保され、低歪みでありながら超広角な撮像レンズを提供することを目的とする。 The present invention has been made in view of the above-described background art, and an object of the present invention is to provide an ultra-wide-angle imaging lens that has a sufficiently high resolving power to the peripheral portion and is low in distortion.
 また、本発明は、上記撮像レンズを組み込んだ小型の撮像装置を提供することを目的とする。 It is another object of the present invention to provide a small imaging device incorporating the imaging lens.
 上記目的を達成するため、本発明に係る撮像レンズは、撮像素子を用いて、物体を斜め方向から撮像する撮像装置用の撮像レンズであって、物体側から順に、正のパワーを有する反射光学素子を1つだけ含む第1光学系と、回転対称な形状を有する屈折レンズのみで構成され、全てのレンズが共通の光軸を有する第2光学系と、を備え、第1光学系と第2光学系との間に物体の中間像を形成し、第2光学系の最も物体側のレンズは、物体側に凹面を向けた負のパワーを有し、以下の条件式を満足する。
 -0.25<FLd/FLob<-0.05  …  (1)
 3.5<YDobj/DM<14.0  …  (2)
ただし、値FLdは第2光学系の焦点距離であり、値FLobは第2光学系の最も物体側のレンズの焦点距離であり、値YDobjは撮像レンズの撮影範囲の対角線方向の長さであり、値DMは反射光学素子の光軸上の点から物体までの距離である。ここで、光軸とは、開口絞りの中心を通り、開口絞りの断面に垂直な軸のことを意味する。また、共通の光軸を有するとは、全てのレンズが偏芯していない状態(シフトやチルトしていない状態)を意味する。
 なお、本明細書中で「反射光学素子が正のパワーを有する」とは、物体から反射面へ入射する光束が、反射面を反射後収束し、物体の中間像を形成する作用を持つことを意味する。つまり、反射面形状の定義式によって決まるものではない。
In order to achieve the above object, an imaging lens according to the present invention is an imaging lens for an imaging apparatus that images an object from an oblique direction using an imaging element, and is a reflective optical device having positive power in order from the object side. A first optical system including only one element, and a second optical system including only a refractive lens having a rotationally symmetric shape, and all the lenses have a common optical axis. An intermediate image of the object is formed between the two optical systems, and the lens closest to the object side of the second optical system has a negative power with the concave surface facing the object side, and satisfies the following conditional expression.
-0.25 <FLd / FLob <-0.05 (1)
3.5 <YDobj / DM <14.0 (2)
However, the value FLd is the focal length of the second optical system, the value FLob is the focal length of the lens closest to the object of the second optical system, and the value YDobj is the length in the diagonal direction of the imaging range of the imaging lens. The value DM is the distance from the point on the optical axis of the reflective optical element to the object. Here, the optical axis means an axis that passes through the center of the aperture stop and is perpendicular to the cross section of the aperture stop. Further, having a common optical axis means a state in which all the lenses are not decentered (a state in which neither a shift nor a tilt is performed).
In this specification, “the reflective optical element has positive power” means that the light beam incident on the reflecting surface from the object converges after reflecting off the reflecting surface and forms an intermediate image of the object. Means. That is, it is not determined by the definition formula of the reflecting surface shape.
 上記撮像レンズでは、屈折光学系の物体側に正のパワーを有する反射光学素子を配置し、屈折光学系の物体側で物体の中間像を形成することから、非常に大きな物体像を一度に撮像面(結像面)上に縮小結像させずに第1光学系と第2光学系とで縮小倍率を分担することができる。これにより、撮像レンズにおいて、広角で収差劣化の少ない光学系を得ることができる。また、第1光学系で発生する歪曲収差を第2光学系で補正することができ、低歪みな画像を得ることができる。さらに、広角な光学系を屈折光学系のみで構成すると、物体側に配置される強い負のパワーのレンズによって倍率色収差が大きく発生してしまうが、反射光学素子では色収差が発生しないため、全系で発生する倍率色収差を小さく抑えることができる。その際、反射光学系をパワーを有する1枚の反射光学素子で構成することで、光学系を簡素化でき、組み立て性を向上することができるので、結果として高性能な光学系を得ることができる。
 また、屈折光学系の最も物体側のレンズの物体側面を凹面形状とすることで、全系の画角を広角化することができる。その際、屈折光学系を回転対称な形状を有した屈折レンズのみで構成し、全てのレンズが偏芯せずに共通の光軸を有するように構成することで、組み立て性を向上し、結果として高性能な光学系を得ることができる。
 条件式(1)は画角の広角化と撮像レンズの小型化とを両立するための条件式である。条件式(1)の上限値を下回ることで、第2光学系の最も物体側のレンズの負のパワーを適度に維持することができ、光学系の広角化を達成することができる。一方、条件式(1)の下限値を上回ることで、第2光学系の最も物体側のレンズの負のパワーが強くなりすぎず、第1光学系の有効径を小さくすることができ、撮像レンズの径方向の小型化を達成することができる。
 条件式(2)は撮像の短距離化と画角の広角化とを両立するための条件式である。条件式(2)の下限値を上回ることで、短い距離から大画面を撮像することができるようになり、撮像レンズ系をより物体すなわち被写体に近づけて配置することができるようになる。これにより、プロジェクター等の投影装置と組み合わせる際に、撮像レンズを組み込んだ撮像装置が投影装置や発表者の邪魔になることを防ぐことができる。一方、条件式(2)の上限値を下回ることで、被写体(物体)と撮像レンズとの距離が近い場合に、物体端部の光線が撮像レンズ系に入射する角度が非常に大きくなることに起因して生じる、物体が微小量デフォーカスした際の解像劣化や歪曲変動を小さく抑えることができる。
In the above imaging lens, a reflective optical element having a positive power is disposed on the object side of the refractive optical system, and an intermediate image of the object is formed on the object side of the refractive optical system, so that a very large object image is captured at once. The reduction magnification can be shared between the first optical system and the second optical system without reducing the image on the surface (imaging surface). Thereby, in the imaging lens, an optical system having a wide angle and little aberration deterioration can be obtained. In addition, distortion occurring in the first optical system can be corrected by the second optical system, and a low distortion image can be obtained. Furthermore, if a wide-angle optical system is configured only by a refractive optical system, chromatic aberration of magnification is greatly generated by a strong negative power lens disposed on the object side, but chromatic aberration does not occur in the reflective optical element. The chromatic aberration of magnification that occurs in can be reduced. At that time, by configuring the reflective optical system with a single reflective optical element having power, the optical system can be simplified and the assemblability can be improved. As a result, a high-performance optical system can be obtained. it can.
Also, by making the object side surface of the most object side lens of the refractive optical system concave, the angle of view of the entire system can be widened. At that time, the refractive optical system is composed only of refractive lenses having a rotationally symmetric shape, and all the lenses have a common optical axis without being decentered, thereby improving the assemblability and result. As a result, a high-performance optical system can be obtained.
Conditional expression (1) is a conditional expression for achieving both widening of the angle of view and downsizing of the imaging lens. By falling below the upper limit value of conditional expression (1), the negative power of the most object-side lens of the second optical system can be appropriately maintained, and a wide angle of the optical system can be achieved. On the other hand, by exceeding the lower limit value of conditional expression (1), the negative power of the lens closest to the object side of the second optical system does not become too strong, and the effective diameter of the first optical system can be reduced, and imaging is performed. It is possible to reduce the size of the lens in the radial direction.
Conditional expression (2) is a conditional expression for achieving both a short imaging distance and a wide angle of view. By exceeding the lower limit value of conditional expression (2), a large screen can be imaged from a short distance, and the imaging lens system can be arranged closer to the object, that is, the subject. Thereby, when combining with projection apparatuses, such as a projector, it can prevent that the imaging device incorporating an imaging lens obstructs a projection device or a presenter. On the other hand, when the distance between the subject (object) and the imaging lens is close, the angle at which the light beam at the end of the object enters the imaging lens system becomes very large by falling below the upper limit value of conditional expression (2). It is possible to suppress degradation in resolution and distortion when the object is defocused by a small amount.
 本発明に係る撮像装置は、上述の撮像レンズと、撮像素子と、を備える。 An imaging apparatus according to the present invention includes the imaging lens described above and an imaging element.
 上記撮像装置は、上述のような撮像レンズを組み込むことで、近接距離から広範囲を撮影することができ、かつ周辺部まで良好に収差を補正した画像を得ることができる。 The above-described imaging device can capture an image of a wide range from a close distance by incorporating an imaging lens as described above, and can obtain an image in which aberrations are corrected well to the peripheral portion.
本実施形態の撮像レンズを備える撮像装置を説明する概念図である。It is a conceptual diagram explaining an imaging device provided with the imaging lens of this embodiment. 図1に示す撮像装置の使用状態の一例を説明する概念図である。It is a conceptual diagram explaining an example of the use condition of the imaging device shown in FIG. 実施例1の撮像装置のうち撮像レンズ等の断面図である。FIG. 2 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 1. 図4A及び4Bは、実施例1の撮像装置の性能を示すMTF特性図である。4A and 4B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the first embodiment. 物体面上のMTF評価位置を説明する図である。It is a figure explaining the MTF evaluation position on an object surface. 実施例2の撮像装置のうち撮像レンズ等の断面図である。FIG. 6 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 2. 図7A及び7Bは、実施例2の撮像装置の性能を示すMTF特性図である。7A and 7B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the second embodiment. 実施例3の撮像装置のうち撮像レンズ等の断面図である。FIG. 7 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 3. 図9A及び9Bは、実施例3の撮像装置の性能を示すMTF特性図である。9A and 9B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the third embodiment. 実施例4の撮像装置のうち撮像レンズ等の断面図である。FIG. 6 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 4. 図11A及び11Bは、実施例4の撮像装置の性能を示すMTF特性図である。11A and 11B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the fourth embodiment. 実施例5の撮像装置のうち撮像レンズ等の断面図である。FIG. 10 is a cross-sectional view of an imaging lens and the like in the imaging apparatus of Example 5. 図13A及び13Bは、実施例5の撮像装置の性能を示すMTF特性図である。13A and 13B are MTF characteristic diagrams illustrating the performance of the imaging apparatus according to the fifth embodiment.
 以下、図1等を参照して、本発明の一実施形態である撮像レンズ及び撮像装置について説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ10Aと同一の構成となっている。 Hereinafter, an imaging lens and an imaging apparatus according to an embodiment of the present invention will be described with reference to FIG. The imaging lens 10 illustrated in FIG. 1 has the same configuration as an imaging lens 10A of Example 1 described later.
 図1に示すように、撮像装置100は、物体像(被写体像)を形成する撮像レンズ10と、撮像レンズ10によって形成された物体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。撮像装置100は、プロジェクター等の投影装置に搭載可能であり、この場合、投影装置の内側又は外側に一体に設けられる。また、撮像装置100は、投影装置とは別体として設けてもよい。図1の例では、撮像装置100は、スクリーンに相当する物体BSの下側に設けられ、物体像を斜め下方向から撮像する。物体BSには、例えば投影装置(不図示)からの映像が投影される。 As shown in FIG. 1, the imaging device 100 includes an imaging lens 10 that forms an object image (subject image), an imaging element 51 that detects an object image formed by the imaging lens 10, and the imaging element 51 from behind. A wiring board 52 that holds wiring and the like, and a lens barrel portion 54 that holds the imaging lens 10 and the like and has an opening OP that allows a light beam from the object side to enter. The imaging apparatus 100 can be mounted on a projection apparatus such as a projector, and in this case, the imaging apparatus 100 is integrally provided inside or outside the projection apparatus. Further, the imaging device 100 may be provided as a separate body from the projection device. In the example of FIG. 1, the imaging device 100 is provided below the object BS corresponding to the screen and captures an object image from an obliquely downward direction. For example, an image from a projection device (not shown) is projected onto the object BS.
 撮像レンズ10は、撮像素子51の撮像面(結像面)Iに物体像を結像させるものであって、物体側から順に、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを備える。 The imaging lens 10 forms an object image on the imaging surface (imaging plane) I of the imaging element 51, and in order from the object side, the first optical system 11, the optical path bending mirror 13, and the second optical. A system 12.
 撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部は、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。 The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit of the image sensor 51 is composed of a CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
 配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51やこれに付随する駆動回路(不図示)を駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。配線基板52には、階調補正、歪み補正等の各種画像処理機能を持たせることができ、外部回路(例えば投影装置の制御部)との間で情報のやりとりを可能にするインターフェース機能を持たせることができる。 The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 is supplied with a voltage and a signal for driving the image sensor 51 and a driving circuit (not shown) associated therewith from an external circuit, and outputs a detection signal to the external circuit. Is possible. The wiring board 52 can have various image processing functions such as gradation correction and distortion correction, and has an interface function that enables information to be exchanged with an external circuit (for example, a control unit of the projection apparatus). Can be made.
 撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、赤外線カットフィルターF等が撮像素子51等を覆うように配置・固定されている。 The infrared cut filter F or the like is disposed and fixed on the imaging lens 10 side of the imaging element 51 by a holder member (not shown) so as to cover the imaging element 51 and the like.
 鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54には、撮像レンズ10の第2光学系11を構成するレンズのうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構を設けることもできる。 The lens barrel portion 54 houses and holds the imaging lens 10. In the lens barrel portion 54, the focusing operation of the imaging lens 10 is possible by moving any one or more of the lenses constituting the second optical system 11 of the imaging lens 10 along the optical axis AX. Therefore, for example, a drive mechanism can be provided.
 以下、撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、物体側から順に、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを備える。 Hereinafter, the imaging lens 10 will be described in detail. The imaging lens 10 illustrated in FIG. 1 includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12 in order from the object side.
 撮像レンズ10のうち第1光学系11は、正のパワーを有する反射光学素子11aを1つだけ含んでいる。反射光学素子11aは、物体面(被写体面)PSからの光線IRを反射させ、第2光学系12側に導く反射面ARを有する。反射光学素子11aの反射面ARは、自由曲面形状又は非球面形状を有する。これにより、反射光学素子11aで発生する収差を最小限に抑え、結果として高性能な撮像レンズ10を得ることができる。 The first optical system 11 of the imaging lens 10 includes only one reflective optical element 11a having a positive power. The reflective optical element 11a has a reflective surface AR that reflects the light beam IR from the object surface (subject surface) PS and guides it to the second optical system 12 side. The reflective surface AR of the reflective optical element 11a has a free-form surface shape or an aspheric shape. Thereby, the aberration which generate | occur | produces in the reflective optical element 11a can be suppressed to the minimum, and the high performance imaging lens 10 can be obtained as a result.
 第2光学系12は、回転対称な形状を有する屈折レンズILのみで構成されている。第2光学系12を構成する全てのレンズが共通の光軸AXを有している。以上のように、屈折光学系である第2光学系12の物体側に、正のパワーを有する反射光学素子11aを配置することで、第1光学系11と第2光学系12との間には、被写体である物体の中間像が形成される。ここで、光軸AXとは、直接的には撮像レンズ10を構成する各レンズの光軸(中心軸)を意味するものではなく、後述する開口絞りSの中心を通り、開口絞りSの断面に垂直な軸のことを意味する。また、共通の光軸AXを有するとは、全てのレンズが偏芯していない状態(シフトやチルトしていない状態)を意味する。 The second optical system 12 is composed only of a refractive lens IL having a rotationally symmetric shape. All the lenses constituting the second optical system 12 have a common optical axis AX. As described above, the reflective optical element 11a having a positive power is arranged on the object side of the second optical system 12 that is a refractive optical system, so that the first optical system 11 and the second optical system 12 are interposed. Forms an intermediate image of the object that is the subject. Here, the optical axis AX does not directly mean the optical axis (center axis) of each lens constituting the imaging lens 10, but passes through the center of the aperture stop S described later, and the cross section of the aperture stop S. It means the axis perpendicular to. Further, having a common optical axis AX means a state in which all the lenses are not decentered (a state in which no shift or tilt is performed).
 第2光学系12は、物体側より順に、第1レンズ群Gr1、開口絞りS、及び第2レンズ群Gr2で構成されている。第2光学系12のうち第1レンズ群Gr1は、第2光学系11の最も像側のレンズ(図1では、第6レンズL6)よりも開口絞りSから相対的に離れた位置に配置されている。図1の例では、第1レンズ群Gr1は、物体側より順に、負のパワーを有する第1レンズL1と、正のパワーを有する第2レンズL2との2枚のみで構成される。第2光学系12を、開口絞りSを挟んで第1レンズ群Gr1と第2レンズ群Gr2とで構成した場合に、開口絞りSから相対的に離れていて像高毎の光束がレンズ面上で比較的異なる位置を通過する第1レンズ群Gr1が負レンズ及び正レンズを含むことは収差補正上重要である。また、第1レンズ群Gr1を必要最低限の2枚構成とすることで、有効径の大きなレンズの枚数を最小限に抑えることができ、装置の小型軽量化に有利となる。なお、第1レンズ群Gr1は、3枚以上のレンズを有していてもよい。 The second optical system 12 includes, in order from the object side, a first lens group Gr1, an aperture stop S, and a second lens group Gr2. Of the second optical system 12, the first lens group Gr1 is disposed at a position relatively farther from the aperture stop S than the most image-side lens (the sixth lens L6 in FIG. 1) of the second optical system 11. ing. In the example of FIG. 1, the first lens group Gr1 is composed of only two lenses, a first lens L1 having a negative power and a second lens L2 having a positive power in order from the object side. When the second optical system 12 is composed of the first lens group Gr1 and the second lens group Gr2 with the aperture stop S interposed therebetween, the light flux at each image height that is relatively far from the aperture stop S is on the lens surface. It is important in terms of aberration correction that the first lens group Gr1 passing through relatively different positions includes a negative lens and a positive lens. In addition, since the first lens group Gr1 has a minimum two-lens configuration, the number of lenses having a large effective diameter can be minimized, which is advantageous in reducing the size and weight of the apparatus. Note that the first lens group Gr1 may have three or more lenses.
 また、図1の例では、第2レンズ群Gr2は、第3~第6レンズL3~L6で構成されている。第2レンズ群Gr2は、負レンズ(図1では、第4レンズL4)と正レンズ(図1では、第5レンズL5)とを貼り合わせた接合レンズCSを1つ含む。第2光学系12内に接合レンズCSを含むことで、色収差を良好に補正することができる。また、第2光学系12を、開口絞りSを挟んで第1レンズ群Gr1、第2レンズ群Gr2とした場合に、有効径の比較的小さな第2レンズ群Gr2に接合レンズCSを配置することで、接合レンズCSを小さくすることができるので、撮像レンズ10全系の大きさを小さくすることができる。 In the example of FIG. 1, the second lens group Gr2 is composed of third to sixth lenses L3 to L6. The second lens group Gr2 includes one cemented lens CS in which a negative lens (fourth lens L4 in FIG. 1) and a positive lens (fifth lens L5 in FIG. 1) are bonded together. By including the cemented lens CS in the second optical system 12, chromatic aberration can be favorably corrected. Further, when the second optical system 12 is the first lens group Gr1 and the second lens group Gr2 with the aperture stop S interposed therebetween, the cemented lens CS is disposed in the second lens group Gr2 having a relatively small effective diameter. Thus, since the cemented lens CS can be reduced, the size of the entire imaging lens 10 system can be reduced.
 第2光学系12の最も物体側のレンズ(図1では、第1レンズL1)は、物体側に凹面を向けた負のパワーを有し、以下の条件式を満足する。
 -0.25<FLd/FLob<-0.05  …  (1)
 3.5<YDobj/DM<14.0  …  (2)
ただし、値FLdは第2光学系12の焦点距離であり、値FLobは第2光学系12の最も物体側のレンズ(第1レンズL1)の焦点距離であり、値YDobjは撮像レンズ10の撮影範囲IAの対角線方向の長さであり、値DMは反射光学素子11aの光軸AX上の点から物体(被写体)BSまでの距離である。ここで、撮像レンズ10の撮影範囲IAは、物体面(被写体面)PSにおいて撮影される範囲であり、撮像素子51の大きさで決まる。
The lens closest to the object side of the second optical system 12 (the first lens L1 in FIG. 1) has a negative power with the concave surface facing the object side, and satisfies the following conditional expression.
-0.25 <FLd / FLob <-0.05 (1)
3.5 <YDobj / DM <14.0 (2)
However, the value FLd is the focal length of the second optical system 12, the value FLob is the focal length of the lens (first lens L1) closest to the object side of the second optical system 12, and the value YDobj is taken by the imaging lens 10. The length of the range IA in the diagonal direction, and the value DM is the distance from the point on the optical axis AX of the reflective optical element 11a to the object (subject) BS. Here, the shooting range IA of the imaging lens 10 is a range shot on the object plane (subject plane) PS and is determined by the size of the imaging element 51.
 条件式(1)は画角の広角化と撮像レンズ10の小型化とを両立するための条件式である。条件式(1)の上限値を下回ることで、第2光学系12の最も物体側のレンズ(第1レンズL1)の負のパワーを適度に維持することができ、光学系の広角化を達成することができる。一方、条件式(1)の下限値を上回ることで、第2光学系12の最も物体側のレンズ(第1レンズL1)の負のパワーが強くなりすぎず、第1光学系11の有効径を小さくすることができ、撮像レンズ10の径方向の小型化を達成することができる。
 条件式(2)は撮像の短距離化と画角の広角化とを両立するための条件式である。条件式(2)の下限値を上回ることで、短い距離から大画面を撮像することができるようになり、撮像レンズ10系をより物体BSに近づけて配置することができるようになる。これにより、プロジェクター等の投影装置と組み合わせる際に、撮像レンズ10を組み込んだ撮像装置100が投影装置や発表者の邪魔になることを防ぐことができる。一方、条件式(2)の上限値を下回ることで、物体BSと撮像レンズ10との距離が近い場合に、物体BS端部の光線が撮像レンズ10系に入射する角度が非常に大きくなることに起因して生じる、物体BSが微小量デフォーカスした際の解像劣化や歪曲変動を小さく抑えることができる。なお、撮像レンズ10が、物体面PSに対して傾いていても、上記条件式(2)の範囲を満たしていれば、撮像レンズ10のチルトは許容される。
Conditional expression (1) is a conditional expression for achieving both widening of the angle of view and downsizing of the imaging lens 10. By falling below the upper limit value of the conditional expression (1), the negative power of the most object side lens (first lens L1) of the second optical system 12 can be appropriately maintained, and the wide angle of the optical system is achieved. can do. On the other hand, by exceeding the lower limit value of the conditional expression (1), the negative power of the most object-side lens (first lens L1) of the second optical system 12 does not become too strong, and the effective diameter of the first optical system 11 is increased. The imaging lens 10 can be reduced in the radial direction.
Conditional expression (2) is a conditional expression for achieving both a short imaging distance and a wide angle of view. By exceeding the lower limit value of the conditional expression (2), a large screen can be imaged from a short distance, and the imaging lens 10 system can be arranged closer to the object BS. Thereby, when combining with projection apparatuses, such as a projector, it can prevent that the imaging device 100 incorporating the imaging lens 10 obstructs a projection device or a presenter. On the other hand, when the distance between the object BS and the imaging lens 10 is short, the angle at which the light beam at the end of the object BS enters the imaging lens 10 system becomes very large by falling below the upper limit value of conditional expression (2). It is possible to suppress resolution degradation and distortion fluctuation when the object BS is defocused by a small amount due to the above. Note that even if the imaging lens 10 is tilted with respect to the object plane PS, the tilt of the imaging lens 10 is allowed if the range of the conditional expression (2) is satisfied.
 また、撮像レンズ10は、以下の条件式を満足する。
 2.0<MRED/FLd<4.0  …  (3)
ただし、値MREDは反射光学素子11aの使用領域の光軸AXからの最大高さであり、値FLdは第2光学系12の焦点距離である。
The imaging lens 10 satisfies the following conditional expression.
2.0 <MRED / FLd <4.0 (3)
However, the value MRED is the maximum height from the optical axis AX of the use area of the reflective optical element 11a, and the value FLd is the focal length of the second optical system 12.
 条件式(3)は撮像レンズ10全系の径方向の小型化と収差補正とを両立するための条件式である。撮像レンズ10全系の径方向の大きさは最も物体側に配置された反射光学素子11aの大きさで決まるため、できるだけ反射光学素子11aの大きさは小さく抑えることが望ましい。ただし、反射光学素子11aの大きさを過度に小さく抑えようとすると、第2光学系12の最も物体側の負レンズ(第1レンズL1)のパワーを強くすることができず、収差補正上不利となる。そこで、条件式(3)の上限値を下回ることで、反射光学素子11aの大きさが大きくなりすぎず、撮像レンズ10全系の径方向の大きさを小さくすることができる。一方、条件式(3)の下限値を上回ることで、第2光学系12の最も物体側のレンズ(第1レンズL1)に負のパワーを適度につけることができるようになり、撮像レンズ10全系の収差補正に有利となる。 Conditional expression (3) is a conditional expression for achieving both size reduction in the radial direction and aberration correction of the entire imaging lens 10 system. Since the size of the entire imaging lens 10 in the radial direction is determined by the size of the reflective optical element 11a arranged closest to the object side, it is desirable to keep the size of the reflective optical element 11a as small as possible. However, if the size of the reflecting optical element 11a is kept too small, the power of the negative lens (first lens L1) closest to the object side of the second optical system 12 cannot be increased, which is disadvantageous in terms of aberration correction. It becomes. Therefore, by falling below the upper limit of conditional expression (3), the size of the reflective optical element 11a does not become too large, and the size in the radial direction of the entire imaging lens 10 system can be reduced. On the other hand, exceeding the lower limit value of the conditional expression (3) makes it possible to appropriately apply negative power to the most object side lens (first lens L1) of the second optical system 12, and the imaging lens 10 This is advantageous for aberration correction of the entire system.
 また、撮像レンズ10は、以下の条件式を満足する。
 0.35<BF/FLd<1.3  …  (4)
ただし、値BFは第2光学系12の最も像側のレンズ(第6レンズL6)の像側面S62と撮像面Iとの光軸AX上の距離であり、値FLdは第2光学系12の焦点距離である。
 条件式(4)は撮像レンズ10のバックフォーカスを適切に設定するための条件式である。条件式(4)の下限値を上回ることで、バックフォーカスが短くなりすぎず、赤外線カットフィルターF等の部材を挿入するスペースを確保することができる。一方、条件式(4)の上限値を下回ることで、過度にバックフォーカスが長くなりすぎず、撮像レンズ10の光学全長を短くすることができる。
The imaging lens 10 satisfies the following conditional expression.
0.35 <BF / FLd <1.3 (4)
However, the value BF is the distance on the optical axis AX between the image side surface S62 of the most image side lens (sixth lens L6) of the second optical system 12 and the imaging surface I, and the value FLd is the value of the second optical system 12. The focal length.
Conditional expression (4) is a conditional expression for appropriately setting the back focus of the imaging lens 10. By exceeding the lower limit value of the conditional expression (4), the back focus does not become too short, and a space for inserting a member such as the infrared cut filter F can be secured. On the other hand, by falling below the upper limit value of conditional expression (4), the back focus is not excessively lengthened, and the optical total length of the imaging lens 10 can be shortened.
 光路折り曲げミラー13は、第1光学系11と第2光学系12との間に設けられている。光路折り曲げミラー13は、パワーを持たない光学素子となっている。撮像レンズ10は一例として投影光学系と同じ筐体内に配置される場合もあり、そのような場合には投影光学系のレイアウトを邪魔しない配置とする必要が出てくる。そこで、第1光学系11と第2光学系12との間にパワーを持たない光路折り曲げミラー13を有することで、光路を例えば90°に折り曲げることができるようになり、撮像レンズ10の配置レイアウトの自由度が向上する。 The optical path bending mirror 13 is provided between the first optical system 11 and the second optical system 12. The optical path bending mirror 13 is an optical element having no power. As an example, the imaging lens 10 may be arranged in the same housing as the projection optical system. In such a case, it is necessary to arrange the imaging lens 10 so as not to disturb the layout of the projection optical system. Therefore, by providing the optical path bending mirror 13 having no power between the first optical system 11 and the second optical system 12, the optical path can be bent, for example, by 90 °, and the layout of the imaging lens 10 is arranged. The degree of freedom increases.
 なお、既に説明したように、第2光学系12の最も像側のレンズ(図1では、第6レンズL6)と撮像素子51の撮像面Iとの間に、赤外線カットフィルターFを有する。撮像レンズ10に用いられる撮像素子51は一般的に赤外波長領域にも受光感度を持っているため、赤外線カットフィルターFはより人間の眼に近い色彩を映し出す目的で設けられる。赤外線カットフィルターFは光線の斜入射特性を持っているが、第2光学系12の最も像側のレンズ(第6レンズL6)と撮像面Iとの間に配置することにより、光線の入射角度ができるだけ小さい箇所に挿入されることとなり、赤外線カットフィルターFの特性変化又は特性劣化を最小限に抑えることができる。 As described above, the infrared cut filter F is provided between the most image-side lens (the sixth lens L6 in FIG. 1) of the second optical system 12 and the imaging surface I of the imaging element 51. Since the image pickup device 51 used for the image pickup lens 10 generally has light receiving sensitivity also in the infrared wavelength region, the infrared cut filter F is provided for the purpose of projecting colors closer to human eyes. The infrared cut filter F has an oblique incidence characteristic of the light beam. However, by arranging the infrared cut filter F between the image side lens (sixth lens L6) of the second optical system 12 and the imaging surface I, the incident angle of the light beam. Is inserted in as small a position as possible, and the characteristic change or characteristic deterioration of the infrared cut filter F can be minimized.
 以上において、図1に示すように、撮像レンズ10を被写体である物体BSの下端側に配置した場合を想定しているが、下端側に限らず、上端側、左右端側に配置してもよい。 In the above, as shown in FIG. 1, it is assumed that the imaging lens 10 is arranged on the lower end side of the object BS that is a subject. However, the imaging lens 10 is not limited to the lower end side, and may be arranged on the upper end side and the left and right end sides. Good.
 以下、撮像装置100の使用状態について説明する。図2に示すように物体面PSからの画像に対応する光線IRは、撮像装置100に入射する。撮像装置100に入射する光線IRは、第1光学系11の反射光学素子11aで反射され、光路折り曲げミラー13で反射光学素子11aの下方向に折り曲げられ、第2光学系12の各レンズL1~L6を順次通過する。撮像レンズ10において、第1光学系11と第2光学系12との間に物体の中間像を形成する。第2光学系12を経た光線IRは、撮像素子51の撮像面(結像面)Iに最終的に縮小結像する。 Hereinafter, the usage state of the imaging apparatus 100 will be described. As shown in FIG. 2, the light ray IR corresponding to the image from the object plane PS enters the imaging apparatus 100. The light ray IR incident on the imaging device 100 is reflected by the reflective optical element 11a of the first optical system 11, is bent downward by the optical path bending mirror 13, and is reflected by the lenses L1 to L2 of the second optical system 12. Pass through L6 sequentially. In the imaging lens 10, an intermediate image of the object is formed between the first optical system 11 and the second optical system 12. The light beam IR that has passed through the second optical system 12 finally forms a reduced image on the imaging surface (imaging surface) I of the imaging device 51.
 以上説明した撮像レンズ10及び撮像装置100では、屈折光学系の物体側に正のパワーを有する反射光学素子11aを配置し、屈折光学系の物体側で物体の中間像を形成することから、非常に大きな物体像を一度に撮像面(結像面)I上に縮小結像させずに第1光学系11と第2光学系12とで縮小倍率を分担することができる。これにより、撮像レンズ10において、広角で収差劣化の少ない光学系を得ることができる。また、第1光学系11で発生する歪曲収差を第2光学系12で補正することができ、低歪みな画像を得ることができる。さらに、広角な光学系を屈折光学系のみで構成すると、物体側に配置される強い負のパワーのレンズ(図1では、第1レンズL1)によって倍率色収差が大きく発生してしまうが、反射光学素子11aでは色収差が発生しないため、全系で発生する倍率色収差を小さく抑えることができる。その際、反射光学系をパワーを有する1枚の反射光学素子11aで構成することで、光学系を簡素化でき、組み立て性を向上することができるので、結果として高性能な光学系を得ることができる。
 また、屈折光学系の最も物体側のレンズの物体側面(図1では、第1レンズL1の物体側面S11)を凹面形状とすることで、全系の画角を広角化することができる。その際、屈折光学系を回転対称な形状を有した屈折レンズILのみで構成し、全てのレンズが偏芯せずに共通の光軸AXを有するように構成することで、組み立て性を向上し、結果として高性能な光学系を得ることができる。
In the imaging lens 10 and the imaging apparatus 100 described above, the reflection optical element 11a having positive power is disposed on the object side of the refractive optical system, and an intermediate image of the object is formed on the object side of the refractive optical system. The first optical system 11 and the second optical system 12 can share the reduction magnification without forming a large object image on the imaging surface (imaging surface) I at once. Thereby, in the imaging lens 10, an optical system with a wide angle and little aberration deterioration can be obtained. Further, the distortion generated in the first optical system 11 can be corrected by the second optical system 12, and a low distortion image can be obtained. Further, when a wide-angle optical system is configured only by a refractive optical system, a chromatic aberration of magnification is greatly generated by a strong negative power lens (in FIG. 1, the first lens L1) disposed on the object side. Since no chromatic aberration occurs in the element 11a, lateral chromatic aberration that occurs in the entire system can be kept small. At that time, the optical system can be simplified and the assemblability can be improved by configuring the reflective optical system with a single reflective optical element 11a having power. As a result, a high-performance optical system is obtained. Can do.
Further, by making the object side surface (the object side surface S11 of the first lens L1 in FIG. 1) of the most object side lens of the refractive optical system into a concave shape, the angle of view of the entire system can be widened. At that time, the refraction optical system is composed of only the refraction lens IL having a rotationally symmetric shape, and all the lenses have a common optical axis AX without being decentered, thereby improving the assemblability. As a result, a high-performance optical system can be obtained.
 本実施形態において、撮像レンズ10に必要な画角は、物体BSから撮像レンズ10までの距離(撮影距離)を約25cm程度、撮影範囲IAの対角線長を約80inchと想定している。例えばホワイトボード上に書かれた文字を撮影する場合、ホワイトボード近傍で文字を書いている人物が写りこまないようにしようとすると、上述のように25cm程度の至近距離から撮像することが望ましい。また、できるだけ大画面を一度に撮像することが望ましく、上述のように十分な撮影範囲IAとして約80inchの対角線長を想定している。この条件下では、撮像レンズに要求される画角は約160°程度の超広角レンズが必要となってくる。 In the present embodiment, it is assumed that the angle of view required for the imaging lens 10 is approximately 25 cm from the object BS to the imaging lens 10 (imaging distance) and the diagonal length of the imaging range IA is approximately 80 inches. For example, when photographing characters written on a whiteboard, it is desirable to capture images from a close range of about 25 cm as described above in order to prevent a person writing characters near the whiteboard from being captured. Further, it is desirable to image a large screen as much as possible, and a diagonal length of about 80 inches is assumed as a sufficient imaging range IA as described above. Under this condition, a super wide-angle lens with an angle of view of about 160 ° is required for the imaging lens.
〔実施例〕
 以下、本発明に係る撮像レンズ及び撮像装置の実施例を示す。各実施例に使用する記号は下記の通りである。
Fno:Fナンバー
R:近軸曲率半径
D:軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
 ここで、記号Surf.Nは、面番号を意味し、記号P-Surf.は、被写体面又は物体面PSを意味し、記号R-Surf.は、反射光学素子11aの反射面ARを意味し、記号I-Surf.は、撮像面(結像面)Iを意味し、記号STOPは、開口絞りSを意味する。その他、記号INFは、無限大又は∞を意味する。
〔Example〕
Embodiments of an imaging lens and an imaging apparatus according to the present invention will be described below. Symbols used in each example are as follows.
Fno: F number R: paraxial radius of curvature D: axial distance Nd: refractive index of lens material with respect to d-line νd: Abbe number of lens material Here, the symbol Surf.N means a surface number, and the symbol P− Surf. Means object surface or object surface PS, symbol R-Surf. Means reflection surface AR of the reflective optical element 11a, and symbol I-Surf. Means imaging surface (imaging surface) I. The symbol STOP means the aperture stop S. In addition, the symbol INF means infinity or ∞.
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面である。非球面の形状は、面の頂点を原点とし、光軸方向にZ軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
 また、面番号の後に「**」が記載されている面が自由曲面形状を有する面である。自由曲面形状は、上記非球面形状と同じく、面の頂点を原点とし、光軸方向にZ軸をとり、光軸に垂直な方向にX軸及びY軸をとり、光軸と垂直方向の高さをhとして以下の「数2」で表す。
Figure JPOXMLDOC01-appb-M000002
ただし、
Cj:Xの係数
R :曲率半径
K :円錐定数
In each embodiment, the surface described with “*” after each surface number is a surface having an aspherical shape. The aspherical shape is expressed by the following “Equation 1” where the vertex of the surface is the origin, the Z axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-order aspherical coefficient R: radius of curvature K: conic constant Further, a surface described with “**” after the surface number is a surface having a free-form surface shape. The free-form surface shape is the same as the aspherical shape described above, with the vertex of the surface as the origin, the Z axis in the optical axis direction, the X and Y axes in the direction perpendicular to the optical axis, and the height in the direction perpendicular to the optical axis. This is represented by the following “Equation 2” where h is h.
Figure JPOXMLDOC01-appb-M000002
However,
Cj: coefficient of X m Y n R: radius of curvature K: conic constant
〔実施例1〕
 実施例1の撮像レンズの光学諸元値を以下に示す。
Fno:2.80
結像面のサイズ:4.88mm×2.75mm
[Example 1]
The optical specification values of the imaging lens of Example 1 are shown below.
Fno: 2.80
Image size: 4.88mm x 2.75mm
 実施例1の撮像レンズのレンズ面等のデータを以下の表1に示す。
〔表1〕
Surf.N          R [mm]    D [mm]     Nd     νd
P-Surf.                  250.000
 1**(R-Surf.)  -22.419   102.460
 2             -33.771     2.000   1.7234   37.9
 3            -148.713     3.473
 4*            -14.121     4.126   1.5447   56.2
 5*             -9.182    18.686
 6(STOP)          INF      1.781
 7              11.079     2.073   1.7725   49.5
 8              18.550     1.032
 9              -7.893     2.075   1.7432   49.3
10              -3.922     1.254   1.8052   25.4
11              -9.365     0.500
12*             18.983     2.094   1.5447   56.2
13*             -8.767     4.470
14                INF      0.500   1.5163   64.1
15                INF      3.477
16(I-Surf.)       INF
The data of the lens surface of the imaging lens of Example 1 is shown in Table 1 below.
[Table 1]
Surf.N R [mm] D [mm] Nd νd
P-Surf. 250.000
1 ** (R-Surf.) -22.419 102.460
2 -33.771 2.000 1.7234 37.9
3 -148.713 3.473
4 * -14.121 4.126 1.5447 56.2
5 * -9.182 18.686
6 (STOP) INF 1.781
7 11.079 2.073 1.7725 49.5
8 18.550 1.032
9 -7.893 2.075 1.7432 49.3
10 -3.922 1.254 1.8052 25.4
11 -9.365 0.500
12 * 18.983 2.094 1.5447 56.2
13 * -8.767 4.470
14 INF 0.500 1.5163 64.1
15 INF 3.477
16 (I-Surf.) INF
 実施例1の撮像レンズの非球面係数を以下の表2に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。
〔表2〕
第4面
K=-3.7277E+00, A4=7.9872E-06, A6=8.4994E-08, A8=-4.4094E-11, 
A10=0.0000E+00, A12=0.0000E+00
第5面
K=-1.5110E+00, A4=-5.7455E-06, A6=-5.6194E-08, A8=4.6420E-10, 
A10=0.0000E+00, A12=0.0000E+00
第12面
K=-1.2081E+01, A4=-1.2476E-04, A6=-2.6912E-06, A8=5.2842E-07, 
A10=3.0031E-08, A12=0.0000E+00
第13面
K=-1.4909E+00, A4=-1.0381E-05, A6=2.5870E-07, A8=1.3577E-07, 
A10=4.4146E-08, A12=0.0000E+00
The aspheric coefficients of the imaging lens of Example 1 are shown in Table 2 below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02).
[Table 2]
4th page
K = -3.7277E + 00, A4 = 7.9872E-06, A6 = 8.4994E-08, A8 = -4.4094E-11,
A10 = 0.0000E + 00, A12 = 0.0000E + 00
5th page
K = -1.5110E + 00, A4 = -5.7455E-06, A6 = -5.6194E-08, A8 = 4.6420E-10,
A10 = 0.0000E + 00, A12 = 0.0000E + 00
12th page
K = -1.2081E + 01, A4 = -1.2476E-04, A6 = -2.6912E-06, A8 = 5.2842E-07,
A10 = 3.0031E-08, A12 = 0.0000E + 00
Side 13
K = -1.4909E + 00, A4 = -1.0381E-05, A6 = 2.5870E-07, A8 = 1.3577E-07,
A10 = 4.4146E-08, A12 = 0.0000E + 00
 実施例1の撮像レンズの反射光学素子の自由曲面係数を以下の表3に示す。なお、自由曲面係数の表中の「*」は積を表し、「**」はべき乗を表すものとする(以降の実施例も同様)。
〔表3〕
Figure JPOXMLDOC01-appb-I000003
Table 3 below shows the free-form surface coefficients of the reflective optical elements of the imaging lens of Example 1. In the table of free-form surface coefficients, “*” represents a product, and “**” represents a power (the same applies to the following examples).
[Table 3]
Figure JPOXMLDOC01-appb-I000003
 図3は、実施例1の撮像レンズ10A等の断面図である。撮像レンズ10Aは、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを有する。第1光学系11は、正のパワーを有する反射光学素子11aを有する。反射光学素子11aの反射面は、自由曲面形状を有する。第2光学系12は、第1レンズ群Gr1と、開口絞りSと、第2レンズ群Gr2とを有する。第1レンズ群Gr1は、第1レンズL1と第2レンズL2とで構成される。第2レンズ群Gr2は、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6とで構成される。第6レンズL6と撮像素子51との間には、赤外線カットフィルターFが設けられている。なお、符号Iは、撮像レンズ10Aの結像面であり、かつ撮像素子51の撮像面を示す(以下の実施例も同様)。撮像レンズ10Aは、第1光学系11と第2光学系12との間に設けたパワーを持たない光路折り曲げミラー13によって、第1光学系11から第2光学系12への光路を反射光学素子11aの下方向に90°折り曲げている。また、第2レンズL2と第6レンズL6とは非球面形状を有するプラスチックレンズ、その他のレンズはガラス球面レンズである。 FIG. 3 is a cross-sectional view of the imaging lens 10A and the like of the first embodiment. The imaging lens 10 </ b> A includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12. The first optical system 11 includes a reflective optical element 11a having a positive power. The reflective surface of the reflective optical element 11a has a free-form surface shape. The second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2. The first lens group Gr1 includes a first lens L1 and a second lens L2. The second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51. Note that symbol I is an imaging surface of the imaging lens 10A and indicates an imaging surface of the imaging element 51 (the same applies to the following examples). The imaging lens 10A reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 having no power provided between the first optical system 11 and the second optical system 12. 11a is bent 90 ° downward. The second lens L2 and the sixth lens L6 are aspherical plastic lenses, and the other lenses are glass spherical lenses.
 図4A及び4Bは、物体面PS上でのMTF(Modulation Transfer Function)特性図である。図4Aは、図5に示す物体面PSの撮影範囲IAのうち位置F1~F3のMTF特性図であり、図4Bは、図5に示す物体面PSの撮影範囲IAのうち位置F4~F6のMTF特性図である(以降の実施例も同様)。図4A及び4B中のFi-X(i=1~6)は、Fiの位置でのX方向のMTFを示し、Fi-Y(i=1~6)は、Fiの位置でのY方向のMTFを示す。MTFを計算する上での波長ウェイトは以下の通りである(以降の実施例も同様)。
〔波長ウェイト〕
波長    重み
650nm     107
610nm     503
555nm    1000
510nm     503
470nm      91
 図4A及び4Bからわかるように、実施例1の撮像装置100は、周辺部まで十分な解像力を得ている。
4A and 4B are MTF (Modulation Transfer Function) characteristic diagrams on the object plane PS. 4A is an MTF characteristic diagram of positions F1 to F3 in the imaging range IA of the object plane PS shown in FIG. 5, and FIG. 4B is a diagram of positions F4 to F6 of the imaging range IA of the object plane PS shown in FIG. It is a MTF characteristic view (the following examples are also the same). 4A and 4B, Fi-X (i = 1 to 6) represents the MTF in the X direction at the position of Fi, and Fi-Y (i = 1 to 6) represents the Y direction in the position of Fi. MTF is shown. The wavelength weights for calculating the MTF are as follows (the same applies to the following embodiments).
[Wavelength weight]
Wavelength weight
650nm 107
610nm 503
555nm 1000
510nm 503
470nm 91
As can be seen from FIGS. 4A and 4B, the imaging apparatus 100 according to the first embodiment obtains sufficient resolving power up to the periphery.
 (実施例2)
 実施例2の撮像レンズの光学諸元値を以下に示す。
Fno:2.80
結像面のサイズ:4.88mm×2.75mm
(Example 2)
The optical specification values of the imaging lens of Example 2 are shown below.
Fno: 2.80
Image size: 4.88mm x 2.75mm
 実施例2の撮像レンズのレンズ面等のデータを以下の表4に示す。
〔表4〕
Surf.N          R [mm]    D [mm]     Nd     νd
P-Surf.                  250.000
 1**(R-Surf.)  -19.671    76.152
 2              -9.836     2.107   1.7234   37.9
 3             -12.847     2.785
 4*            -11.278     4.949   1.5447   56.2
 5*             -7.838     6.093
 6(STOP)          INF      1.712
 7               9.456     2.101   1.7725   49.5
 8              15.545     1.141
 9              -7.162     1.981   1.7432   49.3
10              -3.422     1.312   1.8052   25.4
11              -8.845     0.500
12*             33.889     2.148   1.5447   56.2
13*             -7.246     4.165
14                INF      0.500   1.5163   64.1
15                INF      3.172
16(I-Surf.)       INF
Table 4 below shows data such as the lens surface of the imaging lens of Example 2.
[Table 4]
Surf.N R [mm] D [mm] Nd νd
P-Surf. 250.000
1 ** (R-Surf.) -19.671 76.152
2 -9.836 2.107 1.7234 37.9
3 -12.847 2.785
4 * -11.278 4.949 1.5447 56.2
5 * -7.838 6.093
6 (STOP) INF 1.712
7 9.456 2.101 1.7725 49.5
8 15.545 1.141
9 -7.162 1.981 1.7432 49.3
10 -3.422 1.312 1.8052 25.4
11 -8.845 0.500
12 * 33.889 2.148 1.5447 56.2
13 * -7.246 4.165
14 INF 0.500 1.5163 64.1
15 INF 3.172
16 (I-Surf.) INF
 実施例2の撮像レンズの非球面係数を以下の表5に示す。
〔表5〕
第4面
K=-3.5532E+00, A4=2.7559E-05, A6=9.1036E-07, A8=-6.6603E-09, 
A10=0.0000E+00, A12=0.0000E+00
第5面
K=-1.6151E+00, A4=-1.1264E-06, A6=-6.0060E-07, A8=9.9039E-09, 
A10=0.0000E+00, A12=0.0000E+00
第12面
K=-1.2714E+01, A4=-1.2231E-04, A6=-2.0765E-06, A8=6.9404E-07, 
A10=1.7491E-08, A12=0.0000E+00
第13面
K=-1.5447E+00, A4=5.4918E-06, A6=-2.6210E-07, A8=-1.3819E-08, 
A10=4.0415E-08, A12=0.0000E+00
The aspheric coefficients of the imaging lens of Example 2 are shown in Table 5 below.
[Table 5]
4th page
K = -3.5532E + 00, A4 = 2.7559E-05, A6 = 9.1036E-07, A8 = -6.6603E-09,
A10 = 0.0000E + 00, A12 = 0.0000E + 00
5th page
K = -1.6151E + 00, A4 = -1.1264E-06, A6 = -6.0060E-07, A8 = 9.9039E-09,
A10 = 0.0000E + 00, A12 = 0.0000E + 00
12th page
K = -1.2714E + 01, A4 = -1.2231E-04, A6 = -2.0765E-06, A8 = 6.9404E-07,
A10 = 1.7491E-08, A12 = 0.0000E + 00
Side 13
K = -1.5447E + 00, A4 = 5.4918E-06, A6 = -2.6210E-07, A8 = -1.3819E-08,
A10 = 4.0415E-08, A12 = 0.0000E + 00
 実施例2の撮像レンズの反射光学素子の自由曲面係数を以下の表6に示す。
〔表6〕
Figure JPOXMLDOC01-appb-I000004
Table 6 below shows the free-form surface coefficients of the reflective optical elements of the imaging lens of Example 2.
[Table 6]
Figure JPOXMLDOC01-appb-I000004
 図6は、実施例2の撮像レンズ10B等の断面図である。撮像レンズ10Bは、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを有する。第1光学系11は、正のパワーを有する反射光学素子11aを有する。反射光学素子11aの反射面は、自由曲面形状を有する。第2光学系12は、第1レンズ群Gr1と、開口絞りSと、第2レンズ群Gr2とを有する。第1レンズ群Gr1は、第1レンズL1と第2レンズL2とで構成される。第2レンズ群Gr2は、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6とで構成される。第6レンズL6と撮像素子51との間には、赤外線カットフィルターFが設けられている。撮像レンズ10Bは、第1光学系11と第2光学系12との間に設けたパワーを持たない光路折り曲げミラー13によって、第1光学系11から第2光学系12への光路を反射光学素子11aの下方向に90°折り曲げている。また、第2レンズL2と第6レンズL6とは非球面形状を有するプラスチックレンズ、その他のレンズはガラス球面レンズである。 FIG. 6 is a cross-sectional view of the imaging lens 10B and the like of the second embodiment. The imaging lens 10 </ b> B includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12. The first optical system 11 includes a reflective optical element 11a having a positive power. The reflective surface of the reflective optical element 11a has a free-form surface shape. The second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2. The first lens group Gr1 includes a first lens L1 and a second lens L2. The second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51. The imaging lens 10B reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12 and having no power. 11a is bent 90 ° downward. The second lens L2 and the sixth lens L6 are aspherical plastic lenses, and the other lenses are glass spherical lenses.
 図7A及び7Bは、物体面PS上でのMTF特性図である。図7A及び7Bからわかるように、実施例2の撮像装置100は、周辺部まで十分な解像力を得ている。 7A and 7B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 7A and 7B, the imaging apparatus 100 according to the second embodiment obtains sufficient resolving power up to the periphery.
 (実施例3)
 実施例3の撮像レンズの光学諸元値を以下に示す。
Fno:2.80
結像面のサイズ:4.88mm×2.75mm
(Example 3)
The optical specification values of the imaging lens of Example 3 are shown below.
Fno: 2.80
Image size: 4.88mm x 2.75mm
 実施例3の撮像レンズのレンズ面等のデータを以下の表7に示す。
〔表7〕
Surf.N          R [mm]    D [mm]     Nd     νd
P-Surf.                  250.000
 1**(R-Surf.)  -23.683   106.145
 2*            -60.062     1.926   1.5447   56.2
 3*           -364.196     8.674
 4             -46.206     2.753   1.8052   25.4
 5             -72.398     1.949
 6*            -20.641     6.301   1.5447   56.2
 7*            -13.550    35.389
 8(STOP)          INF      1.799
 9              12.733     1.243   1.7725   49.5
10              22.972     5.922
11             -10.215     1.833   1.7200   50.2
12              -4.716     1.745   1.8052   25.4
13             -11.401     0.500
14*             16.085     3.815   1.5447   56.2
15*            -11.024     4.580
16                INF      0.500   1.5163   64.1
17                INF      3.586
18(I-Surf.)       INF
Table 7 below shows data such as the lens surface of the imaging lens of Example 3.
[Table 7]
Surf.N R [mm] D [mm] Nd νd
P-Surf. 250.000
1 ** (R-Surf.) -23.683 106.145
2 * -60.062 1.926 1.5447 56.2
3 * -364.196 8.674
4 -46.206 2.753 1.8052 25.4
5 -72.398 1.949
6 * -20.641 6.301 1.5447 56.2
7 * -13.550 35.389
8 (STOP) INF 1.799
9 12.733 1.243 1.7725 49.5
10 22.972 5.922
11 -10.215 1.833 1.7200 50.2
12 -4.716 1.745 1.8052 25.4
13 -11.401 0.500
14 * 16.085 3.815 1.5447 56.2
15 * -11.024 4.580
16 INF 0.500 1.5163 64.1
17 INF 3.586
18 (I-Surf.) INF
 実施例3の撮像レンズの非球面係数を以下の表8に示す。
〔表8〕
第2面
K=6.1759E+00, A4=2.4936E-06, A6=-2.6284E-08, A8=2.8050E-11, 
A10=-4.2007E-13, A12=0.0000E+00
第3面
K=-1.9638E+01, A4=-6.5800E-06, A6=-2.0421E-08, A8=-1.0453E-10, 
A10=-1.0738E-12, A12=4.8446E-15
第6面
K=-4.3930E+00, A4=3.0046E-06, A6=4.5768E-08, A8=2.9497E-10, 
A10=0.0000E+00, A12=0.0000E+00
第7面
K=-1.5160E+00, A4=-1.7862E-06, A6=-1.1551E-08, A8=4.3523E-10, 
A10=0.0000E+00, A12=0.0000E+00
第14面
K=-7.2612E+00, A4=-5.0498E-05, A6=-7.5786E-07, A8=2.6346E-08, 
A10=2.4744E-09, A12=0.0000E+00
第15面
K=-1.3144E+00, A4=-1.0328E-05, A6=5.2076E-07, A8=2.3510E-08, 
A10=1.9041E-09, A12=0.0000E+00
The aspheric coefficients of the imaging lens of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = 6.1759E + 00, A4 = 2.4936E-06, A6 = -2.6284E-08, A8 = 2.8050E-11,
A10 = -4.2007E-13, A12 = 0.0000E + 00
Third side
K = -1.9638E + 01, A4 = -6.5800E-06, A6 = -2.0421E-08, A8 = -1.0453E-10,
A10 = -1.0738E-12, A12 = 4.8446E-15
6th page
K = -4.3930E + 00, A4 = 3.0046E-06, A6 = 4.5768E-08, A8 = 2.9497E-10,
A10 = 0.0000E + 00, A12 = 0.0000E + 00
7th page
K = -1.5160E + 00, A4 = -1.7862E-06, A6 = -1.1551E-08, A8 = 4.3523E-10,
A10 = 0.0000E + 00, A12 = 0.0000E + 00
14th page
K = -7.2612E + 00, A4 = -5.0498E-05, A6 = -7.5786E-07, A8 = 2.6346E-08,
A10 = 2.4744E-09, A12 = 0.0000E + 00
15th page
K = -1.3144E + 00, A4 = -1.0328E-05, A6 = 5.2076E-07, A8 = 2.3510E-08,
A10 = 1.9041E-09, A12 = 0.0000E + 00
 実施例3の撮像レンズの反射光学素子の自由曲面係数を以下の表9に示す。
〔表9〕
Figure JPOXMLDOC01-appb-I000005
Table 9 below shows the free-form surface coefficients of the reflective optical elements of the imaging lens of Example 3.
[Table 9]
Figure JPOXMLDOC01-appb-I000005
 図8は、実施例3の撮像レンズ10C等の断面図である。撮像レンズ10Cは、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを有する。第1光学系11は、正のパワーを有する反射光学素子11aを有する。反射光学素子11aの反射面は、自由曲面形状を有する。第2光学系12は、第1レンズ群Gr1と、開口絞りSと、第2レンズ群Gr2とを有する。第1レンズ群Gr1は、第1レンズL1と、第2レンズL2と、第3レンズL3とで構成される。第2レンズ群Gr2は、第4レンズL4と、第5レンズL5と、第6レンズL6と、第7レンズL7とで構成される。第7レンズL7と撮像素子51との間には、赤外線カットフィルターFが設けられている。撮像レンズ10Cは、第1光学系11と第2光学系12との間に設けたパワーを持たない光路折り曲げミラー13によって、第1光学系11から第2光学系12への光路を反射光学素子11aの下方向に90°折り曲げている。また、第1レンズL1と、第3レンズL3と、第7レンズL7とは非球面形状を有するプラスチックレンズ、その他のレンズはガラス球面レンズである。 FIG. 8 is a cross-sectional view of the imaging lens 10C of the third embodiment. The imaging lens 10 </ b> C includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12. The first optical system 11 includes a reflective optical element 11a having a positive power. The reflective surface of the reflective optical element 11a has a free-form surface shape. The second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2. The first lens group Gr1 includes a first lens L1, a second lens L2, and a third lens L3. The second lens group Gr2 includes a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens L7. An infrared cut filter F is provided between the seventh lens L7 and the image sensor 51. The imaging lens 10 </ b> C reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12. 11a is bent 90 ° downward. The first lens L1, the third lens L3, and the seventh lens L7 are aspherical plastic lenses, and the other lenses are glass spherical lenses.
 図9A及び9Bは、物体面PS上でのMTF特性図である。図9A及び9Bからわかるように、実施例3の撮像装置100は、周辺部まで十分な解像力を得ている。 9A and 9B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 9A and 9B, the imaging apparatus 100 according to the third embodiment obtains sufficient resolving power up to the periphery.
 (実施例4)
 実施例4の撮像レンズの光学諸元値を以下に示す。
Fno:2.80
結像面のサイズ:3.672mm×2.754mm
Example 4
The optical specification values of the imaging lens of Example 4 are shown below.
Fno: 2.80
Imaging surface size: 3.672mm x 2.754mm
 実施例4の撮像レンズのレンズ面等のデータを以下の表10に示す。
〔表10〕
Surf.N          R [mm]    D [mm]     Nd     νd
P-Surf.                  160.000
 1**(R-Surf.)  -13.854    61.626
 2*             -5.825     4.639   1.5447   56.2
 3*             -8.850     1.518
 4             -25.638     4.000   1.8061   40.9
 5             -18.873    30.421
 6(STOP)          INF      1.710
 7              30.867     2.603   1.7200   50.2
 8             -28.982     0.500
 9              11.768     3.454   1.6228   57.0
10             -10.730     4.195   1.7847   26.2
11              13.052     2.202
12            1339.192     4.758   1.8467   23.7
13             -12.411     2.460
14                INF      0.500   1.5163   64.1
15                INF      1.748
16(I-Surf.)       INF
Data on the lens surface and the like of the imaging lens of Example 4 are shown in Table 10 below.
[Table 10]
Surf.N R [mm] D [mm] Nd νd
P-Surf. 160.000
1 ** (R-Surf.) -13.854 61.626
2 * -5.825 4.639 1.5447 56.2
3 * -8.850 1.518
4 -25.638 4.000 1.8061 40.9
5 -18.873 30.421
6 (STOP) INF 1.710
7 30.867 2.603 1.7200 50.2
8 -28.982 0.500
9 11.768 3.454 1.6228 57.0
10 -10.730 4.195 1.7847 26.2
11 13.052 2.202
12 1339.192 4.758 1.8467 23.7
13 -12.411 2.460
14 INF 0.500 1.5163 64.1
15 INF 1.748
16 (I-Surf.) INF
 実施例4の撮像レンズの非球面係数を以下の表11に示す。
〔表11〕
第1面
K=-2.9094E+00, A4=-1.5013E-05, A6=1.0394E-08, A8=1.0976E-11, 
A10=-4.7970E-14, A12=5.9277E-17, A14=-2.5635E-20, 
A16=-1.2964E-24
第2面
K=-1.8001E+00, A4=-9.3515E-05, A6=-9.7020E-07, A8=8.4313E-09, 
A10=4.8540E-11, A12=1.8885E-13, A14=-4.6551E-15
第3面
K=-2.1753E+00, A4=-2.7042E-05, A6=-7.3063E-08, A8=3.5012E-10, 
A10=2.6185E-11, A12=-4.3055E-14, A14=-3.4322E-16
Table 11 below shows the aspheric coefficients of the imaging lens of Example 4.
[Table 11]
First side
K = -2.9094E + 00, A4 = -1.5013E-05, A6 = 1.0394E-08, A8 = 1.0976E-11,
A10 = -4.7970E-14, A12 = 5.9277E-17, A14 = -2.5635E-20,
A16 = -1.2964E-24
Second side
K = -1.8001E + 00, A4 = -9.3515E-05, A6 = -9.7020E-07, A8 = 8.4313E-09,
A10 = 4.8540E-11, A12 = 1.8885E-13, A14 = -4.6551E-15
Third side
K = -2.1753E + 00, A4 = -2.7042E-05, A6 = -7.3063E-08, A8 = 3.5012E-10,
A10 = 2.6185E-11, A12 = -4.3055E-14, A14 = -3.4322E-16
 図10は、実施例4の撮像レンズ10D等の断面図である。撮像レンズ10Dは、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを有する。第1光学系11は、正のパワーを有する反射光学素子11aを有する。反射光学素子11aの反射面は、非球面形状を有する。第2光学系12は、第1レンズ群Gr1と、開口絞りSと、第2レンズ群Gr2とを有する。第1レンズ群Gr1は、第1レンズL1と第2レンズL2とで構成される。第2レンズ群Gr2は、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6とで構成される。第6レンズL6と撮像素子51との間には、赤外線カットフィルターFが設けられている。撮像レンズ10Dは、第1光学系11と第2光学系12との間に設けたパワーを持たない光路折り曲げミラー13によって、第1光学系11から第2光学系12への光路を反射光学素子11aの下方向に90°折り曲げている。また、第1レンズL1は非球面形状を有するプラスチックレンズ、その他のレンズはガラス球面レンズである。 FIG. 10 is a cross-sectional view of the imaging lens 10D and the like of the fourth embodiment. The imaging lens 10 </ b> D includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12. The first optical system 11 includes a reflective optical element 11a having a positive power. The reflective surface of the reflective optical element 11a has an aspherical shape. The second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2. The first lens group Gr1 includes a first lens L1 and a second lens L2. The second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51. The imaging lens 10D reflects the optical path from the first optical system 11 to the second optical system 12 by the optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12 and having no power. 11a is bent 90 ° downward. The first lens L1 is an aspheric plastic lens, and the other lenses are glass spherical lenses.
 図11A及び11Bは、物体面PS上でのMTF特性図である。図11A及び11Bからわかるように、実施例4の撮像装置100は、周辺部まで十分な解像力を得ている。 11A and 11B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 11A and 11B, the imaging apparatus 100 according to the fourth embodiment obtains sufficient resolving power up to the periphery.
 (実施例5)
 実施例5の撮像レンズの光学諸元値を以下に示す。
Fno:F2.80
結像面:3.672mm×2.754mm
(Example 5)
The optical specification values of the imaging lens of Example 5 are shown below.
Fno: F2.80
Imaging plane: 3.672mm × 2.754mm
 実施例5の撮像レンズのレンズ面等のデータを以下の表12に示す。
〔表12〕
Surf.N          R [mm]    D [mm]     Nd     νd
P-Surf.                  160.000
 1**(R-Surf.)  -14.011    62.096
 2*             -5.928     4.832   1.5447   56.2
 3*             -9.139     2.331
 4             -24.511     4.073   1.8061   40.9
 5             -18.043    29.392
 6(STOP)          INF      1.703
 7              27.137     2.578   1.7200   50.2
 8             -29.052     0.500
 9              12.100     3.314   1.6228   57.0
10             -10.130     4.069   1.7847   26.2
11              12.162     2.839
12              78.681     4.370   1.8467   23.7
13             -12.148     2.213
14                INF      0.500   1.5163   64.1
15                INF      1.501
16(I-Surf.)       INF
Data on the lens surface and the like of the imaging lens of Example 5 are shown in Table 12 below.
[Table 12]
Surf.N R [mm] D [mm] Nd νd
P-Surf. 160.000
1 ** (R-Surf.) -14.011 62.096
2 * -5.928 4.832 1.5447 56.2
3 * -9.139 2.331
4 -24.511 4.073 1.8061 40.9
5 -18.043 29.392
6 (STOP) INF 1.703
7 27.137 2.578 1.7200 50.2
8 -29.052 0.500
9 12.100 3.314 1.6228 57.0
10 -10.130 4.069 1.7847 26.2
11 12.162 2.839
12 78.681 4.370 1.8467 23.7
13 -12.148 2.213
14 INF 0.500 1.5163 64.1
15 INF 1.501
16 (I-Surf.) INF
 実施例5の撮像レンズの非球面係数を以下の表13に示す。
〔表13〕
第1面
K=-3.0709E+00, A4=-1.7238E-05, A6=1.4966E-08, A8=7.0197E-12, 
A10=-4.5496E-14, A12=5.6297E-17, A14=-2.5635E-20, 
A16=1.2506E-24
第2面
K=-1.8646E+00, A4=-1.3229E-04, A6=-5.7713E-07, A8=9.5703E-09, 
A10=2.7146E-11, A12=1.8885E-13, A14=-4.6551E-15
第3面
K=-2.3679E+00, A4=-4.3296E-05, A6=1.4361E-07, A8=4.3657E-10, 
A10=2.2597E-11, A12=-4.3055E-14, A14=-3.4322E-16
Table 13 below shows the aspheric coefficients of the imaging lens of Example 5.
[Table 13]
First side
K = -3.0709E + 00, A4 = -1.7238E-05, A6 = 1.4966E-08, A8 = 7.0197E-12,
A10 = -4.5496E-14, A12 = 5.6297E-17, A14 = -2.5635E-20,
A16 = 1.2506E-24
Second side
K = -1.8646E + 00, A4 = -1.3229E-04, A6 = -5.7713E-07, A8 = 9.5703E-09,
A10 = 2.7146E-11, A12 = 1.8885E-13, A14 = -4.6551E-15
Third side
K = -2.3679E + 00, A4 = -4.3296E-05, A6 = 1.4361E-07, A8 = 4.3657E-10,
A10 = 2.2597E-11, A12 = -4.3055E-14, A14 = -3.4322E-16
 図12は、実施例5の撮像レンズ10E等の断面図である。撮像レンズ10Eは、第1光学系11と、光路折り曲げミラー13と、第2光学系12とを有する。第1光学系11は、正のパワーを有する反射光学素子11aを有する。反射光学素子11aの反射面は、非球面形状を有する。第2光学系12は、第1レンズ群Gr1と、開口絞りSと、第2レンズ群Gr2とを有する。第1レンズ群Gr1は、第1レンズL1と第2レンズL2とで構成される。第2レンズ群Gr2は、第3レンズL3と、第4レンズL4と、第5レンズL5と、第6レンズL6とで構成される。第6レンズL6と撮像素子51との間には、赤外線カットフィルターFが設けられている。撮像レンズ10Eは、第1光学系11と第2光学系12との間に設けたパワーを持たない光路折り曲げミラー13によって、第1光学系11から第2光学系12への光路を反射光学素子11aの下方向に90°折り曲げている。また、第1レンズL1は非球面形状を有するプラスチックレンズ、その他のレンズはガラス球面レンズである。 FIG. 12 is a cross-sectional view of the imaging lens 10E and the like of the fifth embodiment. The imaging lens 10 </ b> E includes a first optical system 11, an optical path bending mirror 13, and a second optical system 12. The first optical system 11 includes a reflective optical element 11a having a positive power. The reflective surface of the reflective optical element 11a has an aspherical shape. The second optical system 12 includes a first lens group Gr1, an aperture stop S, and a second lens group Gr2. The first lens group Gr1 includes a first lens L1 and a second lens L2. The second lens group Gr2 includes a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6. An infrared cut filter F is provided between the sixth lens L6 and the image sensor 51. The imaging lens 10E reflects the optical path from the first optical system 11 to the second optical system 12 by an optical path bending mirror 13 provided between the first optical system 11 and the second optical system 12 and having no power. 11a is bent 90 ° downward. The first lens L1 is an aspheric plastic lens, and the other lenses are glass spherical lenses.
 図13A及び13Bは、物体面PS上でのMTF特性図である。図13A及び13Bからわかるように、実施例5の撮像装置100は、周辺部まで十分な解像力を得ている。 13A and 13B are MTF characteristic diagrams on the object plane PS. As can be seen from FIGS. 13A and 13B, the imaging apparatus 100 according to the fifth embodiment obtains sufficient resolving power up to the periphery.
 以下の表14は、参考のため、条件式(1)~(4)に対応する各実施例1~5の値をまとめたものである。
〔表14〕
Figure JPOXMLDOC01-appb-I000006
Table 14 below summarizes the values of Examples 1 to 5 corresponding to the conditional expressions (1) to (4) for reference.
[Table 14]
Figure JPOXMLDOC01-appb-I000006
 以上、実施形態に係る撮像レンズ等について説明したが、本発明に係る撮像レンズ等は、上記のものには限られない。例えば、撮像レンズ10等の具体的な構成は、図示のものに限らず用途等に応じて適宜変更することができる。 Although the imaging lens and the like according to the embodiments have been described above, the imaging lens and the like according to the present invention are not limited to the above. For example, the specific configuration of the imaging lens 10 and the like is not limited to the illustrated one, and can be changed as appropriate according to the application.
 上記実施形態において、第2光学系12の最も像側のレンズと撮像素子51との間に赤外線カットフィルターFを設けたが、赤外線カットフィルターF以外に平行平板として光学的ローパスフィルター、撮像素子51のシールガラス等を設けてもよい。 In the above embodiment, the infrared cut filter F is provided between the image-side lens of the second optical system 12 and the image sensor 51. However, in addition to the infrared cut filter F, the optical low-pass filter and the image sensor 51 are formed as parallel plates. A seal glass or the like may be provided.

Claims (9)

  1.  撮像素子を用いて、物体を斜め方向から撮像する撮像装置用の撮像レンズであって、
     物体側から順に、
     正のパワーを有する反射光学素子を1つだけ含む第1光学系と、
     回転対称な形状を有する屈折レンズのみで構成され、全てのレンズが共通の光軸を有する第2光学系と、
    を備え、
     前記第1光学系と前記第2光学系との間に物体の中間像を形成し、
     前記第2光学系の最も物体側のレンズは、物体側に凹面を向けた負のパワーを有し、
     以下の条件式を満足する、撮像レンズ。
     -0.25<FLd/FLob<-0.05
     3.5<YDobj/DM<14.0
    ただし、
    FLd:前記第2光学系の焦点距離
    FLob:前記第2光学系の最も物体側のレンズの焦点距離
    YDobj:撮像レンズの撮影範囲の対角線方向の長さ
    DM:前記反射光学素子の光軸上の点から物体までの距離
    An imaging lens for an imaging apparatus that images an object from an oblique direction using an imaging element,
    From the object side,
    A first optical system including only one reflective optical element having positive power;
    A second optical system composed of only a refractive lens having a rotationally symmetric shape, and all lenses having a common optical axis;
    With
    Forming an intermediate image of the object between the first optical system and the second optical system;
    The most object side lens of the second optical system has a negative power with a concave surface facing the object side,
    An imaging lens that satisfies the following conditional expression.
    -0.25 <FLd / FLob <-0.05
    3.5 <YDobj / DM <14.0
    However,
    FLd: focal length of the second optical system FLob: focal length of the lens closest to the object side of the second optical system YDobj: diagonal length of the imaging range of the imaging lens DM: on the optical axis of the reflective optical element Distance from point to object
  2.  前記第2光学系は、物体側より順に、第1レンズ群、開口絞り、及び第2レンズ群で構成され、
     前記第1レンズ群は、前記第2光学系の最も像側のレンズよりも開口絞りから相対的に離れた位置にあり、物体側より順に、負レンズ及び正レンズの2枚のみで構成される、請求項1に記載の撮像レンズ。
    The second optical system includes, in order from the object side, a first lens group, an aperture stop, and a second lens group.
    The first lens group is located farther from the aperture stop than the most image-side lens of the second optical system, and is composed of only two lenses, a negative lens and a positive lens, in order from the object side. The imaging lens according to claim 1.
  3.  以下の条件式を満足する、請求項1及び2のいずれか一項に記載の撮像レンズ。
     2.0<MRED/FLd<4.0
    ただし、
    MRED:前記反射光学素子の使用領域の光軸からの最大高さ
    FLd:前記第2光学系の焦点距離
    The imaging lens according to claim 1, wherein the imaging lens satisfies the following conditional expression.
    2.0 <MRED / FLd <4.0
    However,
    MRED: Maximum height FLd from the optical axis of the use area of the reflecting optical element FLd: Focal length of the second optical system
  4.  前記第2光学系は、物体側より順に、第1レンズ群、開口絞り、及び第2レンズ群で構成され、
     前記第2レンズ群は、負レンズと正レンズとを貼り合わせた接合レンズを1つ含む、請求項1~3のいずれか一項に記載の撮像レンズ。
    The second optical system includes, in order from the object side, a first lens group, an aperture stop, and a second lens group.
    The imaging lens according to any one of claims 1 to 3, wherein the second lens group includes one cemented lens in which a negative lens and a positive lens are bonded together.
  5.  前記第2光学系の最も像側のレンズと前記撮像素子の撮像面との間に、赤外線カットフィルターを有する、請求項1~4のいずれか一項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 4, further comprising an infrared cut filter between a lens closest to the image side of the second optical system and an imaging surface of the imaging element.
  6.  以下の条件式を満足する、請求項1~5のいずれか一項に記載の撮像レンズ。
     0.35<BF/FLd<1.3
    ただし、
    BF:前記第2光学系の最も像側のレンズの像側面と前記撮像面との前記光軸上の距離
    FLd:前記第2光学系の焦点距離
    The imaging lens according to any one of claims 1 to 5, which satisfies the following conditional expression.
    0.35 <BF / FLd <1.3
    However,
    BF: distance FLd on the optical axis between the image side surface of the lens on the most image side of the second optical system and the imaging surface FLd: focal length of the second optical system
  7.  前記反射光学素子は、自由曲面形状を有する、請求項1~6のいずれか一項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 6, wherein the reflective optical element has a free-form surface shape.
  8.  前記第1光学系と前記第2光学系との間に、パワーを持たない光路折り曲げミラーを有する、請求項1~7のいずれか一項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 7, further comprising an optical path bending mirror having no power between the first optical system and the second optical system.
  9.  請求項1~8のいずれか一項に記載の撮像レンズと、
     撮像素子と、
    を備える撮像装置。
    An imaging lens according to any one of claims 1 to 8,
    An image sensor;
    An imaging apparatus comprising:
PCT/JP2016/053330 2015-02-05 2016-02-04 Imaging lens and imaging device WO2016125848A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015021666 2015-02-05
JP2015-021666 2015-02-05
JP2016-015101 2016-01-29
JP2016015101 2016-01-29

Publications (1)

Publication Number Publication Date
WO2016125848A1 true WO2016125848A1 (en) 2016-08-11

Family

ID=56564187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053330 WO2016125848A1 (en) 2015-02-05 2016-02-04 Imaging lens and imaging device

Country Status (1)

Country Link
WO (1) WO2016125848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164184A (en) * 2018-03-19 2019-09-26 セイコーエプソン株式会社 Projection optical system and projection type image display unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258620A (en) * 2003-02-06 2004-09-16 Ricoh Co Ltd Projection optical system, magnification projection optical system, magnification projection apparatus, and image projection apparatus
JP2008225455A (en) * 2007-02-14 2008-09-25 Konica Minolta Opto Inc Projection optical system
JP2009134254A (en) * 2007-11-06 2009-06-18 Seiko Epson Corp Projection type image display
US20100232039A1 (en) * 2009-03-13 2010-09-16 Young Optics Inc. Lens
JP2013120365A (en) * 2011-12-09 2013-06-17 Samsung Yokohama Research Institute Co Ltd Projection optical system and image projection device
JP2014170129A (en) * 2013-03-04 2014-09-18 Ricoh Co Ltd Projection optical system and image display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258620A (en) * 2003-02-06 2004-09-16 Ricoh Co Ltd Projection optical system, magnification projection optical system, magnification projection apparatus, and image projection apparatus
JP2008225455A (en) * 2007-02-14 2008-09-25 Konica Minolta Opto Inc Projection optical system
JP2009134254A (en) * 2007-11-06 2009-06-18 Seiko Epson Corp Projection type image display
US20100232039A1 (en) * 2009-03-13 2010-09-16 Young Optics Inc. Lens
JP2013120365A (en) * 2011-12-09 2013-06-17 Samsung Yokohama Research Institute Co Ltd Projection optical system and image projection device
JP2014170129A (en) * 2013-03-04 2014-09-18 Ricoh Co Ltd Projection optical system and image display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164184A (en) * 2018-03-19 2019-09-26 セイコーエプソン株式会社 Projection optical system and projection type image display unit
CN110286478A (en) * 2018-03-19 2019-09-27 精工爱普生株式会社 Projection optics system and projection type video display device

Similar Documents

Publication Publication Date Title
US11740439B2 (en) Photographing lens assembly, image capturing unit and electronic device
JP5729431B2 (en) Imaging optical system, camera device, and portable information terminal device
JP6845484B2 (en) Imaging optical system, lens unit and imaging device
JP5200694B2 (en) Imaging optical system, camera device, and portable information terminal device
JP5895718B2 (en) Imaging lens, camera, and portable information terminal
JP5370109B2 (en) Imaging lens and imaging apparatus
JP6895046B2 (en) Imaging optical system and imaging device
JP2003255222A (en) Compact photographic lens
JP2016126254A (en) Imaging lens, imaging apparatus, and projection device
US10698178B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
US11163134B2 (en) Imaging lens system, identification module and electronic device
JP6985647B2 (en) Optical system, lens unit, and image pickup device
JP5607264B2 (en) Imaging lens and imaging apparatus
CN110045483A (en) Imaging optical system, image projection device and camera arrangement
US11841550B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
JP2017198737A (en) Imaging lens and imaging device
US10948690B2 (en) Photographing optical lens assembly, image capturing unit and electronic device
US20230221523A1 (en) Image capturing system, image capturing unit and electronic device
WO2016125848A1 (en) Imaging lens and imaging device
TWI758880B (en) Imaging optical system, imaging device, and portable terminal
JP5298878B2 (en) Imaging lens, camera device, and portable information terminal device
JP5668818B2 (en) Imaging lens and imaging apparatus
JP5310352B2 (en) Imaging lens, camera device, and portable information terminal device
US20230384558A1 (en) Imaging system lens assembly, image capturing unit and electronic device
JP2018045025A (en) Image capturing optical system, image capturing device, and projection imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP