WO2016125725A1 - Electric current detection element and electrical power transmission system - Google Patents

Electric current detection element and electrical power transmission system Download PDF

Info

Publication number
WO2016125725A1
WO2016125725A1 PCT/JP2016/052869 JP2016052869W WO2016125725A1 WO 2016125725 A1 WO2016125725 A1 WO 2016125725A1 JP 2016052869 W JP2016052869 W JP 2016052869W WO 2016125725 A1 WO2016125725 A1 WO 2016125725A1
Authority
WO
WIPO (PCT)
Prior art keywords
main line
current detection
conductor
insulator
line electrode
Prior art date
Application number
PCT/JP2016/052869
Other languages
French (fr)
Japanese (ja)
Inventor
市川敬一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680003992.0A priority Critical patent/CN107003341B/en
Priority to JP2016537036A priority patent/JP5994963B1/en
Publication of WO2016125725A1 publication Critical patent/WO2016125725A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions

Definitions

  • the present invention relates to a current detection element and a power transmission system for detecting a high-frequency current flowing in a line.
  • a current transformer is known as an element for detecting a current flowing in a line.
  • a current transformer is usually composed of a transformer wound around a toroidal core. For this reason, since the size of the parts increases, it may be difficult to use a current transformer in a device that is required to be small and low-profile. Therefore, as an example of a small and thin transformer, for example, there is a laminated transformer described in Patent Document 1.
  • the laminated transformer described in Patent Document 1 is a surface-mount electronic component in which a magnetic sheet on which a conductor pattern is printed is laminated to constitute a transformer.
  • an object of the present invention is to provide a current detection element that can be downsized and detect current with high sensitivity, and a power transmission system including the current detection element.
  • a current detection element includes an insulator, a main line conductor formed on the insulator, and a current detection conductor formed on the insulator and magnetically coupled to the main line conductor.
  • the insulator is provided between the main line conductor and the current detection conductor, and has a low permeability portion whose permeability is lower than that of the surroundings in the insulator.
  • the main line conductor is preferably formed in a straight line in the insulator in plan view.
  • This configuration facilitates the formation of the main line conductor. Moreover, the inductance and resistance value of the main line conductor can be reduced. Moreover, the influence on the circuit connected to the main line can be reduced.
  • the coil for current detection may be a coiled conductor provided on the insulator and having a winding axis in a direction different from a direction in which the main line conductor extends.
  • the magnetic coupling between the main line conductor and the current detection conductor can be strengthened, and current detection can be performed with high sensitivity. Moreover, since it is a coiled conductor, the inductance of the detection conductor can be increased, and the output voltage increases.
  • the insulator is preferably a laminate in which a plurality of insulator layers having different magnetic permeability are laminated at least partially, and the plurality of insulator layers preferably have a magnetic layer at least partially.
  • the inductance of the current detection conductor can be increased, and the magnetic field generated by the current in the main line and the magnetic field around the current detection conductor can be confined in the substrate.
  • the magnetic layer is preferably a magnetic ferrite layer.
  • the inductance of the current detection conductor can be increased, and the magnetic field generated by the current in the main line and the magnetic field around the current detection conductor can be confined in the substrate. Further, the leakage magnetic field to the surroundings can be reduced, and the leakage noise can be reduced. Further, since the magnetic path can be formed of magnetic ferrite having a high magnetic permeability, the magnetic coupling between the main line conductor and the current detection conductor can be strengthened, and current detection can be performed with high sensitivity.
  • the low magnetic permeability portion is made of a nonmagnetic material.
  • the low magnetic permeability portion may be in contact with at least one of the main line conductor or the current detection conductor.
  • This configuration can weaken magnetic flux concentration.
  • the low magnetic permeability portion is in contact with the main line conductor and the current detection conductor.
  • the current detection element according to the present invention may include a plurality of the current detection conductors.
  • An element having a frequency characteristic connected to the current detection conductor may be provided.
  • the sensitivity in the frequency band to be used can be increased, and unnecessary frequency components (for example, harmonic components) can be filtered.
  • unnecessary frequency components for example, harmonic components
  • the present invention relates to power transmission for transmitting power from the power transmission device to the power reception device by coupling a power transmission side coupling unit of the power transmission device and a power reception side coupling unit of the power reception device by at least one of an electric field or a magnetic field.
  • the power transmission device includes a current detection unit that detects a current having an AC component flowing in a power transmission line connected to the power transmission side coupling unit, and the current detection unit includes an insulator and the insulation A main line conductor formed in a body, and a current detection conductor formed in the insulator and magnetically coupled to the main line conductor, the insulator including the main line conductor and the current detection conductor And having a low magnetic permeability portion whose permeability is lower than that of the surroundings in the insulator, and the main line conductor constitutes a part of the power transmission line.
  • the current flowing through the power transmission side coupling unit can be detected with high sensitivity in the power transmission device. Based on the detected current magnitude or phase change, it is possible to determine whether or not the power receiving apparatus is mounted or to detect a state such as an abnormality.
  • the magnetic field coupling between the main line conductor and the current detection conductor is strong. Therefore, current detection can be performed with high sensitivity.
  • FIG. 1A is a plan view of the current detection element
  • FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A
  • 2A and 2B are diagrams illustrating a current detection circuit using a current detection element.
  • 3A is a plan view of another example of the current detection element
  • FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A.
  • 4A is a plan view of the current detection element
  • FIG. 4B is a cross-sectional view taken along line IV-IV in FIG. 4A.
  • 5A is a plan view of the current detection element
  • FIG. 5B is a cross-sectional view taken along line VV in FIG. 5A.
  • FIG. 6 is a diagram for explaining the direction in which the induced current generated in the coil conductor flows.
  • FIG. 7A, FIG. 7B, and FIG. 7C are diagrams showing another example of the current detection element.
  • FIG. 8 is a diagram for explaining the effect of providing the low magnetic permeability portion.
  • 9A is a plan view of a current detection circuit module including a current detection element
  • FIG. 9B is a cross-sectional view taken along line IX-IX in FIG. 9A.
  • FIG. 10 is a circuit diagram of the current detection circuit module.
  • FIG. 11 is a circuit diagram of a power transmission system according to the fifth embodiment.
  • FIG. 1A is a plan view of the current detection element 1
  • FIG. 1B is a cross-sectional view taken along the line II in FIG. 1A. Note that the plan view shown in FIG. 1A is a perspective view.
  • the current detection element 1 includes a laminated body 10, a main line electrode 11, and a coil conductor 12.
  • the laminate 10 is an insulator in which a plurality of insulator layers are laminated, and is formed by sintering.
  • the insulator layer includes an insulator layer made of only a magnetic material such as ferrite, and an insulator layer made of a magnetic material and a non-magnetic material.
  • the magnetic body is a ferromagnetic body and has a relative magnetic permeability ⁇ r > 1.
  • the laminated body 10 is formed with a high magnetic permeability portion made of a magnetic material and a low magnetic permeability portion 13 having a lower magnetic permeability than a surrounding high magnetic permeability portion made of a non-magnetic material.
  • the low permeability portion 13 may be a non-magnetic material instead of a non-magnetic material (non-isomagnetic permeability ⁇ r ⁇ 1, but lower than the permeability of the high permeability portion).
  • FIG. 1A is a plan view seen from a surface (hereinafter referred to as an upper surface) facing the mounting surface in the stacking direction of the stacked body 10.
  • the main line electrode 11 is formed in the low permeability portion 13 of the laminate 10.
  • the main line electrode 11 is a main surface of an insulating layer containing a nonmagnetic material, and is formed by printing a linear conductor pattern on the nonmagnetic material portion.
  • a coil conductor 12 is disposed adjacent to the main line electrode 11.
  • Each of the vicinity of both ends of the main line electrode 11 in the direction intersecting with the arrangement direction of the coil conductor 12 and the main line electrode 11 is connected to a different mounting electrode via an interlayer connection conductor (black circle in the figure).
  • the main line electrode 11 is an example of the “main line conductor” according to the present invention. Since the main line electrode 11 is formed in a straight line, the main line electrode 11 can be easily formed, and the inductance and the resistance value of the main line electrode 11 can be reduced.
  • the main line electrode 11 can be drawn out to the side surface parallel to the stacking direction of the multilayer body 10 and connected to the mounting electrode via the side surface of the multilayer body 10.
  • the area where the main line electrode 11 is in contact with or close to the magnetic body in the laminated body 10 can be shortened, and the effective magnetic permeability due to the magnetic body and the non-magnetic body around the main line electrode 11 is reduced. Therefore, the inductance of the main line electrode 11 can be further reduced.
  • the coil conductor 12 is formed so that the winding axis is in the stacking direction of the stacked body 10 and a part thereof is positioned in the low magnetic permeability portion 13.
  • the winding axis of the coil conductor 12 faces a direction different from the direction in which the main line electrode 11 extends. That is, the winding axis of the coil conductor 12 has a twisted positional relationship with the main line electrode 11.
  • the coil conductor 12 is disposed adjacent to the main line electrode 11 with a gap in plan view from the stacking direction.
  • the coil conductor 12 is an example embodiment that corresponds to the “current detection conductor” according to the present invention. Note that the winding direction of the coil conductor 12 is not particularly limited. A plurality of coil conductors may be arranged along the direction in which the main line electrode 11 extends.
  • the coil conductor 12 is composed of open loop conductors 121, 122, 123, and 124. Each of the open loop conductors 121, 122, 123, and 124 is formed on a main surface of a different insulator layer. Further, the open loop conductors 122 and 123 are formed on the main surface of the insulator layer including the nonmagnetic material, and a part of the open loop conductors 122 and 123 is formed in the nonmagnetic material portion. And one end of the open loop-shaped conductor adjacent to the lamination direction is connected by the interlayer connection conductor (not shown). As a result, the coil conductor 12 is formed in which the winding axis is in the stacking direction of the stacked body 10 and a part thereof is disposed in the low magnetic permeability portion 13 of the stacked body 10.
  • both ends of the coil conductor 12 are connected to different mounting electrodes formed on the mounting surface of the multilayer body 10 by interlayer connection conductors (not shown).
  • the current detecting element 1 having this configuration, when a current having an AC component flows through the main line electrode 11, a magnetic flux that changes with time is generated. Since the winding axis of the coil conductor 12 has a torsional positional relationship with the current flowing through the main line electrode 11, the coil conductor 12 has a current flowing through the coil opening of the coil conductor 12 and the current flowing through the main line electrode 11. The generated magnetic flux interlinks. Thereby, the main line electrode 11 and the coil conductor 12 are magnetically coupled. An induced electromotive force is generated in the coil conductor 12, and an induced current flows through the coil conductor 12 in accordance with the induced electromotive force. By detecting this induced electromotive force or induced current, the current flowing through the main line electrode 11 can be detected.
  • the main line electrode 11 and a part of the coil conductor 12 are formed in the low magnetic permeability portion 13.
  • the low magnetic permeability portion 13 is formed between the main line electrode 11 and the coil conductor 12 in a plan view in the winding axis direction of the coil conductor 12 shown in FIG.
  • the main line electrode 11 and a part of the coil conductor 12 are in contact with the low magnetic permeability portion 13. For this reason, since the magnetic flux generated from the main line electrode 11 passes through the coil opening of the coil conductor 12 so as to avoid the space between the main line electrode 11 and the coil conductor 12, the coil conductor 12 Many magnetic fluxes are linked. As a result, the magnetic field coupling between the main line electrode 11 and the coil conductor 12 is strengthened.
  • the detection sensitivity of the electric current which flows into the electrode 11 for main lines can be improved. Further, since only a part of the coil conductor 12 is formed in the low magnetic permeability portion 13, the inductance of the coil conductor 12 is not significantly reduced by the low magnetic permeability portion 13.
  • magnetic field coupling can be strengthened without reducing the distance between the main line electrode 11 and the coil conductor 12. . Then, by separating the main line electrode 11 and the coil conductor 12, the parasitic capacitance generated between the two electrodes can be reduced.
  • the main line electrode 11 is disposed in the low magnetic permeability portion 13, the magnetic flux concentration in the vicinity of the main line electrode 11 can be weakened. For this reason, a larger current can flow through the main line electrode 11. Since the magnetic permeability around the main line electrode 11 is low, the inductance component or magnetic loss of the main line electrode 11 can be reduced. Furthermore, magnetic saturation around the main line electrode 11 can be prevented.
  • FIG. 2A and FIG. 2B are diagrams showing a current detection circuit using the current detection element 1.
  • the inductor L1 shown in FIGS. 2A and 2B is an inductance component of the main line electrode 11.
  • the current detection element 1 is mounted on the mother board so that the main line electrode 11 is arranged in the middle of the main line of the mother board.
  • the mounting electrode to which the coil conductor 12 is connected is connected to a detection circuit for detecting a current flowing through the main line electrode 11.
  • the detection circuit is a capacitor C1 and a load RL.
  • the coil conductor 12 is connected in series to the capacitor C1 and the load RL.
  • the capacitor C1 is connected in series to the coil conductor 12, but may be connected in parallel.
  • the capacitor C1 is externally connected to the current detection element 1.
  • the capacitor C2 may be provided in the current detection element 1.
  • the capacitor C2 can be formed, for example, by being mounted on the upper main surface of the multilayer body 10 or by disposing two planar conductors in parallel in the multilayer body.
  • the capacitor C2 and the load RL constitute a detection circuit. In this case, since it is not necessary to externally attach the capacitor C2 to the current detection element 1, it is not necessary to secure a region for mounting the capacitor C2 on the mother board.
  • the capacitor C2 is an example of the “element having frequency characteristics” according to the present invention.
  • the low magnetic permeability part 13 should just overlap with at least one of the electrode 11 for main lines, and the coil conductor 12 by planar view.
  • FIG. 3A is a plan view of another example of the current detection element 1A
  • FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A. Note that the plan view shown in FIG. 3A is a perspective view.
  • the main line electrode 11 is formed in the low magnetic permeability portion 13A. Even in this configuration, since the low magnetic permeability portion 13A is formed between the main line electrode 11 and the coil conductor 12, the main line electrode 11 is compared with the case where the low magnetic permeability portion 13 is not formed. Magnetic field coupling between the coil conductor 12 and the coil conductor 12 can be strengthened. For this reason, the detection sensitivity of the electric current which flows into the electrode 11 for main lines can be improved.
  • the main line electrode 11 is entirely formed in the low magnetic permeability portions 13 and 13A, but a part of the main line electrode 11 is formed in the low magnetic permeability portions 13 and 13A. It only has to be formed. Further, in the current detection element 1A, the low magnetic permeability portion 13A overlaps with the main line electrode 11 in a plan view in the winding axis direction of the coil conductor 12, but overlaps with the coil conductor 12, and the main line electrode 11 The structure may not overlap. Further, the low magnetic permeability portions 13 and 13A do not overlap with the coil conductor 12 and the main line electrode 11, but have low magnetic permeability on a line segment connecting a part of the coil conductor 12 and a part of the main line electrode 11.
  • positioned may be sufficient. Even in this configuration, the magnetic coupling between the main line electrode 11 and the coil conductor 12 is stronger than in the case where the low magnetic permeability portions 13 and 13A are not formed. Therefore, the detection sensitivity of the current flowing through the main line electrode 11 is high. Can be increased.
  • the non-magnetic part is not in contact with both the coil conductor 12 and the main line electrode 11.
  • the bond can be increased more than the case.
  • most of the magnetic flux passing through the high magnetic permeability portion can be linked to one of the coil conductor 12 and the main line electrode 11, and is generated in the high magnetic permeability portion. Leakage magnetic flux not interlinked with one of the two can be reduced.
  • both the coil conductor 12 and the main line electrode 11 are in contact with the non-magnetic part, at least one of the coil conductor 12 and the main line electrode 11 is in contact with the non-magnetic part. Bonding can be increased over the absence.
  • most of the magnetic flux passing through the high magnetic permeability portion can be linked to both the coil conductor 12 and the main line electrode 11, and is generated in the high magnetic permeability portion, so that the coil conductor 12 and the main line electrode 11 are connected. Leakage magnetic flux not interlinking with both can be reduced.
  • the high permeability portion is a magnetic material (ferromagnetic material), the low permeability portion is a non-magnetic material, or a magnetic material having a lower permeability than the high permeability portion.
  • the present invention is not limited to this.
  • the low magnetic permeability portion may be formed of a diamagnetic material (relative magnetic permeability ⁇ r ⁇ 1), and the high magnetic permeability portion may be formed of a magnetic material or a nonmagnetic material. It is sufficient that at least the permeability of the low permeability portion is lower than the permeability of the surrounding high permeability portion.
  • the outermost two layers of the stacked body 10 may be nonmagnetic layers, and the outermost two nonmagnetic layers may sandwich the magnetic layer and another nonmagnetic layer. Thereby, while confining a magnetic flux in the laminated body 10, the mechanical strength of the laminated body 10 can be strengthened.
  • the current detection element according to the second embodiment is different from the first embodiment in the size of the low magnetic permeability portion.
  • FIG. 4A is a plan view of the current detection element 2
  • FIG. 4B is a cross-sectional view taken along the line IV-IV in FIG. 4A. Note that the plan view shown in FIG. 4A is a perspective view.
  • the laminated body 10A of the current detection element 2 is configured by laminating and sintering an insulator layer made of only a ferromagnetic material such as ferrite and an insulator layer made of only a nonmagnetic material.
  • the low magnetic permeability portion 14 of the nonmagnetic material layer is formed in the laminated body 10A.
  • the insulator layer which consists only of a ferromagnetic material is laminated
  • the main line electrode 11 is formed on the main surface of an insulator layer made of only a non-magnetic material.
  • the coil conductor 12 is formed by connecting open loop conductors 121, 122, 123, and 124 with interlayer connection conductors (not shown) so that the winding axis is in the stacking direction of the stacked body 10A.
  • the open loop conductors 122 and 123 are formed on the main surface of the insulator layer made of only a nonmagnetic material. Thereby, a part of the main line electrode 11 and the coil conductor 12 is formed in the low magnetic permeability portion 14 of the laminated body 10A.
  • the magnetic flux concentration in the vicinity of the main line electrode 11 can be weakened, and a larger current can flow. Further, the magnetic field coupling between the main line electrode 11 and the coil conductor 12 can be strengthened. Thereby, the detection sensitivity of an electric current can be raised. Furthermore, since the magnetic permeability around the main line electrode 11 is low, the inductance component or magnetic loss of the main line electrode 11 can be reduced. In addition, magnetic saturation around the main line electrode 11 can be prevented.
  • the current detection element according to the third embodiment is different from the first embodiment in that it includes two coil conductors for detecting current.
  • FIG. 5A is a plan view of the current detection element 3, and FIG. 5B is a cross-sectional view taken along line VV in FIG. 5A.
  • the current detection element 3 includes a laminate 20, a main line electrode 21, and coil conductors 22A and 22B.
  • the laminated body 10 is formed by laminating and sintering a plurality of insulator layers.
  • the insulator layer includes an insulator layer made of only a ferromagnetic material such as ferrite, and an insulator layer made of a ferromagnetic material and a non-magnetic material. When these insulator layers are laminated, a low magnetic permeability portion 24 having a lower magnetic permeability than the surroundings is formed in the laminated body 20 by the nonmagnetic material.
  • the main line electrode 21 is formed in the low permeability portion 24 of the laminate 20.
  • the main line electrode 21 is an example embodiment that corresponds to the “main line conductor” according to the present invention.
  • the coil conductors 22A and 22B are formed such that the winding axis is in the stacking direction of the stacked body 20 and the main line electrode 21 is sandwiched between them in a plan view from the stacking direction.
  • the winding axis of the coil conductors 22A and 22B is directed in a direction different from the direction in which the main line electrode 21 extends. That is, the winding axes of the coil conductors 22A and 22B are in a torsional positional relationship with the main line electrode 21, respectively.
  • the coil conductors 22A and 22B are examples of the “current detection conductor” according to the present invention.
  • the coil conductor 22A is formed by connecting open loop conductors 221, 222, 223, and 224 formed on the main surfaces of different insulator layers through interlayer connection conductors (not shown). A part of the coil conductor 22 ⁇ / b> A is located in the low magnetic permeability portion 24.
  • the open loop conductors 222 and 223 are formed on the main surface of the insulator layer including the nonmagnetic material, and a part of the open loop conductors 222 and 223 is formed. It is formed in the non-magnetic part. Thereby, a part of the coil conductor 22 ⁇ / b> A is formed in the low magnetic permeability portion 24 of the multilayer body 20.
  • the coil conductor 22B is formed by connecting open loop conductors 225, 226, 227, and 228 formed on the main surfaces of different insulator layers through interlayer connection conductors (not shown).
  • the open loop conductors 225, 226, 227, and 228 may be formed in the same layer as the insulator layer in which the open loop conductors 221 to 224 are formed, or may be formed in different layers.
  • a part of the coil conductor 22 ⁇ / b> B is located in the low magnetic permeability portion 24.
  • the open loop conductors 226 and 227 are formed on the main surface of the insulator layer including the nonmagnetic material, and a part of the open loop conductors 226 and 227 is formed. It is formed in the non-magnetic part. Thereby, a part of the coil conductor 22 ⁇ / b> B is formed in the low magnetic permeability portion 24 of the multilayer body 20.
  • connection conductor 23 is formed on the main surface of the insulator layer so as to straddle the main line electrode 21.
  • the coil conductors 22A and 22B are connected in series by the connection conductor 23, so that the coil conductors 22A and 22B form one coil.
  • connection conductor 23 when the connection conductor 23 is formed in a layer away from the main line electrode 11, the parasitic capacitance between the connection conductor 23 and the main line electrode 21 can be reduced.
  • FIG. 6 is a diagram for explaining the direction in which the induced current generated in the coil conductors 22A and 22B flows.
  • a magnetic flux is generated, and the magnetic flux passes through the coil openings of the coil conductors 22A and 22B, so that the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled. More specifically, one of the coil conductors 22A and 22B is interlinked with the magnetic flux by the main line electrode 21 from the upper surface side in the stacking direction to the mounting surface side, and the other is for the main line from the mounting surface side to the upper surface side. Magnetic flux from the electrode 21 is linked.
  • the direction in which the induced current generated in the coil conductors 22A and 22B flows is reverse when the main line electrode 21 and the coil conductors 22A and 22B are viewed in a plan view from the stacking direction.
  • the coil conductor 22A and the coil conductor 22B are connected so that the induced currents flowing through the coil conductors 22A and 22B do not cancel each other. That is, if the coil conductors 22A and 22B are both left-handed helix, the coil conductors 22A and 22B are connected in series by connecting one end on the upper surface side. Therefore, the magnetic field coupling between the main line electrode 11 and the coil conductors 22A and 22B is not weakened.
  • the coil conductors 22A and 22B are both left-handed, that is, in the same winding direction, and the coil conductors 22A and 22B are connected in series by connecting one end on the upper surface side to each other.
  • the magnetic flux generated by the current flowing through the line electrode 21 passes through the coil openings of the coil conductors 22A and 22B, and the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled.
  • 22B is not limited to this structure and connection method.
  • the winding direction and connection method of the structure of the coil conductors 22A and 22B are set so that the induced currents generated in the coil conductors 22A and 22B are not canceled by the magnetic field coupling between the main line electrode 21 and the coil conductors 22A and 22B. select.
  • the winding start and the winding end are arbitrarily determined at the two ends of the coil conductors 22A and 22B.
  • winding direction from the winding start to the winding end of the structure of the coil conductors 22A and 22B is the same in a plan view from the lamination direction, one winding start and the other winding start of the coil conductors 22A and 22B Are connected, or one winding end and the other winding end are connected, and the coil conductors 22A and 22B are connected in series. If the winding directions from the winding start to the winding end of the structure of the coil conductors 22A and 22B are opposite to each other in plan view from the lamination direction, one winding start and the other winding end of the coil conductors 22A and 22B Are connected, and the coil conductors 22A and 22B are connected in series.
  • the current detection element 3 when a current flows through the main line electrode 21, the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled. As described in the first embodiment, an induced current flows through the coil conductors 22A and 22B. By detecting this induced current, the current flowing through the main line electrode 21 can be detected.
  • the main line electrode 21 and part of the coil conductors 22A and 22B are formed in the low magnetic permeability portion 24.
  • the low magnetic permeability portion 24 is formed between the main line electrode 21 and the coil conductors 22A and 22B in a plan view shown in FIG. For this reason, the magnetic field coupling between the main line electrode 21 and the coil conductors 22A and 22B becomes stronger than when the low magnetic permeability portion is not formed. Thereby, the detection sensitivity of the electric current which flows into the electrode 21 for main lines can be improved.
  • the main line electrode 21 is disposed between the coil conductors 22A and 22B. For this reason, when the laminated body 20 is manufactured by laminating the insulator layers, even if the distance between the main line electrode 21 and the coil conductor 22A is increased, the main line electrode 21 and the coil conductor 22B The distance of approaches. That is, even if the magnetic field coupling between the main line electrode 21 and the coil conductor 22A becomes weak, the magnetic field coupling between the main line electrode 21 and the coil conductor 22B becomes strong.
  • the coil conductors 22A and 22B are connected in series to form one coil conductor. Therefore, even if the lamination deviation of the ferrite sheet occurs, the magnetic field coupling between the main line electrode 21 and the two coil conductors 22A and 22B is not substantially changed.
  • the formation area of the low magnetic permeability part 24 is not limited to FIG.
  • 7A, 7B, and 7C are diagrams showing current detection elements 3A, 3B, and 3C of another example.
  • two low magnetic permeability portions 24 ⁇ / b> A and 24 ⁇ / b> B are formed in the laminate 20.
  • the low magnetic permeability portions 24A and 24B correspond to “low magnetic permeability portions” according to the present invention.
  • the low magnetic permeability portion 24A is in contact with a part of the main line electrode 21 and a part of the coil conductor 22A.
  • the low magnetic permeability portion 24B is in contact with a part of the main line electrode 21 and a part of the coil conductor 22B.
  • the 7B has a layer of a low magnetic permeability portion 24C in part.
  • the layers other than the low magnetic permeability portion 24C are ferromagnetic layers.
  • the main line electrode 21 and the open loop conductors 222, 223, 226, and 227 are formed in the low magnetic permeability portion 24C. Even in this configuration, the magnetic coupling between the main line electrode 21 and the coil conductors 22A and 22B is strong, and the detection sensitivity of the current flowing through the main line electrode 21 can be increased.
  • the main line electrode 21 has a multilayer structure in which a plurality of electrodes (two electrodes in the figure) are connected by an interlayer connection conductor (not shown).
  • the electrode 21 is disposed in the low magnetic permeability portion 24D.
  • the inductance component and resistance component of the main line electrode 21 can be reduced.
  • the magnetic flux density generated in the laminate 20 by the current flowing through the main line electrode 21 can be reduced (the magnetic flux concentration is weakened). it can. As a result, saturation of the magnetic layer can be prevented, so that a larger current can be passed through the main line electrode 21.
  • the low magnetic permeability portion 24D is formed to be thicker than the thickness of the magnetic layer sandwiching the low magnetic permeability portion 24D from above and below. At this time, if the thickness of the magnetic layer is reduced, the magnetic flux density is likely to be saturated (non-linearity) within the layer. Therefore, the magnetic layer is preferably formed with a thickness that allows the internal magnetic flux density to be allowed. .
  • the relative magnetic permeability of the magnetic layer is, for example, 50 to 300.
  • the coil conductors 22A and 22B include the coil conductors 22Au and 22Bu formed in the upper magnetic layer in the stacking direction with the low permeability portion 24D interposed therebetween, and the coil conductors 22Ad and 22Bu formed in the lower magnetic layer. 22Bd.
  • the distance between the coil conductor 22Au and the coil conductor 22Ad is longer than the distance between the coil conductors 22Au adjacent to each other in the stacking direction or the distance between the coil conductors 22Ad.
  • the distance between the coil conductor 22Bu and the coil conductor 22Bd is longer than the distance between the coil conductors 22Bu adjacent to each other in the stacking direction or the distance between the coil conductors 22Bd.
  • the lower part of the coil conductors 22Au and 22Bu and the upper part of the coil conductors 22Ad and 22Bd are formed in the low magnetic permeability portion 24D.
  • the inductance of the coil conductors 22A and 22B is increased, so that the current detection sensitivity is increased.
  • the magnetic layer is disposed so as to sandwich the main line electrode 21 and the coil conductors 22A and 22B, the magnetic coupling is strengthened, and the current detection sensitivity is increased.
  • the coil conductor 22Au and the coil conductor 22Ad are spaced apart. Further, by separating the coil conductor 22Au and the coil conductor 22Ad, the coil conductor 22Au and the coil conductor 22Ad are also separated from the main line electrode 21, so that the parasitic between the coil conductors 22Au and 22Ad and the main line electrode 21 occurs. Generation of capacity can be prevented. Further, an insulation distance can be maintained between the coil conductors 22Au and 22Ad and the main line electrode 21. For the same reason, the coil conductor 22Bu and the coil conductor 22Bd are also separated from each other.
  • the main line electrode 21 and the coil conductors 22A and 22B are formed so as not to overlap in the plane direction of the multilayer body 20 (a direction orthogonal to the lamination direction). Thereby, the main line electrode 21 and the coil conductors 22A and 22B are not close to each other, and the parasitic capacitance generated between the main line electrode 21 and the coil conductors 22A and 22B can be reduced. As a result, an error in the output voltage of the current detection circuit can be reduced.
  • FIG. 8 is a diagram for explaining the effect of providing the low magnetic permeability portion.
  • (1) is a current detection element not provided with a low permeability part
  • (2) is a current detection element 3A shown in FIG. 7A
  • (3) is a current detection element 3 shown in FIG.
  • the coil conductors 22A and 22B may be connected in parallel and connected in series. By connecting the coil conductors 22A and 22B in parallel, the resistance can be lowered and the loss can be suppressed.
  • the winding direction and connection method of the coil conductors 22A and 22B when the coil conductors 22A and 22B are connected in parallel are as follows. If the winding direction from the winding start to the winding end of the structure of the coil conductors 22A and 22B is the same in plan view from the lamination direction, one winding start and the other winding end are connected, and And the other winding start are connected, and the detection circuit is connected between the two connection portions of the coil conductors 22A and 22B.
  • winding directions from the winding start to the winding end of the structure of the coil conductors 22A and 22B are opposite to each other in plan view from the lamination direction, one winding start and the other winding start of the coil conductors 22A and 22B Are connected, and the end of one winding and the end of the other winding are connected, and a detection circuit is connected between the two connection portions of the coil conductors 22A and 22B.
  • the coil conductors 22A and 22B may be independent from each other without being connected.
  • the winding direction of the coil conductors 22A and 22B is not limited.
  • two current detection results can be obtained from each of the coil conductors 22A and 22B.
  • a mounting electrode for mounting an element used for current detection is provided on the upper surface of the current detection element, and the element is mounted on the mounting electrode to constitute a current detection circuit module.
  • FIG. 9A is a plan view of the current detection circuit module 4 provided with a current detection element
  • FIG. 9B is a cross-sectional view taken along line IX-IX in FIG. 9A
  • FIG. 10 is a circuit diagram of the current detection circuit module 4. In FIG. 10, the power supply and bias circuit of the comparator U1 are omitted.
  • the current detection circuit module 4 includes a laminated body 30.
  • the laminated body 30 is configured by laminating an insulating layer made of a ferromagnetic material such as ferrite and an insulating layer made of a non-magnetic material and sintering them.
  • the insulating layers made of nonmagnetic material By laminating the insulating layers made of nonmagnetic material, the low magnetic permeability portions 31A, 31B, and 31C of the nonmagnetic material layer are formed in the laminated body 30.
  • insulator layers 32A and 32B made of a ferromagnetic material are stacked so as to be sandwiched between the low magnetic permeability portions 31A and 31B and the low magnetic permeability portions 31A and 31C along the stacking direction.
  • the mounting surface of the laminate 30 is provided with mounting electrodes 33A, 33B and the like for mounting on the mother board.
  • mounting electrodes 34A, 34B, 34C, 34D, 34E and the like for mounting elements are provided on the upper surface of the laminate 30, mounting electrodes 34A, 34B, 34C, 34D, 34E and the like for mounting elements are provided.
  • FIG. 9 illustrates the mounting electrodes 33A and 33B and the mounting electrodes 34A to 34E, the number of mounting electrodes is not limited to this.
  • the main surface of the insulator layer 32A is provided with a ground electrode 16 extending in a planar shape.
  • the mounting electrode 34A is electrically connected to the ground electrode 16 through the interlayer connection conductor.
  • the low magnetic permeability portion 31B is provided with a wiring pattern 17 that connects the mounting electrodes 34B to 34E.
  • the main line electrode 11 is formed in the low magnetic permeability portion 31A.
  • the coil conductor 12 is formed in the insulator layers 32A and 32B and the low magnetic permeability portion 31A so that the winding axis is in the stacking direction of the stacked body 30.
  • the winding axis of the coil conductor 12 faces a direction different from the direction in which the main line electrode 11 extends. That is, the winding axis of the coil conductor 12 has a twisted positional relationship with the main line electrode 11.
  • the mounting electrodes 34A to 34E are mounted with a comparator U1, a diode D1, capacitors C31, C32, C33, a resistor R1, and the like.
  • the diode D1, the capacitors C31 and C32, and the resistor R1 constitute a detection circuit that detects the current flowing through the main line electrode 11, as in FIG.
  • the capacitor C33 and the comparator U1 constitute a zero cross detection circuit.
  • the zero cross detection circuit is a circuit that detects a zero point (zero cross point) of the AC voltage induced in the coil conductor 12, and outputs Hi when the AC voltage exceeds a specific potential (for example, ground potential). Output Lo when not. That is, a digital signal synchronized with the frequency is output.
  • the ground electrode 16 is provided so as to overlap the main line electrode 11 and the coil conductor 12. Thereby, electromagnetic field noise generated from the main line electrode 11 and the like is shielded by the ground electrode 16, and the influence on the elements (comparator U1 and the like) mounted on the upper surface of the multilayer body 30 is reduced. Further, by mounting necessary elements on the upper surface of the laminate 30, the mounting area of the current detection circuit module 4 can be saved.
  • the configuration of the stacked body 30 may be the configuration of the stacked body described in the first to third embodiments.
  • the low magnetic permeability portion may be formed in a part of the laminated body as shown in FIG.
  • the current detection circuit module 4 may include two coil conductors as described in the third embodiment.
  • FIG. 11 is a circuit diagram of the power transmission system 100 according to the fifth embodiment.
  • the power transmission system 100 includes a power transmission device 101 and a power reception device 201.
  • the power transmission system 100 transmits power from the power transmission apparatus 101 to the power reception apparatus 201 by a magnetic field coupling method.
  • the power receiving apparatus 201 includes a load circuit 211.
  • the load circuit 211 includes a charging circuit and a secondary battery.
  • the secondary battery may be detachable from the power receiving apparatus 201.
  • the power receiving apparatus 201 is a portable electronic device provided with the secondary battery, for example. Examples of portable electronic devices include cellular phones, PDAs (Personal Digital Assistants), portable music players, notebook PCs, and digital cameras.
  • the power transmission device 101 is a charging stand for charging the secondary battery of the power receiving device 201 placed thereon.
  • the power transmission apparatus 101 includes a DC power source Vin that outputs a DC voltage.
  • the DC power source Vin is an AC adapter connected to a commercial power source.
  • An inverter circuit 111 that converts a DC voltage into an AC voltage is connected to the DC power source Vin.
  • a resonance circuit composed of capacitors C31 and C32 and a coil L2 is connected to the output side of the inverter circuit 111.
  • the current detection element 1 is provided between the inverter circuit 111 and the resonance circuit.
  • the main line electrode 11 of the current detection element 1 is a part of the power transmission line between the inverter circuit 111 and the resonance circuit.
  • the current detection element 1 is mounted on a mother board (not shown) and connected to the capacitor C1 and the load RL. As described with reference to FIG. 2, by detecting the voltage of the load RL, a current flowing between the inverter circuit 111 and the resonance circuit (hereinafter referred to as a power transmission current) can be detected.
  • the power receiving apparatus 201 includes a capacitor C4 and a coil L3 that form a resonance circuit.
  • the coils L2 and L3 are magnetically coupled to transmit power from the power transmitting apparatus 101 to the power receiving apparatus 201.
  • the resonance circuit of the power receiving device 201 is set to the same resonance frequency as the resonance circuit of the power transmission device 101. By making the resonance frequencies of the resonance circuits of the power transmission apparatus 101 and the power reception apparatus 201 the same, power transmission can be performed efficiently.
  • the power reception circuit 210 is connected to the resonance circuit of the power reception device 201.
  • the power receiving circuit 210 rectifies and smoothes the voltage induced in the coil L3.
  • the power receiving circuit 210 converts the rectified and smoothed voltage into a stabilized predetermined voltage and supplies it to the load circuit 211.
  • the impedance of the inverter circuit 111 viewed from the power reception device 201 side can be detected.
  • detecting the impedance for example, it can be determined whether or not the power receiving apparatus 201 is placed on the power transmitting apparatus 101.
  • the resonance circuit of the power transmitting apparatus 101 and the power receiving apparatus 201 is coupled, and a frequency peak due to complex resonance appears.
  • the presence or absence of mounting of the power receiving apparatus 201 can be determined by detecting the frequency characteristics of the impedance and detecting the presence or absence of a frequency peak.
  • the presence or absence of the power reception device 201 is detected or the state of an abnormality is detected based on a change in the magnitude or phase of the current. It can be performed.
  • the current detection conductor for detecting the current flowing through the main line electrode is a coiled conductor.
  • any shape can be used as long as it is magnetically coupled to the main line electrode. Is not particularly limited. Further, each of the first to fourth embodiments can be appropriately combined.
  • the main line electrode and the current detection conductor are formed inside the insulator having the high magnetic permeability portion and the low magnetic permeability portion.
  • Each of the detection conductors may be at least partially formed on the surface of the insulator.
  • At least the main line electrode and the current detection conductor are fixed to the insulator, and a low permeability portion of the insulator is disposed between the main line electrode and the current detection conductor, and a high permeability is provided around the low permeability portion. What is necessary is just to arrange
  • Connection conductors 24, 24A, 24B, 24C, 24D ... Low magnetic permeability portions 30 ... Laminated bodies 31A, 31B, 31C ... Low magnetic permeability portions 32A, 32B ... insulator layers 33A, 33B ... mounting electrodes 34A, 34B, 34C, 34D, 34E ... mounting Pole 100 ... Power transmission system 101 ... Power transmission device 111 ... Inverter circuits 121, 122, 123, 124 ... Open loop conductor 201 ... Power reception device 210 ... Power reception circuit 211 ... Load circuits 221, 222, 223, 224, 225, 226 227, 228 ... open loop conductor 222Ad ... coil conductor

Abstract

The present invention is provided with a laminated body (10) wherein multiple insulation layers that include magnetic layers are layered, a main line electrode (11) formed in the laminated body (10) and a coil conductor (12) formed in the laminated body (10) that magnetically connects to the main line electrode (11). The laminated body (10) has a low magnetic permeability part (13) with a magnetic permeability lower than the surroundings thereof between the main line electrode (11) and the coil conductor (12). The low magnetic permeability part (13) contacts at least one of the main line electrode (11) and the coil conductor (12) and by doing so, allows for miniaturization, a current detection element that can detect current with good sensitivity and the provision of an electrical power transmission system that comprises said element.

Description

電流検出素子及び電力伝送システムCurrent detection element and power transmission system
 本発明は、線路に流れる高周波電流を検出する電流検出素子及び電力伝送システムに関する。 The present invention relates to a current detection element and a power transmission system for detecting a high-frequency current flowing in a line.
 線路に流れる電流を検出する素子として、例えばカレントトランスが知られている。カレントトランスは通常、トロイダルコアに巻線したトランスで構成される。そのため、部品のサイズが大きくなるため、小型、低背化が要求される装置には、カレントトランスを用いることは困難となる場合がある。そこで、小型、薄型トランスの例として、例えば、特許文献1に記載されている積層トランスがある。特許文献1に記載の積層トランスは、導体パターンを印刷した磁性体シートを積層し、トランスを構成した表面実装電子部品である。 For example, a current transformer is known as an element for detecting a current flowing in a line. A current transformer is usually composed of a transformer wound around a toroidal core. For this reason, since the size of the parts increases, it may be difficult to use a current transformer in a device that is required to be small and low-profile. Therefore, as an example of a small and thin transformer, for example, there is a laminated transformer described in Patent Document 1. The laminated transformer described in Patent Document 1 is a surface-mount electronic component in which a magnetic sheet on which a conductor pattern is printed is laminated to constitute a transformer.
特開2004-257964号公報JP 2004-257964 A
 しかしながら、特許文献1に記載の積層トランスの場合、一次側及び二次側の線路が略直線上であるため、インダクタンスが小さく、トランスとしての結合は弱い。このため、この積層トランスを電流検出用に用いた場合、検出感度が低く、電流検出を精度よく行えない場合がある。 However, in the case of the laminated transformer described in Patent Document 1, since the primary and secondary lines are substantially straight, the inductance is small and the coupling as a transformer is weak. For this reason, when this laminated transformer is used for current detection, the detection sensitivity may be low, and current detection may not be performed accurately.
 そこで、本発明の目的は、小型化でき、感度よく電流検出を行える電流検出素子及びそれを備えた電力伝送システムを提供することにある。 Therefore, an object of the present invention is to provide a current detection element that can be downsized and detect current with high sensitivity, and a power transmission system including the current detection element.
 本発明に係る電流検出素子は、絶縁体と、前記絶縁体に形成された主線路導体と、前記絶縁体に形成され、前記主線路導体と磁界結合する電流検出用導体と、を備え、前記絶縁体は、前記主線路導体と前記電流検出用導体との間に設けられ、前記絶縁体内において透磁率が周囲よりも低い低透磁率部を有することを特徴とする。 A current detection element according to the present invention includes an insulator, a main line conductor formed on the insulator, and a current detection conductor formed on the insulator and magnetically coupled to the main line conductor. The insulator is provided between the main line conductor and the current detection conductor, and has a low permeability portion whose permeability is lower than that of the surroundings in the insulator.
 この構成では、主線路導体に電流が流れると、主線路導体から磁束が発生し、その磁束が電流検出用導体と鎖交することで、電流検出用導体に誘導電流が流れる。この誘導電流を検出することで、主線路導体に流れる電流を検出できる。主線路導体と、電流検出用導体との間には低透磁率部が形成されているため、主線路導体と、電流検出用導体との磁界結合は強い。このため、出力電圧を大きくすることができ、感度よく電流検出を行える。 In this configuration, when a current flows through the main line conductor, a magnetic flux is generated from the main line conductor, and the magnetic flux is linked to the current detection conductor, so that an induced current flows through the current detection conductor. By detecting this induced current, the current flowing through the main line conductor can be detected. Since the low magnetic permeability portion is formed between the main line conductor and the current detection conductor, the magnetic coupling between the main line conductor and the current detection conductor is strong. For this reason, the output voltage can be increased, and current detection can be performed with high sensitivity.
 前記主線路導体は前記絶縁体において、平面視したときに、直線状に形成されていることが好ましい。 The main line conductor is preferably formed in a straight line in the insulator in plan view.
 この構成では、主線路導体の形成が容易となる。また、主線路導体のインダクタンスと抵抗値とを低減できる。また、主線路に接続される回路への影響を軽減することができる。 This configuration facilitates the formation of the main line conductor. Moreover, the inductance and resistance value of the main line conductor can be reduced. Moreover, the influence on the circuit connected to the main line can be reduced.
 前記電流検出用導体は、前記絶縁体に設けられ、前記主線路導体の延びる方向とは異なる方向に巻回軸を有するコイル状導体であってもよい。 The coil for current detection may be a coiled conductor provided on the insulator and having a winding axis in a direction different from a direction in which the main line conductor extends.
 この構成では、主線路導体と、電流検出用導体との磁界結合を強くでき、感度よく電流検出を行える。また、コイル状導体であるため検出用導体のインダクタンスを大きくすることができ、出力電圧が増大する。 In this configuration, the magnetic coupling between the main line conductor and the current detection conductor can be strengthened, and current detection can be performed with high sensitivity. Moreover, since it is a coiled conductor, the inductance of the detection conductor can be increased, and the output voltage increases.
 前記絶縁体は、少なくとも一部で透磁率の異なる複数の絶縁体層が積層された積層体であり、複数の前記絶縁体層は少なくとも一部に磁性体層を有する構成が好ましい。 The insulator is preferably a laminate in which a plurality of insulator layers having different magnetic permeability are laminated at least partially, and the plurality of insulator layers preferably have a magnetic layer at least partially.
 この構成では、電流検出用導体のインダクタンスを高くすることができ、主線路の電流により生じる磁界、及び電流検出用導体周辺の磁界を基板内に閉じ込めることができる。 In this configuration, the inductance of the current detection conductor can be increased, and the magnetic field generated by the current in the main line and the magnetic field around the current detection conductor can be confined in the substrate.
 前記磁性体層は磁性フェライトの層であることが好ましい。 The magnetic layer is preferably a magnetic ferrite layer.
 この構成では、電流検出用導体のインダクタンスを高くすることができ、主線路の電流により生じる磁界、及び電流検出用導体周辺の磁界を基板内に閉じ込めることができる。また、周囲への漏洩磁界を低減することができ、漏洩ノイズを低くすることができる。さらに、透磁率が高い磁性フェライトで磁路を形成することができるので、主線路導体と、電流検出用導体との磁界結合を強くでき、感度よく電流検出を行える。 In this configuration, the inductance of the current detection conductor can be increased, and the magnetic field generated by the current in the main line and the magnetic field around the current detection conductor can be confined in the substrate. Further, the leakage magnetic field to the surroundings can be reduced, and the leakage noise can be reduced. Further, since the magnetic path can be formed of magnetic ferrite having a high magnetic permeability, the magnetic coupling between the main line conductor and the current detection conductor can be strengthened, and current detection can be performed with high sensitivity.
 前記低透磁率部は非磁性体で構成されることが好ましい。 It is preferable that the low magnetic permeability portion is made of a nonmagnetic material.
 この構成では、透磁率の高い領域(主線路周辺、又は、電流検出用導体の周辺)に磁界が閉じこもり結合しにくくなる状態を解消することができるので、主線路導体と、電流検出用導体との磁界結合を強くでき、感度よく電流検出を行える。また、磁束密度の集中を緩和することができるので、磁性体の磁気飽和を抑制し、より大きな電流を取り扱うことができる。 In this configuration, it is possible to eliminate a state in which the magnetic field is confined in a region having a high magnetic permeability (around the main line or around the current detection conductor), so that the main line conductor, the current detection conductor, The magnetic field coupling can be strengthened, and the current can be detected with high sensitivity. Further, since the concentration of magnetic flux density can be relaxed, magnetic saturation of the magnetic material can be suppressed and a larger current can be handled.
 前記低透磁率部は、前記主線路導体又は前記電流検出用導体の少なくとも一方に接していてもよい。 The low magnetic permeability portion may be in contact with at least one of the main line conductor or the current detection conductor.
 この構成では、磁束集中を弱めることができる。 This configuration can weaken magnetic flux concentration.
 前記低透磁率部は、前記主線路導体及び前記電流検出用導体に接している、ことが好ましい。 It is preferable that the low magnetic permeability portion is in contact with the main line conductor and the current detection conductor.
 この構成では、透磁率の高い領域(主線路周辺、あるいは、電流検出用導体の周辺)に磁界が閉じこもり結合しにくくなる状態を解消することができるので、主線路導体と、電流検出用導体との磁界結合を強くでき、感度よく電流検出を行える。 In this configuration, it is possible to eliminate a state in which the magnetic field is confined in a region having a high magnetic permeability (around the main line or around the current detection conductor), so that the main line conductor, the current detection conductor, The magnetic field coupling can be strengthened, and the current can be detected with high sensitivity.
 本発明に係る電流検出素子は、複数の前記電流検出用導体を備える構成でもよい。 The current detection element according to the present invention may include a plurality of the current detection conductors.
 この構成では、複数の電流検出用導体が独立している場合には、複数の電流検出結果を得ることができる。また、複数の電流検出用導体を直列接続した場合には、主線路導体と、電流検出用導体との磁界結合を強くでき、感度よく電流検出を行える。複数の電流検出用導体を並列接続した場合には、電流検出用導体の抵抗を下げ、損失を抑えることができる。 In this configuration, when a plurality of current detection conductors are independent, a plurality of current detection results can be obtained. When a plurality of current detection conductors are connected in series, magnetic coupling between the main line conductor and the current detection conductor can be strengthened, and current detection can be performed with high sensitivity. When a plurality of current detection conductors are connected in parallel, the resistance of the current detection conductor can be lowered to suppress loss.
 前記電流検出用導体に接続された、周波数特性を有する素子を備えてもよい。 An element having a frequency characteristic connected to the current detection conductor may be provided.
 この構成では、使用する周波数帯での感度を高めたり、不要周波数成分(例えば、高調波成分)をフィルタリングしたりすることができる。また、周波数特性を有する素子、例えばコンデンサを電流検出素子に外付けする必要がないため、素子を実装する領域を確保する必要がない。 In this configuration, the sensitivity in the frequency band to be used can be increased, and unnecessary frequency components (for example, harmonic components) can be filtered. In addition, since it is not necessary to externally attach an element having frequency characteristics, such as a capacitor, to the current detection element, it is not necessary to secure a region for mounting the element.
 本発明は、送電装置が有する送電側結合部と、受電装置が有する受電側結合部とを、電界または磁界の少なくとも一方により結合させて、前記送電装置から前記受電装置へ電力を伝送する電力伝送システムにおいて、前記送電装置は、前記送電側結合部に接続される電力伝送ラインに流れる交流成分を有する電流を検出する電流検出部、を有し、前記電流検出部は、絶縁体と、前記絶縁体に形成された主線路導体と、前記絶縁体に形成され、前記主線路導体と磁界結合する電流検出用導体と、を備え、前記絶縁体は、前記主線路導体と前記電流検出用導体との間に設けられ、前記絶縁体内において透磁率が周囲よりも低い低透磁率部を有し、前記主線路導体は、前記電力伝送ラインの一部を構成していることを特徴とする。 The present invention relates to power transmission for transmitting power from the power transmission device to the power reception device by coupling a power transmission side coupling unit of the power transmission device and a power reception side coupling unit of the power reception device by at least one of an electric field or a magnetic field. In the system, the power transmission device includes a current detection unit that detects a current having an AC component flowing in a power transmission line connected to the power transmission side coupling unit, and the current detection unit includes an insulator and the insulation A main line conductor formed in a body, and a current detection conductor formed in the insulator and magnetically coupled to the main line conductor, the insulator including the main line conductor and the current detection conductor And having a low magnetic permeability portion whose permeability is lower than that of the surroundings in the insulator, and the main line conductor constitutes a part of the power transmission line.
 この構成では、送電装置において、送電側結合部に流れる電流を感度よく検出できる。検出した電流の大きさ、又は位相の変化により、受電装置の載置の有無の判定又は異常等の状態検知を行うことができる。 In this configuration, the current flowing through the power transmission side coupling unit can be detected with high sensitivity in the power transmission device. Based on the detected current magnitude or phase change, it is possible to determine whether or not the power receiving apparatus is mounted or to detect a state such as an abnormality.
 本発明によれば、主線路導体と、電流検出用導体との磁界結合は強い。このため、感度よく電流検出を行える。 According to the present invention, the magnetic field coupling between the main line conductor and the current detection conductor is strong. Therefore, current detection can be performed with high sensitivity.
図1(A)は、電流検出素子の平面図、図1(B)は、図1(A)のI-I線における断面図である。1A is a plan view of the current detection element, and FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A. 図2(A)及び図2(B)は、電流検出素子を用いた電流検出回路を示す図である。2A and 2B are diagrams illustrating a current detection circuit using a current detection element. 図3(A)は、別の例の電流検出素子の平面図、図3(B)は、図3(A)のIII-III線における断面図である。3A is a plan view of another example of the current detection element, and FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A. 図4(A)は、電流検出素子の平面図、図4(B)は、図4(A)のIV-IV線における断面図である。4A is a plan view of the current detection element, and FIG. 4B is a cross-sectional view taken along line IV-IV in FIG. 4A. 図5(A)は、電流検出素子の平面図、図5(B)は、図5(A)のV-V線における断面図である。5A is a plan view of the current detection element, and FIG. 5B is a cross-sectional view taken along line VV in FIG. 5A. 図6は、コイル導体に生じる誘導電流の流れる方向を説明するための図である。FIG. 6 is a diagram for explaining the direction in which the induced current generated in the coil conductor flows. 図7(A)、図7(B)および図7(C)は、別の例の電流検出素子を示す図である。FIG. 7A, FIG. 7B, and FIG. 7C are diagrams showing another example of the current detection element. 図8は、低透磁率部を設けることによる効果を説明するための図である。FIG. 8 is a diagram for explaining the effect of providing the low magnetic permeability portion. 図9(A)は、電流検出素子を備えた電流検出回路モジュールの平面図、図9(B)は、図9(A)のIX-IX線における断面図である。9A is a plan view of a current detection circuit module including a current detection element, and FIG. 9B is a cross-sectional view taken along line IX-IX in FIG. 9A. 図10は、電流検出回路モジュールの回路図である。FIG. 10 is a circuit diagram of the current detection circuit module. 図11は、実施形態5に係る電力伝送システムの回路図である。FIG. 11 is a circuit diagram of a power transmission system according to the fifth embodiment.
(実施形態1)
 図1(A)は、電流検出素子1の平面図、図1(B)は、図1(A)のI-I線における断面図である。なお、図1(A)に示す平面図は透視図である。
(Embodiment 1)
1A is a plan view of the current detection element 1, and FIG. 1B is a cross-sectional view taken along the line II in FIG. 1A. Note that the plan view shown in FIG. 1A is a perspective view.
 電流検出素子1は、積層体10、主線路用電極11及びコイル導体12を備えている。積層体10は、複数の絶縁体層が積層された絶縁体であり、焼結されて形成されている。絶縁体層は、フェライト等の磁性体のみからなる絶縁体層と、磁性体及び非磁性体からなる絶縁体層とがある。磁性体は、強磁性体であり、比透磁率μ>1である。非磁性体は、周囲の磁性体よりも透磁率が低く、比透磁率μ=1である。これら絶縁体層が積層された際、積層体10には、磁性体により高透磁率部と、非磁性体により周囲の高透磁率部よりも透磁率が低い低透磁率部13が形成される。なお、低透磁率部13には非磁性体ではなく低透磁率の磁性体(非等磁率μ≠1、ただし高透磁率部の透磁率よりも低い)を用いてもよい。 The current detection element 1 includes a laminated body 10, a main line electrode 11, and a coil conductor 12. The laminate 10 is an insulator in which a plurality of insulator layers are laminated, and is formed by sintering. The insulator layer includes an insulator layer made of only a magnetic material such as ferrite, and an insulator layer made of a magnetic material and a non-magnetic material. The magnetic body is a ferromagnetic body and has a relative magnetic permeability μ r > 1. The nonmagnetic material has a lower magnetic permeability than the surrounding magnetic material, and the relative magnetic permeability μ r = 1. When these insulator layers are laminated, the laminated body 10 is formed with a high magnetic permeability portion made of a magnetic material and a low magnetic permeability portion 13 having a lower magnetic permeability than a surrounding high magnetic permeability portion made of a non-magnetic material. . Note that the low permeability portion 13 may be a non-magnetic material instead of a non-magnetic material (non-isomagnetic permeability μ r ≠ 1, but lower than the permeability of the high permeability portion).
 積層体10の一方主面には、マザー基板に実装するための複数の実装電極(不図示)が形成されている。電流検出素子1は、実装電極が形成された積層体10の主面(以下、実装面と言う)をマザー基板側にして実装される。図1(A)は、積層体10の積層方向において、実装面と対向する面(以下、上面と言う)から視た平面図である。 A plurality of mounting electrodes (not shown) for mounting on the mother board are formed on one main surface of the laminate 10. The current detection element 1 is mounted with the main surface (hereinafter referred to as a mounting surface) of the laminated body 10 on which the mounting electrodes are formed facing the mother substrate. FIG. 1A is a plan view seen from a surface (hereinafter referred to as an upper surface) facing the mounting surface in the stacking direction of the stacked body 10.
 主線路用電極11は、積層体10の低透磁率部13内に形成されている。主線路用電極11は、非磁性体を含む絶縁体層の主面であって、非磁性体部分に直線状の導体パターンが印刷されることで形成される。主線路用電極11に隣接してコイル導体12が配置される。コイル導体12、主線路用電極11の配列方向と交わる方向における、主線路用電極11の両端付近それぞれは、層間接続導体(図中黒丸)を介して、異なる実装電極に接続されている。主線路用電極11は、本発明に係る「主線路導体」の一例である。主線路用電極11は直線状に形成されているため、主線路用電極11の形成が容易であり、主線路用電極11のインダクタンスと抵抗値とを低減できる。 The main line electrode 11 is formed in the low permeability portion 13 of the laminate 10. The main line electrode 11 is a main surface of an insulating layer containing a nonmagnetic material, and is formed by printing a linear conductor pattern on the nonmagnetic material portion. A coil conductor 12 is disposed adjacent to the main line electrode 11. Each of the vicinity of both ends of the main line electrode 11 in the direction intersecting with the arrangement direction of the coil conductor 12 and the main line electrode 11 is connected to a different mounting electrode via an interlayer connection conductor (black circle in the figure). The main line electrode 11 is an example of the “main line conductor” according to the present invention. Since the main line electrode 11 is formed in a straight line, the main line electrode 11 can be easily formed, and the inductance and the resistance value of the main line electrode 11 can be reduced.
 なお、積層体10の積層方向と平行な側面に主線路用電極11を引き出して、積層体10の側面を介して実装電極に接続することもできる。この場合、積層体10の内部において主線路用電極11が磁性体に接するまたは近接する領域を短くすることができ、主線路用電極11の周囲の磁性体及び非磁性体による実効透磁率が低下するため、主線路用電極11のインダクタンスをさらに低減することができる。 Note that the main line electrode 11 can be drawn out to the side surface parallel to the stacking direction of the multilayer body 10 and connected to the mounting electrode via the side surface of the multilayer body 10. In this case, the area where the main line electrode 11 is in contact with or close to the magnetic body in the laminated body 10 can be shortened, and the effective magnetic permeability due to the magnetic body and the non-magnetic body around the main line electrode 11 is reduced. Therefore, the inductance of the main line electrode 11 can be further reduced.
 コイル導体12は、巻回軸を積層体10の積層方向にし、かつ、一部が低透磁率部13内に位置するよう形成されている。コイル導体12の巻回軸は、主線路用電極11の延びる方向とは異なる方向を向いている。つまり、コイル導体12の巻回軸は主線路用電極11とねじれの位置関係となっている。コイル導体12は、積層方向からの平面視で、主線路用電極11と間隙をおいて隣接配置されている。コイル導体12は、本発明に係る「電流検出用導体」の一例である。なお、コイル導体12の巻回方向は特に限定されない。また、コイル導体を主線路用電極11の延びる方向に沿って複数配置してもよい。 The coil conductor 12 is formed so that the winding axis is in the stacking direction of the stacked body 10 and a part thereof is positioned in the low magnetic permeability portion 13. The winding axis of the coil conductor 12 faces a direction different from the direction in which the main line electrode 11 extends. That is, the winding axis of the coil conductor 12 has a twisted positional relationship with the main line electrode 11. The coil conductor 12 is disposed adjacent to the main line electrode 11 with a gap in plan view from the stacking direction. The coil conductor 12 is an example embodiment that corresponds to the “current detection conductor” according to the present invention. Note that the winding direction of the coil conductor 12 is not particularly limited. A plurality of coil conductors may be arranged along the direction in which the main line electrode 11 extends.
 コイル導体12は、開ループ状導体121,122,123,124から構成されている。開ループ状導体121,122,123,124それぞれは、異なる絶縁体層の主面に形成されている。また、開ループ状導体122,123が、非磁性体を含む絶縁体層の主面に形成され、その開ループ状導体122,123の一部は非磁性体部分に形成されている。そして、積層方向に隣接する開ループ状導体の一端同士が、層間接続導体(不図示)により接続されている。これにより、巻回軸を積層体10の積層方向にし、かつ、一部が積層体10の低透磁率部13内に配置されたコイル導体12が形成される。 The coil conductor 12 is composed of open loop conductors 121, 122, 123, and 124. Each of the open loop conductors 121, 122, 123, and 124 is formed on a main surface of a different insulator layer. Further, the open loop conductors 122 and 123 are formed on the main surface of the insulator layer including the nonmagnetic material, and a part of the open loop conductors 122 and 123 is formed in the nonmagnetic material portion. And one end of the open loop-shaped conductor adjacent to the lamination direction is connected by the interlayer connection conductor (not shown). As a result, the coil conductor 12 is formed in which the winding axis is in the stacking direction of the stacked body 10 and a part thereof is disposed in the low magnetic permeability portion 13 of the stacked body 10.
 なお、コイル導体12の両端それぞれは、層間接続導体(不図示)により、積層体10の実装面に形成された異なる実装電極に接続されている。 Note that both ends of the coil conductor 12 are connected to different mounting electrodes formed on the mounting surface of the multilayer body 10 by interlayer connection conductors (not shown).
 この構成の電流検出素子1において、主線路用電極11に交流成分を有する電流が流れると、時間的に変化する磁束が発生する。コイル導体12の巻回軸は主線路用電極11に流れる電流とねじれの位置関係となっているため、コイル導体12には、コイル導体12のコイル開口を通して、主線路用電極11に流れる電流により発生した磁束が鎖交する。これにより、主線路用電極11とコイル導体12とは磁界結合する。そして、コイル導体12には誘導起電力が生じ、誘導起電力に応じてコイル導体12に誘導電流が流れる。この誘導起電力又は誘導電流を検出することで、主線路用電極11に流れる電流を検出できる。 In the current detecting element 1 having this configuration, when a current having an AC component flows through the main line electrode 11, a magnetic flux that changes with time is generated. Since the winding axis of the coil conductor 12 has a torsional positional relationship with the current flowing through the main line electrode 11, the coil conductor 12 has a current flowing through the coil opening of the coil conductor 12 and the current flowing through the main line electrode 11. The generated magnetic flux interlinks. Thereby, the main line electrode 11 and the coil conductor 12 are magnetically coupled. An induced electromotive force is generated in the coil conductor 12, and an induced current flows through the coil conductor 12 in accordance with the induced electromotive force. By detecting this induced electromotive force or induced current, the current flowing through the main line electrode 11 can be detected.
 本実施形態では、主線路用電極11とコイル導体12の一部とは、低透磁率部13内に形成されている。換言すれば、図1(A)に示すコイル導体12の巻回軸方向の平面視で、主線路用電極11とコイル導体12との間に低透磁率部13が形成されている。主線路用電極11とコイル導体12の一部とは低透磁率部13に接している。このため、主線路用電極11からの発生した磁束は、主線路用電極11とコイル導体12との間を避けるようにして、コイル導体12のコイル開口を通過するため、コイル導体12にはより多くの磁束が鎖交する。その結果、主線路用電極11とコイル導体12との磁界結合は強くなる。これにより、主線路用電極11に流れる電流の検出感度を高めることができる。また、コイル導体12の一部のみ低透磁率部13内に形成されているので、低透磁率部13によってコイル導体12のインダクタンスが大幅に低下しない。 In the present embodiment, the main line electrode 11 and a part of the coil conductor 12 are formed in the low magnetic permeability portion 13. In other words, the low magnetic permeability portion 13 is formed between the main line electrode 11 and the coil conductor 12 in a plan view in the winding axis direction of the coil conductor 12 shown in FIG. The main line electrode 11 and a part of the coil conductor 12 are in contact with the low magnetic permeability portion 13. For this reason, since the magnetic flux generated from the main line electrode 11 passes through the coil opening of the coil conductor 12 so as to avoid the space between the main line electrode 11 and the coil conductor 12, the coil conductor 12 Many magnetic fluxes are linked. As a result, the magnetic field coupling between the main line electrode 11 and the coil conductor 12 is strengthened. Thereby, the detection sensitivity of the electric current which flows into the electrode 11 for main lines can be improved. Further, since only a part of the coil conductor 12 is formed in the low magnetic permeability portion 13, the inductance of the coil conductor 12 is not significantly reduced by the low magnetic permeability portion 13.
 また、主線路用電極11とコイル導体12との間に低透磁率部13を設けることで、主線路用電極11とコイル導体12との距離を近づけることなく、磁界結合を強くすることができる。そして、主線路用電極11とコイル導体12とを離すことで、2つの電極間に生じる寄生容量を低減できる。 Further, by providing the low magnetic permeability portion 13 between the main line electrode 11 and the coil conductor 12, magnetic field coupling can be strengthened without reducing the distance between the main line electrode 11 and the coil conductor 12. . Then, by separating the main line electrode 11 and the coil conductor 12, the parasitic capacitance generated between the two electrodes can be reduced.
 さらに、主線路用電極11は低透磁率部13内に配置されているため、主線路用電極11近傍の磁束集中を弱めることができる。このため、主線路用電極11にはより大きな電流を流すことができる。主線路用電極11周りの透磁率は低いため、主線路用電極11のインダクタンス成分または磁気損失を小さくできる。さらに、主線路用電極11周りの磁気飽和を防止できる。 Furthermore, since the main line electrode 11 is disposed in the low magnetic permeability portion 13, the magnetic flux concentration in the vicinity of the main line electrode 11 can be weakened. For this reason, a larger current can flow through the main line electrode 11. Since the magnetic permeability around the main line electrode 11 is low, the inductance component or magnetic loss of the main line electrode 11 can be reduced. Furthermore, magnetic saturation around the main line electrode 11 can be prevented.
 図2(A)及び図2(B)は、電流検出素子1を用いた電流検出回路を示す図である。図2(A)及び図2(B)に示すインダクタL1は、主線路用電極11のインダクタンス成分である。 FIG. 2A and FIG. 2B are diagrams showing a current detection circuit using the current detection element 1. The inductor L1 shown in FIGS. 2A and 2B is an inductance component of the main line electrode 11.
 電流検出素子1は、主線路用電極11がマザー基板の主線路の途中に配置されるよう、マザー基板に実装される。また、コイル導体12が接続されている実装電極は、主線路用電極11を流れる電流を検出するための検出用回路に接続される。検出用回路は、図2(A)に示すように、キャパシタC1及び負荷RLである。電流検出素子1をマザー基板に実装することで、コイル導体12は、キャパシタC1及び負荷RLに直列に接続される。そして、前記のように、コイル導体12に誘導電流が流れたとき、負荷RLの両端電圧を検出することで、主線路用電極11に流れる電流、すなわち、マザー基板の主線路に流れる電流を検出できる。キャパシタC1は、コイル導体12に対して直列に接続されているが、並列に接続してもよい。 The current detection element 1 is mounted on the mother board so that the main line electrode 11 is arranged in the middle of the main line of the mother board. The mounting electrode to which the coil conductor 12 is connected is connected to a detection circuit for detecting a current flowing through the main line electrode 11. As shown in FIG. 2A, the detection circuit is a capacitor C1 and a load RL. By mounting the current detection element 1 on the mother board, the coil conductor 12 is connected in series to the capacitor C1 and the load RL. As described above, when an induced current flows through the coil conductor 12, the current flowing through the main line electrode 11, that is, the current flowing through the main line of the mother board is detected by detecting the voltage across the load RL. it can. The capacitor C1 is connected in series to the coil conductor 12, but may be connected in parallel.
 また、図2(A)では、キャパシタC1は、電流検出素子1に外付けに接続しているが、図2(B)に示すように、電流検出素子1内に、キャパシタC2を設けてもよい。キャパシタC2は、例えば、積層体10の上側主面に実装し、又は積層体内部に2枚の面状導体を平行に対向配置することで形成できる。このキャパシタC2と、負荷RLにより、検出用回路を構成している。この場合、キャパシタC2を、電流検出素子1に外付けする必要がないため、キャパシタC2を実装する領域をマザー基板に確保する必要がない。キャパシタC2は、本発明に係る「周波数特性を有する素子」の一例である。 2A, the capacitor C1 is externally connected to the current detection element 1. However, as shown in FIG. 2B, the capacitor C2 may be provided in the current detection element 1. Good. The capacitor C2 can be formed, for example, by being mounted on the upper main surface of the multilayer body 10 or by disposing two planar conductors in parallel in the multilayer body. The capacitor C2 and the load RL constitute a detection circuit. In this case, since it is not necessary to externally attach the capacitor C2 to the current detection element 1, it is not necessary to secure a region for mounting the capacitor C2 on the mother board. The capacitor C2 is an example of the “element having frequency characteristics” according to the present invention.
 なお、平面視で、低透磁率部13は、主線路用電極11及びコイル導体12の少なくとも一方と重なっていればよい。 In addition, the low magnetic permeability part 13 should just overlap with at least one of the electrode 11 for main lines, and the coil conductor 12 by planar view.
 図3(A)は、別の例の電流検出素子1Aの平面図、図3(B)は、図3(A)のIII-III線における断面図である。なお、図3(A)に示す平面図は透視図である。 3A is a plan view of another example of the current detection element 1A, and FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A. Note that the plan view shown in FIG. 3A is a perspective view.
 この例では、低透磁率部13A内には、主線路用電極11のみが形成されている。この構成であっても、主線路用電極11とコイル導体12との間に低透磁率部13Aを形成しているため、低透磁率部13が形成されない場合と比較して主線路用電極11とコイル導体12との磁界結合を強くすることができる。このため、主線路用電極11に流れる電流の検出感度を高めることができる。 In this example, only the main line electrode 11 is formed in the low magnetic permeability portion 13A. Even in this configuration, since the low magnetic permeability portion 13A is formed between the main line electrode 11 and the coil conductor 12, the main line electrode 11 is compared with the case where the low magnetic permeability portion 13 is not formed. Magnetic field coupling between the coil conductor 12 and the coil conductor 12 can be strengthened. For this reason, the detection sensitivity of the electric current which flows into the electrode 11 for main lines can be improved.
 なお、電流検出素子1,1Aでは、主線路用電極11全体が低透磁率部13,13A内に形成されているが、主線路用電極11の一部が低透磁率部13,13A内に形成されていればよい。また、電流検出素子1Aでは、コイル導体12の巻回軸方向の平面視で、低透磁率部13Aは主線路用電極11と重なっているが、コイル導体12と重なり、主線路用電極11とは重ならない構成であってもよい。さらに、低透磁率部13,13Aはコイル導体12及び主線路用電極11とは重ならず、コイル導体12の一部と主線路用電極11の一部とを結ぶ線分上において低透磁率部13,13Aが配置されている構成であってもよい。この構成であっても、低透磁率部13,13Aが形成されない場合と比較して主線路用電極11とコイル導体12との磁界結合は強いため、主線路用電極11に流れる電流の検出感度を高めることができる。 In the current detection elements 1 and 1A, the main line electrode 11 is entirely formed in the low magnetic permeability portions 13 and 13A, but a part of the main line electrode 11 is formed in the low magnetic permeability portions 13 and 13A. It only has to be formed. Further, in the current detection element 1A, the low magnetic permeability portion 13A overlaps with the main line electrode 11 in a plan view in the winding axis direction of the coil conductor 12, but overlaps with the coil conductor 12, and the main line electrode 11 The structure may not overlap. Further, the low magnetic permeability portions 13 and 13A do not overlap with the coil conductor 12 and the main line electrode 11, but have low magnetic permeability on a line segment connecting a part of the coil conductor 12 and a part of the main line electrode 11. The structure by which the parts 13 and 13A are arrange | positioned may be sufficient. Even in this configuration, the magnetic coupling between the main line electrode 11 and the coil conductor 12 is stronger than in the case where the low magnetic permeability portions 13 and 13A are not formed. Therefore, the detection sensitivity of the current flowing through the main line electrode 11 is high. Can be increased.
 ただし、コイル導体12と主線路用電極11の少なくても一方が非磁性体部と接している場合の方が、非磁性体部がコイル導体12及び主線路用電極11の両方に接していない場合よりも結合を高めることができる。この場合、高透磁率部を通過する磁束の多くがコイル導体12と主線路用電極11の一方と鎖交することができ、高透磁率部に発生し、コイル導体12と主線路用電極11の一方と鎖交しない漏れ磁束を減らすことができる。さらには、コイル導体12と主線路用電極11の両方が非磁性体部と接している場合の方が、コイル導体12と主線路用電極11の少なくても一方が非磁性体部と接していない場合よりも結合を高めることができる。この場合、高透磁率部を通過する磁束の多くがコイル導体12と主線路用電極11の両方と鎖交することができ、高透磁率部に発生し、コイル導体12と主線路用電極11の両方と鎖交しない漏れ磁束を減らすことができる。 However, when at least one of the coil conductor 12 and the main line electrode 11 is in contact with the non-magnetic part, the non-magnetic part is not in contact with both the coil conductor 12 and the main line electrode 11. The bond can be increased more than the case. In this case, most of the magnetic flux passing through the high magnetic permeability portion can be linked to one of the coil conductor 12 and the main line electrode 11, and is generated in the high magnetic permeability portion. Leakage magnetic flux not interlinked with one of the two can be reduced. Furthermore, when both the coil conductor 12 and the main line electrode 11 are in contact with the non-magnetic part, at least one of the coil conductor 12 and the main line electrode 11 is in contact with the non-magnetic part. Bonding can be increased over the absence. In this case, most of the magnetic flux passing through the high magnetic permeability portion can be linked to both the coil conductor 12 and the main line electrode 11, and is generated in the high magnetic permeability portion, so that the coil conductor 12 and the main line electrode 11 are connected. Leakage magnetic flux not interlinking with both can be reduced.
 なお、本実施形態では高透磁率部を磁性体(強磁性体)、低透磁率部を非磁性体、又は高透磁率部よりも透磁率の低い磁性体を用いたがこれに限らない。例えば、低透磁率部を反磁性体(比透磁率μ<1)で構成し、高透磁率部を磁性体または非磁性体で構成してもよい。少なくとも低透磁率部の透磁率が周囲の高透磁率部の透磁率よりも低ければよい。 In the present embodiment, the high permeability portion is a magnetic material (ferromagnetic material), the low permeability portion is a non-magnetic material, or a magnetic material having a lower permeability than the high permeability portion. However, the present invention is not limited to this. For example, the low magnetic permeability portion may be formed of a diamagnetic material (relative magnetic permeability μ r <1), and the high magnetic permeability portion may be formed of a magnetic material or a nonmagnetic material. It is sufficient that at least the permeability of the low permeability portion is lower than the permeability of the surrounding high permeability portion.
 また、積層方向において、積層体10の最も外側の2つの層を非磁性体層とし、最も外側の2つの非磁性体層で、磁性体層及び他の非磁性体層を挟む構成でもよい。これにより、磁束を積層体10内に閉じ込めるとともに、積層体10の機械強度を強くすることができる。 In the stacking direction, the outermost two layers of the stacked body 10 may be nonmagnetic layers, and the outermost two nonmagnetic layers may sandwich the magnetic layer and another nonmagnetic layer. Thereby, while confining a magnetic flux in the laminated body 10, the mechanical strength of the laminated body 10 can be strengthened.
(実施形態2)
 実施形態2に係る電流検出素子は、低透磁率部の大きさが実施形態1と相違する。
(Embodiment 2)
The current detection element according to the second embodiment is different from the first embodiment in the size of the low magnetic permeability portion.
 図4(A)は、電流検出素子2の平面図、図4(B)は、図4(A)のIV-IV線における断面図である。なお、図4(A)に示す平面図は透視図である。 4A is a plan view of the current detection element 2, and FIG. 4B is a cross-sectional view taken along the line IV-IV in FIG. 4A. Note that the plan view shown in FIG. 4A is a perspective view.
 電流検出素子2の積層体10Aは、フェライト等の強磁性体のみからなる絶縁体層と、非磁性体のみからなる絶縁体層とが積層され、焼結されて構成されている。非磁性体のみからなる絶縁体層が積層されることで、積層体10Aには、非磁性体層の低透磁率部14が形成される。そして、積層方向に沿って低透磁率部14を間に挟むように、強磁性体のみからなる絶縁体層が積層されている。 The laminated body 10A of the current detection element 2 is configured by laminating and sintering an insulator layer made of only a ferromagnetic material such as ferrite and an insulator layer made of only a nonmagnetic material. By laminating the insulator layer made of only the nonmagnetic material, the low magnetic permeability portion 14 of the nonmagnetic material layer is formed in the laminated body 10A. And the insulator layer which consists only of a ferromagnetic material is laminated | stacked so that the low magnetic permeability part 14 may be pinched | interposed along the lamination direction.
 主線路用電極11は、非磁性体のみからなる絶縁体層の主面に形成されている。コイル導体12は、巻回軸を積層体10Aの積層方向となるよう、開ループ状導体121,122,123,124が、層間接続導体(不図示)により接続されることで形成されている。開ループ状導体122,123は、非磁性体のみからなる絶縁体層の主面に形成されている。これにより、主線路用電極11及びコイル導体12の一部は、積層体10Aの低透磁率部14内に形成された構成となる。 The main line electrode 11 is formed on the main surface of an insulator layer made of only a non-magnetic material. The coil conductor 12 is formed by connecting open loop conductors 121, 122, 123, and 124 with interlayer connection conductors (not shown) so that the winding axis is in the stacking direction of the stacked body 10A. The open loop conductors 122 and 123 are formed on the main surface of the insulator layer made of only a nonmagnetic material. Thereby, a part of the main line electrode 11 and the coil conductor 12 is formed in the low magnetic permeability portion 14 of the laminated body 10A.
 なお、電流検出素子2による電流検出方法は、実施形態1と同様であるため、説明は省略する。 In addition, since the current detection method by the current detection element 2 is the same as that of the first embodiment, the description is omitted.
 この構成のように、主線路用電極11を積層体10A内に配置することで、主線路用電極11近傍の磁束集中を弱めることができ、より大きな電流を流すことができる。また、主線路用電極11とコイル導体12との磁界結合を強めることができる。これにより、電流の検出感度を高めることができる。さらに、主線路用電極11周りの透磁率は低いため、主線路用電極11のインダクタンス成分または磁気損失を小さくできる。また、主線路用電極11周りの磁気飽和を防止できる。 As in this configuration, by arranging the main line electrode 11 in the laminated body 10A, the magnetic flux concentration in the vicinity of the main line electrode 11 can be weakened, and a larger current can flow. Further, the magnetic field coupling between the main line electrode 11 and the coil conductor 12 can be strengthened. Thereby, the detection sensitivity of an electric current can be raised. Furthermore, since the magnetic permeability around the main line electrode 11 is low, the inductance component or magnetic loss of the main line electrode 11 can be reduced. In addition, magnetic saturation around the main line electrode 11 can be prevented.
(実施形態3)
 実施形態3に係る電流検出素子は、電流を検出するためのコイル導体を二つ備えている点で、実施形態1と相違する。
(Embodiment 3)
The current detection element according to the third embodiment is different from the first embodiment in that it includes two coil conductors for detecting current.
 図5(A)は、電流検出素子3の平面図、図5(B)は、図5(A)のV-V線における断面図である。 5A is a plan view of the current detection element 3, and FIG. 5B is a cross-sectional view taken along line VV in FIG. 5A.
 電流検出素子3は、積層体20、主線路用電極21及びコイル導体22A,22Bを備えている。積層体10は、複数の絶縁体層が積層され、焼結されて形成されている。絶縁体層は、フェライト等の強磁性体のみからなる絶縁体層と、強磁性体及び非磁性体からなる絶縁体層とがある。これら絶縁体層が積層された際、非磁性体により、積層体20には、周囲よりも透磁率が低い低透磁率部24が形成される。 The current detection element 3 includes a laminate 20, a main line electrode 21, and coil conductors 22A and 22B. The laminated body 10 is formed by laminating and sintering a plurality of insulator layers. The insulator layer includes an insulator layer made of only a ferromagnetic material such as ferrite, and an insulator layer made of a ferromagnetic material and a non-magnetic material. When these insulator layers are laminated, a low magnetic permeability portion 24 having a lower magnetic permeability than the surroundings is formed in the laminated body 20 by the nonmagnetic material.
 主線路用電極21は、積層体20の低透磁率部24内に形成されている。主線路用電極21は、本発明に係る「主線路導体」の一例である。 The main line electrode 21 is formed in the low permeability portion 24 of the laminate 20. The main line electrode 21 is an example embodiment that corresponds to the “main line conductor” according to the present invention.
 コイル導体22A,22Bは、巻回軸を積層体20の積層方向にし、かつ、積層方向からの平面視で、主線路用電極21を間に挟むようにして、形成されている。コイル導体22A,22Bの巻回軸は、主線路用電極21の延びる方向とは異なる方向を向いている。つまり、コイル導体22A,22Bの巻回軸はそれぞれ主線路用電極21とねじれの位置関係となっている。コイル導体22A,22Bは、本発明に係る「電流検出用導体」の一例である。 The coil conductors 22A and 22B are formed such that the winding axis is in the stacking direction of the stacked body 20 and the main line electrode 21 is sandwiched between them in a plan view from the stacking direction. The winding axis of the coil conductors 22A and 22B is directed in a direction different from the direction in which the main line electrode 21 extends. That is, the winding axes of the coil conductors 22A and 22B are in a torsional positional relationship with the main line electrode 21, respectively. The coil conductors 22A and 22B are examples of the “current detection conductor” according to the present invention.
 コイル導体22Aは、異なる絶縁体層の主面に形成された開ループ状導体221,222,223,224が、層間接続導体(不図示)により接続されることで形成されている。コイル導体22Aは、一部が低透磁率部24内に位置している。図5(A)及び図5(B)の場合、開ループ状導体222,223が、非磁性体を含む絶縁体層の主面に形成され、その開ループ状導体222,223の一部が非磁性体部分に形成されている。これにより、コイル導体22Aは、一部が積層体20の低透磁率部24内に形成された構成となる。 The coil conductor 22A is formed by connecting open loop conductors 221, 222, 223, and 224 formed on the main surfaces of different insulator layers through interlayer connection conductors (not shown). A part of the coil conductor 22 </ b> A is located in the low magnetic permeability portion 24. In the case of FIGS. 5A and 5B, the open loop conductors 222 and 223 are formed on the main surface of the insulator layer including the nonmagnetic material, and a part of the open loop conductors 222 and 223 is formed. It is formed in the non-magnetic part. Thereby, a part of the coil conductor 22 </ b> A is formed in the low magnetic permeability portion 24 of the multilayer body 20.
 コイル導体22Bは、異なる絶縁体層の主面に形成された開ループ状導体225,226,227,228が、層間接続導体(不図示)により接続されて、形成されている。開ループ状導体225,226,227,228は、開ループ状導体221~224が形成された絶縁体層と同じ層に形成されていてもよいし、異なる層に形成されていてもよい。コイル導体22Bは、一部が低透磁率部24内に位置している。図5(A)及び図5(B)の場合、開ループ状導体226,227が、非磁性体を含む絶縁体層の主面に形成され、その開ループ状導体226,227の一部が非磁性体部分に形成されている。これにより、コイル導体22Bは、一部が積層体20の低透磁率部24内に形成された構成となる。 The coil conductor 22B is formed by connecting open loop conductors 225, 226, 227, and 228 formed on the main surfaces of different insulator layers through interlayer connection conductors (not shown). The open loop conductors 225, 226, 227, and 228 may be formed in the same layer as the insulator layer in which the open loop conductors 221 to 224 are formed, or may be formed in different layers. A part of the coil conductor 22 </ b> B is located in the low magnetic permeability portion 24. In the case of FIGS. 5A and 5B, the open loop conductors 226 and 227 are formed on the main surface of the insulator layer including the nonmagnetic material, and a part of the open loop conductors 226 and 227 is formed. It is formed in the non-magnetic part. Thereby, a part of the coil conductor 22 </ b> B is formed in the low magnetic permeability portion 24 of the multilayer body 20.
 コイル導体22A,22Bの実装面側の一端は、層間接続導体により、実装電極に接続されている。また、コイル導体22A,22Bの上面側の一端同士は、接続導体23により接続されている。接続導体23は、主線路用電極21を跨ぐようにして、絶縁体層の主面に形成されている。コイル導体22A,22Bは、接続導体23により直列に接続されることで、コイル導体22A,22Bは一つのコイルを形成している。 One end of the coil conductors 22A and 22B on the mounting surface side is connected to the mounting electrode by an interlayer connection conductor. Further, one end on the upper surface side of the coil conductors 22A and 22B is connected by a connection conductor 23. The connection conductor 23 is formed on the main surface of the insulator layer so as to straddle the main line electrode 21. The coil conductors 22A and 22B are connected in series by the connection conductor 23, so that the coil conductors 22A and 22B form one coil.
 なお、接続導体23を主線路用電極11から距離が離れた層に形成した場合、接続導体23と主線路用電極21との寄生容量を低減することができる。 In addition, when the connection conductor 23 is formed in a layer away from the main line electrode 11, the parasitic capacitance between the connection conductor 23 and the main line electrode 21 can be reduced.
 図6は、コイル導体22A,22Bに生じる誘導電流の流れる方向を説明するための図である。 FIG. 6 is a diagram for explaining the direction in which the induced current generated in the coil conductors 22A and 22B flows.
 主線路用電極21に電流が流れると、磁束が発生し、その磁束がコイル導体22A,22Bのコイル開口を通過することで、主線路用電極21とコイル導体22A,22Bとが磁界結合する。詳しくは、コイル導体22A,22Bの一方には、積層方向の上面側から実装面側に向かう主線路用電極21による磁束が鎖交し、他方には実装面側から上面側に向かう主線路用電極21よる磁束が鎖交する。主線路用電極21とコイル導体22A,22Bとが磁界結合することで、コイル導体22A,22Bに誘導起電力が生じ、誘導起電力に応じてコイル導体22A,22Bに誘導電流が流れる。 When a current flows through the main line electrode 21, a magnetic flux is generated, and the magnetic flux passes through the coil openings of the coil conductors 22A and 22B, so that the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled. More specifically, one of the coil conductors 22A and 22B is interlinked with the magnetic flux by the main line electrode 21 from the upper surface side in the stacking direction to the mounting surface side, and the other is for the main line from the mounting surface side to the upper surface side. Magnetic flux from the electrode 21 is linked. When the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled, an induced electromotive force is generated in the coil conductors 22A and 22B, and an induced current flows in the coil conductors 22A and 22B according to the induced electromotive force.
 コイル導体22A,22Bに生じる誘導電流の流れる方向は、主線路用電極21及びコイル導体22A,22Bを積層方向から平面視したとき、それぞれ逆回りである。ここで、コイル導体22Aとコイル導体22Bは、コイル導体22A,22Bに流れる誘導電流が互いに打ち消しあわないように接続される。つまり、コイル導体22A,22Bの構造がともに左手の螺旋(left-handed helix)であるならば、コイル導体22A,22Bは互いに上面側の一端を接続することで直列に接続される。したがって、主線路用電極11とコイル導体22A,22Bとの磁界結合が弱まることはない。 The direction in which the induced current generated in the coil conductors 22A and 22B flows is reverse when the main line electrode 21 and the coil conductors 22A and 22B are viewed in a plan view from the stacking direction. Here, the coil conductor 22A and the coil conductor 22B are connected so that the induced currents flowing through the coil conductors 22A and 22B do not cancel each other. That is, if the coil conductors 22A and 22B are both left-handed helix, the coil conductors 22A and 22B are connected in series by connecting one end on the upper surface side. Therefore, the magnetic field coupling between the main line electrode 11 and the coil conductors 22A and 22B is not weakened.
 なお、本実施形態では、コイル導体22A,22Bの構造がともに左手の螺旋、つまり同じ巻回方向であり、コイル導体22A,22Bは互いに上面側の一端を接続することで直列に接続され、主線路用電極21に流れる電流により生じた磁束がコイル導体22A,22Bのコイル開口を通過して、主線路用電極21とコイル導体22A,22Bとが磁界結合するようにしているが、コイル導体22A,22Bの構造や接続の仕方は、これに限らない。 In this embodiment, the coil conductors 22A and 22B are both left-handed, that is, in the same winding direction, and the coil conductors 22A and 22B are connected in series by connecting one end on the upper surface side to each other. The magnetic flux generated by the current flowing through the line electrode 21 passes through the coil openings of the coil conductors 22A and 22B, and the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled. , 22B is not limited to this structure and connection method.
 主線路用電極21とコイル導体22A,22Bとが磁界結合することでコイル導体22A,22Bに生じる誘導電流が打ち消しあわないように、コイル導体22A,22Bの構造の巻回方向と接続の仕方を選択する。まず、積層方向からの平面視でのコイル導体22A,22Bの構造の巻回方向を決定するため、コイル導体22A,22Bのそれぞれの2つの端部に、巻き始めと巻き終わりを任意に決める。積層方向からの平面視で、コイル導体22A,22Bの構造の巻き始めから巻き終わりまでの巻回方向がともに同じであるならば、コイル導体22A,22Bの一方の巻き始めと他方の巻き始めとが接続される、または一方の巻き終わりと他方の巻き終わりとが接続され、コイル導体22A,22Bは直列接続される。積層方向からの平面視で、コイル導体22A,22Bの構造の巻き始めから巻き終わりまでの巻回方向が互いに逆であるならば、コイル導体22A,22Bの一方の巻き始めと他方の巻き終わりとが接続され、コイル導体22A,22Bは直列接続される。 The winding direction and connection method of the structure of the coil conductors 22A and 22B are set so that the induced currents generated in the coil conductors 22A and 22B are not canceled by the magnetic field coupling between the main line electrode 21 and the coil conductors 22A and 22B. select. First, in order to determine the winding direction of the structure of the coil conductors 22A and 22B in plan view from the stacking direction, the winding start and the winding end are arbitrarily determined at the two ends of the coil conductors 22A and 22B. If the winding direction from the winding start to the winding end of the structure of the coil conductors 22A and 22B is the same in a plan view from the lamination direction, one winding start and the other winding start of the coil conductors 22A and 22B Are connected, or one winding end and the other winding end are connected, and the coil conductors 22A and 22B are connected in series. If the winding directions from the winding start to the winding end of the structure of the coil conductors 22A and 22B are opposite to each other in plan view from the lamination direction, one winding start and the other winding end of the coil conductors 22A and 22B Are connected, and the coil conductors 22A and 22B are connected in series.
 以上のように、電流検出素子3において、主線路用電極21に電流が流れると、主線路用電極21とコイル導体22A,22Bとは磁界結合する。そして、実施形態1で説明したように、コイル導体22A,22Bに誘導電流が流れる。この誘導電流を検出することで、主線路用電極21に流れる電流を検出できる。 As described above, in the current detection element 3, when a current flows through the main line electrode 21, the main line electrode 21 and the coil conductors 22A and 22B are magnetically coupled. As described in the first embodiment, an induced current flows through the coil conductors 22A and 22B. By detecting this induced current, the current flowing through the main line electrode 21 can be detected.
 本実施形態では、主線路用電極21とコイル導体22A,22Bの一部とは、低透磁率部24内に形成されている。換言すれば、図5(A)に示す平面視で、主線路用電極21とコイル導体22A,22Bとの間に低透磁率部24が形成されている。このため、低透磁率部が形成されない場合と比較して主線路用電極21とコイル導体22A,22Bとの磁界結合は強くなる。これにより、主線路用電極21に流れる電流の検出感度を高めることができる。 In the present embodiment, the main line electrode 21 and part of the coil conductors 22A and 22B are formed in the low magnetic permeability portion 24. In other words, the low magnetic permeability portion 24 is formed between the main line electrode 21 and the coil conductors 22A and 22B in a plan view shown in FIG. For this reason, the magnetic field coupling between the main line electrode 21 and the coil conductors 22A and 22B becomes stronger than when the low magnetic permeability portion is not formed. Thereby, the detection sensitivity of the electric current which flows into the electrode 21 for main lines can be improved.
 また、主線路用電極21は、コイル導体22A,22Bの間に配置されている。このため、絶縁体層を積層して積層体20を製造する際に積層ずれが生じ、主線路用電極21とコイル導体22Aとの距離が離れても、主線路用電極21とコイル導体22Bとの距離は接近する。すなわち、主線路用電極21とコイル導体22Aとの磁界結合が弱くなっても、主線路用電極21とコイル導体22Bとの磁界結合は強くなる。コイル導体22A,22Bは直列接続され、一つのコイル導体を形成している。したがって、フェライトシートの積層ずれが生じても、主線路用電極21と、二つのコイル導体22A,22Bとの磁界結合は略変わらない。 The main line electrode 21 is disposed between the coil conductors 22A and 22B. For this reason, when the laminated body 20 is manufactured by laminating the insulator layers, even if the distance between the main line electrode 21 and the coil conductor 22A is increased, the main line electrode 21 and the coil conductor 22B The distance of approaches. That is, even if the magnetic field coupling between the main line electrode 21 and the coil conductor 22A becomes weak, the magnetic field coupling between the main line electrode 21 and the coil conductor 22B becomes strong. The coil conductors 22A and 22B are connected in series to form one coil conductor. Therefore, even if the lamination deviation of the ferrite sheet occurs, the magnetic field coupling between the main line electrode 21 and the two coil conductors 22A and 22B is not substantially changed.
 なお、低透磁率部24の形成領域は、図5に限定されない。 In addition, the formation area of the low magnetic permeability part 24 is not limited to FIG.
 図7(A)、図7(B)および図7(C)は、別の例の電流検出素子3A,3B,3Cを示す図である。 7A, 7B, and 7C are diagrams showing current detection elements 3A, 3B, and 3C of another example.
 図7(A)に示す電流検出素子3Aでは、二つの低透磁率部24A,24Bが積層体20に形成されている。低透磁率部24A,24Bは、本発明に係る「低透磁率部」に相当する。低透磁率部24Aは、主線路用電極21の一部とコイル導体22Aの一部とに接している。また、低透磁率部24Bは、主線路用電極21の一部とコイル導体22Bの一部とに接している。この構成であっても、主線路用電極21とコイル導体22A,22Bとの間に低透磁率部24A,24Bが形成されているため、主線路用電極21とコイル導体22A,22Bとの磁界結合は強く、主線路用電極21に流れる電流の検出感度を高めることができる。 In the current detection element 3 </ b> A shown in FIG. 7A, two low magnetic permeability portions 24 </ b> A and 24 </ b> B are formed in the laminate 20. The low magnetic permeability portions 24A and 24B correspond to “low magnetic permeability portions” according to the present invention. The low magnetic permeability portion 24A is in contact with a part of the main line electrode 21 and a part of the coil conductor 22A. The low magnetic permeability portion 24B is in contact with a part of the main line electrode 21 and a part of the coil conductor 22B. Even in this configuration, since the low magnetic permeability portions 24A and 24B are formed between the main line electrode 21 and the coil conductors 22A and 22B, the magnetic field between the main line electrode 21 and the coil conductors 22A and 22B. The coupling is strong, and the detection sensitivity of the current flowing through the main line electrode 21 can be increased.
 図7(B)に示す電流検出素子3Bの積層体20は、一部に低透磁率部24Cの層を有している。低透磁率部24C以外の層は強磁性体層である。主線路用電極21、開ループ状導体222,223,226,227は、低透磁率部24Cに形成されている。この構成であっても、主線路用電極21とコイル導体22A,22Bとの磁界結合は強く、主線路用電極21に流れる電流の検出感度を高めることができる。 7B has a layer of a low magnetic permeability portion 24C in part. The laminated body 20 of the current detection element 3B shown in FIG. The layers other than the low magnetic permeability portion 24C are ferromagnetic layers. The main line electrode 21 and the open loop conductors 222, 223, 226, and 227 are formed in the low magnetic permeability portion 24C. Even in this configuration, the magnetic coupling between the main line electrode 21 and the coil conductors 22A and 22B is strong, and the detection sensitivity of the current flowing through the main line electrode 21 can be increased.
 図7(C)に示す電流検出素子3Cでは、主線路用電極21を、複数の電極(図では2つの電極)が図示しない層間接続導体により接続された多層構造とし、さらに、その主線路用電極21を低透磁率部24D内に配置している。主線路用電極21を多層構造とすることで、主線路用電極21のインダクタンス成分、抵抗成分を小さくすることができる。また、主線路用電極21を低透磁率部24D内に配置することで、主線路用電極21を流れる電流によって積層体20内部に生成される磁束密度を低減させる(磁束集中を弱める)ことができる。その結果、磁性層の飽和を防止することができるため、主線路用電極21に、より大きな電流を流すことができる。 In the current detection element 3C shown in FIG. 7C, the main line electrode 21 has a multilayer structure in which a plurality of electrodes (two electrodes in the figure) are connected by an interlayer connection conductor (not shown). The electrode 21 is disposed in the low magnetic permeability portion 24D. By making the main line electrode 21 have a multilayer structure, the inductance component and resistance component of the main line electrode 21 can be reduced. Further, by disposing the main line electrode 21 in the low magnetic permeability portion 24D, the magnetic flux density generated in the laminate 20 by the current flowing through the main line electrode 21 can be reduced (the magnetic flux concentration is weakened). it can. As a result, saturation of the magnetic layer can be prevented, so that a larger current can be passed through the main line electrode 21.
 低透磁率部24Dは、低透磁率部24Dを上下方向から挟む磁性体層の厚さよりも厚く形成されている。このとき、磁性体層の厚みを薄くすると磁束密度が層内で飽和(非線形性)しやすくなるため、磁性体層は、内部の磁束密度が許容できる範囲内となる厚みで形成することが好ましい。また、磁性体層の比透磁率は例えば50~300である。 The low magnetic permeability portion 24D is formed to be thicker than the thickness of the magnetic layer sandwiching the low magnetic permeability portion 24D from above and below. At this time, if the thickness of the magnetic layer is reduced, the magnetic flux density is likely to be saturated (non-linearity) within the layer. Therefore, the magnetic layer is preferably formed with a thickness that allows the internal magnetic flux density to be allowed. . The relative magnetic permeability of the magnetic layer is, for example, 50 to 300.
 コイル導体22A,22Bは、低透磁率部24Dを挟んで積層方向の上側の磁性体層内に形成されたコイル導体22Au,22Buと、下側の磁性体層内に形成されたコイル導体22Ad,22Bdとで構成されている。コイル導体22Auとコイル導体22Adとの間の距離は、積層方向に互いに隣接するコイル導体22Auの間の距離またはコイル導体22Adの間の距離よりも長い。また、コイル導体22Buとコイル導体22Bdとの間の距離は、積層方向に互いに隣接するコイル導体22Buの間の距離またはコイル導体22Bdの間の距離よりも長い。なお、コイル導体22Au,22Buの下側一部、および、コイル導体22Ad,22Bdの上側一部は、低透磁率部24Dに形成されている。コイル導体22A,22Bを磁性体層に形成することで、コイル導体22A,22Bのインダクタンスは大きくなるため、電流の検出感度は高まる。また、主線路用電極21とコイル導体22A,22Bとを挟み込むように磁性体層が配置されているため、磁気結合が強まり、電流の検出感度は高まる。 The coil conductors 22A and 22B include the coil conductors 22Au and 22Bu formed in the upper magnetic layer in the stacking direction with the low permeability portion 24D interposed therebetween, and the coil conductors 22Ad and 22Bu formed in the lower magnetic layer. 22Bd. The distance between the coil conductor 22Au and the coil conductor 22Ad is longer than the distance between the coil conductors 22Au adjacent to each other in the stacking direction or the distance between the coil conductors 22Ad. Further, the distance between the coil conductor 22Bu and the coil conductor 22Bd is longer than the distance between the coil conductors 22Bu adjacent to each other in the stacking direction or the distance between the coil conductors 22Bd. The lower part of the coil conductors 22Au and 22Bu and the upper part of the coil conductors 22Ad and 22Bd are formed in the low magnetic permeability portion 24D. By forming the coil conductors 22A and 22B in the magnetic layer, the inductance of the coil conductors 22A and 22B is increased, so that the current detection sensitivity is increased. Further, since the magnetic layer is disposed so as to sandwich the main line electrode 21 and the coil conductors 22A and 22B, the magnetic coupling is strengthened, and the current detection sensitivity is increased.
 また、低透磁率部24Dに形成されるコイル導体22Au,22Adと主線路導体との磁界結合に寄与する効果は小さいが損失は生じる。このため、コイル導体22Auとコイル導体22Adを離間させている。また、コイル導体22Auとコイル導体22Adとを離間させることにより、コイル導体22Auとコイル導体22Adは主線路用電極21とも離間するため、コイル導体22Au,22Adと主線路用電極21との間で寄生容量が発生するのを防ぐことができる。また、コイル導体22Au,22Adと主線路用電極21との間で絶縁距離を保つこともできる。同様の理由で、コイル導体22Buとコイル導体22Bdも離間させている。 Further, although the effect of contributing to the magnetic field coupling between the coil conductors 22Au and 22Ad formed in the low magnetic permeability portion 24D and the main line conductor is small, a loss occurs. For this reason, the coil conductor 22Au and the coil conductor 22Ad are spaced apart. Further, by separating the coil conductor 22Au and the coil conductor 22Ad, the coil conductor 22Au and the coil conductor 22Ad are also separated from the main line electrode 21, so that the parasitic between the coil conductors 22Au and 22Ad and the main line electrode 21 occurs. Generation of capacity can be prevented. Further, an insulation distance can be maintained between the coil conductors 22Au and 22Ad and the main line electrode 21. For the same reason, the coil conductor 22Bu and the coil conductor 22Bd are also separated from each other.
 また、主線路用電極21とコイル導体22A,22Bとは、積層体20の平面方向(積層方向の直交方向)において、重ならないように形成されている。これにより、主線路用電極21とコイル導体22A,22Bとが近接せず、主線路用電極21とコイル導体22A,22Bと間に生じる寄生容量を低減できる。その結果、電流検出回路の出力電圧の誤差を低減できる。 Further, the main line electrode 21 and the coil conductors 22A and 22B are formed so as not to overlap in the plane direction of the multilayer body 20 (a direction orthogonal to the lamination direction). Thereby, the main line electrode 21 and the coil conductors 22A and 22B are not close to each other, and the parasitic capacitance generated between the main line electrode 21 and the coil conductors 22A and 22B can be reduced. As a result, an error in the output voltage of the current detection circuit can be reduced.
 図8は、低透磁率部を設けることによる効果を説明するための図である。 FIG. 8 is a diagram for explaining the effect of providing the low magnetic permeability portion.
 図8の縦軸は、主線路用電極とコイル導体との結合係数である。結合係数は、主線路用電極のインダクタンスをL1、コイル導体のインダクタンスをL2、主線路用電極とコイル導体間の相互インダクタンスをMとした場合に、k=M/√(L1×L2)で定義する。(1)は低透磁率部を設けない電流検出素子、(2)は、図7(A)に示す電流検出素子3A、(3)は、図6に示す電流検出素子3、(4)は、図7(B)に示す電流検出素子3Bの結合係数をそれぞれ示す。この図から読み取れるように、低透磁率部を設けることにより、低透磁率部を設けていない電流検出素子と比較して、その結合係数が大きくなることが分かる。 8 represents the coupling coefficient between the main line electrode and the coil conductor. The coupling coefficient is defined as k = M / √ (L1 × L2) where L1 is the inductance of the main line electrode, L2 is the inductance of the coil conductor, and M is the mutual inductance between the main line electrode and the coil conductor. To do. (1) is a current detection element not provided with a low permeability part, (2) is a current detection element 3A shown in FIG. 7A, (3) is a current detection element 3 shown in FIG. The coupling coefficients of the current detection element 3B shown in FIG. As can be seen from this figure, it can be seen that the provision of the low magnetic permeability portion increases the coupling coefficient as compared with the current detection element not provided with the low magnetic permeability portion.
 なお、本実施形態では、コイル導体22A,22Bは直列接続されている並列に接続されてもよい。コイル導体22A,22Bを並列接続することにより、抵抗を下げて損失を抑えることができる。コイル導体22A,22Bが並列に接続される場合のコイル導体22A,22Bの構造の巻回方向と接続の仕方は次の通りである。積層方向からの平面視で、コイル導体22A,22Bの構造の巻き始めから巻き終わりまでの巻回方向がともに同じであるならば、一方の巻き始めと他方の巻き終わりとが接続され、さらに一方の巻き終わりと他方の巻き始めとが接続され、コイル導体22A,22Bの2つの接続部間に検出用回路が接続される。積層方向からの平面視で、コイル導体22A,22Bの構造の巻き始めから巻き終わりまでの巻回方向が互いに逆であるならば、コイル導体22A,22Bの一方の巻き始めと他方の巻き始めとが接続され、さらに一方の巻き終わりと他方の巻き終わりとが接続され、コイル導体22A,22Bの2つの接続部間に検出用回路が接続される。 In the present embodiment, the coil conductors 22A and 22B may be connected in parallel and connected in series. By connecting the coil conductors 22A and 22B in parallel, the resistance can be lowered and the loss can be suppressed. The winding direction and connection method of the coil conductors 22A and 22B when the coil conductors 22A and 22B are connected in parallel are as follows. If the winding direction from the winding start to the winding end of the structure of the coil conductors 22A and 22B is the same in plan view from the lamination direction, one winding start and the other winding end are connected, and And the other winding start are connected, and the detection circuit is connected between the two connection portions of the coil conductors 22A and 22B. If the winding directions from the winding start to the winding end of the structure of the coil conductors 22A and 22B are opposite to each other in plan view from the lamination direction, one winding start and the other winding start of the coil conductors 22A and 22B Are connected, and the end of one winding and the end of the other winding are connected, and a detection circuit is connected between the two connection portions of the coil conductors 22A and 22B.
 また、コイル導体22A,22Bは、接続せず、互いに独立していてもよい。この場合、コイル導体22A,22Bの巻回方向は限定されない。また、コイル導体22A,22Bそれぞれから、二つの電流検出結果を得ることができる。 Further, the coil conductors 22A and 22B may be independent from each other without being connected. In this case, the winding direction of the coil conductors 22A and 22B is not limited. Further, two current detection results can be obtained from each of the coil conductors 22A and 22B.
(実施形態4)
 実施形態4では、電流検出素子の上面に、電流検出に用いる素子を実装する実装電極を設け、その実装電極に素子を実装し、電流検出回路モジュールを構成している。
(Embodiment 4)
In the fourth embodiment, a mounting electrode for mounting an element used for current detection is provided on the upper surface of the current detection element, and the element is mounted on the mounting electrode to constitute a current detection circuit module.
 図9(A)は、電流検出素子を備えた電流検出回路モジュール4の平面図、図9(B)は、図9(A)のIX-IX線における断面図である。図10は、電流検出回路モジュール4の回路図である。なお、図10ではコンパレータU1の電源やバイアス回路は省略している。 FIG. 9A is a plan view of the current detection circuit module 4 provided with a current detection element, and FIG. 9B is a cross-sectional view taken along line IX-IX in FIG. 9A. FIG. 10 is a circuit diagram of the current detection circuit module 4. In FIG. 10, the power supply and bias circuit of the comparator U1 are omitted.
 電流検出回路モジュール4は積層体30を備えている。積層体30は、フェライト等の強磁性体からなる絶縁体層と、非磁性体からなる絶縁体層とが積層され、焼結されて構成されている。非磁性体からなる絶縁体層が積層されることで、積層体30には、非磁性体層の低透磁率部31A,31B,31Cが形成される。また、積層方向に沿って低透磁率部31A,31Bの間、低透磁率部31A,31Cの間に挟まれるように、強磁性体からなる絶縁体層32A,32Bが積層されている。 The current detection circuit module 4 includes a laminated body 30. The laminated body 30 is configured by laminating an insulating layer made of a ferromagnetic material such as ferrite and an insulating layer made of a non-magnetic material and sintering them. By laminating the insulating layers made of nonmagnetic material, the low magnetic permeability portions 31A, 31B, and 31C of the nonmagnetic material layer are formed in the laminated body 30. Further, insulator layers 32A and 32B made of a ferromagnetic material are stacked so as to be sandwiched between the low magnetic permeability portions 31A and 31B and the low magnetic permeability portions 31A and 31C along the stacking direction.
 積層体30の実装面には、マザー基板に実装するための実装電極33A,33B等が設けられている。積層体30の上面には、素子を実装するための実装電極34A,34B,34C,34D,34E等が設けられている。なお、図9では、実装電極33A,33Bと、実装電極34A~34Eとを図示しているが、実装電極の数はこれに限定されない。 The mounting surface of the laminate 30 is provided with mounting electrodes 33A, 33B and the like for mounting on the mother board. On the upper surface of the laminate 30, mounting electrodes 34A, 34B, 34C, 34D, 34E and the like for mounting elements are provided. Although FIG. 9 illustrates the mounting electrodes 33A and 33B and the mounting electrodes 34A to 34E, the number of mounting electrodes is not limited to this.
 絶縁体層32Aの主面には、面状に広がるグランド電極16が設けられている。実装電極34Aは、層間接続導体を介してグランド電極16に導通している。低透磁率部31Bには、実装電極34B~34Eを接続する配線パターン17が設けられている。 The main surface of the insulator layer 32A is provided with a ground electrode 16 extending in a planar shape. The mounting electrode 34A is electrically connected to the ground electrode 16 through the interlayer connection conductor. The low magnetic permeability portion 31B is provided with a wiring pattern 17 that connects the mounting electrodes 34B to 34E.
 主線路用電極11は低透磁率部31Aに形成されている。コイル導体12は、巻回軸を積層体30の積層方向となるよう、絶縁体層32A,32B及び低透磁率部31A内に形成されている。コイル導体12の巻回軸は、主線路用電極11の延びる方向とは異なる方向を向いている。つまり、コイル導体12の巻回軸はそれぞれ主線路用電極11とねじれの位置関係となっている。 The main line electrode 11 is formed in the low magnetic permeability portion 31A. The coil conductor 12 is formed in the insulator layers 32A and 32B and the low magnetic permeability portion 31A so that the winding axis is in the stacking direction of the stacked body 30. The winding axis of the coil conductor 12 faces a direction different from the direction in which the main line electrode 11 extends. That is, the winding axis of the coil conductor 12 has a twisted positional relationship with the main line electrode 11.
 実装電極34A~34Eには、コンパレータU1、ダイオードD1、キャパシタC31,C32,C33、抵抗R1等が実装されている。ダイオードD1、キャパシタC31,C32、抵抗R1は、図2(A)と同様に、主線路用電極11に流れる電流を検出する検出用回路を構成している。キャパシタC33及びコンパレータU1は、ゼロクロス検出回路を構成している。ゼロクロス検出回路は、コイル導体12に誘起される交流電圧のゼロ地点(ゼロクロス点)を検出する回路であり、交流電圧が特定の電位(例えばグランド電位)を超えたときにHiを出力し、超えないときにLoを出力する。すなわち、周波数に同期したデジタル信号を出力する。 The mounting electrodes 34A to 34E are mounted with a comparator U1, a diode D1, capacitors C31, C32, C33, a resistor R1, and the like. The diode D1, the capacitors C31 and C32, and the resistor R1 constitute a detection circuit that detects the current flowing through the main line electrode 11, as in FIG. The capacitor C33 and the comparator U1 constitute a zero cross detection circuit. The zero cross detection circuit is a circuit that detects a zero point (zero cross point) of the AC voltage induced in the coil conductor 12, and outputs Hi when the AC voltage exceeds a specific potential (for example, ground potential). Output Lo when not. That is, a digital signal synchronized with the frequency is output.
 この構成では、グランド電極16が、主線路用電極11及びコイル導体12と重なるように設けられている。これにより、主線路用電極11等から生じる電磁界ノイズはグランド電極16により遮蔽され、積層体30の上面に実装された素子(コンパレータU1等)への影響が軽減される。また、必要な素子を積層体30の上面に実装することで、電流検出回路モジュール4の実装領域を省スペース化できる。 In this configuration, the ground electrode 16 is provided so as to overlap the main line electrode 11 and the coil conductor 12. Thereby, electromagnetic field noise generated from the main line electrode 11 and the like is shielded by the ground electrode 16, and the influence on the elements (comparator U1 and the like) mounted on the upper surface of the multilayer body 30 is reduced. Further, by mounting necessary elements on the upper surface of the laminate 30, the mounting area of the current detection circuit module 4 can be saved.
 なお、積層体30の構成は、実施形態1~3で説明した積層体の構成であってもよい。例えば、低透磁率部は、図1に示すように、積層体内部の一部に形成されていてもよい。また、電流検出回路モジュール4は、実施形態3で説明したように、二つのコイル導体を備えていてもよい。 The configuration of the stacked body 30 may be the configuration of the stacked body described in the first to third embodiments. For example, the low magnetic permeability portion may be formed in a part of the laminated body as shown in FIG. Moreover, the current detection circuit module 4 may include two coil conductors as described in the third embodiment.
(実施形態5)
 この例では、実施形態1で説明した電流検出素子1を備えた電力伝送システムについて説明する。
(Embodiment 5)
In this example, a power transmission system including the current detection element 1 described in the first embodiment will be described.
 図11は、実施形態5に係る電力伝送システム100の回路図である。電力伝送システム100は、送電装置101と受電装置201とを備えている。電力伝送システム100は、磁界結合方式により、送電装置101から受電装置201へ電力を伝送する。 FIG. 11 is a circuit diagram of the power transmission system 100 according to the fifth embodiment. The power transmission system 100 includes a power transmission device 101 and a power reception device 201. The power transmission system 100 transmits power from the power transmission apparatus 101 to the power reception apparatus 201 by a magnetic field coupling method.
 受電装置201は負荷回路211を備えている。この負荷回路211は充電回路及び二次電池を含む。なお、二次電池は受電装置201に対し着脱式であってもよい。そして、受電装置201は、その二次電池を備えた、例えば携帯電子機器である。携帯電子機器としては携帯電話機、PDA(Personal Digital Assistant)、携帯音楽プレーヤ、ノート型PC、デジタルカメラなどが挙げられる。送電装置101は、載置された受電装置201の二次電池を充電するための充電台である。 The power receiving apparatus 201 includes a load circuit 211. The load circuit 211 includes a charging circuit and a secondary battery. Note that the secondary battery may be detachable from the power receiving apparatus 201. And the power receiving apparatus 201 is a portable electronic device provided with the secondary battery, for example. Examples of portable electronic devices include cellular phones, PDAs (Personal Digital Assistants), portable music players, notebook PCs, and digital cameras. The power transmission device 101 is a charging stand for charging the secondary battery of the power receiving device 201 placed thereon.
 送電装置101は、直流電圧を出力する直流電源Vinを備えている。直流電源Vinは、商用電源に接続されるACアダプタである。直流電源Vinには、直流電圧を交流電圧に変換するインバータ回路111が接続されている。インバータ回路111の出力側には、キャパシタC31,C32及びコイルL2から構成される共振回路が接続されている。 The power transmission apparatus 101 includes a DC power source Vin that outputs a DC voltage. The DC power source Vin is an AC adapter connected to a commercial power source. An inverter circuit 111 that converts a DC voltage into an AC voltage is connected to the DC power source Vin. A resonance circuit composed of capacitors C31 and C32 and a coil L2 is connected to the output side of the inverter circuit 111.
 また、インバータ回路111と共振回路との間には、電流検出素子1が設けられている。電流検出素子1の主線路用電極11が、インバータ回路111と共振回路との間の電力伝送ラインの一部となっている。そして、この電流検出素子1は、図示しないマザー基板に実装され、キャパシタC1及び負荷RLに接続されている。図2で説明したように、負荷RLの電圧を検出することで、インバータ回路111と共振回路との間に流れる電流(以下、送電電流と言う)を検出できる。 Further, the current detection element 1 is provided between the inverter circuit 111 and the resonance circuit. The main line electrode 11 of the current detection element 1 is a part of the power transmission line between the inverter circuit 111 and the resonance circuit. The current detection element 1 is mounted on a mother board (not shown) and connected to the capacitor C1 and the load RL. As described with reference to FIG. 2, by detecting the voltage of the load RL, a current flowing between the inverter circuit 111 and the resonance circuit (hereinafter referred to as a power transmission current) can be detected.
 受電装置201は、共振回路を構成するキャパシタC4及びコイルL3を有している。そして、コイルL2,L3が磁界結合することで、送電装置101から受電装置201へ電力が伝送される。この受電装置201の共振回路は、送電装置101の共振回路と同じ共振周波数に設定されている。送電装置101及び受電装置201の共振回路の共振周波数を同じにすることで、効率よく電力伝送が行える。 The power receiving apparatus 201 includes a capacitor C4 and a coil L3 that form a resonance circuit. The coils L2 and L3 are magnetically coupled to transmit power from the power transmitting apparatus 101 to the power receiving apparatus 201. The resonance circuit of the power receiving device 201 is set to the same resonance frequency as the resonance circuit of the power transmission device 101. By making the resonance frequencies of the resonance circuits of the power transmission apparatus 101 and the power reception apparatus 201 the same, power transmission can be performed efficiently.
 受電装置201の共振回路には、受電回路210が接続されている。受電回路210は、コイルL3に誘起された電圧を整流及び平滑する。また、受電回路210は、整流及び平滑した電圧を、安定化された所定電圧に変換し、負荷回路211へ供給する。 The power reception circuit 210 is connected to the resonance circuit of the power reception device 201. The power receiving circuit 210 rectifies and smoothes the voltage induced in the coil L3. In addition, the power receiving circuit 210 converts the rectified and smoothed voltage into a stabilized predetermined voltage and supplies it to the load circuit 211.
 この電力伝送システム100において、送電装置101の送電電流と、送電装置101の共振回路への入力電圧V1を検出することで、インバータ回路111から受電装置201側を視たインピーダンスを検出できる。インピーダンスを検出することで、例えば、送電装置101に受電装置201が載置されたか否かを判定できる。送電装置101に受電装置201を載置した場合、送電装置101と受電装置201との共振回路が結合して、複合共振による周波数ピークが現れる。そして、インピーダンスの周波数特性を検出し、周波数ピークの有無を検出することで、受電装置201の載置の有無を判定できる。 In the power transmission system 100, by detecting the power transmission current of the power transmission device 101 and the input voltage V1 to the resonance circuit of the power transmission device 101, the impedance of the inverter circuit 111 viewed from the power reception device 201 side can be detected. By detecting the impedance, for example, it can be determined whether or not the power receiving apparatus 201 is placed on the power transmitting apparatus 101. When the power receiving apparatus 201 is mounted on the power transmitting apparatus 101, the resonance circuit of the power transmitting apparatus 101 and the power receiving apparatus 201 is coupled, and a frequency peak due to complex resonance appears. And the presence or absence of mounting of the power receiving apparatus 201 can be determined by detecting the frequency characteristics of the impedance and detecting the presence or absence of a frequency peak.
 なお、電流検出素子1を用いて送電装置101の送電電流のみを検出した場合においても、電流の大きさ、または位相の変化により、受電装置201の載置の有無の判定または異常等の状態検知を行うことができる。 Even when only the power transmission current of the power transmission device 101 is detected using the current detection element 1, the presence or absence of the power reception device 201 is detected or the state of an abnormality is detected based on a change in the magnitude or phase of the current. It can be performed.
 また、上述した各実施形態1~4は、主線路用電極に流れる電流を検出するための電流検出用導体はコイル状導体としているが、主線路用電極と磁界結合するものであれば、形状は特に限定されない。また、各実施形態1~4は、適宜組み合わせ可能である。 In each of the first to fourth embodiments described above, the current detection conductor for detecting the current flowing through the main line electrode is a coiled conductor. However, any shape can be used as long as it is magnetically coupled to the main line electrode. Is not particularly limited. Further, each of the first to fourth embodiments can be appropriately combined.
 また、上述した各実施形態1~4において、主線路用電極及び電流検出用導体は高透磁率部及び低透磁率部を有する絶縁体の内部に形成されているが、主線路用電極と電流検出用導体はそれぞれ絶縁体の表面に少なくとも一部が形成されていてもよい。少なくとも主線路用電極及び電流検出用導体が絶縁体に固定され、主線路用電極と電流検出用導体との間に絶縁体の低透磁率部が配置され、低透磁率部の周囲に高透磁率部が配置されればよい。 In each of the first to fourth embodiments described above, the main line electrode and the current detection conductor are formed inside the insulator having the high magnetic permeability portion and the low magnetic permeability portion. Each of the detection conductors may be at least partially formed on the surface of the insulator. At least the main line electrode and the current detection conductor are fixed to the insulator, and a low permeability portion of the insulator is disposed between the main line electrode and the current detection conductor, and a high permeability is provided around the low permeability portion. What is necessary is just to arrange | position a magnetic part.
C1,C2,C31,C32,C33,C4…キャパシタ
D1…ダイオード
L1…インダクタ
L2,L3…コイル
R1…抵抗
RL…負荷
U1…コンパレータ
Vin…直流電源
1,1A,2,3,3A,3B,3C…電流検出素子
4…電流検出回路モジュール
10,10A…積層体
11…主線路用電極
12…コイル導体
13,13A,14…低透磁率部
16…グランド電極
17…配線パターン
20…積層体
21…主線路用電極
22A,22B…コイル導体
22Ad,22Au…コイル導体
22Bd,22Bu…コイル導体
23…接続導体
24,24A,24B,24C,24D…低透磁率部
30…積層体
31A,31B,31C…低透磁率部
32A,32B…絶縁体層
33A,33B…実装電極
34A,34B,34C,34D,34E…実装電極
100…電力伝送システム
101…送電装置
111…インバータ回路
121,122,123,124…開ループ状導体
201…受電装置
210…受電回路
211…負荷回路
221,222,223,224,225,226,227,228…開ループ状導体
222Ad…コイル導体
C1, C2, C31, C32, C33, C4 ... Capacitor D1 ... Diode L1 ... Inductor L2, L3 ... Coil R1 ... Resistance RL ... Load U1 ... Comparator Vin ... DC power supply 1, 1A, 2, 3, 3A, 3B, 3C ... Current detection element 4 ... Current detection circuit module 10, 10A ... Laminate 11 ... Main line electrode 12 ... Coil conductors 13, 13A, 14 ... Low magnetic permeability part 16 ... Ground electrode 17 ... Wiring pattern 20 ... Laminate 21 ... Main line electrodes 22A, 22B ... Coil conductors 22Ad, 22Au ... Coil conductors 22Bd, 22Bu ... Coil conductors 23 ... Connection conductors 24, 24A, 24B, 24C, 24D ... Low magnetic permeability portions 30 ... Laminated bodies 31A, 31B, 31C ... Low magnetic permeability portions 32A, 32B ... insulator layers 33A, 33B ... mounting electrodes 34A, 34B, 34C, 34D, 34E ... mounting Pole 100 ... Power transmission system 101 ... Power transmission device 111 ... Inverter circuits 121, 122, 123, 124 ... Open loop conductor 201 ... Power reception device 210 ... Power reception circuit 211 ... Load circuits 221, 222, 223, 224, 225, 226 227, 228 ... open loop conductor 222Ad ... coil conductor

Claims (11)

  1.  絶縁体と、
     前記絶縁体に形成された主線路導体と、
     前記絶縁体に形成され、前記主線路導体と磁界結合する電流検出用導体と、
     を備え、
     前記絶縁体は、
     前記主線路導体と前記電流検出用導体との間に設けられ、前記絶縁体内において透磁率が周囲よりも低い低透磁率部を有する、
     電流検出素子。
    An insulator;
    A main line conductor formed in the insulator;
    A current detecting conductor formed on the insulator and magnetically coupled to the main line conductor;
    With
    The insulator is
    Provided between the main line conductor and the current detection conductor, and has a low permeability portion whose permeability is lower than the surroundings in the insulator.
    Current detection element.
  2.  前記主線路導体は前記絶縁体において、平面視したときに、直線状に形成されている、
     請求項1に記載の電流検出素子。
    The main line conductor is formed in a straight line when viewed in plan in the insulator,
    The current detection element according to claim 1.
  3.  前記電流検出用導体は、
     前記絶縁体に設けられ、前記主線路導体の延びる方向とは異なる方向に巻回軸を有するコイル状導体である、
     請求項1又は2に記載の電流検出素子。
    The current detection conductor is:
    A coiled conductor provided on the insulator and having a winding axis in a direction different from a direction in which the main line conductor extends;
    The current detection element according to claim 1 or 2.
  4.  前記絶縁体は、少なくとも一部で透磁率の異なる複数の絶縁体層が積層された積層体であり、複数の前記絶縁体層は少なくとも一部に磁性体層を有する、
     請求項1から3のいずれかに記載の電流検出素子。
    The insulator is a laminate in which a plurality of insulator layers having different magnetic permeability are laminated at least partially, and the plurality of insulator layers have a magnetic layer at least partially.
    The current detection element according to claim 1.
  5.  前記磁性体層は磁性フェライトの層である、
     請求項4に記載の電流検出素子。
    The magnetic layer is a layer of magnetic ferrite;
    The current detection element according to claim 4.
  6.  前記低透磁率部は非磁性体で構成されている、
     請求項1から5のいずれかに記載の電流検出素子。
    The low magnetic permeability part is made of a non-magnetic material,
    The current detection element according to claim 1.
  7.  前記低透磁率部は、前記主線路導体又は前記電流検出用導体の少なくとも一方に接している、
     請求項1から6のいずれかに記載の電流検出素子。
    The low magnetic permeability part is in contact with at least one of the main line conductor or the current detection conductor,
    The current detection element according to claim 1.
  8.  前記低透磁率部は、
     前記主線路導体及び前記電流検出用導体に接している、
     請求項7に記載の電流検出素子。
    The low magnetic permeability part is
    In contact with the main line conductor and the current detection conductor,
    The current detection element according to claim 7.
  9.  複数の前記電流検出用導体を備える、
     請求項1から8のいずれかに記載の電流検出素子。
    Comprising a plurality of the current detection conductors,
    The current detection element according to claim 1.
  10.  前記電流検出用導体に接続された、周波数特性を有する素子を備える、
     請求項1から9のいずれかに記載の電流検出素子。
    An element having a frequency characteristic connected to the current detection conductor;
    The current detection element according to claim 1.
  11.  送電装置が有する送電側結合部と、受電装置が有する受電側結合部とを、電界または磁界の少なくとも一方により結合させて、前記送電装置から前記受電装置へ電力を伝送する電力伝送システムにおいて、
     前記送電装置は、
     前記送電側結合部に接続される電力伝送ラインに流れる交流成分を有する電流を検出する電流検出部、
     を有し、
     前記電流検出部は、
     絶縁体と、
     前記絶縁体に形成された主線路導体と、
     前記絶縁体に形成され、前記主線路導体と磁界結合する電流検出用導体と、
     を備え、
     前記絶縁体は、
     前記主線路導体と前記電流検出用導体との間に設けられ、前記絶縁体内において透磁率が周囲よりも低い低透磁率部を有し、
     前記主線路導体は、前記電力伝送ラインの一部を構成している、
     電力伝送システム。
    In the power transmission system for transmitting power from the power transmission device to the power reception device by coupling the power transmission side coupling unit of the power transmission device and the power reception side coupling unit of the power reception device by at least one of an electric field or a magnetic field,
    The power transmission device is:
    A current detection unit for detecting a current having an AC component flowing in a power transmission line connected to the power transmission side coupling unit;
    Have
    The current detector is
    An insulator;
    A main line conductor formed in the insulator;
    A current detecting conductor formed on the insulator and magnetically coupled to the main line conductor;
    With
    The insulator is
    Provided between the main line conductor and the current detection conductor, and has a low permeability portion whose permeability is lower than the surroundings in the insulator,
    The main line conductor constitutes a part of the power transmission line,
    Power transmission system.
PCT/JP2016/052869 2015-02-02 2016-02-01 Electric current detection element and electrical power transmission system WO2016125725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680003992.0A CN107003341B (en) 2015-02-02 2016-02-01 Current detection element and power transmission system
JP2016537036A JP5994963B1 (en) 2015-02-02 2016-02-01 Current detection element and power transmission system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-018867 2015-02-02
JP2015018867 2015-02-02
JP2015-083877 2015-04-16
JP2015083877 2015-04-16
JP2015-098666 2015-05-14
JP2015098666 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016125725A1 true WO2016125725A1 (en) 2016-08-11

Family

ID=56564070

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/052869 WO2016125725A1 (en) 2015-02-02 2016-02-01 Electric current detection element and electrical power transmission system
PCT/JP2016/052868 WO2016125724A1 (en) 2015-02-02 2016-02-01 Current detection element and power transmission system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052868 WO2016125724A1 (en) 2015-02-02 2016-02-01 Current detection element and power transmission system

Country Status (3)

Country Link
JP (2) JP6520960B2 (en)
CN (1) CN107003341B (en)
WO (2) WO2016125725A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016190097A1 (en) * 2015-05-28 2017-10-26 株式会社村田製作所 Inductor module and power transmission system
JP2018182867A (en) * 2017-04-10 2018-11-15 株式会社Soken Bus bar set

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169544A1 (en) * 2016-03-30 2017-10-05 株式会社村田製作所 Current detection element and power feeding device
GB2576874A (en) * 2018-08-24 2020-03-11 Bombardier Primove Gmbh Conductor arrangement, system and methods for an inductive power transfer
JP7253343B2 (en) * 2018-09-14 2023-04-06 Koa株式会社 current detector
JP2020148640A (en) * 2019-03-14 2020-09-17 株式会社東芝 Current detector
US20220224159A1 (en) * 2019-04-26 2022-07-14 Panasonic Intellectual Property Management Co., Ltd. Wireless power and data transmission apparatus and transmission module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257964A (en) * 2003-02-27 2004-09-16 Murata Mfg Co Ltd Direct electric current sensor
US20080136399A1 (en) * 2006-12-12 2008-06-12 Alfano Donald E Current sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196679A (en) * 1984-03-21 1985-10-05 Mishima Kosan Co Ltd Resonance differential type self-exciting current sensor
DE19731790A1 (en) * 1997-07-24 1999-01-28 Bosch Gmbh Robert Device for detecting an alternating current
US6177806B1 (en) * 1997-09-03 2001-01-23 International Business Machines Corp. Signal sensor for rf integrated systems
CN102483981A (en) * 2009-09-11 2012-05-30 松下电器产业株式会社 Electromagnetic induction coil unit and electromagnetic induction device
JP2013055194A (en) * 2011-09-02 2013-03-21 Murata Mfg Co Ltd Laminated inductor
CN102568778B (en) * 2012-01-20 2015-07-22 深圳顺络电子股份有限公司 Laminated power coil type device
US8456968B1 (en) * 2012-02-22 2013-06-04 Headway Technologies, Inc. Thermally-assisted magnetic recording head having dual heat sink layers
JP2013211932A (en) * 2012-03-30 2013-10-10 Equos Research Co Ltd Power transmission system
CN103630853B (en) * 2013-08-20 2016-04-13 中国科学院电子学研究所 induction type magnetic field sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257964A (en) * 2003-02-27 2004-09-16 Murata Mfg Co Ltd Direct electric current sensor
US20080136399A1 (en) * 2006-12-12 2008-06-12 Alfano Donald E Current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016190097A1 (en) * 2015-05-28 2017-10-26 株式会社村田製作所 Inductor module and power transmission system
JP2018182867A (en) * 2017-04-10 2018-11-15 株式会社Soken Bus bar set

Also Published As

Publication number Publication date
CN107003341B (en) 2020-08-21
CN107003341A (en) 2017-08-01
JP6520960B2 (en) 2019-05-29
JP5994963B1 (en) 2016-09-21
JPWO2016125724A1 (en) 2017-09-14
JPWO2016125725A1 (en) 2017-04-27
WO2016125724A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP5994963B1 (en) Current detection element and power transmission system
US11515084B2 (en) Magnetic component and wireless power-transferring device including the same
JP6493617B2 (en) Voltage detection device, power supply device, and power transmission device
US10388450B2 (en) Inductor module and electric power transmission system
JP2015149405A (en) Antenna apparatus, antenna unit for non-contact power transmission, and electronic apparatus
CN210576468U (en) Antenna device, communication system, and electronic apparatus
JP6390812B2 (en) Circuit switching device and switch drive circuit
US20190386389A1 (en) Antenna device, communication system, and electronic apparatus
WO2017183393A1 (en) Power reception device
JP6361825B2 (en) Current detection element, power transmission device and power transmission system
US10263324B2 (en) Impedance conversion element and communication device
JP5659504B2 (en) Electromagnetic wave characteristic improvement sheet
CN210123792U (en) Antenna device and electronic apparatus
JP6497483B2 (en) Current detection element and power supply device
KR101482934B1 (en) Double sided circuit board having differ kind of coil for wireless charging
JP5911441B2 (en) DC-DC converter transformer wiring structure
CN114762066A (en) Signal transmission circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016537036

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746556

Country of ref document: EP

Kind code of ref document: A1