WO2016125312A1 - Electric stimulation apparatus - Google Patents

Electric stimulation apparatus Download PDF

Info

Publication number
WO2016125312A1
WO2016125312A1 PCT/JP2015/053434 JP2015053434W WO2016125312A1 WO 2016125312 A1 WO2016125312 A1 WO 2016125312A1 JP 2015053434 W JP2015053434 W JP 2015053434W WO 2016125312 A1 WO2016125312 A1 WO 2016125312A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical stimulation
signal
pulse
muscle
living body
Prior art date
Application number
PCT/JP2015/053434
Other languages
French (fr)
Japanese (ja)
Inventor
純生 山田
正宏 成澤
Original Assignee
国立大学法人名古屋大学
ミナト医科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, ミナト医科学株式会社 filed Critical 国立大学法人名古屋大学
Priority to JP2016573165A priority Critical patent/JP6547215B2/en
Priority to PCT/JP2015/053434 priority patent/WO2016125312A1/en
Publication of WO2016125312A1 publication Critical patent/WO2016125312A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]

Definitions

  • the present invention relates to an electrical stimulation device that applies electrical stimulation to a living body.
  • Electrical stimulation therapy is being studied as an intervention method for promoting bed leaving that can be applied early after surgery.
  • Electrical stimulation therapy is an involuntary movement of muscles caused by contraction and relaxation of muscles by applying electrical stimulation to muscles in the body (typically patients) or nerves that give commands to muscles. To be expressed. This involuntary muscle movement is expected to suppress a decrease in muscle strength after surgery.
  • the mode and effect of contraction caused to the muscle vary depending on conditions such as the intensity (output) of the electrical stimulation signal for applying the stimulus, the pulse width, and the frequency. Therefore, for the purpose of obtaining desired effects such as patient treatment and function improvement, an electrical stimulation device that applies electrical stimulation under various conditions has been proposed.
  • Patent Literature 1 discloses an electrical stimulation device in which a voltage signal having a predetermined waveform alternately set on the plus side and the minus side is divided into a plurality of divided waveforms and applied to the patient. .
  • this electrical stimulation apparatus one voltage signal is divided into a plurality of parts so that a plurality of initial peak currents having a large current value are generated in the body of the patient according to the number of divisions, thereby increasing the amount of electrical stimulation.
  • a greater stimulation amount can be obtained without causing pain to the patient.
  • Patent Document 1 imparts electrical stimulation to such an extent that a massage effect can be obtained without causing pain to the patient. That is, no electrical stimulation was given that would affect the patient's muscle strength.
  • the present invention has been created in view of the above circumstances, and an object of the present invention is to provide an electrical stimulation device capable of obtaining a predetermined muscle output more effectively with less current than in the past. .
  • the present inventors have earnestly studied the relationship between the form of the electrical stimulation signal and the muscle output (other dynamic muscle contraction) induced in the living body by the signal.
  • an electrical stimulation device that can impart muscle stimulation to an organism with electrical stimulation that can prevent muscle weakness (see, for example, Patent Document 2).
  • a form of electrical stimulation signal that can efficiently promote muscle contraction with less current.
  • the technology disclosed herein has been completed based on such knowledge.
  • an electrical stimulation device including a signal generation unit that generates an electrical stimulation signal and an electrode unit that applies the electrical stimulation signal generated from the signal generation unit to a living body.
  • the electrical stimulation signal includes a pulse group signal including a plurality of pulse-like signals, and each of the plurality of pulse-like signals in the pulse group signal is a unipolar pulse wave that rises at one of the positive and negative poles. It is characterized by being.
  • This electrical stimulation device oscillates an electrical stimulation signal that promotes muscle contraction (muscle output) as a unipolar pulse signal (unipolar pulse wave).
  • the electrical stimulation signal generated from the signal generator is N
  • the electrical stimulation signal including a pulse group signal composed of a bipolar pulse wave with a frequency of 20 Hz is M.
  • the parameters X N and X M indicating the muscle output per unit peak current applied to the living body based on the electrical stimulation signal N and the electrical stimulation signal M are expressed by the following formula: X N ⁇ 1.3 ⁇ X M It is characterized by satisfying;
  • the parameter X N and X M are each thigh of the living body, 30% of the transitive muscles of the electrical stimulation signals N and isometric maximum strength of the electrical stimulation signal M (MVC)
  • MVC isometric maximum strength of the electrical stimulation signal M
  • the parameter X (X N and X M ) is defined as the total muscle output value per unit peak current.
  • the electrical stimulation device disclosed herein than the parameter X M obtained for conventional general electrical stimulation signal M, it is possible to generate electrical stimulation signals N to achieve more than 30% higher parameter X N. According to such a configuration, more muscle output can be induced per unit peak current. In other words, for example, the amount of current required to obtain a predetermined muscle output can be suppressed to a small amount.
  • an electrical stimulation device that can reduce a burden such as pain caused to a living body and suppress a decrease in muscle strength is provided.
  • an electrical stimulation device that can enhance muscle strength is provided.
  • the isometric maximum muscle force (also called maximum voluntary contraction force (MVC)) is the force exerted by contraction of the muscle while maintaining a constant joint angle or muscle length.
  • MVC maximum voluntary contraction force
  • the maximum value for example, muscle strength measured by grip force measurement or back muscle strength measurement that is generally performed corresponds to this.
  • Such MVC can be measured by, for example, an MVC measuring method described later.
  • the pulse group signal includes a high frequency pulse component and a low frequency pulse component oscillated after the high frequency pulse component.
  • LFF low frequency fatigue
  • the high-frequency pulse component includes a high-frequency pulse signal of 1 cycle or more and 4 cycles or less.
  • the low-frequency pulse component includes a low-frequency pulse signal of 2 cycles or more and 20 cycles or less.
  • the waveform of the pulse signal is a rectangular pulse that rises from a reference potential and then falls, and continues to the fall and rises further than the reference potential. It is characterized by having an undershoot that returns to the reference potential after being lowered. According to such a configuration, muscle contraction can be brought about without causing the living body to further feel pain based on the electrical stimulation signal.
  • a unipolar pulse wave having such an undershoot is particularly referred to as a “unidirectional pulse composite wave” and may be distinguished from a unipolar pulse wave having no undershoot.
  • the intensity of the pulse signal is set to a stimulation intensity that induces exercise of 1 to 30%, more preferably 10 to 20% of the isometric maximum muscle strength. It is characterized by being.
  • the electrical stimulation signal includes a first stimulation signal having a plurality of the pulse group signals with a first rest period interposed therebetween.
  • the electrical stimulation signal includes a second stimulation signal having a plurality of the first stimulation signals with a second rest period interposed therebetween.
  • the time for applying the electrical stimulation signal to the living body is configured to be 1 minute or more and 180 minutes or less.
  • the electrical stimulation signal works more effectively on the muscle than in the past. Therefore, such an apparatus can provide sufficient muscle movement for the purpose of treatment, health maintenance and muscle training without causing fatigue to the living body, for example, by using the apparatus for the above-mentioned time for each time. .
  • the electrical stimulation signal is configured to give a signal so that the electrical stimulation signal travels to the peripheral side of the living body. According to such a configuration, the electrical stimulation signal can be output so as to act more effectively on the biological function, and high muscle output and muscle movement can be induced.
  • muscle contraction can be induced more effectively with a smaller amount of current. Therefore, it is possible to reliably suppress pain and fatigue generated in the living body. Thereby, for example, it becomes possible to reduce the electrical stimulation application time for obtaining a certain effect. Therefore, such an electrical stimulation device suppresses the muscular weakness of the patient who is difficult to actively exercise due to illness or injury, and also the living body that is difficult to exercise itself such as after cardiac surgery or acute exacerbation of heart failure. Can be used effectively. In addition, since such an electrical stimulation device can promote muscle output and muscle movement even for a healthy living body, it can be used comfortably for the purpose of maintaining the muscle strength of the living body and, consequently, enhancing the muscle strength. it can.
  • FIG. 1 is a schematic view illustrating the configuration of an electrical stimulation apparatus according to an embodiment.
  • FIG. 2A is a diagram schematically illustrating one form of a waveform of a pulse group signal in the electrical stimulation signal of the technique disclosed herein.
  • FIG. 2B is a diagram schematically illustrating another form of the waveform of the pulse group signal in the electrical stimulation signal of the technology disclosed herein.
  • FIG. 2C is a diagram schematically illustrating one form of the waveform of the electrical stimulation signal of the technology disclosed herein.
  • FIG. 3 is a diagram showing one form of a waveform of a pulse group signal in a conventional electrical stimulation signal.
  • FIG. 4 is a graph showing the parameter X for the electrical stimulations A and B applied from the electrical stimulation apparatus of each example.
  • FIG. 5 is a graph showing [1] maximum contractile force, [2] momentum, and [3] pain caused to the living body by the electrical stimulation device in Test 1.
  • FIG. 6 is a graph showing [1] maximum contractile force, [2] momentum, and [3] pain caused to the living body by the electrical stimulation device in Test 2.
  • FIG. 7 is a graph showing [1] maximum contractile force, [2] momentum, and [3] pain caused to the living body by the electrical stimulation device in Test 5.
  • FIG. 1 is a schematic diagram for explaining the configuration of the electrical stimulation apparatus 1 disclosed herein.
  • the electrical stimulation apparatus 1 includes a signal generation unit 10 that generates an electrical stimulation signal and an electrode unit 20 that applies the electrical stimulation signal generated from the signal generation unit 10 to a living body.
  • the electrical stimulation apparatus 1 may include a control unit (not shown) that comprehensively controls the form of the electrical stimulation signal generated by the signal generation unit 10.
  • the control unit as an external device may be configured to be connectable by wire or wireless so that various types of information such as the form of the electrical stimulation signal can be transmitted and received.
  • the signal generation unit 10 can be configured mainly by an oscillation unit that can generate a predetermined electrical stimulation signal.
  • the signal generation unit 10 is typically configured to be electrically connectable to the electrode unit 20.
  • the configuration of the oscillating unit is not particularly limited, and for example, an oscillating unit used in this type of conventional electrical stimulation device can be used. Specifically, any device that can induce contraction of muscles included in the stimulation applying region by applying an electrical stimulation signal to a part of the living body can be used without particular limitation.
  • the form of the electrical stimulation signal formed in the signal generation unit 10 will be described later, but any oscillation unit that can form a pulse group signal including a plurality of pulse signals may be used.
  • the frequency of the signal that can be oscillated by the oscillating unit is not particularly limited, and as an approximate guide, for example, an oscillating unit that can oscillate at a frequency of about 1 Hz to about 4000 Hz can be used. More preferably, a frequency region having a frequency of 1 Hz to 1000 Hz (1 Hz to less than 1000 Hz) may be generated. Particularly preferably, a low-frequency oscillator or the like that can oscillate a low frequency of about 1 to 500 Hz with an arbitrary pulse waveform may be more suitable. Such an oscillating unit can form and output a predetermined form of electrical stimulation signal.
  • the signal generation unit 10 may be configured to have, for example, an arithmetic function so that a predetermined form of electrical stimulation signal can be oscillated with a predetermined output value.
  • the electrode unit 20 is configured to be electrically connectable to the signal generation unit 10, and typically includes at least one set of electrode pads (for example, an electrode composed of a positive electrode (+) and a negative electrode ( ⁇ )). Pad).
  • This electrode pad may be provided detachably with respect to the signal generator 10, or may be fixedly connected at all times. Further, the signal generation unit 10 itself may be integrated with the electrode unit 20.
  • One set of electrode pads may be provided, or two or more sets may be provided. Further, the shape of the electrode pad is not particularly limited.
  • the electrical stimulation signal generated by the signal generator 10 can be applied to a part of the living body through this electrode pad.
  • this electrode pad is attached to the living body is not particularly limited.
  • the electrode pad may be formed as an adhesive pad having adhesiveness, and may be attached to the skin of a living body with an adhesive force. Or it is formed in the suction cup shape which has adsorptivity, and may be made to adhere to the skin of a biological body by adsorption power.
  • the pair of electrode pads are brought into contact with the skin of the living body, and an electric current is applied between the electrode pads, thereby applying electrical stimulation to the living body muscles and nerves included in the region where the current flows, and contracting the muscles. Can be triggered.
  • the positive output signal is typically directed from the positive electrode pad to the negative electrode pad of the set of electrode pads. Washed away.
  • the negative output signal is typically flowed from the negative electrode pad to the positive electrode pad in the set of electrode pads. Therefore, typically, it is preferable to attach the positive electrode pad to the more central side of the living body and the negative electrode pad to the more peripheral side of the living body.
  • the signal is output so that the positive output in the electrical stimulation signal is output from the more central side of the living body toward the peripheral side, and the negative output is output from the more peripheral side of the living body toward the central side.
  • the generator 10 may be configured to automatically adjust the direction of signal output.
  • the central side here means the upstream side of the arterial blood flow in the living body
  • the peripheral side means the downstream side of the arterial blood flow.
  • the central side can be proximal closer to the trunk and the peripheral side can be distal farther from the trunk.
  • the control unit is not an essential component, but can be provided as means for suitably controlling the form of the electrical stimulation signal output from the signal generation unit 10.
  • the control unit can store various data such as data input from the outside, and can perform predetermined calculation and processing on the data based on various programs such as a system program.
  • various data input from the outside can be calculated and processed, and an instruction can be issued to the signal generation unit 10 based on the data after the calculation and processing.
  • Such a control unit is not particularly limited.
  • control unit is an external device of the electrical stimulation apparatus 1, the control unit can be configured by a computer such as a personal computer, for example.
  • the electrical stimulation signal output from the electrical stimulation device 1 includes a pulse group signal including a plurality of pulse signals.
  • the pulse-like signal in the pulse group signal is a unipolar pulse wave in which the main pulse-like signal rises to either the positive or negative pole.
  • a unipolar pulse wave in which all pulse signals are oscillated on the plus side is typically, as shown in FIG. 2A.
  • the electrical stimulation signal acts more effectively on the living body, and the muscle can be contracted more greatly with a constant effective current. In other words, a predetermined muscle output can be obtained with a small current. In addition, a high muscle output can be obtained while suppressing the occurrence of pain due to the electrical stimulation signal.
  • FIG. 3 is a diagram showing a typical example of the waveform of a bipolar pulse wave that has been generally used conventionally.
  • this bipolar pulse wave one pulse signal is oscillated toward both the plus side and the minus side.
  • the pulse waveforms oscillated on the plus side and the minus side may have substantially the same shape although the oscillation directions are opposite.
  • the conventional signal waveform is typically oscillated alternately on the plus side and the minus side, as represented by this bipolar pulse wave (see, for example, Patent Documents). (See paragraph 1, 0005, etc.).
  • the waveform of the pulse group signal in the technique disclosed herein is the same as the prior art because the output poles of the pulse-like signal are aligned. And can be clearly distinguished.
  • the electrical stimulation device 1 disclosed herein has less pain than, for example, a conventional electrical stimulation signal, when attention is paid to the relationship between the effects of pain and muscle output that can be brought to the living body by the electrical stimulation signal. It can be understood that it can induce higher muscle output. That is, for example, when the electrical stimulation signal generated from the signal generation unit 10 of the electrical stimulation device 1 disclosed herein is N, the total per unit peak current applied to the living body based on the electrical stimulation signal N parameters X N, which is defined as the muscle output value than the parameter X M based on the electrical stimulation signal M by the conventional electrical stimulation device can be recognized as a device obtained as sufficiently high value.
  • the parameter X is specifically a value calculated as follows. That is, the electrical stimulation signal N and the electrical stimulation signal M are applied to a living body at a voltage at which 30% other dynamic muscle output of isometric maximum muscle strength (MVC) is obtained. Then, based on such an electrical stimulation signal, a living body muscle or a nerve that issues a command to the muscle is stimulated to induce muscle contraction. For example, when an electrical stimulation signal is applied to the thigh of a living body, an extension movement of the knee joint is involuntarily induced. When the degree of muscle contraction force at this time is measured as a muscle output, an integrated value obtained by integrating the muscle output per one pulse group signal can be set as a total muscle output value. In addition, a value obtained by averaging the maximum current values flowing through the living body from one pulse group signal can be set as the average peak current value.
  • an electrical stimulation signal M including a pulse group signal composed of a bipolar pulse wave with a frequency of 20 Hz can be assumed as a typical electrical signal generated by a conventional electrical stimulation device.
  • the parameter X N calculated for the electrical stimulation signal N generated from the electrical stimulation device 1 disclosed herein is expressed by the following formula: X N in relation to the parameter X M based on the conventional electrical stimulation signal M. ⁇ 1.3 ⁇ X M ; That is, the parameter X N, to the parameters X M, is increased more than 130%.
  • X N is preferably satisfies X N ⁇ 1.35 ⁇ X M, more preferably satisfy X N ⁇ 1.50 ⁇ X M.
  • the isometric maximum muscle strength (MVC) can be measured using, for example, an isometric muscle strength measuring device.
  • an isometric muscle strength measuring device For example, taking as an example knee extension muscle strength that can be recognized as a representative value of lower limb muscle strength, it can typically be measured as follows. Specifically, first, the subject is seated on the measuring device (half-sitting posture), and the chest and abdomen are fixed to the chair by the seat belt. Then, the living body part having the muscle to be measured is fixed to the measuring lever of the isometric strength measuring device. For example, when measuring the isometric maximum muscle strength of the lower extremity extensor muscle of a subject as a living body, the right neck joint of the subject's right leg is set to 90 degrees with the arm lever of the isometric strength measuring device.
  • the knee is extended when the subject is subjected to a knee joint flexion and extension exercise of 0 degrees / second with several attempts (for example, about 2 to 5 times) with maximum effort. Measure the muscle output when doing. At this time, each bending and extending movement is continuously performed while securing a sufficient time interval.
  • the maximum value of the peak torque thus obtained can be set as the isometric maximum muscular strength.
  • Such isometric maximum muscle strength can be expected to be increased by the use of the electrical stimulation device disclosed herein, so when using the device over a long period of time (eg, over a month) It is preferable to remeasure the isometric maximum muscle strength every time a certain period (for example, about one week to one month) elapses.
  • isometric maximum muscle strength can be roughly grasped using a clinically convenient method.
  • the following index is adopted as the stimulation intensity for the isometric maximum muscular strength of the leg extensor muscle.
  • 10% MVC is understood as “muscle strength for lifting the heel from the bed”
  • 20% MVC is identified as “muscle strength for which the calf is lifted from the bed”
  • 30% MVC is identified as “muscle strength at which the knee joint is almost fully extended”.
  • clinically convenient methods may be used as appropriate according to conventional methods.
  • the other dynamic muscle output is a muscle output obtained by muscle contraction by an electrical stimulation signal, and is clearly distinguished from a muscle output when a living body performs muscle contraction (voluntary muscle contraction) by its own intention. obtain.
  • this other dynamic muscle output may be simply expressed as “muscle output”.
  • This other dynamic muscle output is, for example, the joint motion induced by the muscle when a 30% MVC electrical stimulation signal is applied to a living body muscle (for example, quadriceps muscle), an isometric strength measuring device, etc.
  • the muscle output value can be grasped by using and measuring.
  • the total muscle output value is an integrated value obtained by integrating the measured muscle output per one pulse group signal (that is, one group of the pulse signals) included in the electrical stimulation signal.
  • This total muscle output value can be calculated from a muscle output waveform (that is, time transition data of muscle output) actually induced in the living body when a 30% MVC electrical stimulation signal is applied to the living body. Since the pulse group signal is repeatedly given to the living body, the total muscle output value may be an average value of the total muscle output value calculated for each pulse group signal.
  • the peak current can be grasped by measuring the maximum value of the current (effective current) that actually flows through the living body using one pulse group signal included in the electrical stimulation signal.
  • the average peak current can be an average value of peak currents calculated for each pulse group signal. Such an effective current may vary depending on individual differences such as differences in essential resistance among individual living bodies, skin conditions, muscle strength (physical ability), and muscle mass.
  • the total muscle output value per unit peak current (that is, parameter X) is the total muscle output value (for example, the unit is kgf) obtained per 1 mAp of the peak current, and the total muscle output value is the average peak current. It can be calculated by dividing by.
  • This parameter X may vary from individual to individual even when the same electrical stimulation is applied.
  • the waveform of an electric stimulation signal or the like is a bipolar pulse wave.
  • the parameter X was about 100 to 300 kgf / mAp (typically about 150 to 250 kgf / mAp) for healthy adult males.
  • an electrical stimulation signal is applied to a living body for the purpose of maintaining or enhancing muscle strength such as strength training, the amount of effective current that actually flows through the living body is increased in order to increase the amount of electrical stimulation to the muscle. It was hoped that.
  • the parameter X can be set to a value improved by about 30% or more (for example, 1.3 times or more). For example, for an adult male, this parameter X can typically be improved to approximately 200-400 kgf / mAp. That is, it is possible to obtain a high other dynamic muscle output per unit peak current. As a result, a high passive muscle output can be obtained by an electrical stimulation signal having a small peak current and no pain.
  • the electrical stimulation apparatus disclosed herein has a configuration in which the following electrical stimulation signal that efficiently acts on muscles is applied to a living body.
  • the pulse group signal as described above is composed of a plurality of (that is, two or more) pulse signals.
  • a pulse signal can typically be grasped as an electric signal having a pulse width of 1000 ⁇ s or less.
  • the pulse width is preferably 100 ⁇ s or more and more preferably 200 ⁇ s or more in order to give a suitable stimulation to the muscle by such an electrical stimulation signal. More preferably, it is 500 ⁇ s or more.
  • an electrical stimulus that is too strong is not preferable because it causes muscle fatigue in the living body or causes burns in some cases.
  • the pulse width is preferably 900 ⁇ s or less, more preferably 800 ⁇ s or less, for example, 700 ⁇ s or less.
  • the intensity of the pulse signal is not strictly limited, and can be set as appropriate within a range in which a desired muscle contraction effect can be obtained, for example.
  • the intensity of the pulse signal is, for example, 1 to 30% MVC (more preferably 10 to 20% MVC) based on the isometric maximum muscle strength (MVC) of the subject (biological body) to which the electrical stimulation signal is applied. It is preferable to set the stimulation intensity to induce a movement corresponding to the degree.
  • 20% MVC can be used as one standard as a stimulus intensity that hardly causes fatigue or pain.
  • an electrical stimulation signal is configured by appropriately combining a pulse group signal exceeding 20% MVC (for example, 30% MVC) and a pulse group signal not exceeding 20% MVC (for example, 10% MVC). Therefore, it is preferable because greater muscle contraction can be induced in a state that is difficult to be accompanied by fatigue and pain.
  • the electrical stimulation signal having the minimum strength necessary for maintaining muscle strength (for example, about 10 to 20% MVC) is less burdensome (comfortable) for the living body and is less likely to cause pain and muscle fatigue. It may be suitable for extending the use time of one time or using it for a long time.
  • the pulse group signal is applied to the living body in a state that is difficult to be accompanied by pain, for example, in a state where stimulation is further suppressed.
  • the pulse group signal can typically be composed mainly of low-frequency pulse components.
  • “low frequency” related to a low frequency pulse component means that the frequency is less than 80 Hz.
  • Such a low-frequency pulse component preferably has a frequency of 50 Hz or less, more preferably 40 Hz or less, for example, 30 Hz or less.
  • the lower limit of the frequency of the low-frequency pulse component is not particularly limited, but if the frequency is too low, it is not preferable because effective stimulation cannot be applied to the muscle.
  • the frequency of the low frequency pulse component is preferably 5 Hz or more, and more preferably 10 Hz or more. Although depending on the desired effect, the low frequency component is preferably about 15 Hz to 25 Hz, for example.
  • the pulse group signal preferably includes a high frequency pulse component preceding the group of low frequency pulse components.
  • high frequency means that the frequency is relatively high in comparison with the frequency in the low frequency pulse component, and means that the frequency is 80 Hz or more.
  • the high-frequency pulse component preferably has a frequency of 90 Hz or higher, preferably 95 Hz or higher, such as 100 Hz or higher, more preferably 200 Hz or higher. can do.
  • the frequencies of the low frequency pulse component and the high frequency pulse component are close to each other, it is not preferable because it is difficult for the living body to distinguish between the two.
  • the low-frequency pulse component and the high-frequency pulse component included in one pulse group signal have a frequency difference of 50 Hz or more, for example.
  • the upper limit of the frequency of the high-frequency pulse component is not particularly limited. However, if the frequency is too high, the effect of stimulating muscles is reduced and it is difficult to induce muscle contraction, which is not preferable.
  • the frequency of the high-frequency pulse component is preferably 500 Hz or less (less than 500 Hz), more preferably 450 Hz or less, and for example, 400 Hz or less.
  • the high frequency component is preferably about 50 Hz to 400 Hz (150 Hz to 250 Hz), for example.
  • specific data is not shown, the present applicants effectively reduced the pain sufficiently when the frequency of the high-frequency pulse component is, for example, 50 Hz to 400 Hz (150 Hz to 250 Hz). It has been confirmed that muscle contraction can be induced.
  • the high-frequency pulse component includes one (that is, one cycle high-frequency pulse signal) preceding the low-frequency pulse component, so that the effect of stimulating muscles can be enhanced, and the number is not particularly limited.
  • the pulse group signal shown in FIG. 2A has nine low-frequency pulse components (which is a nine-cycle high-frequency pulse signal; hereinafter sometimes referred to as “9 pulses”).
  • 9 pulses nine-cycle high-frequency pulse signal
  • An example including one (one cycle) high-frequency pulse component is shown.
  • an increase in the number of high-frequency pulse components is not preferable because the amount of stimulation increases and muscle fatigue may occur.
  • the stimulation by the high frequency pulse component is perceived as pain, and the pain may be increased.
  • the number of high-frequency pulse components is not proportional to the effect of promoting muscle contraction for the purpose of muscle activation before stimulation by the low-frequency pulse component.
  • the number of high-frequency pulse components is preferably 5 (5 cycles) or less, typically 4 (4 cycles) or less, preferably 3 (3 cycles) or less, for example, 1 to Two (one to two cycles) are preferable.
  • the electrical stimulation signal is preferably configured to include a plurality of the above-described pulse group signals with a pause period during which no electrical signal is output.
  • the rest period is not particularly limited, but can be designed from various viewpoints. For example, (1) it is possible to appropriately adjust the amount of stimulation by the pulse group signal and to maintain a state in which muscle fatigue (LFF) due to the electrical stimulation signal is unlikely to occur. (2) Even if muscle fatigue occurs, it can be considered that the metabolites generated in the body due to muscle contraction are washed away in the bloodstream so that the fatigue is recovered.
  • LFF muscle fatigue
  • the electrical stimulus signal a has a plurality of pulse groups signal P across the first pause period T 1
  • It is the preferred embodiment comprises a 1 stimulus signal S 1. That is, after applying a high pulse group signal P of muscle contraction action on muscles, by the first rest period T 1, by relaxing the muscle stimulation amount by pulse group signal P, so as to reliably reduce the occurrence of fatigue I have to.
  • the number of pulse signals constituting one pulse group signal P is not particularly limited, and is determined in consideration of, for example, the form (pulse width, wave number, intensity, etc.) of the above-described high frequency pulse component and low frequency pulse component. be able to.
  • a combination of a high-frequency pulse component and a low-frequency pulse component may be determined based on the fact that muscle contraction can be suitably maintained.
  • the number of pulse signals can be determined, for example, with about 50 pulses or less as a guide.
  • the number of such pulse signals is more preferably 40 pulses or less, even more preferably 30 pulses or less, and for example, 20 pulses or less.
  • the number of pulse signals included in the pulse group signal is preferably 4 pulses or more, more preferably 6 pulses or more, and even more preferably 8 pulses or more.
  • the number of high-frequency pulse components is 1 to 4 pulses (for example, 1 to 2 pulses), and the number of subsequent low-frequency pulse components is about 2 to 20 pulses (for example, 5 to 15 pulses). Is exemplified. Although specific data is not shown, the applicants are induced when the number of high-frequency pulse components is, for example, 1 to 3 pulses (especially 1 to 2 pulses), rather than 0 pulses. It has been confirmed that the momentum increases.
  • first rest period T 1 may be set to a relatively short time.
  • Such first rest period T 1 include, but are not strictly limited, for example, can be less 1000 ms, preferably 800ms or less, for example, 700ms or less. Further, from the viewpoint of reducing the occurrence of fatigue, it is preferably 200 ms or more, and more preferably 300 ms or more, for example, 400 ms or more.
  • the second stimulation signal S 2 having a plurality of the first stimulation signals S 1 with the second rest period T 2 sandwiched between the electrical stimulation signals. It is a preferable aspect to contain. In other words, in consideration of the possibility of fatigue accumulated by the first stimulus signal S 1, it is at a suitable frequency by providing the second rest period T 2 of the order of fatigue during the first stimulus signal S 1, it is preferable to configure the second stimulus signal S 2.
  • the second rest period T 2 may differ depending on the total application time of the electrical stimulation signal, it cannot be generally described.
  • the total application time of the electrical stimulation signal is about 30 to 60 minutes
  • to promote recovery of muscle fatigue can be as a guide of the first 2 to 4 times approximately stimulation signals S 1 providing the second rest period T 2.
  • sets the electrical stimulation period by the first stimulus signals S 1 to several seconds to several tens of seconds is exemplified that subsequently providing the second rest period T 2 of the order of 20 seconds to 60 seconds.
  • the output waveform of the pulse signal is not necessarily limited, and may be any of a rectangular wave pulse shape, a sine wave pulse shape, a triangular wave pulse shape, a sawtooth pulse shape, and the like. Among these, a rectangular wave pulse shape is preferable. Although specific data is not shown, the applicants have confirmed that muscle contraction can be effectively induced with a relatively small current when the output waveform of the pulse signal is a rectangular wave. ing. Specifically, for example, a rectangular pulse signal widely used in a digital switching circuit or the like can be used as such a rectangular wave. Use of this rectangular pulse signal is preferable in that a large amount of electrical stimulation can be secured and waveform control can be performed more easily. Needless to say, this waveform is the shape of the output wave of the electrical stimulation signal from the electrical stimulation device. Therefore, a slight change can be seen in the actual current waveform when the electrical stimulation signal is applied to the living body.
  • the rectangular pulse means a signal form that changes sharply in a short time, rises from a reference potential (for example, lower limit value) to a set potential (upper limit value), maintains the set potential for a certain period of time, and then re-references It has a shape that falls to a potential (for example, a lower limit value, which can be 0 V on a biological basis).
  • a reference potential for example, lower limit value
  • a set potential which can be 0 V on a biological basis
  • it is a concept that can include various signals other than the above-described sinusoidal pulse signal (ie, sinusoidal pulse signal; the same applies hereinafter), a triangular wave pulse signal, and a sawtooth pulse signal.
  • the shape (output shape) of such a rectangular pulse is not necessarily limited to a geometric rectangle, and there is a slight slope at the rise and fall, or the boundary between the rise and fall and the upper and lower limits.
  • the corners at the corners may be smoothly curved.
  • a unidirectional pulse composite wave having an undershoot that vibrates (protrudes) in a direction further falling below the reference potential (base line) following the falling of the pulse signal.
  • undershoot means that when a unipolar rectangular wave (square wave) is output as a pulse signal, the waveform protrudes to the opposite polarity side from the reference potential at which the waveform becomes a steady value at the falling portion. The part of the waveform.
  • the shape of the undershoot is not particularly limited as long as the waveform exceeds the reference potential and protrudes to the opposite potential. Typically, it may have the same form as a reaction peak or the like seen due to an inductance component or the like in a general rectangular wave pulse signal.
  • the waveform may be a substantially U-shaped or le-shaped (no corner) waveform protruding to the opposite side of the pulsed signal following the pulsed signal as illustrated in FIG. 2B. That is, the shape of the undershoot does not include a potential fluctuation that is steeper than that of the pulse-like signal, and the pulse-like signal falls while continuously reducing the potential fluctuation width beyond the reference potential, to a certain depth. After reaching (potential fluctuation range zero), the shape may gradually converge to the reference potential.
  • the undershoot may be such that the waveform does not include a straight line portion.
  • the strength of the undershoot is not strictly limited. For example, it can be determined in accordance with a desired secondary effect in addition to the action on the muscle by electrical stimulation.
  • the intensity of the undershoot can be appropriately set within a range of less than 0% and about ⁇ 100%, for example, when the intensity of the pulse signal is 100% (reference). For example, when it is desired to prevent a decrease in muscle strength due to electrical stimulation or increase the strength enhancement effect, it is preferable to induce a higher muscle output.
  • the strength of the undershoot is preferably ⁇ 20% or less (that is, a depth of 20% or more in the falling direction; the same applies hereinafter), more preferably ⁇ 40% or less, for example ⁇ It can be 45% or less.
  • an undershoot whose depth in the falling direction is too large can be regarded as a pulse signal having a polarity different from that of the pulse signal. This is not preferable because the effects of the technology disclosed herein may be impaired.
  • the strength of the undershoot is preferably ⁇ 100% or more (that is, a depth of 100% or less in the falling direction; the same applies hereinafter), more preferably ⁇ 90% or more, for example, ⁇ 85%. This can be done.
  • the strength of the undershoot is small.
  • the strength of the undershoot is preferably ⁇ 20% or less (that is, a depth of 20% or more in the falling direction; the same applies hereinafter), more preferably ⁇ 30% or less. It can be 40% or less.
  • the strength of the undershoot is preferably ⁇ 65% or more (that is, a depth of 65% or less in the falling direction; the same applies hereinafter), more preferably ⁇ 63% or more, and ⁇ 60% or more. It is particularly preferable that it can be -58% or more, for example.
  • the application time of the above electrical stimulation signal is not particularly limited, and an appropriate time that can induce desired muscle contraction can be set according to each living body. For example, it can be applied to a living body over a period of 1 minute to 180 minutes, more preferably 5 minutes to 120 minutes, for example, 10 minutes to 90 minutes. That is, according to the electrical stimulation apparatus 1 disclosed herein, for example, muscles can be contracted efficiently with a small current. As a result, for example, muscle contraction can be induced without causing muscle fatigue in the living body. Moreover, according to a desired effect, muscle contraction can be induced in a state where pain is further suppressed.
  • an electrical stimulation program of 5 minutes or more (for example, 30 to 90 minutes) as a whole can be safely received over a long period of time.
  • the use time of the electrical stimulation apparatus for obtaining the equivalent muscle output effect can be shortened.
  • the technology disclosed herein can be grasped as a method of applying an electrical stimulation signal that can more effectively induce the contraction of the muscles of a living body. That is, the electrical stimulation signal applied to the living body in this electrical stimulation method includes a pulse group signal including a plurality of pulse signals, and each of the plurality of pulse signals in the pulse group signal is either plus or minus. It may be characterized by a unipolar pulse wave rising to one pole.
  • an electrical stimulation signal is introduced into a living body using the electrical stimulation device 1 shown in FIG. 1, and the relationship between the waveform of the electrical stimulation signal and the muscle exercise effect induced by the electrical stimulation signal is evaluated.
  • a living body four healthy male university students without regular training experience were selected as subjects (subjects).
  • Electrode pad of an electrical stimulation device was attached to the thigh of the subject, and the following electrical stimulation signals A and B were applied for 3 minutes, respectively.
  • the electrode pads were attached to the proximal side (central side) and the distal side (peripheral side) so as to sandwich the right quadriceps muscle, which is the test muscle. Unless otherwise specified, a positive electrode pad was attached to the proximal side, and a negative electrode pad was attached to the distal side, unless otherwise specified.
  • the electrical stimulation signal A is a signal obtained by repeatedly applying the pulse group signal (a) for 3 minutes through a rest period of 600 ms.
  • the pulse group signal (a) outputs 10 pulses of a unidirectional pulse composite wave at a predetermined frequency as described below.
  • each pulse component in the unipolar composite pulse wave is constituted by outputting a rectangular wave of 600 ⁇ s on the plus side and then including ⁇ 75% undershoot on the minus side.
  • the electrical stimulation signal B is a signal obtained by repeatedly applying the pulse group signal (b) for 3 minutes through a rest period of 600 ms.
  • the pulse group signal (b) outputs 10 pulses of a bipolar pulse wave at a predetermined frequency as described below.
  • each pulse component in the bipolar pulse wave is configured by continuously outputting a rectangular wave of 300 ⁇ s on the plus side and 300 ⁇ s on the minus side.
  • Bipolar pulse wave Plus side and minus side Rectangular wave Pulse component: Frequency 20Hz, bipolar meter 10 pulses
  • the output from the electrical stimulator varies slightly with the output voltage depending on the impedance of the load (living body).
  • the current applied to the living body by each electrical stimulation signal has some differences due to the difference in impedance for each subject, but the tendency to change with respect to the electrical stimulation signal is uniform and can be stably energized. It was confirmed that According to the unidirectional pulse composite wave in the electrical stimulation signal A, it can be seen that a large peak current based on a high frequency component flows to the living body at the rising edge of the plus-side pulse of the current waveform, and then a low current flows stably. It was.
  • the generation of the peak current at the rising edge of the rectangular wave pulse signal of the high frequency pulse component is due to the characteristics of the pulse composite wave. It was also confirmed that a relatively large peak current flows in the negative undershoot portion because of the high frequency component, and slowly converges to a current value of zero.
  • the current flows in a substantially rectangular wave shape as it is in the plus-side rectangular wave portion of the current waveform, and the voltage is reduced to 0 in the subsequent minus-side rectangular wave portion.
  • a large overshoot current was generated at the switching portion, and then slowly converged to a current value of 0. That is, it has been found that a sharp change in voltage occurs as the overshoot at the end of one cycle of the bipolar pulse wave.
  • the electrical stimulation signal B in which the overshoot current flows it has been found that the effective current flowing through the living body increases in order to obtain a 30% MVC muscle output.
  • the peak current value that is the peak of the current that actually flows in the living body due to the electrical stimulation signal can reflect the magnitude of pain due to the electrical stimulation. Therefore, the total muscle output value X per unit peak current (1 mAp) was calculated for each subject by dividing the total muscle output value calculated above by the peak current value.
  • the parameter X defined in this way represents the muscle output induced by the unit peak current, and as the parameter X increases, it means that more muscle output can be obtained with less pain.
  • the values of the parameter X for the electrical stimulation signals A and B are shown in FIG. Each marker in FIG. 4 indicates a parameter X calculated for the electrical stimulation signals A and B for four subjects. And the dotted line in a figure is a line which connected the average of the parameter X of four test subjects in each electric signal.
  • the parameter X (ie, X N ) based on the electrical stimulation signal A applied by the electrical stimulation device disclosed herein is the electrical stimulation signal applied by the conventional device. It was found that the value was higher than the parameter X (ie, X M ) due to B. For the four subjects, the parameter X related to the electrical stimulation signal A is about 44% to 70% higher than the parameter X related to the electrical stimulation signal B (that is, about 1.44 to 1.70 times the value). ) was confirmed. That is, according to the electrical stimulation device disclosed herein, it has been confirmed that, for example, higher muscle output can be obtained without pain or with less pain compared to the conventional electrical stimulation device. .
  • This output setting reference waveform is a bipolar that can be said to be a conventional waveform It consists of a pulse signal.
  • the electrical stimulation device disclosed herein was used to apply electrical stimulation to the subject and to measure the muscle strength induced by the electrical stimulation.
  • the induced muscular strength was evaluated by muscle output (kgf) measured according to a conventional method. Specifically, first, an electrode pad of an electrical stimulation device is attached to the thighs of nine subjects, and a pulse group consisting of pulse components (pulse-like signals) shown by the following (r1) (a1) (a2) An electrical stimulation signal (R1) (A1) (A2) formed by combining a plurality of signals was applied.
  • each pulse component was provided with the voltage used as the 30% MVC output based on the reference
  • the signal (r1) is the same as the signal (r1) in the above reference test 1, and is a known pulse group waveform having signals on the plus side and the minus side as shown in FIG.
  • the signal (a1) is a pulse group waveform of the present proposal having a signal only on the plus side, and is composed of only a low-frequency pulse component.
  • the signal (a2) is a pulse group waveform of the present proposal having a signal only on the plus side as shown in FIG. 2A, and has a high-frequency pulse component and a low-frequency pulse component.
  • each of the pulse signals constituting the pulse group signal is a bipolar pulse wave (r1) or a unipolar pulse wave (a1) (a2).
  • Each of the electrical stimulation signals (R1) to (A2) “applies the above pulse group signal for 10 seconds (ie, 10 groups with the first pause period) once per second”.
  • One cool corresponding to the first stimulus signal
  • this one cool is repeated five times (that is, five cools) with a 30 second rest period (second rest period) (corresponding to the second stimulus signal) did.
  • test muscle is the right quadriceps as in the first embodiment, and the two electrode pads provided in the electrical stimulation device are placed on the proximal side (central side) of the front of the thigh so as to sandwich the right quadriceps. ) And the distal side (peripheral side).
  • the measurement result showed the average value of the muscle contraction force of nine subjects as a relationship with the electrical stimulation application time.
  • the integrated value of the muscle contraction force was calculated as the amount of exercise of the muscle by electrical stimulation.
  • FIG. 5 is a diagram showing a time transition of muscle output (kgf) accompanying application of an electrical stimulation signal. Note that the data group in each figure after FIG. 5 shows data of the first cool, the second cool,... From the left. Since there is no muscle output (zero) during the rest period, the rest period is shortened (omitted) in FIG. In each figure, the scale indicating the value of the muscle output or the like is appropriately adjusted so that the tendency of the data over time is clear. As shown in [1] of FIG. 5, when the unipolar electrical stimulation signals (A1) and (A2) are applied, the muscles are compared with the case where the bipolar electrical stimulation signals (R1) are applied.
  • FIG. 5 [2] is a graph showing the transition of the amount of exercise (kgf ⁇ sec) of the muscle by electrical stimulation. As shown in FIG. 5 [2], when the unipolar electrical stimulation signals (A1) and (A2) are applied to the momentum, the bipolar electrical stimulation signal (R1) is applied. In comparison, there was a clear tendency to increase. In addition, regarding the momentum by the unipolar electrical stimulation signals (A1) and (A2), there is a difference between the two compared to the case of muscle output, but this is the time of applying electrical stimulation (energization time). It is thought to be due to the difference, and is not considered to be a special difference.
  • FIG. 5 [3] is a diagram showing a time transition of pain (cm) perceived by electrical stimulation.
  • the pain due to the electrical stimulation signal is the smallest when the bipolar electrical stimulation signal (R1) is applied, and becomes relatively strong when the unipolar electrical stimulation signals (A1) and (A2) are applied. It was.
  • Such a difference in pain is considered to be based on a difference in effective current amount flowing in the living body by an electrical stimulation signal and a difference in induced muscle strength. That is, in the second embodiment, the output of each pulse signal component of the electrical stimulation signal applied to the living body is set to a voltage corresponding to 30% MVC when the electrical stimulation signal based on the “output setting reference waveform” is applied to the subject. It was set.
  • the magnitude of the pain is different as a result. More specifically, even with the same output (voltage), more electric currents are introduced into the living body by applying the electrical stimulation signals (A1) and (A2) by the unipolar pulse composite wave, and are induced by the unipolar pulse composite wave. It was predicted that the maximum contractile force to be applied was larger than 30% MVC (approximately 50% MVC or more). As for the pain caused by the electrical stimulation signals (A1) and (A2), the electrical stimulation signal (A2) having a high frequency pulse component is smaller. It was found that the electrical stimulation signal (A2) having a high-frequency component can induce muscle contraction with a good balance between the muscle movement effect and pain.
  • the pulse group signal was (r1) (a2) (a3) shown below, and the other conditions were the same as in Reference Test 1 above, and the electrical stimulation signals (R1) (A2) (A3) were applied to the living body. Then, [1] maximum contractile force, [2] momentum and [3] pain induced by the electrical stimulation signals (R1) to (A3) were measured in the same manner as in Reference Test 1, and the results are shown in FIG. Indicated. In addition, the voltage set so that it might become the output equivalent to 30% MVC of each test subject based on the reference waveform for output setting was used for each pulse component in each pulse group signal similarly to the said test 1. FIG.
  • the signal (r1) is the same as the signal (r1) in the above test 1, and is a known pulse group waveform having signals on the plus side and the minus side.
  • the signal (a2) is the same as the signal (a2) in the test 1 described above, and is the proposed pulse group waveform having a signal only on the plus side.
  • the signal (a3) is a unipolar pulse group waveform of the present proposal having a signal only on the minus side, contrary to the signal (a2).
  • the bipolar electrical stimulation signal (R1) is applied. It was confirmed that the maximum muscle contraction force could be smaller than when applied.
  • the momentum shown in [2] is also the same result as the maximum contraction force, and by applying a stimulus so that the electrical stimulation signal advances from the central side of the living body toward the peripheral side, a higher momentum can be obtained. It was confirmed that it was obtained.
  • a simple comparison cannot be made because the difference in the maximum contractile force induced by each electrical stimulation signal is large, but the bipolar electrical stimulation signal (R1) and the unipolar electrical stimulation signal (A3) Then, although the difference was not large, the unipolar signal (A3) was more painful. This suggests that even if the direction of introduction of electrical stimulation into the living body is not appropriate, more effective current can be introduced into the living body by the unipolar signal (A3).
  • the known bipolar electrical stimulation signal (R1) can give a stimulus to a living body without being aware of its directionality, but to obtain a higher muscle contraction effect, it is a unipolar electrical stimulation signal. It was confirmed that it did not greatly meet (A2).
  • FIG. 7 shows the measurement results of muscle movement and pain induced by the electrical stimulation signal. Muscles induced by electrical stimulation signals (A6) and (A6 ′) with an undershoot depth of ⁇ 45% and electrical stimulation signals (A8) and (A8 ′) with an undershoot depth of ⁇ 65% As for the contraction mode, the measurement date was different, and a slight difference was observed in the result. However, between the electrical stimulation signals (A4), (A5) and (A6) measured on the same day, between the electrical stimulation signals (A6 ′), (A7) and (A8), and the electrical stimulation signal (A8 ′ ) And (A9), there was a tendency that [1] maximum contractile force and [2] momentum increased as the undershoot depth increased. However, both [1] maximum contractile force and [2] momentum tended to decrease when the undershoot deepened to -85% (A10).
  • the depth of the undershoot is, for example, a depth shallower than ⁇ 65% (for example, ⁇ 20% to ⁇ 20%) from the balance between [1] maximum contractile force and [2] momentum and [3] pain.
  • the electrical stimulation device disclosed herein can efficiently induce muscle movement with a small current. It was also found that the pain due to such muscle movement is not significantly increased compared to the maximum contractile force obtained. In other words, it can be said that the electrical stimulation device disclosed here can reduce the load and act more effectively on the muscle contraction action of the living body.
  • this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

Abstract

The feature disclosed herein provides an electric stimulation apparatus capable of more effectively causing muscle contractions. The electric stimulation apparatus is provided with a signal generation unit for generating an electric stimulation signal, and an electrode unit for applying the electric stimulation signal generated by the signal generation unit to the body. The electric stimulation signal contains a pulse group signal containing a plurality of pulsed signals. All the pulsed signals of the pulse group signal are characterized by being unipolar pulse waves that rise either positively or negatively.

Description

電気刺激装置Electrical stimulator
 本発明は、生体に電気刺激を付与する電気刺激装置に関する。 The present invention relates to an electrical stimulation device that applies electrical stimulation to a living body.
 心臓外科術後の患者においては、病態管理に伴う術前・術後の身体活動量の低下に加え、手術侵襲に伴う筋蛋白の異化亢進により、全身の筋力低下が避けられない。特に高齢者は、加齢に伴う骨格筋の萎縮と減弱化とにより筋力が著しく低下し得るため、術後機能の回復が遅延して退院阻害要因となり得る。また、心大血管外科手術後の患者については、循環管理や呼吸管理の必要性から安静を余儀なくされるため、術後のリハビリテーションプログラムに遅れが生じやすい。 In patients after cardiac surgery, in addition to the decrease in pre- and post-operative physical activity associated with pathologic management, increased muscle protein catabolism associated with surgical invasion inevitably results in decreased muscle strength throughout the body. In particular, elderly people can remarkably decrease muscular strength due to atrophy and attenuation of skeletal muscles with aging, so that recovery of postoperative function can be delayed and can be a discharge inhibiting factor. In addition, patients after cardiovascular surgery are forced to rest due to the necessity of circulatory management and respiratory management, and therefore, postoperative rehabilitation programs tend to be delayed.
 そのため、術後早期から適用できる離床促進の介入方法として、電気的刺激療法が検討されている。電気刺激療法とは、生体(典型的には患者)内の筋肉あるいは筋肉に指令を発する神経に対して電気刺激を付与することで、当該筋肉の収縮と弛緩とによる筋運動を不随意的に発現させるものである。この不随意の筋運動により、術後の筋力の低下を抑制することが期待されている。かかる電気刺激に関しては、刺激付与のための電気刺激信号の強度(出力)や、パルス幅、周波数等の条件により、筋肉に引き起こされる収縮の態様や効果が異なってくる。そのため、患者の治療や機能改善等といった所望の効果を得る目的で、様々な条件の電気刺激を付与する電気刺激装置が提案されている。 Therefore, electrical stimulation therapy is being studied as an intervention method for promoting bed leaving that can be applied early after surgery. Electrical stimulation therapy is an involuntary movement of muscles caused by contraction and relaxation of muscles by applying electrical stimulation to muscles in the body (typically patients) or nerves that give commands to muscles. To be expressed. This involuntary muscle movement is expected to suppress a decrease in muscle strength after surgery. With regard to such electrical stimulation, the mode and effect of contraction caused to the muscle vary depending on conditions such as the intensity (output) of the electrical stimulation signal for applying the stimulus, the pulse width, and the frequency. Therefore, for the purpose of obtaining desired effects such as patient treatment and function improvement, an electrical stimulation device that applies electrical stimulation under various conditions has been proposed.
日本国特許出願公開2005-185660号公報Japanese Patent Application Publication No. 2005-185660 日本国特許出願公開2011-143061号公報Japanese Patent Application Publication No. 2011-143061
 例えば、特許文献1には、プラス側とマイナス側とで交互に設定された所定波形の電圧信号を、複数の分割波形に分割して患者に付与するようにした電気刺激装置が開示されている。この電気刺激装置では、一つの電圧信号を複数に分割することで、電流値の大きな初期ピーク電流を分割数に応じて患者の体内に複数発生させ、電気刺激量を増大させるようにしている。これにより、患者に痛みを与えることなく、より大きな刺激量が得られることが開示されている。 For example, Patent Literature 1 discloses an electrical stimulation device in which a voltage signal having a predetermined waveform alternately set on the plus side and the minus side is divided into a plurality of divided waveforms and applied to the patient. . In this electrical stimulation apparatus, one voltage signal is divided into a plurality of parts so that a plurality of initial peak currents having a large current value are generated in the body of the patient according to the number of divisions, thereby increasing the amount of electrical stimulation. Thus, it is disclosed that a greater stimulation amount can be obtained without causing pain to the patient.
 しかしながら、特許文献1に開示される技術は、患者に対し、痛みを感じさせることなく、マッサージ効果が得られる程度の電気刺激を付与するものであった。すなわち、患者の筋力に影響を及ぼすような電気刺激を付与するものではなかった。
 本発明は上記の事情に鑑みて創出されたものであり、その目的とするところは、従来より少ない電流でより効果的に所定の筋出力を得ることのできる電気刺激装置を提供することである。
However, the technique disclosed in Patent Document 1 imparts electrical stimulation to such an extent that a massage effect can be obtained without causing pain to the patient. That is, no electrical stimulation was given that would affect the patient's muscle strength.
The present invention has been created in view of the above circumstances, and an object of the present invention is to provide an electrical stimulation device capable of obtaining a predetermined muscle output more effectively with less current than in the past. .
 本発明者らは、電気刺激信号の形態と、かかる信号により生体に誘発される筋出力(他動的筋収縮)との関係について鋭意研究を重ねている。かかる研究の一つの成果として、筋力低下を防止し得る程度の電気刺激を、筋疲労を抑制して生体に付与することができる電気刺激装置を既に提案している(例えば、特許文献2参照)。そして更なる研究の結果、より少ない電流で、効率よく筋収縮を促すことのできる電気刺激信号の形態を見出すに至った。ここに開示される技術は、かかる知見に基づき完成されたものである。 The present inventors have earnestly studied the relationship between the form of the electrical stimulation signal and the muscle output (other dynamic muscle contraction) induced in the living body by the signal. As one result of such research, there has already been proposed an electrical stimulation device that can impart muscle stimulation to an organism with electrical stimulation that can prevent muscle weakness (see, for example, Patent Document 2). . As a result of further research, we have found a form of electrical stimulation signal that can efficiently promote muscle contraction with less current. The technology disclosed herein has been completed based on such knowledge.
 すなわち、ここに開示される発明は、電気刺激信号を発生する信号発生部と、上記信号発生部から発生された上記電気刺激信号を生体に付与する電極部と、を備える電気刺激装置を提供する。上記電気刺激信号は、複数のパルス状信号を含むパルス群信号を含み、上記パルス群信号における複数のパルス状信号は、いずれも、プラスまたはマイナスのいずれか一方の極に立ち上がる片極性パルス波であることを特徴としている。
 この電気刺激装置は、筋収縮(筋出力)を促す電気刺激信号を、片極性のパルス状信号(片極性パルス波)として発振する。かかる構成によると、同形状の双極性のパルス状信号(双極性パルス波)による電気刺激信号に比べて、例えば同一電圧および/または同一電流において有意に高い筋収縮を誘発することができ、高い筋出力(筋力)ならびに筋運動を得ることができる。したがって、この電気刺激装置によると、生体機能により効果的に作用する電気刺激を付与することができる。
That is, the invention disclosed herein provides an electrical stimulation device including a signal generation unit that generates an electrical stimulation signal and an electrode unit that applies the electrical stimulation signal generated from the signal generation unit to a living body. . The electrical stimulation signal includes a pulse group signal including a plurality of pulse-like signals, and each of the plurality of pulse-like signals in the pulse group signal is a unipolar pulse wave that rises at one of the positive and negative poles. It is characterized by being.
This electrical stimulation device oscillates an electrical stimulation signal that promotes muscle contraction (muscle output) as a unipolar pulse signal (unipolar pulse wave). According to such a configuration, it is possible to induce significantly higher muscle contraction, for example, at the same voltage and / or the same current as compared with an electrical stimulation signal by a bipolar pulsed signal having the same shape (bipolar pulse wave). Muscle output (muscle strength) as well as muscle movement can be obtained. Therefore, according to this electrical stimulation device, electrical stimulation that acts more effectively on biological functions can be applied.
 ここに開示される電気刺激装置の好ましい一態様では、上記信号発生部から発生される前記電気刺激信号をNとし、周波数20Hzの双極性パルス波からなるパルス群信号を含む電気刺激信号をMとしたとき、これらの電気刺激信号Nおよび電気刺激信号Mに基づき生体に付与された単位ピーク電流当たりの筋出力を示すパラメータXおよびXが、次式:X≧1.3×X;を満たすことを特徴としている。ここで、上記パラメータXおよびXは、それぞれ、上記生体の大腿部に、上記電気刺激信号Nおよび上記電気刺激信号Mを等尺性最大筋力(MVC)の30%の他動的筋出力が得られる電圧にて付与して測定される膝関節伸展時の筋出力について、(1)上記筋出力を一の上記パルス群信号あたりで積分した積分値を総筋出力値とし、(2)一の上記パルス群信号より生体に流れる最大の電流値を平均した平均ピーク電流値としたとき、(3)次式:X=(総筋出力値)÷(平均ピーク電流値);で算出される。  In a preferred aspect of the electrical stimulation device disclosed herein, the electrical stimulation signal generated from the signal generator is N, and the electrical stimulation signal including a pulse group signal composed of a bipolar pulse wave with a frequency of 20 Hz is M. Then, the parameters X N and X M indicating the muscle output per unit peak current applied to the living body based on the electrical stimulation signal N and the electrical stimulation signal M are expressed by the following formula: X N ≧ 1.3 × X M It is characterized by satisfying; Here, the parameter X N and X M are each thigh of the living body, 30% of the transitive muscles of the electrical stimulation signals N and isometric maximum strength of the electrical stimulation signal M (MVC) Regarding the muscle output during knee joint extension measured by applying a voltage at which an output is obtained, (1) an integrated value obtained by integrating the muscle output per one pulse group signal is defined as a total muscle output value (2 ) When the average peak current value obtained by averaging the maximum current values flowing through the living body from one pulse group signal is calculated as follows: (3) The following formula: X = (total muscle output value) / (average peak current value) Is done.
 上記のパラメータX(XおよびX)は、単位ピーク電流あたりの総筋出力値として定義される。ここに開示される電気刺激装置によると、従来の一般的な電気刺激信号Mについて求められるパラメータXよりも、30%以上高いパラメータXを実現する電気刺激信号Nを発生することができる。かかる構成によると、単位ピーク電流あたり、より多くの筋出力を誘発することができる。換言すると、例えば、所定の筋出力を得るために要する電流量を少量に抑えることができる。これにより、例えば、生体にもたらされる痛み等の負担を軽減して、筋力の低下を抑制できる、電気刺激装置が提供される。あるいは、筋力を増強できる電気刺激装置が提供される。
 なお、等尺性最大筋力(最大随意的筋張力ともいう。Maximal Voluntary Contraction force:MVC)とは関節角度あるいは筋の長さを一定に保った状態で筋肉が収縮することにより発揮される力の最大値であって、例えば、一般的に行われる握力測定や背筋力測定等で測定される筋力がこれに相当する。かかるMVCは、例えば、後述のMVC測定方法等により測定することができる。
The parameter X (X N and X M ) is defined as the total muscle output value per unit peak current. According to the electrical stimulation device disclosed herein, than the parameter X M obtained for conventional general electrical stimulation signal M, it is possible to generate electrical stimulation signals N to achieve more than 30% higher parameter X N. According to such a configuration, more muscle output can be induced per unit peak current. In other words, for example, the amount of current required to obtain a predetermined muscle output can be suppressed to a small amount. Thereby, for example, an electrical stimulation device that can reduce a burden such as pain caused to a living body and suppress a decrease in muscle strength is provided. Alternatively, an electrical stimulation device that can enhance muscle strength is provided.
The isometric maximum muscle force (also called maximum voluntary contraction force (MVC)) is the force exerted by contraction of the muscle while maintaining a constant joint angle or muscle length. The maximum value, for example, muscle strength measured by grip force measurement or back muscle strength measurement that is generally performed corresponds to this. Such MVC can be measured by, for example, an MVC measuring method described later.
 ここに開示される電気刺激装置の好ましい一態様において、上記パルス群信号は、高周波パルス成分と、上記高周波パルス成分の後に発振される低周波パルス成分と、を含むことを特徴としている。電気刺激による筋収縮においては、低周波疲労(Low Frequency Fatigue:LFF)と呼ばれる筋疲労が生じやすい。かかる構成によると、高周波パルス成分により素速く筋収縮を促し、低周波パルス成分により筋収縮を持続させるようにしている。したがって、電気刺激信号を生体に効率的に作用させることができる。 In a preferred aspect of the electrical stimulation apparatus disclosed herein, the pulse group signal includes a high frequency pulse component and a low frequency pulse component oscillated after the high frequency pulse component. In muscle contraction caused by electrical stimulation, muscle fatigue called low frequency fatigue (LFF) is likely to occur. According to this configuration, muscle contraction is promptly promoted by the high frequency pulse component, and muscle contraction is sustained by the low frequency pulse component. Therefore, the electrical stimulation signal can be efficiently applied to the living body.
 ここに開示される電気刺激装置の好ましい一態様において、上記高周波パルス成分は、1周期以上4周期以下の高周波パルス信号を含むことを特徴としている。また、上記低周波パルス成分は、2周期以上20周期以下の低周波パルス信号を含むことを特徴としている。パルス群信号をかかる波形により構成することで、疲労を抑制しつつ、より高い筋収縮力を得ることができる。 In a preferred aspect of the electrical stimulation apparatus disclosed herein, the high-frequency pulse component includes a high-frequency pulse signal of 1 cycle or more and 4 cycles or less. The low-frequency pulse component includes a low-frequency pulse signal of 2 cycles or more and 20 cycles or less. By configuring the pulse group signal with such a waveform, higher muscle contraction force can be obtained while suppressing fatigue.
 ここに開示される電気刺激装置の好ましい一態様において、上記パルス状信号の波形は、基準電位から立ち上がったのち立ち下がる矩形パルスであって、上記立ち下がりに引きつづき、上記基準電位よりも更に立ち下がったのち、上記基準電位に戻るアンダーシュートを備えることを特徴としている。かかる構成によると、生体に電気刺激信号に基づく痛みをより一層感じさせることなく、筋収縮をもたらすことができる。
 なお、本明細書では、このようなアンダーシュートを備える片極性パルス波について、特に「片方向性パルス複合波」と言い、アンダーシュートを備えない片極性パルス波等と区別する場合がある。
In a preferred aspect of the electrical stimulation apparatus disclosed herein, the waveform of the pulse signal is a rectangular pulse that rises from a reference potential and then falls, and continues to the fall and rises further than the reference potential. It is characterized by having an undershoot that returns to the reference potential after being lowered. According to such a configuration, muscle contraction can be brought about without causing the living body to further feel pain based on the electrical stimulation signal.
In the present specification, a unipolar pulse wave having such an undershoot is particularly referred to as a “unidirectional pulse composite wave” and may be distinguished from a unipolar pulse wave having no undershoot.
 ここに開示される電気刺激装置の好ましい一態様において、上記パルス状信号の強度は、等尺性最大筋力の1~30%、より好適には10~20%の運動を誘発する刺激強度に設定されることを特徴としている。かかる構成とすることで、筋肉に過度な痛みや疲労等の負担を加えることなく、筋収縮を促すことができる。 In a preferred aspect of the electrical stimulation device disclosed herein, the intensity of the pulse signal is set to a stimulation intensity that induces exercise of 1 to 30%, more preferably 10 to 20% of the isometric maximum muscle strength. It is characterized by being. By adopting such a configuration, muscle contraction can be promoted without adding a burden such as excessive pain or fatigue to the muscle.
 ここに開示される電気刺激装置の好ましい一態様において、上記電気刺激信号は、第1休止期間を挟んで複数の上記パルス群信号を有する第1刺激信号を含むことを特徴としている。かかる構成とすることで、効果的に筋肉に作用する第1刺激信号を、適度な頻度で生体へ付与し、刺激量を平均的に低減させることができる。これにより、疲労の発生を確実に抑制して、筋収縮を誘発することができる。 In a preferred aspect of the electrical stimulation device disclosed herein, the electrical stimulation signal includes a first stimulation signal having a plurality of the pulse group signals with a first rest period interposed therebetween. By setting it as this structure, the 1st stimulation signal which acts on a muscle effectively can be provided to a biological body with a moderate frequency, and the amount of stimulation can be reduced on average. Thereby, generation | occurrence | production of fatigue can be suppressed reliably and muscle contraction can be induced.
 ここに開示される電気刺激装置の好ましい一態様において、上記電気刺激信号は、第2休止期間を挟んで複数の上記第1刺激信号を有する第2刺激信号を含むことを特徴としている。かかる構成とすることで、第1刺激信号により疲労が生じた場合にも、第2休止期間においてかかる疲労を回復することができる。これにより、疲労の発生をより一層確実に抑制しながら、筋収縮を誘発することができる。また、例えば、全体として長時間および長期に亘って生体に電気刺激を付与することができる。あるいは、疲労をきたすことなく、より短い時間でより多くの量の筋運動を誘発することができる。 In a preferred aspect of the electrical stimulation device disclosed herein, the electrical stimulation signal includes a second stimulation signal having a plurality of the first stimulation signals with a second rest period interposed therebetween. With such a configuration, even when fatigue occurs due to the first stimulus signal, the fatigue can be recovered in the second rest period. Thereby, muscle contraction can be induced while suppressing the occurrence of fatigue more reliably. In addition, for example, electrical stimulation can be applied to a living body over a long period and a long period as a whole. Alternatively, a greater amount of muscle movement can be induced in a shorter time without causing fatigue.
 ここに開示される電気刺激装置の好ましい一態様においては、上記生体に上記電気刺激信号を付与する時間が、1分間以上180分間以下となるように構成されていることを特徴としている。ここに開示される電気刺激装置によると、従来に比べて、電気刺激信号が筋肉により効果的に働きかける。したがって、かかる装置は、例えば1回につき上記の時間使用することにより、生体に疲労をきたすことなく、治療や健康維持、延いては筋力トレーニングを目的とした、十分な筋運動をもたらすことができる。 In a preferred embodiment of the electrical stimulation device disclosed herein, the time for applying the electrical stimulation signal to the living body is configured to be 1 minute or more and 180 minutes or less. According to the electrical stimulation device disclosed herein, the electrical stimulation signal works more effectively on the muscle than in the past. Therefore, such an apparatus can provide sufficient muscle movement for the purpose of treatment, health maintenance and muscle training without causing fatigue to the living body, for example, by using the apparatus for the above-mentioned time for each time. .
 ここに開示される電気刺激装置の好ましい一態様においては、上記電気刺激信号が上記生体の末梢側に進行するように信号を付与するよう構成されることを特徴としている。かかる構成によると、電気刺激信号を生体機能により一層効果的に作用するよう出力することができ、高い筋出力および筋運動を誘発することができる。 In a preferred aspect of the electrical stimulation device disclosed herein, the electrical stimulation signal is configured to give a signal so that the electrical stimulation signal travels to the peripheral side of the living body. According to such a configuration, the electrical stimulation signal can be output so as to act more effectively on the biological function, and high muscle output and muscle movement can be induced.
 以上のここに開示される電気刺激装置によると、例えば、より少ない電流量で、より効果的に筋収縮を誘発することができる。したがって、生体に生じる痛みや疲労を確実に抑制することができる。これにより、例えば、一定の効果を得るための電気刺激付与時間を低減することも可能となる。したがって、かかる電気刺激装置は、病気や怪我で積極的な運動が困難な患者、更には、心臓外科術後や心不全の急性増悪期のように運動自体が困難な生体の筋力低下を抑制するのに効果的に使用することができる。また、かかる電気刺激装置は、健康な生体に対しても筋出力および筋運動を促すことができるため、生体の筋力の維持、延いては筋力の増強を図る目的でも、快適に使用することができる。 According to the electrical stimulation device disclosed here, for example, muscle contraction can be induced more effectively with a smaller amount of current. Therefore, it is possible to reliably suppress pain and fatigue generated in the living body. Thereby, for example, it becomes possible to reduce the electrical stimulation application time for obtaining a certain effect. Therefore, such an electrical stimulation device suppresses the muscular weakness of the patient who is difficult to actively exercise due to illness or injury, and also the living body that is difficult to exercise itself such as after cardiac surgery or acute exacerbation of heart failure. Can be used effectively. In addition, since such an electrical stimulation device can promote muscle output and muscle movement even for a healthy living body, it can be used comfortably for the purpose of maintaining the muscle strength of the living body and, consequently, enhancing the muscle strength. it can.
図1は、一実施形態である電気刺激装置の構成を例示した模式図である。FIG. 1 is a schematic view illustrating the configuration of an electrical stimulation apparatus according to an embodiment. 図2Aは、ここに開示される技術の電気刺激信号におけるパルス群信号の波形の一形態を模式的に示す図である。FIG. 2A is a diagram schematically illustrating one form of a waveform of a pulse group signal in the electrical stimulation signal of the technique disclosed herein. 図2Bは、ここに開示される技術の電気刺激信号におけるパルス群信号の波形の他の形態を模式的に示す図である。FIG. 2B is a diagram schematically illustrating another form of the waveform of the pulse group signal in the electrical stimulation signal of the technology disclosed herein. 図2Cは、ここに開示される技術の電気刺激信号の波形の一形態を模式的に示す図である。FIG. 2C is a diagram schematically illustrating one form of the waveform of the electrical stimulation signal of the technology disclosed herein. 図3は、従来の電気刺激信号におけるパルス群信号の波形の一形態を示す図である。FIG. 3 is a diagram showing one form of a waveform of a pulse group signal in a conventional electrical stimulation signal. 図4は、各例の電気刺激装置から付与される電気刺激AおよびBについてのパラメータXを示すグラフである。FIG. 4 is a graph showing the parameter X for the electrical stimulations A and B applied from the electrical stimulation apparatus of each example. 図5は、試験1において、電気刺激装置により生体にもたらされた[1]最大収縮力、[2]運動量および[3]痛み、を示すグラフである。FIG. 5 is a graph showing [1] maximum contractile force, [2] momentum, and [3] pain caused to the living body by the electrical stimulation device in Test 1. 図6は、試験2において、電気刺激装置により生体にもたらされた[1]最大収縮力、[2]運動量および[3]痛み、を示すグラフである。FIG. 6 is a graph showing [1] maximum contractile force, [2] momentum, and [3] pain caused to the living body by the electrical stimulation device in Test 2. 図7は、試験5において、電気刺激装置により生体にもたらされた[1]最大収縮力、[2]運動量および[3]痛み、を示すグラフである。FIG. 7 is a graph showing [1] maximum contractile force, [2] momentum, and [3] pain caused to the living body by the electrical stimulation device in Test 5.
 以下、図面を適宜参照しつつ、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって、本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面において、同様の作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために必要に応じて模式化されており、実際の寸法関係(長さ、幅、厚さ等)を必ずしも正確に反映したものではない。 Hereinafter, preferred embodiments of the present invention will be described with appropriate reference to the drawings. It should be noted that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In addition, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. In addition, the embodiments described in the drawings are modeled as necessary to clearly explain the present invention, and do not necessarily accurately reflect actual dimensional relationships (length, width, thickness, etc.). is not.
 図1は、ここに開示される電気刺激装置1の構成を説明する模式図である。かかる電気刺激装置1は、電気刺激信号を発生する信号発生部10と、この信号発生部10から発生された電気刺激信号を生体に付与する電極部20とを備えている。なお、この電気刺激装置1は、信号発生部10で発生させる電気刺激信号の形態等を統括的に制御する制御部(図示せず)を備えていても良い。あるいは、外部装置としての制御部と、電気刺激信号の形態等の各種の情報の送受信が行えるように有線または無線で接続可能に構成されていても良い。 FIG. 1 is a schematic diagram for explaining the configuration of the electrical stimulation apparatus 1 disclosed herein. The electrical stimulation apparatus 1 includes a signal generation unit 10 that generates an electrical stimulation signal and an electrode unit 20 that applies the electrical stimulation signal generated from the signal generation unit 10 to a living body. The electrical stimulation apparatus 1 may include a control unit (not shown) that comprehensively controls the form of the electrical stimulation signal generated by the signal generation unit 10. Alternatively, the control unit as an external device may be configured to be connectable by wire or wireless so that various types of information such as the form of the electrical stimulation signal can be transmitted and received.
 信号発生部10は、典型的には、所定の電気刺激信号を発生することのできる発振部を主体として構成することができる。そしてかかる信号発生部10は、典型的には、電極部20に電気的に接続可能に構成されている。
 発振部の構成については特に制限されず、例えば、従来のこの種種の電気刺激装置に使用されている発振部を用いることができる。具体的には、生体の一部に電気刺激信号を付与することで当該刺激付与領域に含まれる筋肉の収縮を誘発し得るものであれば、特に制限されることなく用いることができる。信号発生部10において形成される電気刺激信号の形態については後述するが、複数のパルス状信号を含むパルス群信号を形成し得る発振部であればよい。かかる発振部により発振可能な信号の周波数についても特に制限されず、おおよその目安として、例えば、周波数が1Hz以上4000Hz以下程度の発振が可能な発振部を使用することができる。より好適には、周波数が1Hz以上1000Hz以下(1Hz以上1000Hz未満)の周波数領域を発生し得るものであってよい。特に好ましくは、周波数が1~500Hz程度の低周波を任意のパルス波形で発振し得る低周波発振器等がより好適であり得る。かかる発振部により、所定の形態の電気刺激信号を形成し、出力することができる。この信号発生部10は、所定の形態の電気刺激信号を所定の出力値で発振可能なように、例えば演算機能を備える等して構成されていても良い。
Typically, the signal generation unit 10 can be configured mainly by an oscillation unit that can generate a predetermined electrical stimulation signal. The signal generation unit 10 is typically configured to be electrically connectable to the electrode unit 20.
The configuration of the oscillating unit is not particularly limited, and for example, an oscillating unit used in this type of conventional electrical stimulation device can be used. Specifically, any device that can induce contraction of muscles included in the stimulation applying region by applying an electrical stimulation signal to a part of the living body can be used without particular limitation. The form of the electrical stimulation signal formed in the signal generation unit 10 will be described later, but any oscillation unit that can form a pulse group signal including a plurality of pulse signals may be used. The frequency of the signal that can be oscillated by the oscillating unit is not particularly limited, and as an approximate guide, for example, an oscillating unit that can oscillate at a frequency of about 1 Hz to about 4000 Hz can be used. More preferably, a frequency region having a frequency of 1 Hz to 1000 Hz (1 Hz to less than 1000 Hz) may be generated. Particularly preferably, a low-frequency oscillator or the like that can oscillate a low frequency of about 1 to 500 Hz with an arbitrary pulse waveform may be more suitable. Such an oscillating unit can form and output a predetermined form of electrical stimulation signal. The signal generation unit 10 may be configured to have, for example, an arithmetic function so that a predetermined form of electrical stimulation signal can be oscillated with a predetermined output value.
 電極部20は、信号発生部10に電気的に接続可能に構成されており、典型的には、少なくとも一組の電極パッド(例えば、正極(+)と負極(-)との組からなる電極パッド)を備えている。この電極パッドは、信号発生部10に対して着脱自在に備えていても良いし、常時固定して接続されていても良い。また、信号発生部10自体が電極部20と一体化されていても良い。電極パッドは、一組が備えられていても良いし、2組以上が備えられていても良い。また、電極パッドの形状も特に制限されない。そして、信号発生部10で発生された電気刺激信号を、この電極パッドを介して、生体の一部付与することができる。電気刺激信号を付与する生体の部位に特に制限はないが、典型的には、筋肉または当該筋肉に指令を発する神経を対象とすることができる。この電極パッドを生体に装着する形態は特に制限されない。例えば、電極パッドが、粘着性を有する粘着パッドとして形成されており、生体の皮膚に粘着力により貼り付け可能とされていてもよい。あるいは、吸着性を有する吸盤状に形成されており、生体の皮膚に吸着力により付着可能とされていてもよい。かかる一組の電極パッドを生体の皮膚に当接させ、電極パッド間に電流を供給することで、当該電流が流れる領域に含まれる生体の筋肉および神経に電気刺激を付与し、当該筋肉の収縮を誘発することができる。 The electrode unit 20 is configured to be electrically connectable to the signal generation unit 10, and typically includes at least one set of electrode pads (for example, an electrode composed of a positive electrode (+) and a negative electrode (−)). Pad). This electrode pad may be provided detachably with respect to the signal generator 10, or may be fixedly connected at all times. Further, the signal generation unit 10 itself may be integrated with the electrode unit 20. One set of electrode pads may be provided, or two or more sets may be provided. Further, the shape of the electrode pad is not particularly limited. The electrical stimulation signal generated by the signal generator 10 can be applied to a part of the living body through this electrode pad. Although there is no restriction | limiting in particular in the site | part of the biological body to which an electrical stimulation signal is given, Typically, it can be made into the muscle or the nerve which issues a command to the said muscle. The form in which this electrode pad is attached to the living body is not particularly limited. For example, the electrode pad may be formed as an adhesive pad having adhesiveness, and may be attached to the skin of a living body with an adhesive force. Or it is formed in the suction cup shape which has adsorptivity, and may be made to adhere to the skin of a biological body by adsorption power. The pair of electrode pads are brought into contact with the skin of the living body, and an electric current is applied between the electrode pads, thereby applying electrical stimulation to the living body muscles and nerves included in the region where the current flows, and contracting the muscles. Can be triggered.
 電極部20は、所定の形態の電気刺激信号を出力するに際し、プラスの出力信号は、典型的には、一組の電極パッドのうち、正極側の電極パッドから、負極側の電極パッドに向けて流される。そして、マイナスの出力信号は、典型的には、一組の電極パッドのうち、負極側の電極パッドから、正極側の電極パッドに向けて流される。したがって、典型的には、正極側の電極パッドを生体のより中枢側に、負極側の電極パッドを生体のより末梢側に貼り付けするのが好ましい。あるいは、電気刺激信号におけるプラスの出力が、生体のより中枢側から末梢側に向けて出力されるように、マイナスの出力が生体のより末梢側から中枢側に向けて出力されるように、信号発生部10において自動的に信号の出力の向きを調整するよう構成されていても良い。なお、ここでいう中枢側とは、生体において、動脈血流のより上流側を意味し、末梢側とは、動脈血流のより下流側を意味する。例えば、四肢について、中枢側とは体幹により近い近位であり、末梢側とは体幹からより遠い遠位であり得る。 When the electrode unit 20 outputs the electrical stimulation signal of a predetermined form, the positive output signal is typically directed from the positive electrode pad to the negative electrode pad of the set of electrode pads. Washed away. The negative output signal is typically flowed from the negative electrode pad to the positive electrode pad in the set of electrode pads. Therefore, typically, it is preferable to attach the positive electrode pad to the more central side of the living body and the negative electrode pad to the more peripheral side of the living body. Alternatively, the signal is output so that the positive output in the electrical stimulation signal is output from the more central side of the living body toward the peripheral side, and the negative output is output from the more peripheral side of the living body toward the central side. The generator 10 may be configured to automatically adjust the direction of signal output. The central side here means the upstream side of the arterial blood flow in the living body, and the peripheral side means the downstream side of the arterial blood flow. For example, for the extremities, the central side can be proximal closer to the trunk and the peripheral side can be distal farther from the trunk.
 制御部は、必須の構成ではないが、信号発生部10において出力する電気刺激信号の形態を好適に制御する手段として備えることができる。この制御部は、例えば、外部から入力したデータ等の各種データを格納したり、システムプログラム等の各種プログラムに基づいてかかるデータに対して所定の演算および処理をしたりすることができる。具体的には、例えば、信号発生部10から出力する電気刺激信号の波形を外部から入力したときに、かかる波形データを格納したり、その波形を信号発生部10に送ったりすることができる。あるいは、例えば、外部から入力した各種のデータを演算および処理をし、演算および処理後のデータに基づき信号発生部10に対して指示を出したりすることができる。かかる制御部は、特に制限されるものではないが、例えば、中央演算処理装置(Central Processing Unit:CPU)、デジタル信号処理装置(Digital Signal Processor:DSP)等の各種マイクロプロセッサーや、ASIC(Application Specific Integrated Circuit)、ICメモリーなどの電気電子素子等を主体として構成することができる。かかる制御部が電気刺激装置1の外部装置である場合、当該制御部は、例えば、パーソナルコンピュータ等のコンピュータにより構成することができる。 The control unit is not an essential component, but can be provided as means for suitably controlling the form of the electrical stimulation signal output from the signal generation unit 10. For example, the control unit can store various data such as data input from the outside, and can perform predetermined calculation and processing on the data based on various programs such as a system program. Specifically, for example, when the waveform of the electrical stimulation signal output from the signal generation unit 10 is input from the outside, such waveform data can be stored or the waveform can be sent to the signal generation unit 10. Alternatively, for example, various data input from the outside can be calculated and processed, and an instruction can be issued to the signal generation unit 10 based on the data after the calculation and processing. Such a control unit is not particularly limited. For example, various microprocessors such as a central processing unit (CPU) and a digital signal processing unit (DSP), an ASIC (Application Specific) Integrated (Circuit), electric and electronic elements such as IC memory, etc. can be mainly configured. When the control unit is an external device of the electrical stimulation apparatus 1, the control unit can be configured by a computer such as a personal computer, for example.
 以下に、ここに開示される電気刺激装置1において特徴的な、信号発生部10により発生される電気刺激信号とその形態等について説明する。
 ここに開示される技術において、電気刺激装置1が出力する電気刺激信号は、複数のパルス状信号を含むパルス群信号を含んでいる。そして、このパルス群信号におけるパルス状信号は、主たるパルス状信号が、いずれも、プラスまたはマイナスのいずれか一方の極に立ち上がる片極性パルス波とされている。典型的には、図2Aに示すように、全てのパルス状信号がプラス側に発振される片極性パルス波である。かかる構成により、生体に対して、電気刺激信号がより効果的に作用し、一定の実効電流で筋肉をより大きく収縮させることができる。換言すると、少ない電流で、所定の筋出力を得ることが可能とされる。また、電気刺激信号による痛みの発生を抑制しつつ、高い筋出力を得ることができる。
Hereinafter, an electrical stimulation signal generated by the signal generation unit 10 and its form, which are characteristic of the electrical stimulation apparatus 1 disclosed herein, will be described.
In the technology disclosed herein, the electrical stimulation signal output from the electrical stimulation device 1 includes a pulse group signal including a plurality of pulse signals. The pulse-like signal in the pulse group signal is a unipolar pulse wave in which the main pulse-like signal rises to either the positive or negative pole. Typically, as shown in FIG. 2A, a unipolar pulse wave in which all pulse signals are oscillated on the plus side. With this configuration, the electrical stimulation signal acts more effectively on the living body, and the muscle can be contracted more greatly with a constant effective current. In other words, a predetermined muscle output can be obtained with a small current. In addition, a high muscle output can be obtained while suppressing the occurrence of pain due to the electrical stimulation signal.
 これに対し、図3は、従来より一般的に使用されている双極性パルス波の波形の典型例を示した図である。この双極性パルス波は、1つのパルス状信号がプラス側とマイナス側の両方に向けて発振される。ここで、典型的には、プラス側とマイナス側とに発振されるパルス波形は、発振方向が逆向きではあるが略同一形状であり得る。また、従来の信号波形は、例えば、この双極性パルス波に代表されるように、典型的には、各々のパルス状信号がプラス側とマイナス側に交互に発振されている(例えば、特許文献1の0005段落等参照)。このように、例えば図2Aと図3との比較から明らかなように、ここに開示される技術におけるパルス群信号の波形は、パルス状信号の出力される極が揃っていることで、従来技術と明瞭に区別することができる。 On the other hand, FIG. 3 is a diagram showing a typical example of the waveform of a bipolar pulse wave that has been generally used conventionally. In this bipolar pulse wave, one pulse signal is oscillated toward both the plus side and the minus side. Here, typically, the pulse waveforms oscillated on the plus side and the minus side may have substantially the same shape although the oscillation directions are opposite. In addition, the conventional signal waveform is typically oscillated alternately on the plus side and the minus side, as represented by this bipolar pulse wave (see, for example, Patent Documents). (See paragraph 1, 0005, etc.). Thus, as is clear from the comparison between FIG. 2A and FIG. 3, for example, the waveform of the pulse group signal in the technique disclosed herein is the same as the prior art because the output poles of the pulse-like signal are aligned. And can be clearly distinguished.
 なお、電気刺激信号により生体にもたらされ得る痛みと筋出力との作用効果の関係に着目すると、ここに開示される電気刺激装置1は、例えば、従来の電気刺激信号に比べて、少ない痛みでより高い筋出力を誘発し得るものとして把握することができる。すなわち、例えば、ここに開示される電気刺激装置1の信号発生部10から発生される電気刺激信号をNとしたとき、この電気刺激信号Nに基づき生体に付与される、単位ピーク電流あたりの総筋出力値として定義されるパラメータXは、従来の電気刺激装置による電気刺激信号Mに基づくパラメータXよりも、十分高い値として得られる装置として認識することができる。 Note that the electrical stimulation device 1 disclosed herein has less pain than, for example, a conventional electrical stimulation signal, when attention is paid to the relationship between the effects of pain and muscle output that can be brought to the living body by the electrical stimulation signal. It can be understood that it can induce higher muscle output. That is, for example, when the electrical stimulation signal generated from the signal generation unit 10 of the electrical stimulation device 1 disclosed herein is N, the total per unit peak current applied to the living body based on the electrical stimulation signal N parameters X N, which is defined as the muscle output value than the parameter X M based on the electrical stimulation signal M by the conventional electrical stimulation device can be recognized as a device obtained as sufficiently high value.
 なお、上記のパラメータXは、具体的には、以下のようにして算出される値である。すなわち、これらの電気刺激信号Nおよび電気刺激信号Mを、等尺性最大筋力(MVC)の30%の他動的筋出力が得られる電圧にて生体に付与する。すると、かかる電気刺激信号に基づき、生体の筋肉あるいは筋肉に指令を発する神経が刺激されて、筋収縮が誘発される。例えば、生体の大腿部に電気刺激信号を付与すると、膝関節の伸展運動が不随意に誘発される。このときの筋収縮力の程度を筋出力として計測したときに、その筋出力を一のパルス群信号あたりで積分した積分値を総筋出力値とすることができる。また、一のパルス群信号より生体に流れる最大の電流値を平均した値を、平均ピーク電流値とすることができる。そして、パラメータXは、次式:X=(総筋出力値)÷(平均ピーク電流値);として定義される。 Note that the parameter X is specifically a value calculated as follows. That is, the electrical stimulation signal N and the electrical stimulation signal M are applied to a living body at a voltage at which 30% other dynamic muscle output of isometric maximum muscle strength (MVC) is obtained. Then, based on such an electrical stimulation signal, a living body muscle or a nerve that issues a command to the muscle is stimulated to induce muscle contraction. For example, when an electrical stimulation signal is applied to the thigh of a living body, an extension movement of the knee joint is involuntarily induced. When the degree of muscle contraction force at this time is measured as a muscle output, an integrated value obtained by integrating the muscle output per one pulse group signal can be set as a total muscle output value. In addition, a value obtained by averaging the maximum current values flowing through the living body from one pulse group signal can be set as the average peak current value. The parameter X is defined as follows: X = (total muscle output value) / (average peak current value);
 このとき、例えば、従来の電気刺激装置により発生される典型的な電気信号として、周波数20Hzの双極性パルス波からなるパルス群信号を含む電気刺激信号Mを想定することができる。すると、ここに開示される電気刺激装置1から発生する上記電気刺激信号Nについて算出される上記パラメータXは、従来の電気刺激信号Mに基づくパラメータXとの関係において、次式:X≧1.3×X;を満たすものとして特徴づけることができる。すなわち、パラメータXは、パラメータXに対して、130%以上増大される。Xは、好ましくはX≧1.35×Xを満たし、より好ましくはX≧1.50×Xを満たす。 At this time, for example, an electrical stimulation signal M including a pulse group signal composed of a bipolar pulse wave with a frequency of 20 Hz can be assumed as a typical electrical signal generated by a conventional electrical stimulation device. Then, the parameter X N calculated for the electrical stimulation signal N generated from the electrical stimulation device 1 disclosed herein is expressed by the following formula: X N in relation to the parameter X M based on the conventional electrical stimulation signal M. ≧ 1.3 × X M ; That is, the parameter X N, to the parameters X M, is increased more than 130%. X N is preferably satisfies X N ≧ 1.35 × X M, more preferably satisfy X N ≧ 1.50 × X M.
 等尺性最大筋力(MVC)は、例えば、等尺性筋力測定装置等を用いて測定することができる。例えば、下肢筋力の代表値として認識され得る膝関節伸展筋力を例にすると、典型的には、以下のようにして測定することができる。すなわち、具体的には、まず、被験者を測定装置に座らせ(半座位姿勢)、シートベルトにより胸部および腹部を椅子に固定する。そして測定対象である筋肉を有する生体部位を、等尺性筋力測定装置の測定レバーに固定する。例えば、生体としての被験者の下肢伸展筋の等尺性最大筋力を測定する場合には、被験者の右脚の足頸部を、等尺性筋力測定装置のアームレバーに右膝関節を90度に保持した状態で固定する。次いで、かかる状態で、被験者に対して、0度/秒の膝関節屈曲伸展運動を、最大努力で試行回数を数回(例えば、2回から5回程度)実施させたときの、膝を伸展する際の筋出力を測定する。このとき、各屈曲伸展運動は十分な時間間隔を確保しながらも連続して行うようにする。このようにして得られたピークトルクの最大値を、等尺性最大筋力とすることができる。かかる等尺性最大筋力は、ここに開示される電気刺激装置の使用により増大されることが予想され得るため、長期(例えば、1か月以上)に亘って本装置を使用する場合には、一定期間(例えば、1週間から1か月程度)の経過ごとに等尺性最大筋力を測定しなおすのが好ましい。 The isometric maximum muscle strength (MVC) can be measured using, for example, an isometric muscle strength measuring device. For example, taking as an example knee extension muscle strength that can be recognized as a representative value of lower limb muscle strength, it can typically be measured as follows. Specifically, first, the subject is seated on the measuring device (half-sitting posture), and the chest and abdomen are fixed to the chair by the seat belt. Then, the living body part having the muscle to be measured is fixed to the measuring lever of the isometric strength measuring device. For example, when measuring the isometric maximum muscle strength of the lower extremity extensor muscle of a subject as a living body, the right neck joint of the subject's right leg is set to 90 degrees with the arm lever of the isometric strength measuring device. Fix in the hold state. Next, in this state, the knee is extended when the subject is subjected to a knee joint flexion and extension exercise of 0 degrees / second with several attempts (for example, about 2 to 5 times) with maximum effort. Measure the muscle output when doing. At this time, each bending and extending movement is continuously performed while securing a sufficient time interval. The maximum value of the peak torque thus obtained can be set as the isometric maximum muscular strength. Such isometric maximum muscle strength can be expected to be increased by the use of the electrical stimulation device disclosed herein, so when using the device over a long period of time (eg, over a month) It is preferable to remeasure the isometric maximum muscle strength every time a certain period (for example, about one week to one month) elapses.
 また、等尺性最大筋力は、臨床的な簡便法を利用して大まかに把握することもできる。かかる手法では、例えば、下肢伸展筋の等尺性最大筋力に対する刺激強度として、下記の指標を採用している。すなわち、10%MVCは「踵がベッドから持ち上がる筋力」、20%MVCは「脹脛がベッドから持ち上がる筋力」、30%MVCは「膝関節がほぼ完全伸展する筋力」として把握するようにしている。その他の筋肉のMVCについても、常法に従って、適宜臨床的な簡便法を利用しても良い。 Also, isometric maximum muscle strength can be roughly grasped using a clinically convenient method. In this method, for example, the following index is adopted as the stimulation intensity for the isometric maximum muscular strength of the leg extensor muscle. In other words, 10% MVC is understood as “muscle strength for lifting the heel from the bed”, 20% MVC is identified as “muscle strength for which the calf is lifted from the bed”, and 30% MVC is identified as “muscle strength at which the knee joint is almost fully extended”. For other muscle MVCs, clinically convenient methods may be used as appropriate according to conventional methods.
 また、他動的筋出力とは、電気刺激信号による筋収縮で得られる筋出力であって、生体が自身の意思で筋収縮(随意筋収縮)を行った際の筋出力とは明瞭に区別され得る。本明細書では、この他動的筋出力を単に「筋出力」と表現する場合がある。この他動的筋出力は、例えば、30%MVC電気刺激信号を生体の筋肉(例えば大腿四頭筋)に付与したときの当該筋肉により誘発される関節運動を、等尺性筋力測定装置等を用いて測定することで、筋出力値を把握することができる。 The other dynamic muscle output is a muscle output obtained by muscle contraction by an electrical stimulation signal, and is clearly distinguished from a muscle output when a living body performs muscle contraction (voluntary muscle contraction) by its own intention. obtain. In the present specification, this other dynamic muscle output may be simply expressed as “muscle output”. This other dynamic muscle output is, for example, the joint motion induced by the muscle when a 30% MVC electrical stimulation signal is applied to a living body muscle (for example, quadriceps muscle), an isometric strength measuring device, etc. The muscle output value can be grasped by using and measuring.
 そして、総筋出力値とは、測定された筋出力を電気刺激信号に含まれる一のパルス群信号(すなわち、1群の上記パルス状信号)あたりで積分した積分値である。この総筋出力値は、30%MVC電気刺激信号を生体に付与したときに実際に生体に誘発される筋出力波形(すなわち筋出力の時間推移データ)から算出することができる。パルス群信号は、生体に繰り返し付与されることから、かかる総筋出力値は各パルス群信号について算出された総筋出力値の平均値を採用してもよい。 The total muscle output value is an integrated value obtained by integrating the measured muscle output per one pulse group signal (that is, one group of the pulse signals) included in the electrical stimulation signal. This total muscle output value can be calculated from a muscle output waveform (that is, time transition data of muscle output) actually induced in the living body when a 30% MVC electrical stimulation signal is applied to the living body. Since the pulse group signal is repeatedly given to the living body, the total muscle output value may be an average value of the total muscle output value calculated for each pulse group signal.
 ピーク電流は、電気刺激信号に含まれる一のパルス群信号により実際に生体に流れる電流(実効電流)の最大値を測定することで把握することができる。平均ピーク電流は、各パルス群信号について算出されたピーク電流の平均値とすることができる。かかる実効電流は、例えば、個々の生体の本質的な抵抗の違い、皮膚状態、筋力(身体能力)や筋肉量の違い等の個体差により異なり得る。
 そして単位ピーク電流あたりの総筋出力値(すなわちパラメータX)とは、ピーク電流1mApあたりに得られる総筋出力値(例えば、単位はkgf)であって、上記の総筋出力値を平均ピーク電流で除することで算出することができる。
The peak current can be grasped by measuring the maximum value of the current (effective current) that actually flows through the living body using one pulse group signal included in the electrical stimulation signal. The average peak current can be an average value of peak currents calculated for each pulse group signal. Such an effective current may vary depending on individual differences such as differences in essential resistance among individual living bodies, skin conditions, muscle strength (physical ability), and muscle mass.
The total muscle output value per unit peak current (that is, parameter X) is the total muscle output value (for example, the unit is kgf) obtained per 1 mAp of the peak current, and the total muscle output value is the average peak current. It can be calculated by dividing by.
 このパラメータXは、同じ電気刺激を付与した場合であっても個体により変動し得る。例えば、従来の筋力の増強等を目的とする一般的な電気刺激装置において、電気刺激信号等における波形は双極性パルス波であることが当業者の常識であった。そしてこのパラメータXは、健康な成人男性について、100~300kgf/mAp程度(典型的には150~250kgf/mAp程度)であった。例えば、従来より、筋力トレーニング等の筋力の維持または増強等を目的として生体に電気刺激信号を付与する場合、筋肉への電気刺激量を増大させるために実際に生体に流れる実効電流量を多くすることが望まれていた。しかしながら、単に実効電流の出力を大きくすることは、ピーク電流の増大をもたらし得る。延いては、患者の感じる電気信号による痛みを増大することに繋がり得る。
 これに対し、ここに開示される技術では、上記のとおり、個体差はあるものの、このパラメータXを30%程度以上向上した値(例えば、1.3倍以上)とすることができる。例えば、成人男性について、このパラメータXを、典型的には、概ね200~400kgf/mAp程度へと改善することができる。すなわち、単位ピーク電流あたりに高い他動的筋出力を得ることが可能とされる。延いては、ピーク電流が小さく痛みをきたさない電気刺激信号により、高い他動的筋出力を得ることが可能となる。
This parameter X may vary from individual to individual even when the same electrical stimulation is applied. For example, in a conventional general electric stimulation apparatus for the purpose of enhancing muscle strength or the like, it has been common knowledge of those skilled in the art that the waveform of an electric stimulation signal or the like is a bipolar pulse wave. The parameter X was about 100 to 300 kgf / mAp (typically about 150 to 250 kgf / mAp) for healthy adult males. For example, conventionally, when an electrical stimulation signal is applied to a living body for the purpose of maintaining or enhancing muscle strength such as strength training, the amount of effective current that actually flows through the living body is increased in order to increase the amount of electrical stimulation to the muscle. It was hoped that. However, simply increasing the effective current output may result in an increase in peak current. As a result, it may lead to an increase in pain due to the electrical signal felt by the patient.
On the other hand, in the technique disclosed here, although there is an individual difference as described above, the parameter X can be set to a value improved by about 30% or more (for example, 1.3 times or more). For example, for an adult male, this parameter X can typically be improved to approximately 200-400 kgf / mAp. That is, it is possible to obtain a high other dynamic muscle output per unit peak current. As a result, a high passive muscle output can be obtained by an electrical stimulation signal having a small peak current and no pain.
 かかる高いパラメータXを実現するための電気刺激信号の波形については特に制限されない。しかしながら、ここに開示される電気刺激装置は、下記の、筋肉に効率的に作用する電気刺激信号を生体に付与する構成を好ましい態様としている。 No particular limitation is imposed on the waveform of the electrical stimulation signals for realizing such high parameters X N. However, the electrical stimulation apparatus disclosed herein has a configuration in which the following electrical stimulation signal that efficiently acts on muscles is applied to a living body.
 すなわち、以上のようなパルス群信号は、複数(すなわち2つ以上)のパルス状信号から構成される。かかるパルス状信号は、典型的には、パルス幅が1000μs以下の電気信号として把握することができる。このパルス幅については厳密な制限はないものの、かかる電気刺激信号により筋肉に対して好適な刺激を与えるには、パルス幅は100μs以上であるのが好ましく、200μs以上であるのがより好ましく、例えば500μs以上とするのがより好ましい。しかしながら、強すぎる電気刺激は生体に筋疲労をもたらしたり、場合によっては火傷を生じさせたりするために好ましくない。かかる観点から、パルス幅は900μs以下であるのが好ましく、800μs以下であるのがより好ましく、例えば700μs以下とするのがより好ましい。 That is, the pulse group signal as described above is composed of a plurality of (that is, two or more) pulse signals. Such a pulse signal can typically be grasped as an electric signal having a pulse width of 1000 μs or less. Although there is no strict limitation on the pulse width, the pulse width is preferably 100 μs or more and more preferably 200 μs or more in order to give a suitable stimulation to the muscle by such an electrical stimulation signal. More preferably, it is 500 μs or more. However, an electrical stimulus that is too strong is not preferable because it causes muscle fatigue in the living body or causes burns in some cases. From this viewpoint, the pulse width is preferably 900 μs or less, more preferably 800 μs or less, for example, 700 μs or less.
 なお、パルス状信号の強度は厳密には制限されず、例えば、所望の筋収縮効果が得られる範囲で適宜設定することができる。ここで、健康な生体はもちろんのこと、病気や怪我等で積極的な運動が困難な生体患者等に過度な痛みを伴う刺激は好ましくない。かかる観点から、パルス状信号の強度は、例えば、電気刺激信号を付与する対象(生体)の等尺性最大筋力(MVC)を基準として、1~30%MVC(より好ましくは10~20%MVC)程度に相当する運動を誘発する刺激強度に設定するのが好適である。なお、20%MVCは疲労や痛みをきたし難い刺激強度として一つの目安とすることができる。しかしながら、多少の痛みを伴っても筋収縮を誘発したい場合(例えば、筋力トレーニング時)などには、パルス状信号の強度を、20%MVCを超えて、30%MVC以上、例えば、40~60%MVC程度の範囲で設定することも可能である。例えば、具体的には、20%MVCを超える(例えば30%MVCの)パルス群信号と、20%MVC以下(例えば10%MVC)のパルス群信号とを適切に組み合わせて電気刺激信号を構成することで、疲労や痛みを伴い難い状態で、より大きな筋収縮を誘発することができるために好ましい。なお、筋力維持に必要な最低限の強さ(例えば10~20%MVC程度)の電気刺激信号は、生体にとってより負担なく(快適で)痛みや筋疲労も発生しにくいため、この電気刺激装置の一回の使用時間を長くしたり、長期間に亘って使用したりするのに好適であり得る。 Note that the intensity of the pulse signal is not strictly limited, and can be set as appropriate within a range in which a desired muscle contraction effect can be obtained, for example. Here, not only a healthy living body, but also stimulation with excessive pain is not preferable for a living body patient who is difficult to actively exercise due to illness or injury. From this viewpoint, the intensity of the pulse signal is, for example, 1 to 30% MVC (more preferably 10 to 20% MVC) based on the isometric maximum muscle strength (MVC) of the subject (biological body) to which the electrical stimulation signal is applied. It is preferable to set the stimulation intensity to induce a movement corresponding to the degree. In addition, 20% MVC can be used as one standard as a stimulus intensity that hardly causes fatigue or pain. However, when it is desired to induce muscle contraction even with some pain (for example, during strength training), the intensity of the pulse signal exceeds 20% MVC and is 30% MVC or more, for example, 40 to 60 It is also possible to set in the range of about% MVC. For example, specifically, an electrical stimulation signal is configured by appropriately combining a pulse group signal exceeding 20% MVC (for example, 30% MVC) and a pulse group signal not exceeding 20% MVC (for example, 10% MVC). Therefore, it is preferable because greater muscle contraction can be induced in a state that is difficult to be accompanied by fatigue and pain. The electrical stimulation signal having the minimum strength necessary for maintaining muscle strength (for example, about 10 to 20% MVC) is less burdensome (comfortable) for the living body and is less likely to cause pain and muscle fatigue. It may be suitable for extending the use time of one time or using it for a long time.
 パルス群信号は、例えば、痛みを伴い難い状態で、延いては刺激をより抑制した状態で、生体に付与するのが好ましい。かかる観点から、パルス群信号は、典型的には、低周波パルス成分を主体として構成することができる。なお、本明細書において、低周波パルス成分に関する「低周波」とは、周波数が80Hz未満であることを意味する。かかる低周波パルス成分は、周波数が50Hz以下であることが好ましく、40Hz以下であることがより好ましく、例えば30Hz以下とすることができる。低周波パルス成分の周波数の下限は特に制限されないものの、周波数が低すぎる場合は効果的な刺激を筋肉に付与できなくなるために好ましくない。また、筋収縮を持続させ難くなる点においても好ましくない。かかる観点から、低周波パルス成分の周波数は、5Hz以上であるのが好ましく、10Hz以上であるのがより好ましい。所望の効果にもよるが、低周波成分としては、例えば、15Hz以上25Hz以下程度が好適である。 It is preferable that the pulse group signal is applied to the living body in a state that is difficult to be accompanied by pain, for example, in a state where stimulation is further suppressed. From this point of view, the pulse group signal can typically be composed mainly of low-frequency pulse components. In the present specification, “low frequency” related to a low frequency pulse component means that the frequency is less than 80 Hz. Such a low-frequency pulse component preferably has a frequency of 50 Hz or less, more preferably 40 Hz or less, for example, 30 Hz or less. The lower limit of the frequency of the low-frequency pulse component is not particularly limited, but if the frequency is too low, it is not preferable because effective stimulation cannot be applied to the muscle. Moreover, it is not preferable also in that it is difficult to maintain muscle contraction. From such a viewpoint, the frequency of the low frequency pulse component is preferably 5 Hz or more, and more preferably 10 Hz or more. Although depending on the desired effect, the low frequency component is preferably about 15 Hz to 25 Hz, for example.
 また、パルス群信号は、上記の一群の低周波パルス成分に先行して、高周波パルス成分を含むことが好ましい。低周波パルス成分よりも先に高周波パルス成分を筋肉に付与することで、当該筋肉を瞬間的に刺激して活性化する効果を高め、つづく低周波パルス成分による筋収縮を効果的に促すことができる。ここで「高周波」とは、上記の低周波パルス成分における周波数との比較において相対的に周波数が高いことを意味し、周波数が80Hz以上であることを意味する。筋肉をより効果的に刺激(活性化)するためには、かかる高周波パルス成分は、周波数が90Hz以上であることが好ましく、95Hz以上であることが好ましく、例えば100Hz以上、より好ましくは200Hz以上とすることができる。なお、低周波パルス成分と高周波パルス成分との周波数が近い場合には、生体が両者の差異を識別し難いために好ましくない。 Also, the pulse group signal preferably includes a high frequency pulse component preceding the group of low frequency pulse components. By applying high-frequency pulse components to muscles prior to low-frequency pulse components, the effect of instantly stimulating and activating the muscles can be enhanced, and the muscle contraction due to subsequent low-frequency pulse components can be effectively promoted. it can. Here, “high frequency” means that the frequency is relatively high in comparison with the frequency in the low frequency pulse component, and means that the frequency is 80 Hz or more. In order to stimulate (activate) the muscles more effectively, the high-frequency pulse component preferably has a frequency of 90 Hz or higher, preferably 95 Hz or higher, such as 100 Hz or higher, more preferably 200 Hz or higher. can do. In addition, when the frequencies of the low frequency pulse component and the high frequency pulse component are close to each other, it is not preferable because it is difficult for the living body to distinguish between the two.
 一のパルス群信号に含まれる低周波パルス成分と高周波パルス成分とは、例えば周波数に50Hz以上の差があることが好ましい。高周波パルス成分の周波数の上限は特に制限されないが、周波数が高すぎると筋肉を刺激する効果が低減し、筋収縮を誘発し難くなるために好ましくない。かかる観点から、高周波パルス成分の周波数は、500Hz以下(500Hz未満)であるのが好ましく、450Hz以下であるのがより好ましく、例えば400Hz以下とすることができる。所望の効果にもよるが、高周波成分としては、例えば、50Hz以上400Hz以下(150Hz以上250Hz以下)程度が好適である。なお、具体的なデータは示していないが、本出願人らは、高周波パルス成分の周波数が、例えば50Hz以上400Hz以下(150Hz以上250Hz以下)の場合に、痛みを十分に低減しつつ効果的に筋収縮を誘発し得ることを確認している。 It is preferable that the low-frequency pulse component and the high-frequency pulse component included in one pulse group signal have a frequency difference of 50 Hz or more, for example. The upper limit of the frequency of the high-frequency pulse component is not particularly limited. However, if the frequency is too high, the effect of stimulating muscles is reduced and it is difficult to induce muscle contraction, which is not preferable. From this viewpoint, the frequency of the high-frequency pulse component is preferably 500 Hz or less (less than 500 Hz), more preferably 450 Hz or less, and for example, 400 Hz or less. Depending on the desired effect, the high frequency component is preferably about 50 Hz to 400 Hz (150 Hz to 250 Hz), for example. Although specific data is not shown, the present applicants effectively reduced the pain sufficiently when the frequency of the high-frequency pulse component is, for example, 50 Hz to 400 Hz (150 Hz to 250 Hz). It has been confirmed that muscle contraction can be induced.
 高周波パルス成分は、低周波パルス成分に先行して一つ(すなわち、1周期の高周波パルス信号)でも含まれていることで筋肉を刺激する効果を高めることができ、その数は特に制限されない。例えば、図2Aに示されるパルス群信号は、9つ(9周期の高周波パルス信号である。以下、「9パルス」のように言う場合もある。)の低周波パルス成分に先行して、1つ(1周期)の高周波パルス成分を含む例を示している。しかしながら、高周波パルス成分の数が多くなると刺激量も多くなり、筋疲労を生じる可能性があるために好ましくない。また、高周波パルス成分による刺激が痛みとして知覚され、かかる痛みが増大される虞がある。そして高周波パルス成分は、低周波パルス成分による刺激前の筋活性化との目的から、その数と筋収縮を促す効果とは比例しないことが確認できた。かかる観点から、高周波パルス成分の数は、5つ(5周期)以下とするのが好ましく、典型的には4つ(4周期)以下、好ましくは3つ(3周期)以下、例えば1つ~2つ(1~2周期)とするのが好適である。 The high-frequency pulse component includes one (that is, one cycle high-frequency pulse signal) preceding the low-frequency pulse component, so that the effect of stimulating muscles can be enhanced, and the number is not particularly limited. For example, the pulse group signal shown in FIG. 2A has nine low-frequency pulse components (which is a nine-cycle high-frequency pulse signal; hereinafter sometimes referred to as “9 pulses”). An example including one (one cycle) high-frequency pulse component is shown. However, an increase in the number of high-frequency pulse components is not preferable because the amount of stimulation increases and muscle fatigue may occur. In addition, the stimulation by the high frequency pulse component is perceived as pain, and the pain may be increased. It was confirmed that the number of high-frequency pulse components is not proportional to the effect of promoting muscle contraction for the purpose of muscle activation before stimulation by the low-frequency pulse component. From this viewpoint, the number of high-frequency pulse components is preferably 5 (5 cycles) or less, typically 4 (4 cycles) or less, preferably 3 (3 cycles) or less, for example, 1 to Two (one to two cycles) are preferable.
 なお、このようなパルス群信号は、生体に対し途切れなく継続的に付与すると、生体に疲労をきたし得る。したがって、パルス群信号は断続的に付与するのが好ましい。換言すると、電気刺激信号は、電気信号が出力されない休止期間を挟んで複数の上記のパルス群信号を含むよう構成されるのが好ましい。
 かかる休止期間については、特に制限はないが、多様な観点から設計することができる。例えば、(1)パルス群信号による刺激量を適切に調整し、電気刺激信号による筋疲労(LFF)が発生しにくい状態を維持するよう考慮することができる。また、(2)たとえ筋疲労が生じたとしても、筋収縮により体内に生成される代謝産物を血流で洗い流し、疲労が回復されるよう考慮することができる。
In addition, if such a pulse group signal is continuously given to a living body without interruption, the living body may be fatigued. Therefore, it is preferable to apply the pulse group signal intermittently. In other words, the electrical stimulation signal is preferably configured to include a plurality of the above-described pulse group signals with a pause period during which no electrical signal is output.
The rest period is not particularly limited, but can be designed from various viewpoints. For example, (1) it is possible to appropriately adjust the amount of stimulation by the pulse group signal and to maintain a state in which muscle fatigue (LFF) due to the electrical stimulation signal is unlikely to occur. (2) Even if muscle fatigue occurs, it can be considered that the metabolites generated in the body due to muscle contraction are washed away in the bloodstream so that the fatigue is recovered.
 そこで、ここに開示される技術においては、上記(1)の観点から、例えば図2Cに示すように、電気刺激信号に、第1休止期間Tを挟んで複数のパルス群信号Pを有する第1刺激信号Sを含むことを好ましい態様としている。すなわち、筋肉に対し筋収縮作用の高いパルス群信号Pを付与した後、この第1休止期間Tによって、パルス群信号Pによる筋刺激量を緩和させて、疲労の発生を確実に低減させるようにしている。換言すると、パルス群信号Pの長さを適切に制御するとともに、各パルス群信号Pの間に第1休止期間Tを挟んで第1刺激信号Sを構成することが好ましい。 Therefore, in the art disclosed herein, in view of the above (1), for example, as shown in Figure 2C, the electrical stimulus signal, a has a plurality of pulse groups signal P across the first pause period T 1 It is the preferred embodiment comprises a 1 stimulus signal S 1. That is, after applying a high pulse group signal P of muscle contraction action on muscles, by the first rest period T 1, by relaxing the muscle stimulation amount by pulse group signal P, so as to reliably reduce the occurrence of fatigue I have to. In other words, it is preferable to appropriately control the length of the pulse group signal P and to configure the first stimulation signal S 1 with the first pause period T 1 sandwiched between the pulse group signals P.
 一のパルス群信号Pを構成するパルス状信号の数は、特に制限されず、例えば、上記の高周波パルス成分や低周波パルス成分の形態(パルス幅、波数、強度等)を考慮して決定することができる。一例として、筋収縮を好適に持続し得ることを目安に高周波パルス成分と低周波パルス成分との組み合わせを決定しても良い。より疲労を抑制し得るとの観点から、パルス状信号の数は、具体的には、例えば、50パルス以下程度を目安に決定することができる。かかるパルス状信号の数は、40パルス以下であるのがより好ましく、30パルス以下とするのがさらに好ましく、例えば20パルス以下とすることができる。一方で、筋肉に対してかかる電気的刺激信号をより効果的に作用させるには、ある程度まとまった量の刺激を生体に対して付与するのが好ましい。かかる観点から、パルス群信号に含まれるパルス状信号の数は、4パルス以上であるのが好ましく、6パルス以上がより好ましく、8パルス以上であるのがさらに好ましい。好適な一例として、例えば、高周波パルス成分の数を1~4パルス(例えば1~2パルス)とし、これに続く低周波パルス成分の数を2~20パルス(例えば5~15パルス)程度とすることが例示される。なお、具体的なデータは示していないが、本出願人らは、高周波パルス成分の数が0パルスの場合よりも、例えば1~3パルス(特に1~2パルス)の場合に、誘発される運動量が大きくなることを確認している。 The number of pulse signals constituting one pulse group signal P is not particularly limited, and is determined in consideration of, for example, the form (pulse width, wave number, intensity, etc.) of the above-described high frequency pulse component and low frequency pulse component. be able to. As an example, a combination of a high-frequency pulse component and a low-frequency pulse component may be determined based on the fact that muscle contraction can be suitably maintained. Specifically, from the viewpoint that fatigue can be further suppressed, the number of pulse signals can be determined, for example, with about 50 pulses or less as a guide. The number of such pulse signals is more preferably 40 pulses or less, even more preferably 30 pulses or less, and for example, 20 pulses or less. On the other hand, it is preferable to apply a certain amount of stimulation to the living body in order to make the electrical stimulation signal act on the muscle more effectively. From this viewpoint, the number of pulse signals included in the pulse group signal is preferably 4 pulses or more, more preferably 6 pulses or more, and even more preferably 8 pulses or more. As a suitable example, for example, the number of high-frequency pulse components is 1 to 4 pulses (for example, 1 to 2 pulses), and the number of subsequent low-frequency pulse components is about 2 to 20 pulses (for example, 5 to 15 pulses). Is exemplified. Although specific data is not shown, the applicants are induced when the number of high-frequency pulse components is, for example, 1 to 3 pulses (especially 1 to 2 pulses), rather than 0 pulses. It has been confirmed that the momentum increases.
 また、上記第1休止期間Tは、比較的短い時間に設定することができる。かかる第1休止期間Tは、厳密に制限されるものではないが、例えば、1000ms以下とすることができ、好ましくは800ms以下、例えば700ms以下である。また、疲労の発生を低減させるとの観点から、200ms以上とするのが好ましく、さらには300ms以上、たとえば400ms以上とすることができる。 Further, the first rest period T 1 may be set to a relatively short time. Such first rest period T 1 include, but are not strictly limited, for example, can be less 1000 ms, preferably 800ms or less, for example, 700ms or less. Further, from the viewpoint of reducing the occurrence of fatigue, it is preferably 200 ms or more, and more preferably 300 ms or more, for example, 400 ms or more.
 また、ここに開示される技術においては、上記(2)の観点から、電気刺激信号に、第2休止期間Tを挟んで複数の上記第1刺激信号Sを有する第2刺激信号Sを含むことを好ましい態様としている。換言すると、第1刺激信号Sにより疲労が蓄積する可能性を考慮して、第1刺激信号Sの間に適切な頻度で疲労回復のための第2休止期間T2を設けることで、第2刺激信号Sを構成することが好ましい。 In the technique disclosed herein, from the viewpoint of (2) above, the second stimulation signal S 2 having a plurality of the first stimulation signals S 1 with the second rest period T 2 sandwiched between the electrical stimulation signals. It is a preferable aspect to contain. In other words, in consideration of the possibility of fatigue accumulated by the first stimulus signal S 1, it is at a suitable frequency by providing the second rest period T 2 of the order of fatigue during the first stimulus signal S 1, it is preferable to configure the second stimulus signal S 2.
 第2休止期間T2は、電気刺激信号の総付与時間によっても異なり得るため一概には言えないが、例えば、電気刺激信号の総付与時間を30~60分間程度とする場合、電気刺激後の筋疲労の回復を図るには、第1刺激信号Sの2倍~4倍程度を目安として第2休止期間Tを設けることができる。例えば、具体的には、第1刺激信号Sによる電気刺激期間を数秒~十数秒に設定し、その後に20秒間~60秒間程度の第2休止期間Tを設けることが例示される。
 これにより、筋肉に対し効果的に作用するパルス群信号Pにより疲労が発生した場合であっても、生体内に発生した筋疲労物質を血流によって洗い流し、電気刺激を行いながら疲労回復を図ることができる。すなわち、他動的筋出力を十分に得ながら、筋萎縮を防止することができる。
Since the second rest period T 2 may differ depending on the total application time of the electrical stimulation signal, it cannot be generally described. For example, when the total application time of the electrical stimulation signal is about 30 to 60 minutes, to promote recovery of muscle fatigue can be as a guide of the first 2 to 4 times approximately stimulation signals S 1 providing the second rest period T 2. For example, specifically, sets the electrical stimulation period by the first stimulus signals S 1 to several seconds to several tens of seconds is exemplified that subsequently providing the second rest period T 2 of the order of 20 seconds to 60 seconds.
Thus, even when fatigue occurs due to the pulse group signal P that effectively acts on the muscle, the muscle fatigue substance generated in the living body is washed away by the blood flow, and the fatigue recovery is performed while performing electrical stimulation. Can do. That is, muscle atrophy can be prevented while sufficiently obtaining other dynamic muscle outputs.
 なお、以上のような電気刺激信号において、パルス状信号の出力波形は、必ずしも制限されず、矩形波パルス形、正弦波パルス形、三角波パルス形、鋸歯パルス形等のいずれであっても良い。なかでも矩形波パルス形であるのが好ましい。なお、具体的なデータは示していないが、本出願人らは、パルス状信号の出力波形が矩形波である場合に、比較的少ない電流で効果的に筋収縮を誘発し得ることを確認している。このような矩形波としては、具体的には、例えば、デジタルスイッチング回路等で広く使用されている矩形パルス信号を基本とすることができる。この矩形パルス信号を使用することで、電気刺激量を多く確保することができ、かつ波形制御をより簡便に行うことができる点で好ましい。なお、言うまでもないが、この波形は電気刺激装置からの電気刺激信号の出力波の形状である。したがって、当該電気刺激信号を生体に付与した時の実際の電流波形には若干の変化が見られ得る。 In the electrical stimulation signal as described above, the output waveform of the pulse signal is not necessarily limited, and may be any of a rectangular wave pulse shape, a sine wave pulse shape, a triangular wave pulse shape, a sawtooth pulse shape, and the like. Among these, a rectangular wave pulse shape is preferable. Although specific data is not shown, the applicants have confirmed that muscle contraction can be effectively induced with a relatively small current when the output waveform of the pulse signal is a rectangular wave. ing. Specifically, for example, a rectangular pulse signal widely used in a digital switching circuit or the like can be used as such a rectangular wave. Use of this rectangular pulse signal is preferable in that a large amount of electrical stimulation can be secured and waveform control can be performed more easily. Needless to say, this waveform is the shape of the output wave of the electrical stimulation signal from the electrical stimulation device. Therefore, a slight change can be seen in the actual current waveform when the electrical stimulation signal is applied to the living body.
 ここで、矩形パルスとは、短時間に急峻な変化をする信号形態を意味し、基準電位(例えば下限値)から設定電位(上限値)まで立ち上がり、一定時間設定電位を維持した後、再び基準電位(例えば下限値,生体基準で0Vであり得る)にまで立ち下がる形状を有するものをいう。概ね、上記の正弦波パルス形の信号(すなわち正弦波パルス信号。以下同様。)、三角波パルス信号、鋸歯パルス信号を除く各種の信号を包含し得る概念である。かかる矩形パルスの形状(出力形状)は、必ずしも幾何学的矩形に制限されるものではなく、立ち上がりおよび立ち下りに若干の傾斜が設けられたり、立ち上がりおよび立ち下りと上限値および下限値との境界における角部を滑らかに曲線化されたりしても良い。 Here, the rectangular pulse means a signal form that changes sharply in a short time, rises from a reference potential (for example, lower limit value) to a set potential (upper limit value), maintains the set potential for a certain period of time, and then re-references It has a shape that falls to a potential (for example, a lower limit value, which can be 0 V on a biological basis). In general, it is a concept that can include various signals other than the above-described sinusoidal pulse signal (ie, sinusoidal pulse signal; the same applies hereinafter), a triangular wave pulse signal, and a sawtooth pulse signal. The shape (output shape) of such a rectangular pulse is not necessarily limited to a geometric rectangle, and there is a slight slope at the rise and fall, or the boundary between the rise and fall and the upper and lower limits. The corners at the corners may be smoothly curved.
 しかしながら、かかる矩形パルスにおいては、生体に対して電気刺激信号に基づく痛みを完全に禁じることは難しい。そこで、ここに開示される技術においては、パルス状信号の立ち下がりに引きつづき、基準電位(基線)よりも更に立ち下がる方向に振動(突出)するアンダーシュートを備える片方向性パルス複合波とすることを好ましい態様としている。
 ここで、一般に、アンダーシュートとは、パルス状信号として片極性の矩形波(方形波)を出力した場合において、その立ち下がり部分において波形が定常値となる基準電位よりも逆極性側に突出した波形の部分をいう。しかしながら、ここに開示される技術においては、このような突出部分を意図的に(定常的に)備える矩形パルス波形を出力することがより好ましい形態であり得る。
However, in such a rectangular pulse, it is difficult to completely inhibit the living body from pain based on the electrical stimulation signal. Therefore, in the technique disclosed herein, a unidirectional pulse composite wave having an undershoot that vibrates (protrudes) in a direction further falling below the reference potential (base line) following the falling of the pulse signal. This is a preferred embodiment.
Here, in general, undershoot means that when a unipolar rectangular wave (square wave) is output as a pulse signal, the waveform protrudes to the opposite polarity side from the reference potential at which the waveform becomes a steady value at the falling portion. The part of the waveform. However, in the technique disclosed herein, it may be a more preferable form to output a rectangular pulse waveform intentionally (steadily) provided with such a protruding portion.
 アンダーシュート(突出部分)の形状は特に制限されず、波形が上記の基準電位を超えて反対側の電位に突出していればよい。典型的には、一般的な矩形波パルス信号においてインダクタンス成分等に起因してみられる反動ピークなどと同様の形態であってよい。好ましくは、図2Bに例示したような、パルス状信号に引き続き、パルス状信号とは反対の極側に突出する概ねU字状ないしはレ字状(角無し)の波形であり得る。すなわち、アンダーシュートの形状は、上記パルス状信号よりも急峻な電位変動を含むことなく、当該パルス状信号が基準電位を超えて連続的に電位変動幅を低減させながら立ち下がり、一定の深度まで達した後(電位変動幅ゼロ)、徐々に基準電位にまで収束する形状であり得る。
 なお、双極性パルス波との差異を明確にするために、アンダーシュートは、その波形が直線部分を含まないものとすることができる。
The shape of the undershoot (protruding portion) is not particularly limited as long as the waveform exceeds the reference potential and protrudes to the opposite potential. Typically, it may have the same form as a reaction peak or the like seen due to an inductance component or the like in a general rectangular wave pulse signal. Preferably, the waveform may be a substantially U-shaped or le-shaped (no corner) waveform protruding to the opposite side of the pulsed signal following the pulsed signal as illustrated in FIG. 2B. That is, the shape of the undershoot does not include a potential fluctuation that is steeper than that of the pulse-like signal, and the pulse-like signal falls while continuously reducing the potential fluctuation width beyond the reference potential, to a certain depth. After reaching (potential fluctuation range zero), the shape may gradually converge to the reference potential.
In order to clarify the difference from the bipolar pulse wave, the undershoot may be such that the waveform does not include a straight line portion.
 アンダーシュートの強度(立下り方向への突出深さ)は、厳密には制限されない。例えば、電気刺激による筋肉への作用の他に求める副次的な効果に応じて決定することができる。アンダーシュートの強度は、例えば、パルス状信号の強度を100%(基準)としたとき、0%未満であって-100%程度の範囲で適宜に設定することができる。
 例えば、電気刺激による筋力低下の防止または筋力増強効果をより高めたい場合には、より高い筋出力が誘発されることが好ましい。かかる点において、アンダーシュートの強度は-20%以下(すなわち、立下り方向へ20%以上の深さ。以下同様。)であるのが好ましく、-40%以下であるのがより好ましく、例えば-45%以下とすることができる。しかしながら、高い筋出力が得られる場合であっても、立下り方向への深さが大きすぎるアンダーシュートは、当該パルス状信号と異なる極性のパルス状信号と見なし得る。このことは、ここに開示される技術による効果が損なわれる虞があるために好ましくない。したがって、アンダーシュートの強度は-100%以上(すなわち、立下り方向へ100%以下の深さ。以下同様。)であるのが好ましく、-90%以上であるのがより好ましく、例えば-85%以上とすることができる。
The strength of the undershoot (projection depth in the falling direction) is not strictly limited. For example, it can be determined in accordance with a desired secondary effect in addition to the action on the muscle by electrical stimulation. The intensity of the undershoot can be appropriately set within a range of less than 0% and about −100%, for example, when the intensity of the pulse signal is 100% (reference).
For example, when it is desired to prevent a decrease in muscle strength due to electrical stimulation or increase the strength enhancement effect, it is preferable to induce a higher muscle output. In this respect, the strength of the undershoot is preferably −20% or less (that is, a depth of 20% or more in the falling direction; the same applies hereinafter), more preferably −40% or less, for example − It can be 45% or less. However, even when a high streak output is obtained, an undershoot whose depth in the falling direction is too large can be regarded as a pulse signal having a polarity different from that of the pulse signal. This is not preferable because the effects of the technology disclosed herein may be impaired. Therefore, the strength of the undershoot is preferably −100% or more (that is, a depth of 100% or less in the falling direction; the same applies hereinafter), more preferably −90% or more, for example, −85%. This can be done.
 なお、電気刺激による痛みの低減を図るとの観点からは、アンダーシュートの強度は小さい方がより好ましい。この場合、アンダーシュートの強度は、-20%以下(すなわち、立下り方向へ20%以上の深さ。以下同様。)であるのが好ましく、-30%以下であるのがより好ましく、例えば-40%以下とすることができる。しかしながら、立下り方向への深さが大きすぎるアンダーシュートは電気刺激信号による痛みを緩和する効果が低減する。したがって、アンダーシュートの強度は-65%以上(すなわち、立下り方向へ65%以下の深さ。以下同様。)であるのが好ましく、-63%以上であるのがより好ましく、-60%以上であるのが特に好ましく、例えば-58%以上とすることができる。 In addition, from the viewpoint of reducing pain due to electrical stimulation, it is more preferable that the strength of the undershoot is small. In this case, the strength of the undershoot is preferably −20% or less (that is, a depth of 20% or more in the falling direction; the same applies hereinafter), more preferably −30% or less. It can be 40% or less. However, an undershoot that is too deep in the falling direction reduces the effect of alleviating pain due to an electrical stimulation signal. Therefore, the strength of the undershoot is preferably −65% or more (that is, a depth of 65% or less in the falling direction; the same applies hereinafter), more preferably −63% or more, and −60% or more. It is particularly preferable that it can be -58% or more, for example.
 以上の電気刺激信号の付与時間は特に制限されず、個々の生体に応じて、所望の筋収縮を誘発し得る適切な時間を設定することができる。例えば、全体として1分間以上180分間以下、より好ましくは5分間以上120分間以下、例えば10分間以上90分間以下の時間に亘って生体に対して付与することができる。
 すなわち、ここに開示される電気刺激装置1によると、例えば、少ない電流で効率良く筋肉を収縮させることができる。その結果、例えば、生体に筋肉疲労をきたすことなく筋収縮を誘発することができる。また、所望の効果に応じて、より痛みを抑えた状態で、筋収縮を誘発することができる。したがって、例えば、全体として5分間以上(例えば30~90分間)の電気刺激プログラムを長期に亘って安全に受けることができる。あるいは、同等の筋出力効果を得るための電気刺激装置の使用時間を短縮することができる。これらのことは、電気刺激装置により引き起こされる生体への負担を確実に軽減するものであって、延いては電気刺激装置の快適な使用を実現するものであり得る。
The application time of the above electrical stimulation signal is not particularly limited, and an appropriate time that can induce desired muscle contraction can be set according to each living body. For example, it can be applied to a living body over a period of 1 minute to 180 minutes, more preferably 5 minutes to 120 minutes, for example, 10 minutes to 90 minutes.
That is, according to the electrical stimulation apparatus 1 disclosed herein, for example, muscles can be contracted efficiently with a small current. As a result, for example, muscle contraction can be induced without causing muscle fatigue in the living body. Moreover, according to a desired effect, muscle contraction can be induced in a state where pain is further suppressed. Therefore, for example, an electrical stimulation program of 5 minutes or more (for example, 30 to 90 minutes) as a whole can be safely received over a long period of time. Or the use time of the electrical stimulation apparatus for obtaining the equivalent muscle output effect can be shortened. These things can surely reduce the burden on the living body caused by the electrical stimulation device, and thus can realize comfortable use of the electrical stimulation device.
 これらのことから、ここに開示される技術は、生体の筋肉の収縮をより効果的に誘発し得る電気刺激信号を付与する方法としても把握することができる。すなわち、この電気刺激方法において生体に付与する電気刺激信号は、複数のパルス状信号を含むパルス群信号を含み、該パルス群信号における複数のパルス状信号は、いずれも、プラスまたはマイナスのいずれか一方の極に立ち上がる片極性パルス波であることにより特徴づけられるものであり得る。 From these facts, the technology disclosed herein can be grasped as a method of applying an electrical stimulation signal that can more effectively induce the contraction of the muscles of a living body. That is, the electrical stimulation signal applied to the living body in this electrical stimulation method includes a pulse group signal including a plurality of pulse signals, and each of the plurality of pulse signals in the pulse group signal is either plus or minus. It may be characterized by a unipolar pulse wave rising to one pole.
 以下、本発明に関する実施例を図面に基づいて説明するが、本発明を以下の実施例に示すものに限定することを意図したものではない。
<実施形態1>
 本実施形態では、図1に示される電気刺激装置1を用いて生体に電気刺激信号を導入し、かかる電気刺激信号の波形とこの電気刺激信号により誘発される筋運動効果との関係を評価した。
 生体としては、規則的なトレーニング経験のない健康な男子大学生4名を対象(被験者)として選定した。
Examples of the present invention will be described below with reference to the drawings. However, the present invention is not intended to be limited to those shown in the following examples.
<Embodiment 1>
In the present embodiment, an electrical stimulation signal is introduced into a living body using the electrical stimulation device 1 shown in FIG. 1, and the relationship between the waveform of the electrical stimulation signal and the muscle exercise effect induced by the electrical stimulation signal is evaluated. .
As a living body, four healthy male university students without regular training experience were selected as subjects (subjects).
 [MVC測定]
 最初に、被験者の膝関節伸展の際の等尺性最大筋力の測定を行った。かかる測定には、測定機能付自力運動訓練装置(ミナト医科学(株)製,WT-C20)を用いた。測定に際しては、まず、被験者を測定装置に座らせた(半座位姿勢)後、シートベルトにより腹部を椅子に固定した。そして測定対象である右足の大腿部を、膝関節が90度となる状態でアームレバーに固定し、次いで、下腿遠位部に測定アタッチメントのパッドを装着した。その後、被験者に最大努力で、十分な時間間隔を確保しながら、膝関節伸展運動をさせた。そして、かかる右脚の伸展運動に伴う筋出力を測定し、その最大値を等尺性最大筋力(MVC)とした。
[MVC measurement]
First, the isometric maximum muscle strength during the knee extension of the subject was measured. For this measurement, a self-training exercise apparatus with a measurement function (manufactured by Minato Medical Science Co., Ltd., WT-C20) was used. In the measurement, first, the subject was seated on the measuring device (half-sitting posture), and then the abdomen was fixed to the chair with a seat belt. Then, the thigh of the right foot as the measurement target was fixed to the arm lever with the knee joint being 90 degrees, and then the measurement attachment pad was attached to the distal part of the lower leg. After that, the subjects were allowed to exercise their knee joint extension with maximum effort while securing a sufficient time interval. And the muscle output accompanying the extension exercise | movement of this right leg was measured, and the maximum value was made into isometric maximum muscle strength (MVC).
 [電気刺激付与]
 次いで、被験者の太腿部に電気刺激装置の電極パッドを装着し、下記の電気刺激信号A,Bをそれぞれ3分間付与した。電極パッドは、被験筋である右側大腿四頭筋を挟むように近位側(中枢側)と遠位側(末梢側)とに貼り付けた。なお、電極は、特筆しない限り、近位側にプラスの電極パッドを、遠位側にマイナスの電極パッドを貼り付けた。
[Electric stimulation]
Next, an electrode pad of an electrical stimulation device was attached to the thigh of the subject, and the following electrical stimulation signals A and B were applied for 3 minutes, respectively. The electrode pads were attached to the proximal side (central side) and the distal side (peripheral side) so as to sandwich the right quadriceps muscle, which is the test muscle. Unless otherwise specified, a positive electrode pad was attached to the proximal side, and a negative electrode pad was attached to the distal side, unless otherwise specified.
 電気刺激信号Aは、パルス群信号(a)を600msの休止期間を介して繰り返し3分間付与するものである。パルス群信号(a)は、下記のように、片方向性パルス複合波を所定の周波数で10パルス出力するものである。ここで、片極性複合パルス波における各パルス成分は、プラス側で600μsの矩形波を出力した後、マイナス側に-75%のアンダーシュートを含むことで構成されている。
(a)片方向性パルス複合波
 プラス側:矩形波
  高周波パルス成分:周波数200Hz,片極(プラス側のみ)計1パルス
  低周波パルス成分:周波数20Hz,片極(プラス側のみ)計9パルス
  マイナス側:アンダーシュート(深さ-75%)
The electrical stimulation signal A is a signal obtained by repeatedly applying the pulse group signal (a) for 3 minutes through a rest period of 600 ms. The pulse group signal (a) outputs 10 pulses of a unidirectional pulse composite wave at a predetermined frequency as described below. Here, each pulse component in the unipolar composite pulse wave is constituted by outputting a rectangular wave of 600 μs on the plus side and then including −75% undershoot on the minus side.
(A) Unidirectional pulse composite wave Plus side: rectangular wave High frequency pulse component: frequency 200 Hz, single pole (plus side only) total 1 pulse Low frequency pulse component: frequency 20 Hz, single pole (plus side only) total 9 pulses Minus Side: Undershoot (depth -75%)
 電気刺激信号Bは、パルス群信号(b)を600msの休止期間を介して繰り返し3分間付与するものである。パルス群信号(b)は、下記のように、双極性パルス波を所定の周波数で10パルス出力するものである。ここで、双極性パルス波における各パルス成分は、プラス側で300μs,マイナス側で300μsの矩形波を連続的に出力することで構成されている。
(b)双極性パルス波
 プラス側およびマイナス側:矩形波
  パルス成分:周波数20Hz,双極計10パルス
The electrical stimulation signal B is a signal obtained by repeatedly applying the pulse group signal (b) for 3 minutes through a rest period of 600 ms. The pulse group signal (b) outputs 10 pulses of a bipolar pulse wave at a predetermined frequency as described below. Here, each pulse component in the bipolar pulse wave is configured by continuously outputting a rectangular wave of 300 μs on the plus side and 300 μs on the minus side.
(B) Bipolar pulse wave Plus side and minus side: Rectangular wave Pulse component: Frequency 20Hz, bipolar meter 10 pulses
 [30%MVC出力の確認]
 以上の電気刺激信号A,Bにより膝関節に誘発される伸展運動の大きさ(筋収縮量)を、MVC測定と同様に測定機能付自力運動訓練装置(ミナト医科学(株)製,WT-C20)を用いて、膝関節伸展時の筋出力として測定した。そして各々の電気刺激信号について、誘発される最大収縮力が30%MVCとなる電圧を調べた。
[Confirmation of 30% MVC output]
The self-exercising exercise device with a measuring function (manufactured by Minato Medical Science Co., Ltd., WT-), similar to the MVC measurement, the magnitude of the extension movement (muscle contraction amount) induced in the knee joint by the electrical stimulation signals A and B C20) was used to measure the muscle output during knee joint extension. For each electrical stimulation signal, the voltage at which the maximum contractile force induced was 30% MVC was examined.
 [筋出力および電流値の測定]
 十分な休憩時間を挟んで、電気刺激信号AおよびBを上記で求めた30%MVCとなる電圧でそれぞれ生体に印加したときに、膝関節に誘発される伸展運動の大きさ(筋収縮量)を、上記測定機能付自力運動訓練装置により測定した。
そして、1群のパルス状信号(一のパルス群信号)につき測定された膝関節の伸展時の筋出力を当該パルス状信号における筋収縮力とし、その値を一のパルス群信号あたりで積分した積分値を総筋出力値として算出した。
 また、電気刺激装置から出力した電気刺激により、生体に実際に付与された電圧および電流量を測定し、ピーク電流値を調べた。
[Measurement of muscle output and current value]
The magnitude of the extension exercise (muscle contraction amount) induced in the knee joint when the electrical stimulation signals A and B are applied to the living body at the voltage of 30% MVC obtained above with a sufficient rest period in between. Was measured by the above-mentioned self-exercise exercise apparatus with a measurement function.
The muscle output at the time of knee joint extension measured for one group of pulse signals (one pulse group signal) is defined as the muscle contraction force in the pulse signals, and the value is integrated per one pulse group signal. The integrated value was calculated as the total muscle output value.
Further, the voltage and current amount actually applied to the living body were measured by the electrical stimulation output from the electrical stimulation device, and the peak current value was examined.
 [評価]
 電気刺激装置からの出力は、負荷(生体)のインピーダンスによって出力電圧が僅かながら変動を起こす。本実施形態において、各電気刺激信号により生体に付与された電流は、被験者ごとのインピーダンスの相違に伴う若干の違いはあるが、電気刺激信号に対する変化の傾向は揃っており、安定して通電できていることが確認できた。
 電気刺激信号Aにおける片方向性パルス複合波によると、生体には、電流波形のプラス側パルスの立ち上がり時に高い周波数成分に基づく大きなピーク電流が流れ、その後は低い電流が安定して流れることがわかった。このようにピーク電流が高周波パルス成分の矩形波パルス信号の立ち上がり部分で発生することは、パルス複合波の特徴によるものであると言えた。また、マイナス側のアンダーシュート部分においても、周波数分が高いために比較的大きなピーク電流が流れ、ゆっくりと電流値0へと収束することが確認された。
[Evaluation]
The output from the electrical stimulator varies slightly with the output voltage depending on the impedance of the load (living body). In this embodiment, the current applied to the living body by each electrical stimulation signal has some differences due to the difference in impedance for each subject, but the tendency to change with respect to the electrical stimulation signal is uniform and can be stably energized. It was confirmed that
According to the unidirectional pulse composite wave in the electrical stimulation signal A, it can be seen that a large peak current based on a high frequency component flows to the living body at the rising edge of the plus-side pulse of the current waveform, and then a low current flows stably. It was. It can be said that the generation of the peak current at the rising edge of the rectangular wave pulse signal of the high frequency pulse component is due to the characteristics of the pulse composite wave. It was also confirmed that a relatively large peak current flows in the negative undershoot portion because of the high frequency component, and slowly converges to a current value of zero.
 一方の、電気刺激信号Bにおける双極性パルス波では、電流波形のプラス側の矩形波部分は概ねそのままの矩形波形状で電流が流れ、その後のマイナス側の矩形波部分では、電圧が0へと切り替わる部分で逆に大きなオーバーシュート電流が発生し、その後ゆっくりと電流値0へと収束することが確認された。すなわち、オーバーシュートとして、電圧の急峻な変化が双極性パルス波の1周期の終わりに発生することがわかった。また、オーバーシュート電流が流れてしまう電気刺激信号Bでは、30%MVCの筋出力を得るために生体に流れる実効電流が大きくなることがわかった。 On the other hand, in the bipolar pulse wave in the electrical stimulation signal B, the current flows in a substantially rectangular wave shape as it is in the plus-side rectangular wave portion of the current waveform, and the voltage is reduced to 0 in the subsequent minus-side rectangular wave portion. On the other hand, it was confirmed that a large overshoot current was generated at the switching portion, and then slowly converged to a current value of 0. That is, it has been found that a sharp change in voltage occurs as the overshoot at the end of one cycle of the bipolar pulse wave. In addition, in the electrical stimulation signal B in which the overshoot current flows, it has been found that the effective current flowing through the living body increases in order to obtain a 30% MVC muscle output.
 なお、電気刺激信号により生体に実際に流れた電流のピークであるピーク電流値は、電気刺激による痛みの大きさを反映し得る。そこで、被験者ごとに、上記で算出した総筋出力値を、ピーク電流値で除することにより、単位ピーク電流(1mAp)当たりの総筋出力値Xを算出した。この様に定義されるパラメータXは、単位ピーク電流で誘発される筋出力を表すものであり、パラメータXが大きくなればなる程、少ない痛みでより多くの筋出力が得られることを意味する。電気刺激信号AとBに対するパラメータXの値を、図4に示した。図4中の各マーカーは、4人の被験者について、電気刺激信号AとB関して算出したパラメータXを示している。そして図中の点線は、各電気信号における4人の被験者のパラメータXの平均を結んだ線である。 It should be noted that the peak current value that is the peak of the current that actually flows in the living body due to the electrical stimulation signal can reflect the magnitude of pain due to the electrical stimulation. Therefore, the total muscle output value X per unit peak current (1 mAp) was calculated for each subject by dividing the total muscle output value calculated above by the peak current value. The parameter X defined in this way represents the muscle output induced by the unit peak current, and as the parameter X increases, it means that more muscle output can be obtained with less pain. The values of the parameter X for the electrical stimulation signals A and B are shown in FIG. Each marker in FIG. 4 indicates a parameter X calculated for the electrical stimulation signals A and B for four subjects. And the dotted line in a figure is a line which connected the average of the parameter X of four test subjects in each electric signal.
 図4に示されるように、全ての被験者について、ここに開示される電気刺激装置により付与された電気刺激信号AによるパラメータX(すなわちX)の方が、従来装置により付与された電気刺激信号BによるパラメータX(すなわちX)よりも、高い値を示すことがわかった。なお、4人の被験者について、電気刺激信号Aに関するパラメータXは、電気刺激信号Bに関するパラメータXに対し、約44%~70%程度高い値(すなわち、約1.44~1.70倍の値)を示すことが確認できた。すなわち、ここに開示される電気刺激装置によると、従来の電気刺激装置に比べて、例えば、痛みを伴うことなく、あるいは、痛みをより抑えて、より高い筋出力が得られることが確認された。 As shown in FIG. 4, for all subjects, the parameter X (ie, X N ) based on the electrical stimulation signal A applied by the electrical stimulation device disclosed herein is the electrical stimulation signal applied by the conventional device. It was found that the value was higher than the parameter X (ie, X M ) due to B. For the four subjects, the parameter X related to the electrical stimulation signal A is about 44% to 70% higher than the parameter X related to the electrical stimulation signal B (that is, about 1.44 to 1.70 times the value). ) Was confirmed. That is, according to the electrical stimulation device disclosed herein, it has been confirmed that, for example, higher muscle output can be obtained without pain or with less pain compared to the conventional electrical stimulation device. .
<実施形態2>
[試験1]
 以下では、電気刺激装置から出力される電気刺激波形の筋出力等に及ぼす影響について、詳細に検討した。下記の各種の試験において、生体としては、規則的なトレーニング経験のない健康な男子大学生9名を対象(被験者)として選定した。そして各被験者について、実施形態1と同様の手順で、MVC測定を行った。
 [30%MVCの決定]
 次いで、下記「出力設定用基準波形」による電気刺激を各被験者に与えることで、この基準波形に基づく各被験者のMVCの30%に相当する筋出力(30%MVC出力)を誘発する刺激強度(電圧)を調べた。
<Embodiment 2>
[Test 1]
Below, the effect of the electrical stimulation waveform output from the electrical stimulation device on the muscle output and the like was examined in detail. In the various tests described below, nine healthy male university students without regular training experience were selected as subjects (subjects). And about each test subject, the MVC measurement was performed in the procedure similar to Embodiment 1. FIG.
[Determining 30% MVC]
Next, the stimulation intensity (30% MVC output) that induces a muscle output (30% MVC output) corresponding to 30% of the MVC of each subject based on the reference waveform is given to each subject by electrical stimulation according to the following “output setting reference waveform”. Voltage).
(出力設定用基準波形)
  高周波パルス成分:周波数200Hz,双極(プラス側-マイナス側)計1つ
  低周波パルス成分:周波数20Hz,双極(プラス側-マイナス側)計9つ
この出力設定用基準波形は、従来波形とも言える双極パルス信号により構成されている。
(Reference waveform for output setting)
High-frequency pulse component: frequency 200 Hz, 1 bipolar (plus-minus) total Low frequency pulse component: frequency 20 Hz, 9 bipolar (plus-minus) total This output setting reference waveform is a bipolar that can be said to be a conventional waveform It consists of a pulse signal.
 [最大収縮力の測定]
 上記30%MVC測定から十分な時間の経過後、ここに開示される電気刺激装置を用いて、被験者に対して電気刺激を付与するとともに、かかる電気刺激により誘発される筋力を測定した。本実施形態では、誘発された筋力を、常法に従って測定される筋出力(kgf)により評価した。
 具体的には、まず、9人の被験者の太腿部に、電気刺激装置の電極パッドを装着し、下記(r1)(a1)(a2)で示すパルス成分(パルス状信号)からなるパルス群信号を複数組み合わせてなる電気刺激信号(R1)(A1)(A2)を付与した。なお、各パルス成分は、上記で求めた各被験者の基準波形に基づく30%MVC出力となる電圧で付与した。
[Measurement of maximum contraction force]
After a sufficient time had elapsed from the 30% MVC measurement, the electrical stimulation device disclosed herein was used to apply electrical stimulation to the subject and to measure the muscle strength induced by the electrical stimulation. In this embodiment, the induced muscular strength was evaluated by muscle output (kgf) measured according to a conventional method.
Specifically, first, an electrode pad of an electrical stimulation device is attached to the thighs of nine subjects, and a pulse group consisting of pulse components (pulse-like signals) shown by the following (r1) (a1) (a2) An electrical stimulation signal (R1) (A1) (A2) formed by combining a plurality of signals was applied. In addition, each pulse component was provided with the voltage used as the 30% MVC output based on the reference | standard waveform of each test subject calculated | required above.
(r1)
  高周波パルス成分:周波数200Hz,片極(プラス側)計1パルス
  低周波パルス成分:周波数20Hz,双極(マイナス側-プラス側)計9パルス
(a1)
  高周波パルス成分:なし
  低周波パルス成分:周波数20Hz,片極(プラス側のみ)計10パルス
(a2)
  高周波パルス成分:周波数200Hz,片極(プラス側のみ)計1パルス
  低周波パルス成分:周波数20Hz,片極(プラス側のみ)計9パルス
(R1)
High frequency pulse component: frequency 200 Hz, unipolar (plus side) total 1 pulse Low frequency pulse component: frequency 20 Hz, bipolar (minus side-positive side) total 9 pulses (a1)
High frequency pulse component: None Low frequency pulse component: Frequency 20Hz, single pole (plus side only) total 10 pulses (a2)
High frequency pulse component: frequency 200 Hz, single pole (plus side only) total 1 pulse Low frequency pulse component: frequency 20 Hz, single pole (plus side only) total 9 pulses
 信号(r1)は、上記の参考試験1における信号(r1)と同じであって、図3に示したような、プラス側とマイナス側に信号を有する公知のパルス群波形である。信号(a1)は、プラス側にのみ信号を有する本提案のパルス群波形であって、低周波パルス成分のみから構成されるものである。信号(a2)は、図2Aに示したような、プラス側にのみ信号を有する本提案のパルス群波形であって、高周波パルス成分と低周波パルス成分とを有するものである。
 これにより、パルス群信号を構成する各パルス信号が、双極性パルス波である場合(r1)と片極性パルス波である場合(a1)(a2)とで、誘発される筋収縮にどのような違いがあるのかを評価した。また、片極性パルス波である場合に、高周波パルス成分の無(a1)と、有(a2)とでその違いを評価した。
The signal (r1) is the same as the signal (r1) in the above reference test 1, and is a known pulse group waveform having signals on the plus side and the minus side as shown in FIG. The signal (a1) is a pulse group waveform of the present proposal having a signal only on the plus side, and is composed of only a low-frequency pulse component. The signal (a2) is a pulse group waveform of the present proposal having a signal only on the plus side as shown in FIG. 2A, and has a high-frequency pulse component and a low-frequency pulse component.
As a result, each of the pulse signals constituting the pulse group signal is a bipolar pulse wave (r1) or a unipolar pulse wave (a1) (a2). We evaluated whether there was a difference. Further, in the case of a unipolar pulse wave, the difference was evaluated between the absence (a1) and the existence (a2) of the high-frequency pulse component.
 そして、(R1)~(A2)の各電気刺激信号は、「上記のパルス群信号を1秒間に1回のタイミングで10秒間(すなわち第1休止期間を挟んで10群)付与する」ことを1クール(第1刺激信号に相当)とし、この1クールを、30秒間の休止期間(第2休止期間)を挟んで5回(すなわち5クール)繰り返し行う(第2刺激信号に相当)ものとした。 Each of the electrical stimulation signals (R1) to (A2) “applies the above pulse group signal for 10 seconds (ie, 10 groups with the first pause period) once per second”. One cool (corresponding to the first stimulus signal), and this one cool is repeated five times (that is, five cools) with a 30 second rest period (second rest period) (corresponding to the second stimulus signal) did.
 また、被験筋は実施形態1と同様に右側大腿四頭筋とし、電気刺激装置に備えられた2枚の電極パッドを、右側大腿四頭筋を挟むように大腿前面の近位側(中枢側)と遠位側(末梢側)に貼り付けた。
 9人の被験者には、試験の信頼性を増すため、出力設定用基準波形にて出力設定を行った後、3通りの電気刺激信号(R1)~(A2)をラテン方格法に従って無作為な順序で付与した。各電気刺激信号は、十分な筋休息時間を挟んで付与した。
In addition, the test muscle is the right quadriceps as in the first embodiment, and the two electrode pads provided in the electrical stimulation device are placed on the proximal side (central side) of the front of the thigh so as to sandwich the right quadriceps. ) And the distal side (peripheral side).
Nine subjects were randomized according to the Latin square method after setting the output with the reference waveform for output setting to increase the reliability of the test, after the three types of electrical stimulation signals (R1) to (A2). In the correct order. Each electrical stimulation signal was applied with sufficient muscle rest time.
 以上の電気刺激信号により膝関節に誘発される伸展運動の大きさ(筋収縮量)を、MVC測定同様に測定機能付自力運動訓練装置(ミナト医科学(株)製,WT-C20)を用いて、筋出力として測定した。1群のパルス状信号につき測定された最大筋出力の治療中における平均値を筋収縮力とした。測定結果は、9人の被験者の筋収縮力の平均値を、電気刺激付与時間との関係として示した。また、かかる筋収縮力の積分値を、電気刺激による当該筋肉の運動量として算出した。 Using the above-mentioned self-exercise training device (manufactured by Minato Medical Science Co., Ltd., WT-C20) with the same function as the MVC measurement, the magnitude of the extension movement (muscle contraction) induced in the knee joint by the electrical stimulation signal And measured as muscle output. The average value during the treatment of the maximum muscle output measured for one group of pulse signals was taken as the muscle contraction force. The measurement result showed the average value of the muscle contraction force of nine subjects as a relationship with the electrical stimulation application time. The integrated value of the muscle contraction force was calculated as the amount of exercise of the muscle by electrical stimulation.
 [痛みの測定]
 また、上記の電気刺激信号(R1)~(A2)の付与に際し、2クール目、4クール目および5クール目に被験者が感じた電気刺激による痛みを、視覚的評価スケール(Visual Analog Scale:VAS)法により評価した。具体的には、「0」を痛みのない状態、「10」をこれまで経験した一番強い痛みの状態として、各評価クールにおける電気刺激による痛みを10cmの直線上のどの地点に位置するかを10段階で示した。結果は、9人の被験者による痛みを示すVAS値の平均値として示した。
[Measurement of pain]
In addition, when applying the electrical stimulation signals (R1) to (A2), the pain caused by the electrical stimulation that the subject felt in the 2nd, 4th, and 5th cools was evaluated using a visual evaluation scale (Visual Analog Scale: VAS). ) Method. Specifically, where “0” is a painless state and “10” is the strongest pain state experienced so far, at which point on the 10 cm straight line the pain caused by electrical stimulation in each evaluation course is located Was shown in 10 stages. The result was shown as an average value of VAS values indicating pain by nine subjects.
 [評価]
 図5[1]は、電気刺激信号の付与に伴う筋出力(kgf)の時間推移を示した図である。なお、図5以下の各図におけるデータ群は、左から1クール目,2クール目…のデータを示している。休止期間は筋出力がない(ゼロである)ため、図5には休止期間は短縮(割愛)して示している。また、各図において、データの時間推移の傾向が明瞭となるように、筋出力等の値を示す目盛は適宜調整している。図5の[1]に示されるように、片極性の電気刺激信号(A1)および(A2)を付与した場合は、双極性の電気刺激信号(R1)を付与した場合に比較して、筋出力値が有意に大きく、高い最大収縮力が得られることが確認できた。これとは対照的に、片極性の電気刺激信号(A1)と(A2)との間には、誘発される筋出力値に大きな差は見られなかった。
 また、図5[2]は、電気刺激による筋肉の運動量(kgf・sec)の推移を示した図である。図5[2]に示されるように、運動量についても、片極性の電気刺激信号(A1)および(A2)を付与した場合の方が、双極性の電気刺激信号(R1)を付与した場合に比べて、明らかに大きくなる傾向が見られた。なお、片極性の電気刺激信号(A1)と(A2)とによる運動量については、筋出力の場合と比較して両者間に差がみられるが、これは電気刺激の付与時間(通電時間)の差によるとも考えられ、特筆すべき差ではないと考えられる。
[Evaluation]
FIG. 5 [1] is a diagram showing a time transition of muscle output (kgf) accompanying application of an electrical stimulation signal. Note that the data group in each figure after FIG. 5 shows data of the first cool, the second cool,... From the left. Since there is no muscle output (zero) during the rest period, the rest period is shortened (omitted) in FIG. In each figure, the scale indicating the value of the muscle output or the like is appropriately adjusted so that the tendency of the data over time is clear. As shown in [1] of FIG. 5, when the unipolar electrical stimulation signals (A1) and (A2) are applied, the muscles are compared with the case where the bipolar electrical stimulation signals (R1) are applied. It was confirmed that the output value was significantly large and a high maximum contractile force was obtained. In contrast, there was no significant difference in evoked muscle output values between unipolar electrical stimulation signals (A1) and (A2).
FIG. 5 [2] is a graph showing the transition of the amount of exercise (kgf · sec) of the muscle by electrical stimulation. As shown in FIG. 5 [2], when the unipolar electrical stimulation signals (A1) and (A2) are applied to the momentum, the bipolar electrical stimulation signal (R1) is applied. In comparison, there was a clear tendency to increase. In addition, regarding the momentum by the unipolar electrical stimulation signals (A1) and (A2), there is a difference between the two compared to the case of muscle output, but this is the time of applying electrical stimulation (energization time). It is thought to be due to the difference, and is not considered to be a special difference.
 一方の、図5[3]は、電気刺激により知覚する痛み(cm)の時間推移を示した図である。電気刺激信号による痛みについては、双極性の電気刺激信号(R1)を付与した場合に最も小さく、片極性の電気刺激信号(A1)および(A2)を付与した場合に比較的強くなる結果であった。このような痛みの差は、電気刺激信号により生体内に流れる実効電流量の差および誘発される筋力の差に基づくものと考えられる。つまり、本実施形態2では、生体に付与する電気刺激信号の各パルス信号成分の出力を、被験者に「出力設定用基準波形」による電気刺激信号を付与したときの30%MVCに相当する電圧に設定していた。そのため、この大きさの電気刺激信号により誘発される筋の最大収縮力に相違が生じる場合には、結果として痛みの大きさも異なるものとなっていた。より詳細には、同じ出力(電圧)でも、片極性パルス複合波による電気刺激信号(A1)および(A2)を付与することでより多くの電流が生体に導入され、片極性パルス複合波により誘発される最大収縮力は30%MVCよりも大きな値(概ね50%MVC以上)となっていることが予想された。なお、電気刺激信号(A1)および(A2)による痛みについては、高周波パルス成分のある電気刺激信号(A2)の方が小さいことから、上記参考試験1の結果も踏まえると、全体として、片極性で高周波成分を備える電気刺激信号(A2)が、筋運動効果と痛みとのバランスの良い筋収縮を誘発できることが分かった。 On the other hand, FIG. 5 [3] is a diagram showing a time transition of pain (cm) perceived by electrical stimulation. The pain due to the electrical stimulation signal is the smallest when the bipolar electrical stimulation signal (R1) is applied, and becomes relatively strong when the unipolar electrical stimulation signals (A1) and (A2) are applied. It was. Such a difference in pain is considered to be based on a difference in effective current amount flowing in the living body by an electrical stimulation signal and a difference in induced muscle strength. That is, in the second embodiment, the output of each pulse signal component of the electrical stimulation signal applied to the living body is set to a voltage corresponding to 30% MVC when the electrical stimulation signal based on the “output setting reference waveform” is applied to the subject. It was set. Therefore, when there is a difference in the maximum contraction force of the muscle induced by the electrical stimulation signal of this magnitude, the magnitude of the pain is different as a result. More specifically, even with the same output (voltage), more electric currents are introduced into the living body by applying the electrical stimulation signals (A1) and (A2) by the unipolar pulse composite wave, and are induced by the unipolar pulse composite wave. It was predicted that the maximum contractile force to be applied was larger than 30% MVC (approximately 50% MVC or more). As for the pain caused by the electrical stimulation signals (A1) and (A2), the electrical stimulation signal (A2) having a high frequency pulse component is smaller. It was found that the electrical stimulation signal (A2) having a high-frequency component can induce muscle contraction with a good balance between the muscle movement effect and pain.
[試験2]
 パルス群信号を下記に示す(r1)(a2)(a3)とし、その他の条件は上記参考試験1と同様にして、生体に電気刺激信号(R1)(A2)(A3)を付与した。そして、かかる電気刺激信号(R1)~(A3)により誘発される[1]最大収縮力、[2]運動量および[3]痛みを上記参考試験1と同様に測定し、その結果を図6に示した。
 なお、各パルス群信号における各パルス成分は、上記試験1と同様、出力設定用基準波形に基づく各被験者の30%MVCに相当する出力となるように設定した電圧を用いた。
[Test 2]
The pulse group signal was (r1) (a2) (a3) shown below, and the other conditions were the same as in Reference Test 1 above, and the electrical stimulation signals (R1) (A2) (A3) were applied to the living body. Then, [1] maximum contractile force, [2] momentum and [3] pain induced by the electrical stimulation signals (R1) to (A3) were measured in the same manner as in Reference Test 1, and the results are shown in FIG. Indicated.
In addition, the voltage set so that it might become the output equivalent to 30% MVC of each test subject based on the reference waveform for output setting was used for each pulse component in each pulse group signal similarly to the said test 1. FIG.
(r1)
  高周波パルス成分:周波数200Hz,片極(プラス側)計1パルス
  低周波パルス成分:周波数20Hz,双極(マイナス側-プラス側)計9パルス
(a2)
  高周波パルス成分:周波数200Hz,片極(プラス側のみ)計1パルス
  低周波パルス成分:周波数20Hz,片極(プラス側のみ)計9パルス
(a3)
  高周波パルス成分:周波数200Hz,片極(マイナス側のみ)計1パルス
  低周波パルス成分:周波数20Hz,片極(マイナス側のみ)計9パルス
(R1)
High frequency pulse component: frequency 200 Hz, unipolar (plus side) total 1 pulse Low frequency pulse component: frequency 20 Hz, bipolar (minus side-positive side) total 9 pulses (a2)
High frequency pulse component: frequency 200 Hz, single pole (plus side only) total 1 pulse Low frequency pulse component: frequency 20 Hz, single pole (plus side only) total 9 pulses (a3)
High frequency pulse component: frequency 200 Hz, single pole (minus side only) total 1 pulse Low frequency pulse component: frequency 20 Hz, single pole (minus side only) total 9 pulses
 すなわち、信号(r1)は、上記の試験1における信号(r1)と同じであって、プラス側とマイナス側に信号を有する公知のパルス群波形である。信号(a2)は、上記の試験1における信号(a2)と同じであって、プラス側にのみ信号を有する本提案のパルス群波形である。信号(a3)は、信号(a2)とは逆に、マイナス側にのみ信号を有する本提案の片極性のパルス群波形である。
 これにより、パルス群信号を構成する片極性のパルス信号が、プラス側にある場合(a2)とマイナス側にある場合(a3)とで、誘発される筋収縮にどのような違いがあるのかを評価した。
That is, the signal (r1) is the same as the signal (r1) in the above test 1, and is a known pulse group waveform having signals on the plus side and the minus side. The signal (a2) is the same as the signal (a2) in the test 1 described above, and is the proposed pulse group waveform having a signal only on the plus side. The signal (a3) is a unipolar pulse group waveform of the present proposal having a signal only on the minus side, contrary to the signal (a2).
As a result, the difference in the induced muscle contraction between when the unipolar pulse signal constituting the pulse group signal is on the positive side (a2) and when it is on the negative side (a3). evaluated.
 [評価]
 図6の[1]に示されるように、片極性の電気刺激信号(A2)および(A3)を付与する場合であっても、その極性の向きによって、誘発される筋力に大きな違いが生じることがわかった。すなわち、生体に付与する電気刺激信号によってもたらされる効果は、その電気刺激信号の方向性により大きな影響を受けることがわかった。そして、電気刺激信号の方向は、電気刺激信号(A2)のように、生体の中枢側から末梢側に向かって進行するように付与することで、より高い筋最大収縮力が誘発されることが確認された。なお、逆向きに、すなわち、生体の末梢側から中枢側に向かって電気刺激信号が進行するように付与する(電気刺激信号(A3))場合には、双極性の電気刺激信号(R1)を付与した場合よりも筋最大収縮力が小さくなり得ることが確認された。
[Evaluation]
As shown in [1] of FIG. 6, even when unipolar electrical stimulation signals (A2) and (A3) are applied, the induced muscle strength varies greatly depending on the direction of the polarity. I understood. That is, it has been found that the effect brought about by the electrical stimulation signal applied to the living body is greatly influenced by the directionality of the electrical stimulation signal. Then, the direction of the electrical stimulation signal is applied so as to advance from the central side of the living body toward the distal side as in the electrical stimulation signal (A2), so that a higher maximum muscle contraction force can be induced. confirmed. In the reverse direction, that is, when the electrical stimulation signal is applied so as to advance from the peripheral side to the central side of the living body (electrical stimulation signal (A3)), the bipolar electrical stimulation signal (R1) is applied. It was confirmed that the maximum muscle contraction force could be smaller than when applied.
 なお[2]に示される運動量についても、最大収縮力と同様の結果であり、生体の中枢側から末梢側に向かって電気刺激信号が進行するように刺激を付与することで、より高い運動量が得られることが確認された。
 痛みの評価については、各電気刺激信号により誘発される最大収縮力の差が大きいために単純な比較ができないが、双極性の電気刺激信号(R1)と片極性の電気刺激信号(A3)とでは、その差は大きくはないものの片極性信号(A3)の方が痛みが強いという結果となった。これは、例え電気刺激の生体への導入方向が適切でない場合であっても、片極性信号(A3)により生体により多くの実効電流が導入され得ることを示唆している。
 以上のことから、公知の双極性の電気刺激信号(R1)は、その方向性を意識することなく生体に刺激を付与しうるものの、より高い筋収縮効果を得るには片極性の電気刺激信号(A2)に大きく及ばないことが確認された。
The momentum shown in [2] is also the same result as the maximum contraction force, and by applying a stimulus so that the electrical stimulation signal advances from the central side of the living body toward the peripheral side, a higher momentum can be obtained. It was confirmed that it was obtained.
Regarding the pain evaluation, a simple comparison cannot be made because the difference in the maximum contractile force induced by each electrical stimulation signal is large, but the bipolar electrical stimulation signal (R1) and the unipolar electrical stimulation signal (A3) Then, although the difference was not large, the unipolar signal (A3) was more painful. This suggests that even if the direction of introduction of electrical stimulation into the living body is not appropriate, more effective current can be introduced into the living body by the unipolar signal (A3).
From the above, the known bipolar electrical stimulation signal (R1) can give a stimulus to a living body without being aware of its directionality, but to obtain a higher muscle contraction effect, it is a unipolar electrical stimulation signal. It was confirmed that it did not greatly meet (A2).
[試験3]
 次に、上記の試験1と同じ信号(a2)のパルス状信号に設けるアンダーシュートの深さを(a2):-25%~-85%の間で10%ずつ変化させ、7通りのパルス群信号(a4)~(a10)とした。そして、その他の条件は上記試験1と同様にして、これらのパルス群信号を組み合わせた電気刺激信号(A4)~(A10)を生体に付与し、誘発された[1]最大収縮力、[2]運動量および[3]痛みを上記試験1と同様に測定した。
 なお、各パルス群信号における各パルス成分は、出力設定用基準波形において、各被験者の30%MVCに相当する出力となるように設定した電圧を用いた。
[Test 3]
Next, the depth of the undershoot provided in the pulse signal of the same signal (a2) as in the above test 1 is changed by 10% between (a2): -25% and -85%, and seven pulse groups Signals (a4) to (a10) were used. Other conditions were the same as in Test 1 above, and electrical stimulation signals (A4) to (A10) obtained by combining these pulse group signals were applied to the living body, and induced [1] maximum contractile force, [2 The momentum and [3] pain were measured in the same manner as in Test 1 above.
Each pulse component in each pulse group signal was a voltage set so that an output corresponding to 30% MVC of each subject in the output setting reference waveform.
 また、被験者に対し、上記7通りの電気刺激信号を同一の日に付与するのは疲労をきたす等して試験の信頼性を損ねる可能性が考えられる。そのため、(a4):-25%,(a5):-35%,(a6):-45%の3通りを同一の日に、(a6’):-45%,(a7):-55%,(8):-65%を他の同一の日に、(a8’):-65%,(a9):-75%,(a10):-85%をさらに他の同一の日に試験して、併せて評価した。 Also, it is considered that applying the above seven electrical stimulation signals to the subject on the same day may result in fatigue and impair the reliability of the test. Therefore, (a4): −25%, (a5): −35%, (a6): −45% on the same day, (a6 ′): −45%, (a7): −55% , (8): -65% on the other same day, (a8 '): -65%, (a9): -75%, (a10): -85% on the other same day And evaluated together.
 [評価]
 上記の電気刺激信号により誘発された筋運動および痛みの測定結果を図7に示した。アンダーシュートの深さを-45%とした電気刺激信号(A6)および(A6’)ならびにアンダーシュートの深さを-65%とした電気刺激信号(A8)および(A8’)により誘発された筋収縮態様は、測定日が異なることで、その結果に若干の相違が見られた。しかしながら、同日に測定された電気刺激信号(A4),(A5)および(A6)の間と、電気刺激信号(A6’),(A7)および(A8)の間と、電気刺激信号(A8’)および(A9)との間では、それぞれ、アンダーシュートの深さが深くなるに従い、[1]最大収縮力および[2]運動量が大きくなる傾向が見られた。しかしながら、[1]最大収縮力および[2]運動量ともに、アンダーシュートが-85%まで深くなる(A10)では低下する傾向が見られた。
[Evaluation]
FIG. 7 shows the measurement results of muscle movement and pain induced by the electrical stimulation signal. Muscles induced by electrical stimulation signals (A6) and (A6 ′) with an undershoot depth of −45% and electrical stimulation signals (A8) and (A8 ′) with an undershoot depth of −65% As for the contraction mode, the measurement date was different, and a slight difference was observed in the result. However, between the electrical stimulation signals (A4), (A5) and (A6) measured on the same day, between the electrical stimulation signals (A6 ′), (A7) and (A8), and the electrical stimulation signal (A8 ′ ) And (A9), there was a tendency that [1] maximum contractile force and [2] momentum increased as the undershoot depth increased. However, both [1] maximum contractile force and [2] momentum tended to decrease when the undershoot deepened to -85% (A10).
 また、痛みの評価では、同日に測定された電気刺激信号(A4),(A5)および(A6)の間では概ねアンダーシュートの深さが深くなるほど、また、電気刺激信号(A6’)~(A10)の間では概ねアンダーシュートの深さが浅くなるほど、電気刺激信号によりもたらされる痛みが小さくなることがわかった。しかしながら、全体として、アンダーシュートの深さは-65%よりも浅い範囲であれば、さほど大きな差異は見られなかった。以上のことから、アンダーシュートの深さは、[1]最大収縮力および[2]運動量と、[3]痛みとのバランスから、例えば-65%よりも浅い深さ(例えば、-20%~-60%、好ましくは-25%~-55%、特に好ましくは-45%~-55%)とするのが好適であることがわかった。ただし、痛みを伴ってもより大きな最大収縮力を得たいのであれば、アンダーシュートは-65%よりも深くするのが効果的であり、例えば、-65%~-85%、好ましくは-65%~-80%、より好ましくは-65%~-75%等とすることができる。 In the evaluation of pain, the deeper the undershoot depth is between the electrical stimulation signals (A4), (A5) and (A6) measured on the same day, and the electrical stimulation signals (A6 ′) ˜ ( During A10), it was found that the pain caused by the electrical stimulation signal becomes smaller as the depth of undershoot becomes shallower. However, as a whole, when the depth of the undershoot is in a range shallower than −65%, there is not much difference. From the above, the depth of the undershoot is, for example, a depth shallower than −65% (for example, −20% to −20%) from the balance between [1] maximum contractile force and [2] momentum and [3] pain. -60%, preferably -25% to -55%, particularly preferably -45% to -55%). However, if it is desired to obtain a greater maximum contractile force even with pain, it is effective to make the undershoot deeper than −65%, for example, −65% to −85%, preferably −65%. % To -80%, more preferably -65% to -75%.
 以上のことから、ここに開示される電気刺激装置によると、少ない電流により効率的に筋運動を誘発できることがわかった。また、かかる筋運動による痛みは、得られる最大収縮力に比較して有意に増大されないことがわかった。換言すると、ここに開示される電気刺激装置は、生体の筋収縮作用に対し負荷を低減し、より効果的に働き掛けることができるといえる。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
From the above, it has been found that the electrical stimulation device disclosed herein can efficiently induce muscle movement with a small current. It was also found that the pain due to such muscle movement is not significantly increased compared to the maximum contractile force obtained. In other words, it can be said that the electrical stimulation device disclosed here can reduce the load and act more effectively on the muscle contraction action of the living body.
As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.
1 電気刺激装置
10 信号発生部
20 電極部
DESCRIPTION OF SYMBOLS 1 Electrical stimulation apparatus 10 Signal generation part 20 Electrode part

Claims (11)

  1.  電気刺激信号を発生する信号発生部と、
     前記信号発生部から発生された前記電気刺激信号を生体に付与する電極部と、
    を備え、
     前記電気刺激信号は、複数のパルス状信号を含むパルス群信号を含み、
     前記パルス群信号における複数のパルス状信号は、いずれも、プラスまたはマイナスのいずれか一方の極に立ち上がる片極性パルス波である、電気刺激装置。
    A signal generator for generating electrical stimulation signals;
    An electrode unit for applying to the living body the electrical stimulation signal generated from the signal generating unit;
    With
    The electrical stimulation signal includes a pulse group signal including a plurality of pulse signals,
    The plurality of pulse signals in the pulse group signal are all unipolar pulse waves that rise on one of the positive and negative poles.
  2.  前記信号発生部から発生される前記電気刺激信号をNとし、
     周波数20Hzの双極性パルス波からなるパルス群信号を含む電気刺激信号をMとしたとき、
     これらの電気刺激信号Nおよび電気刺激信号Mに基づき生体に付与された単位ピーク電流当たりの筋出力を示すパラメータXおよびXが、次式:X≧1.3×X;を満たす、
     ここで、前記パラメータXおよびXは、それぞれ、
     前記生体の大腿部に、前記電気刺激信号Nおよび前記電気刺激信号Mを等尺性最大筋力(MVC)の30%の他動的筋出力が得られる電圧にて付与して測定される膝関節伸展時の筋出力について、
     (1)前記筋出力を一の前記パルス群信号あたりで積分した積分値を総筋出力値とし、
     (2)一の前記パルス群信号より生体に流れる最大の電流値を平均した平均ピーク電流値としたとき、
     (3)次式:X=(総筋出力値)÷(平均ピーク電流値);で算出される、
    請求項1に記載の電気刺激装置。
    The electrical stimulation signal generated from the signal generator is N,
    When an electrical stimulation signal including a pulse group signal composed of a bipolar pulse wave with a frequency of 20 Hz is M,
    Parameters X N and X M indicating muscle output per unit peak current applied to the living body based on these electrical stimulation signal N and electrical stimulation signal M satisfy the following formula: X N ≧ 1.3 × X M ; ,
    Here, the parameters X N and X M are respectively
    Knee measured by applying the electrical stimulation signal N and the electrical stimulation signal M to the thigh of the living body at a voltage at which 30% of the isometric maximum muscle strength (MVC) is obtained. About muscle output during joint extension,
    (1) An integrated value obtained by integrating the muscle output per one pulse group signal is defined as a total muscle output value,
    (2) When the average peak current value obtained by averaging the maximum current values flowing through the living body from the one pulse group signal,
    (3) Calculated by the following formula: X = (total muscle output value) ÷ (average peak current value);
    The electrical stimulation apparatus according to claim 1.
  3.  前記パルス群信号は、
      高周波パルス成分と、
      前記高周波パルス成分の後に発振される低周波パルス成分と、
    を含む、請求項1または2に記載の電気刺激装置。
    The pulse group signal is:
    High-frequency pulse components;
    A low frequency pulse component oscillated after the high frequency pulse component; and
    The electrical stimulation apparatus of Claim 1 or 2 containing this.
  4.  前記高周波パルス成分は、1周期以上4周期以下の高周波パルス信号を含む、請求項3に記載の電気刺激装置。 The electrical stimulation device according to claim 3, wherein the high-frequency pulse component includes a high-frequency pulse signal of 1 cycle or more and 4 cycles or less.
  5.  前記低周波パルス成分は、2周期以上20周期以下の低周波パルス信号を含む、請求項3または4に記載の電気刺激装置。 The electrical stimulation device according to claim 3 or 4, wherein the low frequency pulse component includes a low frequency pulse signal of 2 cycles or more and 20 cycles or less.
  6.  前記パルス状信号の波形は、
      基準電位から立ち上がったのち立ち下がる矩形パルスであって、
      前記立ち下がりに引きつづき、前記基準電位よりも更に立ち下がったのち、前記基準電位に戻るアンダーシュートを備える、
    請求項1~5のいずれか1項に記載の電気刺激装置。
    The waveform of the pulse signal is
    A rectangular pulse that falls after rising from a reference potential,
    Subsequent to the falling, and after further falling below the reference potential, comprising an undershoot that returns to the reference potential,
    The electrical stimulation device according to any one of claims 1 to 5.
  7.  前記パルス状信号の強度は、等尺性最大筋力の1~30%の他動的筋出力を誘発する刺激強度に設定される、請求項1~6のいずれか1項に記載の電気刺激装置。 The electrical stimulation device according to any one of claims 1 to 6, wherein the intensity of the pulse-like signal is set to a stimulation intensity that induces other dynamic muscle output of 1 to 30% of the isometric maximum muscle strength. .
  8.  前記電気刺激信号は、
      第1休止期間を挟んで複数の前記パルス群信号を有する第1刺激信号を含む、
    請求項1~7のいずれか1項に記載の電気刺激装置。
    The electrical stimulation signal is:
    Including a first stimulation signal having a plurality of pulse group signals across a first pause period;
    The electrical stimulation device according to any one of claims 1 to 7.
  9.  前記電気刺激信号は、
      第2休止期間を挟んで複数の前記第1刺激信号を有する第2刺激信号を含む、
    請求項8に記載の電気刺激装置。
    The electrical stimulation signal is:
    Including a second stimulation signal having a plurality of the first stimulation signals across a second rest period;
    The electrical stimulation apparatus according to claim 8.
  10.  前記生体に前記電気刺激信号を付与する時間が、1分間以上180分間以下となるように構成されている、請求項1~9のいずれか1項に記載の電気刺激装置。 The electrical stimulation device according to any one of claims 1 to 9, wherein a time for applying the electrical stimulation signal to the living body is configured to be 1 minute or more and 180 minutes or less.
  11.  前記電気刺激信号を、前記生体の末梢側に向かって通電するよう構成されている、請求項1~10のいずれか1項に記載の電気刺激装置。 The electrical stimulation device according to any one of claims 1 to 10, wherein the electrical stimulation signal is configured to energize the electrical stimulation signal toward a peripheral side of the living body.
PCT/JP2015/053434 2015-02-06 2015-02-06 Electric stimulation apparatus WO2016125312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016573165A JP6547215B2 (en) 2015-02-06 2015-02-06 Electrical stimulation device
PCT/JP2015/053434 WO2016125312A1 (en) 2015-02-06 2015-02-06 Electric stimulation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053434 WO2016125312A1 (en) 2015-02-06 2015-02-06 Electric stimulation apparatus

Publications (1)

Publication Number Publication Date
WO2016125312A1 true WO2016125312A1 (en) 2016-08-11

Family

ID=56563675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053434 WO2016125312A1 (en) 2015-02-06 2015-02-06 Electric stimulation apparatus

Country Status (2)

Country Link
JP (1) JP6547215B2 (en)
WO (1) WO2016125312A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505199A (en) * 2017-01-18 2020-02-20 ビクトル エス.アール.エル.Viktor S.R.L. Electrical stimulator
CN110997060A (en) * 2017-07-25 2020-04-10 伊藤超短波株式会社 Current stimulation device
CN112999515A (en) * 2021-02-19 2021-06-22 中国人民解放军总医院第二医学中心 Tongue electrical stimulation method and device and related equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026138A (en) * 2004-07-16 2006-02-02 Ito Choutanpa Kk Low-frequency therapeutic device
JP2011143061A (en) * 2010-01-14 2011-07-28 Minato Ikagaku Kk Electrostimulator which does not easily cause muscle fatigue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295832A (en) * 1997-04-22 1998-11-10 Matsushita Electric Works Ltd Living body stimulation system and living body stimulation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026138A (en) * 2004-07-16 2006-02-02 Ito Choutanpa Kk Low-frequency therapeutic device
JP2011143061A (en) * 2010-01-14 2011-07-28 Minato Ikagaku Kk Electrostimulator which does not easily cause muscle fatigue

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505199A (en) * 2017-01-18 2020-02-20 ビクトル エス.アール.エル.Viktor S.R.L. Electrical stimulator
JP7228902B2 (en) 2017-01-18 2023-02-27 ビクトル エス.アール.エル. electric stimulator
US11872388B2 (en) 2017-01-18 2024-01-16 Viktor S.R.L. Electrostimulation apparatus
CN110997060A (en) * 2017-07-25 2020-04-10 伊藤超短波株式会社 Current stimulation device
CN112999515A (en) * 2021-02-19 2021-06-22 中国人民解放军总医院第二医学中心 Tongue electrical stimulation method and device and related equipment

Also Published As

Publication number Publication date
JP6547215B2 (en) 2019-07-24
JPWO2016125312A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP7410993B2 (en) Gait adjustment systems and devices and their use
Hasegawa et al. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction
JP6751881B2 (en) Spinal cord electrical stimulator for walking training
Vaz et al. Effects of Russian current and low-frequency pulsed current on discomfort level and current amplitude at 10% maximal knee extensor torque
Powell et al. Transvertebral direct current stimulation paired with locomotor training in chronic spinal cord injury: A case study
WO2016125312A1 (en) Electric stimulation apparatus
Weber et al. Functional electrical stimulation using microstimulators to correct foot drop: a case study
Bhattacharya et al. Functional electrical stimulation on improving foot drop gait in poststroke rehabilitation: a review of its technology and clinical efficacy
Kai et al. Evoked EMG makes measurement of muscle tone possible by analysis of the H/M ratio
WO2020070914A1 (en) Biostimulus device
Park et al. Immediate effects of scapular stabilizing exercise in chronic stroke patient with winging and elevated scapula: a case study
Al-Abdulwahab et al. Neuromuscular electrical stimulation of the gluteus medius improves the gait of children with cerebral palsy
JP6727519B2 (en) Electrical stimulator
KR102422546B1 (en) Ear stimulation apparatus and method for controlling the same
JP2023513247A (en) Minimally Invasive Improved Peripheral Nerve Stimulator for Obstructive Sleep Apnea and Other Applications
JP6600481B2 (en) Current stimulating apparatus and current stimulating method for recovering physical dysfunction of body
JP7094528B2 (en) Electrical stimulator
Alon et al. Comparing four electrical stimulators with different pulses properties and their effect on the discomfort and elicited dorsiflexion
Craven Development and evaluation of rehabilitation technologies for early-stage spinal cord injury
RU2612837C1 (en) Treatment method of vibration disease connected with impact of local vibration
JP5916154B2 (en) Electrical stimulation device with muscle output measurement function
JP2005052223A (en) Peripheral blood circulation improving device
Wilder et al. A review on functional electrical stimulation for a dropped foot
JP7469745B2 (en) Electric current stimulation device to restore motor dysfunction
JP6977218B1 (en) Sleep promoter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881129

Country of ref document: EP

Kind code of ref document: A1