WO2016125273A1 - Information processing device, information processing method, and information processing program - Google Patents

Information processing device, information processing method, and information processing program Download PDF

Info

Publication number
WO2016125273A1
WO2016125273A1 PCT/JP2015/053120 JP2015053120W WO2016125273A1 WO 2016125273 A1 WO2016125273 A1 WO 2016125273A1 JP 2015053120 W JP2015053120 W JP 2015053120W WO 2016125273 A1 WO2016125273 A1 WO 2016125273A1
Authority
WO
WIPO (PCT)
Prior art keywords
cause
coefficient
event
value
calculation formula
Prior art date
Application number
PCT/JP2015/053120
Other languages
French (fr)
Japanese (ja)
Inventor
友也 藤野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016572998A priority Critical patent/JP6184619B2/en
Priority to PCT/JP2015/053120 priority patent/WO2016125273A1/en
Publication of WO2016125273A1 publication Critical patent/WO2016125273A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Definitions

  • the present invention relates to a technique for analyzing a causal relationship between events.
  • evaluating the influence of the cause event on the occurrence of the result event and predicting the occurrence of the result event is an analysis of corporate activities, etc.
  • evaluating the influence of the cause event on the occurrence of the result event and predicting the occurrence of the result event is an analysis of corporate activities, etc.
  • has an important meaning For example, when considering a device modulation as a cause event and a device failure as a result event, if a device failure can be estimated from a prior modulation, preventive measures can be taken to prevent losses due to sudden failures. it can.
  • an advertising strategy is considered with direct mail transmission to a customer as a cause event and product purchase as a result event, it is required to send direct mail to an appropriate customer and lead to product purchase with high probability. For this reason, various approaches are used to quantitatively evaluate the influence of the cause event on the occurrence of the result event.
  • Patent Document 1 discloses a method for calculating the influence of a cause event and a hidden event derived from the cause event and predicting the occurrence of a result event.
  • Patent Document 2 an event that has occurred is accumulated, time-series data including temporal changes and a sequence that is order information are extracted from the accumulated event, taking into account temporal importance, A method for calculating the degree of similarity is disclosed.
  • the present invention has been made in view of such circumstances, and has as its main object to quantify the influence of a cause event that decays with time and the influence of an environment that always exists.
  • An information processing apparatus includes: The cause event occurrence time that is the time when the cause event occurred in the event occurrence target, the result event occurrence time that is the time when the result event occurred in the event occurrence target, and the environment to which the event occurrence target belongs is the event occurrence target.
  • An information storage unit for storing event information in which an environmental impact time that is a time at which an influence starts is described;
  • An environmental impact calculation formula that is a calculation formula for calculating a value of an environmental impact coefficient that is a saturation coefficient of an environmental impact that is an impact from the environment is generated using the result event occurrence time and the environmental impact time.
  • a calculation formula generation unit for generating A constraint condition and an objective function are set in the environmental impact calculation formula and the cause impact calculation formula, and the environmental impact calculation formula and the cause impact calculation formula in which the constraint condition and the objective function are set, A coefficient value calculating unit for calculating the value of the environmental influence coefficient and the value of the cause influence coefficient;
  • the value of the cause influence coefficient that is the attenuation coefficient of the cause influence that is the influence from the cause event and the value of the environment influence coefficient that is the saturation coefficient of the environment influence that is the influence from the environment are calculated. It is possible to quantify the influence of the cause event that decays with time and the influence from the environment that always exists.
  • FIG. 3 is a diagram illustrating a functional module configuration example of the information processing apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of the information processing apparatus according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of cause event information according to the first embodiment.
  • FIG. 6 is a diagram showing an example of result event information according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of environment information according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of cause influence coefficient information according to the first embodiment.
  • FIG. 4 is a diagram showing an example of environmental impact coefficient information according to the first embodiment.
  • FIG. 6 is a diagram showing an example of new cause event information according to the first embodiment.
  • FIG. 6 is a diagram showing an example of result event candidate information according to the first embodiment.
  • FIG. 6 is a diagram illustrating a calculation example of a result occurrence index according to the first embodiment.
  • FIG. FIG. 6 is a diagram illustrating an example of program code corresponding to processing of a result event candidate calculation unit according to the first embodiment.
  • FIG. 3 is a diagram illustrating a hardware configuration example of the information processing apparatus according to the first embodiment.
  • Embodiment 1 the degree of occurrence of a result event is estimated by simultaneously considering, on the same scale, two types of effects, which are attenuating over time from a cause event that occurs temporarily and an effect received from an environment that always exists.
  • the structure to perform is demonstrated.
  • FIG. 1 shows a functional module configuration example of the information processing apparatus 100 according to the present embodiment. Before describing the details of the components of the information processing apparatus 100, the operation principle of the information processing apparatus 100 will be described.
  • the information processing apparatus 100 formulates event correlation estimation, thereby estimating the correlation between the cause event and the influence on the result event from the environment.
  • the information processing apparatus 100 manages the cause event ⁇ Ci ⁇ , the result event ⁇ Ri ⁇ , and the event occurrence target (thing, person) ⁇ Oi ⁇ in association with each other.
  • the cause event is, for example, modulation of the device
  • the result event is failure of the device
  • the event generation target is the device.
  • the cause event ⁇ Ci ⁇ and the result event ⁇ Ri ⁇ exist on the time axis for each event generation target (thing, person) ⁇ Oi ⁇ . Both the cause event and the result event can be classified into several types, and the event occurrence target is assumed to belong to several types of environments ⁇ Ei ⁇ (FIG. 10).
  • the event generation target Oi it is assumed that the time t i as a reference exists.
  • Environmental impacts hereinafter, environmental impacts are also referred to as “environmental impacts” accumulate from the reference time and become saturated at the same time. That is, the environment begins to affect the event occurrence target Oi from time t i (hereinafter, time t i is also referred to as environment influence time). It is assumed that the environmental impact is given by Aj (1-exp ( ⁇ Bj (t qi ⁇ t i )).
  • the time t qi is the time when the result event occurs (hereinafter, the time t qi is also referred to as the result event occurrence time).
  • the variable Aj is a variable indicating the maximum amount of environmental influence (or the amount of influence at the time when a certain elapsed time has passed without being limited to the maximum amount) as the intensity of the saturated environmental influence.
  • the variable Aj is a coefficient of a reference value for the strength of environmental impact, and is also referred to as an environmental impact reference coefficient.
  • the variable Bj is a variable indicating the increasing speed of the saturation effect.
  • the variable Bj is a coefficient of speed at which the strength of the environmental influence is saturated, and is also referred to as an environmental influence saturation speed coefficient.
  • the variables Aj and Bj are both environmental impact saturation coefficients, and are collectively referred to as environmental impact coefficients.
  • Aj (1-exp ( ⁇ Bj (t qi ⁇ t i )) is a calculation formula (saturation function) for calculating the value of the environmental influence coefficient (variable Aj, variable Bj). This is called a calculation formula. Note that the variable Aj and the variable Bj are determined for each combination of environment type and result event type.
  • the influence from the cause event (hereinafter, the influence from the cause event is also referred to as “cause influence”) attenuates with time.
  • the cause event occurrence time at which the cause event occurs is t ki
  • the cause influence is assumed to decrease at a ratio of Fj exp ( ⁇ Gj (t qi ⁇ t ki )).
  • the variable Fj is a variable that indicates the maximum amount of the cause effect (or the amount of the cause effect at a certain point of time without being limited to the maximum amount) as the strength of the cause effect before the cause effect is attenuated.
  • the variable Fj is a coefficient of the reference value for the strength of the cause influence, and is also referred to as a cause influence reference coefficient.
  • the variable Gj is a variable indicating the rate of decrease when the cause influence is attenuated.
  • the variable Gj is a coefficient of speed at which the strength of the cause influence is attenuated, and is also referred to as a cause influence attenuation speed coefficient.
  • the variables Fj and Gj are both cause-effect attenuation coefficients, and are collectively referred to as cause-effect coefficients.
  • the above Fj exp ( ⁇ Gj (t qi -t ki )) is a calculation formula (convergence function) for calculating the value of the cause influence coefficient (variable Fj, variable Gj), and is called the cause influence calculation formula. .
  • the variable Fj and the variable Gj are determined for each combination of the cause event type, the result event type, and the type of environment to which the event occurs.
  • a result occurrence index Pi of an event occurrence target is determined by accumulation of past cause events received by the event occurrence target and influences from the environment.
  • the result occurrence index Pi is the occurrence probability of the result event. It is assumed that the result occurrence index Pi exceeds the separately set result occurrence index threshold value h at the time when the result event occurs.
  • h ⁇ Pi Aj (1 ⁇ exp ( ⁇ Bj (t qi ⁇ t i )) + ⁇ (Fj exp ( ⁇ Gj (t qi ⁇ t ki )))
  • Equation 1 the values of t qi , t i , and t ki are known, and variables Aj, Bj, Fj, and Gj are unknowns. Since Expression 1 is obtained for each result event, the information processing apparatus 100 generates simultaneous inequalities using Expression 1 for each result event. Then, the information processing apparatus 100 obtains the environmental influence coefficients Aj and Bj and the cause influence coefficients Fj and Gj using mathematical programming so that the sum of Pi-h values (threshold difference) is minimized. As a method for solving mathematical programming, there is a method using a quasi-Newton method. References: Yamashita “Research and Prospects of Quasi-Newton Method”, Operations Research: Management Science 55 (4), 243-247, 2010.
  • the information processing apparatus 100 applies the calculated values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj to the above-described equation 1, and determines the result event occurrence candidate for the new cause event. As a result, the occurrence index Pi is calculated.
  • the information processing apparatus 100 includes an information storage unit 101, a calculation formula generation unit 102, a coefficient value calculation unit 103, and a result event candidate calculation unit 104.
  • the information storage unit 101 is a storage area for storing information.
  • the information storage unit 101 includes a cause event DB (Database) 1011, a result event DB 1012, an environment information DB 1013, and a new cause event DB 1014.
  • the cause event DB 1011 stores cause event information illustrated in FIG. In the cause event information, a cause event occurrence time t ki that is a time when the cause event has occurred in the event occurrence target is described. Details of the cause event information will be described later.
  • the result event DB 1012 stores result event information illustrated in FIG. In the result event information, a result event occurrence time t qi that is a time at which a result event has occurred in the event occurrence target is described. Details of the result event information will be described later.
  • the environment information DB 1013 stores the environment information illustrated in FIG.
  • the environment information describes an environment influence time t i that is a time when the environment to which the event occurrence target belongs starts to affect the event occurrence target. Details of the environmental information will be described later.
  • the cause event information, result event information, and environment information are also collectively referred to as event information.
  • the new cause event DB 1014 stores new cause event information illustrated in FIG. In the new cause event information, a new cause event that has occurred after the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj are calculated by a coefficient value calculation unit 103 described later is described. Details of the new cause event information will be described later.
  • the calculation formula generation unit 102 is an environmental impact calculation formula: Aj (1-exp ( ⁇ Bj (t qi ⁇ t i )), which is a combination of a polynomial function and an exponential function, and a cause influence calculation formula: (Fj exp ( ⁇ Gj ( t qi -t ki )) is generated using the cause event occurrence time t ki , the result event occurrence time t qi, and the environmental impact time t i .
  • the calculation formula generation unit 102 includes an environmental impact formulation unit 1021 and a cause impact formulation unit 1022, and the environmental impact formulation unit 1021 has an environmental impact calculation formula: Aj (1-exp ( ⁇ Bj (T qi -t i )) is generated, and the cause / effect formulation unit 1022 generates a cause / effect calculation formula: (Fj exp (-Gj (t qi -t ki )).
  • the coefficient value calculation unit 103 sets a constraint condition and an objective function in the environmental influence calculation formula and the cause influence calculation formula. Further, the coefficient value calculation unit 103 calculates the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj from the environmental influence calculation formula and the cause influence calculation formula in which the constraint condition and the objective function are set. calculate. The coefficient value calculation unit 103 calculates the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj that minimize the objective function by mathematical programming.
  • the constraint condition is h ⁇ Pi in Equation 1. That is, the coefficient value calculation unit 103 sets a constraint condition for the environmental impact calculation formula and the cause impact calculation formula, and generates an inequality of Formula 1.
  • the objective function is the sum of Pi ⁇ h values (threshold difference). That is, the coefficient value calculation unit 103 minimizes the total sum of Pi-h values (threshold difference) as the objective function.
  • the coefficient value calculation unit 103 includes a co-occurrence relationship evaluation unit 1031 and a mathematical programming calculation unit 1032.
  • the co-occurrence relationship evaluation unit 1031 generates an inequality of Equation 1, sets an objective function, and a mathematical programming calculation unit. 1032 performs mathematical programming operations.
  • the values of the environmental influence coefficients Aj and Bj calculated by the coefficient value calculation unit 103 are output to the result event candidate calculation unit 104 as the cause influence coefficient information 300, and the cause influence coefficient Fj calculated by the coefficient value calculation unit 103 is output.
  • Gj are output to the result event candidate calculation unit 104 as the environmental impact coefficient information 400.
  • the result event candidate calculation unit 104 determines the environmental effect coefficient when a new cause event occurs after the coefficient value calculation unit 103 calculates the values of the environmental influence coefficients Aj and Bj and the cause influence coefficients Fj and Gj.
  • the values of Aj and Bj are applied to the environmental influence calculation formula, and the values of the cause influence coefficients Fj and Gj are applied to the cause influence calculation formula to identify result event candidates that may occur due to a new cause event.
  • the result event candidate calculation unit 104 calculates a result occurrence index Pi (occurrence probability) of the result event candidate.
  • the result event candidate calculation unit 104 calculates a result occurrence index Pi for each result event candidate, and ranks the plurality of result event candidates in descending order of the calculated result occurrence index Pi. . In addition, the result event candidate calculation unit 104 predicts the time when the result event candidate occurs. Then, the result event candidate calculation unit 104 outputs result event candidate information 500 indicating a list of result event candidates and a time when the result event candidate occurs.
  • the cause ID is an ID (Identifier) of the cause event that has occurred.
  • C is an abbreviation for Cause.
  • the cause type ID is an ID of a cause event type.
  • the occurrence date and time is the cause event occurrence time t ki .
  • the event generation target ID is an ID of the event generation target in which the cause event has occurred.
  • the result ID is an ID of a result event that has occurred.
  • R is an abbreviation for Result.
  • the result type ID is a result event type ID.
  • the occurrence date and time is the result event occurrence time t qi .
  • the event generation target ID is an ID of the event generation target where the result event has occurred.
  • the event generation target ID is an ID of the event generation target where the result event has occurred.
  • the environment type ID is an ID of the type of environment to which the event generation target in which the result event has occurred belongs.
  • the reference date and time is an environmental impact time t i. The reference date and time is set for each event occurrence target.
  • the cause ID is an ID of a cause event that occurs after the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj are calculated.
  • the meanings of the cause type ID, the occurrence date and time, and the event occurrence target ID are the same as those shown in FIG.
  • the variable Fj is a cause influence reference coefficient.
  • the variable Gj is a cause influence attenuation rate coefficient.
  • the cause type ID is the same as that shown in FIG.
  • the result type ID is the same as that shown in FIG.
  • the environment type ID is the same as that shown in FIG.
  • the variable Aj is an environmental impact standard coefficient.
  • the variable Bj is an environmental influence saturation speed coefficient.
  • the environment type ID is the same as that shown in FIG.
  • the result type ID is the same as that shown in FIG.
  • the result candidate number is a number for identifying a result event candidate.
  • the result occurrence index is an index obtained by numerically converting the likelihood of occurrence of a result event. As the result occurrence index is larger, a result event is more likely to occur.
  • the expected result occurrence period start date and time is the date and time when the expected result occurrence period starts.
  • the expected result occurrence period end date and time is the date and time when the expected result occurrence period ends.
  • the expected result occurrence period is a period in which the result event candidate calculation unit 104 assumes that the value of the result occurrence index Pi exceeds the result occurrence index threshold value h and that a result event may occur.
  • the information processing apparatus 100 formulates the influence that decays with time according to the cause influence coefficient, based on the occurrence of the cause event, and the influence that is always affected according to the type of environment by the environment influence coefficient. Formulate to settle. From the state in which the cause influence coefficient and the environmental influence coefficient are indefinite, the information processing apparatus 100 causes the cause influence coefficient and the cause influence coefficient to increase so that the ratio at which the occurrence probability of the result event exceeds the threshold when the result event occurs is maximized. Calculate the environmental impact factor.
  • the cause influence coefficient indicates the strength of the relationship between the cause event and the result event
  • the environmental impact coefficient indicates the strength of the relationship between the environment and the result event.
  • FIG. 2 shows an operation example of the information processing apparatus 100 according to the present embodiment.
  • an operation example of the information processing apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the procedure shown in FIG. 2 corresponds to an example of the information processing method and information processing program of the present application.
  • the environmental impact formulation unit 1021 reads each record of the result event information from the result event DB 1012 and records the environment information including the same event occurrence target ID as the event occurrence target ID described in each read record. Is read from the environment information DB 1013 (information read processing).
  • the environmental impact formulation unit 1021 obtains the result event occurrence time t qi (occurrence date and time of FIG. 4) from the record of the result event information and the record of the environment information with the same event occurrence target ID for each event occurrence target ID. And the environmental impact time t i (reference date and time in FIG. 5), and using the event occurrence time t qi and the environmental impact time t i as a result of the extraction, an environmental impact calculation formula: Aj (1-exp ( ⁇ Bj ( t qi -t i )) is generated (calculation formula generation process). Then, the environmental impact formulation unit 1021 outputs the generated environmental impact calculation formula and the record of the result event information used for generating the environmental impact calculation formula to the cause impact formulation unit 1022.
  • the cause / effect formulation unit 1022 reads from the cause event DB 1011 a record of cause event information in which the event occurrence target ID used to generate the environmental impact calculation formula by the environmental impact formulation unit 1021 is described (information Read processing). Further, in S103, the cause influence formulation unit 1022 determines the cause event occurrence time t ki (occurrence date and time in FIG. 3) and the result event occurrence from the cause event information record and the result event information record having the same event occurrence target ID. Time t qi (occurrence date and time in FIG.
  • the co-occurrence relationship evaluation unit 1031 calculates the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj (coefficient value calculation processing). More specifically, the co-occurrence relationship evaluation unit 1031 calculates the environmental impact calculation formula: Aj (1-exp ( ⁇ Bj (t qi ⁇ t i )) and the cause impact calculation formula: (Fj) for the common event occurrence target ID. exp ( ⁇ Gj (t qi -t ki )) is combined to generate the inequality of the above equation 1, and this inequality is used as a constraint, and the result occurrence index Pi and the result occurrence index threshold h are used for the convergence of the coefficients.
  • the mathematical programming calculation unit 1032 performs arithmetic processing by mathematical programming.
  • the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj are obtained by the arithmetic processing by the mathematical programming method of the mathematical programming calculation unit 1032.
  • the result event candidate calculation unit 104 outputs a result event candidate that may occur due to the new cause event. More specifically, the result event candidate calculation unit 104 converts the values of the environmental impact coefficients Aj and Bj obtained in S103 into an environmental impact calculation formula: Aj (1-exp ( ⁇ Bj (t qi ⁇ t i )). Substituting the values of the cause influence coefficients Fj and Gj into the cause influence calculation formula: (Fj exp ( ⁇ Gj (t qi ⁇ t ki )).
  • environmental environmental impact time t i the environmental impact calculation formula of the event generation target a new cause event has occurred belongs: Aj (1-exp (-Bj (t qi -t i) ) And the cause event occurrence time t ki of the new cause event is substituted into the cause influence calculation formula: (Fj exp ( ⁇ Gj (t qi ⁇ t ki )).
  • a result occurrence index Pi for an event occurrence target ID in which a new cause event has occurred is calculated for each result type ID and for each time according to Equation 2 below.
  • s is a natural number ranging from 1 to (s_max)
  • (s_max) is a maximum natural number not exceeding ⁇ (t_max ⁇ t_now) ⁇ t_interval ⁇ . “Calculate by result type ID and time” corresponds to performing the process of FIG. 13 when the intermediate calculation result is stored in temp_Pi [et, s].
  • the result event candidate calculation unit 104 sets the calculated result occurrence index Pi to the corresponding result type ID. As a result, it is considered that the event occurs.
  • the result event candidate calculation unit 104 calculates the value of the result occurrence index Pi for all result type IDs, and outputs a list in which the result type IDs are arranged in descending order of the result occurrence index Pi as result event candidate information (FIG. 9). To do.
  • the calculation formula generation unit 102 generates a new result event after the coefficient value calculation unit 103 calculates the value of the environmental influence coefficient (Aj, Bj) and the value of the cause influence coefficient (Fj, Gj).
  • the environmental impact calculation formula and the cause impact calculation formula may be updated by reflecting the time of occurrence of a new result event.
  • the coefficient value calculation unit 103 sets the above-described constraint condition and objective function in the updated environmental effect calculation formula and the updated cause effect calculation formula by the calculation formula generation unit 102, and the constraint condition and the objective function are set.
  • a new environmental impact coefficient (Aj, Bj) value and cause influence coefficient (Fj, Gj) value are calculated from the updated environmental impact calculation formula and the updated causal impact calculation formula in which the function is set. To do.
  • FIG. 10 is a diagram schematically illustrating a cause event and a result event that occur with the passage of years for each event generation target.
  • FIG. 10 shows that the event generation target with event generation target ID: O1 (hereinafter referred to as event generation target O1) belongs to the environment with environment type ID: ET1 (hereinafter referred to as environment ET1).
  • a cause event with cause ID: C1 (hereinafter referred to as cause C1) occurs at time t k1 in the event occurrence target O1
  • a cause event with cause ID: C2 (hereinafter referred to as cause C2) occurs at time t k2. It shows that you are doing.
  • result R1 a result event of result ID: R1 (hereinafter referred to as result R1) has occurred in event generation target O1 at time tq1 .
  • the cause type ID of the cause C1 is CT1
  • the cause type ID of the cause C2 is CT2
  • the result type ID of the result R1 is RT1.
  • FIG. 10 shows that the event generation target of event generation target ID: O2 (hereinafter referred to as event generation target O2) belongs to the environment ET1.
  • a cause event of cause ID: C3 (hereinafter referred to as cause C3) occurs in event generation target O2 at time t k3, and a result event of result ID: R2 (hereinafter referred to as result R2) occurs at time t q2. It shows that you are doing.
  • the cause type ID of the cause C3 is CT1, and the result type ID of the result R2 is RT1.
  • FIG. 10 shows that the event generation target of event generation target ID: O3 (hereinafter referred to as event generation target O3) belongs to the environment of environment type ID: ET2. Further, it is indicated that a cause event of cause ID: C4 (hereinafter referred to as cause C4) is occurring in the event occurrence target O3 at time tk4 .
  • the cause type ID of the cause C4 is CT2.
  • FIG. 11 is a diagram schematically illustrating calculating the result occurrence index P1 from the following two types of influences ((1) and (2)) on the event generation target O1.
  • (1) Influence from the cause C1 and the cause C2 (2) Influence from the environment ET1 to which the event occurrence target O1 belongs
  • a graph 1101 in FIG. 11 schematically represents an attenuation curve of the influence from the cause C1.
  • a graph 1102 in FIG. 11 schematically represents an attenuation curve of the influence from the cause C2.
  • a graph 1103 in FIG. 11 schematically represents a saturation curve of the influence from the environment ET1.
  • a graph 1104 in FIG. 11 schematically represents a time transition of the result occurrence index P1, and is obtained by superimposing the graph 1101, the graph 1102, and the graph 1103.
  • the result occurrence index P1 is an aggregation result of the influence from the cause C1, the influence from the cause C2, and the influence from the environment ET1.
  • the value of the result occurrence index P1 is given by the following equation.
  • P1 (t) A 1 (1-exp ( ⁇ B 1 (t ⁇ t 1 ))) + F 1 exp ( ⁇ G 1 (t ⁇ t k1 )) + F 2 exp ( ⁇ G 2 (t ⁇ t k2 ) )
  • the values of F1, G1, F2, G2, A1, and B1 are undecided.
  • temporary values are assigned to F1, G1, F2, G2, A1, and B1 in FIG.
  • the graph 1101, the graph 1102, the graph 1103, and the graph 1104 are illustrated using the graph.
  • the result occurrence index threshold value h used in the evaluation in FIG. 12 is also shown for reference.
  • FIG. 12 shows the relationship between the value of the result occurrence index P1 and the result occurrence index threshold h when the result R1 occurs, and the value of the result occurrence index P2 and the result occurrence index threshold h when the result R2 occurs. It is a figure showing a relation typically.
  • a graph 1201 indicates the time transition of the result occurrence index P2, and is the same graph as the graph 1104 described in FIG.
  • the coefficient value calculation unit 103 sets the uncertain coefficients F1, G1, F2, G2, A1 so that h ⁇ Pi and the sum of the values of Pi ⁇ h (the sum of all event generation targets) is minimized.
  • B1 is obtained.
  • P1 A 1 (1-exp ( ⁇ B 1 (t q1 ⁇ t 1 ))) + F 1 exp ( ⁇ G 1 (t q1 ⁇ t k1 )) + F 2 exp ( ⁇ G 2 (t q1 ⁇ t k2 ) )
  • P2 A 1 (1-exp ( ⁇ B 1 (t q2 ⁇ t 2 ))) + F 1 exp ( ⁇ G 1 (t q2 ⁇ t k3 ))
  • the coefficient value calculation unit 103 performs h ⁇ P1, h ⁇ P2, and (P1 ⁇ h) + (P2 ⁇ h).
  • the coefficient value calculation unit 103 obtains the values of the coefficients F1, G1, F2, G2, A1, and B1 (t 1 , t q1 , t q2 , t k1 , t k2 , t k3 and h are known).
  • the event generation target O1 and the event generation target O2 have the same environment type and the same result type of the result event, and some of the cause events (C1, C3) The cause type is common.
  • the coefficient value calculation unit 103 has a plurality of The event generation target calculation formulas are integrated as described above to perform the calculation.
  • the coefficient value calculation unit 103 evaluates the date / time difference in terms of days.
  • P1 A 1 (1-exp ( ⁇ B 1 (t q1 ⁇ t 1 ))) + F 1 exp ( ⁇ G 1 (t q1 ⁇ t k1 )) + F 2 exp ( ⁇ G 2 (t q1 ⁇ t k2 ) )
  • the values of F1, F2, G1, and G2 are calculated.
  • the calculation results of A1, B1, F1, F2, G1, and G2 are as shown in FIGS.
  • the result event candidate calculation unit 104 uses the calculated values of the coefficients A1, B1, F1, F2, G1, and G2 to calculate the result occurrence index P3 for the new cause events C111 and C112 for the new event generation target O10. Find the formula.
  • the result event candidate calculation unit 104 obtains the mathematical expression of the result occurrence index P3 for each result type ID (here, only RT1 is described).
  • the result event candidate calculation unit 104 obtains t at which P3 (t) takes a maximum value.
  • the result event candidate calculation unit 104 sets an assumed period for determining that there is a possibility that a result event may occur because the value of the result occurrence index P3 exceeds the result occurrence index threshold value h.
  • the result event candidate information 500 includes the start date and time and the expected occurrence period start date and time and end date and time.
  • the range where P3 (t) exceeds the result occurrence index threshold value h is 45 ⁇ t ′ ⁇ 235, and the corresponding date is 2015/201716 to 2015/11/22.
  • the result event candidate information 500 shown in FIG. 9 is output.
  • the information processing apparatus 100 is based on the occurrence of a cause event, formulates the effect of decaying with time by the cause influence coefficient, and further determines the influence constantly received from the environment by the environment influence coefficient. Formulate. Then, the information processing apparatus 100 calculates each coefficient from the state where each coefficient is indefinite so that the ratio at which the result occurrence index exceeds the threshold when the result event occurs is maximized.
  • the cause influence coefficient means the strength of the relationship between the cause event and the result event
  • the environmental impact factor means the strength of the relationship between the environment and the result event.
  • the influence that decays with time from the cause event and the influence from the environment that always exists are quantified. be able to. For this reason, the occurrence probability of the result event can be evaluated in consideration of the influence from the cause event and the influence from the environment.
  • the information processing apparatus 100 is a computer.
  • the information processing apparatus 100 includes hardware such as a processor 901, an auxiliary storage device 902, a memory 903, a communication device 904, an input interface 905, and a display interface 906.
  • the processor 901 is connected to other hardware via the signal line 910, and controls these other hardware.
  • the input interface 905 is connected to the input device 907.
  • the display interface 906 is connected to the display 908.
  • the processor 901 is an IC (Integrated Circuit) that performs processing.
  • the processor 901 is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or a GPU (Graphics Processing Unit).
  • the auxiliary storage device 902 is, for example, a ROM (Read Only Memory), a flash memory, or an HDD (Hard Disk Drive).
  • the memory 903 is, for example, a RAM (Random Access Memory).
  • the information storage unit 101 illustrated in FIG. 1 is at least one of the auxiliary storage device 902 and the memory 903.
  • the communication device 904 includes a receiver 9041 that receives data and a transmitter 9042 that transmits data.
  • the communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
  • the input interface 905 is a port to which the cable 911 of the input device 907 is connected.
  • the input interface 905 is, for example, a USB (Universal Serial Bus) terminal.
  • the display interface 906 is a port to which the cable 912 of the display 908 is connected.
  • the display interface 906 is, for example, a USB terminal or an HDMI (registered trademark) (High Definition Multimedia Interface) terminal.
  • the input device 907 is, for example, a mouse, a keyboard, or a touch panel.
  • the display 908 is, for example, an LCD (Liquid Crystal Display).
  • the auxiliary storage device 902 includes a calculation formula generation unit 102, a coefficient value calculation unit 103, a result event candidate calculation unit 104 (hereinafter, a calculation formula generation unit 102, a coefficient value calculation unit 103, and a result event candidate calculation unit 104 shown in FIG. Are collectively stored as “parts”).
  • This program is loaded into the memory 903, read into the processor 901, and executed by the processor 901.
  • the auxiliary storage device 902 also stores an OS (Operating System). Then, at least a part of the OS is loaded into the memory 903, and the processor 901 executes a program that realizes the function of “unit” while executing the OS.
  • the information processing apparatus 100 may include a plurality of processors 901.
  • a plurality of processors 901 may execute a program for realizing the function of “unit” in cooperation with each other.
  • information, data, signal values, and variable values indicating the processing results of “unit” are stored in the memory 903, the auxiliary storage device 902, or a register or cache memory in the processor 901.
  • circuitry may be provided as “circuitry”. Further, “part” may be read as “circuit”, “process”, “procedure”, or “processing”. “Circuit” and “Circuitry” include not only the processor 901 but also other types of processing circuits such as a logic IC or GA (Gate Array) or ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array). It is a concept to include.
  • GA Gate Array
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • DESCRIPTION OF SYMBOLS 100 Information processing apparatus, 101 Information storage part, 102 Calculation formula production

Abstract

An information storage unit (101) stores event information in which are delineated a cause event occurrence time when a cause event has occurred to an event occurrence subject, a result event occurrence time when a result event has occurred to the event occurrence subject, and an environment impact time when an environment with which the event occurrence subject is associated has begun having an impact on the event occurrence subject. A computation formula generating unit (102) generates, using the result event occurrence time and the environment impact time, an environment impact computation formula for computing a value of an environment impact coefficient which is a saturation coefficient of the impact from the environment, and, using the cause event occurrence time and the result event occurrence time, generates a cause-impact computation formula for computing a value of a cause-impact coefficient which is an attenuation coefficient of the impact from the cause event. A coefficient value computation unit (103) sets a restriction condition and a target function to the environment impact computation formula and the cause-impact computation formula, and computes the value of the environment impact coefficient and the cause-impact coefficient from the environment impact computation formula and the cause-impact coefficient formula to which the restriction condition and the target function are set.

Description

情報処理装置及び情報処理方法及び情報処理プログラムInformation processing apparatus, information processing method, and information processing program
 本発明は、イベント間の因果関係を解析する技術に関する。 The present invention relates to a technique for analyzing a causal relationship between events.
 因果関係が想定されるイベントとして、原因イベントと結果イベントが与えられたとき、原因イベントが結果イベントの発生に与える影響を評価し、結果イベントの発生を予測することは、企業活動の分析などで重要な意味を持つ。
 例えば、原因イベントとして機器の変調、結果イベントとして機器の故障を考えるとき、事前の変調から、機器の故障が推定できるようであれば、予防的な対策を講じ、突発故障による損失を防ぐことができる。
 また、顧客に対するダイレクトメール送付を原因イベント、商品購買を結果イベントとして広告戦略を考える場合、適切な顧客にダイレクトメールを送付し、高い確率で商品購買へ繋げることが求められる。
 このため、様々なアプローチにて、原因イベントが結果イベントの発生に与える影響を定量的に評価する取り組みが行われている。
When a causal event and a result event are given as events that are assumed to have a causal relationship, evaluating the influence of the cause event on the occurrence of the result event and predicting the occurrence of the result event is an analysis of corporate activities, etc. Has an important meaning.
For example, when considering a device modulation as a cause event and a device failure as a result event, if a device failure can be estimated from a prior modulation, preventive measures can be taken to prevent losses due to sudden failures. it can.
In addition, when an advertising strategy is considered with direct mail transmission to a customer as a cause event and product purchase as a result event, it is required to send direct mail to an appropriate customer and lead to product purchase with high probability.
For this reason, various approaches are used to quantitatively evaluate the influence of the cause event on the occurrence of the result event.
 特許文献1では、原因イベントと、原因イベントにより派生して発生する隠れたイベントの影響を算出し、結果イベントの発生を予測する方式が開示されている。
 特許文献2では、発生したイベントを蓄積しておき、蓄積したイベントから、時間的変化を含む時系列データと、順番の情報であるシーケンスとを抽出し、時間的重要度を考慮して、事例の類似度を計算する方式が開示されている。
Patent Document 1 discloses a method for calculating the influence of a cause event and a hidden event derived from the cause event and predicting the occurrence of a result event.
In Patent Document 2, an event that has occurred is accumulated, time-series data including temporal changes and a sequence that is order information are extracted from the accumulated event, taking into account temporal importance, A method for calculating the degree of similarity is disclosed.
特許第5413240号公報Japanese Patent No. 5413240 特開2002-207755号公報JP 2002-207755 A
 特許文献1及び特許文献2の方式は、原因イベントからの影響が時間的に変動することを考慮して、結果イベントの発生を予測している。
 しかし、実際には、結果イベントの発生には、原因イベントの他に、環境から常時及ぼされる影響が寄与することが想定される。
 例えば、保守サービス業務では、保守員に対する教育を原因イベントとみなし、保守員の保守業務の技術力の向上を結果イベントとみなして、教育と教育が及ぼす技術力向上への影響を評価することが行われる。
 しかし、保守業務の技術力は、一時的に発生する教育のみからでなく、日頃の保守業務活動を通して徐々に向上することも考慮に入れるべきである。
 また、その向上の度合いは、保守対象などの環境によって大きく変動する。
In the methods of Patent Document 1 and Patent Document 2, the occurrence of a result event is predicted in consideration of the temporal variation of the influence from the cause event.
However, in actuality, it is assumed that the influence that is constantly exerted from the environment contributes to the occurrence of the result event in addition to the cause event.
For example, in maintenance service operations, the education of maintenance personnel is regarded as a cause event, and the improvement of the maintenance staff's technical capabilities is regarded as a result event, and the impact of education and education on the improvement of technical capabilities can be evaluated. Done.
However, it should be taken into consideration that the technical skills of maintenance work will gradually improve not only through temporary training but also through daily maintenance work activities.
The degree of improvement varies greatly depending on the environment such as the maintenance target.
 一時的に発生する複数の原因イベントからの、時間とともに変化(減衰)する影響と、常時存在する環境から受ける影響の2種類を同時に考慮し、結果イベントの発生確率を評価する方式については、各々の原因イベントからの影響モデルが多岐に渡り、全ての原因イベントを適切にモデル設定することが困難であるため、効率的な方法が提案されてこなかった。 For each method of evaluating the occurrence probability of a result event by simultaneously considering two types of effects that change (decay) over time from multiple cause events that occur temporarily and effects that are received from an environment that always exists, Since there are a variety of influence models from cause events, it is difficult to properly model all the cause events, so an efficient method has not been proposed.
 本発明は、このような事情に鑑みたものであり、原因イベントからの、時間とともに減衰する影響と、常時存在する環境からの影響とを数値化することを主な目的とする。 The present invention has been made in view of such circumstances, and has as its main object to quantify the influence of a cause event that decays with time and the influence of an environment that always exists.
 本発明に係る情報処理装置は、
 イベント発生対象に原因イベントが発生した時刻である原因イベント発生時刻と、前記イベント発生対象に結果イベントが発生した時刻である結果イベント発生時刻と、前記イベント発生対象が属する環境が前記イベント発生対象に影響を与え始めた時刻である環境影響時刻とが記述されるイベント情報を記憶する情報記憶部と、
 前記環境からの影響である環境影響の飽和係数である環境影響係数の値を算出すための算出式である環境影響算出式を、前記結果イベント発生時刻と前記環境影響時刻とを用いて生成し、前記原因イベントからの影響である原因影響の減衰係数である原因影響係数の値を算出すための算出式である原因影響算出式を、前記原因イベント発生時刻と前記結果イベント発生時刻とを用いて生成する算出式生成部と、
 前記環境影響算出式と前記原因影響算出式とに制約条件と目的関数とを設定し、前記制約条件と前記目的関数とが設定された前記環境影響算出式と前記原因影響算出式とから、前記環境影響係数の値と前記原因影響係数の値とを算出する係数値算出部とを有する。
An information processing apparatus according to the present invention includes:
The cause event occurrence time that is the time when the cause event occurred in the event occurrence target, the result event occurrence time that is the time when the result event occurred in the event occurrence target, and the environment to which the event occurrence target belongs is the event occurrence target. An information storage unit for storing event information in which an environmental impact time that is a time at which an influence starts is described;
An environmental impact calculation formula that is a calculation formula for calculating a value of an environmental impact coefficient that is a saturation coefficient of an environmental impact that is an impact from the environment is generated using the result event occurrence time and the environmental impact time. , Using the cause event occurrence time and the result event occurrence time as a cause effect calculation formula that is a calculation formula for calculating a value of a cause influence coefficient that is an attenuation coefficient of a cause influence that is an influence from the cause event A calculation formula generation unit for generating
A constraint condition and an objective function are set in the environmental impact calculation formula and the cause impact calculation formula, and the environmental impact calculation formula and the cause impact calculation formula in which the constraint condition and the objective function are set, A coefficient value calculating unit for calculating the value of the environmental influence coefficient and the value of the cause influence coefficient;
 本発明によれば、原因イベントからの影響である原因影響の減衰係数である原因影響係数の値と、環境からの影響である環境影響の飽和係数である環境影響係数の値とを算出するため、原因イベントからの、時間とともに減衰する影響と、常時存在する環境からの影響とを数値化することができる。 According to the present invention, the value of the cause influence coefficient that is the attenuation coefficient of the cause influence that is the influence from the cause event and the value of the environment influence coefficient that is the saturation coefficient of the environment influence that is the influence from the environment are calculated. It is possible to quantify the influence of the cause event that decays with time and the influence from the environment that always exists.
実施の形態1に係る情報処理装置の機能モジュール構成例を示す図。FIG. 3 is a diagram illustrating a functional module configuration example of the information processing apparatus according to the first embodiment. 実施の形態1に係る情報処理装置の動作例を示すフローチャート図。FIG. 3 is a flowchart showing an operation example of the information processing apparatus according to the first embodiment. 実施の形態1に係る原因イベント情報の例を示す図。FIG. 6 is a diagram illustrating an example of cause event information according to the first embodiment. 実施の形態1に係る結果イベント情報の例を示す図。FIG. 6 is a diagram showing an example of result event information according to the first embodiment. 実施の形態1に係る環境情報の例を示す図。FIG. 4 is a diagram illustrating an example of environment information according to the first embodiment. 実施の形態1に係る原因影響係数情報の例を示す図。FIG. 6 is a diagram illustrating an example of cause influence coefficient information according to the first embodiment. 実施の形態1に係る環境影響係数情報の例を示す図。FIG. 4 is a diagram showing an example of environmental impact coefficient information according to the first embodiment. 実施の形態1に係る新規原因イベント情報の例を示す図。FIG. 6 is a diagram showing an example of new cause event information according to the first embodiment. 実施の形態1に係る結果イベント候補情報の例を示す図。FIG. 6 is a diagram showing an example of result event candidate information according to the first embodiment. 実施の形態1に係る原因イベント、結果イベント、環境の関係を示す図。The figure which shows the relationship of the cause event which concerns on Embodiment 1, a result event, and an environment. 実施の形態1に係る結果発生指標の算出例を示す図。FIG. 6 is a diagram illustrating a calculation example of a result occurrence index according to the first embodiment. 実施の形態1に係る結果発生指標の結果イベント発生時の値の例を示す図。The figure which shows the example of the value at the time of the result event generation | occurrence | production of the result generation | occurrence | production index which concerns on Embodiment 1. FIG. 実施の形態1に係る結果イベント候補算出部の処理に対応するプログラムコード例を示す図。FIG. 6 is a diagram illustrating an example of program code corresponding to processing of a result event candidate calculation unit according to the first embodiment. 実施の形態1に係る情報処理装置のハードウェア構成例を示す図。FIG. 3 is a diagram illustrating a hardware configuration example of the information processing apparatus according to the first embodiment.
 実施の形態1.
 本実施の形態では、一時的に発生する原因イベントからの、時間とともに減衰する影響と、常時存在する環境から受ける影響の2種類を同じ尺度にて同時に考慮し、結果イベントの発生の度合いを推定する構成を説明する。
Embodiment 1 FIG.
In the present embodiment, the degree of occurrence of a result event is estimated by simultaneously considering, on the same scale, two types of effects, which are attenuating over time from a cause event that occurs temporarily and an effect received from an environment that always exists. The structure to perform is demonstrated.
***構成の説明***
 図1は、本実施の形態に係る情報処理装置100の機能モジュール構成例を示す。
 情報処理装置100の構成要素の詳細を説明する前に、情報処理装置100の動作原理を説明する。
*** Explanation of configuration ***
FIG. 1 shows a functional module configuration example of the information processing apparatus 100 according to the present embodiment.
Before describing the details of the components of the information processing apparatus 100, the operation principle of the information processing apparatus 100 will be described.
 情報処理装置100は、イベント相関推定の定式化を行うことで、原因イベントおよび環境からの結果イベントへの影響の相関推定を行う。
 本実施の形態の情報処理装置100は、原因イベント{Ci}と、結果イベント{Ri}と、イベント発生対象(物、人){Oi}とを対応付けて管理している。
 原因イベントは、例えば、機器の変調であり、結果イベントは、機器の故障であり、イベント発生対象は機器である。
 また、本実施の形態では、原因イベント{Ci}および結果イベント{Ri}が、イベント発生対象(物、人){Oi}ごとの時間軸上に存在するものとする。
 原因イベント、結果イベントは、ともにいくつかの種類に分類でき、イベント発生対象は、いくつかの種類の環境{Ei}に属するものとする(図10)。
The information processing apparatus 100 formulates event correlation estimation, thereby estimating the correlation between the cause event and the influence on the result event from the environment.
The information processing apparatus 100 according to the present embodiment manages the cause event {Ci}, the result event {Ri}, and the event occurrence target (thing, person) {Oi} in association with each other.
The cause event is, for example, modulation of the device, the result event is failure of the device, and the event generation target is the device.
In the present embodiment, it is assumed that the cause event {Ci} and the result event {Ri} exist on the time axis for each event generation target (thing, person) {Oi}.
Both the cause event and the result event can be classified into several types, and the event occurrence target is assumed to belong to several types of environments {Ei} (FIG. 10).
 イベント発生対象Oiには、基準とする時刻tが存在するものとする。
 環境からの影響(以下、環境からの影響を「環境影響」ともいう)は、基準時刻から累積すると同時に飽和していく。
 つまり、環境は時刻tからイベント発生対象Oiに影響を与え始める(以下、時刻tを環境影響時刻ともいう)。
 環境影響は、Aj(1-exp(-Bj(tqi-t))で与えられるものとする。
 時刻tqiは、結果イベントが発生した時刻(以下、時刻tqiを結果イベント発生時刻ともいう)である。
 変数Ajは、飽和した環境影響の強さとして、環境影響の最大量(もしくは、最大量に限定せず、ある経過時間を経た時点における影響の量)を示す変数である。
 このように、変数Ajは、環境影響の強さの基準値の係数であり、環境影響基準係数ともいう。
 変数Bjは、飽和する影響の増加速度を示す変数である。
 このように、変数Bjは、環境影響の強さが飽和する速度の係数であり、環境影響飽和速度係数ともいう。
 また、変数Aj及び変数Bjは、ともに環境影響の飽和係数であり、両者を合わせて環境影響係数ともいう。
 そして、上記のAj(1-exp(-Bj(tqi-t))は、環境影響係数(変数Aj、変数Bj)の値を算出するための算出式(飽和関数)であり、環境影響算出式という。
 なお、変数Aj及び変数Bjは、環境の種類及び結果イベントの種類の組合せごとに定まる。
The event generation target Oi, it is assumed that the time t i as a reference exists.
Environmental impacts (hereinafter, environmental impacts are also referred to as “environmental impacts”) accumulate from the reference time and become saturated at the same time.
That is, the environment begins to affect the event occurrence target Oi from time t i (hereinafter, time t i is also referred to as environment influence time).
It is assumed that the environmental impact is given by Aj (1-exp (−Bj (t qi −t i )).
The time t qi is the time when the result event occurs (hereinafter, the time t qi is also referred to as the result event occurrence time).
The variable Aj is a variable indicating the maximum amount of environmental influence (or the amount of influence at the time when a certain elapsed time has passed without being limited to the maximum amount) as the intensity of the saturated environmental influence.
As described above, the variable Aj is a coefficient of a reference value for the strength of environmental impact, and is also referred to as an environmental impact reference coefficient.
The variable Bj is a variable indicating the increasing speed of the saturation effect.
Thus, the variable Bj is a coefficient of speed at which the strength of the environmental influence is saturated, and is also referred to as an environmental influence saturation speed coefficient.
The variables Aj and Bj are both environmental impact saturation coefficients, and are collectively referred to as environmental impact coefficients.
The above Aj (1-exp (−Bj (t qi −t i )) is a calculation formula (saturation function) for calculating the value of the environmental influence coefficient (variable Aj, variable Bj). This is called a calculation formula.
Note that the variable Aj and the variable Bj are determined for each combination of environment type and result event type.
 原因イベントからの影響(以下、原因イベントからの影響を「原因影響」ともいう)は、時間とともに減衰するものとする。
 例えば、原因イベントが発生した原因イベント発生時刻をtkiとしたとき、原因影響は、Fj exp(-Gj(tqi-tki))の比率で減少するものとする。
 変数Fjは、原因影響が減衰する前の原因影響の強さとして、原因影響の最大量(もしくは、最大量に限定せず、ある経過時間を経た時点における原因影響の量)を示す変数である。
 このように、変数Fjは、原因影響の強さの基準値の係数であり、原因影響基準係数ともいう。
 変数Gjは、原因影響の減衰時の減少速度を示す変数である。
 このように、変数Gjは、原因影響の強さが減衰する速度の係数であり、原因影響減衰速度係数ともいう。
 また、変数Fj及び変数Gjは、ともに原因影響の減衰係数であり、両者を合わせて原因影響係数という。
 そして、上記のFj exp(-Gj(tqi-tki))は、原因影響係数(変数Fj、変数Gj)の値を算出するための算出式(収束関数)であり、原因影響算出式という。
 なお、変数Fj及び変数Gjは、原因イベントの種類、結果イベントの種類及びイベント発生対象の所属環境の種類の組合せごとに定まる。
It is assumed that the influence from the cause event (hereinafter, the influence from the cause event is also referred to as “cause influence”) attenuates with time.
For example, when the cause event occurrence time at which the cause event occurs is t ki , the cause influence is assumed to decrease at a ratio of Fj exp (−Gj (t qi −t ki )).
The variable Fj is a variable that indicates the maximum amount of the cause effect (or the amount of the cause effect at a certain point of time without being limited to the maximum amount) as the strength of the cause effect before the cause effect is attenuated. .
Thus, the variable Fj is a coefficient of the reference value for the strength of the cause influence, and is also referred to as a cause influence reference coefficient.
The variable Gj is a variable indicating the rate of decrease when the cause influence is attenuated.
As described above, the variable Gj is a coefficient of speed at which the strength of the cause influence is attenuated, and is also referred to as a cause influence attenuation speed coefficient.
The variables Fj and Gj are both cause-effect attenuation coefficients, and are collectively referred to as cause-effect coefficients.
The above Fj exp (−Gj (t qi -t ki )) is a calculation formula (convergence function) for calculating the value of the cause influence coefficient (variable Fj, variable Gj), and is called the cause influence calculation formula. .
The variable Fj and the variable Gj are determined for each combination of the cause event type, the result event type, and the type of environment to which the event occurs.
 原因影響の減衰を指数関数にてモデル化する例として、例えば学習した内容の忘却に関する「エビングハウスの忘却曲線」と呼ばれる曲線がある。
 学習後に忘却が進行する(学習の影響が減衰する)度合いを示すこの曲線も指数関数にて近似される。
 参考文献:仁木ら「シナプスの長期記憶を表現する学習神経モデル―H・ニューロンによる記憶・学習・自己組織化の表現と解析―」,電子情報通信学会論文誌 A,Vol.J64-A,No.11,pp.948-955
As an example of modeling the decay of the causal influence by an exponential function, for example, there is a curve called “Ebinghouse forgetting curve” related to forgetting of the learned content.
This curve indicating the degree to which forgetting progresses after learning (the influence of learning attenuates) is also approximated by an exponential function.
References: Niki et al. “Learning neural model expressing long-term memory at synapses: Representation and analysis of memory / learning / self-organization by H / neurons”, IEICE Transactions A, Vol. J64-A, no. 11, pp. 948-955
 あるイベント発生対象の結果発生指標Piは、そのイベント発生対象が受けた過去の原因イベントおよび環境からの影響の累積で定まるものとする。
 結果発生指標Piは、結果イベントの発生確率である。
 結果イベントが発生している時点で、結果発生指標Piは、別途設定される結果発生指標閾値hを超過しているものとする。
 結果イベントが発生する時刻tqiにおける定式化した値に注目すると、次のような不等式が得られる。
 h≦Pi=Aj(1-exp(-Bj(tqi-t))+Σ(Fj exp(-Gj(tqi-tki)))     式1
It is assumed that a result occurrence index Pi of an event occurrence target is determined by accumulation of past cause events received by the event occurrence target and influences from the environment.
The result occurrence index Pi is the occurrence probability of the result event.
It is assumed that the result occurrence index Pi exceeds the separately set result occurrence index threshold value h at the time when the result event occurs.
When attention is paid to the formulated value at the time t qi when the result event occurs, the following inequality is obtained.
h ≦ Pi = Aj (1−exp (−Bj (t qi −t i )) + Σ (Fj exp (−Gj (t qi −t ki )))
 式1において、tqiの値、tの値、tkiの値は既知であり、変数Aj、Bj、Fj、Gjが未知数である。
 式1は結果イベントごとに得られるため、情報処理装置100は、結果イベントごとの式1を用いて連立不等式を生成する。
 そして、情報処理装置100は、Pi-hの値(閾値差分)の総和が最小になるように数理計画法を用いて、環境影響係数Aj及びBjと原因影響係数Fj及びGjを求める。
 数理計画法を解く方式として、準ニュートン法を用いる方式などがある。
 参考文献:山下「準ニュートン法の研究とその展望」,オペレーションズ・リサーチ:経営の科学 55(4),243-247,2010.
In Equation 1, the values of t qi , t i , and t ki are known, and variables Aj, Bj, Fj, and Gj are unknowns.
Since Expression 1 is obtained for each result event, the information processing apparatus 100 generates simultaneous inequalities using Expression 1 for each result event.
Then, the information processing apparatus 100 obtains the environmental influence coefficients Aj and Bj and the cause influence coefficients Fj and Gj using mathematical programming so that the sum of Pi-h values (threshold difference) is minimized.
As a method for solving mathematical programming, there is a method using a quasi-Newton method.
References: Yamashita “Research and Prospects of Quasi-Newton Method”, Operations Research: Management Science 55 (4), 243-247, 2010.
 そして、情報処理装置100は、算出された環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値を上記の式1に適用し、新規原因イベントに対して、結果イベントの発生候補とその結果発生指標Piを算出する。 Then, the information processing apparatus 100 applies the calculated values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj to the above-described equation 1, and determines the result event occurrence candidate for the new cause event. As a result, the occurrence index Pi is calculated.
 次に、本実施の形態に係る情報処理装置100の機能モジュール構成を説明する。
 情報処理装置100は、情報記憶部101、算出式生成部102、係数値算出部103及び結果イベント候補算出部104で構成される。
Next, the functional module configuration of the information processing apparatus 100 according to the present embodiment will be described.
The information processing apparatus 100 includes an information storage unit 101, a calculation formula generation unit 102, a coefficient value calculation unit 103, and a result event candidate calculation unit 104.
 情報記憶部101は、情報を記憶する記憶領域である。
 情報記憶部101は、原因イベントDB(Database)1011、結果イベントDB1012、環境情報DB1013、新規原因イベントDB1014で構成される。
 原因イベントDB1011は、図3に例示する原因イベント情報を記憶する。
 原因イベント情報には、イベント発生対象に原因イベントが発生した時刻である原因イベント発生時刻tkiが記述される。
 原因イベント情報の詳細は、後述する。
 結果イベントDB1012は、図4に例示する結果イベント情報を記憶する。
 結果イベント情報には、イベント発生対象に結果イベントが発生した時刻である結果イベント発生時刻tqiが記述される。
 結果イベント情報の詳細は、後述する。
 環境情報DB1013は、図5に例示する環境情報を記憶する。
 環境情報には、イベント発生対象が属する環境がイベント発生対象に影響を与え始めた時刻である環境影響時刻tが記述される。
 環境情報の詳細は、後述する。
 また、原因イベント情報、結果イベント情報、環境情報は、まとめてイベント情報ともいう。
 新規原因イベントDB1014は、図8に例示する新規原因イベント情報を記憶する。
 新規原因イベント情報には、後述する係数値算出部103により環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値とが算出された後に発生した新たな原因イベントが記述される。
 新規原因イベント情報の詳細は後述する。
The information storage unit 101 is a storage area for storing information.
The information storage unit 101 includes a cause event DB (Database) 1011, a result event DB 1012, an environment information DB 1013, and a new cause event DB 1014.
The cause event DB 1011 stores cause event information illustrated in FIG.
In the cause event information, a cause event occurrence time t ki that is a time when the cause event has occurred in the event occurrence target is described.
Details of the cause event information will be described later.
The result event DB 1012 stores result event information illustrated in FIG.
In the result event information, a result event occurrence time t qi that is a time at which a result event has occurred in the event occurrence target is described.
Details of the result event information will be described later.
The environment information DB 1013 stores the environment information illustrated in FIG.
The environment information describes an environment influence time t i that is a time when the environment to which the event occurrence target belongs starts to affect the event occurrence target.
Details of the environmental information will be described later.
The cause event information, result event information, and environment information are also collectively referred to as event information.
The new cause event DB 1014 stores new cause event information illustrated in FIG.
In the new cause event information, a new cause event that has occurred after the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj are calculated by a coefficient value calculation unit 103 described later is described.
Details of the new cause event information will be described later.
 算出式生成部102は、多項式関数と指数関数の組合せである環境影響算出式:Aj(1-exp(-Bj(tqi-t))と原因影響算出式:(Fj exp(-Gj(tqi-tki))とを、原因イベント発生時刻tkiと結果イベント発生時刻tqiと環境影響時刻tを用いて生成する。
 より具体的には、算出式生成部102は、環境影響定式化部1021と原因影響定式化部1022から構成され、環境影響定式化部1021が環境影響算出式:Aj(1-exp(-Bj(tqi-t))を生成し、原因影響定式化部1022が原因影響算出式:(Fj exp(-Gj(tqi-tki))を生成する。
The calculation formula generation unit 102 is an environmental impact calculation formula: Aj (1-exp (−Bj (t qi −t i )), which is a combination of a polynomial function and an exponential function, and a cause influence calculation formula: (Fj exp (−Gj ( t qi -t ki )) is generated using the cause event occurrence time t ki , the result event occurrence time t qi, and the environmental impact time t i .
More specifically, the calculation formula generation unit 102 includes an environmental impact formulation unit 1021 and a cause impact formulation unit 1022, and the environmental impact formulation unit 1021 has an environmental impact calculation formula: Aj (1-exp (−Bj (T qi -t i )) is generated, and the cause / effect formulation unit 1022 generates a cause / effect calculation formula: (Fj exp (-Gj (t qi -t ki )).
 係数値算出部103は、環境影響算出式と原因影響算出式とに制約条件と目的関数とを設定する。
 また、係数値算出部103は、制約条件と目的関数とが設定された環境影響算出式と原因影響算出式とから、環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値とを算出する。
 係数値算出部103は、数理計画法により、目的関数を最小化する、環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値とを算出する。
 制約条件とは、式1におけるh≦Piである。
 つまり、係数値算出部103は、環境影響算出式と原因影響算出式とに制約条件を設定して、式1の不等式を生成する。
 また、目的関数とは、Pi-hの値(閾値差分)の総和である。
 つまり、係数値算出部103は、目的関数であるPi-hの値(閾値差分)の総和を最小化する。
 係数値算出部103は、共起関係評価部1031及び数理計画法算出部1032で構成され、共起関係評価部1031が式1の不等式を生成し、目的関数を設定し、数理計画法算出部1032が数理計画法の演算を行う。
 なお、係数値算出部103により算出された環境影響係数Aj及びBjの値は、原因影響係数情報300として結果イベント候補算出部104に出力され、係数値算出部103により算出された原因影響係数Fj及びGjの値は、環境影響係数情報400として結果イベント候補算出部104に出力される。
The coefficient value calculation unit 103 sets a constraint condition and an objective function in the environmental influence calculation formula and the cause influence calculation formula.
Further, the coefficient value calculation unit 103 calculates the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj from the environmental influence calculation formula and the cause influence calculation formula in which the constraint condition and the objective function are set. calculate.
The coefficient value calculation unit 103 calculates the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj that minimize the objective function by mathematical programming.
The constraint condition is h ≦ Pi in Equation 1.
That is, the coefficient value calculation unit 103 sets a constraint condition for the environmental impact calculation formula and the cause impact calculation formula, and generates an inequality of Formula 1.
The objective function is the sum of Pi−h values (threshold difference).
That is, the coefficient value calculation unit 103 minimizes the total sum of Pi-h values (threshold difference) as the objective function.
The coefficient value calculation unit 103 includes a co-occurrence relationship evaluation unit 1031 and a mathematical programming calculation unit 1032. The co-occurrence relationship evaluation unit 1031 generates an inequality of Equation 1, sets an objective function, and a mathematical programming calculation unit. 1032 performs mathematical programming operations.
The values of the environmental influence coefficients Aj and Bj calculated by the coefficient value calculation unit 103 are output to the result event candidate calculation unit 104 as the cause influence coefficient information 300, and the cause influence coefficient Fj calculated by the coefficient value calculation unit 103 is output. And Gj are output to the result event candidate calculation unit 104 as the environmental impact coefficient information 400.
 結果イベント候補算出部104は、係数値算出部103により環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値とが算出された後に新たな原因イベントが発生した場合に、環境影響係数Aj及びBjの値を環境影響算出式に適用し、原因影響係数Fj及びGjの値を原因影響算出式に適用して、新たな原因イベントにより発生する可能性のある結果イベント候補を特定する。
 また、結果イベント候補算出部104は、結果イベント候補の結果発生指標Pi(発生確率)を算出する。
 複数の結果イベント候補が存在する場合は、結果イベント候補算出部104は、結果イベント候補ごとに結果発生指標Piを算出し、算出された結果発生指標Piが高い順に複数の結果イベント候補を順位付ける。
 また、結果イベント候補算出部104は、結果イベント候補が発生する時期を予測する。
 そして、結果イベント候補算出部104は、結果イベント候補のリスト、結果イベント候補が発生する時期が示される結果イベント候補情報500を出力する。
The result event candidate calculation unit 104 determines the environmental effect coefficient when a new cause event occurs after the coefficient value calculation unit 103 calculates the values of the environmental influence coefficients Aj and Bj and the cause influence coefficients Fj and Gj. The values of Aj and Bj are applied to the environmental influence calculation formula, and the values of the cause influence coefficients Fj and Gj are applied to the cause influence calculation formula to identify result event candidates that may occur due to a new cause event.
Further, the result event candidate calculation unit 104 calculates a result occurrence index Pi (occurrence probability) of the result event candidate.
When there are a plurality of result event candidates, the result event candidate calculation unit 104 calculates a result occurrence index Pi for each result event candidate, and ranks the plurality of result event candidates in descending order of the calculated result occurrence index Pi. .
In addition, the result event candidate calculation unit 104 predicts the time when the result event candidate occurs.
Then, the result event candidate calculation unit 104 outputs result event candidate information 500 indicating a list of result event candidates and a time when the result event candidate occurs.
 次に、図3の原因イベント情報を説明する。
 図3において、原因IDは、発生した原因イベントのID(Identifier)である。
 原因IDは、Ci(i=1、2、3・・・)と表記する。
 Cは、Causeの略である。
 原因種類IDは、原因イベントの種類のIDである。
 なお、原因種類IDは、CTi(i=1、2、3・・・)と表記する。
 CTは、Cause Typeの略である。
 発生日時は、原因イベント発生時刻tkiである。
 イベント発生対象IDは、原因イベントが発生したイベント発生対象のIDである。
 イベント発生対象IDは、Oi(i=1、2、3・・・)と表記する。
 Oは、Objectの略である。
Next, the cause event information of FIG. 3 will be described.
In FIG. 3, the cause ID is an ID (Identifier) of the cause event that has occurred.
The cause ID is expressed as Ci (i = 1, 2, 3,...).
C is an abbreviation for Cause.
The cause type ID is an ID of a cause event type.
The cause type ID is expressed as CTi (i = 1, 2, 3,...).
CT is an abbreviation for Cause Type.
The occurrence date and time is the cause event occurrence time t ki .
The event generation target ID is an ID of the event generation target in which the cause event has occurred.
The event occurrence target ID is expressed as Oi (i = 1, 2, 3,...).
O is an abbreviation for Object.
 次に、図4の原因イベント情報を説明する。
 結果IDは、発生した結果イベントのIDである。
 結果IDは、Ri(i=1、2、3・・・)と表記する。
 Rは、Resultの略である。
 結果種類IDは、結果イベントの種類のIDである。
 結果種類IDは、RTi(i=1、2、3・・・)と表記する。
 RTは、Result Typeの略である。
 発生日時は、結果イベント発生時刻tqiである。
 イベント発生対象IDは、結果イベントが発生したイベント発生対象のIDである。
Next, the cause event information of FIG. 4 will be described.
The result ID is an ID of a result event that has occurred.
The result ID is expressed as Ri (i = 1, 2, 3,...).
R is an abbreviation for Result.
The result type ID is a result event type ID.
The result type ID is expressed as RTi (i = 1, 2, 3,...).
RT is an abbreviation for Result Type.
The occurrence date and time is the result event occurrence time t qi .
The event generation target ID is an ID of the event generation target where the result event has occurred.
 次に、図5の環境情報を説明する。
 イベント発生対象IDは、結果イベントが発生したイベント発生対象のIDである。
 環境種類IDは、結果イベントが発生したイベント発生対象が属する環境の種類のIDである。
 環境IDは、ETi(i=1、2、3・・・)と表記する。
 ETは、Environment Typeの略である。
 基準日時は、環境影響時刻tである。
 基準日時は、イベント発生対象ごとに設定される。
Next, the environment information in FIG. 5 will be described.
The event generation target ID is an ID of the event generation target where the result event has occurred.
The environment type ID is an ID of the type of environment to which the event generation target in which the result event has occurred belongs.
The environment ID is expressed as ETi (i = 1, 2, 3,...).
ET is an abbreviation for Environment Type.
The reference date and time, is an environmental impact time t i.
The reference date and time is set for each event occurrence target.
 次に、図8の新規原因イベント情報を説明する。
 原因IDは、環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値とが算出された後に発生した原因イベントのIDである。
 原因種類ID、発生日時、イベント発生対象IDの意味は、図3に示したものと同じである。
Next, the new cause event information of FIG. 8 will be described.
The cause ID is an ID of a cause event that occurs after the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj are calculated.
The meanings of the cause type ID, the occurrence date and time, and the event occurrence target ID are the same as those shown in FIG.
 次に、原因影響係数情報300の例を図6に示す。
 変数Fjは、原因影響基準係数である。
 変数Gjは、原因影響減衰速度係数である。
 原因種類IDは、図3に示したものと同じである。
 結果種類IDは、図4に示したものと同じである。
 環境種類IDは、図5に示したものと同じである。
Next, an example of the cause influence coefficient information 300 is shown in FIG.
The variable Fj is a cause influence reference coefficient.
The variable Gj is a cause influence attenuation rate coefficient.
The cause type ID is the same as that shown in FIG.
The result type ID is the same as that shown in FIG.
The environment type ID is the same as that shown in FIG.
 次に、環境影響係数情報400の例を図7に示す。
 変数Ajは、環境影響基準係数である。
 変数Bjは、環境影響飽和速度係数である。
 環境種類IDは、図5に示したものと同じである。
 結果種類IDは、図4に示したものと同じである。
Next, an example of the environmental impact coefficient information 400 is shown in FIG.
The variable Aj is an environmental impact standard coefficient.
The variable Bj is an environmental influence saturation speed coefficient.
The environment type ID is the same as that shown in FIG.
The result type ID is the same as that shown in FIG.
 次に、結果イベント候補情報500の例を図9に示す。
 結果候補番号は、結果イベント候補を識別するための番号である。
 結果発生指標は、結果イベントの発生しやすさを数値換算した指標である。
 結果発生指標は、値が大きいほど、結果イベントが発生しやすい。
 結果発生想定期間開始日時は、結果発生想定期間が開始する日時である。
 結果発生想定期間終了日時は、結果発生想定期間が終了する日時である。
 結果発生想定期間は、結果イベント候補算出部104が、結果発生指標Piの値が結果発生指標閾値hを超え、結果イベントが発生する可能性があると想定する期間である。
Next, an example of the result event candidate information 500 is shown in FIG.
The result candidate number is a number for identifying a result event candidate.
The result occurrence index is an index obtained by numerically converting the likelihood of occurrence of a result event.
As the result occurrence index is larger, a result event is more likely to occur.
The expected result occurrence period start date and time is the date and time when the expected result occurrence period starts.
The expected result occurrence period end date and time is the date and time when the expected result occurrence period ends.
The expected result occurrence period is a period in which the result event candidate calculation unit 104 assumes that the value of the result occurrence index Pi exceeds the result occurrence index threshold value h and that a result event may occur.
***動作の説明***
 本実施の形態に係る情報処理装置100は、原因イベントの発生を基点として、原因影響係数によって時間とともに減衰する影響を定式化するとともに、環境の種類に応じて常時受ける影響を、環境影響係数によって定まるよう定式化する。
 原因影響係数及び環境影響係数が不定である状態から、情報処理装置100は、結果イベントが発生した時点での結果イベントの発生確率が閾値を超えている比率が最大となるよう、原因影響係数及び環境影響係数を算出する。
 原因影響係数が原因イベントと結果イベントとの関連性の強度を示し、環境影響係数が環境と結果イベントとの関連性の強度を示す。
*** Explanation of operation ***
The information processing apparatus 100 according to the present embodiment formulates the influence that decays with time according to the cause influence coefficient, based on the occurrence of the cause event, and the influence that is always affected according to the type of environment by the environment influence coefficient. Formulate to settle.
From the state in which the cause influence coefficient and the environmental influence coefficient are indefinite, the information processing apparatus 100 causes the cause influence coefficient and the cause influence coefficient to increase so that the ratio at which the occurrence probability of the result event exceeds the threshold when the result event occurs is maximized. Calculate the environmental impact factor.
The cause influence coefficient indicates the strength of the relationship between the cause event and the result event, and the environmental impact coefficient indicates the strength of the relationship between the environment and the result event.
 図2は、本実施の形態に係る情報処理装置100の動作例を示す。
 以下、図2を参照して、本実施の形態に係る情報処理装置100の動作例を説明する。
 図2に示す手順は、本願の情報処理方法及び情報処理プログラムの例に相当する。
FIG. 2 shows an operation example of the information processing apparatus 100 according to the present embodiment.
Hereinafter, an operation example of the information processing apparatus 100 according to the present embodiment will be described with reference to FIG.
The procedure shown in FIG. 2 corresponds to an example of the information processing method and information processing program of the present application.
 S101において、環境影響定式化部1021が、結果イベントDB1012から結果イベント情報の各レコードを読出し、読み出した各レコードに記述されているイベント発生対象IDと同じイベント発生対象IDが含まれる環境情報のレコードを環境情報DB1013から読み出す(情報読出し処理)。 In S101, the environmental impact formulation unit 1021 reads each record of the result event information from the result event DB 1012 and records the environment information including the same event occurrence target ID as the event occurrence target ID described in each read record. Is read from the environment information DB 1013 (information read processing).
 S102において、環境影響定式化部1021は、イベント発生対象IDごとに、イベント発生対象IDが共通する結果イベント情報のレコードと環境情報のレコードから、結果イベント発生時刻tqi(図4の発生日時)と環境影響時刻t(図5の基準日時)とを抽出し、抽出した結果イベント発生時刻tqiと環境影響時刻tを用いて、環境影響算出式:Aj(1-exp(-Bj(tqi-t))を生成する(算出式生成処理)。
 そして、環境影響定式化部1021は、生成した環境影響算出式と、環境影響算出式の生成に用いた結果イベント情報のレコードとを原因影響定式化部1022に出力する。
In S102, the environmental impact formulation unit 1021 obtains the result event occurrence time t qi (occurrence date and time of FIG. 4) from the record of the result event information and the record of the environment information with the same event occurrence target ID for each event occurrence target ID. And the environmental impact time t i (reference date and time in FIG. 5), and using the event occurrence time t qi and the environmental impact time t i as a result of the extraction, an environmental impact calculation formula: Aj (1-exp (−Bj ( t qi -t i )) is generated (calculation formula generation process).
Then, the environmental impact formulation unit 1021 outputs the generated environmental impact calculation formula and the record of the result event information used for generating the environmental impact calculation formula to the cause impact formulation unit 1022.
 次に、原因影響定式化部1022は、環境影響定式化部1021により環境影響算出式の生成に用いられたイベント発生対象IDが記述されている原因イベント情報のレコードを原因イベントDB1011から読み出す(情報読み出し処理)。
 また、S103において、原因影響定式化部1022は、イベント発生対象IDが共通する原因イベント情報のレコードと結果イベント情報のレコードから、原因イベント発生時刻tki(図3の発生日時)と結果イベント発生時刻tqi(図4の発生日時)とを抽出し、抽出した原因イベント発生時刻tkiと結果イベント発生時刻tqiを用いて、原因影響算出式:(Fj exp(-Gj(tqi-tki))を生成する(算出式生成処理)。
 そして、原因影響定式化部1022は、環境影響算出式と原因影響算出式とを共起関係評価部1031に出力する。
Next, the cause / effect formulation unit 1022 reads from the cause event DB 1011 a record of cause event information in which the event occurrence target ID used to generate the environmental impact calculation formula by the environmental impact formulation unit 1021 is described (information Read processing).
Further, in S103, the cause influence formulation unit 1022 determines the cause event occurrence time t ki (occurrence date and time in FIG. 3) and the result event occurrence from the cause event information record and the result event information record having the same event occurrence target ID. Time t qi (occurrence date and time in FIG. 4) is extracted, and using the extracted cause event occurrence time t ki and result event occurrence time t qi , a cause influence calculation formula: (Fj exp (−Gj (t qi −t ki )) is generated (calculation formula generation process).
Then, the cause / effect formulation unit 1022 outputs the environmental impact calculation formula and the cause / effect calculation formula to the co-occurrence relationship evaluation unit 1031.
 次に、S104において、共起関係評価部1031が環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値を算出する(係数値算出処理)。
 より具体的には、共起関係評価部1031は、共通のイベント発生対象IDに対する環境影響算出式:Aj(1-exp(-Bj(tqi-t))と原因影響算出式:(Fj exp(-Gj(tqi-tki))とを組み合わせて、上記の式1の不等式を生成し、この不等式を制約条件とし、係数の収束のため、結果発生指標Piと結果発生指標閾値hとの差の結果イベントごと(結果IDごと)の総和を最小とすることを目的関数として解を求める。
 結果発生指標閾値hは結果発生指標閾値200として入力される。
 解を求めるために、数理計画法算出部1032が数理計画法による演算処理を行う。
 数理計画法算出部1032の数理計画法による演算処理によって、環境影響係数Aj及びBjの値と原因影響係数Fj及びGjの値が得られる。
Next, in S104, the co-occurrence relationship evaluation unit 1031 calculates the values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj (coefficient value calculation processing).
More specifically, the co-occurrence relationship evaluation unit 1031 calculates the environmental impact calculation formula: Aj (1-exp (−Bj (t qi −t i )) and the cause impact calculation formula: (Fj) for the common event occurrence target ID. exp (−Gj (t qi -t ki )) is combined to generate the inequality of the above equation 1, and this inequality is used as a constraint, and the result occurrence index Pi and the result occurrence index threshold h are used for the convergence of the coefficients. As a result, a solution is obtained with the objective function of minimizing the sum of each event (result ID) as a result of the difference.
The result occurrence index threshold value h is input as the result occurrence index threshold value 200.
In order to obtain a solution, the mathematical programming calculation unit 1032 performs arithmetic processing by mathematical programming.
The values of the environmental influence coefficients Aj and Bj and the values of the cause influence coefficients Fj and Gj are obtained by the arithmetic processing by the mathematical programming method of the mathematical programming calculation unit 1032.
 次に、S105において、新たな原因イベントが結果イベント候補算出部104に追加された際に、結果イベント候補算出部104が、新たな原因イベントにより発生する可能性のある結果イベント候補を出力する。
 より具体的には、結果イベント候補算出部104は、S103で得られた環境影響係数Aj及びBjの値を環境影響算出式:Aj(1-exp(-Bj(tqi-t))に代入し、原因影響係数Fj及びGjの値を原因影響算出式:(Fj exp(-Gj(tqi-tki))に代入する。
 また、結果イベント候補算出部104は、新たな原因イベントが発生したイベント発生対象が属する環境の環境影響時刻tを環境影響算出式:Aj(1-exp(-Bj(tqi-t))に代入し、新たな原因イベントの原因イベント発生時刻tkiを原因影響算出式:(Fj exp(-Gj(tqi-tki))に代入する。
 新たな原因イベントが発生したイベント発生対象IDに対する結果発生指標Piを、以下の式2により、結果種類ID別及び時間別に算出する。
 Pi=Aj(1-exp(-Bj(tqi-t))+Σ(Fj exp(-Gj(tqi-tki)))     式2
 ここで、「結果種類ID別及び時間別に算出する」について説明する。
 「結果種類ID別」については、結果イベント候補算出部104が、結果種類ID{RT1,RT2,…}の全てのRTiに対して結果発生指標Piを算出することを意味する。
 「時間別に算出する」については、入力として、候補算出最大日時t_max(例えば1年後)と、候補算出日時間隔t_interval(例えば1ヶ月)を与える。
 時間別の算出では、結果イベント候補算出部104は、現在日時t_nowからt_intervalの定数倍の時間が経過した時点(t=t_now+s×t_interval)ごとに、結果発生指標Piの値を算出する。
 ここで、sは、1から(s_max)の範囲の自然数であり、(s_max)は{(t_max-t_now)÷t_interval}を超えない最大の自然数である。
 「結果種類ID別及び時間別に算出する」は、途中算出結果がtemp_Pi[et,s]に格納されるとしたとき、図13の処理を行うことに対応する。
Next, when a new cause event is added to the result event candidate calculation unit 104 in S105, the result event candidate calculation unit 104 outputs a result event candidate that may occur due to the new cause event.
More specifically, the result event candidate calculation unit 104 converts the values of the environmental impact coefficients Aj and Bj obtained in S103 into an environmental impact calculation formula: Aj (1-exp (−Bj (t qi −t i )). Substituting the values of the cause influence coefficients Fj and Gj into the cause influence calculation formula: (Fj exp (−Gj (t qi −t ki )).
As a result the event candidate calculation unit 104, environmental environmental impact time t i the environmental impact calculation formula of the event generation target a new cause event has occurred belongs: Aj (1-exp (-Bj (t qi -t i) ) And the cause event occurrence time t ki of the new cause event is substituted into the cause influence calculation formula: (Fj exp (−Gj (t qi −t ki )).
A result occurrence index Pi for an event occurrence target ID in which a new cause event has occurred is calculated for each result type ID and for each time according to Equation 2 below.
Pi = Aj (1−exp (−Bj (t qi −t i )) + Σ (Fj exp (−Gj (t qi −t ki ))) Equation 2
Here, “calculate by result type ID and time” will be described.
“By result type ID” means that the result event candidate calculation unit 104 calculates the result occurrence index Pi for all RTi of the result type ID {RT1, RT2,.
For “calculate by time”, a candidate calculation maximum date and time t_max (for example, one year later) and a candidate calculation date and time interval t_interval (for example, one month) are given as inputs.
In the calculation by time, the result event candidate calculation unit 104 calculates the value of the result occurrence index Pi at each time point (t = t_now + s × t_interval) when a constant multiple of t_interval has elapsed from the current date and time t_now.
Here, s is a natural number ranging from 1 to (s_max), and (s_max) is a maximum natural number not exceeding {(t_max−t_now) ÷ t_interval}.
“Calculate by result type ID and time” corresponds to performing the process of FIG. 13 when the intermediate calculation result is stored in temp_Pi [et, s].
 算出した結果発生指標Piの値が、結果発生指標閾値hを超過し、極大値をとった際に、結果イベント候補算出部104は、算出した結果発生指標Piの値を、対応する結果種類IDの結果イベントが発生する度合いとみなす。
 結果イベント候補算出部104は、全ての結果種類IDについて結果発生指標Piの値を算出し、結果発生指標Piが大きい順に結果種類IDを並べたリストを、結果イベント候補情報(図9)として出力する。
When the value of the calculated result occurrence index Pi exceeds the result occurrence index threshold value h and takes a maximum value, the result event candidate calculation unit 104 sets the calculated result occurrence index Pi to the corresponding result type ID. As a result, it is considered that the event occurs.
The result event candidate calculation unit 104 calculates the value of the result occurrence index Pi for all result type IDs, and outputs a list in which the result type IDs are arranged in descending order of the result occurrence index Pi as result event candidate information (FIG. 9). To do.
 また、算出式生成部102は、係数値算出部103により環境影響係数(Aj、Bj)の値と原因影響係数(Fj、Gj)の値とが算出された後に新たな結果イベントが発生した場合に、新たな結果イベントの発生時刻を反映させて環境影響算出式と原因影響算出式とを更新してもよい。
 この場合は、係数値算出部103は、算出式生成部102による更新後の環境影響算出式と更新後の原因影響算出式とに前述の制約条件と目的関数とを設定し、制約条件と目的関数とが設定された更新後の環境影響算出式と更新後の原因影響算出式とから、新たな環境影響係数(Aj、Bj)の値と原因影響係数(Fj、Gj)の値とを算出する。
In addition, the calculation formula generation unit 102 generates a new result event after the coefficient value calculation unit 103 calculates the value of the environmental influence coefficient (Aj, Bj) and the value of the cause influence coefficient (Fj, Gj). In addition, the environmental impact calculation formula and the cause impact calculation formula may be updated by reflecting the time of occurrence of a new result event.
In this case, the coefficient value calculation unit 103 sets the above-described constraint condition and objective function in the updated environmental effect calculation formula and the updated cause effect calculation formula by the calculation formula generation unit 102, and the constraint condition and the objective function are set. A new environmental impact coefficient (Aj, Bj) value and cause influence coefficient (Fj, Gj) value are calculated from the updated environmental impact calculation formula and the updated causal impact calculation formula in which the function is set. To do.
 図10は、イベント発生対象ごとに、年月の経過とともに発生する原因イベント、結果イベントを模式的に表す図である。
 図10は、イベント発生対象ID:O1のイベント発生対象(以下、イベント発生対象O1という)が環境種類ID:ET1の環境(以下、環境ET1という)に属していることを示している。
 また、イベント発生対象O1に、時刻tk1に原因ID:C1の原因イベント(以下、原因C1という)が発生し、時刻tk2に原因ID:C2の原因イベント(以下、原因C2という)が発生していることを示している。
 また、イベント発生対象O1に、時刻tq1に結果ID:R1の結果イベント(以下、結果R1という)が発生していることを示している。
 原因C1の原因種類IDはCT1であり、原因C2の原因種類IDはCT2であり、結果R1の結果種類IDはRT1である。
 また、図10は、イベント発生対象ID:O2のイベント発生対象(以下、イベント発生対象O2という)が環境ET1に属していることを示している。
 また、イベント発生対象O2に、時刻tk3に原因ID:C3の原因イベント(以下、原因C3という)が発生し、時刻tq2に結果ID:R2の結果イベント(以下、結果R2という)が発生していることを示している。
 原因C3の原因種類IDはCT1であり、結果R2の結果種類IDはRT1である。
 また、図10は、イベント発生対象ID:O3のイベント発生対象(以下、イベント発生対象O3という)が環境種類ID:ET2の環境に属していることを示している。
 また、イベント発生対象O3に、時刻tk4に原因ID:C4の原因イベント(以下、原因C4という)が発生していることを示している。
 原因C4の原因種類IDはCT2である。
FIG. 10 is a diagram schematically illustrating a cause event and a result event that occur with the passage of years for each event generation target.
FIG. 10 shows that the event generation target with event generation target ID: O1 (hereinafter referred to as event generation target O1) belongs to the environment with environment type ID: ET1 (hereinafter referred to as environment ET1).
In addition, a cause event with cause ID: C1 (hereinafter referred to as cause C1) occurs at time t k1 in the event occurrence target O1, and a cause event with cause ID: C2 (hereinafter referred to as cause C2) occurs at time t k2. It shows that you are doing.
Further, it is indicated that a result event of result ID: R1 (hereinafter referred to as result R1) has occurred in event generation target O1 at time tq1 .
The cause type ID of the cause C1 is CT1, the cause type ID of the cause C2 is CT2, and the result type ID of the result R1 is RT1.
FIG. 10 shows that the event generation target of event generation target ID: O2 (hereinafter referred to as event generation target O2) belongs to the environment ET1.
In addition, a cause event of cause ID: C3 (hereinafter referred to as cause C3) occurs in event generation target O2 at time t k3, and a result event of result ID: R2 (hereinafter referred to as result R2) occurs at time t q2. It shows that you are doing.
The cause type ID of the cause C3 is CT1, and the result type ID of the result R2 is RT1.
FIG. 10 shows that the event generation target of event generation target ID: O3 (hereinafter referred to as event generation target O3) belongs to the environment of environment type ID: ET2.
Further, it is indicated that a cause event of cause ID: C4 (hereinafter referred to as cause C4) is occurring in the event occurrence target O3 at time tk4 .
The cause type ID of the cause C4 is CT2.
 図11は、イベント発生対象O1に対する以下の2種類の影響((1)、(2))から、結果発生指標P1を算出することを模式的に表す図である。
(1)原因C1及び原因C2からの影響
(2)イベント発生対象O1が属する環境ET1からの影響
 図11のグラフ1101は、原因C1からの影響の減衰曲線を模式的に表している。
 また、図11のグラフ1102は、原因C2からの影響の減衰曲線を模式的に表している。
 また、図11のグラフ1103は、環境ET1からの影響の飽和曲線を模式的に表している。
 また、図11のグラフ1104は、結果発生指標P1の時間推移を模式的に表しており、グラフ1101、グラフ1102、グラフ1103の重ね合わせにより得られる。
 つまり、結果発生指標P1は、原因C1からの影響と、原因C2からの影響と、環境ET1からの影響の集約結果である。
 結果発生指標P1の値は、以下の式で与えられる。
 P1(t)=A(1-exp(-B(t-t)))+Fexp(-G(t-tk1))+Fexp(-G(t-tk2))
 なお、この段階ではF1,G1,F2,G2,A1,B1の値は未定であるが、理解の容易化のため、図11ではF1,G1,F2,G2,A1,B1に仮の値を用いてグラフ1101、グラフ1102、グラフ1103、グラフ1104を図示している。
 また、図11では、参考のために、図12における評価で使用する結果発生指標閾値hも併記している。
FIG. 11 is a diagram schematically illustrating calculating the result occurrence index P1 from the following two types of influences ((1) and (2)) on the event generation target O1.
(1) Influence from the cause C1 and the cause C2 (2) Influence from the environment ET1 to which the event occurrence target O1 belongs A graph 1101 in FIG. 11 schematically represents an attenuation curve of the influence from the cause C1.
A graph 1102 in FIG. 11 schematically represents an attenuation curve of the influence from the cause C2.
A graph 1103 in FIG. 11 schematically represents a saturation curve of the influence from the environment ET1.
A graph 1104 in FIG. 11 schematically represents a time transition of the result occurrence index P1, and is obtained by superimposing the graph 1101, the graph 1102, and the graph 1103.
That is, the result occurrence index P1 is an aggregation result of the influence from the cause C1, the influence from the cause C2, and the influence from the environment ET1.
The value of the result occurrence index P1 is given by the following equation.
P1 (t) = A 1 (1-exp (−B 1 (t−t 1 ))) + F 1 exp (−G 1 (t−t k1 )) + F 2 exp (−G 2 (t−t k2 ) )
At this stage, the values of F1, G1, F2, G2, A1, and B1 are undecided. However, in order to facilitate understanding, temporary values are assigned to F1, G1, F2, G2, A1, and B1 in FIG. The graph 1101, the graph 1102, the graph 1103, and the graph 1104 are illustrated using the graph.
In FIG. 11, the result occurrence index threshold value h used in the evaluation in FIG. 12 is also shown for reference.
 図12は、結果R1が発生した時点での結果発生指標P1の値と結果発生指標閾値hとの関係、結果R2が発生した時点での結果発生指標P2の値と結果発生指標閾値hとの関係を模式的に表す図である。
 図12においてグラフ1201は、結果発生指標P2の時間推移を示しており、図11で説明したグラフ1104と同様のグラフである。
 係数値算出部103は、h≦Piとなり、かつPi-hの値の総和(全てのイベント発生対象に渡る総和)が最小となるように、不確定の係数F1,G1,F2,G2,A1,B1の値を求める。
 図12において、t=tq1の時のP1、およびt=tq2の時のP2は以下で与えられる。
 P1=A(1-exp(-B(tq1-t)))+Fexp(-G(tq1-tk1))+Fexp(-G(tq1-tk2))
 P2=A(1-exp(-B(tq2-t)))+Fexp(-G(tq2-tk3))
 本例では、環境ET1に属するイベント発生対象は、イベント発生対象O1とイベント発生対象O2のみなので、係数値算出部103は、h≦P1、h≦P2かつ(P1-h)+(P2-h)の値が最小となるように、係数値算出部103が、係数F1,G1,F2,G2,A1,B1の値を求める(t,tq1,tq2,tk1,tk2,tk3,hは既知)。
FIG. 12 shows the relationship between the value of the result occurrence index P1 and the result occurrence index threshold h when the result R1 occurs, and the value of the result occurrence index P2 and the result occurrence index threshold h when the result R2 occurs. It is a figure showing a relation typically.
In FIG. 12, a graph 1201 indicates the time transition of the result occurrence index P2, and is the same graph as the graph 1104 described in FIG.
The coefficient value calculation unit 103 sets the uncertain coefficients F1, G1, F2, G2, A1 so that h ≦ Pi and the sum of the values of Pi−h (the sum of all event generation targets) is minimized. , B1 is obtained.
In FIG 12, P2 when the time of P1, and t = t q2 of t = t q1 is given below.
P1 = A 1 (1-exp (−B 1 (t q1 −t 1 ))) + F 1 exp (−G 1 (t q1 −t k1 )) + F 2 exp (−G 2 (t q1 −t k2 ) )
P2 = A 1 (1-exp (−B 1 (t q2 −t 2 ))) + F 1 exp (−G 1 (t q2 −t k3 ))
In this example, since the event generation targets belonging to the environment ET1 are only the event generation target O1 and the event generation target O2, the coefficient value calculation unit 103 performs h ≦ P1, h ≦ P2, and (P1−h) + (P2−h). ), The coefficient value calculation unit 103 obtains the values of the coefficients F1, G1, F2, G2, A1, and B1 (t 1 , t q1 , t q2 , t k1 , t k2 , t k3 and h are known).
 図10に示すように、イベント発生対象O1とイベント発生対象O2は、環境種類が共通しており、また、結果イベントの結果種類が共通しており、一部の原因イベント(C1、C3)の原因種類が共通している。
 このように、複数のイベント発生対象間で、環境種類が共通し、結果イベントの結果種類が共通し、少なくとも一部の原因イベントの原因種類が共通する場合は、係数値算出部103は、複数のイベント発生対象の算出式を上記のように統合して演算を行う。
As shown in FIG. 10, the event generation target O1 and the event generation target O2 have the same environment type and the same result type of the result event, and some of the cause events (C1, C3) The cause type is common.
As described above, when a plurality of event generation targets have the same environment type, the result type of the result event is the same, and the cause type of at least some of the cause events is the same, the coefficient value calculation unit 103 has a plurality of The event generation target calculation formulas are integrated as described above to perform the calculation.
 次に、図3~図9に示す具体値を用いて、本実施の形態に係る係数値算出部103及び結果イベント候補算出部104の動作例を説明する。
 なお、説明の簡明化のため、図3、図4、図5、図8、図9の日時は、日までの表記としている。
Next, operation examples of the coefficient value calculation unit 103 and the result event candidate calculation unit 104 according to the present embodiment will be described using the specific values shown in FIGS.
For the sake of simplicity, the dates and times in FIGS. 3, 4, 5, 8, and 9 are written up to the date.
 係数値算出部103は、日時差を日数換算にて評価する。
 また、ここでは、係数値算出部103は、h=1と設定する。
 t=tq1の時のP1、およびt=tq2の時のP2は以下で与えられる。
 P1=A(1-exp(-B(tq1-t)))+Fexp(-G(tq1-tk1))+Fexp(-G(tq1-tk2))
 P2=A(1-exp(-B(tq2-t)))+Fexp(-G(tq2-tk3))
 tq1-t=70、tq1-tk1=60、tq1-tk2=40、tq2-t=80、tq2-tk3=65
であるため、既知の値を代入すると以下の通りとなる。
 P1=A(1-exp(-70B))+Fexp(-60G)+Fexp(-40G
 P2=A(1-exp(-80B))+Fexp(-65G
 上記から、係数値算出部103は、h=1≦Pかつh=1≦P2となる範囲で、(P1-h)+(P2-h)=P1+P2-2を最小とするパラメータA1,B1,F1,F2,G1,G2の値を算出する。
 なお、A1,B1,F1,F2,G1,G2の算出結果は、図6及び図7に示すとおりである。
The coefficient value calculation unit 103 evaluates the date / time difference in terms of days.
Here, coefficient value calculation section 103 sets h = 1.
P1 when t = t q1 and P2 when t = t q2 are given below.
P1 = A 1 (1-exp (−B 1 (t q1 −t 1 ))) + F 1 exp (−G 1 (t q1 −t k1 )) + F 2 exp (−G 2 (t q1 −t k2 ) )
P2 = A 1 (1-exp (−B 1 (t q2 −t 2 ))) + F 1 exp (−G 1 (t q2 −t k3 ))
t q1 -t 1 = 70, t q1 -t k1 = 60, t q1 -t k2 = 40, t q2 -t 2 = 80, t q2 -t k3 = 65
Therefore, when a known value is substituted, the result is as follows.
P1 = A 1 (1-exp (−70B 1 )) + F 1 exp (−60G 1 ) + F 2 exp (−40G 2 )
P2 = A 1 (1-exp (−80B 1 )) + F 1 exp (−65G 1 )
From the above, the coefficient value calculation unit 103 sets the parameters A1, B1, which minimize (P1−h) + (P2−h) = P1 + P2-2 within the range where h = 1 ≦ P and h = 1 ≦ P2. The values of F1, F2, G1, and G2 are calculated.
The calculation results of A1, B1, F1, F2, G1, and G2 are as shown in FIGS.
 結果イベント候補算出部104は、算出された係数A1,B1,F1,F2,G1,G2の値を元に、新たなイベント発生対象O10に対する、新たな原因イベントC111、C112に対する結果発生指標P3の数式を求める。
 結果イベント候補算出部104は、結果発生指標P3の数式を、結果種類IDごとに求める(ここではRT1のみを記す)。
 P3(t)=A(1-exp(-B(t-t)))+Fexp(-G(t-tk111))+Fexp(-G(t-tk112))
 =1-exp(-0.0305(t-t)))+exp(-0.0377(t-tk111))+exp(-4.34(t-tk112))
 なお、t’=t-tとすると、t-tk111=t’-45、t-tk111=t’-85である。
 結果イベント候補算出部104は、このP3(t)が極大値をとるtを求める。
 t’=45のときにP3は極大値1.72をとる。
 t’に対応する日付は2015/05/17である。
 図9に示すように、結果イベント候補算出部104は、結果発生指標P3の値が結果発生指標閾値hを超え、結果イベントが発生する可能性があると判定する想定期間を、結果発生想定期間開始日時及び結果発生想定期間開始日時終了日時として結果イベント候補情報500に含める。
 上記のP3(t)が結果発生指標閾値hを超える範囲は、45≦t’≦235であり、対応する日付は2015/05/16~2015/11/22である。
 以上より、図9に示す結果イベント候補情報500が出力される。
The result event candidate calculation unit 104 uses the calculated values of the coefficients A1, B1, F1, F2, G1, and G2 to calculate the result occurrence index P3 for the new cause events C111 and C112 for the new event generation target O10. Find the formula.
The result event candidate calculation unit 104 obtains the mathematical expression of the result occurrence index P3 for each result type ID (here, only RT1 is described).
P3 (t) = A 1 (1-exp (−B 1 (t−t 3 ))) + F 1 exp (−G 1 (t−t k111 )) + F 2 exp (−G 2 (t−t k112 ) )
= 1−exp (−0.0305 (t−t 3 ))) + exp (−0.0377 (t−t k111 )) + exp (−4.34 (t−t k112 ))
If t ′ = t−t 3 , then t−t k111 = t′−45 and t−t k111 = t′−85.
The result event candidate calculation unit 104 obtains t at which P3 (t) takes a maximum value.
When t ′ = 45, P3 takes a maximum value of 1.72.
The date corresponding to t ′ is 2015/05/17.
As illustrated in FIG. 9, the result event candidate calculation unit 104 sets an assumed period for determining that there is a possibility that a result event may occur because the value of the result occurrence index P3 exceeds the result occurrence index threshold value h. The result event candidate information 500 includes the start date and time and the expected occurrence period start date and time and end date and time.
The range where P3 (t) exceeds the result occurrence index threshold value h is 45 ≦ t ′ ≦ 235, and the corresponding date is 2015/05/16 to 2015/11/22.
As a result, the result event candidate information 500 shown in FIG. 9 is output.
***効果の説明***
 以上のように、本実施の形態に係る情報処理装置100は、原因イベントの発生を基点とし、時間とともに減衰する影響を原因影響係数によって定式化し、更に、環境から常時受ける影響を環境影響係数によって定式化する。
 そして、情報処理装置100は、それぞれの係数が不定である状態から、結果イベントが発生した時点での結果発生指標が閾値を超えている比率が最大となるよう、各係数を算出する。
 原因影響係数が、原因イベントと結果イベントの関連性の強度を意味し、環境影響係数が、環境と結果イベントの関連性の強度を意味する。
*** Explanation of effects ***
As described above, the information processing apparatus 100 according to the present embodiment is based on the occurrence of a cause event, formulates the effect of decaying with time by the cause influence coefficient, and further determines the influence constantly received from the environment by the environment influence coefficient. Formulate.
Then, the information processing apparatus 100 calculates each coefficient from the state where each coefficient is indefinite so that the ratio at which the result occurrence index exceeds the threshold when the result event occurs is maximized.
The cause influence coefficient means the strength of the relationship between the cause event and the result event, and the environmental impact factor means the strength of the relationship between the environment and the result event.
 本実施の形態によれば、原因影響係数の値と、環境影響係数の値とを算出するため、原因イベントからの、時間とともに減衰する影響と、常時存在する環境からの影響とを数値化することができる。
 このため、原因イベントからの影響と、環境からの影響とを考慮して、結果イベントの発生確率を評価することができる。
According to the present embodiment, in order to calculate the value of the cause influence coefficient and the value of the environmental influence coefficient, the influence that decays with time from the cause event and the influence from the environment that always exists are quantified. be able to.
For this reason, the occurrence probability of the result event can be evaluated in consideration of the influence from the cause event and the influence from the environment.
 例としてあげた、保守サービス業務における保守員の教育と技術力の向上を評価する事例では、次のような効果が上げられる。
 教育による影響と外環境による影響を、原因影響係数と環境影響係数という同じ尺度指標で比較可能とすることにより、複数の教育を行うべきか、環境整備を行うべきかの判断を同じ基準で定量的に比較可能となる。
 このため、コストなどの他の定量的パラメータと合わせて考慮した総合的判断が容易に可能となる。
 教育の長期的計画立案においても、品質を維持して、教育コストを最小化することが可能になる。
 また、教育や環境整備の技術力向上に与える影響が大きい順に施策に優先度を設定して、限られたリソースの中で優先度順に施策を実施することで、現実の制約条件の範囲内にて効率的な技術向上を実現することができる。
As an example, in the case of evaluating maintenance staff education and technical improvement in maintenance service operations, the following effects can be achieved.
By making it possible to compare the influence of education and the influence of the external environment on the same scale index of the cause influence coefficient and the environment influence coefficient, the determination of whether to conduct multiple education or to improve the environment is quantified based on the same standard Can be compared.
For this reason, it is possible to easily make a comprehensive judgment in consideration of other quantitative parameters such as cost.
Even in long-term education planning, quality can be maintained and education costs can be minimized.
In addition, by setting priorities to measures in descending order of their impact on improving technical skills in education and environmental maintenance, and implementing measures in order of priority within limited resources, it is within the scope of actual constraints. Efficient technology improvement.
***ハードウェア構成の説明***
 最後に、情報処理装置100のハードウェア構成例を図14を参照して説明する。
 情報処理装置100はコンピュータである。
 情報処理装置100は、プロセッサ901、補助記憶装置902、メモリ903、通信装置904、入力インタフェース905、ディスプレイインタフェース906といったハードウェアを備える。
 プロセッサ901は、信号線910を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 入力インタフェース905は、入力装置907に接続されている。
 ディスプレイインタフェース906は、ディスプレイ908に接続されている。
*** Explanation of hardware configuration ***
Finally, a hardware configuration example of the information processing apparatus 100 will be described with reference to FIG.
The information processing apparatus 100 is a computer.
The information processing apparatus 100 includes hardware such as a processor 901, an auxiliary storage device 902, a memory 903, a communication device 904, an input interface 905, and a display interface 906.
The processor 901 is connected to other hardware via the signal line 910, and controls these other hardware.
The input interface 905 is connected to the input device 907.
The display interface 906 is connected to the display 908.
 プロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
 プロセッサ901は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 補助記憶装置902は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)である。
 メモリ903は、例えば、RAM(Random Access Memory)である。
 図1に示す情報記憶部101は、補助記憶装置902及びメモリ903の少なくともいずれかである。
 通信装置904は、データを受信するレシーバー9041及びデータを送信するトランスミッター9042を含む。
 通信装置904は、例えば、通信チップ又はNIC(Network Interface Card)である。
 入力インタフェース905は、入力装置907のケーブル911が接続されるポートである。
 入力インタフェース905は、例えば、USB(Universal Serial Bus)端子である。
 ディスプレイインタフェース906は、ディスプレイ908のケーブル912が接続されるポートである。
 ディスプレイインタフェース906は、例えば、USB端子又はHDMI(登録商標)(High Definition Multimedia Interface)端子である。
 入力装置907は、例えば、マウス、キーボード又はタッチパネルである。
 ディスプレイ908は、例えば、LCD(Liquid Crystal Display)である。
The processor 901 is an IC (Integrated Circuit) that performs processing.
The processor 901 is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or a GPU (Graphics Processing Unit).
The auxiliary storage device 902 is, for example, a ROM (Read Only Memory), a flash memory, or an HDD (Hard Disk Drive).
The memory 903 is, for example, a RAM (Random Access Memory).
The information storage unit 101 illustrated in FIG. 1 is at least one of the auxiliary storage device 902 and the memory 903.
The communication device 904 includes a receiver 9041 that receives data and a transmitter 9042 that transmits data.
The communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
The input interface 905 is a port to which the cable 911 of the input device 907 is connected.
The input interface 905 is, for example, a USB (Universal Serial Bus) terminal.
The display interface 906 is a port to which the cable 912 of the display 908 is connected.
The display interface 906 is, for example, a USB terminal or an HDMI (registered trademark) (High Definition Multimedia Interface) terminal.
The input device 907 is, for example, a mouse, a keyboard, or a touch panel.
The display 908 is, for example, an LCD (Liquid Crystal Display).
 補助記憶装置902には、図1に示す算出式生成部102、係数値算出部103、結果イベント候補算出部104(以下、算出式生成部102、係数値算出部103、結果イベント候補算出部104をまとめて「部」と表記する)の機能を実現するプログラムが記憶されている。
 このプログラムは、メモリ903にロードされ、プロセッサ901に読み込まれ、プロセッサ901によって実行される。
 更に、補助記憶装置902には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がメモリ903にロードされ、プロセッサ901はOSを実行しながら、「部」の機能を実現するプログラムを実行する。
 図14では、1つのプロセッサ901が図示されているが、情報処理装置100が複数のプロセッサ901を備えていてもよい。
 そして、複数のプロセッサ901が「部」の機能を実現するプログラムを連携して実行してもよい。
 また、「部」の処理の結果を示す情報やデータや信号値や変数値が、メモリ903、補助記憶装置902、又は、プロセッサ901内のレジスタ又はキャッシュメモリに記憶される。
The auxiliary storage device 902 includes a calculation formula generation unit 102, a coefficient value calculation unit 103, a result event candidate calculation unit 104 (hereinafter, a calculation formula generation unit 102, a coefficient value calculation unit 103, and a result event candidate calculation unit 104 shown in FIG. Are collectively stored as “parts”).
This program is loaded into the memory 903, read into the processor 901, and executed by the processor 901.
Further, the auxiliary storage device 902 also stores an OS (Operating System).
Then, at least a part of the OS is loaded into the memory 903, and the processor 901 executes a program that realizes the function of “unit” while executing the OS.
Although one processor 901 is illustrated in FIG. 14, the information processing apparatus 100 may include a plurality of processors 901.
A plurality of processors 901 may execute a program for realizing the function of “unit” in cooperation with each other.
In addition, information, data, signal values, and variable values indicating the processing results of “unit” are stored in the memory 903, the auxiliary storage device 902, or a register or cache memory in the processor 901.
 「部」を「サーキットリー」で提供してもよい。
 また、「部」を「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
 「回路」及び「サーキットリー」は、プロセッサ901だけでなく、ロジックIC又はGA(Gate Array)又はASIC(Application Specific Integrated Circuit)又はFPGA(Field-Programmable Gate Array)といった他の種類の処理回路をも包含する概念である。
The “part” may be provided as “circuitry”.
Further, “part” may be read as “circuit”, “process”, “procedure”, or “processing”.
“Circuit” and “Circuitry” include not only the processor 901 but also other types of processing circuits such as a logic IC or GA (Gate Array) or ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array). It is a concept to include.
 100 情報処理装置、101 情報記憶部、102 算出式生成部、103 係数値算出部、104 結果イベント候補算出部、200 結果発生指標閾値、300 原因影響係数情報、400 環境影響係数情報、500 結果イベント候補情報、1011 原因イベントDB、1012 結果イベントDB、1013 環境情報DB、1014 新規原因イベントDB、1021 環境影響定式化部、1022 原因影響定式化部、1031 共起関係評価部、1032 数理計画法算出部。
 
DESCRIPTION OF SYMBOLS 100 Information processing apparatus, 101 Information storage part, 102 Calculation formula production | generation part, 103 Coefficient value calculation part, 104 Result event candidate calculation part, 200 Result generation | occurrence | production index threshold value, 300 Cause influence coefficient information, 400 Environmental influence coefficient information, 500 Result event Candidate information, 1011 cause event DB, 1012 result event DB, 1013 environment information DB, 1014 new cause event DB, 1021 environmental impact formulation unit, 1022 cause impact formulation unit, 1031 co-occurrence relation evaluation unit, 1032 mathematical programming calculation Department.

Claims (12)

  1.  イベント発生対象に原因イベントが発生した時刻である原因イベント発生時刻と、前記イベント発生対象に結果イベントが発生した時刻である結果イベント発生時刻と、前記イベント発生対象が属する環境が前記イベント発生対象に影響を与え始めた時刻である環境影響時刻とが記述されるイベント情報を記憶する情報記憶部と、
     前記環境からの影響である環境影響の飽和係数である環境影響係数の値を算出すための算出式である環境影響算出式を、前記結果イベント発生時刻と前記環境影響時刻とを用いて生成し、前記原因イベントからの影響である原因影響の減衰係数である原因影響係数の値を算出すための算出式である原因影響算出式を、前記原因イベント発生時刻と前記結果イベント発生時刻とを用いて生成する算出式生成部と、
     前記環境影響算出式と前記原因影響算出式とに制約条件と目的関数とを設定し、前記制約条件と前記目的関数とが設定された前記環境影響算出式と前記原因影響算出式とから、前記環境影響係数の値と前記原因影響係数の値とを算出する係数値算出部とを有する情報処理装置。
    The cause event occurrence time that is the time when the cause event occurred in the event occurrence target, the result event occurrence time that is the time when the result event occurred in the event occurrence target, and the environment to which the event occurrence target belongs is the event occurrence target. An information storage unit for storing event information in which an environmental impact time that is a time at which an influence starts is described;
    An environmental impact calculation formula that is a calculation formula for calculating a value of an environmental impact coefficient that is a saturation coefficient of an environmental impact that is an impact from the environment is generated using the result event occurrence time and the environmental impact time. , Using the cause event occurrence time and the result event occurrence time as a cause effect calculation formula that is a calculation formula for calculating a value of a cause influence coefficient that is an attenuation coefficient of a cause influence that is an influence from the cause event A calculation formula generation unit for generating
    A constraint condition and an objective function are set in the environmental impact calculation formula and the cause impact calculation formula, and the environmental impact calculation formula and the cause impact calculation formula in which the constraint condition and the objective function are set, An information processing apparatus comprising: a coefficient value calculation unit that calculates a value of an environmental influence coefficient and a value of the cause influence coefficient.
  2.  前記係数値算出部は、
     数理計画法により、前記目的関数を最小化する、前記環境影響係数の値と前記原因影響係数の値とを算出する請求項1に記載の情報処理装置。
    The coefficient value calculator is
    The information processing apparatus according to claim 1, wherein the value of the environmental influence coefficient and the value of the cause influence coefficient that minimize the objective function are calculated by mathematical programming.
  3.  前記情報処理装置は、更に、
     前記係数値算出部により前記環境影響係数の値と前記原因影響係数の値とが算出された後に新たな原因イベントが発生した場合に、前記係数値算出部により算出された前記環境影響係数の値を前記環境影響算出式に適用し、前記係数値算出部により算出された前記原因影響係数の値を前記原因影響算出式に適用して、前記新たな原因イベントにより発生する可能性のある結果イベント候補を特定する結果イベント候補算出部を有する請求項1に記載の情報処理装置。
    The information processing apparatus further includes:
    The value of the environmental influence coefficient calculated by the coefficient value calculation section when a new cause event occurs after the value of the environmental influence coefficient and the value of the cause influence coefficient are calculated by the coefficient value calculation section. Is applied to the environmental influence calculation formula, and the value of the cause influence coefficient calculated by the coefficient value calculation unit is applied to the cause influence calculation formula to cause a result event that may be generated by the new cause event. The information processing apparatus according to claim 1, further comprising a result event candidate calculation unit that identifies a candidate.
  4.  前記結果イベント候補算出部は、
     前記結果イベント候補の発生確率を算出する請求項3に記載の情報処理装置。
    The result event candidate calculation unit
    The information processing apparatus according to claim 3, wherein the occurrence probability of the result event candidate is calculated.
  5.  前記結果イベント候補算出部は、
     前記結果イベント候補が発生する時期を予測する請求項3に記載の情報処理装置。
    The result event candidate calculation unit
    The information processing apparatus according to claim 3, wherein a time when the result event candidate occurs is predicted.
  6.  前記結果イベント候補算出部は、
     複数の結果イベント候補が存在する場合に、結果イベント候補ごとに発生確率を算出し、
     算出された発生確率が高い順に前記複数の結果イベント候補を順位付ける請求項4に記載の情報処理装置。
    The result event candidate calculation unit
    If there are multiple outcome event candidates, calculate the probability of occurrence for each outcome event candidate,
    The information processing apparatus according to claim 4, wherein the plurality of result event candidates are ranked in descending order of the calculated occurrence probability.
  7.  前記算出式生成部は、
     前記係数値算出部により前記環境影響係数の値と前記原因影響係数の値とが算出された後に新たな結果イベントが発生した場合に、前記新たな結果イベントの発生時刻を反映させて前記環境影響算出式と前記原因影響算出式とを更新し、
     前記係数値算出部は、
     前記算出式生成部による更新後の環境影響算出式と更新後の原因影響算出式とに前記制約条件と前記目的関数とを設定し、前記制約条件と前記目的関数とが設定された前記更新後の環境影響算出式と前記更新後の原因影響算出式とから、新たな環境影響係数の値と前記原因影響係数の値とを算出する請求項1に記載の情報処理装置。
    The calculation formula generation unit
    When a new result event occurs after the value of the environmental influence coefficient and the value of the cause influence coefficient are calculated by the coefficient value calculation unit, the occurrence time of the new result event is reflected to reflect the environmental influence Update the calculation formula and the causal effect calculation formula,
    The coefficient value calculator is
    The constraint condition and the objective function are set in the updated environmental impact calculation formula and the updated cause / effect calculation formula by the calculation formula generation unit, and the post-update is performed in which the constraint condition and the objective function are set. The information processing apparatus according to claim 1, wherein a new value of the environmental influence coefficient and a value of the cause influence coefficient are calculated from the environmental influence calculation formula and the updated cause influence calculation formula.
  8.  前記算出式生成部は、
     前記環境影響係数である、前記環境影響の強さの基準値の係数である環境影響基準係数の値と、前記環境影響の強さが飽和する速度の係数である環境影響飽和速度係数の値とを算出すための環境影響算出式を、前記結果イベント発生時刻と前記環境影響時刻とを用いて生成し、前記原因影響係数である、前記原因影響の強さの基準値の係数である原因影響基準係数の値と、前記原因影響の強さが減衰する速度の係数である原因影響減衰速度係数の値とを算出すための原因影響算出式を、前記原因イベント発生時刻と前記結果イベント発生時刻とを用いて生成し、
     前記係数値算出部は、
     前記制約条件と前記目的関数と前記環境影響算出式の前記環境影響時刻と前記結果イベント発生時刻と前記原因影響算出式の前記原因イベント発生時刻と前記結果イベント発生時刻とに基づき、前記環境影響基準係数の値と、前記環境影響飽和速度係数の値と、前記原因影響基準係数の値と、前記原因影響減衰速度係数の値とを算出する請求項1に記載の情報処理装置。
    The calculation formula generation unit
    A value of an environmental impact reference coefficient that is a coefficient of a reference value of the intensity of environmental impact that is the environmental impact coefficient; and a value of an environmental impact saturation speed coefficient that is a coefficient of a speed at which the strength of the environmental impact is saturated Is generated using the result event occurrence time and the environmental impact time, and is a causal influence coefficient that is a coefficient of a reference value of the strength of the causal influence that is the causal influence coefficient. A cause effect calculation formula for calculating a value of a reference coefficient and a value of a cause effect attenuation rate coefficient that is a coefficient of a rate at which the intensity of the cause effect attenuates is expressed as the cause event occurrence time and the result event occurrence time. And using
    The coefficient value calculator is
    Based on the constraint condition, the objective function, the environmental impact time of the environmental impact calculation formula, the result event occurrence time, the cause event occurrence time and the result event occurrence time of the cause impact calculation formula, the environmental impact criteria The information processing apparatus according to claim 1, wherein a coefficient value, a value of the environmental influence saturation speed coefficient, a value of the cause influence reference coefficient, and a value of the cause influence attenuation speed coefficient are calculated.
  9.  前記係数値算出部は、
     数理計画法により、前記目的関数の値を最小化する、前記環境影響基準係数の値と前記環境影響飽和速度係数の値と前記原因影響基準係数の値と前記原因影響減衰速度係数の値とを算出する請求項8に記載の情報処理装置。
    The coefficient value calculator is
    The value of the environmental impact reference coefficient, the value of the environmental impact saturation rate coefficient, the value of the cause impact reference coefficient, and the value of the cause impact decay rate coefficient that minimize the value of the objective function by mathematical programming. The information processing apparatus according to claim 8 to calculate.
  10.  前記算出式生成部は、
     多項式関数と指数関数の組合せにより、前記環境影響算出式と前記原因影響算出式とを生成する請求項1に記載の情報処理装置。
    The calculation formula generation unit
    The information processing apparatus according to claim 1, wherein the environmental influence calculation formula and the cause influence calculation formula are generated by a combination of a polynomial function and an exponential function.
  11.  コンピュータが、イベント発生対象に原因イベントが発生した時刻である原因イベント発生時刻と、前記イベント発生対象に結果イベントが発生した時刻である結果イベント発生時刻と、前記イベント発生対象が属する環境が前記イベント発生対象に影響を与え始めた時刻である環境影響時刻とが記述されるイベント情報を記憶領域から読み出し、
     前記コンピュータが、前記環境からの影響である環境影響の飽和係数である環境影響係数の値を算出すための算出式である環境影響算出式を、前記結果イベント発生時刻と前記環境影響時刻とを用いて生成し、前記原因イベントからの影響である原因影響の減衰係数である原因影響係数の値を算出すための算出式である原因影響算出式を、前記原因イベント発生時刻と前記結果イベント発生時刻とを用いて生成し、
     前記コンピュータが、前記環境影響算出式と前記原因影響算出式とに制約条件と目的関数とを設定し、前記制約条件と前記目的関数とが設定された前記環境影響算出式と前記原因影響算出式とから、前記環境影響係数の値と前記原因影響係数の値とを算出する情報処理方法。
    A cause event occurrence time that is a time when a cause event occurs in the event occurrence target, a result event occurrence time that is a time when a result event occurs in the event occurrence target, and an environment to which the event occurrence target belongs is the event Read event information from the storage area describing the environmental impact time, which is the time when it started to affect the occurrence target,
    The computer calculates an environmental impact calculation formula that is a calculation formula for calculating a value of an environmental impact coefficient that is a saturation coefficient of an environmental impact that is an impact from the environment, the result event occurrence time and the environmental impact time. The cause effect calculation formula, which is a calculation formula for calculating the value of the cause influence coefficient which is the attenuation coefficient of the cause influence which is the influence from the cause event, is generated using the cause event occurrence time and the result event occurrence Using time and
    The computer sets a constraint condition and an objective function in the environmental impact calculation formula and the cause impact calculation formula, and the environmental impact calculation formula and the cause impact calculation formula in which the constraint condition and the objective function are set. Information processing method for calculating the value of the environmental influence coefficient and the value of the cause influence coefficient.
  12.  イベント発生対象に原因イベントが発生した時刻である原因イベント発生時刻と、前記イベント発生対象に結果イベントが発生した時刻である結果イベント発生時刻と、前記イベント発生対象が属する環境が前記イベント発生対象に影響を与え始めた時刻である環境影響時刻とが記述されるイベント情報を記憶領域から読み出す情報読み出し処理と、
     前記環境からの影響である環境影響の飽和係数である環境影響係数の値を算出すための算出式である環境影響算出式を、前記結果イベント発生時刻と前記環境影響時刻とを用いて生成し、前記原因イベントからの影響である原因影響の減衰係数である原因影響係数の値を算出すための算出式である原因影響算出式を、前記原因イベント発生時刻と前記結果イベント発生時刻とを用いて生成する算出式生成処理と、
     前記環境影響算出式と前記原因影響算出式とに制約条件と目的関数とを設定し、前記制約条件と前記目的関数とが設定された前記環境影響算出式と前記原因影響算出式とから、前記環境影響係数の値と前記原因影響係数の値とを算出する係数値算出処理とをコンピュータに実行させる情報処理プログラム。
     
    The cause event occurrence time that is the time when the cause event occurred in the event occurrence target, the result event occurrence time that is the time when the result event occurred in the event occurrence target, and the environment to which the event occurrence target belongs is the event occurrence target. An information read process for reading event information from the storage area in which the environmental impact time, which is the time at which the impact began, is described;
    An environmental impact calculation formula that is a calculation formula for calculating a value of an environmental impact coefficient that is a saturation coefficient of an environmental impact that is an impact from the environment is generated using the result event occurrence time and the environmental impact time. , Using the cause event occurrence time and the result event occurrence time as a cause effect calculation formula that is a calculation formula for calculating a value of a cause influence coefficient that is an attenuation coefficient of a cause influence that is an influence from the cause event Calculation formula generation processing generated by
    A constraint condition and an objective function are set in the environmental impact calculation formula and the cause impact calculation formula, and the environmental impact calculation formula and the cause impact calculation formula in which the constraint condition and the objective function are set, An information processing program for causing a computer to execute a coefficient value calculation process for calculating an environmental influence coefficient value and a cause influence coefficient value.
PCT/JP2015/053120 2015-02-04 2015-02-04 Information processing device, information processing method, and information processing program WO2016125273A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016572998A JP6184619B2 (en) 2015-02-04 2015-02-04 Information processing apparatus, information processing method, and information processing program
PCT/JP2015/053120 WO2016125273A1 (en) 2015-02-04 2015-02-04 Information processing device, information processing method, and information processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053120 WO2016125273A1 (en) 2015-02-04 2015-02-04 Information processing device, information processing method, and information processing program

Publications (1)

Publication Number Publication Date
WO2016125273A1 true WO2016125273A1 (en) 2016-08-11

Family

ID=56563637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053120 WO2016125273A1 (en) 2015-02-04 2015-02-04 Information processing device, information processing method, and information processing program

Country Status (2)

Country Link
JP (1) JP6184619B2 (en)
WO (1) WO2016125273A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209300A (en) * 2013-03-26 2014-11-06 三菱電機株式会社 Data processor, data processing method and program
JP2015022690A (en) * 2013-07-23 2015-02-02 株式会社日立ソリューションズ Market impact attenuation coefficient calculator, method for calculating market impact attenuation coefficient, contract simulation system, and contract simulation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209300A (en) * 2013-03-26 2014-11-06 三菱電機株式会社 Data processor, data processing method and program
JP2015022690A (en) * 2013-07-23 2015-02-02 株式会社日立ソリューションズ Market impact attenuation coefficient calculator, method for calculating market impact attenuation coefficient, contract simulation system, and contract simulation method

Also Published As

Publication number Publication date
JP6184619B2 (en) 2017-08-23
JPWO2016125273A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
Bao et al. MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment
Chen et al. Earned value project management: Improving the predictive power of planned value
Hilorme et al. Formation of risk mitigating strategies for the implementation of projects of energy saving technologies
Du et al. New failure mode and effects analysis: An evidential downscaling method
Chen et al. Project delivery system selection of construction projects in China
Xu et al. A discrete consensus support model for multiple attribute group decision making
US10963807B2 (en) Social collaboration in probabilistic prediction
Fan et al. Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context
US20140149174A1 (en) Financial Risk Analytics for Service Contracts
Chen et al. The dynamics of dividends, earnings and prices: evidence and implications for dividend smoothing and signaling
Yang et al. A study on directional returns to scale
WO2021139432A1 (en) Artificial intelligence-based user rating prediction method and apparatus, terminal, and medium
Chen et al. Bayesian estimation of realized GARCH-type models with application to financial tail risk management
Mirnezami et al. An innovative interval type-2 fuzzy approach for multi-scenario multi-project cash flow evaluation considering TODIM and critical chain with an application to energy sector
Jabeen et al. An Empirical Study of Macroeconomic Factors and Stock Returns in the Context of Economic Uncertainty News Sentiment Using Machine Learning
Yang Strengthening worker benefits or destroying jobs: Effect of the 2008 Labor Contract Law in China
JP6184619B2 (en) Information processing apparatus, information processing method, and information processing program
Chen et al. Software reliability prediction through encoder-decoder recurrent neural networks
Huang et al. A social network analysis-based model for failure mode and effect analysis under linguistic preference relation environment
CN116091249A (en) Transaction risk assessment method, device, electronic equipment and medium
Daryakin et al. Problems of evaluation and management of operational risks in banks
Zhang et al. Comparative analysis of two resources-based economies: A study of policy recommendation toward sustainable development
Aronu et al. The Nexus Between Some Selected Macroeconomic Variables on Growth Output in Nigeria: An Autoregressive Distributed Lag (ARDL) Approach
Simone What Drives Technological Change in Regions? Relatedness and R&D Subsidies in the US from 1981 to 2010
Chen et al. Research on imperfect condition-based maintenance strategy based on accelerated degradation process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881090

Country of ref document: EP

Kind code of ref document: A1