WO2016124062A1 - 一种高效节能的电力网络的运行方法 - Google Patents

一种高效节能的电力网络的运行方法 Download PDF

Info

Publication number
WO2016124062A1
WO2016124062A1 PCT/CN2016/070156 CN2016070156W WO2016124062A1 WO 2016124062 A1 WO2016124062 A1 WO 2016124062A1 CN 2016070156 W CN2016070156 W CN 2016070156W WO 2016124062 A1 WO2016124062 A1 WO 2016124062A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
energy
power network
industry
load
Prior art date
Application number
PCT/CN2016/070156
Other languages
English (en)
French (fr)
Inventor
顾为东
Original Assignee
顾为东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顾为东 filed Critical 顾为东
Priority to EP16746057.5A priority Critical patent/EP3255750A4/en
Priority to AU2016214892A priority patent/AU2016214892A1/en
Priority to US15/548,789 priority patent/US20180026447A1/en
Priority to JP2017541709A priority patent/JP6415739B2/ja
Publication of WO2016124062A1 publication Critical patent/WO2016124062A1/zh
Priority to AU2020204331A priority patent/AU2020204331A1/en
Priority to AU2020104463A priority patent/AU2020104463A4/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention relates to a method for operating a power network, and belongs to the technical field of power control.
  • the secondary industry is China's pillar industry.
  • China's economic and industrial structure transformation policy the industry as a pillar industry in China is also facing the challenge of transformation.
  • the high-energy-consuming industries are under the influence of regulatory policies such as overcapacity.
  • the proportion of industrial added value dropped from 32.2% in 2008 to 28.9% in 2013.
  • China's power supply and power demand also increased rapidly.
  • China's total electricity consumption reached 4.9591 trillion kWh, a year-on-year increase of 5.5%.
  • China's total electricity consumption increased by 16.8 times, with an average annual growth rate of 9.2%.
  • the shortage of power supply across the country has basically been alleviated.
  • coal As the main energy source of China, coal accounts for about 70% of the total primary energy consumption. In 2012, China's coal-fired installed capacity reached 758 million kilowatts, accounting for 66.2% of the total installed capacity; coal-fired power generation was 3.68 trillion kWh, accounting for 73.9% of the total power generation. China's abundant coal resource endowment determines that China will maintain a coal-fired power supply structure for a long period of time.
  • the coal-fired power supply structure cannot be deeply peak-regulated. Therefore, the power distribution in China's large-area power grid is unreasonable, resulting in a contradiction between the power supply structure (base, waist, and peak-loaded power supply), that is, the power grid is seriously lacking in peak-shaving power supply.
  • China has been forcing super-critical and ultra-supercritical 600,000-100,000 kW units to participate in a certain range of peak shaving, and down to 50% subcritical operation during low valleys, so that low-carbon units operate at high carbon. With the urbanization and industrialization, the annual power consumption of the grid will increase by more than 50%.
  • the power structure With the adjustment of the industrial structure, the power structure has undergone fundamental changes, and the electricity-power supply relationship has changed, resulting in an increasing peak-to-valley difference in the power grid.
  • the peak-to-valley ratio of developing countries is 1:0.63
  • the peak-to-valley ratio of developed countries is 1:0.25.
  • the load peak-to-valley difference of China's inter-provincial power systems is generally about 30% to 40% of the maximum load.
  • the technical problem to be solved by the present invention is to provide an efficient and highly utilized power network operation system for the deficiencies of the prior art.
  • the technical solution proposed by the present invention to solve the above technical problem is: an energy-efficient electric power
  • the step of operating the network is as follows: the control center of the power network is based on the load prediction value in the power network and the rated output power of the power generation side in the power network as a high energy-consuming industry user in the power network Calculating the power of the power distribution, the power of the power distribution is the difference between the rated output power and the predicted value of the load; and the user of the high energy-consuming industry performs the power operation according to the power of the power distribution.
  • the non-high-energy-consuming industry users in the power network include residential users, first-industry users, tertiary industry users, and conventional industrial users;
  • the load forecast value is the resident user load, the primary industry User load, third industry user load and general industrial user load.
  • An improvement of the above technical solution is that the rated output power of the power generation side is constant or substantially constant.
  • the power generation side is a nuclear power plant, a thermal power plant and a renewable energy power plant.
  • the method of high energy consumption industry is a high performance industry, and the characteristics of the high energy consumption industry are utilized to consume excess power generated by the power plant, so that the generator set does not need to bear the unconventional peak regulation belt.
  • the loss has not only reduced the amount of non-renewable resources such as coal, but also reduced the operation and maintenance costs of the generator set.
  • the enterprises in the high-energy-consuming industries using this method have significantly reduced their production costs compared with other enterprises, and the power plants operate efficiently, which can improve coal utilization efficiency and improve the efficiency of power generation enterprises and power grids.
  • Fig. 1 is a comparison diagram of a conventional grid operating load curve and a novel grid operating load according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an operation method of an energy-efficient power network according to an embodiment of the present invention.
  • an energy-efficient power network operation method includes a power network control center, a power generation side, a power grid side, and a high-energy power side, and the rated output power of the power generation side is constant or substantially constant.
  • the running method includes the following steps:
  • the power network control center calculates the power of the distributable power distribution according to the load forecast value of the power grid and the rated output power of the power generation side (the line 4 in Figure 1); the power grid predicts the load according to the traditional power grid (1 in Figure 1) Line) remove the traditional high-energy-consuming industry power load, that is, obtain the new grid side user load (line 3 in Figure 1); thermal power plants and nuclear power plants operate according to the optimal output load, and some small thermal power plants are shut down due to poor efficiency.
  • thermal power, nuclear power and hydropower can be operated at 80% of the daily maximum load; renewable energy power generation can be used as it is, and is not reflected in the average power generation load (line 2 in Figure 1); renewable Energy generation is directly consumed by high-energy users;
  • the power of the transmittable power is the difference between the rated output power and the predicted load.
  • the power grid user side of this embodiment includes a resident user, a first industry user, a third industry user, and a conventional industrial user; the load prediction value is a resident user load, a first industry user load, a third industry user load, and a conventional industrial user load.
  • the power generation side of this embodiment is a nuclear power plant, a thermal power plant, a renewable energy power plant, and a peak power plant.
  • the conventional grid User predicts load line and new grid user forecast load
  • the line direction is basically the same, and the high load energy industry can use the electric load line as the peak-shaving power.
  • the direction of the power is completely opposite to the former two, but finally the power-power supply is balanced, so that the average power generation load line of the power generation side is satisfied.
  • the energy conversion rate has been increased, and the energy consumption of non-renewable energy has been reduced indirectly, contributing to low-carbon environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种高效节能的电力网络的运行方法,属于电力控制技术领域。该方法如下:电力网络的控制中心依据电力网络中的负荷预测值以及电力网络中的发电侧的额定输出功率为电力网络中的高耗能行业用户测算可支配电能功率,可支配电能功率为额定输出功率与负荷预测值之差;高耗能行业用户根据可支配电能功率进行用电作业。本方法化高耗能行业为高效能行业,在降低企业运行成本的同时,实现电网的稳定运行,提高电网利用率,保证火电、核电的高负荷运行,避免调负荷造成火电、核电企业生产成本增加,同时保证可再生能源发电能够全部并入电网利用。

Description

一种高效节能的电力网络的运行方法 技术领域
本发明涉及一种电力网络的运行方法,属于电力控制技术领域。
背景技术
改革开放以来,中国经济呈现了突飞猛进的增长势头,1978年至2004年间中国人均GDP的年增长率为8.16%,一直处于世界GDP增长的前列,取得了举世瞩目的成就。这一阶段经济的高速增长,产业结构的不断优化、演变起到了重要的作用。
第二产业是我国的支柱产业,但随着中国经济产业结构转型政策的指引下,作为我国支柱产业的工业也面临着转型的挑战,高耗能行业在化解产能过剩矛盾等调控政策的作用下,在工业增加值中的比重从2008年的32.2%下降至2013年的28.9%。
化学原料及化学制品制造业、非金属矿物制品业、黑色金属冶炼及压延加工业、有色金属冶炼及压延加工业、石油加工炼焦及核燃料加工业、电力热力的生产和供应业六大高耗能行业对全社会用电增长的贡献率高达42.7%,高耗能产业仍是全社会用电增长的主要拉动力量。
但是为了建设能源节约型社会,强调突出抓好节能用电,连续出台治理文件,实施阶梯电价,禁止给高耗能项目降低电价,随着工业用电价格不断调整,电价的上浮侵蚀着高耗能行业的利润空间,这已影响到高耗能行业的生存,缺乏竞争优势的落后产能逐步退出,行业内产业结构调整资源再分配。
而随着经济增长的同时我国的电力供应与电力需求也迅速增长。2012年我国全社会用电量达到了49591亿千瓦时,同比增长5.5%。 从1980年至2012年,我国全社会用电量增长16.8倍,年均增长9.2%。全国电力供应紧缺问题基本得到缓解。
作为我国主体能源的煤炭,占一次能源消费总量的70%左右。2012年我国煤电装机规模已达7.58亿千瓦,占总装机的66.2%;煤电发电量3.68万亿千瓦时,占总发电量的73.9%。我国丰富的煤炭资源禀赋决定了我国将在较长时间段内保持以煤电为主的电源结构。
煤电为主的电源结构不能深度调峰,因此我国大区电网存在电源分布不合理,造成电源结构(基、腰、峰荷电源)性矛盾,即电网严重缺乏调峰电源。多年来我国一直迫使超临界和超超临界60万-100万千瓦机组参与一定范围的调峰,低谷时压到50%亚临界运行,使低碳机组高碳运行。随着城市化、工业化,电网每年增长的用电负荷,其峰谷差将超过50%。
而随着产业结构的调整,用电结构发生了根本性的变化,用电-供电关系发生变化,导致电网峰谷差日益增大。一般发展中国家的峰谷比是1:0.63,发达国家的峰谷比为1:0.25,而中国各跨省电力系统的负荷峰谷差一般约为最大负荷的30%~40%。
由于我国的当前国情及多种多样原因的制约导致我国不能像发达国家一样大规模利用调峰用智能电站(抽水蓄能电站、燃气电厂、燃油电厂等)弥补峰谷差,即便预测出用电功率值,能够用到调峰用智能电站,其能源转换效率也仅为75%,有25%的能源被白白浪费。因此我国面临的调峰任务和压力正日趋严峻。
发明内容
本发明要解决的技术问题是,针对现有技术不足,提出一种高效、高利用率的电力网络运行体系。
本发明为解决上述技术问题提出的技术方案是:一种高效节能的电力 网络的运行方法的步骤如下:所述电力网络的控制中心依据所述电力网络中的负荷预测值以及所述电力网络中的发电侧的额定输出功率为所述电力网络中的高耗能行业用户测算可支配电能功率,所述可支配电能功率为所述额定输出功率与所述负荷预测值之差;所述高耗能行业用户根据所述可支配电能功率进行用电作业。
上述技术方案的改进是:所述电力网络中的非高耗能行业用户包括居民用户、第一产业用户、第三产业用户及常规工业用户;所述负荷预测值为居民用户负荷、第一产业用户负荷、第三产业用户负荷及常规工业用户负荷。
上述技术方案的改进是:所述发电侧的额定输出功率恒定或基本恒定。
上述技术方案的改进是:所述发电侧为核电厂、火电厂和可再生能源发电厂。
本发明采用上述技术方案的有益效果是:本方法化高耗能行业为高效能行业,借助高耗能行业的特性来消耗发电厂产生的多余电量,这使得发电机组无需负担非常规调峰带来的损失,既减少了对煤炭等不可再生资源用量,也降低了发电机组的运行维护成本。
使用本方法的高耗能行业的企业同比于其他企业来说其生产成本大幅降低,发电厂高效运行,可实现提高煤炭利用效率,提高发电企业和电网效益。
附图说明
下面结合附图对本发明作进一步说明。
图1传统电网运行负荷曲线与本发明实施例的新型电网运行负荷对比图。
图2是本发明实施例高效节能的电力网络的运行方法的流程示意 图。
具体实施方式
实施例
如图1、2所示的一种高效节能的电力网络的运行方法,包括电力网络控制中心、发电侧、电网用电侧和高载能用电侧,发电侧的额定输出功率恒定或基本恒定;运行方法包括以下步骤:
1)电力网络控制中心依据电网的负荷预测值以及发电侧的额定输出功率为高耗能行业用户测算可支配电能功率(图1中4号线);电网根据传统电网预测负荷(图1中1号线)去掉传统高耗能行业用电负荷,即获得新型电网侧用户负荷(图1中3号线);火力发电厂和核电站按照最优出力负荷运行,部分小火电由于效益差而关停不并入电网,火电、核电和水电按照日最大负荷的80%负荷运行即可;可再生能源发电随发随用,并没有体现在平均发电负荷(图1中2号线)上;可再生能源发电直接由高耗能用户消耗;
2)高耗能行业用户根据步骤1)中测算的可支配电能功率进行用电作业;高耗能行业通过技术革新,可实现剧烈的波动负荷;
可支配电能功率为额定输出功率与负荷预测值之差。
本实施例的电网用户侧包括居民用户、第一产业用户、第三产业用户及常规工业用户;负荷预测值为居民用户负荷、第一产业用户负荷、第三产业用户负荷及常规工业用户负荷。
本实施例的发电侧为核电厂、火电厂、可再生能源发电厂、调峰电厂。
如图1所示,从传统电网用户预测负荷线、平均的发电负荷线、新型电网用户预测负荷线和高载能行业可用电负荷线可以看出,在本发明的实施例中,传统电网用户预测负荷线和新型电网用户预测负荷 线走向基本一致,而高载能行业可用电负荷线作为调峰用电其走向与前两者完全相反,但最终使得用电-供电达到平衡,使得满足发电侧平均发电负荷线,借此提高了能源转换率,间接降低了不可再生能源的能源消耗,为低碳环保做出贡献。
本发明不局限于上述实施例。凡采用等同替换形成的技术方案,均落在本发明要求的保护范围。

Claims (4)

  1. 一种高效节能的电力网络的运行方法,其特征在于:
    所述电力网络的控制中心依据所述电力网络中的负荷预测值以及所述电力网络中的发电侧的额定输出功率为所述电力网络中的高耗能行业用户测算可支配电能功率,所述可支配电能功率为所述额定输出功率与所述负荷预测值之差;所述高耗能行业用户根据所述可支配电能功率进行用电作业。
  2. 如权利要求1所述的高效节能的电力网络的运行方法,其特征在于:所述电力网络中的非高耗能行业用户包括居民用户、第一产业用户、第三产业用户及常规工业用户;所述负荷预测值为居民用户负荷、第一产业用户负荷、第三产业用户负荷及常规工业用户负荷。
  3. 如权利要求1所述的高效节能的电力网络的运行方法,其特征在于:所述发电侧的额定输出功率恒定或基本恒定。
  4. 如权利要求1或3所述的高效节能的电力网络的运行方法,其特征在于:所述发电侧为核电厂、火电厂和可再生能源发电厂。
PCT/CN2016/070156 2015-02-04 2016-01-05 一种高效节能的电力网络的运行方法 WO2016124062A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16746057.5A EP3255750A4 (en) 2015-02-04 2016-01-05 High-efficiency and energy-saving method for operating power network
AU2016214892A AU2016214892A1 (en) 2015-02-04 2016-01-05 High-efficiency and energy-saving method for operating power network
US15/548,789 US20180026447A1 (en) 2015-02-04 2016-01-05 Efficient and energy-saving power grid operation method
JP2017541709A JP6415739B2 (ja) 2015-02-04 2016-01-05 高効率で省エネの電力ネットワークの運行方法
AU2020204331A AU2020204331A1 (en) 2015-02-04 2020-06-29 High-efficiency and energy-saving method for operating power network
AU2020104463A AU2020104463A4 (en) 2015-02-04 2020-06-29 High-efficiency and energy-saving method for operating power network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510056957.2 2015-02-04
CN201510056957.2A CN104682428A (zh) 2015-02-04 2015-02-04 一种高效节能的电力网络的运行方法

Publications (1)

Publication Number Publication Date
WO2016124062A1 true WO2016124062A1 (zh) 2016-08-11

Family

ID=53317166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070156 WO2016124062A1 (zh) 2015-02-04 2016-01-05 一种高效节能的电力网络的运行方法

Country Status (6)

Country Link
US (1) US20180026447A1 (zh)
EP (1) EP3255750A4 (zh)
JP (1) JP6415739B2 (zh)
CN (1) CN104682428A (zh)
AU (3) AU2016214892A1 (zh)
WO (1) WO2016124062A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554238A (zh) * 2021-08-10 2021-10-26 九州方圆实业控股(集团)有限公司 一种生态产业园的入园企业规划方法
CN113868895A (zh) * 2021-11-02 2021-12-31 中国能源建设集团江苏省电力设计院有限公司 一种坚强局部电网构建方法
CN115860438A (zh) * 2023-02-23 2023-03-28 大唐山东能源营销有限公司 一种燃煤电厂电量分配方法、系统及介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682428A (zh) * 2015-02-04 2015-06-03 顾为东 一种高效节能的电力网络的运行方法
CN104899659A (zh) * 2015-06-15 2015-09-09 天津大学 一种智能园区多级能耗传递模型
JP6853981B2 (ja) * 2017-06-08 2021-04-07 清水建設株式会社 余剰電力評価装置及び余剰電力評価方法
CN108491981B (zh) * 2018-04-04 2021-06-15 国网安徽省电力公司黄山供电公司 一种提升景区饱和负荷预测精度的负荷预测方法
CN112421624A (zh) * 2020-11-12 2021-02-26 单新文 一种高压电网理论线损评估系统
CN113659622B (zh) * 2021-08-17 2024-08-02 清华大学 一种实现两台并联运行逆变器主从机无缝切换控制方法
CN115236981B (zh) * 2022-07-13 2023-10-10 江苏南通发电有限公司 一种基于深度调峰百万千瓦燃煤机组协调预测控制方法
CN115102203B (zh) * 2022-08-29 2023-01-17 中国能源建设集团山西省电力勘测设计院有限公司 热电联产机组在深度调峰运行下的储能及放能方法
CN115659228B (zh) * 2022-12-26 2023-05-12 国网浙江省电力有限公司宁波供电公司 一种用户用电激励方法、系统及可读存储介质
CN116131292A (zh) * 2023-04-17 2023-05-16 武汉大学 基于电解铝和多晶硅协同配合的电网调频方法及系统
CN116780544B (zh) * 2023-08-24 2023-11-10 晋江市高威电磁科技股份有限公司 一种可实现大功率供电的电源滤波器
CN117236522B (zh) * 2023-11-10 2024-02-13 四川智源能诚售电有限公司 一种电力能耗管理方法、系统、电子设备及介质
CN117856256B (zh) * 2024-03-08 2024-05-28 国网四川省电力公司天府新区供电公司 一种基于云计算的智能电网负荷预测管理平台
CN118306255B (zh) * 2024-06-07 2024-08-30 杭州柏来科技有限公司 一种充电桩动态功率调度方法、电子设备和介质
CN118487276B (zh) * 2024-07-16 2024-09-24 国网浙江省电力有限公司杭州供电公司 一种面向电力保障对象的电网安全动态管控方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441494A (zh) * 2013-07-24 2013-12-11 顾为东 基于非并网多能源协同供电的智能电网系统
CN104682428A (zh) * 2015-02-04 2015-06-03 顾为东 一种高效节能的电力网络的运行方法
CN204497748U (zh) * 2015-02-04 2015-07-22 顾为东 峰谷差便携检测设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872286A (en) * 1973-10-12 1975-03-18 Westinghouse Electric Corp Control system and method for limiting power demand of an industrial plant
JP5168891B2 (ja) * 2006-11-28 2013-03-27 日産自動車株式会社 電動車両充電電力マネジメントシステム
DE102009040091A1 (de) * 2009-09-04 2011-03-10 Voltwerk Electronics Gmbh Inseleinheit eines Inselenergienetzes zum Kommunizieren von Energieanfragen mit einer weiteren Inseleinheit
US20130013232A1 (en) * 2011-07-08 2013-01-10 Nawal Kishor Parwal System and method for use in electric power distribution systems
JP2014166113A (ja) * 2013-02-27 2014-09-08 Chugoku Electric Power Co Inc:The 需要電力の平準化システム
CN103972896B (zh) * 2014-05-13 2015-09-09 国家电网公司 一种基于需求响应的负荷建模和优化控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441494A (zh) * 2013-07-24 2013-12-11 顾为东 基于非并网多能源协同供电的智能电网系统
CN104682428A (zh) * 2015-02-04 2015-06-03 顾为东 一种高效节能的电力网络的运行方法
CN204497748U (zh) * 2015-02-04 2015-07-22 顾为东 峰谷差便携检测设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255750A4 *
YANG YANG ET AL.: "Optimization Strategy and Model of Load Control Considering Power Consumption Efficiency", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 36, no. 18, 25 September 2012 (2012-09-25), pages 103 - 104, XP009500161, ISSN: 1000-1026 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554238A (zh) * 2021-08-10 2021-10-26 九州方圆实业控股(集团)有限公司 一种生态产业园的入园企业规划方法
CN113868895A (zh) * 2021-11-02 2021-12-31 中国能源建设集团江苏省电力设计院有限公司 一种坚强局部电网构建方法
CN115860438A (zh) * 2023-02-23 2023-03-28 大唐山东能源营销有限公司 一种燃煤电厂电量分配方法、系统及介质

Also Published As

Publication number Publication date
US20180026447A1 (en) 2018-01-25
EP3255750A1 (en) 2017-12-13
AU2020104463A4 (en) 2021-12-02
AU2020204331A1 (en) 2020-07-16
AU2016214892A1 (en) 2017-09-28
EP3255750A4 (en) 2018-03-28
CN104682428A (zh) 2015-06-03
JP2018504883A (ja) 2018-02-15
JP6415739B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2016124062A1 (zh) 一种高效节能的电力网络的运行方法
CN107153885B (zh) 考虑火电机组深度调峰的实时发电计划优化方法
Liu Research on optimal placement of low‐carbon equipment capacity in integrated energy system considering carbon emission and carbon trading
CN109002947A (zh) 一种区域多能源系统热电负荷分配优化方法
CN205011850U (zh) 铝电解槽热平衡控制装置
Fu et al. Quantitative analysis of the feasibility of realizing the transformation to clean energy for China’s energy increment by 2035
Tang et al. Path analysis of implementing carbon neutral target in customer side of power grid company
CN203382827U (zh) 非并网多能源协同供电的电解铝系统
CN205017018U (zh) 大型铝电池调峰电站
Tang et al. Current situation analysis of electrohydrogen production under the background of “Carbon Neutralization”
Yang et al. Research on the application prospect of energy storage technology in energy internet
Zheng et al. Comprehensive Energy Consumption Assessment Based on Industry Energy Consumption Structure Part I: Analysis of Energy Consumption in Key Industries
Tao et al. Research on Power Storage Optimization Operation Strategy for Wind-Photovoltaic Power Coupled Hydrogen Production
Wang et al. Analysis of renewable energy influence for demand side resources participate in ancillary services
Zhang et al. Analysis on energy saving potential for pumped-storage and two-shift peaking of coal-fired units
Zhu et al. Optimal configuration method of carbon capture systems in generation planning
Yu et al. Planning of central energy station in community integrated energy system with electrical and heat storage devices
Chen et al. Demand and Forecast Analysis of Power New Energy under the Background of Carbon Peak Reachin
Sun et al. Analysis of Combined Participation of Wind Power and Electric Heating in Power Supply System
Zheng et al. Day-ahead Intra-day Economic Dispatch Methodology Accounting for the Participation of Electrolytic Aluminum Loads and Energy Storage in Power System Peaking
Wang et al. Analysis and Forecast of Energy Electrification Level in Jilin Province of China
Meng et al. Research on the development direction of new power system under carbon peak and carbon neutral targets
Zhang et al. Classification of Self-Provided Power Plants and Their Interactive Potentials with Power Grid
Wan et al. Research on scenario construction and economic analysis for electric-hydrogen coupling
Ye et al. Study on the Situation and Countermeasures of Power Supply& Demand in Sichuan Province under the Background of the Supply-Side Reform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15548789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016746057

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016214892

Country of ref document: AU

Date of ref document: 20160105

Kind code of ref document: A