WO2016124001A1 - 一种业务交换系统及业务交换方法 - Google Patents

一种业务交换系统及业务交换方法 Download PDF

Info

Publication number
WO2016124001A1
WO2016124001A1 PCT/CN2015/091875 CN2015091875W WO2016124001A1 WO 2016124001 A1 WO2016124001 A1 WO 2016124001A1 CN 2015091875 W CN2015091875 W CN 2015091875W WO 2016124001 A1 WO2016124001 A1 WO 2016124001A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
optical
unit
interface
bandwidth
Prior art date
Application number
PCT/CN2015/091875
Other languages
English (en)
French (fr)
Inventor
王步云
肖新华
常天海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES15880943T priority Critical patent/ES2726277T3/es
Priority to JP2017558604A priority patent/JP6521543B2/ja
Priority to EP15880943.4A priority patent/EP3247078B1/en
Publication of WO2016124001A1 publication Critical patent/WO2016124001A1/zh
Priority to US15/668,481 priority patent/US10200771B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/005Arbitration and scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to a service switching technology in a communication network, and in particular to a service switching system and a service switching method.
  • FIG. 1 the physical architecture of the service switching system based on the electrical clustering technology is as shown in FIG. 1 , which includes multiple service processing frames and multiple electrical switching frames, and each service processing frame and electrical switching frame are connected through optical fibers, and each service processing is performed.
  • the services are interworked through the electrical switch box. Any service between the frames needs to be processed twice and processed in one operation.
  • the electrical signal outputted by the first service processing block 201 is converted into an optical signal by the first electrical/optical conversion module 202; the optical signal is transmitted to the optical signal through the optical fiber.
  • the first optical/electrical conversion module 203 converts the optical signal into an electrical signal and outputs the electrical signal to the electrical switching frame 204. After the electrical switching frame 204 performs electrical switching, the electrical signal is output to the second electrical/light.
  • the conversion module 205; the second electrical/optical converter 205 converts the electrical signal into an optical signal; the optical signal is transmitted to the second optical/electrical conversion module 206 through the optical fiber; and the second optical/electrical conversion module 206 converts the optical signal into electricity.
  • the signal is output to the second service processing block 207 to complete the service exchange.
  • the total interconnect bandwidth of the optical modules connected to each other must be twice the bandwidth of the system service access capacity, and the total capacity of the switched network in the electrical switching frame must also reach the system service access capacity. bandwidth.
  • the current technology is based on the service switching system of the electrical clustering technology.
  • the rate of the optical module between the service processing frame and the electrical switching frame must be upgraded.
  • the service processing frame must select a larger capacity service processing chip and a higher-speed interface module.
  • the electrical switch frame must be upgraded in synchronization to adapt to the change of the service processing frame.
  • the electrical switch frame must also select a larger capacity. Switched mesh and higher speed interface modules. This brings about a coordinated upgrade of the service processing frame and the electrical switch frame, resulting in a higher cost of system upgrade.
  • the embodiments of the present invention provide a service switching system and a service switching method to reduce the interconnection cost of the service switching system.
  • an embodiment of the present invention provides a service switching system, including: at least two service processing blocks and at least one optical cross frame;
  • Each service processing frame is connected to each optical cross frame through an optical fiber
  • Each service processing frame is configured to perform service exchange on an electrical signal of the externally input service data, and convert the electrical signal of the service data after the service exchange into an optical signal, and send the signal to one or more optical cross frames; and/or Receiving an optical signal of service data from one or more optical cross-frames, converting it into an electrical signal, and performing service exchange, and outputting the electrical signal of the service data after the service exchange to the outside;
  • Each optical cross-frame is configured to receive optical signals from service data of one or more service processing frames, perform optical cross-connection on the received optical signals, and output optical signals that are optically cross-connected to one or more Business processing box.
  • the service switching system further includes: a bandwidth control unit, where each service processing frame is connected to the bandwidth control unit;
  • the bandwidth control unit is configured to perform bandwidth control on each service processing frame when the service processing box implements service exchange of different services.
  • the service processing block includes: at least one service processing unit, at least one electrical switching unit, and at least one interface Transfer unit
  • the service processing unit is configured to perform service processing on the electrical signal of the externally input service data, send the electrical signal of the service processed service data to the electrical switching unit, and/or receive the service exchange sent by the electrical switching unit.
  • the electrical signal of the business data is processed, and the electrical signal of the processed business data is output to the outside;
  • the electrical switching unit is configured to receive an electrical signal of the service data sent by the service processing unit, perform service exchange according to the exchange control information sent by the bandwidth control unit, and send an electrical signal of the service data after the service exchange to the interface.
  • the switching unit and/or receiving an electrical signal of the service data from the interface switching unit, performing service exchange according to the exchange control information sent by the bandwidth control unit, and transmitting the electrical signal of the service data after the service exchange to the service processing unit;
  • the interface switching unit is configured to receive an electrical signal of the service data sent by the electrical switching unit, and convert the service data from the electrical signal to the optical signal according to the transfer control information sent by the bandwidth control unit, and send the data to the optical cross frame; And/or receiving the optical signal of the service data sent by the optical cross frame, and converting the service data from the optical signal to the electrical signal to the electrical switching unit according to the transfer control information sent by the bandwidth control unit.
  • the optical cross frame includes at least one optical cross-connect unit
  • the optical cross-connect unit is configured to receive an optical signal of service data from one or more service processing frames, perform optical cross-connection on the received optical signal, and output the optical signal after the optical cross-connection to one or more Business processing boxes.
  • the electrical switching unit includes: a first electrical signal interface, an electrical switching module, and a second electrical signal interface And a first bandwidth control interface;
  • the electrical switching module is configured to receive, by using the first signal interface, an electrical signal of the service data sent by the service processing unit, perform service switching, and exchange the service according to the exchange control information sent by the bandwidth control unit received from the first bandwidth control interface. After The electrical signal of the service data is sent to the interface switching unit through the second electrical signal interface; and/or the electrical signal of the service data sent by the interface switching unit is received through the second signal interface, according to the received from the first bandwidth control interface.
  • the exchange control information sent by the bandwidth control unit performs service exchange, and sends the electrical signal of the service data after the service exchange to the service processing unit through the first electrical signal interface.
  • the interface switching unit includes: a third electrical signal interface, a transit processing module, and a photoelectric conversion interface And a second bandwidth control interface;
  • the transit processing module is configured to receive, by using the third electrical signal interface, an electrical signal of the service data from the electrical switching unit, and perform the transfer according to the transfer control information sent by the bandwidth control unit received from the second bandwidth control interface. Processing, sending the electrical signal of the processed service data to the photoelectric conversion interface; and/or receiving the electrical signal of the service data sent by the photoelectric conversion interface, according to the transmission sent by the bandwidth control unit received from the second bandwidth control interface Controlling information, performing a transfer process, and transmitting the electrical signal of the transferred service data to the electrical switching unit through the third electrical signal interface;
  • the photoelectric conversion interface is configured to convert an electrical signal of the service data received from the transfer processing module into an optical cross-connect unit that transmits the optical signal to the optical cross-frame, and/or a service that is to be received from the optical cross-connect unit
  • the optical signal of the data is converted into an electrical signal and sent to the transfer processing module.
  • the transit control information sent by the bandwidth control unit includes: delay Information and transmission control information;
  • the transit processing module is specifically configured to perform receiving processing on the electrical signal that receives the service data from the third electrical signal interface, recover the service data, and obtain the first link state information from the restored service data, and restore the After the service data is sorted and aligned, the cache is performed, and the cached service data is sent to the photoelectric conversion interface according to the sending control information and the second link state information sent by the bandwidth control unit;
  • the delay information reads the cached service data, and sends the read service data to the third electrical signal interface according to the first link information.
  • the optical cross-connect unit includes: four optical fiber interfaces, a dynamic optical cross-connect connector, and a third bandwidth control interface. ;
  • the dynamic optical cross-connector is configured to receive optical signals from service data of one or more service processing frames through any optical fiber interface, and perform optical cross-control according to a bandwidth control unit received through the third bandwidth control interface.
  • the information is optically cross-connected, and the optical signals that are optically cross-connected are output to one or more service processing frames through any fiber interface.
  • the service processing unit when performing dynamic service processing, The obtained traffic information is sent to the bandwidth control unit;
  • the bandwidth control unit is configured to obtain service configuration information and receive traffic information when performing dynamic service processing, and determine, according to service configuration information and traffic information, a required relationship between each interface switching unit and each optical cross-connect unit.
  • the optical connection bandwidth is generated according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit, and the switching control information, the transfer control information, and the optical cross-control information are generated and sent to the electrical switching unit and the interface.
  • optical connection bandwidth required between each interface switching unit and each optical cross-connect unit is generated, and exchange control information, transfer control information, and optical cross-control information are generated and sent to the electrical switching unit, the interface switching unit, and the optical cross-connect unit, respectively.
  • the bandwidth control unit includes a first traffic information receiving interface, a first configuration interface, a first service bandwidth controller, and a fourth bandwidth control interface;
  • the first bandwidth controller is configured to obtain service configuration information by using a first configuration interface, and receive the traffic information by using a first traffic information receiving interface, and determine, according to service configuration information and traffic information, Each interface
  • the required optical connection bandwidth between the connection unit and each optical cross-connect unit generates exchange control information, transfer control information, and optical cross-control according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • the information is respectively sent to the electrical switching unit, the interface switching unit, and the optical cross-connect unit through the fourth bandwidth control interface;
  • the service configuration information is obtained through the first configuration interface, and the required optical connection bandwidth between each interface switching unit and each optical cross-connect unit is determined according to the service configuration information, according to the determined interfaces.
  • the optical connection bandwidth required between the switching unit and each optical cross-connect unit generates switching control information, switching control information, and optical cross-control information, and is respectively sent to the electrical switching unit, the interface switching unit, and the optical crossover through the fourth bandwidth control interface. Connection unit.
  • the optical cross-connect unit includes: four optical fiber interfaces and static optical crossover Connector;
  • the static cross-connector is configured to receive optical signals from service data of one or more service processing frames through any optical fiber interface, and perform optical cross-connection according to a fixed connection relationship between the input optical port and the output optical port. And outputting the optical signal after the optical cross-connection to one or more service processing frames through any optical fiber interface;
  • the photoelectric conversion interface is configured to receive optical signal wavelength adjustment information from the bandwidth control unit through the second bandwidth control interface, determine the wavelength of the transmitted optical signal according to the optical signal wavelength adjustment information, and according to the determined wavelength of the optical signal,
  • the electrical signal of the service data received from the transfer processing module is converted into an optical signal that is sent to the static cross-connector in the optical cross-connect unit, or the optical signal of the service data received from the static cross-connector of the optical cross-connect unit is converted into The electrical signal is sent to the transfer processing module.
  • the service processing unit sends the obtained traffic information to the bandwidth when performing dynamic service processing control unit;
  • the bandwidth control unit is configured to obtain service configuration information and receive traffic information when performing dynamic services, and determine required light between each interface switching unit and each optical cross-connect unit according to the service configuration information and the traffic information. Connecting belt Width, according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit, generating exchange control information, transfer control information, and optical signal wavelength adjustment information are respectively sent to the electrical switching unit and the interface switching unit;
  • optical connection bandwidth required between each optical cross-connect unit, the generated exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit and the interface switching unit.
  • the bandwidth control unit includes: a second traffic information receiving interface, a second configuration interface, and a Two service bandwidth controllers and a fifth bandwidth control interface;
  • the second bandwidth controller is configured to obtain service configuration information by using a second configuration interface, and receive the traffic information by using a second traffic information receiving interface, and determine, according to service configuration information and traffic information,
  • the optical connection bandwidth required between each interface switching unit and each optical cross-connect unit generates switching control information and transfer control information according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • the optical signal wavelength adjustment information is respectively sent to the electrical switching unit and the interface switching unit through the fifth bandwidth control interface;
  • optical connection bandwidth required between the switching unit and each optical cross-connect unit, the generated exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit and the interface switching unit through the fifth bandwidth control interface.
  • the service processing unit includes: a service interface, a service processing module, a fourth electrical signal interface, and a traffic collection interface;
  • the service processing module is configured to receive an electrical signal of the service data from the outside through the service interface, perform a service processing, and process the electrical signal of the processed service data. Sending to the electrical switching unit through the fourth signal interface; or receiving an electrical signal of the service data sent by the electrical switching unit through the fourth signal interface, performing service processing, and passing the processed electrical signal of the service data.
  • the service interface is sent to the outside; in the process of performing dynamic service processing, the traffic information of the service data is collected, and the traffic information is sent to the bandwidth control unit through the traffic collection interface.
  • the bandwidth control unit is: a device independent of the service processing frame or the optical cross frame; or integrated in the service processing frame or the optical cross frame.
  • the service processing unit, the electrical switching unit, and the interface switching unit are two or three Integrated in a single board.
  • an embodiment of the present invention provides a service switching method, which is applied to the service switching system, and includes:
  • the service processing box exchanges the electrical signals of the externally input service data, and converts the electrical signals of the service data after the service exchange into optical signals, and sends the signals to one or more optical cross frames;
  • the optical cross frame receives the optical signal of the service data from the one or more service processing frames, performs optical cross-connection on the received optical signal, and outputs the optical signal after the optical cross-connection to one or more service processing frames;
  • the service processing frame receives the optical signal of the service data from one or more optical cross-frames, converts it into an electrical signal, and performs service exchange, and outputs the electrical signal of the service data after the service exchange to the outside.
  • the service switching system further includes: a bandwidth control unit, where each service processing frame is connected to the bandwidth control unit;
  • the bandwidth control unit performs bandwidth control on each service processing frame.
  • the service processing frame includes: at least one service office a management unit, at least one electrical switching unit, and at least one interface switching unit;
  • the step of the service processing box performing service exchange on the electrical signal of the externally input service data, and converting the electrical signal of the service data after the service conversion into an optical signal, and transmitting the information to one or more optical cross frames includes:
  • the service processing unit receives the electrical signal of the externally input service data and performs service processing, and sends the electrical signal of the service processed service data to the electrical switching unit;
  • the electrical switching unit receives the electrical signal of the service data sent by the service processing unit, performs the service exchange according to the exchange control information sent by the bandwidth control unit, and sends the electrical signal of the service data after the service exchange to the interface switching unit;
  • the interface switching unit receives the electrical signal of the service data sent by the electrical switching unit, converts the service data into an optical signal according to the transfer control information sent by the bandwidth control unit, and sends the data to the optical cross frame;
  • the step of receiving, by the service processing frame, the optical signal of the service data from the one or more optical cross-frames, converting the electrical signal into an electrical signal, and performing the service exchange, and outputting the electrical signal of the service data after the service exchange to the external includes:
  • the interface switching unit receives the optical signal of the service data sent by the optical cross frame, and converts the service data from the optical signal to the electrical signal to the electrical switching unit according to the transfer control information sent by the bandwidth control unit;
  • the electrical switching unit receives the electrical signal of the service data from the interface switching unit, performs the service exchange according to the exchange control information sent by the bandwidth control unit, and sends the electrical signal of the service data after the service exchange to the service processing unit;
  • the service processing unit receives the electrical signal of the service data after the service exchange sent by the electrical switching unit, and outputs the electrical signal of the processed service data to the outside of the system.
  • the optical cross frame includes at least one optical cross-connect unit
  • the optical cross-frame receives optical signals from service data of one or more service processing blocks, optically cross-connects the received optical signals, and outputs the optical signals that are optically cross-connected to one or more service processing frames.
  • optical cross-connect unit Receiving, by the optical cross-connect unit, an optical signal of service data from one or more service processing blocks, performing optical cross-connection on the received optical signal, and The optical signal after the optical cross-connection is output to one or more service processing blocks.
  • the interface switching unit receives an electrical signal of the service data sent by the electrical switching unit, and sends the electrical signal according to the bandwidth control unit.
  • the interface switching unit receives the electrical signal of the service data sent by the electrical switching unit, performs receiving processing, recovers the service data, obtains the first link state information from the restored service data, and sorts and aligns the restored service data. Cache, and according to the transmission control information and the second link state information sent by the bandwidth control unit, the optical signal that converts the cached service data into service data is sent to the optical cross-connect unit of the optical cross frame;
  • the step of the interface switching unit receiving the optical signal of the service data sent by the optical cross-frame, and converting the service data from the optical signal to the electrical signal to the electrical switching unit according to the transfer control information sent by the bandwidth control unit including:
  • the interface switching unit After receiving the optical signal of the service data sent by the optical cross-connect unit in the optical cross-box, the interface switching unit performs the receiving process, recovers the service data, and obtains the second link state from the recovered service data.
  • the information is cached, and the cached service data is read according to the delay information sent by the bandwidth control unit, and the read service data is sent to the electrical switching unit according to the first link information.
  • the service processing unit sends the obtained traffic information to the bandwidth control when performing dynamic service processing unit;
  • the bandwidth control unit determines, according to the service configuration information and the traffic information, each interface switching unit and each optical cross-connect unit when performing dynamic service processing.
  • the required optical connection bandwidth is generated, and the exchange control information, the transfer control information, and the optical cross control information are respectively sent to the electrical switching unit according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • a dynamic optical cross-connector of the interface switching unit and the optical cross-connect unit and/or obtaining service configuration information when performing static service processing, and determining the need between each interface switching unit and each optical cross-connecting unit according to the service configuration Optical connection bandwidth, according to the determined connections
  • the optical connection bandwidth required between the port switching unit and each optical cross-connect unit generates switching control information, switching control information, and optical cross-control information, which are respectively sent to the electrical switching unit, the interface switching unit, and the optical cross-connect unit.
  • the service processing unit sends the obtained traffic information to the bandwidth control when performing dynamic service processing unit;
  • the bandwidth control unit determines, according to service configuration information and traffic information, each interface switching unit and each optical cross-connect unit when performing dynamic service processing.
  • the required optical connection bandwidth is generated, and the exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • interface transfer unit
  • And/or performing the static service obtaining the service configuration information, and determining the required optical connection bandwidth between each interface switching unit and each optical cross-connect unit according to the service configuration information, according to the determined interface switching unit and each
  • the optical connection bandwidth required between the optical cross-connect units, the generated exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit and the interface switching unit.
  • the interface conversion unit receives the optical signal wavelength adjustment information sent by the bandwidth control unit, and adjusts the information according to the optical signal wavelength. Determining the wavelength of the transmitted optical signal; and converting the electrical signal of the service data received from the service switching unit into an optical signal for transmission to the static cross-connector in the optical cross-connect unit in accordance with the determined wavelength of the optical signal.
  • the service configuration information includes: optical connection bandwidth allocation policy information, static Connection information and bandwidth information of the service;
  • step of generating, by the bandwidth control unit, the exchange control information and the transfer control information according to the service configuration information and the traffic information including:
  • the exchange control information and the transfer control information are generated according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • the method further includes: pre-intersection of each service processing frame with each light Between the boxes, configure additional bandwidth;
  • the bandwidth control unit sends the transfer control information to the interface switching unit of the adjusted link before the optical cross-connect unit adjusts the connection, and sends the service data of the adjusted link to the redundant chain brought by the additional bandwidth.
  • the switch control information is sent to the interface switching unit of the adjusted link, and the service data on the redundant link is restored to the adjusted link;
  • the switch control information is sent to the interface switching unit of the adjusted link, and the service data transmission of the adjusted link interface switching unit is stopped, and the switch is sent from the electrical switching unit to the interface.
  • the service data of the unit is buffered in the interface switching unit.
  • the switch control information is sent to the interface switching unit of the adjusted link, and the service data transmission of the interface switching unit is resumed. And cache the cached business data through the redundant link brought by the additional bandwidth.
  • the service switching system and the service switching method provided by the embodiments of the present invention use optical cross-frames to implement inter-frame interconnection between different service processing boxes, instead of using electrical switching in the prior art.
  • a switch box is used to implement inter-frame interconnection between different service processing boxes.
  • the two electric/optical conversion and two optical/electrical conversions in the prior art inter-frame interconnection process are reduced to one electric/optical conversion and one optical/electrical conversion, thereby reducing the inter-frame interconnection optical module.
  • the number of systems reduces system cost and system power consumption, which reduces the interconnection cost of the service switching system.
  • the optical switching frame has a rate-independent optical signal that is interconnected between the service processing frames, when the inter-frame interconnection rate of the service processing frame is increased, the existing optical cross-frame can still be used without interlocking. Upgrade, simplifies liters compared to the prior art The level of process reduces the cost of system upgrades.
  • the service switching system provided by the embodiment of the present invention does not need to pay twice the cost of optical/electrical and electrical/optical conversion and primary electrical switching as in the prior art, but uses optical cross-frames to perform mutual Even, only one optical/electrical and electrical/optical conversion is required. Therefore, as long as the total bandwidth that the system can support is greater than or equal to the total bandwidth that needs to be accessed, the entire system service can be implemented without blocking.
  • the service switching system can configure additional bandwidth.
  • the bandwidth allocation and linkage control of the optical cross-connection and the electrical switching can further ensure non-blocking switching of the system service and ensure There is no damage to the existing service during the optical cross-connection adjustment process.
  • FIG. 1 is a schematic diagram of a physical architecture of a service switching system based on an electrical clustering technology in the prior art
  • FIG. 2 is a schematic structural diagram of inter-frame interconnection in the service switching system shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a first embodiment of a service switching system according to an embodiment of the present disclosure
  • FIG. 3b is a second schematic structural diagram of Embodiment 1 of a service switching system according to an embodiment of the present disclosure
  • Embodiment 4 is a schematic structural diagram of Embodiment 2 of a service switching system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an electrical switching unit in the service switching system shown in FIG. Figure
  • FIG. 6 is a schematic structural diagram of an interface switching unit in the service switching system shown in FIG. 4;
  • FIG. 7 is a schematic diagram of a logical structure of a transit processing module in the interface switching unit shown in FIG. 6;
  • FIG. 8 is a schematic structural diagram of an optical cross-connect unit in the service switching system shown in FIG. 4;
  • FIG. 9 is a schematic diagram showing the logical structure of a dynamic optical cross connector in the optical cross-connect unit shown in FIG. 8;
  • FIG. 10 is a schematic structural diagram of a service processing unit in the service switching system shown in FIG. 4;
  • FIG. 11 is a schematic structural diagram of a bandwidth control unit in the service switching system shown in FIG. 4;
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a service switching system according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an optical cross-connect unit in the service switching system shown in FIG. 12;
  • FIG. 14 is a schematic diagram showing the logical structure of a static optical cross connector of the optical cross-connect unit shown in FIG. 13;
  • FIG. 15 is a schematic structural diagram of a bandwidth control unit in the service switching system shown in FIG. 12;
  • FIG. 16 is a flowchart of a service exchange method according to an embodiment of the present invention.
  • FIG. 16b is another flowchart of a service exchange method according to an embodiment of the present invention.
  • the embodiment of the invention provides a service switching system and a service switching method.
  • the service switching system replaces the electrical switching technology in the prior art by using an optical cross-connect technology, thereby reducing the interconnection cost of the service switching system.
  • a service switching system includes: a plurality of service processing blocks 300a and a plurality of optical cross-frames 310a. among them,
  • Each service processing block 300a is connected to each of the optical cross frames 310a via optical fibers.
  • Each service processing block 300a is configured to perform service exchange on the electrical signals of the externally input service data, and convert the electrical signals of the service data after the service exchange into optical signals, and send the signals to one or more optical cross frames 310a; Or, receiving an optical signal from the service data of one or more optical cross-frames 310a, converting it into an electrical signal, and performing service exchange, and outputting the electrical signal of the service data after the service exchange to the outside;
  • Each of the optical cross-frames 310a is configured to receive optical signals from the service data of the one or more service processing blocks 300a, perform optical cross-connection on the received optical signals, and output the optical signals that are optically cross-connected to one or A plurality of business processing blocks 300a.
  • the service switching system shown in FIG. 3a is only applicable to service switching in which only a single static service is performed, and the service is exchanged according to preset configuration information and bandwidth control information. Therefore, in order to enable the service switching system to implement service switching for multiple static services and dynamic services, and to implement bandwidth adjustment, a bandwidth control unit can be added in the system.
  • Another service switching system of the bandwidth control unit is added.
  • another service switching system according to the first embodiment of the present invention includes: multiple service processing frames. 300b, a plurality of optical cross-frames 310b, and a bandwidth control unit 320. among them,
  • Each of the service processing blocks 300b is connected to each optical cross frame 310b through an optical fiber, and each service processing block 300b is connected to the bandwidth control unit 320.
  • the service processing block 300b is configured to perform service exchange on the electrical signal of the externally input service data under the control of the bandwidth control unit 320, and convert the electrical signal of the service data after the service exchange into an optical signal, and send Giving one or more optical cross-frames 310b; and/or receiving optical signals from the service data of one or more optical cross-frames 310a, converting them into electrical signals, and performing service switching to exchange the service data after the services are exchanged
  • the signal is output to the outside.
  • the optical cross-frame 310b is configured to receive optical signals from service data of one or more service processing blocks 300b, perform optical cross-connection on the received optical signals, and output the optical signals that are cross-connected by the optical output to one Or multiple service processing blocks 300b.
  • the bandwidth control unit 320 is configured to perform bandwidth control on each service processing block 300b when the service processing block 300b implements service exchange of different services.
  • the service processing blocks 300a and 300b in the embodiment of the present invention all have multi-path service processing, service switching, and photoelectric conversion functions, and each optical cross-frame 310a, 310b has multiple Road light cross connection function. Therefore, in order to implement inter-chassis interconnection between service processing frames, in actual application, the number of service processing frames is at least two, and the number of optical cross-frames is at least one.
  • the service switching system of the second embodiment of the present invention includes: a plurality of service processing blocks 400, a plurality of optical cross-frames 410, and a bandwidth control unit 420.
  • Each service processing block 400 includes a plurality of service processing units 401, a plurality of electrical switching units 402, and a plurality of interface switching units 403.
  • Each of the light crossing frames 410 includes a plurality of optical cross-connect units 411.
  • each service processing unit 401 is connected to each electrical switching unit 402 through an electrical backplane, and each electrical switching unit 402 is connected to each interface switching unit 403 through an electrical backplane (in FIG. 4, In order to simplify the drawing, only two electrical switching units 402 are shown connecting two service processing units 401 and two interface switching units 403), each interface switching unit 403 intersects all light through an optical fiber. All of the optical cross-connect units 411 in block 410 are connected.
  • the bandwidth control unit 420 is connected to all of the electrical switching units 402 and the interface switching units 403 in all of the service processing blocks 400.
  • the service processing unit 401 shown in FIG. 4 is configured to perform service processing on an electrical signal of externally input service data, transmit an electrical signal of the service processed service data to the electrical switching unit 402, and/or receive the electrical switching unit.
  • the electrical signal of the service data after the service exchange transmitted by 402 is processed, and the electrical signal of the processed service data is output to the outside.
  • the electrical switching unit 402 shown in FIG. 4 is configured to receive an electrical signal of the service data sent by the service processing unit 401, perform service exchange according to the exchange control information sent by the bandwidth control unit 420, and exchange service data after the service is exchanged.
  • the electrical signal is sent to the interface switching unit 403; and/or the electrical signal of the service data is received from the interface switching unit 403, and the service is exchanged according to the exchange control information sent by the bandwidth control unit 420, and the service data after the service is exchanged
  • the electrical signal is sent to the service processing unit 401.
  • the electrical switching unit 402 includes: a first electrical signal interface 501, an electrical switching module 502, a second electrical signal interface 503, and a first bandwidth control. Interface 504.
  • the electrical switching module 502 is configured to receive, by using the first signal interface 501, an electrical signal of the service data sent by the service processing unit 401, and perform the service according to the exchange control information sent by the bandwidth control unit 420 received from the first bandwidth control interface 504. Switching, the electrical signal of the service data after the service exchange is sent to the interface switching unit 403 through the second electrical signal interface 503; and/or the electrical data of the service data sent by the interface switching unit 403 is received through the second signal interface 503. The signal is exchanged according to the exchange control information sent by the bandwidth control unit 420 received from the first bandwidth control interface 504, and the electrical signal of the service data after the service is transmitted to the service processing unit through the first electrical signal interface 501. 401.
  • the exchange control information may specifically include a source port number and a destination port number.
  • the electrical switching module 502 directly exchanges services according to the source port number and the destination port number.
  • the electrical switching module 502 can be implemented by a common switching network chip on the market.
  • the interface switching unit 403 shown in FIG. 4 is configured to receive an electrical signal of the service data sent by the electrical switching unit 402, and convert the service data from the electrical signal to the optical signal according to the transfer control information sent by the bandwidth control unit 420.
  • the optical signal transmitted to the optical cross-frame 410 or received by the optical cross-frame 410 is converted into an electrical signal and transmitted to the electrical switching unit 402 according to the transfer control information sent by the bandwidth control unit 420.
  • any one or more of the electrical switching units 402 may be selected for transmission.
  • any one or more interface switching units 403 may also be selected for transmission.
  • the process of receiving service data from the optical cross-frame and processing it is similar. The specific selection and transmission methods and processes are the same as the prior art, and are not described herein again.
  • the interface switching unit 403 in this embodiment may be configured as shown in FIG. 6.
  • the interface switching unit 403 includes: a third electrical signal interface 601, a transit processing module 602, a photoelectric conversion interface 603, and a second Bandwidth control interface 604.
  • the transit processing module 602 is configured to receive an electrical signal of the service data from the electrical switching unit 402 through the third electrical signal interface 601, and transmit according to the bandwidth control unit 420 received from the second bandwidth control interface 604.
  • the control information is transferred, and the electrical signal of the transferred service data is sent to the photoelectric conversion interface 603; and/or the electrical signal of the service data transmitted by the photoelectric conversion interface 603 is received according to the second bandwidth control interface 604.
  • the transfer control information sent by the bandwidth control unit 420 performs a transfer process, and transmits the electrical signal of the transferred service data to the electrical switch unit 402 through the third electrical signal interface 601.
  • the photoelectric conversion interface 603 is configured to convert an electrical signal of the service data received from the transfer processing module 602 into an optical signal and transmit the optical signal to the optical cross-connect unit 411 in the optical cross frame 410, or the optical cross-connect unit 411.
  • the optical signal of the received service data is converted into an electrical signal and sent to the transit processing module 602.
  • the transit processing module 602 in this embodiment may be implemented by a programmable chip such as an FPGA or an ASIC.
  • the information may include: delay information and transmission control information.
  • the delay information may specifically be time information, for example: 2ms, 3ms, 5ms, etc.; or may be the number of cells used to identify the time, for example, the time of delaying 5 cells, if each cell
  • the transmission time is 0.6ms, and the 5 cells are actually 3ms.
  • the control information is sent to indicate whether to send or not, and the information may be directly 0 or 1, to identify whether to send or not.
  • the transit processing module 602 is specifically configured to perform receiving processing on the electrical signal that receives the service data from the third electrical signal interface 601, recover the service data, and obtain the first link state information from the restored service data.
  • the cached service data is sent to the photoelectric conversion interface 603 according to the transmission control information sent by the bandwidth control unit 420 and the second link state information.
  • the sent delay information reads the buffered service data, and sends the read service data to the third electrical signal interface 601 according to the first link information.
  • the logical structure of the transfer processing module 602 in this embodiment may be as shown in FIG. 7.
  • the transfer processing module 602 includes: a first receiving processing sub-module 701, a sorting alignment sub-module 702, and a first data buffer sub-module 703.
  • the first receiving processing sub-module 701 is configured to receive an electrical signal of the service data sent from the service switching unit 402 from the third electrical signal interface 601, perform receiving processing, recover the service data, and obtain the first data from the restored service data.
  • the link state information is sent to the sort alignment sub-module 702, and the first link state information is sent to the sending processing sub-module 708.
  • the sort alignment sub-module 702 is configured to sort and align the service data received from the first receiving processing sub-module 701, and send the processed service data to the first data buffer sub-module 703 for caching.
  • the sending control submodule 704 is configured to receive bandwidth through the control interface 709.
  • the transmission control information sent by the control unit 420 is read from the first data buffer sub-module 703 and transmitted to the photoelectric conversion interface 603 according to the transmission control information and the second link state information received from the second reception processing sub-module 705. .
  • the second receiving processing sub-module 705 is configured to receive an electrical signal of the service data from the photoelectric conversion interface 603, perform receiving processing, recover the service data, and obtain the second link state information from the restored service data, and the restored
  • the service data is sent to the second data cache sub-module 706 for buffering, and the second link state information is sent to the transmission control sub-module 704.
  • the delay control sub-module 707 is configured to receive the delay information sent by the bandwidth control unit 420 through the control interface 709, and read the service data from the second data buffer sub-module 706 to the sending processing sub-module according to the delay information. 708.
  • the sending processing sub-module 708 is configured to send the service data received from the delay control sub-module 707 to the third electrical signal interface 601 according to the first link state information received from the first receiving processing sub-module 701.
  • the optical cross-connect unit 411 in the optical cross-frame 410 shown in FIG. 4 receives optical signals from service data of one or more service processing blocks 400, optically cross-connects the received optical signals, and crosses the light.
  • the connected optical signals are output to one or more of the service processing blocks 400.
  • the optical cross-connect unit 411 may be optically cross-connected by using a dynamic optical cross-connector, or may be optically cross-connected by using a static optical cross-connector.
  • a dynamic optical cross-connector is used.
  • the optical cross-connect unit 411 in this embodiment may be configured as shown in FIG. 8.
  • the optical cross-connect unit 411 includes: four optical interfaces 801, and dynamic Optical cross-connect 802 and third bandwidth control interface 803.
  • the dynamic optical cross-connect 802 is configured to receive, by using any fiber interface 801, an optical signal from the service data sent by the interface switching unit 403 in one or more service processing blocks 400, according to the third bandwidth control interface.
  • the optical cross-control information sent by the received bandwidth control unit 420 is optical cross-connected, and the optical signal that is optically cross-connected is output to the interface in one or more service processing blocks 400 through any optical fiber interface 801. Unit 403.
  • the fork control information may specifically be a source optical port number and a destination optical port number, and the dynamic optical cross-connector 802 directly performs optical cross-connection according to the source optical port number and the destination port number.
  • the dynamic optical cross-connector 802 has a control end, a plurality of input optical ports, and a plurality of output optical ports, and multiple input lights.
  • the port and the plurality of output optical ports are connected by a plurality of optical switches, and the control ends are connected to the respective optical switches.
  • the control terminal controls the switches of the respective optical switches in accordance with the optical cross control information received from the bandwidth control unit 420, thereby implementing dynamic optical cross-connection.
  • both the dynamic optical cross-connector and the static optical cross-connector are optical cross-connect devices commonly used in optical communication technologies, and the dynamic optical cross-connector shown in FIG. 9 and FIG. 14 which will be described later herein will be described.
  • Static optical cross-connectors only indicate their logical structure, and their physical structure has many different forms, which will not be described in this article.
  • the service processing unit 401 described in this embodiment sends the obtained traffic information to the bandwidth control unit 420 when performing dynamic service processing.
  • the bandwidth control unit 420 of the embodiment is configured to obtain service configuration information and receive traffic information when performing dynamic service processing, and determine each interface switching unit 403 and each according to the service configuration information and the traffic information.
  • the required optical connection bandwidth between the optical cross-connect units 411 generates exchange control information, transfer control information, and optical cross-control information according to the determined optical connection bandwidth between the respective interface switching units 403 and the respective optical cross-connect units 411. And sent to the electrical switching unit 402, the interface switching unit 403, and the optical cross-connect unit 411; and/or used to obtain service configuration information when performing static service processing, and determining each interface switching unit 403 according to the service configuration.
  • the required optical connection bandwidth between the optical cross-connect units 411 generates exchange control information, transfer control information, and optical cross-control according to the determined optical connection bandwidth between the respective interface switching units 403 and the respective optical cross-connect units 411.
  • Information is sent to the electrical switching unit 402, the interface switching unit 403, and the optical crossover, respectively. Connection unit 411.
  • the structure of the service processing unit 401 in this embodiment may be as shown in the figure. 10, comprising: a service interface 1001, a service processing module 1002, a fourth electrical signal interface 1003, and a traffic collection interface 1004.
  • the service processing module 1002 is configured to receive an electrical signal of the service data from the outside of the system through the service interface 1001, perform service processing, and send the electrical signal of the processed service data to the device through the fourth signal interface 1003.
  • the electrical switching unit 402 is configured to receive the electrical signal of the service data sent by the electrical switching unit 402 through the fourth signal interface 1003, perform service processing, and send the processed electrical signal of the service data to the system through the service interface 1001.
  • the traffic information of the service data is collected and sent to the bandwidth control unit 420 through the traffic collection interface 1004.
  • the service processing module 1002 may be specifically implemented by a programmable chip such as an FPGA or an ASIC.
  • the bandwidth control unit 420 in this embodiment may be configured as shown in FIG. 11.
  • the bandwidth control unit includes: a first traffic information receiving interface 1101, a first configuration interface 1102, a first service bandwidth controller 1103, and a fourth. Bandwidth Control Interface 1104.
  • the first bandwidth controller 1103 is configured to obtain service configuration information by using the first configuration interface 1102 when performing dynamic service, and receive the traffic information by using the first traffic information receiving interface 1101, according to service configuration information and traffic information. Determining the optical connection bandwidth required between each interface switching unit 403 and each optical cross-connect unit 411, and generating an exchange according to the determined optical connection bandwidth between each interface switching unit 403 and each optical cross-connect unit 411.
  • the control information, the transfer control information, and the optical cross-control information are respectively sent to the electrical switching unit 402, the interface switching unit 403, and the optical cross-connect unit 411 through the fourth bandwidth control interface 1104; and/or when the static service is performed,
  • the configuration interface obtains service configuration information, and determines the required optical connection bandwidth between each interface switching unit and each optical cross-connect unit according to the service configuration information, according to the determined requirements of each interface switching unit and each optical cross-connect unit.
  • Optical connection bandwidth, generating exchange control information, transfer control information, and light Fork control information are transmitted to the power switching unit via a fourth bandwidth control interface, the interface unit and the optical cross-connect switching means.
  • the first bandwidth controller 1103 can be implemented by a CPU system.
  • the service switching system in the third embodiment of the present invention is substantially the same as the embodiment shown in FIG. 4, and includes a plurality of service processing blocks 120, a plurality of optical cross-frames 121, and a bandwidth control unit 122.
  • connection structure between the service processing block 120 and the optical cross-frame 121 and the connection relationship between the bandwidth control unit 122 and each service processing block 120 are the same as those in FIG. 4 .
  • the embodiment shown is the same and will not be repeated here.
  • the difference between this embodiment and the embodiment shown in FIG. 4 is that a static optical cross connector is used in the optical cross unit, and the optical cross connection is controlled by the bandwidth control unit, and the photoelectricity of the interface switching unit in the control service processing box is controlled. Convert the interface to achieve. Therefore, in this embodiment, the bandwidth control unit 122 does not need to send control information to the optical cross-connect unit 121 in the optical cross frame.
  • the optical cross-connect unit in this embodiment may be as shown in FIG. 13 , and the optical cross-connect unit includes four optical fiber interfaces 1301 and a static optical cross-connect connector 1302 .
  • the static cross-connector 1302 is configured to receive optical signals from service data of one or more service processing blocks 120 through any optical fiber interface, and perform light according to a fixed connection relationship between the input optical port and the output optical port.
  • the cross-connects and the optically cross-connected optical signals are output to one or more of the service processing blocks 120 through any of the fiber optic interfaces.
  • the photoelectric conversion interface in the interface switching unit 1203 in the embodiment is configured to receive the optical signal wavelength adjustment information from the bandwidth control unit through the second bandwidth control interface, and determine the wavelength of the transmitted optical signal according to the optical signal wavelength adjustment information. And converting the electrical signal of the service data received from the transfer processing module into an optical cross-link to the static cross-connector in the optical cross-connect unit, or static cross-connection from the optical cross-connect unit, according to the determined wavelength of the optical signal The optical signal of the service data received by the connector is converted into an electrical signal and sent to the transit processing module.
  • the optical signal wavelength adjustment information may specifically be a source optical port number and an adjusted wavelength.
  • the adjusted wavelength actually identifies the destination optical port.
  • the static optical cross-connector and the photoelectric conversion interface of the interface switching unit cooperate with each other to change the optical wavelength according to the optical signal wavelength adjustment information sent from the bandwidth control unit, and realize the intersection of different optical wavelength signals. connection. That is to say, the optical cross-connect unit in this embodiment is itself a static connection, and therefore, the bandwidth control unit is not required to perform control.
  • the logical structure of the static optical cross connector used in this embodiment is as shown in FIG. 14 , and the input optical port and the output optical port inside the static optical cross connector are fixedly connected through the interface switching unit.
  • the medium photoelectric conversion interface adjusts the wavelength of the input optical signal to realize the adjustment of the optical cross connection.
  • the bandwidth control unit 122 in this embodiment is configured to obtain service configuration information and receive traffic information when performing dynamic service processing, and determine each interface switching unit 1203 and each optical cross-connect unit according to the service configuration information and the traffic information.
  • the required optical connection bandwidth between 1211 according to the determined optical connection bandwidth between each interface switching unit 1203 and each optical cross-connect unit 1211, generates exchange control information, transfer control information, and optical signal wavelength adjustment information respectively sent to The electrical switching unit 1202 and the interface switching unit 1203; and/or for obtaining service configuration information when performing static service, and determining the need between each interface switching unit 1203 and each optical cross-connecting unit 1211 according to the service configuration information.
  • the optical connection bandwidth is generated, and the exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit 1202 according to the determined optical connection bandwidth between each interface switching unit 1203 and each optical cross-connect unit 1211. And interface switching unit 1203.
  • the bandwidth control unit 122 in this embodiment may be configured as shown in FIG. 15.
  • the bandwidth control unit 122 includes: a second traffic information receiving interface 1501, a second configuration interface 1502, and a second service bandwidth controller 1503. And a fifth bandwidth control interface 1504.
  • the second bandwidth controller 1503 is configured to obtain service configuration information by using the second configuration interface 1502 when the dynamic service is performed, and receive the traffic information by using the second traffic information receiving interface 1501, according to the service configuration information and the traffic information.
  • the required optical connection bandwidth between each interface switching unit 1203 and each optical cross-connect unit 1211 is determined, and exchange control is generated according to the determined optical connection bandwidth between each interface switching unit 1203 and each optical cross-connect unit 1211.
  • the information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit 1202 and the interface switching unit 1203 through the fifth bandwidth control interface 1504; and/or when the static service is performed, the service configuration is obtained through the second configuration interface 1502.
  • the information is determined according to the service configuration information, and the required optical connection bandwidth between each interface switching unit 1203 and each optical cross-connect unit 1211 is determined according to the determined requirements between the respective interface switching unit 1203 and each optical cross-connect unit 1211.
  • the optical connection bandwidth, the generated switching control information, the transit control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit 1202 and the interface switching unit 1203 through the fifth bandwidth control interface 1504.
  • the bandwidth control unit in the service switching system may be: a device independent of the service processing frame or the optical cross frame; or may be integrated in the service processing frame or light. Inside the cross box.
  • two or three of the service processing unit, the electrical switching unit, and the interface switching unit in the service processing frame may be integrated into one board.
  • the service switching system provided by the embodiment of the present invention uses an optical cross-frame to implement inter-frame interconnection between different service processing boxes instead of
  • an electrical switching switch box is used to implement inter-frame interconnection between different service processing blocks.
  • the two electro-optic conversion and the two photoelectric conversion in the prior art inter-frame interconnection process are reduced to one electro-optical conversion and one photoelectric conversion, thereby reducing the number of inter-frame interconnection optical modules, reducing system cost and System power consumption, which reduces the interconnection cost of the service switching system.
  • the optical switching frame has a rate-independent optical signal that is interconnected between the service processing frames, when the inter-frame interconnection rate of the service processing frame is increased, the existing optical cross-frame can still be used without interlocking. Upgrades simplify the upgrade process and reduce the cost of system upgrades compared to existing technologies.
  • a service switching method corresponds to the service switching system shown in FIG. 3a, and includes the following steps:
  • Step 161a The service processing box performs service exchange on the electrical signal of the externally input service data, and converts the electrical signal of the service data after the service exchange into an optical signal, and sends the signal to one or more optical cross frames;
  • Step 162a The optical cross-frame receives optical signals from service data of one or more service processing blocks, performs optical cross-connection on the received optical signals, and outputs optical signals that are optically cross-connected to one or more service processing. frame;
  • Step 163a The service processing frame receives the optical signal of the service data from the one or more optical cross-frames, converts it into an electrical signal, and performs service exchange, and outputs the electrical signal of the service data after the service exchange to the outside.
  • a service switching method corresponds to the service switching system shown in FIG. 3b, and includes the following steps:
  • Step 161 The service processing frame receives an electrical signal of the service data input by the system, performs service exchange under the control of the bandwidth control unit, and converts the electrical signal of the service data after the service exchange into an optical signal and sends the signal to the optical cross. frame.
  • Step 162 The optical cross frame receives optical signals from service data of one or more service processing frames, performs optical cross-connection on the received optical signals, and outputs the optical signals that are optically cross-connected to one or more service processing. frame.
  • Step 163 The service processing frame receives the optical signal of the service data from the optical cross frame, converts it into an electrical signal under the control of the bandwidth control unit, and performs service exchange, and outputs the electrical signal of the service data after the service exchange to the system. external.
  • the service processing frame includes: at least one service processing unit, at least one electrical switching unit, and at least one interface switching unit;
  • the step 161 may specifically include:
  • the service processing unit receives the electrical signal of the service data input by the system and performs the service processing, and sends the electrical signal of the service data after the service processing to the electrical switching unit;
  • the electrical switching unit receives the electrical signal of the service data sent by the service processing unit, performs the service exchange according to the exchange control information sent by the bandwidth control unit, and sends the electrical signal of the service data after the service exchange to the interface switching unit;
  • the interface switching unit receives the electrical signal of the service data sent by the electrical switching unit, and converts the service data from the electrical signal into an optical signal according to the transfer control information sent by the bandwidth control unit, and sends the data to the optical cross frame.
  • Step 163 in this embodiment may specifically include:
  • the interface switching unit receives the optical signal of the service data sent by the optical cross frame, and converts the service data from the optical signal to the electrical signal to the electrical switching unit according to the transfer control information sent by the bandwidth control unit;
  • the electrical switching unit receives the electrical signal of the service data from the interface switching unit, performs the service exchange according to the exchange control information sent by the bandwidth control unit, and sends the electrical signal of the service data after the service exchange to the service processing unit;
  • the service processing unit receives the electrical signal of the service data after the service exchange sent by the electrical switching unit, and outputs the electrical signal of the processed service data to the outside of the system.
  • the optical cross frame includes at least one optical cross connection unit
  • the step 162 can be specifically implemented by an optical cross-connect unit.
  • the interface switching unit receives the electrical signal of the service data sent by the electrical switching unit, and converts the service data from the electrical signal to the optical signal according to the transfer control information sent by the bandwidth control unit, and sends the data to the optical cross frame.
  • the steps can include:
  • the interface switching unit receives the electrical signal of the service data sent by the electrical switching unit, performs receiving processing, recovers the service data, obtains the first link state information from the restored service data, and sorts and aligns the restored service data.
  • the buffering is performed, and the optical signal that converts the buffered service data into the service data is sent to the optical cross-connect unit of the optical cross frame according to the sending control information and the second link state information sent by the bandwidth control unit.
  • the interface switching unit receives the optical signal of the service data sent by the optical cross frame, and converts the service data from the optical signal to the electrical signal to the electrical switching unit according to the transfer control information sent by the bandwidth control unit. Steps can include:
  • the interface switching unit After receiving the optical signal of the service data sent by the optical cross-connect unit in the optical cross-box, the interface switching unit performs the receiving process, recovers the service data, and obtains the second link state from the recovered service data.
  • the information is cached, and the cached service data is read according to the delay information sent by the bandwidth control unit, and the read service data is sent to the electrical switching unit according to the first link information.
  • the service processing unit in this embodiment sends the obtained traffic information to the bandwidth control unit when performing dynamic service processing.
  • the bandwidth control unit determines, according to the service configuration information and the traffic information, each interface switching unit and each optical cross-connect unit when performing dynamic service processing.
  • the required optical connection bandwidth is generated, and the exchange control information, the transfer control information, and the optical cross control information are respectively sent to the electrical switching unit according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • a dynamic optical cross-connector of the interface switching unit and the optical cross-connect unit and/or obtaining service configuration information when performing static service processing, and determining the need between each interface switching unit and each optical cross-connecting unit according to the service configuration
  • the optical connection bandwidth is generated according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit, and the switching control information, the transfer control information, and the optical cross-control information are generated and sent to the electrical switching unit and the interface. Connected to the unit and optical cross-connect unit.
  • the switching control information, the transfer control information, and the optical cross-control information are generated and sent to the electrical switching unit and the interface.
  • the bandwidth control unit determines, according to the service configuration information and the traffic information, the interface switching unit and each optical cross-connect unit when performing dynamic service processing.
  • the required optical connection bandwidth is generated according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit, and the exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit and The interface switching unit; and/or obtaining the service configuration information when performing the static service, and determining the optical connection bandwidth required between each interface switching unit and each optical cross-connect unit according to the service configuration information, according to the determined interfaces Adapter unit and each optical cross-connect unit
  • the required optical connection bandwidth, the generated exchange control information, the transfer control information, and the optical signal wavelength adjustment information are respectively sent to the electrical switching unit and the interface switching unit.
  • the interface conversion unit determines the wavelength of the transmitted optical signal according to the optical signal wavelength adjustment information; and according to the determined wavelength of the optical signal, the slave service switching unit The electrical signal of the received service data is converted to an optical signal that is sent to a static cross-connect in the optical cross-connect unit.
  • the service configuration information in the embodiment may be obtained from an external input, and may include: optical connection bandwidth allocation policy information, connection information of static service, and bandwidth information;
  • the bandwidth control unit performs bandwidth allocation of the static service according to the optical connection bandwidth allocation policy information, the connection information of the static service, and the bandwidth information, and allocates the policy information according to the optical connection bandwidth and obtains the traffic information.
  • Dynamic service connection information for bandwidth allocation of dynamic services
  • the exchange control information and the transfer control information are generated according to the determined optical connection bandwidth between each interface switching unit and each optical cross-connect unit.
  • a service switching system should support both static and dynamic services. Therefore, connection information and bandwidth information of static services are required in the configuration information. Of course, if only dynamic services need to be supported, there may be no connection information and bandwidth information of the static service. Correspondingly, if only static services need to be supported, and dynamic services are not supported, the bandwidth control unit does not need to receive traffic information from the service processing unit.
  • the bandwidth control function such as the bandwidth allocation function described above is usually integrated.
  • the bandwidth control unit implements the bandwidth control function in the embodiment of the present invention, it can be implemented by referring to the implementation method of the prior art bandwidth control function.
  • an additional bandwidth may be configured between each service processing frame and each optical cross-frame to further ensure non-blocking of system services.
  • the non-blocking of system services is determined by the interconnect bandwidth between the interface switching unit and the optical cross-connect unit.
  • the bandwidth of the access service that needs to be accessed by the optical cross-connect unit is M1, M2, ... Ma (a is the interface transit unit number that needs to access the service), and the total bandwidth required to be accessed is ⁇ M.
  • the interconnect bandwidth that can be supported between the interface switching unit and the optical cross-connect unit is K1, K2, ... Kb (b is the interface switching unit number included in the system)
  • the total interconnect bandwidth that the system can support is ⁇ K.
  • the optical connection bandwidth of any two interface switching units through the optical cross-connect unit is Knm, where n is the source interface switching unit number, and m is the destination interface switching unit number; then, for all interface switching units To achieve non-blocking of the business, it is only necessary to satisfy M1 ⁇ 1 K1m ⁇ K1, M2 ⁇ ⁇ K2m ⁇ K2, .... It can be seen that as long as the total bandwidth that the system can support is greater than or equal to the total bandwidth that needs to be accessed, that is, when the condition of ⁇ K ⁇ Knm ⁇ M is satisfied, the system service can be implemented without blocking.
  • One is to increase the transmission rate of each service channel in the connection link between the service processing unit and the optical cross unit, and the other is to increase the service channel in the connection link between the service processing unit and the optical cross unit.
  • the method for specifically improving the service channel transmission rate and increasing the service channel can be implemented by referring to the prior art method.
  • the additional bandwidth and the coordinated control of the service bandwidth control unit for the optical cross-connect unit, the interface switching unit, and the electrical switching unit can achieve no damage to the existing services during the optical cross-connection adjustment process.
  • the bandwidth control unit may send the transfer control information to the interface switching unit of the adjusted link, and send the service data of the adjusted link to the redundancy caused by the additional bandwidth.
  • the switch control information is sent to the interface switching unit of the adjusted link, and the service on the redundant link is restored to the adjusted link; or
  • the switch control information is sent to the interface switching unit of the adjusted link, and the service data transmission of the adjusted link interface switching unit is stopped, and the switch is sent from the electrical switching unit to the interface.
  • the service data of the unit is buffered in the interface switching unit.
  • the switch control information is sent to the interface switching unit of the adjusted link, and the service data transmission of the interface switching unit is resumed. And cache the cached business data through the redundant link brought by the additional bandwidth.
  • the service switching system and the switching method provided by the embodiments of the present invention use optical cross-frames to implement inter-frame interconnection between different service processing frames instead of using the prior art electrical switching exchange.
  • the two electro-optic conversion and the two photoelectric conversion in the prior art inter-frame interconnection process are reduced to one electro-optical conversion and one photoelectric conversion, thereby reducing the number of inter-frame interconnection optical modules, reducing system cost and System power consumption, which reduces the interconnection cost of the service switching system.
  • the optical switching frame has a rate-independent optical signal that is interconnected between the service processing frames, when the rate of the inter-frame interconnect module in the service processing frame is increased, the existing optical cross-frame can still be used.
  • the upgrade upgrade simplifies the upgrade process and reduces the cost of system upgrades compared to the existing technology.
  • the service switching system provided by the embodiment of the present invention does not need to pay twice the cost of optical/electrical and electrical/optical conversion and primary electrical switching as in the prior art, but uses optical cross-frames to perform mutual Even, only one photoelectric and electro-optical conversion is required. Therefore, as long as the total bandwidth that the system can support is greater than or equal to the total bandwidth that needs to be accessed, the entire system service can be implemented without blocking.
  • the bandwidth allocation and linkage control of the optical cross-connection and the electrical switching can further ensure the non-blocking switching of the system service, and ensure that the existing services are not damaged during the optical cross-connection adjustment process.
  • a certain device may be implemented by a ** chip or an entity, or may be implemented by a product having a certain function.
  • the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product, which may be stored in a storage medium such as a ROM/RAM or a disk. , an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种业务交换系统及业务交换方法,该系统包括:至少两个业务处理框和至少一个光交叉框;每个业务处理框通过光纤与每个光交叉框相连;每个业务处理框,用于对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框;和/或,接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,进行业务交换,将业务交换后的业务数据的电信号输出至外部;每个光交叉框,用于接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。应用本发明实施例能够降低业务交换系统的互连代价。

Description

一种业务交换系统及业务交换方法 技术领域
本发明涉及通信网络中的业务交换技术,特别涉及一种业务交换系统及业务交换方法。
背景技术
目前,随着通信网络的发展及业务承载网络的业务带宽的迅猛增长,出现了基于电集群技术的业务交换系统,该系统由多个大容量业务处理框互连,并通过统一的软件进行控制,对外体现为单一的设备,也就是一个网络节点。
具体的,基于电集群技术的业务交换系统的物理架构如图1所示,其包含多个业务处理框和多个电交换框,各个业务处理框和电交换框通过光纤进行连接,各业务处理框间通过电交换框进行业务互通。任何框间业务都需要进行2次业务处理框处理和1次电交换框处理。
图1所示业务交换系统中的框间互连结构如图2所示,第一业务处理框201输出的电信号经第一电/光转换模块202转换为光信号;光信号通过光纤传输至第一光/电转换模块203,第一光/电转换模块203将光信号转换为电信号输出至电交换框204;电交换框204进行电交换后,将电信号输出至第二电/光转换模块205;第二电/光转换器205将电信号转换为光信号;光信号通过光纤传输至第二光/电转换模块206;第二光/电转换模块206再将光信号转换为电信号输出至第二业务处理框207,从而完成业务交换。
由于通过电交换框进行各个业务接入框间的连接,需要一个电交换框和四个光模块,付出两次光/电和电/光转换以及一次电交换的代价。因此,为了确保无阻塞交换,框间互连的光模块的总互连带宽必须达到系统业务接入容量带宽的两倍,电交换框中交换网片的总容量也必须达到系统业务接入容量带宽。
可见,这种集群方式的业务交换系统虽然分担了系统的能耗、重量和体积,降低了部署难度,但这种基于电集群技术的大规模框间互连带来了较高的额外成本和附加功耗问题。因此,如何更好地降低集群系统的互连代价变得非常有必要。
另外,现有技术基于电集群技术的业务交换系统,当业务处理框需要提供更大的框间互连带宽时,在业务处理框与电交换框间的光模块的速率必须进行升级。此时业务处理框必须选择更大容量业务处理芯片和更高速率的接口模块;与此同时,电交换框必须进行同步升级才能适配业务处理框的变化,电交换框也必须选择更大容量的交换网片和更高速率的接口模块。这就带来了业务处理框和电交换框的连动升级,导致系统升级的成本较高。
发明内容
本发明实施例提供一种业务交换系统及业务交换方法以降低业务交换系统的互连代价。
为达到上述目的,本发明实施例采用的技术方案是:
第一方面,本发明实施例提供了一种业务交换系统,包括:至少两个业务处理框和至少一个光交叉框;其中,
每个业务处理框通过光纤与每个光交叉框相连;
每个业务处理框,用于对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框;和/或,接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部;
每个光交叉框,用于接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。
结合第一方面,在第一种可能的实现方式中,所述业务交换系统还包括:带宽控制单元,每个业务处理框与带宽控制单元相连;
所述带宽控制单元,用于在业务处理框实现不同业务的业务交换时,对各个业务处理框进行带宽控制。
结合第一方面或第一方面的第一种可能的实现方式,在第二中可能的实现方式中,所述的业务处理框包括:至少一个业务处理单元、至少一个电交换单元和至少一个接口转接单元;
所述的业务处理单元,用于对外部输入的业务数据的电信号进行业务处理,将业务处理后的业务数据的电信号发送至电交换单元,和/或接收电交换单元发送的业务交换后的业务数据的电信号进行处理,将处理后的业务数据的电信号输出至外部;
所述的电交换单元,用于接收业务处理单元发送的业务数据的电信号,根据所述带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至接口转接单元;和/或从接口转接单元接收业务数据的电信号,根据带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至业务处理单元;
所述的接口转接单元,用于接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框;和/或接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元。
结合第一方面或第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述的光交叉框包括至少一个光交叉连接单元;
所述光交叉连接单元,用于接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。
结合第一方面或第一方面的第二种可能的实现方式,在第四种可能的实现方式中,所述的电交换单元包括:第一电信号接口、电交换模块、第二电信号接口和第一带宽控制接口;
所述电交换模块,用于通过第一信号接口接收业务处理单元发送的业务数据的电信号,根据从第一带宽控制接口接收的带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的 业务数据的电信号通过所述第二电信号接口发送至接口转接单元;和/或通过第二信号接口接收接口转接单元发送的业务数据的电信号,根据从第一带宽控制接口接收的带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号通过所述第一电信号接口发送至业务处理单元。
结合第一方面或第一方面的第三种可能的实现方式,在第五种可能的实现方式中,所述的接口转接单元包括:第三电信号接口、转接处理模块、光电转换接口和第二带宽控制接口;
所述的转接处理模块,用于通过所述第三电信号接口从电交换单元接收业务数据的电信号,根据从第二带宽控制接口接收的带宽控制单元发送的转接控制信息进行转接处理,将转接处理后的业务数据的电信号发送至光电转换接口;和/或接收光电转换接口发送的业务数据的电信号,根据从第二带宽控制接口接收的带宽控制单元发送的转接控制信息,进行转接处理,将转接处理后的业务数据的电信号通过第三电信号接口发送至电交换单元;
所述的光电转换接口,用于将从转接处理模块接收的业务数据的电信号转换为光信号发送至光交叉框中的光交叉连接单元,和/或将从光交叉连接单元接收的业务数据的光信号转换为电信号发送至转接处理模块。
结合第一方面或第一方面的第三种可能的实现方式或第五种可能的实现方式,在第六种可能的实现方式中,所述带宽控制单元发送的转接控制信息包括:时延信息和发送控制信息;
所述的转接处理模块,具体用于对从第三电信号接口接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,对恢复的业务数据进行排序和对齐处理后进行缓存,根据带宽控制单元发送的发送控制信息和第二链路状态信息,将缓存的业务数据发送至光电转换接口;
并对从光电转换接口接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据进行缓存,根据带宽控制单元发送的时延信息读取缓存的业务数据,根据第一链路信息,将读取的业务数据发送至第三电信号接口。
结合第一方面或第一方面的第三种实现方式,在第七种可能的实现方式中,所述的光交叉连接单元包括:四个光纤接口、动态光交叉连接器和第三带宽控制接口;
所述的动态光交叉连接器,用于通过任一光纤接口,接收来自一个或多个业务处理框的业务数据的光信号,根据通过第三带宽控制接口接收的带宽控制单元发送的光交叉控制信息,进行光交叉连接,并将经过光交叉连接后的光信号通过任一光纤接口输出至一个或多个业务处理框。
结合第一方面或第一方面的第三种可能的实现方式或第七种可能的实现方式,在第八种可能的实现方式中,所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
所述的带宽控制单元,用于在进行动态业务处理时,获得业务配置信息并接收流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元;
和/或用于在进行静态业务处理时,获得业务配置信息,根据业务配置,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元。
结合第一方面或第一方面的第三种可能的实现方式或第七种可能的实现方式或第八种可能的实现方式,在第九种可能的实现方式中,所述的带宽控制单元包括:第一流量信息接收接口、第一配置接口、第一业务带宽控制器和第四带宽控制接口;
所述的第一带宽控制器,用于在进行动态业务时,通过第一配置接口获得业务配置信息,通过第一流量信息接收接口接收所述流量信息,根据业务配置信息和流量信息,确定出各个接口转 接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,通过第四带宽控制接口分别发送给电交换单元、接口转接单元和光交叉连接单元;
和/或在进行静态业务时,通过第一配置接口获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,通过第四带宽控制接口分别发送给电交换单元、接口转接单元和光交叉连接单元。
结合第一方面或第一方面的第三种可能的实现方式或第五种实现方式,在第十种可能的实现方式中,所述的光交叉连接单元包括:四个光纤接口和静态光交叉连接器;
所述的静态交叉连接器,用于通过任一光纤接口,接收来自一个或多个业务处理框的业务数据的光信号,按照其输入光端口和输出光端口固定的连接关系,进行光交叉连接,并将经过光交叉连接后的光信号通过任一光纤接口输出至一个或多个业务处理框;
所述的光电转换接口,用于通过第二带宽控制接口从带宽控制单元接收光信号波长调整信息,根据光信号波长调整信息,确定发送光信号的波长;并按照确定的光信号的波长,将从转接处理模块接收的业务数据的电信号转换为光信号发送至光交叉连接单元中的静态交叉连接器,或将从光交叉连接单元的静态交叉连接器接收的业务数据的光信号转换为电信号发送至转接处理模块。
结合第一方面或第一方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
所述的带宽控制单元,用于在进行动态业务时,获得业务配置信息并接收流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带 宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元;
和/或用于在进行静态业务时,获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元。
结合第一方面或第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述的带宽控制单元包括:第二流量信息接收接口、第二配置接口、第二业务带宽控制器和第五带宽控制接口;
所述的第二带宽控制器,用于在进行动态业务时,通过第二配置接口获得业务配置信息,通过第二流量信息接收接口接收所述流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息通过第五带宽控制接口分别发送给电交换单元和接口转接单元;
和/或在进行静态业务时,通过第二配置接口获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息通过第五带宽控制接口分别发送给电交换单元和接口转接单元。
结合第一方面或第一方面的第八种可能的实现方式或第一方面的第十一种实现方式,在第十三种可能的实现方式中,所述的业务处理单元包括:业务接口、业务处理模块、第四电信号接口和流量收集接口;
所述的业务处理模块,用于通过所述业务接口从外部接收业务数据的电信号,进行业务处理,将处理后的业务数据的电信号 通过所述第四信号接口发送至所述电交换单元;或通过所述第四信号接口接收电交换单元发送的业务数据的电信号,进行业务处理,将处理后的业务数据的电信号通过所述业务接口发送至外部;并在进行动态业务处理过程中,收集业务数据的流量信息,将流量信息通过流量收集接口发送至带宽控制单元。
结合第一方面或第一方面的第一种可能的实现方式或第八种可能的实现方式或第九种可能的实现方式或第十一种可能的实现方式或第十二种可能的实现方式,在第十四种可能的实现方式中,所述的带宽控制单元为:独立于所述业务处理框或光交叉框的设备;或集成于所述业务处理框或光交叉框内。
结合第一方面或第一方面的第二种可能的实现方式,在第十五种可能的实现方式中,所述的业务处理单元、电交换单元及接口转接单元中的两种或三种集成于一块单板内。
第二方面,本发明实施例提供了一种业务交换方法,应用于所述的业务交换系统,包括:
业务处理框对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框;
光交叉框接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框;
业务处理框接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部。
结合第二方面,在第一种可能的实现方式中,所述的业务交换系统还包括:带宽控制单元,每个业务处理框与带宽控制单元相连;
在业务处理框实现不同业务的业务交换时,所述带宽控制单元对各个业务处理框进行带宽控制。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述的业务处理框包括:至少一个业务处 理单元、至少一个电交换单元和至少一个接口转接单元;
所述的业务处理框对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框的步骤,包括:
业务处理单元接收外部输入的业务数据的电信号并进行业务处理,将业务处理后的业务数据的电信号发送至电交换单元;
电交换单元接收业务处理单元发送的业务数据的电信号,根据所述带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至接口转接单元;
接口转接单元接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框;
所述的业务处理框接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部的步骤,包括:
接口转接单元接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元;
电交换单元从接口转接单元接收业务数据的电信号,根据带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至业务处理单元;
业务处理单元接收电交换单元发送的业务交换后的业务数据的电信号进行处理,将处理后的业务数据的电信号输出至系统外部。
结合第二方面或第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述的光交叉框包括至少一个光交叉连接单元;
光交叉框接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框的步骤,包括:
由所述的光交叉连接单元,接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经 过光交叉连接后的光信号输出至一个或多个业务处理框。
结合第二方面或第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述接口转接单元接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框的步骤,包括:
接口转接单元接收电交换单元发送的业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,对恢复的业务数据进行排序和对齐处理后进行缓存,根据带宽控制单元发送的发送控制信息和第二链路状态信息,将缓存的业务数据转换为业务数据的光信号发送至光交叉框的光交叉连接单元;
所述接口转接单元接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元的步骤,包括:
所述接口转接单元接收光交叉框中的光交叉连接单元发送的业务数据的光信号转换为电信号后,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据进行缓存,根据带宽控制单元发送的时延信息读取缓存的业务数据,根据第一链路信息,将读取的业务数据发送至电交换单元。
结合第二方面或第二方面的第三种可能的实现方式,在第五种可能的实现方式中,所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
当所述光交叉连接单元包括动态光交叉连接器时,所述的带宽控制单元,在进行动态业务处理时,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息分别发送给电交换单元、接口转接单元和光交叉连接单元的动态光交叉连接器;和/或在进行静态业务处理时,获得业务配置信息,根据业务配置,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接 口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元。
结合第二方面或第二方面的第三种可能的实现方式,在第六种可能的实现方式中,所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
当所述光交叉连接单元包括静态光交叉连接器时,所述的带宽控制单元,在进行动态业务处理时,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元;
和/或在进行静态业务时,获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元。
结合第二方面或第二方面的第六种可能的实现方式,在第七种可能的实现方式中,所述接口转换单元接收带宽控制单元发送的光信号波长调整信息,根据光信号波长调整信息,确定发送光信号的波长;并按照确定的光信号的波长,将从业务交换单元接收的业务数据的电信号转换为光信号发送至光交叉连接单元中的静态交叉连接器。
结合第二方面或第二方面的第五种可能的实现方式或第六种可能的实现方式,在第八种可能的实现方式中,所述业务配置信息包括:光连接带宽分配策略信息、静态业务的连接信息和带宽信息;
所述带宽控制单元根据业务配置信息和流量信息,生成交换控制信息和转接控制信息的步骤,包括:
根据所述光连接带宽分配策略信息、静态业务的连接信息和带宽信息进行静态业务的带宽分配;并根据所述光连接带宽分配 策略信息和从流量信息中获取的动态业务的连接信息,进行动态业务的带宽分配;
对各个接口转接单元之间需要的光连接带宽进行统计,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽;
根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息和转接控制信息。
结合第二方面或第二方面的第五种可能的实现方式或第六种可能的实现方式,在第九种可能的实现方式中,该方法还包括:预先在各个业务处理框与各个光交叉框之间,配置附加带宽;
所述的带宽控制单元,在光交叉连接单元调整连接之前,向被调整链路的接口转接单元发送转接控制信息,将被调整链路的业务数据发送到附加带宽带来的冗余链路上,在光交叉连接单元完成连接调整后,再向被调整链路的接口转接单元发送转接控制信息,将冗余链路上的业务数据恢复到调整后的链路上;或者,
在光交叉连接单元调整连接前,向被调整链路的接口转接单元发送转接控制信息,停止被调整链路接口转接单元的业务数据发送,将从电交换单元发送到到接口转接单元的业务数据在接口转接单元内进行缓存,在光交叉连接单元完成连接调整后,再向被调整链路的接口转接单元发送转接控制信息,恢复接口转接单元的业务数据发送,并通过附加带宽带来的冗余链路泄放缓存的业务数据。
由上述的技术方案可见,本发明实施例提供的这种业务交换系统及业务交换方法,用光交叉框来实现不同业务处理框之间的框间互连,替代了现有技术中用电交换交换框来实现不同业务处理框之间的框间互连。将现有技术中框间互连过程中的两次电/光转换和两次光/电转换,减少为一次电/光转换和一次光/电转换,因此,减少了框间互连光模块的数量,降低了系统成本和系统功耗,即降低了业务交换系统的互连代价。
另外,由于光交换框对业务处理框间互连的光信号具备速率无关性,当业务处理框的框间互连速率提升时,仍然可以采用已有的光交叉框,不会带来连动升级,与现有技术相比,简化了升 级过程,降低了系统升级的成本。
还有,本发明实施例提供的这种业务交换系统,由于不需要象现有技术那样,付出两次光/电和电/光转换以及一次电交换的代价,而是采用光交叉框进行互连,只需进行一次光/电和电/光转换。因此,只要系统能够支持的总带宽大于等于需要接入的总带宽,即可实现整个系统业务无阻塞。
并且,在某些具体实施例中,业务交换系统可以配置附加带宽,在这种情况下,能够通过光交叉连接和电交换的带宽分配和联动控制,进一步保证了系统业务的无阻塞交换,确保了在光交叉连接调整过程中已有业务的无损伤。
当然,实施本发明的任一产品或方法必不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术基于电集群技术的业务交换系统的物理架构示意图;
图2为图1所示业务交换系统中的框间互连结构示意图;
图3a为本发明实施例提供的业务交换系统的实施例一的第一种结构示意图;
图3b为本发明实施例提供的业务交换系统的实施例一的第二种结构示意图;
图4为本发明实施例提供的业务交换系统的实施例二的结构示意图;
图5为图4所示业务交换系统中电交换单元的一种结构示意 图;
图6为图4所示业务交换系统中接口转接单元的一种结构示意图;
图7为图6所示接口转接单元中转接处理模块的一种逻辑结构示意图;
图8为图4所示业务交换系统中光交叉连接单元的一种结构示意图;
图9为图8所示光交叉连接单元中动态光交叉连接器的逻辑结构示意图;
图10为图4所示业务交换系统中业务处理单元的一种结构示意图;
图11为图4所示业务交换系统中带宽控制单元的一种结构示意图;
图12为本发明实施例提供的业务交换系统的实施例三的结构示意图;
图13为图12所示业务交换系统中光交叉连接单元的一种结构示意图;
图14为图13所示光交叉连接单元的静态光交叉连接器的逻辑结构示意图;
图15为图12所示业务交换系统中带宽控制单元的一种结构示意图;
图16a为本发明实施例提供的业务交换方法的一种流程图;
图16b为本发明实施例提供的业务交换方法的另一种流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种业务交换系统及业务交换方法,该业务交换系统用光交叉连接技术代替现有技术中的电交换技术,降低了业务交换系统的互连代价。
以下对本发明实施例的业务交换系统的具体实施例进行详细说明。
具体实施例一
如图3a所示,本发明具体实施例一的一种业务交换系统,包括:多个业务处理框300a和多个光交叉框310a。其中,
每个业务处理框300a通过光纤与每个光交叉框310a相连。
每个业务处理框300a,用于对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框310a;和/或,接收来自一个或多个光交叉框310a的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部;
每个光交叉框310a,用于接收来自一个或多个业务处理框300a的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框300a。
需要说明的是,图3a所示的业务交换系统,仅适用于只进行单一静态业务的业务交换,其按照预设的配置信息、带宽控制信息来进行业务交换。因此,为了使得业务交换系统能够实现对多种静态业务、动态业务进行业务交换,以及实现带宽的调整,该系统中可以增加带宽控制单元。
增加了带宽控制单元的业务交换系统,如图3b所示,本发明具体实施例一的另一种业务交换系统,包括:多个业务处理框 300b、多个光交叉框310b和带宽控制单元320。其中,
所述每个业务处理框300b通过光纤与每个光交叉框310b相连,且每个业务处理框300b与带宽控制单元320相连。
所述业务处理框300b,用于在所述带宽控制单元320的控制下,对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框310b;和/或,接收来自一个或多个光交叉框310a的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部。
所述的光交叉框310b,用于接收来自一个或多个业务处理框300b的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框300b。
所述的带宽控制单元320,用于在业务处理框300b实现不同业务的业务交换时,对各个业务处理框300b进行带宽控制。
需要说明的是,与现有技术类似的,本发明实施例中的业务处理框300a、300b都具有多路业务处理、业务交换及光电转换功能,且每个光交叉框310a、310b都具有多路光交叉连接功能。因此,为了实现业务处理框之间的框间互连,实际应用中,业务处理框的数量至少为两个,光交叉框的数量至少为一个。
具体实施例二
如图4所示,本发明具体实施例二的业务交换系统,包括:多个业务处理框400、多个光交叉框410和带宽控制单元420。
其中,每个业务处理框400包括多个业务处理单元401、多个电交换单元402和多个接口转接单元403。每个光交叉框410包括多个多个光交叉连接单元411。
每个业务处理框400中,每个业务处理单元401通过电背板与各个电交换单元402相连,每个电交换单元402通过电背板与每个接口转接单元403相连(图4中,为了简化图面,仅示出两个电交换单元402连接两个业务处理单元401和两个接口转接单元403的情况),每个接口转接单元403通过光纤与所有光交叉 框410中的所有光交叉连接单元411相连。
带宽控制单元420与所有业务处理框400中的所有的电交换单元402和接口转接单元403均相连。
图4中所示的业务处理单元401,用于对外部输入的业务数据的电信号进行业务处理,将业务处理后的业务数据的电信号发送至电交换单元402,和/或接收电交换单元402发送的业务交换后的业务数据的电信号进行处理,将处理后的业务数据的电信号输出至外部。
图4中所示的电交换单元402,用于接收业务处理单元401发送的业务数据的电信号,根据所述带宽控制单元420发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至接口转接单元403;和/或从接口转接单元403接收业务数据的电信号,根据带宽控制单元420发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至业务处理单元401。
具体的,本实施例中电交换单元402的结构可以如图5所示,该电交换单元402包括:第一电信号接口501、电交换模块502、第二电信号接口503和第一带宽控制接口504。
所述电交换模块502,用于通过第一信号接口501接收业务处理单元401发送的业务数据的电信号,根据从第一带宽控制接口504接收的带宽控制单元420发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号通过所述第二电信号接口503发送至接口转接单元403;和/或通过第二信号接口503接收接口转接单元403发送的业务数据的电信号,根据从第一带宽控制接口504接收的带宽控制单元420发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号通过所述第一电信号接口501发送至业务处理单元401。实际应用中,所述的交换控制信息具体可以包括源端口号和目的端口号。电交换模块502,直接按照源端口号和目的端口号进行业务交换。本实施例中,电交换模块502具体可以由市场上常见的交换网芯片来实现。
图4中所示的接口转接单元403,用于接收电交换单元402发送的业务数据的电信号,根据带宽控制单元420发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框410;或接收光交叉框410发送的业务数据的光信号,根据带宽控制单元420发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元402。
需要说明的是,本实施例中,业务处理单元401在向电交换单元402发送业务数据的电信号时,可以选择任一个或多个电交换单元402进行发送。且,电交换单元402在向接口转接单元403发送业务数据的电信号时,也可以选择任一个或多个接口转接单元403进行发送。相应的,业务处理框从光交叉框接收业务数据并处理的过程,也是类似的。具体的选择和发送方法及过程与现有技术相同,这里不再赘述。
具体的,本实施例中的接口转接单元403的结构可以如图6所示,该接口转接单元403包括:第三电信号接口601、转接处理模块602、光电转换接口603和第二带宽控制接口604。
所述的转接处理模块602,用于通过所述第三电信号接口601从电交换单元402接收业务数据的电信号,根据从第二带宽控制接口604接收的带宽控制单元420发送的转接控制信息进行转接处理,将转接处理后的业务数据的电信号发送至光电转换接口603;和/或接收光电转换接口603发送的业务数据的电信号,根据从第二带宽控制接口604接收的带宽控制单元420发送的转接控制信息,进行转接处理,将转接处理后的业务数据的电信号通过第三电信号接口601发送至电交换单元402。
所述的光电转换接口603,用于将从转接处理模块602接收的业务数据的电信号转换为光信号发送至光交叉框410中的光交叉连接单元411,或将从光交叉连接单元411接收的业务数据的光信号转换为电信号发送至转接处理模块602。
实际应用中,本实施例中的转接处理模块602可以由FPGA或ASIC等可编程芯片来实现。
再具体的,本实施例中的带宽控制单元420发送的转接控制 信息,可以包括:时延信息和发送控制信息。实际应用中,时延信息具体可以是时间信息,例如:2ms、3ms、5ms等;也可以是用于标识时间的信元的数量,例如:延迟5个信元的时间,如果每个信元的传输时间是0.6ms,则5个信元实际也是3ms。发送控制信息,就是用来指示发送或者不发送,其信息可以直接是0或1,以标识发送或不发送。
这种情况下,转接处理模块602具体用于对从第三电信号接口601接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,对恢复的业务数据进行排序和对齐处理后进行缓存,根据带宽控制单元420发送的发送控制信息和第二链路状态信息,将缓存的业务数据发送至光电转换接口603;
并对从光电转换接口603接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据进行缓存,根据带宽控制单元420发送的时延信息读取缓存的业务数据,根据第一链路信息,将读取的业务数据发送至第三电信号接口601。
本实施例中的转接处理模块602的逻辑结构可以如图7所示,该转接处理模块602包括:第一接收处理子模块701、排序对齐子模块702、第一数据缓存子模块703、发送控制子模块704、第二接收处理子模块705、第二数据缓存子模块706、时延控制子模块707、发送处理子模块708和控制接口709。
所述第一接收处理子模块701,用于从第三电信号接口601接收从业务交换单元402发送的业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,将恢复的业务数据发送给排序对齐子模块702,将第一链路状态信息发送给发送处理子模块708。
所述的排序对齐子模块702,用于对从第一接收处理子模块701接收的业务数据进行排序和对齐处理,将处理后的业务数据发送给第一数据缓存子模块703进行缓存。
所述发送控制子模块704,用于通过控制接口709接收带宽 控制单元420发送的发送控制信息,根据发送控制信息和从第二接收处理子模块705接收的第二链路状态信息,从第一数据缓存子模块703中读取业务数据发送至光电转换接口603。
所述第二接收处理子模块705,用于从光电转换接口603接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据发送给第二数据缓存子模块706进行缓存,将第二链路状态信息发送给发送控制子模块704。
所述时延控制子模块707,用于通过控制接口709接收带宽控制单元420发送的时延信息,根据时延信息,从第二数据缓存子模块706中读取业务数据发送至发送处理子模块708。
所述发送处理子模块708,用于根据从第一接收处理子模块701接收的第一链路状态信息,将从时延控制子模块707接收的业务数据发送至第三电信号接口601。
图4中所示的光交叉框410中的光交叉连接单元411,接收来自一个或多个业务处理框400的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框400。
实际应用中,光交叉连接单元411可以采用动态光交叉连接器进行光交叉连接,也可以采用静态光交叉连接器进行光交叉连接。本实施例中,采用了动态光交叉连接器,具体的,本实施例中的光交叉连接单元411的结构可以如图8所示,该光交叉连接单元411包括:四个光纤接口801、动态光交叉连接器802和第三带宽控制接口803。
所述的动态光交叉连接器802,用于通过任一光纤接口801,接收来自一个或多个业务处理框400中接口转接单元403发送的业务数据的光信号,根据通过第三带宽控制接口801接收的带宽控制单元420发送的光交叉控制信息,进行光交叉连接,并将经过光交叉连接后的光信号通过任一光纤接口801输出至一个或多个业务处理框400中的接口转接单元403。实际应用中,光交 叉控制信息具体可以为源光端口号和目的光端口号,动态光交叉连接器802直接按照源光端口号和目的端口号进行光交叉连接。
具体的,本实施例的动态光交叉连接器802的逻辑结构如图9所示,该动态光交叉连接器802具有一个控制端、多个输入光端口和多个输出光端口,多个输入光端口和多个输出光端口之间通过多个光开关相连,控制端与各个光开关相连。控制端按照从带宽控制单元420接收的光交叉控制信息,控制各个光开关的开关,从而实现动态的光交叉连接。
需要说明的是,动态光交叉连接器和静态光交叉连接器都属于光通信技术中常用的光交叉连接器件,图9所示的动态光交叉连接器及本文后面将要介绍的图14所示的静态光交叉连接器,都仅对其逻辑结构进行了示意,其物理结构有很多不同的形式,本文不再赘述。
如图4所示,本实施例中所述的业务处理单元401,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元420。
相应的,本实施例所述的带宽控制单元420,用于在进行动态业务处理时,获得业务配置信息并接收流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元403与各个光交叉连接单元411之间需要的光连接带宽,根据确定的各个接口转接单元403与各个光交叉连接单元411之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元402、接口转接单元403和光交叉连接单元411;和/或用于在进行静态业务处理时,获得业务配置信息,根据业务配置,确定出各个接口转接单元403与各个光交叉连接单元411之间需要的光连接带宽,根据确定的各个接口转接单元403与各个光交叉连接单元411之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元402、接口转接单元403和光交叉连接单元411。
具体的,本实施例中的业务处理单元401的结构可以如图 10所示,包括:业务接口1001、业务处理模块1002、第四电信号接口1003和流量收集接口1004。
所述的业务处理模块1002,用于通过所述业务接口1001从系统外部接收业务数据的电信号,进行业务处理,将处理后的业务数据的电信号通过所述第四信号接口1003发送至所述电交换单元402;或通过所述第四信号接口1003接收电交换单元402发送的业务数据的电信号,进行业务处理,将处理后的业务数据的电信号通过所述业务接口1001发送至系统外部;并在进行动态业务处理过程中,收集业务数据的流量信息,将流量信息通过流量收集接口1004发送至带宽控制单元420。实际应用中,业务处理模块1002具体可以由FPGA或ASIC等可编程芯片来实现。
本实施例中的带宽控制单元420的结构可以如图11所示,所述的带宽控制单元包括:第一流量信息接收接口1101、第一配置接口1102、第一业务带宽控制器1103和第四带宽控制接口1104。
所述的第一带宽控制器1103,用于在进行动态业务时,通过第一配置接口1102获得业务配置信息,通过第一流量信息接收接口1101接收所述流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元403与各个光交叉连接单元411之间需要的光连接带宽,根据确定的各个接口转接单元403与各个光交叉连接单元411之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,通过第四带宽控制接口1104分别发送给电交换单元402、接口转接单元403和光交叉连接单元411;和/或在进行静态业务时,通过第一配置接口获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,通过第四带宽控制接口分别发送给电交换单元、接口转接单元和光交叉连接单元。本实施例中,第一带宽控制器1103可以由CPU系统来实现。
具体实施例三
如图12所示,本发明具体实施例三的业务交换系统,与图4所示实施例基本相同,都包括:多个业务处理框120、多个光交叉框121和带宽控制单元122。
且本实施例中各个业务处理框120内部的结构和连接关系、业务处理框120与光交叉框121的连接关系以及带宽控制单元122与各个业务处理框120之间的连接关系,均与图4所示的实施例相同,这里不再重复。
本实施例与图4所示实施例的区别在于,光交叉单元中采用了静态光交叉连接器,光交叉连接的控制是由带宽控制单元,通过控制业务处理框中的接口转接单元的光电转换接口来实现的。因此,本实施例中,带宽控制单元122不需要向光交叉框中的光交叉连接单元121发送控制信息。
具体的,本实施例中的光交叉连接单元可以如图13所示,该光交叉连接单元包括:四个光纤接口1301和静态光交叉连接器1302。
所述的静态交叉连接器1302,用于通过任一光纤接口,接收来自一个或多个业务处理框120的业务数据的光信号,按照其输入光端口和输出光端口固定的连接关系,进行光交叉连接,并将经过光交叉连接后的光信号通过任一光纤接口输出至一个或多个业务处理框120。
相应的,本实施例中接口转接单元1203中的光电转换接口,用于通过第二带宽控制接口从带宽控制单元接收光信号波长调整信息,根据光信号波长调整信息,确定发送光信号的波长;并按照确定的光信号的波长,将从转接处理模块接收的业务数据的电信号转换为光信号发送至光交叉连接单元中的静态交叉连接器,或将从光交叉连接单元的静态交叉连接器接收的业务数据的光信号转换为电信号发送至转接处理模块。实际应用中,光信号波长调整信息,具体可以是源光端口号和调整后的波长。这里,调整后的波长实际就标识了目的光端口。
可见,本实施例中,静态光交叉连接器与接口转接单元的光电转换接口的相互配合,根据从带宽控制单元发送的光信号波长调整信息,来改变光波长,实现不同光波长信号的交叉连接。也就是说,本实施例中的光交叉连接单元本身为静态连接,因此,不需要带宽控制单元进行控制。
再具体的,本实施例中采用的静态光交叉连接器的逻辑结构如图14所示,该静态光交叉连接器内部的输入光端口和输出光端口之间是固定连接,通过接口转接单元中光电转换接口对输入的光信号的波长的调整,来实现光交叉连接的调整。
本实施例中的带宽控制单元122,用于在进行动态业务处理时,获得业务配置信息并接收流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,根据确定的各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元1202和接口转接单元1203;和/或用于在进行静态业务时,获得业务配置信息,根据业务配置信息,确定出各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,根据确定的各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元1202和接口转接单元1203。
具体的,本实施例中的带宽控制单元122的结构可以如图15所示,该带宽控制单元122,包括:第二流量信息接收接口1501、第二配置接口1502、第二业务带宽控制器1503和第五带宽控制接口1504。
所述的第二带宽控制器1503,用于在进行动态业务时,通过第二配置接口1502获得业务配置信息,通过第二流量信息接收接口1501接收所述流量信息,根据业务配置信息和流量信息, 确定出各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,根据确定的各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息通过第五带宽控制接口1504分别发送给电交换单元1202和接口转接单元1203;和/或在进行静态业务时,通过第二配置接口1502获得业务配置信息,根据业务配置信息,确定出各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,根据确定的各个接口转接单元1203与各个光交叉连接单元1211之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息通过第五带宽控制接口1504分别发送给电交换单元1202和接口转接单元1203。
本领域技术人员能够理解的是,在实际应用中,业务交换系统中的带宽控制单元可以为:独立于所述业务处理框或光交叉框的设备;也可以集成于所述业务处理框或光交叉框内。
并且,所述业务处理框中的业务处理单元、电交换单元及接口转接单元中的两种或三种可以集成于一块单板内。
由图3a、图3b、图4及图12所示的实施例可见,本发明实施例提供的这种业务交换系统,用光交叉框来实现不同业务处理框之间的框间互连,替代了现有技术中用电交换交换框来实现不同业务处理框之间的框间互连。将现有技术中框间互连过程中的两次电光转换和两次光电转换,减少为一次电光转换和一次光电转换,因此,减少了框间互连光模块的数量,降低了系统成本和系统功耗,即降低了业务交换系统的互连代价。
另外,由于光交换框对业务处理框间互连的光信号具备速率无关性,当业务处理框的框间互连速率提升时,仍然可以采用已有的光交叉框,不会带来连动升级,与现有技术相比,简化了升级过程,降低了系统升级的成本。
以下对本发明实施例的业务交换方法的具体实施例进行详 细说明。
如图16a所示,本发明具体实施例的一种业务交换方法,与图3a所示的业务交换系统对应,包括如下步骤:
步骤161a,业务处理框对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框;
步骤162a,光交叉框接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框;
步骤163a,业务处理框接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部。
如图16b所示,本发明具体实施例的一种业务交换方法,与图3b所示的业务交换系统对应,包括如下步骤:
包括如下步骤:
步骤161,业务处理框接收系统外部输入的业务数据的电信号,在所述带宽控制单元的控制下,进行业务交换,并将业务交换后的业务数据的电信号转换为光信号发送给光交叉框。
步骤162,光交叉框接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。
步骤163,业务处理框从光交叉框接收业务数据的光信号,在所述带宽控制单元的控制下,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至系统外部。
本实施例中,业务处理框包括:至少一个业务处理单元、至少一个电交换单元和至少一个接口转接单元;
所述步骤161,具体可以包括:
业务处理单元接收系统外部输入的业务数据的电信号并进行业务处理,将业务处理后的业务数据的电信号发送至电交换单元;
电交换单元接收业务处理单元发送的业务数据的电信号,根据所述带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至接口转接单元;
接口转接单元接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框。
本实施例中的步骤163,具体可以包括:
接口转接单元接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元;
电交换单元从接口转接单元接收业务数据的电信号,根据带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至业务处理单元;
业务处理单元接收电交换单元发送的业务交换后的业务数据的电信号进行处理,将处理后的业务数据的电信号输出至系统外部。
本实施例中,光交叉框包括至少一个光交叉连接单元;
所述的步骤162,具体可以由光交叉连接单元实现。
本实施例中,所述接口转接单元接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框的步骤,可以包括:
接口转接单元接收电交换单元发送的业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,对恢复的业务数据进行排序和对齐处理后进行缓存,根据带宽控制单元发送的发送控制信息和第二链路状态信息,将缓存的业务数据转换为业务数据的光信号发送至光交叉框的光交叉连接单元。
本实施例中,所述接口转接单元接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元的步骤,可以包括:
所述接口转接单元接收光交叉框中的光交叉连接单元发送的业务数据的光信号转换为电信号后,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据进行缓存,根据带宽控制单元发送的时延信息读取缓存的业务数据,根据第一链路信息,将读取的业务数据发送至电交换单元。
本实施例中的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元。
当所述光交叉连接单元包括动态光交叉连接器时,所述的带宽控制单元,在进行动态业务处理时,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息分别发送给电交换单元、接口转接单元和光交叉连接单元的动态光交叉连接器;和/或在进行静态业务处理时,获得业务配置信息,根据业务配置,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元。具体请参见上述对具体实施例二的描述。
当所述光交叉连接单元包括静态光交叉连接器时,所述的带宽控制单元,在进行动态业务处理时根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元;和/或在进行静态业务时,获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元 之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元。具体请参见上述对具体实施例三的描述。
这种情况下,接口转换单元接收到带宽控制单元发送的光信号波长调整信息后,根据光信号波长调整信息,确定发送光信号的波长;并按照确定的光信号的波长,将从业务交换单元接收的业务数据的电信号转换为光信号发送至光交叉连接单元中的静态交叉连接器。
本实施例中所述业务配置信息可以从外部输入获得,具体可以包括:光连接带宽分配策略信息、静态业务的连接信息和带宽信息;
这种情况下,带宽控制单元会根据所述光连接带宽分配策略信息、静态业务的连接信息和带宽信息进行静态业务的带宽分配;并根据所述光连接带宽分配策略信息和从流量信息中获取的动态业务的连接信息,进行动态业务的带宽分配;
对各个接口转接单元之间需要的光连接带宽进行统计,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽;
根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息和转接控制信息。
通常情况下,一个业务交换系统,应该既能够支持静态业务也能够支持动态业务,因此配置信息中需要有静态业务的连接信息和带宽信息。当然,如果只需要支持动态业务,也可以没有静态业务的连接信息和带宽信息。相应的,如果只需要支持静态业务,而不需要支持动态业务时,带宽控制单元就不需要从业务处理单元接收流量信息了。
需要说明的是,现有技术的业务处理框中,通常也集成了上述的带宽分配功能等带宽控制功能。本领域技术人员能够理解,在本发明实施例中带宽控制单元实现带宽控制功能时,可以参照现有技术带宽控制功能的实现方法来实现。
另外,本发明实施例可以预先在各个业务处理框与各个光交叉框之间,配置附加带宽,以进一步保证系统业务的无阻塞。
实际上,系统业务的无阻塞由接口转接单元和光交叉连接单元之间的互连带宽决定。设各业务处理单元的需要经过光交叉连接单元调度的接入业务带宽分别为M1、M2、…Ma(a为需要接入业务的接口转接单元号),则需要接入的总带宽为∑M。若接口转接单元和光交叉连接单元之间能够支持的互连带宽为K1、K2、…Kb(b为系统包含的接口转接单元号),系统能够支持的总互连带宽为∑K。
其中,任意两个接口转接单元间通过光交叉连接单元互通的光连接带宽为Knm,其中n为源接口转接单元号,m为目的接口转接单元号;则,针对所有接口转接单元,要实现业务无阻塞,只需满足M1≤∑K1m≤K1、M2≤∑K2m≤K2、…。由此可知,只要系统能够支持的总带宽大于等于需要接入的总带宽,也就是在满足∑K≥∑Knm≥∑M条件时,即可实现系统业务无阻塞。
本实施例中,接口转接单元和光交叉连接单元之间配置了附加带宽,设附加带宽为ΔM,则∑K>=∑M+ΔM。
附加带宽可以通过以下两种方式实现:
一种是提高业务处理单元与光交叉单元之间连接链路中的每个业务通道的传输速率,另一种是增加业务处理单元与光交叉单元之间的连接链路中的业务通道。本领域技术人员能够理解,具体提高业务通道传输速率和增加业务通道的方法,可以参照现有技术的方法来实现。
这种情况下,通过该附加带宽以及业务带宽控制单元针对光交叉连接单元、接口转接单元和电交换单元的联动控制,可以实现光交叉连接调整过程中已有业务的无损伤。
具体来说,带宽控制单元在光交叉连接单元调整连接之前,可以向被调整链路的接口转接单元发送转接控制信息,将被调整链路的业务数据发送到附加带宽带来的冗余链路上,在光交叉连接单元完成连接调整后,再向被调整链路的接口转接单元发送转接控制信息,将冗余链路上的业务恢复到调整后的链路上;或者,
在光交叉连接单元调整连接前,向被调整链路的接口转接单元发送转接控制信息,停止被调整链路接口转接单元的业务数据发送,将从电交换单元发送到到接口转接单元的业务数据在接口转接单元内进行缓存,在光交叉连接单元完成连接调整后,再向被调整链路的接口转接单元发送转接控制信息,恢复接口转接单元的业务数据发送,并通过附加带宽带来的冗余链路泄放缓存的业务数据。
由上述的实施例可见,本发明实施例提供的这种业务交换系统及交换方法,用光交叉框来实现不同业务处理框之间的框间互连,替代了现有技术中用电交换交换框来实现不同业务处理框之间的框间互连。将现有技术中框间互连过程中的两次电光转换和两次光电转换,减少为一次电光转换和一次光电转换,因此,减少了框间互连光模块的数量,降低了系统成本和系统功耗,即降低了业务交换系统的互连代价。
另外,由于光交换框对业务处理框间互连的光信号具备速率无关性,当业务处理框的框间互连模块速率提升时,仍然可以采用已有的光交叉框,不会带来连动升级,与现有技术相比,简化了升级过程,降低了系统升级的成本。
还有,本发明实施例提供的这种业务交换系统,由于不需要象现有技术那样,付出两次光/电和电/光转换以及一次电交换的代价,而是采用光交叉框进行互连,只需进行一次光电和电光转换。因此,只要系统能够支持的总带宽大于等于需要接入的总带宽,即可实现整个系统业务无阻塞。
并且,在系统配置附加带宽的情况下,能够通过光交叉连接和电交换的带宽分配和联动控制,进一步保证了系统业务的无阻塞交换,确保了光交叉连接调整过程中已有业务的无损伤。
需要说明的是,本发明实施例中某一装置具体可以由**芯片或实体实现,或者由具有某种功能的产品来实现。
对于本发明实施例提供的业务交换方法实施例而言,由于其基本相似于业务系统实施例,所以描述的比较简单,相关之处参见业务系统实施例的部分说明即可。
为了描述的方便,描述以上装置是以功能分为各种单元分别描述。当然,在实施本发明时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发 明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (26)

  1. 一种业务交换系统,其特征在于,包括:至少两个业务处理框和至少一个光交叉框;其中,
    每个业务处理框通过光纤与每个光交叉框相连;
    每个业务处理框,用于对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框;和/或,接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部;
    每个光交叉框,用于接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。
  2. 根据权利要求1所述的业务交换系统,其特征在于,还包括:带宽控制单元,每个业务处理框与带宽控制单元相连;
    所述带宽控制单元,用于在业务处理框实现不同业务的业务交换时,对各个业务处理框进行带宽控制。
  3. 根据权利要求2所述的业务交换系统,其特征在于,所述的业务处理框包括:至少一个业务处理单元、至少一个电交换单元和至少一个接口转接单元;
    所述的业务处理单元,用于对外部输入的业务数据的电信号进行业务处理,将业务处理后的业务数据的电信号发送至电交换单元,和/或接收电交换单元发送的业务交换后的业务数据的电信号进行处理,将处理后的业务数据的电信号输出至外部;
    所述的电交换单元,用于接收业务处理单元发送的业务数据的电信号,根据所述带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至接口转接单元;和/或从接口转接单元接收业务数据的电信号,根据带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数 据的电信号发送至业务处理单元;
    所述的接口转接单元,用于接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框;和/或接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元。
  4. 根据权利要求3所述的业务交换系统,其特征在于,所述的光交叉框包括至少一个光交叉连接单元;
    所述光交叉连接单元,用于接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。
  5. 根据权利要求3所述的业务交换系统,其特征在于,所述的电交换单元包括:第一电信号接口、电交换模块、第二电信号接口和第一带宽控制接口;
    所述电交换模块,用于通过第一信号接口接收业务处理单元发送的业务数据的电信号,根据从第一带宽控制接口接收的带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号通过所述第二电信号接口发送至接口转接单元;和/或通过第二信号接口接收接口转接单元发送的业务数据的电信号,根据从第一带宽控制接口接收的带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号通过所述第一电信号接口发送至业务处理单元。
  6. 根据权利要求4所述的业务交换系统,其特征在于,所述的接口转接单元包括:第三电信号接口、转接处理模块、光电转换接口和第二带宽控制接口;
    所述的转接处理模块,用于通过所述第三电信号接口从电交换单元接收业务数据的电信号,根据从第二带宽控制接口接收的带宽控制单元发送的转接控制信息进行转接处理,将转接处理后的业务数据的电信号发送至光电转换接口;和/或接收光电转换 接口发送的业务数据的电信号,根据从第二带宽控制接口接收的带宽控制单元发送的转接控制信息,进行转接处理,将转接处理后的业务数据的电信号通过第三电信号接口发送至电交换单元;
    所述的光电转换接口,用于将从转接处理模块接收的业务数据的电信号转换为光信号发送至光交叉框中的光交叉连接单元,和/或将从光交叉连接单元接收的业务数据的光信号转换为电信号发送至转接处理模块。
  7. 根据权利要求6所述的业务交换系统,其特征在于,所述带宽控制单元发送的转接控制信息包括:时延信息和发送控制信息;
    所述的转接处理模块,具体用于对从第三电信号接口接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,对恢复的业务数据进行排序和对齐处理后进行缓存,根据带宽控制单元发送的发送控制信息和第二链路状态信息,将缓存的业务数据发送至光电转换接口;
    并对从光电转换接口接收业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据进行缓存,根据带宽控制单元发送的时延信息读取缓存的业务数据,根据第一链路信息,将读取的业务数据发送至第三电信号接口。
  8. 根据权利要求4所述的业务交换系统,其特征在于,
    所述的光交叉连接单元包括:四个光纤接口、动态光交叉连接器和第三带宽控制接口;
    所述的动态光交叉连接器,用于通过任一光纤接口,接收来自一个或多个业务处理框的业务数据的光信号,根据通过第三带宽控制接口接收的带宽控制单元发送的光交叉控制信息,进行光交叉连接,并将经过光交叉连接后的光信号通过任一光纤接口输出至一个或多个业务处理框。
  9. 根据权利要求8所述的业务交换系统,其特征在于,
    所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
    所述的带宽控制单元,用于在进行动态业务处理时,获得业务配置信息并接收流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元;
    和/或用于在进行静态业务处理时,获得业务配置信息,根据业务配置,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元。
  10. 根据权利要求9所述的业务交换系统,其特征在于,
    所述的带宽控制单元包括:第一流量信息接收接口、第一配置接口、第一业务带宽控制器和第四带宽控制接口;
    所述的第一带宽控制器,用于在进行动态业务时,通过第一配置接口获得业务配置信息,通过第一流量信息接收接口接收所述流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,通过第四带宽控制接口分别发送给电交换单元、接口转接单元和光交叉连接单元;
    和/或在进行静态业务时,通过第一配置接口获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,通过第四带宽控制接口 分别发送给电交换单元、接口转接单元和光交叉连接单元。
  11. 根据权利要求6所述的业务交换系统,其特征在于,
    所述的光交叉连接单元包括:四个光纤接口和静态光交叉连接器;
    所述的静态交叉连接器,用于通过任一光纤接口,接收来自一个或多个业务处理框的业务数据的光信号,按照其输入光端口和输出光端口固定的连接关系,进行光交叉连接,并将经过光交叉连接后的光信号通过任一光纤接口输出至一个或多个业务处理框;
    所述的光电转换接口,用于通过第二带宽控制接口从带宽控制单元接收光信号波长调整信息,根据光信号波长调整信息,确定发送光信号的波长;并按照确定的光信号的波长,将从转接处理模块接收的业务数据的电信号转换为光信号发送至光交叉连接单元中的静态交叉连接器,或将从光交叉连接单元的静态交叉连接器接收的业务数据的光信号转换为电信号发送至转接处理模块。
  12. 根据权利要求11所述的业务交换系统,其特征在于,
    所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
    所述的带宽控制单元,用于在进行动态业务时,获得业务配置信息并接收流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元;
    和/或用于在进行静态业务时,获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转 接单元。
  13. 根据权利要求12所述的业务交换系统,其特征在于,
    所述的带宽控制单元包括:第二流量信息接收接口、第二配置接口、第二业务带宽控制器和第五带宽控制接口;
    所述的第二带宽控制器,用于在进行动态业务时,通过第二配置接口获得业务配置信息,通过第二流量信息接收接口接收所述流量信息,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息通过第五带宽控制接口分别发送给电交换单元和接口转接单元;
    和/或在进行静态业务时,通过第二配置接口获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息通过第五带宽控制接口分别发送给电交换单元和接口转接单元。
  14. 根据权利要求9或12所述的业务交换系统,其特征在于,
    所述的业务处理单元包括:业务接口、业务处理模块、第四电信号接口和流量收集接口;
    所述的业务处理模块,用于通过所述业务接口从外部接收业务数据的电信号,进行业务处理,将处理后的业务数据的电信号通过所述第四信号接口发送至所述电交换单元;或通过所述第四信号接口接收电交换单元发送的业务数据的电信号,进行业务处理,将处理后的业务数据的电信号通过所述业务接口发送至外部;并在进行动态业务处理过程中,收集业务数据的流量信息,将流量信息通过流量收集接口发送至带宽控制单元。
  15. 根据权利要求1、2、9、10、12或13所述的业务交换 系统,其特征在于,所述的带宽控制单元为:独立于所述业务处理框或光交叉框的设备;或集成于所述业务处理框或光交叉框内。
  16. 根据权利要求3所述的业务交换系统,其特征在于,所述的业务处理单元、电交换单元及接口转接单元中的两种或三种集成于一块单板内。
  17. 一种业务交换方法,其特征在于,应用于权利要求1所述的业务交换系统,包括:
    业务处理框对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框;
    光交叉框接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框;
    业务处理框接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部。
  18. 根据权利要求17所述的业务交换方法,其特征在于,所述的业务交换系统还包括:带宽控制单元,每个业务处理框与带宽控制单元相连;
    在业务处理框实现不同业务的业务交换时,所述带宽控制单元对各个业务处理框进行带宽控制。
  19. 根据权利要求18所述的业务交换方法,其特征在于,所述的业务处理框包括:至少一个业务处理单元、至少一个电交换单元和至少一个接口转接单元;
    所述的业务处理框对外部输入的业务数据的电信号进行业务交换,并将业务交换后的业务数据的电信号转换为光信号,发送给一个或多个光交叉框的步骤,包括:
    业务处理单元接收外部输入的业务数据的电信号并进行业 务处理,将业务处理后的业务数据的电信号发送至电交换单元;
    电交换单元接收业务处理单元发送的业务数据的电信号,根据所述带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至接口转接单元;
    接口转接单元接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信号转换为光信号,发送至光交叉框;
    所述的业务处理框接收来自一个或多个光交叉框的业务数据的光信号,转换为电信号,并进行业务交换,将业务交换后的业务数据的电信号输出至外部的步骤,包括:
    接口转接单元接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元;
    电交换单元从接口转接单元接收业务数据的电信号,根据带宽控制单元发送的交换控制信息,进行业务交换,将业务交换后的业务数据的电信号发送至业务处理单元;
    业务处理单元接收电交换单元发送的业务交换后的业务数据的电信号进行处理,将处理后的业务数据的电信号输出至系统外部。
  20. 根据权利要求19所述的业务交换方法,其特征在于,所述的光交叉框包括至少一个光交叉连接单元;
    光交叉框接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框的步骤,包括:
    由所述的光交叉连接单元,接收来自一个或多个业务处理框的业务数据的光信号,对接收到光信号进行光交叉连接,并将经过光交叉连接后的光信号输出至一个或多个业务处理框。
  21. 根据权利要求20所述的业务交换方法,其特征在于,
    所述接口转接单元接收电交换单元发送的业务数据的电信号,根据带宽控制单元发送的转接控制信息,将业务数据由电信 号转换为光信号,发送至光交叉框的步骤,包括:
    接口转接单元接收电交换单元发送的业务数据的电信号,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第一链路状态信息,对恢复的业务数据进行排序和对齐处理后进行缓存,根据带宽控制单元发送的发送控制信息和第二链路状态信息,将缓存的业务数据转换为业务数据的光信号发送至光交叉框的光交叉连接单元;
    所述接口转接单元接收光交叉框发送的业务数据的光信号,根据带宽控制单元发送的转接控制信息,将业务数据由光信号转换为电信号发送至电交换单元的步骤,包括:
    所述接口转接单元接收光交叉框中的光交叉连接单元发送的业务数据的光信号转换为电信号后,进行接收处理,恢复出业务数据,从恢复的业务数据中获得第二链路状态信息,将恢复的业务数据进行缓存,根据带宽控制单元发送的时延信息读取缓存的业务数据,根据第一链路信息,将读取的业务数据发送至电交换单元。
  22. 根据权利要求20所述的业务交换方法,其特征在于,所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
    当所述光交叉连接单元包括动态光交叉连接器时,所述的带宽控制单元,在进行动态业务处理时,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息分别发送给电交换单元、接口转接单元和光交叉连接单元的动态光交叉连接器;和/或在进行静态业务处理时,获得业务配置信息,根据业务配置,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光交叉控制信息,分别发送给电交换单元、接口转接单元和光交叉连接单元。
  23. 根据权利要求20所述的业务交换方法,其特征在于,
    所述的业务处理单元,在进行动态业务处理时,将获得的流量信息发送至带宽控制单元;
    当所述光交叉连接单元包括静态光交叉连接器时,所述的带宽控制单元,在进行动态业务处理时,根据业务配置信息和流量信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元;
    和/或在进行静态业务时,获得业务配置信息,根据业务配置信息,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息、转接控制信息和光信号波长调整信息分别发送给电交换单元和接口转接单元。
  24. 根据权利要求23所述的业务交换方法,其特征在于,
    所述接口转换单元接收带宽控制单元发送的光信号波长调整信息,根据光信号波长调整信息,确定发送光信号的波长;并按照确定的光信号的波长,将从业务交换单元接收的业务数据的电信号转换为光信号发送至光交叉连接单元中的静态交叉连接器。
  25. 根据权利要求22或23所述的业务交换方法,其特征在于,
    所述业务配置信息包括:光连接带宽分配策略信息、静态业务的连接信息和带宽信息;
    所述带宽控制单元根据业务配置信息和流量信息,生成交换控制信息和转接控制信息的步骤,包括:
    根据所述光连接带宽分配策略信息、静态业务的连接信息和带宽信息进行静态业务的带宽分配;并根据所述光连接带宽分配 策略信息和从流量信息中获取的动态业务的连接信息,进行动态业务的带宽分配;
    对各个接口转接单元之间需要的光连接带宽进行统计,确定出各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽;
    根据确定的各个接口转接单元与各个光交叉连接单元之间需要的光连接带宽,生成交换控制信息和转接控制信息。
  26. 根据权利要求22或23所述的业务交换方法,其特征在于,该方法还包括:预先在各个业务处理框与各个光交叉框之间,配置附加带宽;
    所述的带宽控制单元,在光交叉连接单元调整连接之前,向被调整链路的接口转接单元发送转接控制信息,将被调整链路的业务数据发送到附加带宽带来的冗余链路上,在光交叉连接单元完成连接调整后,再向被调整链路的接口转接单元发送转接控制信息,将冗余链路上的业务数据恢复到调整后的链路上;或者,
    在光交叉连接单元调整连接前,向被调整链路的接口转接单元发送转接控制信息,停止被调整链路接口转接单元的业务数据发送,将从电交换单元发送到到接口转接单元的业务数据在接口转接单元内进行缓存,在光交叉连接单元完成连接调整后,再向被调整链路的接口转接单元发送转接控制信息,恢复接口转接单元的业务数据发送,并通过附加带宽带来的冗余链路泄放缓存的业务数据。
PCT/CN2015/091875 2015-02-03 2015-10-13 一种业务交换系统及业务交换方法 WO2016124001A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES15880943T ES2726277T3 (es) 2015-02-03 2015-10-13 Sistema de intercambio de servicios y método de intercambio de servicios
JP2017558604A JP6521543B2 (ja) 2015-02-03 2015-10-13 サービス切り替えシステムおよびサービス切り替え方法
EP15880943.4A EP3247078B1 (en) 2015-02-03 2015-10-13 Service exchange system and service exchange method
US15/668,481 US10200771B2 (en) 2015-02-03 2017-08-03 Service switching system and service switching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510057069.2 2015-02-03
CN201510057069.2A CN105991455B (zh) 2015-02-03 2015-02-03 一种业务交换系统及业务交换方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/668,481 Continuation US10200771B2 (en) 2015-02-03 2017-08-03 Service switching system and service switching method

Publications (1)

Publication Number Publication Date
WO2016124001A1 true WO2016124001A1 (zh) 2016-08-11

Family

ID=56563402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091875 WO2016124001A1 (zh) 2015-02-03 2015-10-13 一种业务交换系统及业务交换方法

Country Status (6)

Country Link
US (1) US10200771B2 (zh)
EP (1) EP3247078B1 (zh)
JP (1) JP6521543B2 (zh)
CN (1) CN105991455B (zh)
ES (1) ES2726277T3 (zh)
WO (1) WO2016124001A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343228A (zh) * 2017-05-23 2017-11-10 烽火通信科技股份有限公司 一种集群互连的通信系统
CN107426635A (zh) * 2017-06-29 2017-12-01 北京华为数字技术有限公司 一种光互联系统
CN113037653B (zh) * 2019-12-24 2024-05-28 中兴通讯股份有限公司 交换设备、控制方法、装置、终端设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078596A (en) * 1997-06-26 2000-06-20 Mci Communications Corporation Method and system of SONET line trace
CN1691550A (zh) * 2004-04-21 2005-11-02 华为技术有限公司 光通信网络中的业务保护装置及其方法
CN1887024A (zh) * 2003-12-23 2006-12-27 意大利电信股份公司 电信网络中基于业务预测的交换电路的自动建立系统和方法
CN101170485A (zh) * 2006-10-27 2008-04-30 中兴通讯股份有限公司 在三级clos交叉网络中配置多层粒度业务路由的方法
US7486850B2 (en) * 2006-03-28 2009-02-03 Fujitsu Limited Optical switch system
CN102143086A (zh) * 2011-04-29 2011-08-03 东北大学 一种wdm光网络中的多播共享段保护方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1202599A3 (en) * 2000-10-31 2004-03-24 Chiaro Networks Ltd. System and method for routing IP packets using an optical core
CN100428732C (zh) * 2003-12-24 2008-10-22 华为技术有限公司 集成交叉交换单元及其业务调度方法
US8102877B1 (en) * 2004-09-10 2012-01-24 Verizon Laboratories Inc. Systems and methods for policy-based intelligent provisioning of optical transport bandwidth
JP4553768B2 (ja) * 2005-03-29 2010-09-29 富士通株式会社 光パケットスイッチシステム
DE602005013674D1 (de) * 2005-10-05 2009-05-14 Alcatel Lucent Einheitliche inverse Adressenauflösung
CN201733410U (zh) * 2010-01-11 2011-02-02 浙江工业大学 用于光突发交换网络核心节点的光交叉连接装置
WO2011146066A1 (en) * 2010-05-20 2011-11-24 Hewlett-Packard Development Company, L.P. Switching in a network device
CN102137313B (zh) * 2011-04-29 2013-06-19 东北大学 一种wdm光网络中的基于子树的多播业务量疏导方法
CN102318363B (zh) * 2011-07-29 2014-04-16 华为技术有限公司 数据交叉系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078596A (en) * 1997-06-26 2000-06-20 Mci Communications Corporation Method and system of SONET line trace
CN1887024A (zh) * 2003-12-23 2006-12-27 意大利电信股份公司 电信网络中基于业务预测的交换电路的自动建立系统和方法
CN1691550A (zh) * 2004-04-21 2005-11-02 华为技术有限公司 光通信网络中的业务保护装置及其方法
US7486850B2 (en) * 2006-03-28 2009-02-03 Fujitsu Limited Optical switch system
CN101170485A (zh) * 2006-10-27 2008-04-30 中兴通讯股份有限公司 在三级clos交叉网络中配置多层粒度业务路由的方法
CN102143086A (zh) * 2011-04-29 2011-08-03 东北大学 一种wdm光网络中的多播共享段保护方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3247078A4 *

Also Published As

Publication number Publication date
EP3247078A1 (en) 2017-11-22
CN105991455B (zh) 2019-11-19
EP3247078A4 (en) 2018-02-21
JP6521543B2 (ja) 2019-05-29
EP3247078B1 (en) 2019-03-27
US10200771B2 (en) 2019-02-05
ES2726277T3 (es) 2019-10-03
US20170359638A1 (en) 2017-12-14
JP2018504077A (ja) 2018-02-08
CN105991455A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN1806466B (zh) 在基于wdm的光子突发交换网络中连网的多个高速服务器的体系结构、方法和系统
CN102868476B (zh) 基于波长选择交叉连接矩阵的roadm系统
AU2015283976A1 (en) Data center path switch with improved path interconnection architecture
CN101237254A (zh) 光纤保护倒换装置、方法及具有该装置的无源光网络系统
US8774628B2 (en) Remote node and network architecture and data transmission method for a fiber-optic network, especially for low bit-rate data transmission
CN107113064A (zh) 光电交换机
WO2016124001A1 (zh) 一种业务交换系统及业务交换方法
GB2346280A (en) Optical switching interface using transponders
CN105681932B (zh) 一种支持大规模、全光互连的光交换机
US20240056705A1 (en) Distributed optical switching and interconnect chip and system
WO2015154511A1 (zh) 光信号的交叉系统、交叉处理方法及装置
CN201178482Y (zh) 大容量严格无阻塞智能光交叉连接装置
CN103888361A (zh) 一种面向胖树型拓扑结构的光路由器
CN105516830A (zh) 基于波长交换的数据中心光网络通信方法和系统
CN1567749A (zh) 一种无源光网络环网系统及断路保护的方法
CN1559159A (zh) 在使用多级协议处理情况下交换多数信号的装置和方法
US6643423B2 (en) System and method for bridge and roll in a photonic switch
CN113473272A (zh) 一种用于数据中心交换机的无阻塞光互连架构
CN101466033A (zh) 分布式的数字非压缩视频交换设备和方法
CN1207856C (zh) 基于可调波长变换器及波长自路由器的光传送网节点结构
US9031407B2 (en) Bidirectional optical data packet switching interconection network
TWI716279B (zh) 光隧道交換網路系統
CN112491460B (zh) 一种支持多速率多协议卫星通信业务的星载多级交换装置
JP7019626B2 (ja) 光回線終端装置および光回線終端装置の制御方法
CN104365114A (zh) 用于使用分级数据结构交换传输的信息的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015880943

Country of ref document: EP