WO2016122112A1 - Method and device for estimating path loss in wireless communication system supporting laa - Google Patents

Method and device for estimating path loss in wireless communication system supporting laa Download PDF

Info

Publication number
WO2016122112A1
WO2016122112A1 PCT/KR2015/013598 KR2015013598W WO2016122112A1 WO 2016122112 A1 WO2016122112 A1 WO 2016122112A1 KR 2015013598 W KR2015013598 W KR 2015013598W WO 2016122112 A1 WO2016122112 A1 WO 2016122112A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
path loss
terminal
unlicensed band
secondary serving
Prior art date
Application number
PCT/KR2015/013598
Other languages
French (fr)
Korean (ko)
Inventor
박동현
권기범
Original Assignee
주식회사 아이티엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티엘 filed Critical 주식회사 아이티엘
Publication of WO2016122112A1 publication Critical patent/WO2016122112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control

Definitions

  • the present invention relates to a method and apparatus for estimating path-loss in a wireless communication system supporting Licensed Assisted Access (LAA).
  • LAA Licensed Assisted Access
  • Cellular is a concept proposed to overcome the limitations of service area, frequency, and subscriber capacity, and it is possible to reuse frequency spatially by dividing mobile service area into several small cells. .
  • a particular area such as a hotspot inside a cell
  • reception sensitivity of radio waves may be reduced.
  • small cells such as pico cells and femto cells
  • a micro cell, a remote radio head (RRH), a relay, a repeater, and the like are installed together.
  • RRH remote radio head
  • Such a network is called a heterogeneous network (HetNet).
  • HetNet heterogeneous network
  • a macro cell is a large coverage cell
  • a small cell such as a femto cell and a pico cell is a small coverage cell.
  • CA carrier aggregation
  • the serving cell set on the unlicensed band can be easily exposed to interference due to the nature of the unlicensed band, thereby providing reliable path-loss. It is impossible to estimate. This causes uplink transmission power control based on inaccurate path loss values, which not only degrades the performance of the entire system but can also cause unnecessary interference.
  • An object of the present invention is to provide a reliable method and apparatus for estimating path loss in a wireless communication system in which carrier aggregation is configured between a serving cell of a licensed band and a serving cell of an unlicensed band.
  • Another object of the present invention is to provide a method and apparatus for configuring and transmitting information for estimating a path loss for a serving cell of an unlicensed band in a wireless communication system configured with carrier aggregation.
  • a method for estimating a path loss in a wireless communication system includes a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band from an eNB to an RRC Receiving a Radio Resource Control) message and estimating a path loss during uplink transmission through a secondary serving cell configured in the unlicensed band based on information on a path loss reference serving cell included in the RRC message.
  • a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band from an eNB to an RRC Receiving a Radio Resource Control) message and estimating a path loss during uplink transmission through a secondary serving cell configured in the unlicensed band based on information on a path loss reference serving cell included in the RRC message.
  • a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is selected from among secondary serving cells of the unlicensed band based on channel acquisition. Dynamically selecting one and estimating a path loss during uplink transmission through the secondary serving cell configured in the unlicensed band based on the selected secondary serving cell.
  • a path loss estimation method in a wireless communication system is a channel environment of a terminal of a terminal based on a signal received from a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band. Estimating, determining whether to change the path loss reference serving cell of the terminal based on the estimated channel environment, and if the path loss reference serving cell is changed, determining the path loss reference serving cell to the terminal.
  • the method may include transmitting an RRC message indicating a change of.
  • a terminal configured with carrier aggregation between a licensed band serving cell and an unlicensed band serving cell is included in an RF (Radio Frequency) unit for receiving an RRC message from a base station and the RRC message.
  • RF Radio Frequency
  • the present invention can reliably estimate path loss even when carrier aggregation is configured between a serving cell of a licensed band and a serving cell of an unlicensed band.
  • by transmitting and receiving information for estimating a path loss for the unlicensed band between the serving cell of the licensed band and the serving cell of the unlicensed band it provides an advantage of guaranteeing the overall quality of service through the unlicensed band.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 shows examples of a LAA deployment scenario to which the present invention is applied.
  • FIG. 3 is an exemplary diagram illustrating a case where an existing path loss estimation method is applied to a situation in which carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
  • 4 and 5 are diagrams illustrating an example of an interference situation when carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
  • FIG. 6 illustrates a path loss estimation method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating the operation of a terminal according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
  • FIG 9 illustrates a path loss estimation method according to another embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating the operation of a terminal according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • the network structure shown in FIG. 1 may be a network structure of an Evolved-Universal Mobile Telecommunications System (E-UMTS).
  • E-UMTS Evolved-Universal Mobile Telecommunications System
  • the E-UMTS system may include a Long Term Evolution (LTE), an LTE-A (Advanced) system, and the like.
  • Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the E-UTRAN includes at least one base station (BS) 20 that provides a control plane and a user plane to the terminal.
  • the UE 10 may be fixed or mobile and may have other mobile stations, advanced MSs (AMS), user terminals (UTs), subscriber stations (SSs), wireless devices (Wireless Devices), and the like. It may be called a term.
  • the base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and a femto-eNB. ), A pico base station (pico-eNB), a home base station (Home eNB), relay (relay) may be called other terms.
  • the base station 20 may provide at least one cell to the terminal.
  • the cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band.
  • the cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the source base station (Source BS) 21 refers to a base station in which a radio bearer is currently set up with the terminal 10, and the target base station (Target BS, 22) means that the terminal 10 disconnects the radio bearer from the source base station 21 and renews it. It means a base station to be handed over to establish a radio bearer.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the X2 interface is used to send and receive messages between the base stations 20.
  • the base station 20 is connected to an evolved packet system (EPS), more specifically, a mobility management entity (MME) / serving gateway (S-GW) 30 through an S1 interface.
  • EPS evolved packet system
  • MME mobility management entity
  • S-GW serving gateway
  • the S1 interface supports a many-to-many-relation between base station 20 and MME / S-GW 30.
  • the PDN-GW 40 is used to provide packet data services to the MME / S-GW 30.
  • downlink means communication from the base station 20 to the terminal 10
  • uplink means communication from the terminal 10 to the base station 20.
  • the downlink is also called a forward link
  • the uplink is also called a reverse link.
  • the transmitter may be part of the base station 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the base station 20.
  • a time division duplex (TDD) scheme using different times may be used as an uplink transmission and a downlink transmission scheme, or a frequency division duplex (FDD) scheme using different frequencies may be used. Can be used.
  • TDD time division duplex
  • FDD frequency division duplex
  • carrier aggregation supports a plurality of carriers and is also referred to as spectrum aggregation or bandwidth aggregation.
  • Individual unit carriers bound by carrier aggregation are called component carriers (CC).
  • Each component carrier is defined by a bandwidth and a center frequency. For example, if five component carriers are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • a serving cell may be defined as an element frequency band that may be aggregated by a CA based on a multiple component carrier system.
  • the serving cell includes a primary serving cell (PCell) and a secondary serving cell (SCell).
  • the primary serving cell is one that provides security input and non-access stratum (NAS) mobility information in a radio resource control (RRC) connection or re-establishment state. It means a serving cell.
  • RRC radio resource control
  • at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell.
  • the set of serving cells configured for one terminal may consist of only one main serving cell or one main serving cell and at least one secondary serving cell. Each serving cell may be operated in an activated or deactivated state.
  • FIG. 2 shows examples of a LAA deployment scenario to which the present invention is applied.
  • the wireless system utilizes the frequencies of the licensed band as well as the unlicensed band that the WiFi system is using. Methods of conducting communication are under discussion.
  • wireless communication in the unlicensed band may be provided with the support of the communication technique of the licensed band.
  • LAA License Assisted Access
  • LAA supports CA operation for one or more secondary serving cells operating in an unlicensed band or unlicensed spectrum based on the assistance of a primary serving cell operating in a licensed band or spectrum.
  • a wireless communication scheme is shown.
  • LAA is a technology that binds a licensed band and an unlicensed band to one using a CA as an anchor and a licensed band as an anchor.
  • the licensed band may be used as the primary serving cell and the unlicensed band may be used as the secondary serving cell.
  • the unlicensed band may be activated only through the CA and may not perform LTE communication alone.
  • the terminal accesses the network through the licensed band to use the service, and the base station combines the licensed band and the unlicensed band into the CA through an RRC resetting process according to circumstances, thereby offloading the traffic of the licensed band to the unlicensed band. You can.
  • Scenario 1 is a case where a macro cell using a licensed carrier F1 (frequency 1) and a small cell using an unlicensed carrier F3 are connected by carrier aggregation (CA).
  • Scenario 2 is a case where the small cell # 1 using the licensed carrier F2 and the small cell # 2 using the unlicensed carrier F3 are connected by carrier aggregation in addition to the macro cell coverage.
  • Scenario 3 is a case where there is a macro cell using a licensed carrier F1 and a small cell # 1, and the small cell # 1 is connected to the carrier aggregation through F1 and F2 carrier by additionally using an unlicensed carrier F3.
  • Scenario 4 is a situation where there is a macro cell using a licensed carrier F1, a small cell # 1 using a licensed carrier F2 and an unlicensed carrier F3.
  • carrier aggregation may be set using F1, F2, and F3. If dual-connectivity is set using F1 and F2, carrier aggregation may be additionally set using F2 and F3.
  • each serving cell in the licensed band and the unlicensed band has a time alignment group (TAG) according to the band in which it is located.
  • TAG time alignment group
  • the TAG is a group including serving cell (s) using the same time forward value and the same timing reference or the timing reference cell including the timing reference among uplink configured serving cells.
  • the TAG is divided into a primary timing alignment group (P-TAG) and a secondary timing alignment group (S-TAG).
  • P-TAG is a TAG including a primary serving cell
  • the S-TAG is a TAG composed of only secondary serving cells.
  • the primary serving cell may be configured only on the licensed band.
  • an uplink component carrier (UL SCC) of a secondary serving cell belongs to a P-TAG in a wireless communication system
  • the base station uses RRC signaling to downlink component carrier (DL PCC) of the primary serving cell or UL of the secondary serving cell.
  • DL PCC downlink component carrier
  • the UE provides a configuration of a path-loss reference serving cell for the UL SCC among DL SCCs having an SCC and SIB2 (System Information Block 2) linkage. All secondary serving cells (eg, secondary serving cells belonging to the S-TAG) without this configuration estimate path loss based on the DL CC having the corresponding UL CC and SIB2 connection.
  • the UL PCC always estimates the path loss based on the DL PCC.
  • the SIB2 is information provided to allow the terminal to access the cell and includes an uplink cell bandwidth, a random-access parameter, and parameters related to uplink power control.
  • RRC signaling for UL SCC is that in some heterogeneous network (HetNet) environments, reliable path loss estimation is not possible on DL SCCs of small cells that may be strongly interfered with from macro cells. .
  • HetNet heterogeneous network
  • terminals in the small cell can estimate the path loss of the UL SCC based on the DL PCC, thereby enabling more reliable path loss estimation.
  • the wireless communication system currently supports CA between up to five CCs, but in the 5 GHz band where LAA is being considered, a greater number of CCs (eg, up to 32 CCs) may be used. CA may be considered.
  • a local area network (LAN) system such as WiFi can provide 80 MHz and 160 MHz bands, and thus a wireless communication system such as LTE also needs to provide a similar or higher frequency concatenation.
  • the wireless communication system may additionally provide one or more carriers to the existing band even in the licensed 3.5 GHz band, it is necessary to provide a function capable of concatenating five or more component carriers at least in downlink.
  • the overhead on the primary serving cell on which the Physical Uplink Control CHannel (PUCCH) is transmitted may become even larger in the situation of configuring CA between a large number of carriers as well as the present. Accordingly, in order to solve this problem, PUCCH transmission on a secondary serving cell may be considered.
  • PUCCH transmission on a secondary serving cell may be considered. This is not only an overhead problem, but in a situation in which a remote radio head (RRH) as in Scenario 4 is considered, the utilization of RRH is distributed depending on the main serving cell without depending on the operation of changing the main serving cell. You can.
  • RRH remote radio head
  • the serving cell set on the unlicensed band may be easily exposed to interference due to the nature of the unlicensed band. This makes it impossible to estimate a reliable path-loss. It causes uplink transmit power control based on incorrect path loss values, which not only degrades the performance of the entire system but can also cause unnecessary interference. Therefore, there is a need for a method for reliably estimating path loss in a situation where a CA is configured between a serving cell of a licensed band and a serving cell of an unlicensed band.
  • FIG. 3 is an exemplary diagram illustrating a case where an existing path loss estimation method is applied to a situation in which carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
  • a primary serving cell (PCell) and two secondary serving cells (SCell # 1 and SCell # 2) are configured in a licensed band (L-band), and three subbands are provided in an unlicensed band (U-band).
  • the case where the serving cells SCell # 3, SCell # 4 and SCell # 5 are configured is shown.
  • a plurality of TAGs Multiple-TAGs
  • -TAG can be set.
  • DL SCCs (DL CCs of SCell # 3, SCell # 4 and SCell # 5) set on the unlicensed band are more than DL SCCs (DL CCs of SCell # 1 and SCell # 2) set on the licensed band.
  • DL SCCs (DL CCs of SCell # 1 and SCell # 2) set on the licensed band.
  • a DL SCC (DL of SCell # 1 and SCell # 2) in which a path loss reference serving cell of an UL SCC (UL CC of SCell # 1 and SCell # 2) set on a licensed band due to interference in a specific environment is connected to SIB2.
  • the DL SCCs (DL CCs of SCell # 3, SCell # 4 and SCell # 5) on the unlicensed band are in a worse channel environment.
  • secondary serving cells on the unlicensed band may be exposed to interference as shown in FIG. 4.
  • 4 and 5 are diagrams illustrating an example of an interference situation when carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
  • a carrier configured between a serving cell and a serving cell of an unlicensed band (hereinafter referred to as a LAA terminal) experiences interference from a hidden node.
  • the unlicensed band allows a base station or a terminal to acquire a channel access opportunity based on competition.
  • the channel access mechanism provides opportunistic channel access.
  • a wireless communication device such as a base station or an access point (AP) may perform a clear channel assessment (CCA) or extended clear channel assessment (ECCA) before using a corresponding channel.
  • CCA clear channel assessment
  • ECCA extended clear channel assessment
  • eNBs LAA base stations
  • WLAN Wireless Local Area Network
  • CCA or ECCA is a procedure for determining whether the channel is occupied or unoccupied, that is, whether the channel is busy or idle by performing an energy scan or detection on the channel.
  • Such a channel access mechanism may be referred to as Listen Before Talk (LBT) or Carrier Sense (CS).
  • LBT Listen Before Talk
  • CS Carrier Sense
  • the wireless communication device determines whether the channel is available for transmission based on the energy measured in the channel.
  • LBT may be performed frame-based or load-based.
  • parameters such as CCA, Extended CCA, channel occupancy time, idle period, CCA energy detection threshold may be defined.
  • a wireless communication device using an unlicensed band may perform (E) CCA at the end of an idle period before starting transmission on an operating channel. That is, the wireless communication device can grasp the occupancy state of the channel by performing (E) CCA for the (E) CCA execution time within the idle period. If the wireless communication device correctly receives the packet intended for the device on the channel occupied by the previous CCA, if it has not exceeded the maximum channel occupancy time, the wireless communication device does not perform (E) CCA again. (E.g., ACK and Block ACK frames) may be transmitted.
  • E.g., ACK and Block ACK frames may be transmitted.
  • the two nodes (LAA operator # 1 and the WLAN AP) perform LBTs at the same time.
  • the same channel may be obtained, and downlink transmission may be performed to the first terminal UE1 and the second terminal UE2 on the unlicensed band, respectively.
  • a wireless communication system e.g. LTE
  • transmits and receives a control / data information in a fixed format e.g. subframe / radio frame.
  • a fixed format e.g. subframe / radio frame.
  • a WLAN system such as WiFi
  • data transmission / reception may be performed by concatenating a band having a maximum size of 160 MHz.
  • wireless communication systems such as LTE systems define all physical layer operations based on fixed system bandwidth information.
  • the interval of the center carriers on the unlicensed band in the wireless communication system is 5 MHz, the overlapping is partially overlapped with each other due to inaccurate noise interference (NI) and inaccurate radio resource management (RRM). Resource occupancy may occur between different nodes, causing interference.
  • NI noise interference
  • RRM radio resource management
  • FIG. 6 illustrates a path loss estimation method according to an embodiment of the present invention.
  • a main serving cell (PCell) and two secondary serving cells (SCell # 1 and SCell # 2) are configured in a licensed band (L-band) and in an unlicensed band (U-band).
  • SCell # 3, SCell # 4, and SCell # 5 are configured in the case where three secondary serving cells (SCell # 3, SCell # 4, and SCell # 5) are configured.
  • SCell # 3, SCell # 4, and SCell # 5 are configured in the case where three secondary serving cells (SCell # 3, SCell # 4, and SCell # 5) are configured.
  • SCell # 3, SCell # 4, and SCell # 5 are configured.
  • a situation in which the DL CC of the secondary serving cell # 3 on the unlicensed band receives strong interference is illustrated.
  • the UE may perform the secondary serving in the DL CC of the secondary serving cell # 3 on the unlicensed band in which the path loss reference serving cell for the UL CC of the secondary serving cell # 3 on the unlicensed band is connected to SIB2 for a more reliable path loss estimation. It is possible to change to a DL CC of another secondary serving cell (SCell # 4 or SCell # 5) in an unlicensed band in an interference environment less than the DL CC of cell # 3. In this case, the terminal may perform more accurate power control for uplink transmission on the unlicensed band, thereby improving overall system performance.
  • the base station may transmit path-loss reference linking information for the secondary serving cell (s) configured on the unlicensed band to the terminal through RRC signaling.
  • the path loss reference connection information may be information on a secondary serving cell to be referred to when the path is lost among the secondary serving cells set on the unlicensed band, and may include an index of the secondary serving cell to be used for estimating the path loss.
  • the path loss reference connection information may be delivered by using a pathloss reference linking parameter included in an information element (IE) of an uplink power control dedicated SCell.
  • IE information element
  • the UE determines S-TAGs belonging to the S-TAG, except for a sub-serving cell corresponding to the uplink (SIB2-linkage) or a sub-serving cell corresponding to the uplink.
  • SIB2-linkage a sub-serving cell corresponding to the uplink
  • One of the secondary serving cells corresponding to the index of the secondary serving cell indicated by RRC signaling among other secondary serving cells in the TAG may be applied as a path loss reference serving cell.
  • a secondary serving cell carrying a PUCCH (that is, a secondary serving cell capable of PUCCH transmission) is configured in a secondary serving cell belonging to an S-TAG
  • One of the CCs may be configured as a path loss reference serving cell by RRC signaling. That is, when a DL CC of a specific secondary serving cell on an unlicensed band is subjected to strong interference, if a secondary serving cell carrying a PUCCH is configured in a secondary serving cell belonging to an S-TAG, the DL CC of the secondary serving cell carrying the PUCCH is It can be used to estimate the path loss of a DL CC in strong interference situations.
  • the path loss estimation value PL c estimated by the terminal with respect to the serving cell c may be calculated by Equation 1 below.
  • the 'referenceSignalPower' value is a value provided from the upper layer.
  • the upper layer filtering setting is based on the reference serving cell, and the RSRP (Reference Signal Received Power) value is measured based on the reference serving cell.
  • FIG. 7 is a flowchart illustrating the operation of a terminal according to an embodiment of the present invention.
  • the terminal may configure at least one secondary serving cell on the unlicensed band based on configuration information (hereinafter referred to as LAA configuration information) regarding the serving cell of the unlicensed band.
  • LAA configuration information may be transmitted from the base station to the terminal through the main serving cell of the licensed band, it may be transmitted through an RRC message.
  • the RRC message may be an RRC connection reconfiguration message.
  • the path loss is estimated at the time of uplink transmission (S720).
  • the path loss reference connection information may be information about a secondary serving cell to be referred to when a path is lost among secondary serving cells set on an unlicensed band, and may include an index of the secondary serving cell.
  • the secondary serving cell to be referred to when the path is lost may be a secondary serving cell different from the secondary serving cell used for the uplink transmission among the serving cells of the unlicensed band.
  • the UE may perform DL serving based on the path loss reference connection information for a DL CC to be referred for uplink transmission through the specific secondary serving cell.
  • the path loss of the specific secondary serving cell can be estimated by the DL CC of another secondary serving cell in the S-TAG to which the cell belongs.
  • the secondary serving cell carrying the PUCCH may be configured as a path loss reference serving cell by RRC signaling.
  • the UE may use the DL CC of the secondary serving cell carrying the PUCCH to estimate the path loss of the secondary secondary cell in a situation where the secondary secondary cell is subjected to strong interference.
  • FIG. 8 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
  • the base station reports a status report, a sounding reference signal (SRS), and a PRACH from a terminal to a channel already set such as channel state information (CSI), reference signal received power (RSRP), and reference signal received quality (RSRQ).
  • An uplink signal such as a physical random access channel may be received.
  • the base station may estimate (inferred) the channel environment of the corresponding terminal based on the received signal (S810).
  • the RSRP value is defined as a value [W] that averages the power distribution of the REs transmitted by the CRS (or DRS) transmitted within the frequency bandwidth considered in the channel measurement.
  • the RSRQ value is defined as N ⁇ RSRP / (E-UTRA carrier RSSI), and the RSSI value represents an average value of all received powers in the measured frequency bandwidth.
  • the CSI considers the ratio of the power of the original signal to the power of the interference signal through downlink / uplink RSs (eg CRS, CSI-RS, SRS, etc.) and corresponding channel values (RI, PMI, CQI) corresponding thereto. This value is taken into account for scheduling.
  • the base station may determine whether to change the path loss reference serving cell of the terminal based on the estimated channel environment of the terminal (S820). To this end, the base station may, for example, estimate an interference situation of the corresponding UE based on the CSI value or determine the channel based on the RSRP / RSRQ value. For example, the base station may evaluate the quality of the original signal through the ratio of the RSRP / RSRQ value and other signals including power, interference and noise of the original signal.
  • CSI or path loss may be directly measured based on the SRS and PRACH signals.
  • the base station may evaluate and estimate a channel environment of the corresponding terminal by calculating a difference value between a predetermined SRS transmission power and the power of the SRS signal received by the base station.
  • the BLER (Block-Error Rate) value of the PUSCH (Physical Uplink Shared Channel) received from the UE is based on a target value (this is a preset value, it is applied as a parameter applied for base station / terminal implementation). It can be used, which is a value that can be adjusted in consideration of the service, which can be set by the service provider (network operator) in consideration of the network environment for the service). It can be determined that such a problem is caused by wrong power control, and the main cause is that wrong path loss estimation is performed at the terminal side.
  • the base station may change the reference serving cell for estimating the path loss performed by the terminal based on the path loss measured based on the SRS and PRACH signals. That is, the base station determines that the path loss estimation of the terminal is unreliable and can change the reference serving cell for the path loss estimation to another reference serving cell.
  • the base station compares the CSI, RSRP and RSRQ values reported from the terminal, the CSI measured by the base station directly based on the uplink SRS and PRACH, the path loss value, and the BLER of the PUSCH. These factors can be used to determine if the original signal is weak.
  • the base station is based on the channel information (CSI, RSRP, RSRQ) reported from the terminal and all or some bad value based on the value directly estimated by the base station uplink signal (SRS / PRACH) from the terminal If reported, the path loss reference serving cell may be changed.
  • the RRC signaling is triggered to change the path loss reference serving cell of the base station corresponding serving cell (S830), and the RRC indicating a change of the path loss reference serving cell for the corresponding serving cell.
  • the message is transmitted to the terminal (S840).
  • FIG 9 illustrates a path loss estimation method according to another embodiment of the present invention.
  • the path loss channel estimation method described with reference to FIGS. 6 to 8 may be usefully used in a situation where the channel environment has little change. However, in situations where the channel environment is changing (fast), there is a need to change the path loss reference serving cell more adaptively and dynamically.
  • LAA will consider how to effectively select multiple channels (carriers) on the unlicensed band to be set to S-TAG. That is, this means that a carrier is dynamically selected within a plurality of serving cells configured as a base station in one terminal view, and the selected secondary serving cell can be considered for the path loss estimation for the UL CC.
  • the path loss reference serving cell for the UL SCC on the unlicensed band set to S-TAG may be dynamically selected. That is, the path loss estimation for the set UL CC (UL CC of SCell # 3) may be dynamically changed based on the secondary serving cell of the (licensed) licensed band selected through (C) CCA after performing LBT.
  • the path loss is estimated even for the deactivated serving cell. If a specific serving cell occupies a channel after performing LBT at a specific time through physical layer signaling in the LAA, it may be changed to an "on” or “busy” state, otherwise it is an "off” or “Idle” state.
  • the serving cell of may also be in an "on” state.
  • the terminal In order to cope with such a possibility, the terminal always needs to prepare for uplink transmission by estimating a path loss even for a deactivated serving cell.
  • secondary serving cell # 3 (UL SCC # 3) (ie, path loss estimation for uplink transmission of secondary serving cell # 3).
  • UL SCC # 3 ie, path loss estimation for uplink transmission of secondary serving cell # 3.
  • the channel estimation for the UL SCC of the sub-serving cell # 3 is performed at the time t1. It may be performed based on the DL SCC of the secondary serving cell # 3 having the UL SCC of 3 and the SIB2 connection.
  • the DL SCC of the secondary serving cell # 4 in the "on" state is prepared to prepare for uplink transmission through the secondary serving cell # 3. Based on the channel estimation for the UL SCC of the secondary serving cell # 3 may be performed.
  • UL SCC # 3 when two serving cells SCell # 3 and SCell # 5 are in an “on” state as in time t3, there may be two choices in terms of UL SCC # 3. These are the secondary serving cell # 3 (DL SCC # 3) and the secondary serving cell # 5 having the UL SCC # 3 and the SIB2 connection. If a plurality of DL CCs are turned “on”, a path for one UL CC is performed. As a lost reference serving cell, a DL CC (ie, secondary serving cell # 3 in FIG. 9) having an SIB2 connection with a corresponding UL CC (UL SCC # 3) may be selected with the highest priority.
  • DL SCC # 4 and DL SCC # 5 are "on" at time t3
  • DL SCC # 4 may be selected as a path loss reference serving cell for UL SCC # 3.
  • a serving cell configured for RRC signaling has a higher priority. Can have.
  • information about the priority for all serving cells in the S-TAG may be indicated by RRC signaling.
  • a specific serving cell c belongs to a TAG that does not include the primary serving cell and a channel is obtained through (E) CCA on the serving cell c
  • the terminal always refers to the serving cell c for path loss estimation. Can be used as a serving cell.
  • the serving cell c belongs to a TAG that does not include the main serving cell and the channel is not obtained through (E) CCA on the serving cell c and the channel is obtained on another serving cell in the same TAG, the terminal A serving cell obtained with a channel can always be used as a path loss reference serving cell.
  • a serving cell having the smallest secondary serving cell index may be used as a path loss reference serving cell. This is because the last distinguishable element is the serving cell index (sub-serving cell index) if the channel state of the plurality of serving cells in which the channel is obtained is the same state.
  • the serving cell selected based on the priority indicated by the RRC signaling may be used as the path loss reference serving cell.
  • FIG. 10 is a flowchart illustrating the operation of a terminal according to another embodiment of the present invention.
  • the terminal sets at least one secondary serving cell on the unlicensed band to S-TAG and is set to S-TAG.
  • the path loss reference serving cell for the UL SCC on the band may be dynamically selected (S1010).
  • the path loss of the secondary serving cell in the unlicensed band may be estimated based on the selected path loss reference serving cell (S1020).
  • the UE may preferentially use a serving cell including a DL CC connected to SIB2 to the specific secondary serving cell as a reference serving cell for path loss estimation.
  • the terminal may use the other secondary serving cell as a path loss reference serving cell. If there are a plurality of secondary serving cells from which the channel is obtained, the secondary serving cell having the smallest secondary serving cell index is used as the path loss reference serving cell or the path loss reference serving cell is selected based on the priority indicated by RRC signaling. Can be.
  • FIG. 11 is a block diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system supporting LAA includes at least one terminal 1100 and at least one base station 1200.
  • Each terminal 1100 includes an RF unit 1110, a processor 1120, and a memory 1130.
  • the memory 1130 is connected to the processor 1120 and stores various information for driving the processor 1120.
  • the RF unit 1110 is connected to the processor 1120 to transmit and / or receive a radio signal.
  • the RF unit 1110 may receive an RRC message from the base station 1200 and transmit an uplink signal such as CSI, RSRP, RSRQ, SRS, and PRACH to the base station 1200.
  • the memory 1130 may store LAA configuration information, information about a path loss reference serving cell, and the like, and provide the information to the processor 1120 according to a request of the processor 1120.
  • the processor 1120 implements the functions, processes, and / or methods proposed herein. Specifically, the processor 1120 allows the steps according to FIGS. 3 and / or 10 to be performed.
  • the processor 1120 may include a setting unit 1121 and an estimating unit 1122.
  • the setting unit 1121 sets a path loss reference serving cell for the secondary serving cell configured in the unlicensed band based on the information on the path loss reference serving cell included in the RRC message. For example, the setting unit 1121 may determine a path loss of a secondary serving cell set in the unlicensed band based on path loss reference connection information included in an information element of an uplink power control dedicated SCell in the RRC message. The index of the reference serving cell can be checked.
  • the estimator 1122 estimates a path loss during uplink transmission through the secondary serving cell set in the unlicensed band using the path loss reference serving cell. For this purpose, the estimator 1122 may use Equation 1 below.
  • the setting unit 1121 uses the path loss reference serving cell included in the RRC message to estimate the path loss of the secondary serving cell configured on the unlicensed band.
  • the path loss reference serving cell may be a secondary serving cell to be referred to when a path is lost among secondary serving cells configured on an unlicensed band.
  • the RRC message may include an index of the path loss reference serving cell.
  • the setting unit 1121 may determine a DL CC to be referred for uplink transmission through the specific secondary serving cell as the path loss reference connection information. Based on the sub serving cell may be set to the DL CC of the other secondary serving cell in the S-TAG. However, if the secondary serving cell carrying the PUCCH is configured in the secondary serving cell belonging to the S-TAG, the setting unit 1121 may set the secondary serving cell carrying the PUCCH as a path loss reference serving cell.
  • the information on the secondary serving cell for the PUCCH may be transmitted to the terminal through the RRC signaling, the estimator 1122 is a secondary serving cell carrying the PUCCH in a situation that a particular secondary serving cell is subjected to strong interference.
  • DL CC may be used to estimate a path loss of the specific secondary serving cell.
  • the setting unit 1121 dynamically selects a path loss reference serving cell for the UL SCC on the unlicensed band set to S-TAG, depending on whether the channel is obtained through (e) CCA of the unlicensed band and thus the path loss. It can be set as a reference serving cell.
  • the estimator 1122 may dynamically perform path loss estimation for uplink transmission through the unlicensed band based on the secondary serving cell of the unlicensed band set as the path loss reference serving cell. For example, the estimator 1122 always loses the path of the particular serving cell if the particular serving cell belongs to a TAG that does not include the primary serving cell and the channel is obtained through (E) CCA on the specific serving cell.
  • the estimator 1122 may always use a serving cell from which a channel is obtained as a path loss reference serving cell. In this case, if there are a plurality of serving cells in which channels are acquired, the serving cell having the smallest secondary serving cell index is used as the path loss reference serving cell, or the path loss is selected based on the priority indicated by the RRC signaling. Can be used as a reference serving cell.
  • the base station 1200 includes a radio frequency unit 1210, a processor 1220, and a memory 1230.
  • the memory 1230 is connected to the processor 1220 and stores various information for driving the processor 1220.
  • the RF unit 1210 is connected to the processor 1220 and transmits and / or receives a radio signal.
  • the processor 1220 implements the functions, processes, and / or methods proposed herein. In the above-described embodiment, the operation of the base station 1200 may be implemented by the processor 1220.
  • the processor 1220 generates an RRC message published herein and performs an (E) CCA for an unlicensed band to obtain a channel.
  • the processor 1220 may include a determiner 1221 and a generator 1222.
  • the determination unit 1221 determines a channel environment of the terminal 1100 based on a status report on a predetermined channel such as CSI, RSRP, RSRQ, etc. received from the terminal 1100, and determines an uplink signal such as SRS and PRACH. Based on this, the channel environment of the terminal 1100 may be directly estimated. Then, it may be determined whether to change the path loss reference serving cell of the terminal based on the estimated channel environment of the terminal.
  • the determination unit 1221 indicates that the UE has sent an incorrect path loss estimation value. You can judge.
  • the generation unit 1222 may generate an RRC message indicating change of the reference serving cell for the path loss estimation performed by the terminal 1100.
  • the determination unit 1221 compares the value directly estimated based on the channel information (CSI, RSRP, RSRQ) reported from the terminal 1100 and the uplink signal (SRS / PRACH) from the terminal 1100. Does not reach a certain threshold from the terminal (1100) The path loss reference serving cell may be changed only for the serving cell whose value is reported.
  • CSI channel information
  • RSRP RSRP
  • RSRQ uplink signal
  • the above-described processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit and / or a data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

Provided are a method and a device for estimating path loss in a wireless communication system supporting an LAA. The method for estimating path loss in a wireless communication system comprises the steps of: receiving a radio resource control (RRC) message from a base station by a terminal, for which a carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured; and estimating path loss at the time of uplink transmission through a sub serving cell configured in the unlicensed band, on the basis of information on a path loss reference serving cell included in the RRC message.

Description

LAA를 지원하는 무선 통신 시스템에서 경로 손실 추정 방법 및 장치Path loss estimation method and apparatus in wireless communication system supporting LAA
본 발명은 LAA(Licensed Assisted Access)를 지원하는 무선통신 시스템에서 경로 손실(path-loss)을 추정하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for estimating path-loss in a wireless communication system supporting Licensed Assisted Access (LAA).
셀룰러(cellular)는 서비스 지역의 제한, 주파수 및 가입자 수용용량의 한계를 극복하기 위하여 제안된 개념으로서, 이동통신 서비스 지역을 여러 개의 작은 셀(cell)단위로 나눠서 공간적으로 주파수를 재사용할 수 있도록 한다. 그러나 셀 내부의 핫스팟(hotspot)과 같은 특정 지역에서는 특별히 많은 통신 수요가 발생하고, 셀 경계(cell edge) 또는 커버리지 홀(coverage hole)과 같은 특정 지역에서는 전파의 수신 감도가 떨어질 수 있다. Cellular is a concept proposed to overcome the limitations of service area, frequency, and subscriber capacity, and it is possible to reuse frequency spatially by dividing mobile service area into several small cells. . However, in a particular area such as a hotspot inside a cell, there is a great demand for communication, and in a particular area such as a cell edge or a coverage hole, reception sensitivity of radio waves may be reduced.
이에 핫스팟, 셀 경계, 커버리지 홀 등에서 통신을 가능하게 하기 위한 목적으로 매크로 셀(Macro Cell)내에는 스몰 셀(small cell)들, 예를 들어, 피코 셀(Pico Cell), 펨토 셀(Femto Cell), 마이크로 셀(Micro Cell), 원격 무선 헤드(remote radio head: RRH), 릴레이(relay), 중계기(repeater)등이 함께 설치된다. 이러한 네트워크를 이종 네트워크(HetNet: Heterogeneous Network)라 부른다. 이종 네트워크 환경에서는 상대적으로 매크로 셀은 커버리지(coverage)가 큰 셀(large cell)이고, 펨토 셀과 피코 셀과 같은 스몰 셀은 커버리지가 작은 셀이다.In order to enable communication at hot spots, cell boundaries, and coverage holes, small cells, such as pico cells and femto cells, are included in a macro cell. A micro cell, a remote radio head (RRH), a relay, a repeater, and the like are installed together. Such a network is called a heterogeneous network (HetNet). In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell.
무선 통신 트래픽이 급증함에 따라 상기와 같은 소형 셀이 적극적으로 활용되고 있음에도 불구하고 여전히 보다 많은 주파수 확보가 시급한 문제로 대두되고 있다. 이에 따라 반송파 집성(CA: Carrier Aggregation)을 기반으로 면허 대역(licensed band) 뿐 아니라 WiFi 대역과 같은 비면허 대역(unlicensed band)의 주파수들을 활용하여 무선 통신을 수행하는 방안이 논의되고 있다. 여기서, CA란 조각난 작은 대역을 효율적으로 사용하기 위한 기술로, 주파수 영역에서 물리적으로 연속(continuous) 또는 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 내도록 하기 위한 것이다.As the wireless communication traffic surges, even though such small cells are actively used, securing more frequencies is still an urgent problem. Accordingly, based on carrier aggregation (CA), a method of performing wireless communication using not only a licensed band but also frequencies of an unlicensed band such as a WiFi band has been discussed. Here, CA is a technique for efficiently using a fragmented small band, such as using a logically large band by combining a plurality of physically continuous or non-continuous band in the frequency domain This is to make a difference.
상기 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간에 CA가 구성되는 경우에 있어서, 비면허 대역 상에 설정된 서빙셀은 비면허 대역의 특성상 간섭에 쉽게 노출될 수 있기 때문에 신뢰성 있는 경로 손실(path-loss) 추정이 불가능한 경우가 발생하게 된다. 이는 부정확한 경로 손실 값을 기반으로 하는 상향링크 전송 전력 제어를 유발하므로 전체 시스템의 성능이 열화될 뿐만 아니라 불필요한 간섭을 유발할 수 있다. In the case where a CA is configured between the serving cell of the licensed band and the serving cell of the unlicensed band, the serving cell set on the unlicensed band can be easily exposed to interference due to the nature of the unlicensed band, thereby providing reliable path-loss. It is impossible to estimate. This causes uplink transmission power control based on inaccurate path loss values, which not only degrades the performance of the entire system but can also cause unnecessary interference.
따라서, 최근 무선 통신 시스템에서는, 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간에 CA를 구성하는 상황에서, 어떻게 하면 경로 손실을 최소화하고, 신뢰성 있게 추정할 수 있는가에 대한 요구가 절실한 실정이다.Therefore, in a recent wireless communication system, there is an urgent need for how to minimize path loss and reliably estimate CA in a situation where a CA is configured between a serving cell of a licensed band and a serving cell of an unlicensed band.
본 발명의 기술적 과제는 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간에 반송파 집성이 구성되는 무선 통신 시스템에서, 신뢰성 있는 경로 손실 추정 방법 및 장치를 제공함에 있다.An object of the present invention is to provide a reliable method and apparatus for estimating path loss in a wireless communication system in which carrier aggregation is configured between a serving cell of a licensed band and a serving cell of an unlicensed band.
본 발명의 다른 기술적 과제는 반송파 집성이 구성되는 무선 통신 시스템에서, 비면허 대역의 서빙셀에 대한 경로 손실을 추정하기 위한 정보를 구성하여 송수신하는 방법 및 장치를 제공함에 있다.Another object of the present invention is to provide a method and apparatus for configuring and transmitting information for estimating a path loss for a serving cell of an unlicensed band in a wireless communication system configured with carrier aggregation.
본 발명의 일 양태에 따르면, 무선 통신 시스템에서의 경로 손실 추정 방법은 면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간의 반송파 집성(carrier aggregation)이 구성된 단말이 기지국으로부터 RRC(Radio Resource Control) 메시지를 수신하는 단계 및 상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀에 대한 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정하는 단계를 포함할 수 있다.According to an aspect of the present invention, a method for estimating a path loss in a wireless communication system includes a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band from an eNB to an RRC Receiving a Radio Resource Control) message and estimating a path loss during uplink transmission through a secondary serving cell configured in the unlicensed band based on information on a path loss reference serving cell included in the RRC message. can do.
본 발명의 다른 양태에 따르면, 무선 통신 시스템에서의 경로 손실 추정 방법은 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 단말이 채널 획득 여부를 기반으로 상기 비면허 대역의 부서빙셀 중 하나를 동적으로 선택하는 단계 및 상기 선택한 부서빙셀을 기반으로 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정하는 단계를 포함할 수 있다.According to another aspect of the present invention, in the method for estimating a path loss in a wireless communication system, a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is selected from among secondary serving cells of the unlicensed band based on channel acquisition. Dynamically selecting one and estimating a path loss during uplink transmission through the secondary serving cell configured in the unlicensed band based on the selected secondary serving cell.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서의 경로 손실 추정 방법은 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 단말로부터 수신한 신호를 기반으로 상기 단말의 단말의 채널 환경을 추정하는 단계, 상기 추정된 채널 환경을 기반으로 상기 단말의 경로 손실 참조 서빙셀을 변경할지 여부를 결정하는 단계 및 경로 손실 참조 서빙셀의 변경이 결정되는 경우 상기 단말로 상기 경로 손실 참조 서빙셀의 변경을 지시하는 RRC 메시지를 전송하는 단계를 포함하라 수 있다.According to another aspect of the present invention, a path loss estimation method in a wireless communication system is a channel environment of a terminal of a terminal based on a signal received from a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band. Estimating, determining whether to change the path loss reference serving cell of the terminal based on the estimated channel environment, and if the path loss reference serving cell is changed, determining the path loss reference serving cell to the terminal. The method may include transmitting an RRC message indicating a change of.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 단말은 기지국으로부터 RRC 메시지를 수신하는 RF(Radio Frequency) 부 및 상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀에 대한 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀에 대한 경로 손실 참조 서빙셀을 설정하고 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정하는 프로세서를 포함할 수 있다.According to another aspect of the present invention, in a wireless communication system, a terminal configured with carrier aggregation between a licensed band serving cell and an unlicensed band serving cell is included in an RF (Radio Frequency) unit for receiving an RRC message from a base station and the RRC message. Setting a path loss reference serving cell for a secondary serving cell configured in the unlicensed band based on the information on the received path loss reference serving cell and estimating a path loss during uplink transmission through the secondary serving cell configured in the unlicensed band It may include a processor.
이러한 본 발명은, 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간에 반송파 집성이 구성된 경우에도 경로 손실을 신뢰성 있게 추정할 수 있다. 또한, 비면허 대역에 대한 경로 손실을 추정하기 위한 정보들을 면허 대역의 서빙셀과 비면허 대역의 서빙셀간에 송수신 및 확인함으로써, 비면허 대역을 통한 네트워크 전반의 서비스 품질을 보장하는 장점을 제공한다.The present invention can reliably estimate path loss even when carrier aggregation is configured between a serving cell of a licensed band and a serving cell of an unlicensed band. In addition, by transmitting and receiving information for estimating a path loss for the unlicensed band between the serving cell of the licensed band and the serving cell of the unlicensed band, it provides an advantage of guaranteeing the overall quality of service through the unlicensed band.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명이 적용되는 LAA 배치 시나리오의 예들을 나타낸다.2 shows examples of a LAA deployment scenario to which the present invention is applied.
도 3은 기존의 경로 손실 추정 방법을 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 상황에 적용할 경우를 나타내는 예시도이다.3 is an exemplary diagram illustrating a case where an existing path loss estimation method is applied to a situation in which carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
도 4 및 도 5는 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 경우에 있어서 간섭 상황의 일예를 나타내는 도면이다.4 and 5 are diagrams illustrating an example of an interference situation when carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
도 6은 본 발명의 일실시예에 따른 경로 손실 추정 방법을 나타내는 도면이다.6 illustrates a path loss estimation method according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 단말의 동작을 나타내는 흐름도이다.7 is a flowchart illustrating the operation of a terminal according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 기지국의 동작을 나타내는 흐름도이다.8 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 따른 경로 손실 추정 방법을 나타내는 도면이다.9 illustrates a path loss estimation method according to another embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 단말의 동작을 나타내는 흐름도이다.10 is a flowchart illustrating the operation of a terminal according to another embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 무선 통신 시스템을 나타내는 블록도이다.11 is a block diagram illustrating a wireless communication system according to an embodiment of the present invention.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다.In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 1에 도시된 망 구조는 E-UMTS(Evolved- Universal Mobile Telecommunications System)의 망 구조일 수 있다. E-UMTS 시스템은 LTE(Long Term Evolution), LTE-A(advanced) 시스템 등을 포함할 수 있다. 무선 통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.The network structure shown in FIG. 1 may be a network structure of an Evolved-Universal Mobile Telecommunications System (E-UMTS). The E-UMTS system may include a Long Term Evolution (LTE), an LTE-A (Advanced) system, and the like. Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
한편, 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC- FDMA(Single Carrier- FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법이 사용될 수 있다.On the other hand, there is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used.
도 1을 참조하면, E-UTRAN은 단말에 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 적어도 하나의 기지국(20; Base Station, BS)을 포함한다. 단말(10; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, the E-UTRAN includes at least one base station (BS) 20 that provides a control plane and a user plane to the terminal. The UE 10 may be fixed or mobile and may have other mobile stations, advanced MSs (AMS), user terminals (UTs), subscriber stations (SSs), wireless devices (Wireless Devices), and the like. It may be called a term.
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, eNodeB(evolved-NodeB, eNB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 홈기지국(Home eNB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 기지국(20)은 적어도 하나의 셀을 단말에 제공할 수 있다. 셀은 기지국(20)이 통신 서비스를 제공하는 지리적 영역을 의미할 수도 있고, 특정 주파수 대역을 의미할 수도 있다. 셀은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA: Carrier Aggregation)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍(pair)으로 존재한다.The base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and a femto-eNB. ), A pico base station (pico-eNB), a home base station (Home eNB), relay (relay) may be called other terms. The base station 20 may provide at least one cell to the terminal. The cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band. The cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource. Also, in general, when carrier aggregation (CA) is not considered, uplink and downlink frequency resources always exist in pairs in one cell.
기지국(20)간에는 사용자 트래픽 혹은 제어 트래픽 전송을 위한 인터페이스가 사용될 수도 있다. 소스 기지국(Source BS, 21)은 현재 단말(10)과 무선 베어러가 설정된 기지국을 의미하고, 타겟 기지국(Target BS, 22)은 단말(10)이 소스 기지국(21)과의 무선 베어러를 끊고 새롭게 무선 베어러를 설정하기 위해 핸드오버를 하려는 기지국을 의미한다. 기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. X2 인터페이스는 기지국(20)간의 메시지를 주고받는데 사용된다. 또한 기지국(20)은 S1 인터페이스를 통해 EPS(Evolved Packet System), 보다 상세하게는 MME(Mobility Management Entity)/S-GW(Serving Gateway, 30)와 연결된다. S1 인터페이스는 기지국(20)과 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다. MME/S-GW(30)로의 패킷 데이터 서비스를 제공하기 위해 PDN-GW(40)이 사용된다.An interface for transmitting user traffic or control traffic may be used between the base stations 20. The source base station (Source BS) 21 refers to a base station in which a radio bearer is currently set up with the terminal 10, and the target base station (Target BS, 22) means that the terminal 10 disconnects the radio bearer from the source base station 21 and renews it. It means a base station to be handed over to establish a radio bearer. The base stations 20 may be connected to each other through an X2 interface. The X2 interface is used to send and receive messages between the base stations 20. In addition, the base station 20 is connected to an evolved packet system (EPS), more specifically, a mobility management entity (MME) / serving gateway (S-GW) 30 through an S1 interface. The S1 interface supports a many-to-many-relation between base station 20 and MME / S-GW 30. The PDN-GW 40 is used to provide packet data services to the MME / S-GW 30.
이하에서 하향링크(downlink)는 기지국(20)에서 단말(10)로의 통신을 의미하며, 상향링크(uplink)는 단말(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크는 순방향 링크(forward link)라고도 하며, 상향링크는 역방향 링크(reverse link)라고도 한다. 하향링크에서 송신기는 기지국(20)의 일부분일 수 있고, 수신기는 단말(10)의 일부분일 수 있다. 상향링크에서 송신기는 단말(10)의 일부분일 수 있고, 수신기는 기지국(20)의 일부분일 수 있다. 무선 통신 시스템에서 상향링크 전송 및 하향링크 전송 방식으로서 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink means communication from the base station 20 to the terminal 10, and uplink means communication from the terminal 10 to the base station 20. The downlink is also called a forward link, and the uplink is also called a reverse link. In downlink, the transmitter may be part of the base station 20 and the receiver may be part of the terminal 10. In uplink, the transmitter may be part of the terminal 10 and the receiver may be part of the base station 20. In the wireless communication system, a time division duplex (TDD) scheme using different times may be used as an uplink transmission and a downlink transmission scheme, or a frequency division duplex (FDD) scheme using different frequencies may be used. Can be used.
한편, 반송파 집성(CA: Carrier Aggregation)은 복수의 반송파를 지원하는 것으로서 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(CC: Component Carrier)라고 한다. 각 요소 반송파는 대역폭과 중심 주파수로 정의된다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 요소 반송파가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있다.Meanwhile, carrier aggregation (CA) supports a plurality of carriers and is also referred to as spectrum aggregation or bandwidth aggregation. Individual unit carriers bound by carrier aggregation are called component carriers (CC). Each component carrier is defined by a bandwidth and a center frequency. For example, if five component carriers are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
이하에서, 다중 반송파(multiple carrier) 시스템이라 함은 반송파 집성(CA)을 지원하는 시스템을 포함한다. 서빙셀(serving cell)은 다중 요소 반송파 시스템(multiple component carrier system)에 기반하여 CA에 의해 집성될 수 있는 요소 주파수 대역으로서 정의될 수 있다. 서빙셀에는 주서빙셀(PCell: primary serving cell)과 부서빙셀(SCell: secondary serving cell)이 있다. 주서빙셀은 RRC(Radio Resource Control) 연결(establishment) 또는 재연결(re-establishment) 상태에서, 보안입력(security input)과 NAS(Non-Access Stratum) 이동 정보(mobility information)을 제공하는 하나의 서빙셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 주서빙셀과 함께 서빙셀의 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 부서빙셀이라 한다. 하나의 단말에 대해 설정된 서빙셀의 집합은 하나의 주서빙셀만으로 구성되거나, 또는 하나의 주서빙셀과 적어도 하나의 부서빙셀로 구성될 수 있다. 각 서빙셀은 활성화 또는 비활성화 상태로 운용될 수 있다.Hereinafter, a multiple carrier system includes a system supporting carrier aggregation (CA). A serving cell may be defined as an element frequency band that may be aggregated by a CA based on a multiple component carrier system. The serving cell includes a primary serving cell (PCell) and a secondary serving cell (SCell). The primary serving cell is one that provides security input and non-access stratum (NAS) mobility information in a radio resource control (RRC) connection or re-establishment state. It means a serving cell. According to the capabilities of the terminal, at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell. The set of serving cells configured for one terminal may consist of only one main serving cell or one main serving cell and at least one secondary serving cell. Each serving cell may be operated in an activated or deactivated state.
도 2는 본 발명이 적용되는 LAA 배치 시나리오의 예들을 나타낸다.2 shows examples of a LAA deployment scenario to which the present invention is applied.
무선 통신 트래픽이 급증함에 따라 쓰루풋 향상을 위하여 보다 많은 주파수 확보가 시급한 문제로 대두되고 있으며, 이에 따라 면허 대역(licensed band) 뿐 아니라 WiFi 시스템이 사용 중에 있는 비면허(unlicensed) 대역의 주파수들을 활용하여 무선 통신을 수행하는 방안이 논의되고 있다. 비면허 대역에서의 무선 통신을 원활하게 지원하기 위하여 면허 대역의 통신 기법의 지원 하에 비면허 대역에서의 무선 통신이 제공될 수 있다.As wireless communication traffic surges, securing more frequencies is urgently needed to improve throughput. Accordingly, the wireless system utilizes the frequencies of the licensed band as well as the unlicensed band that the WiFi system is using. Methods of conducting communication are under discussion. In order to smoothly support wireless communication in the unlicensed band, wireless communication in the unlicensed band may be provided with the support of the communication technique of the licensed band.
이하 LAA(License Assisted Access)라 함은 면허 대역 또는 스펙트럼(spectrum)에서 동작하는 주서빙셀의 보조를 기반으로 비면허 대역 또는 비면허 스펙트럼에서 동작하는 하나 또는 그 이상의 부서빙셀들에 대한 CA 동작을 지원하는 무선 통신 기법을 나타낸다. 다시 말하면, LAA는 LTE 면허 대역을 앵커(anchor)로 하여, 면허 대역과 비면허 대역을 CA를 이용하여 하나로 묶는 기술이다. 이 경우 면허 대역이 주서빙셀로 사용되고 비면허 대역은 부서빙셀로 사용될 수 있다. 또한, 비면허 대역은 CA를 통해서만 활성화되고 단독으로는 LTE 통신을 하지 않을 수 있다. 단말은 면허 대역으로 망에 접속하여 서비스를 이용하고, 기지국이 상황에 따라 RRC 재설정 과정을 통해 면허 대역과 비면허 대역을 CA로 결합하여 면허 대역의 트래픽(traffic)을 비면허 대역으로 오프로딩(offloading)시킬 수 있다.Hereinafter referred to as License Assisted Access (LAA) supports CA operation for one or more secondary serving cells operating in an unlicensed band or unlicensed spectrum based on the assistance of a primary serving cell operating in a licensed band or spectrum. A wireless communication scheme is shown. In other words, LAA is a technology that binds a licensed band and an unlicensed band to one using a CA as an anchor and a licensed band as an anchor. In this case, the licensed band may be used as the primary serving cell and the unlicensed band may be used as the secondary serving cell. In addition, the unlicensed band may be activated only through the CA and may not perform LTE communication alone. The terminal accesses the network through the licensed band to use the service, and the base station combines the licensed band and the unlicensed band into the CA through an RRC resetting process according to circumstances, thereby offloading the traffic of the licensed band to the unlicensed band. You can.
도 2에는 일 예로, 다양한 LAA배치 시나리오들이 도시되어 있다. 각 시나리오에서 면허 반송파(licensed carrier) 및 비면허 반송파(unlicensed carrier)의 수는 각각 하나 또는 그 이상이 될 수 있다. 시나리오 1은 면허 반송파인 F1(frequency 1)을 사용하는 매크로 셀과, 비면허 반송파인 F3을 사용하는 스몰 셀이 반송파 집성(CA)으로 연결된 경우이다. 시나리오 2는 매크로 셀 커버리지 외에(without macro cell coverage) 면허 반송파인 F2를 사용하는 스몰 셀#1과 비면허 반송파인 F3을 사용하는 스몰 셀#2이 반송파 집성으로 연결된 경우이다. 시나리오 3은 면허 반송파인 F1을 사용하는 매크로 셀과 스몰 셀#1이 있고, 상기 스몰 셀#1은 비면허 반송파인 F3을 추가적으로 사용하여F1과 F2 케리어를 통해 반송파 집성으로 연결된 경우이다. 시나리오 4는 면허 반송파인 F1을 사용하는 매크로 셀, 면허 반송파인 F2와 비면허 반송파인 F3를 사용하는 스몰 셀#1이 있는 상황이다. 이 경우, F1, F2와 F3를 이용하여 반송파 집성을 설정할 수 있다. 만약 F1과 F2를 이용하여 이중연결(Dual-connectivity)이 설정된 상태에서는 F2와 F3를 이용하여 반송파 집성을 추가 설정할 수 있다.As an example, various LAA deployment scenarios are shown in FIG. 2. In each scenario, the number of licensed carriers and unlicensed carriers may be one or more, respectively. Scenario 1 is a case where a macro cell using a licensed carrier F1 (frequency 1) and a small cell using an unlicensed carrier F3 are connected by carrier aggregation (CA). Scenario 2 is a case where the small cell # 1 using the licensed carrier F2 and the small cell # 2 using the unlicensed carrier F3 are connected by carrier aggregation in addition to the macro cell coverage. Scenario 3 is a case where there is a macro cell using a licensed carrier F1 and a small cell # 1, and the small cell # 1 is connected to the carrier aggregation through F1 and F2 carrier by additionally using an unlicensed carrier F3. Scenario 4 is a situation where there is a macro cell using a licensed carrier F1, a small cell # 1 using a licensed carrier F2 and an unlicensed carrier F3. In this case, carrier aggregation may be set using F1, F2, and F3. If dual-connectivity is set using F1 and F2, carrier aggregation may be additionally set using F2 and F3.
상술한 시나리오들과 같이 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간에 CA가 구성되는 경우에 있어서 즉, LAA 상황에 있어서 면허 대역과 비면허 대역내의 각 서빙셀은 위치한 대역에 따라서 시간정렬그룹(TAG: Timing Advance Group) 단위로 구분될 수 있다. 상기 TAG는 상향링크가 구성된 서빙셀들 중에서, 동일한 시간전진 값과 동일한 타이밍 참조(timing reference) 또는 상기 타이밍 참조를 포함하는 타이밍 참조 셀을 사용하는 서빙셀(들)을 포함하는 그룹이다. 상기 TAG는 주 시간정렬그룹(P-TAG: primary Timing Advance Group)과 부 시간정렬그룹(S-TAG: secondary Timing Advance Group)으로 구분된다. P-TAG는 주서빙셀을 포함하는 TAG이고, S-TAG는 부 서빙셀들로만 구성된 TAG이다. 주서빙셀은 면허 대역 상에서만 구성될 수 있다.As in the above scenarios, when a CA is configured between a serving cell of a licensed band and a serving cell of an unlicensed band, that is, in a LAA situation, each serving cell in the licensed band and the unlicensed band has a time alignment group (TAG) according to the band in which it is located. : Timing Advance Group). The TAG is a group including serving cell (s) using the same time forward value and the same timing reference or the timing reference cell including the timing reference among uplink configured serving cells. The TAG is divided into a primary timing alignment group (P-TAG) and a secondary timing alignment group (S-TAG). The P-TAG is a TAG including a primary serving cell, and the S-TAG is a TAG composed of only secondary serving cells. The primary serving cell may be configured only on the licensed band.
만일 무선 통신 시스템에서 부서빙셀의 상향링크 요소 반송파(UL SCC)가P-TAG에 속한다면 기지국은 RRC 시그널링을 이용하여 주서빙셀의 하향링크 요소 반송파(DL PCC)또는 상기 부서빙셀의 UL SCC와SIB2(System Information Block 2)연결(linkage)을 가지는DL SCC 중에서 상기UL SCC를 위한 경로 손실 참조 서빙셀(path-loss reference serving cell)에 대한 설정을 단말에게 제공한다. 이러한 설정이 없는 부서빙셀(예를 들어, S-TAG에 속한 부서빙셀들)은 모두 해당 UL CC과 SIB2 연결을 가지는 DL CC를 기준으로 경로 손실을 추정한다. UL PCC는 항상 DL PCC를 기준으로 경로 손실을 추정한다. 여기서, SIB2는 단말이 셀에 접속할 수 있도록 제공하는 정보로서, 상향링크 셀 대역폭(uplink cell bandwidth), 랜덤 액세스 파라미터(random-access parameter) 및 상향링크 전력 제어에 관련된 파라미터를 포함한다.If an uplink component carrier (UL SCC) of a secondary serving cell belongs to a P-TAG in a wireless communication system, the base station uses RRC signaling to downlink component carrier (DL PCC) of the primary serving cell or UL of the secondary serving cell. The UE provides a configuration of a path-loss reference serving cell for the UL SCC among DL SCCs having an SCC and SIB2 (System Information Block 2) linkage. All secondary serving cells (eg, secondary serving cells belonging to the S-TAG) without this configuration estimate path loss based on the DL CC having the corresponding UL CC and SIB2 connection. The UL PCC always estimates the path loss based on the DL PCC. Here, the SIB2 is information provided to allow the terminal to access the cell and includes an uplink cell bandwidth, a random-access parameter, and parameters related to uplink power control.
UL SCC를 위해서 이러한 RRC 시그널링을 도입하는 이유는 이종 네트워크(HetNet: Heterogeneous Network)환경에서, 매크로 셀로부터 강한 간섭을 받을 수 있는 스몰 셀의 DL SCC상에서는 신뢰성 있는 경로 손실 추정이 불가능한 경우가 있기 때문이다. 이 경우 상기 RRC 시그널링을 이용하여 스몰 셀 내의단말들이DL PCC을 기준으로 UL SCC의 경로 손실을 추정할 수 있도록 함으로써 보다 신뢰성 있는 경로 손실 추정이 가능하게 할 수 있다.The reason for introducing such RRC signaling for UL SCC is that in some heterogeneous network (HetNet) environments, reliable path loss estimation is not possible on DL SCCs of small cells that may be strongly interfered with from macro cells. . In this case, by using the RRC signaling, terminals in the small cell can estimate the path loss of the UL SCC based on the DL PCC, thereby enabling more reliable path loss estimation.
한편, 현재 무선 통신 시스템에서는 5개까지의 요소 반송파들 간의 CA를 지원하고 있으나, LAA가 고려되고 있는 5GHz 대역에서는 보다 많은 수의 요소 반송파들(예를 들어, 32개까지의 요소 반송파들) 간의 CA가 고려될 수 있다. 현재 WiFi 같은 무선 랜(LAN: Local Area Network) 시스템의 경우에는 80MHz 및 160MHz 대역을 제공할 수 있으므로, LTE 같은 무선 통신 시스템 또한 그와 유사하거나 더 많은 주파수들의 연접을 제공할 필요가 있다. 게다가 무선 통신 시스템은 면허 대역인 3.5GHz 대역에서도 1개 이상의 반송파를 기존의 밴드에 추가적으로 제공할 수 있으므로, 적어도 하향링크에 있어서는 5개 이상의 요소 반송파들을 연접할 수 있는 기능이 제공될 필요가 있다.On the other hand, the wireless communication system currently supports CA between up to five CCs, but in the 5 GHz band where LAA is being considered, a greater number of CCs (eg, up to 32 CCs) may be used. CA may be considered. Currently, a local area network (LAN) system such as WiFi can provide 80 MHz and 160 MHz bands, and thus a wireless communication system such as LTE also needs to provide a similar or higher frequency concatenation. In addition, since the wireless communication system may additionally provide one or more carriers to the existing band even in the licensed 3.5 GHz band, it is necessary to provide a function capable of concatenating five or more component carriers at least in downlink.
그러나, PUCCH(Physical Uplink Control CHannel)가 전송되는 주서빙셀 상의 오버헤드는 현재는 물론이고 보다 많은 수의 반송파들 간의 CA를 구성하는 상황에서는 더욱더 커질 수 있다. 따라서 이를 해결하기 위하여 부서빙셀 상으로의 PUCCH 전송을 고려할 수 있다. 이는 오버헤드 문제뿐만 아니라 상기 시나리오 4와 같은 RRH(Remote Radio Head)를 고려하는 상황에서, RRH의 활용빈도를 주서빙셀을 변경하는 동작에 의존하지 않고 주서빙셀에 오버헤드가 집중되는 것을 분산시킬 수 있다.However, the overhead on the primary serving cell on which the Physical Uplink Control CHannel (PUCCH) is transmitted may become even larger in the situation of configuring CA between a large number of carriers as well as the present. Accordingly, in order to solve this problem, PUCCH transmission on a secondary serving cell may be considered. This is not only an overhead problem, but in a situation in which a remote radio head (RRH) as in Scenario 4 is considered, the utilization of RRH is distributed depending on the main serving cell without depending on the operation of changing the main serving cell. You can.
그러나, LAA 상황에서 비면허 대역 상에 설정된 서빙셀은 비면허 대역의 특성상 간섭에 쉽게 노출될 수 있다. 이는 신뢰성 있는 경로 손실(path-loss) 추정을 불가능하게 한다. 그것은 부정확한 경로 손실 값을 기반으로 하는 상향링크 전송 전력 제어를 유발하므로 전체 시스템의 성능이 열화될 뿐만 아니라 불필요한 간섭을 유발할 수 있다. 따라서, 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간에 CA가 구성된 상황에서 경로 손실을 신뢰성 있게 추정할 수 있는 방법이 요구된다.However, in a LAA situation, the serving cell set on the unlicensed band may be easily exposed to interference due to the nature of the unlicensed band. This makes it impossible to estimate a reliable path-loss. It causes uplink transmit power control based on incorrect path loss values, which not only degrades the performance of the entire system but can also cause unnecessary interference. Therefore, there is a need for a method for reliably estimating path loss in a situation where a CA is configured between a serving cell of a licensed band and a serving cell of an unlicensed band.
도 3은 기존의 경로 손실 추정 방법을 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 상황에 적용할 경우를 나타내는 예시도이다.3 is an exemplary diagram illustrating a case where an existing path loss estimation method is applied to a situation in which carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
일 예로, 도 3에는 면허 대역(L-band)에 주서빙셀(PCell)과 2개의 부서빙셀(SCell#1 및 SCell#2)이 구성되고, 비면허 대역(U-band)에 3개의 부서빙셀(SCell#3, SCell#4및 SCell#5)이 구성된 경우가 도시되어 있다. 이 경우, 면허 대역과 비면허 대역은 인터-밴드(inter-band)이기 때문에 단말에게는 복수개의 TAG(Multiple-TAGs)가 설정될 필요가 있다. 따라서 도 3과 같이 면허 대역 상의 서빙셀(PCell, SCell#1 및 SCell#2)을 포함하는 P-TAG와 비면허 대역 상의 서빙셀(SCell#3, SCell#4및 SCell#5)을 포함하는 S-TAG가 설정될 수 있다.For example, in FIG. 3, a primary serving cell (PCell) and two secondary serving cells (SCell # 1 and SCell # 2) are configured in a licensed band (L-band), and three subbands are provided in an unlicensed band (U-band). The case where the serving cells SCell # 3, SCell # 4 and SCell # 5 are configured is shown. In this case, since the licensed band and the unlicensed band are inter-bands, a plurality of TAGs (Multiple-TAGs) need to be set in the terminal. Therefore, as shown in FIG. 3, the P-TAG including the serving cells on the licensed band (PCell, SCell # 1, and SCell # 2) and the S including the serving cells (SCell # 3, SCell # 4, and SCell # 5) on the unlicensed band. -TAG can be set.
이와 같은 상황에서 비면허 대역 상에 설정된 DL SCC들(SCell#3,SCell#4 및 SCell#5의 DL CC)은 면허 대역 상에 설정된 DL SCC들(SCell#1 및SCell#2의 DL CC) 보다 간섭에 쉽게 노출된다. 뿐만 아니라, 특정 환경에서 간섭으로 인해 면허 대역 상에 설정된 UL SCC(SCell#1 및SCell#2의 UL CC)의 경로 손실 참조 서빙셀을SIB2로 연결된 DL SCC(SCell#1 및SCell#2의 DL CC)에서 주서빙셀로 변경한 상황에서는 비면허 대역 상의 DL SCC들(SCell#3,SCell#4 및 SCell#5의 DL CC)이보다 열악한 채널환경에 있을 것은 자명하다. 일 예로, 비면허 대역 상의 부서빙셀들은 다음의 도 4와 같은 간섭에 노출될 수 있다.In such a situation, DL SCCs (DL CCs of SCell # 3, SCell # 4 and SCell # 5) set on the unlicensed band are more than DL SCCs (DL CCs of SCell # 1 and SCell # 2) set on the licensed band. Easily exposed to interference In addition, a DL SCC (DL of SCell # 1 and SCell # 2) in which a path loss reference serving cell of an UL SCC (UL CC of SCell # 1 and SCell # 2) set on a licensed band due to interference in a specific environment is connected to SIB2. In the situation of changing from the CC to the main serving cell, it is obvious that the DL SCCs (DL CCs of SCell # 3, SCell # 4 and SCell # 5) on the unlicensed band are in a worse channel environment. For example, secondary serving cells on the unlicensed band may be exposed to interference as shown in FIG. 4.
도 4 및 도 5는 면허 대역의 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 경우에 있어서 간섭 상황의 일 예를 나타내는 도면이다.4 and 5 are diagrams illustrating an example of an interference situation when carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band is configured.
도 4에는 일 예로, 서빙셀과 비면허 대역의 서빙셀 간의 반송파 집성이 구성된 단말(이하, LAA 단말이라 함)이 히든 노드(hidden node)로부터의 간섭을 경험하는 경우가 도시되어 있다. 비면허 대역은 기지국 또는 단말이 경쟁을 기반으로 채널 접속 기회를 획득하는 과정을 허용한다. 경쟁을 기반으로 채널에 접속하는 방법은 여러 가지가 있을 수 있으며, 본 발명에 따른 비면허 대역에 대한 채널 접속(access) 메커니즘(mechanism)은 다음을 포함한다.4 illustrates an example in which a carrier configured between a serving cell and a serving cell of an unlicensed band (hereinafter referred to as a LAA terminal) experiences interference from a hidden node. The unlicensed band allows a base station or a terminal to acquire a channel access opportunity based on competition. There may be various methods of accessing a channel based on contention, and a channel access mechanism for an unlicensed band according to the present invention includes the following.
본 발명에 따른 채널 접속 메커니즘은 기회적(opportunistic) 채널 접속을 제공한다. 이를 위하여 기지국, AP(Access Point) 등의 무선 통신 장치는 해당 채널을 사용하기 전에 CCA(Clear Channel Assessment) 또는 ECCA(Extended Clear Channel Assessment)를 수행할 수 있다. 이는 다른 LAA 기지국(eNB)들과 WLAN(Wireless Local Area Network) 시스템들이 동일 채널에서 동시에 전송하는 경우를 피하기(avoid) 위해서이다. 여기서 CCA 또는 ECCA는 해당 채널에 대한 에너지 스캔 또는 탐지(detection)을 통하여 해당 채널이 점유 또는 비점유 상태인지, 즉 해당 채널이 비지(busy) 상태인지 아이들(idle) 상태인지를 판단하는 절차다. 이와 같은 채널 접속 매커니즘은 LBT(Listen Before Talk) 또는 반송파 감지(CS: Carrier Sense) 등으로 불릴 수 있다.The channel access mechanism according to the present invention provides opportunistic channel access. To this end, a wireless communication device such as a base station or an access point (AP) may perform a clear channel assessment (CCA) or extended clear channel assessment (ECCA) before using a corresponding channel. This is to avoid the case where other LAA base stations (eNBs) and Wireless Local Area Network (WLAN) systems simultaneously transmit on the same channel. Here, CCA or ECCA is a procedure for determining whether the channel is occupied or unoccupied, that is, whether the channel is busy or idle by performing an energy scan or detection on the channel. Such a channel access mechanism may be referred to as Listen Before Talk (LBT) or Carrier Sense (CS).
LBT 프로토콜 하에서 무선 통신 장치는 해당 채널에서 측정된 에너지를 기반으로 해당 채널이 전송을 위하여 가용한지(available) 여부를 결정한다. LBT는 프레임 기반(Frame Based) 또는 로드 기반(Load Based)으로 수행될 수 있다. LBT를 위하여 CCA, 확장(Extended) CCA, 채널 점유시간(channel occupancy time), 아이들 기간(idle period), CCA 에너지 탐지 임계(energy detection threshold)와 같은 파라미터들이 정의될 수 있다. 비면허 대역을 사용하는 무선 통신 장치는 동작 채널(operating channel)에서 전송을 시작하기 전에, 아이들 기간의 끝(end)에서(E)CCA를 수행할 수 있다. 즉, 무선 통신 장치는 아이들 기간 내에서(E)CCA 수행 시간만큼 (E)CCA를 수행함으로써 채널의 점유상태를 파악할 수 있다. 무선 통신 장치는 이전 CCA 수행을 통해 점유한 채널상에서 해당 장치를 위해 의도된 패킷을 올바르게 수신한 경우, 최대 채널 점유시간을 초과하지 않았다면 다시 (E)CCA를 수행하지 않고 관리(management) 및 제어 프레임들(예를 들어 ACK 및 Block ACK 프레임들)을 전송할 수도 있다.Under the LBT protocol, the wireless communication device determines whether the channel is available for transmission based on the energy measured in the channel. LBT may be performed frame-based or load-based. For LBT, parameters such as CCA, Extended CCA, channel occupancy time, idle period, CCA energy detection threshold may be defined. A wireless communication device using an unlicensed band may perform (E) CCA at the end of an idle period before starting transmission on an operating channel. That is, the wireless communication device can grasp the occupancy state of the channel by performing (E) CCA for the (E) CCA execution time within the idle period. If the wireless communication device correctly receives the packet intended for the device on the channel occupied by the previous CCA, if it has not exceeded the maximum channel occupancy time, the wireless communication device does not perform (E) CCA again. (E.g., ACK and Block ACK frames) may be transmitted.
그러나 도 4에 도시된 것과 같이 LAA로 동작하는 기지국(LAA operator #1)과 WLAN AP는 물리적으로 서로 이격되어 있는 경우, 두 개의 노드(LAA operator #1 및 WLAN AP)는 각각LBT를 수행하여 동시에 동일 채널을 획득할 수 있으며, 비면허 대역 상에서 각각 제1 단말(UE1)과 제2 단말(UE2)에게 하향링크 전송을 수행할 수 있다. 이 경우 제1 단말(UE1)의 입장에서는 WLAN AP로부터 강한 간섭을 지속적으로 경험할 가능성이 매우 높다. 이는 LAA 사업자에 의해서 조정(coordinate)되지 않은 일반 사용자들이 WLAN AP를 설치하거나 블루투스(Bluetooth) 등을 이용하는 경우 또한 마찬가지이다.However, as shown in FIG. 4, when the base station (LAA operator # 1) and the WLAN AP operating as LAAs are physically spaced from each other, the two nodes (LAA operator # 1 and the WLAN AP) perform LBTs at the same time. The same channel may be obtained, and downlink transmission may be performed to the first terminal UE1 and the second terminal UE2 on the unlicensed band, respectively. In this case, it is very likely that the first terminal UE1 continuously experiences strong interference from the WLAN AP. This is also the case when ordinary users who are not coordinated by the LAA operator install WLAN AP or use Bluetooth.
또한, 무선 통신 시스템(e.g. LTE)은 무선 랜 시스템과는 다르게 제어/데이터 정보들이 고정된 포맷으로(e.g. subframe/radio frame) 송수신된다. 따라서 서로 다른 네트워크 사업자들은 서로 동기화되지 않는 LAA 배치(deployment)를 수행할 수 있다. 그러므로, 서로 다른 네트워크 사업자들이 설치한 조정되지 않는 LAA 기지국들로 인해서 서로 간에 간섭이 발생할 수도 있다.In addition, unlike a WLAN system, a wireless communication system (e.g. LTE) transmits and receives a control / data information in a fixed format (e.g. subframe / radio frame). Thus, different network operators may perform LAA deployments that are not synchronized with each other. Therefore, interference may occur between each other due to uncoordinated LAA base stations installed by different network operators.
한편, 도 5에 도시된 것과 같이 WiFi 등과 같은 WLAN 시스템에서는 최대 160MHz 크기의 밴드를 연접하여 데이터 송수신을 수행할 수 있다. 반면 LTE 시스템과 같은 무선 통신 시스템은 고정된 시스템 대역폭 정보를 바탕으로 모든 물리계층 동작을 정의한다. 또한, 무선 통신 시스템에서 비면허 대역 상의 중심 반송파(center carrier)들의 간격은 5MHz이기 때문에 부정확한 NI(Noise Interference) 추정, 부정확한 무선 자원 관리(RRM: Radio Resource Management) 등으로 인해서 서로 부분적으로 오버랩되는 자원 점유가 서로 다른 노드들 사이에 발생하여 간섭을 야기할 수도 있다. 따라서, 본 명세서에서는 상술한 바와 같은 다양한 간섭 상황에서도 신뢰할 수 있는 경로 손실 추정 방법을 다음과 같이 제공한다.Meanwhile, as illustrated in FIG. 5, in a WLAN system such as WiFi, data transmission / reception may be performed by concatenating a band having a maximum size of 160 MHz. On the other hand, wireless communication systems such as LTE systems define all physical layer operations based on fixed system bandwidth information. In addition, since the interval of the center carriers on the unlicensed band in the wireless communication system is 5 MHz, the overlapping is partially overlapped with each other due to inaccurate noise interference (NI) and inaccurate radio resource management (RRM). Resource occupancy may occur between different nodes, causing interference. Accordingly, the present specification provides a reliable path loss estimation method in the following various interference situations as follows.
도 6은 본 발명의 일실시예에 따른 경로 손실 추정 방법을 나타내는 도면이다.6 illustrates a path loss estimation method according to an embodiment of the present invention.
도 6에는 도 3의 상황에서와 같이 면허 대역(L-band)에 주서빙셀(PCell)과 2개의 부서빙셀(SCell#1 및 SCell#2)이 구성되고 비면허 대역(U-band)에 3개의 부서빙셀(SCell#3, SCell#4및 SCell#5)이 구성된 경우에 있어서, 비면허 대역 상의 부서빙셀 #3의 DL CC가 강한 간섭을 받는 상황이 도시되어 있다. 여기서, 비면허 대역 상의 부서빙셀은 모두 S-TAG에 포함되는 것으로 가정한다.In FIG. 6, as in the situation of FIG. 3, a main serving cell (PCell) and two secondary serving cells (SCell # 1 and SCell # 2) are configured in a licensed band (L-band) and in an unlicensed band (U-band). In the case where three secondary serving cells (SCell # 3, SCell # 4, and SCell # 5) are configured, a situation in which the DL CC of the secondary serving cell # 3 on the unlicensed band receives strong interference is illustrated. Here, it is assumed that all secondary serving cells on the unlicensed band are included in the S-TAG.
이 경우, 단말은 보다 신뢰성 있는 경로 손실 추정을 위해서 비면허 대역 상의 부서빙셀 #3의 UL CC에 대한 경로 손실 참조 서빙셀을SIB2로 연결된 비면허 대역 상의 부서빙셀 #3의 DL CC에서 상기 부서빙셀 #3의 DL CC보다 적은 간섭 환경에 있는 비면허 대역 내의 다른 부서빙셀(SCell#4또는 SCell#5)의 DL CC로 변경할 수 있다. 이 경우, 단말은 비면허 대역 상의 상향링크 전송을 위해 보다 정확한 전력 제어를 수행할 수 있으며, 이로 인해 전체 시스템 성능을 향상될 수 있다.In this case, the UE may perform the secondary serving in the DL CC of the secondary serving cell # 3 on the unlicensed band in which the path loss reference serving cell for the UL CC of the secondary serving cell # 3 on the unlicensed band is connected to SIB2 for a more reliable path loss estimation. It is possible to change to a DL CC of another secondary serving cell (SCell # 4 or SCell # 5) in an unlicensed band in an interference environment less than the DL CC of cell # 3. In this case, the terminal may perform more accurate power control for uplink transmission on the unlicensed band, thereby improving overall system performance.
이를 위하여 기지국은 RRC 시그널링을 통해서 비면허 대역 상에 설정된 부서빙셀(들)을 위한 경로 손실 참조 연결(path-loss reference linking) 정보를 단말로 전송할 수 있다. 상기 경로 손실 참조 연결 정보는 비면허 대역 상에 설정된 부서빙셀 중 경로 손실 시 참조할 부서빙셀에 대한 정보일 수 있으며, 경로손실의 추정에 이용할 부서빙셀의 인덱스를 포함할 수 있다. 일 예로, 상기 경로 손실 참조 연결 정보는 상향링크 전력 제어 전용 부서빙셀(UplinkPowerControlDedicatedSCell)의 정보 요소(IE: Information Element) 내에 포함되는 경로 손실 참조 연결(pathlossReferenceLinking) 파라미터를 활용하여 전달될 수 있다. To this end, the base station may transmit path-loss reference linking information for the secondary serving cell (s) configured on the unlicensed band to the terminal through RRC signaling. The path loss reference connection information may be information on a secondary serving cell to be referred to when the path is lost among the secondary serving cells set on the unlicensed band, and may include an index of the secondary serving cell to be used for estimating the path loss. For example, the path loss reference connection information may be delivered by using a pathloss reference linking parameter included in an information element (IE) of an uplink power control dedicated SCell.
단말은 상기 경로 손실 참조 연결 정보를 기반으로 S-TAG에 속하는 부서빙들에 대해서는 해당 상향링크에 대응하는(SIB2-linkage) 부서빙셀 또는 상기 해당 상향링크에 대응하는 부서빙셀을 제외한 S-TAG 내의 다른 부서빙셀 중에서 RRC 시그널링에 의해 지시된 부서빙셀의 인덱스에 해당하는 부서빙셀 중 하나를 경로 손실 참조 서빙셀로 적용할 수 있다Based on the path loss reference connection information, the UE determines S-TAGs belonging to the S-TAG, except for a sub-serving cell corresponding to the uplink (SIB2-linkage) or a sub-serving cell corresponding to the uplink. One of the secondary serving cells corresponding to the index of the secondary serving cell indicated by RRC signaling among other secondary serving cells in the TAG may be applied as a path loss reference serving cell.
한편 다른 예로, 만일 S-TAG에 속하는 부서빙셀에 PUCCH를 나르는 부서빙셀(즉, PUCCH 전송이 가능한 부서빙셀)이 설정되어 있는 경우, 상기 PUCCH를 나르는 부서빙셀과 SIB2 연결을 가지는 DL CC 중 하나가 RRC 시그널링에 의해서 경로 손실 참조 서빙셀로서 설정될 수 있다. 즉, 비면허 대역 상의 특정 부서빙셀의 DL CC가 강한 간섭을 받는 경우, S-TAG에 속하는 부서빙셀에 PUCCH를 나르는 부서빙셀이 설정되어 있다면, 상기 PUCCH를 나르는 부서빙셀의 DL CC가 강한 간섭 상황에 있는 DL CC의 경로손실을 추정하는데 사용될 수 있다.Meanwhile, as another example, if a secondary serving cell carrying a PUCCH (that is, a secondary serving cell capable of PUCCH transmission) is configured in a secondary serving cell belonging to an S-TAG, a DL having an SIB2 connection with a secondary serving cell carrying the PUCCH One of the CCs may be configured as a path loss reference serving cell by RRC signaling. That is, when a DL CC of a specific secondary serving cell on an unlicensed band is subjected to strong interference, if a secondary serving cell carrying a PUCCH is configured in a secondary serving cell belonging to an S-TAG, the DL CC of the secondary serving cell carrying the PUCCH is It can be used to estimate the path loss of a DL CC in strong interference situations.
일 예로, 서빙셀 c에 대해 단말이 추정한 경로 손실 추정값(PLc)은 다음의 수학식 1과 같이 계산될 수 있다.For example, the path loss estimation value PL c estimated by the terminal with respect to the serving cell c may be calculated by Equation 1 below.
수학식 1
Figure PCTKR2015013598-appb-M000001
Equation 1
Figure PCTKR2015013598-appb-M000001
여기서, 'referenceSignalPower' 값은 상위레이어에서 제공되는 값이다. 상위레이어 필터링 설정은 참조 서빙셀을 기반으로 하며, RSRP(Reference Signal Received Power) 값은 참조 서빙셀을 기반하여 측정한 값이다.Here, the 'referenceSignalPower' value is a value provided from the upper layer. The upper layer filtering setting is based on the reference serving cell, and the RSRP (Reference Signal Received Power) value is measured based on the reference serving cell.
이하, 도 7을 참조하여 LAA 단말이 경로 손실을 추정하는 방법에 대해 설명한다.Hereinafter, a method of estimating a path loss by a LAA terminal will be described with reference to FIG. 7.
도 7은 본 발명의 일실시예에 따른 단말의 동작을 나타내는 흐름도이다.7 is a flowchart illustrating the operation of a terminal according to an embodiment of the present invention.
단말은 비면허 대역의 서빙셀에 관한 구성 정보(configuration information)(이하, LAA 구성 정보라 함)를 기반으로 비면허 대역 상에서 적어도 하나의 부서빙셀을 구성할 수 있다. 일 예로, 상기 LAA 구성 정보는 면허 대역의 주서빙셀을 통해서 기지국으로부터 단말로 전송될 수 있으며, RRC 메시지를 통해 전송될 수 있다. 여기서, RRC 메시지는 RRC 연결 재구성(RRC connection reconfiguration) 메시지일 수 있다.The terminal may configure at least one secondary serving cell on the unlicensed band based on configuration information (hereinafter referred to as LAA configuration information) regarding the serving cell of the unlicensed band. For example, the LAA configuration information may be transmitted from the base station to the terminal through the main serving cell of the licensed band, it may be transmitted through an RRC message. Here, the RRC message may be an RRC connection reconfiguration message.
단말은 기지국으로부터 상기 RRC 메시지를 수신하면(S710), 상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀에 대한 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀(S-TAG에 속하도록 설정됨)을 통한 상향링크 전송 시의 경로 손실을 추정한다(S720). 상기 경로 손실 참조 연결 정보는 비면허 대역 상에 설정된 부서빙셀 중 경로 손실 시 참조할 부서빙셀에 대한 정보일 수 있으며, 상기 부서빙셀의 인덱스를 포함할 수 있다. 여기서, 상기 경로 손실 시 참조할 부서빙셀은 비면허 대역의 서빙셀 중 상기 상향링크 전송에 사용되는 부서빙셀과는 다른 부서빙셀일 수 있다.When the terminal receives the RRC message from the base station (S710), based on the information on the path loss reference serving cell included in the RRC message, the secondary serving cell (configured to belong to the S-TAG) set in the unlicensed band The path loss is estimated at the time of uplink transmission (S720). The path loss reference connection information may be information about a secondary serving cell to be referred to when a path is lost among secondary serving cells set on an unlicensed band, and may include an index of the secondary serving cell. Here, the secondary serving cell to be referred to when the path is lost may be a secondary serving cell different from the secondary serving cell used for the uplink transmission among the serving cells of the unlicensed band.
일 예로, 단말은 비면허 대역 상의 특정 부서빙셀이 강한 간섭을 받는 상황인 경우, 상기 특정 부서빙셀을 통한 상향링크 전송을 위해 참조할 DL CC를 상기 경로 손실 참조 연결 정보를 기반으로 상기 부서빙셀이 속하는 S-TAG 내의 다른 부서빙셀의 DL CC로 상기 특정 부서빙셀의 경로 손실을 추정할 수 있다.For example, in a situation where a specific secondary serving cell on an unlicensed band is subjected to strong interference, the UE may perform DL serving based on the path loss reference connection information for a DL CC to be referred for uplink transmission through the specific secondary serving cell. The path loss of the specific secondary serving cell can be estimated by the DL CC of another secondary serving cell in the S-TAG to which the cell belongs.
그러나, 만일 S-TAG에 속하는 부서빙셀에 PUCCH를 나르는 부서빙셀이 설정되어 있는 경우, 상기 PUCCH를 나르는 부서빙셀이 RRC 시그널링에 의해서 경로 손실 참조 서빙셀로서 설정될 수 있다. 이 경우, 단말은 특정 부서빙셀이 강한 간섭을 받는 상황에서 상기 PUCCH를 나르는 부서빙셀의 DL CC를 상기 특정 부서빙셀의 경로 손실을 추정하는데 사용할 수 있다.However, if the secondary serving cell carrying the PUCCH is configured in the secondary serving cell belonging to the S-TAG, the secondary serving cell carrying the PUCCH may be configured as a path loss reference serving cell by RRC signaling. In this case, the UE may use the DL CC of the secondary serving cell carrying the PUCCH to estimate the path loss of the secondary secondary cell in a situation where the secondary secondary cell is subjected to strong interference.
이하, 비면허 대역의 S-TAG에 포함된 서빙셀을 통한 상향링크 전송을 위해 기지국이 경로 손실 참조 서빙셀을 결정하는 과정에 대해 보다 상세히 설명한다.Hereinafter, a process of determining a path loss reference serving cell by the base station for uplink transmission through the serving cell included in the S-TAG of the unlicensed band will be described in more detail.
도 8은 본 발명의 일실시예에 따른 기지국의 동작을 나타내는 흐름도이다.8 is a flowchart illustrating the operation of a base station according to an embodiment of the present invention.
도 8을 참조하면, 기지국은 단말로부터 CSI(Channel State Information), RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality) 등과 같은 이미 설정된 채널에 대한 상태보고나 SRS(Sounding Reference Signal), PRACH(Physical Random Access Channel) 등의 상향링크 신호를 수신할 수 있다. 이 경우, 기지국은 수신된 신호를 기반으로 해당 단말의 채널 환경을 추정(유추)할 수 있다(S810). 여기서, RSRP값은 채널 측정으로 고려되는 주파수 대역폭내에 전송되는 CRS(또는 DRS)가 전송되는 RE들의 전력분포를 평균화한 값([W])으로 정의된다. RSRQ값은 N×RSRP/(E-UTRA carrier RSSI)으로 정의되는 값으로서, RSSI값은 측정되는 주파수 대역폭내 모든 수신 전력의 평균값을 나타낸다. CSI는 하향링크/상향링크 RS들(e.g. CRS, CSI-RS, SRS등)을 통해서 원신호의 파워와 간섭신호의 파워에 대한 비율을 고려하여 그것에 해당하는 적절한 채널 값들(RI, PMI, CQI)을 계산하여 스케줄링에 고려하는 값이다.Referring to FIG. 8, the base station reports a status report, a sounding reference signal (SRS), and a PRACH from a terminal to a channel already set such as channel state information (CSI), reference signal received power (RSRP), and reference signal received quality (RSRQ). An uplink signal such as a physical random access channel may be received. In this case, the base station may estimate (inferred) the channel environment of the corresponding terminal based on the received signal (S810). here, The RSRP value is defined as a value [W] that averages the power distribution of the REs transmitted by the CRS (or DRS) transmitted within the frequency bandwidth considered in the channel measurement. The RSRQ value is defined as N × RSRP / (E-UTRA carrier RSSI), and the RSSI value represents an average value of all received powers in the measured frequency bandwidth. The CSI considers the ratio of the power of the original signal to the power of the interference signal through downlink / uplink RSs (eg CRS, CSI-RS, SRS, etc.) and corresponding channel values (RI, PMI, CQI) corresponding thereto. This value is taken into account for scheduling.
이후, 기지국은 추정된 해당 단말의 채널 환경을 기반으로 해당 단말의 경로 손실 참조 서빙셀을 변경할지 여부를 결정할 수 있다(S820). 이를 위하여 기지국은 일 예로, CSI 값을 기반으로 해당 단말의 간섭 상황을 추정하거나, RSRP/RSRQ 값을 바탕으로 채널을 판단할 수 있다. 예를 들어, 기지국은 RSRP/RSRQ값과, 원신호의 파워와 간섭 및 노이즈를 포함하는 다른 신호와의 비율을 통해서 원신호의 품질을 평가할 수 있다.Thereafter, the base station may determine whether to change the path loss reference serving cell of the terminal based on the estimated channel environment of the terminal (S820). To this end, the base station may, for example, estimate an interference situation of the corresponding UE based on the CSI value or determine the channel based on the RSRP / RSRQ value. For example, the base station may evaluate the quality of the original signal through the ratio of the RSRP / RSRQ value and other signals including power, interference and noise of the original signal.
또는, SRS, PRACH 신호를 기반으로 CSI 또는 경로 손실을 직접 측정할 수 있다. 예를 들어 기지국은 기설정된 SRS 전송파워와 기지국이 수신한 SRS 신호의 파워 간의 차이값을 계산함으로써 해당 단말의 채널 환경을 평가하고 추정할 수 있다.Alternatively, CSI or path loss may be directly measured based on the SRS and PRACH signals. For example, the base station may evaluate and estimate a channel environment of the corresponding terminal by calculating a difference value between a predetermined SRS transmission power and the power of the SRS signal received by the base station.
이는 LAA를 위한 비면허 대역의 반송파들은 TDD 반송파와 같이 채널 가역성(channel reciprocity)을 이용할 수 있기 때문이다. 만일, 단말로부터 수신된 PUSCH(Physical Uplink Shared Channel)의 BLER(Block-Error Rate) 값이 타겟(target)값을 기준으로(이는 미리 설정된 값으로, 기지국/단말 구현을 위해 적용되는 파라미터로 적용되어 사용될 수 있다, 이는 서비스를 고려하여 조정될 수 있는 값으로, 이는 해당 서비스 사업자(망운용자)에 의해 해당 서비스를 위하여 네트워크 환경을 고려하여 조정하여 설정될 수 있다)지속적으로 좋지 않게 수신되는 경우, 기지국은 이와 같은 문제가 잘못된 전력 제어로 인한 것으로 판단하고, 그 주 원인은 잘못된 경로 손실 추정이 단말측에서 수행되고 있기 때문인 것으로 판단할 수 있다. This is because carriers in the unlicensed band for the LAA may use channel reciprocity like the TDD carrier. If the BLER (Block-Error Rate) value of the PUSCH (Physical Uplink Shared Channel) received from the UE is based on a target value (this is a preset value, it is applied as a parameter applied for base station / terminal implementation). It can be used, which is a value that can be adjusted in consideration of the service, which can be set by the service provider (network operator) in consideration of the network environment for the service). It can be determined that such a problem is caused by wrong power control, and the main cause is that wrong path loss estimation is performed at the terminal side.
따라서, 기지국은 SRS, PRACH 신호를 기반으로 측정한 경로 손실을 기반으로 단말이 수행하고 있는 경로 손실 추정을 위한 참조 서빙셀을 변경시킬 수 있다. 즉, 기지국은 단말의 경로 손실 추정이 신뢰성이 없는 것으로 판단하여 경로 손실 추정을 위한 참조 서빙셀을 다른 참조 서빙셀로 변경할 수 있다.Therefore, the base station may change the reference serving cell for estimating the path loss performed by the terminal based on the path loss measured based on the SRS and PRACH signals. That is, the base station determines that the path loss estimation of the terminal is unreliable and can change the reference serving cell for the path loss estimation to another reference serving cell.
기지국은 단말로부터 보고된 CSI, RSRP, RSRQ값, 기지국이 상향링크 SRS와 PRACH를 바탕으로 직접 측정한 CSI, 경로 손실 값 및 PUSCH의 BLER 등을 비교함으로써 단말이 현재 간섭상황이 심한지 아니면 경로 손실과 같은 요인으로 인해 본래 신호의 파워가 약한지를 파악할 수 있다.The base station compares the CSI, RSRP and RSRQ values reported from the terminal, the CSI measured by the base station directly based on the uplink SRS and PRACH, the path loss value, and the BLER of the PUSCH. These factors can be used to determine if the original signal is weak.
한편 다른 예로, 기지국은 단말로부터 보고된 채널정보(CSI, RSRP, RSRQ)와 기지국이 단말로부터의 상향링크 신호(SRS/PRACH)를 바탕으로 직접 추정한 값을 기반으로 모두 또는 일부 좋지 않은 값이 보고된 경우에 경로 손실 참조 서빙셀을 변경할 수도 있다. 경로 손실 참조 서빙셀의 변경이 결정되면, 기지국 해당 서빙셀의 경로 손실 참조 서빙셀을 변경하기 위하여 RRC 시그널링을 트리거하며(S830), 해당 서빙셀에 대한 경로 손실 참조 서빙셀의 변경을 지시하는 RRC 메시지를 단말로 전송한다(S840). On the other hand, the base station is based on the channel information (CSI, RSRP, RSRQ) reported from the terminal and all or some bad value based on the value directly estimated by the base station uplink signal (SRS / PRACH) from the terminal If reported, the path loss reference serving cell may be changed. When the change of the path loss reference serving cell is determined, the RRC signaling is triggered to change the path loss reference serving cell of the base station corresponding serving cell (S830), and the RRC indicating a change of the path loss reference serving cell for the corresponding serving cell. The message is transmitted to the terminal (S840).
도 9는 본 발명의 다른 실시예에 따른 경로 손실 추정 방법을 나타내는 도면이다.9 illustrates a path loss estimation method according to another embodiment of the present invention.
도 6 내지 도 8에서 설명한 경로 손실 채널 추정 방법은 채널 환경이 변화가 적은 상황에서 유용하게 사용될 수 있다. 그러나, 채널 환경의 변화가 많은(빠른) 상황에서는 보다 적응적이고 동적으로 경로 손실 참조 서빙셀을 변경할 필요가 있다.The path loss channel estimation method described with reference to FIGS. 6 to 8 may be usefully used in a situation where the channel environment has little change. However, in situations where the channel environment is changing (fast), there is a need to change the path loss reference serving cell more adaptively and dynamically.
LAA에서는 S-TAG로 설정될 비면허 대역 상의 다수의 채널(반송파)를 효과적으로 선택하는 방법에 대해서 고려할 것이다. 즉, 이것은 하나의 단말관점에서 기지국으로 설정된 복수개의 서빙셀들내에서 동적으로 반송파가 선택된다는 의미이고, 이렇게 선택된 부서빙셀이 UL CC에 대한 경로 손실 추정을 위해서 고려될 수 있다.LAA will consider how to effectively select multiple channels (carriers) on the unlicensed band to be set to S-TAG. That is, this means that a carrier is dynamically selected within a plurality of serving cells configured as a base station in one terminal view, and the selected secondary serving cell can be considered for the path loss estimation for the UL CC.
일 예로 도 9에 도시된 것과 같이, S-TAG로 설정된 비면허 대역 상의 UL SCC에 대한 경로 손실 참조 서빙셀은 동적으로 선택될 수 있다. 즉, 설정된 UL CC(SCell#3의 UL CC)에 대한 경로 손실 추정은 LBT 수행 이후 (e)CCA를 통해 선택된(획득된)비면허 대역의 부서빙셀을 기반으로 동적으로 변경될 수 있다.As an example, as shown in FIG. 9, the path loss reference serving cell for the UL SCC on the unlicensed band set to S-TAG may be dynamically selected. That is, the path loss estimation for the set UL CC (UL CC of SCell # 3) may be dynamically changed based on the secondary serving cell of the (licensed) licensed band selected through (C) CCA after performing LBT.
무선 통신 시스템에서는 비활성화(deactivated)된 서빙셀에 대해서도경로 손실을 추정을 수행한다. 만약 LAA에서 물리계층 시그널링을 통해서 특정 시점에서 특정 서빙셀이 LBT 수행 이후 채널을 점유한 경우에 "on" 또는 "busy" 상태로 변경될 수 있다면, 그렇지 않은 상태인 "off" 또는 "Idle" 상태의 서빙셀 또한 이후 "on" 상태가 될 수 있다. 이러한 가능성에 대응하기 위해서 단말은 항상 비활성화된 서빙셀에 대해서도 경로 손실을 추정하여 상향링크 전송을 준비할 필요가 있다.In the wireless communication system, the path loss is estimated even for the deactivated serving cell. If a specific serving cell occupies a channel after performing LBT at a specific time through physical layer signaling in the LAA, it may be changed to an "on" or "busy" state, otherwise it is an "off" or "Idle" state. The serving cell of may also be in an "on" state. In order to cope with such a possibility, the terminal always needs to prepare for uplink transmission by estimating a path loss even for a deactivated serving cell.
도 9에서는 부서빙셀 #3 (UL SCC#3)의 관점(즉, 부서빙셀 #3의 상향링크 전송을 위한 경로손실 추정에 대해서)에서 설명하고 있다. 보이는 바와 같이, t1 시점에 비면허 대역의 부서빙셀 #3이 LBT 수행 이후 점유되어 "on" 상태가 된 경우, t1 시점에는 부서빙셀 #3의 UL SCC에 대한 채널 추정은 상기 부서빙셀 #3의 UL SCC와 SIB2 연결을 가지는 부서빙셀 #3의 DL SCC를 기반으로 수행될 수 있다. 이후 t2 시점에 부서빙셀 #3이 점유되지 못하고 부서빙셀 #4가 점유되면, 부서빙셀 #3을 통한 상향링크 전송을 준비하기 위하여 "on" 상태인 부서빙셀 #4의 DL SCC를 기반으로 부서빙셀 #3의 UL SCC에 대한 채널 추정이 수행될 수 있다.9 is described in terms of secondary serving cell # 3 (UL SCC # 3) (ie, path loss estimation for uplink transmission of secondary serving cell # 3). As shown, when the sub-licensed cell # 3 of the unlicensed band is occupied after performing the LBT at the time t1 and becomes “on”, the channel estimation for the UL SCC of the sub-serving cell # 3 is performed at the time t1. It may be performed based on the DL SCC of the secondary serving cell # 3 having the UL SCC of 3 and the SIB2 connection. If the secondary serving cell # 3 is not occupied at the time t2 and the secondary serving cell # 4 is occupied, the DL SCC of the secondary serving cell # 4 in the "on" state is prepared to prepare for uplink transmission through the secondary serving cell # 3. Based on the channel estimation for the UL SCC of the secondary serving cell # 3 may be performed.
추가적으로, t3 시점과 같이2개의 서빙셀(SCell#3 및 SCell#5)이 “on” 상태인 경우, UL SCC#3 관점에서는 2가지 선택이 있을 수 있다. UL SCC#3과 SIB2 연결을 가지는 부서빙셀 #3(DL SCC#3)과 부서빙셀 #5가 그것인데, 만약 복수개의 DL CC가 “on” 상태가 되는 경우 하나의 UL CC를 위한 경로 손실 참조 서빙셀로서 해당 UL CC(UL SCC #3)와 SIB2 연결을 가지는 DL CC(즉, 도 9에서는 부서빙셀 #3)가 가장 큰 우선순위를 가지고 선택될 수 있다.In addition, when two serving cells SCell # 3 and SCell # 5 are in an “on” state as in time t3, there may be two choices in terms of UL SCC # 3. These are the secondary serving cell # 3 (DL SCC # 3) and the secondary serving cell # 5 having the UL SCC # 3 and the SIB2 connection. If a plurality of DL CCs are turned “on”, a path for one UL CC is performed. As a lost reference serving cell, a DL CC (ie, secondary serving cell # 3 in FIG. 9) having an SIB2 connection with a corresponding UL CC (UL SCC # 3) may be selected with the highest priority.
한편 도 9에는 도시되지 않았지만, 만약 UL CC에 대하여 SIB2 연결을 가지는 DL CC가 존재하지 않고, 비면허 대역의 S-TAG내에서 복수개의 DL CC가 “on”인 경우에는 부서빙셀 인덱스가 작은 것이 더 큰 우선순위를 가질 수 있다. 즉, t3 시점에 DL SCC #4와 DL SCC #5가 "on"인 경우라면, UL SCC #3에 대한 경로 손실 참조 서빙셀로서 DL SCC #4가 선택될 수 있다.On the other hand, although not shown in Figure 9, if there is no DL CC having an SIB2 connection to the UL CC, a plurality of DL CCs in the S-TAG of the unlicensed band is a secondary serving cell index is small May have a higher priority. That is, if DL SCC # 4 and DL SCC # 5 are "on" at time t3, DL SCC # 4 may be selected as a path loss reference serving cell for UL SCC # 3.
또는, UL CC에 대하여 SIB2 연결을 가지는 DL CC가 "on"이 아니고, 비면허 대역의 S-TAG내에서 복수개의 DL CC가 “on”인 경우, RRC 시그널링으로 설정된 서빙셀이 더 큰 우선순위를 가질 수 있다. 또는, 상기 S-TAG내의 모든 서빙셀을 위한 우선권에 대한 정보가 RRC 시그널링으로 지시될 수 있다.Or, if a DL CC having an SIB2 connection with respect to a UL CC is not "on" and a plurality of DL CCs are "on" in an S-TAG of an unlicensed band, a serving cell configured for RRC signaling has a higher priority. Can have. Alternatively, information about the priority for all serving cells in the S-TAG may be indicated by RRC signaling.
다시 말해, 만약 특정 서빙셀 c가 주서빙셀을 포함하지 않는 TAG에 속하고 상기 서빙셀 c상에서 (E)CCA를 통해서 채널이 획득되었다면, 단말은 항상 상기 서빙셀 c를 경로 손실 추정을 위한 참조 서빙셀로 사용할 수 있다. 그렇지 않고 만약 상기 서빙셀 c가 주서빙셀을 포함하지 않는 TAG에 속하고 그 서빙셀 c상에서 (E)CCA를 통해서 채널이 획득되지 않았으며 같은 TAG내의 다른 서빙셀상에서 채널이 획득되었다면, 단말은 항상 채널이 획득된 서빙셀을 경로 손실 참조 서빙셀로 사용할 수 있다. In other words, if a specific serving cell c belongs to a TAG that does not include the primary serving cell and a channel is obtained through (E) CCA on the serving cell c, the terminal always refers to the serving cell c for path loss estimation. Can be used as a serving cell. Otherwise, if the serving cell c belongs to a TAG that does not include the main serving cell and the channel is not obtained through (E) CCA on the serving cell c and the channel is obtained on another serving cell in the same TAG, the terminal A serving cell obtained with a channel can always be used as a path loss reference serving cell.
만약 채널이 획득된 서빙셀이 복수개이면 가장 작은 부서빙셀 인덱스를 가지는 서빙셀을 경로 손실 참조 서빙셀로 사용할 수 있다. 이는 채널이 획득된 복수개의 서빙셀들의 채널 상태가 같은 상태라면 최종적으로 구별할 수 있는 요소는 서빙셀 인덱스(부서빙셀 인덱스)이기 때문이다. 또는 채널이 획득된 서빙셀이 복수개이면 RRC 시그널링에 의해 지시된 우선순위를 기반으로 선택된 서빙셀을 경로 손실 참조 서빙셀로 사용할 수 있다.If there are a plurality of serving cells from which channels are acquired, a serving cell having the smallest secondary serving cell index may be used as a path loss reference serving cell. This is because the last distinguishable element is the serving cell index (sub-serving cell index) if the channel state of the plurality of serving cells in which the channel is obtained is the same state. Alternatively, if there are a plurality of serving cells from which channels are obtained, the serving cell selected based on the priority indicated by the RRC signaling may be used as the path loss reference serving cell.
도 10은 본 발명의 다른 실시예에 따른 단말의 동작을 나타내는 흐름도이다.10 is a flowchart illustrating the operation of a terminal according to another embodiment of the present invention.
도 10을 참조하면, 단말은 LAA 구성 정보를 기반으로 비면허 대역 상에서 적어도 하나의 부서빙셀이 구성되면, 상기 비면허 대역 상의 적어도 하나의 부서빙셀을 S-TAG로 설정하고 S-TAG로 설정된 비면허 대역 상의 UL SCC에 대한 경로 손실 참조 서빙셀을 동적으로 선택할 수 있다(S1010). 그리고, 선택한 경로 손실 참조 서빙셀을 기반으로 비면허 대역상의 부서빙셀에 대한 경로 손실을 추정할 수 있다(S1020).Referring to FIG. 10, if at least one secondary serving cell is configured on an unlicensed band based on LAA configuration information, the terminal sets at least one secondary serving cell on the unlicensed band to S-TAG and is set to S-TAG. The path loss reference serving cell for the UL SCC on the band may be dynamically selected (S1010). The path loss of the secondary serving cell in the unlicensed band may be estimated based on the selected path loss reference serving cell (S1020).
예를 들어, 비면허 대역 상의 특정 부서빙셀에서 채널이 획득되었다면, 단말은 우선적으로 상기 특정 부서빙셀에 SIB2로 연결된DL CC을 포함하는 서빙셀을 경로 손실 추정을 위한 참조 서빙셀로 사용할 수 있다. 그러나, 만일 상기 특정 부서빙셀상에서 채널이 획득되지 않고 동일한 TAG내의 다른 부서빙셀상에서 채널이 획득되었다면, 단말은 상기 다른 부서빙셀을 경로 손실 참조 서빙셀로 사용할 수 있다. 만약 상기 채널이 획득된 부서빙셀이 복수개이면 가장 작은 부서빙셀 인덱스를 가지는 부서빙셀을 경로 손실 참조 서빙셀로 사용하거나 RRC 시그널링에 의해 지시된 우선순위를 기반으로 경로 손실 참조 서빙셀을 선택할 수 있다.For example, if a channel is acquired in a specific secondary serving cell on an unlicensed band, the UE may preferentially use a serving cell including a DL CC connected to SIB2 to the specific secondary serving cell as a reference serving cell for path loss estimation. . However, if the channel is not acquired on the specific secondary serving cell and the channel is acquired on another secondary serving cell in the same TAG, the terminal may use the other secondary serving cell as a path loss reference serving cell. If there are a plurality of secondary serving cells from which the channel is obtained, the secondary serving cell having the smallest secondary serving cell index is used as the path loss reference serving cell or the path loss reference serving cell is selected based on the priority indicated by RRC signaling. Can be.
도 11은 본 발명의 일실시예에 따른 무선 통신 시스템을 나타내는 블록도이다.11 is a block diagram illustrating a wireless communication system according to an embodiment of the present invention.
도 11을 참조하면, 본 발명에 따른 LAA를 지원하는 무선 통신 시스템은 적어도 하나의 단말(1100) 및 적어도 하나의 기지국(1200)을 포함한다.Referring to FIG. 11, a wireless communication system supporting LAA according to the present invention includes at least one terminal 1100 and at least one base station 1200.
각 단말(1100)은 RF부(RF(radio frequency) unit, 1110), 프로세서(processor, 1120) 및 메모리(memory, 1130)를 포함한다. 메모리(1130)는 프로세서(1120)와 연결되어, 프로세서(1120)를 구동하기 위한 다양한 정보를 저장한다. RF부(1110)는 프로세서(1120)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 예를 들어, RF부(1110)는 기지국(1200)으로부터 본 명세서에서 RRC 메시지를 수신하고 기지국(1200)으로 CSI, RSRP, RSRQ, SRS, PRACH 등의 상향링크 신호를 전송할 수 있다.Each terminal 1100 includes an RF unit 1110, a processor 1120, and a memory 1130. The memory 1130 is connected to the processor 1120 and stores various information for driving the processor 1120. The RF unit 1110 is connected to the processor 1120 to transmit and / or receive a radio signal. For example, the RF unit 1110 may receive an RRC message from the base station 1200 and transmit an uplink signal such as CSI, RSRP, RSRQ, SRS, and PRACH to the base station 1200.
메모리(1130)는 본 명세서에 따른 LAA 구성 정보, 경로 손실 참조 서빙셀에 대한 정보 등을 저장하고, 프로세서(1120)의 요구에 따라 프로세서(1120)에게 상기 정보들을 제공할 수 있다.The memory 1130 may store LAA configuration information, information about a path loss reference serving cell, and the like, and provide the information to the processor 1120 according to a request of the processor 1120.
프로세서(1120)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 구체적으로 프로세서(1120)는 도 3 및/또는 도 10에 따른 단계가 수행되도록 한다. 예를 들어, 프로세서(1120)는 설정부(1121) 및 추정부(1122)를 포함할 수 있다.The processor 1120 implements the functions, processes, and / or methods proposed herein. Specifically, the processor 1120 allows the steps according to FIGS. 3 and / or 10 to be performed. For example, the processor 1120 may include a setting unit 1121 and an estimating unit 1122.
설정부(1121)는 상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀에 대한 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀에 대한 경로 손실 참조 서빙셀을 설정한다. 일 예로, 설정부(1121)는 상기 RRC 메시지 내의 상향링크 전력 제어 전용 부서빙셀(UplinkPowerControlDedicatedSCell)의 정보 요소에 포함되는 경로 손실 참조 연결 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀에 대한 경로 손실 참조 서빙셀의 인덱스를 확인할 수 있다.The setting unit 1121 sets a path loss reference serving cell for the secondary serving cell configured in the unlicensed band based on the information on the path loss reference serving cell included in the RRC message. For example, the setting unit 1121 may determine a path loss of a secondary serving cell set in the unlicensed band based on path loss reference connection information included in an information element of an uplink power control dedicated SCell in the RRC message. The index of the reference serving cell can be checked.
추정부(1122)는 상기 경로 손실 참조 서빙셀을 이용하여 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정한다. 이를 위하여 추정부(1122)는 수학식 1을 이용할 수 있다.The estimator 1122 estimates a path loss during uplink transmission through the secondary serving cell set in the unlicensed band using the path loss reference serving cell. For this purpose, the estimator 1122 may use Equation 1 below.
일 실시예로서, 설정부(1121)는 기지국(1200)으로부터 상기 RRC 메시지를 수신하면, 상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀을 비면허 대역 상에 설정된 부서빙셀의 경로 손실 추정에 사용할 서빙셀로 설정한다. 상기 경로 손실 참조 서빙셀은 비면허 대역 상에 설정된 부서빙셀 중 경로 손실 시 참조할 부서빙셀일 수 있다. 상기 RRC 메시지에는 상기 경로 손실 참조 서빙셀의 인덱스가 포함될 수 있다.As an embodiment, when the setting unit 1121 receives the RRC message from the base station 1200, the setting unit 1121 uses the path loss reference serving cell included in the RRC message to estimate the path loss of the secondary serving cell configured on the unlicensed band. Set to cell. The path loss reference serving cell may be a secondary serving cell to be referred to when a path is lost among secondary serving cells configured on an unlicensed band. The RRC message may include an index of the path loss reference serving cell.
예를 들어, 설정부(1121)는 비면허 대역 상의 특정 부서빙셀이 강한 간섭을 받는 상황인 경우, 상기 특정 부서빙셀을 통한 상향링크 전송을 위해 참조할 DL CC를 상기 경로 손실 참조 연결 정보를 기반으로 상기 부서빙셀이 속하는 S-TAG 내의 다른 부서빙셀의 DL CC로 설정할 수 있다. 그러나, 만일 S-TAG에 속하는 부서빙셀에 PUCCH를 나르는 부서빙셀이 설정되어 있는 경우, 설정부(1121)는 상기 PUCCH를 나르는 부서빙셀을 경로 손실 참조 서빙셀로 설정할 수 있다. 이 경우, 상기 PUCCH를 나라는 부서빙셀에 대한 정보는 RRC 시그널링을 통해 단말로 전송될 수 있으며, 추정부(1122)는 특정 부서빙셀이 강한 간섭을 받는 상황에서 상기 PUCCH를 나르는 부서빙셀의 DL CC를 상기 특정 부서빙셀의 경로 손실을 추정하는데 사용할 수 있다.For example, when a specific secondary serving cell on an unlicensed band is subjected to strong interference, the setting unit 1121 may determine a DL CC to be referred for uplink transmission through the specific secondary serving cell as the path loss reference connection information. Based on the sub serving cell may be set to the DL CC of the other secondary serving cell in the S-TAG. However, if the secondary serving cell carrying the PUCCH is configured in the secondary serving cell belonging to the S-TAG, the setting unit 1121 may set the secondary serving cell carrying the PUCCH as a path loss reference serving cell. In this case, the information on the secondary serving cell for the PUCCH may be transmitted to the terminal through the RRC signaling, the estimator 1122 is a secondary serving cell carrying the PUCCH in a situation that a particular secondary serving cell is subjected to strong interference. DL CC may be used to estimate a path loss of the specific secondary serving cell.
한편 다른 실시예로, 설정부(1121)는 S-TAG로 설정된 비면허 대역 상의 UL SCC에 대한 경로 손실 참조 서빙셀을 비면허 대역의 (e)CCA를 통한 채널 획득 여부에 따라 동적으로 선택하여 경로 손실 참조 서빙셀로 설정할 수 있다. 이 경우, 추정부(1122)는 경로 손실 참조 서빙셀로 설정된 비면허 대역의 부서빙셀을 기반으로 비면허 대역을 통한 상향링크 전송을 위한 경로 손실 추정을 동적으로 수 행할 수 있다. 예를 들어, 추정부(1122)는 만약 특정 서빙셀이 주서빙셀을 포함하지 않는 TAG에 속하고 상기 특정 서빙셀상에서 (E)CCA를 통해서 채널이 획득되었다면, 항상 상기 특정 서빙셀을 경로 손실 추정을 위한 참조 서빙셀로 사용할 수 있다. 그러나, 만약 상기 특정 서빙셀이 주서빙셀을 포함하지 않는 TAG에 속하고 상기 특정 서빙셀상에서 (E)CCA를 통해서 채널이 획득되지 않았으며 같은 TAG내의 다른 서빙셀상에서 채널이 획득되었다면, 추정부(1122)는 항상 채널이 획득된 서빙셀을 경로 손실 참조 서빙셀로 사용할 수 있다. 이 때, 만약 채널이 획득된 서빙셀이 복수개이면 가장 작은 부서빙셀 인덱스를 가지는 서빙셀을 경로 손실 참조 서빙셀로 사용하거나, RRC 시그널링에 의해 지시된 우선순위를 기반으로 선택된 서빙셀을 경로 손실 참조 서빙셀로 사용할 수 있다.On the other hand, in another embodiment, the setting unit 1121 dynamically selects a path loss reference serving cell for the UL SCC on the unlicensed band set to S-TAG, depending on whether the channel is obtained through (e) CCA of the unlicensed band and thus the path loss. It can be set as a reference serving cell. In this case, the estimator 1122 may dynamically perform path loss estimation for uplink transmission through the unlicensed band based on the secondary serving cell of the unlicensed band set as the path loss reference serving cell. For example, the estimator 1122 always loses the path of the particular serving cell if the particular serving cell belongs to a TAG that does not include the primary serving cell and the channel is obtained through (E) CCA on the specific serving cell. Can be used as a reference serving cell for estimation. However, if the specific serving cell belongs to a TAG that does not include the main serving cell and the channel is not obtained through (E) CCA on the specific serving cell and the channel is obtained on another serving cell in the same TAG, the estimator 1122 may always use a serving cell from which a channel is obtained as a path loss reference serving cell. In this case, if there are a plurality of serving cells in which channels are acquired, the serving cell having the smallest secondary serving cell index is used as the path loss reference serving cell, or the path loss is selected based on the priority indicated by the RRC signaling. Can be used as a reference serving cell.
한편, 기지국(1200)은 RF부(RF(radio frequency) unit, 1210), 프로세서(1220) 및 메모리(1230)를 포함한다. 메모리(1230)는 프로세서(1220)와 연결되어, 프로세서(1220)를 구동하기 위한 다양한 정보를 저장한다. RF부(1210)는 프로세서(1220)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1220)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국(1200)의 동작은 프로세서(1220)에 의해 구현될 수 있다. 프로세서(1220)는 본 명세서에서 게시된 RRC 메시지를 생성하고, 비면허 대역에 대한 (E)CCA를 수행하여 채널을 획득한다.Meanwhile, the base station 1200 includes a radio frequency unit 1210, a processor 1220, and a memory 1230. The memory 1230 is connected to the processor 1220 and stores various information for driving the processor 1220. The RF unit 1210 is connected to the processor 1220 and transmits and / or receives a radio signal. The processor 1220 implements the functions, processes, and / or methods proposed herein. In the above-described embodiment, the operation of the base station 1200 may be implemented by the processor 1220. The processor 1220 generates an RRC message published herein and performs an (E) CCA for an unlicensed band to obtain a channel.
일 예로, 프로세서(1220)는 판단부(1221) 및 생성부(1222)을 포함할 수 있다. 판단부(1221)는 단말(1100)로부터 수신한 CSI, RSRP, RSRQ 등과 같은 이미 설정된 채널에 대한 상태보고를 기반으로 단말(1100)의 채널 환경을 판단하고, SRS, PRACH 등의 상향링크 신호를 기반으로 단말(1100)의 채널 환경을 직접 추정할 수 있다. 그리고, 추정된 해당 단말의 채널 환경을 기반으로 해당 단말의 경로 손실 참조 서빙셀을 변경할지 여부를 결정할 수 있다.For example, the processor 1220 may include a determiner 1221 and a generator 1222. The determination unit 1221 determines a channel environment of the terminal 1100 based on a status report on a predetermined channel such as CSI, RSRP, RSRQ, etc. received from the terminal 1100, and determines an uplink signal such as SRS and PRACH. Based on this, the channel environment of the terminal 1100 may be directly estimated. Then, it may be determined whether to change the path loss reference serving cell of the terminal based on the estimated channel environment of the terminal.
예를 들어, 판단부(1221)는 단말(1100)로부터 수신된 PUSCH의블록 에러율(BLER)이 타겟(target) 값보다 낮은 값으로 지속적으로 수신되는 경우, 단말이 잘못된 경로 손실 추정 값을 보낸 것으로 판단할 수 있다. 이 경우, 생성부(1222)는 단말(1100)이 수행하고 있는 경로 손실 추정을 위한 참조 서빙셀의 변경을 지시하는 RRC 메시지를 생성할 수 있다.For example, when the block error rate BLER of the PUSCH received from the UE 1100 is continuously received at a value lower than a target value, the determination unit 1221 indicates that the UE has sent an incorrect path loss estimation value. You can judge. In this case, the generation unit 1222 may generate an RRC message indicating change of the reference serving cell for the path loss estimation performed by the terminal 1100.
한편 다른 예로, 판단부(1221)는 단말(1100)로부터 보고된 채널정보(CSI, RSRP, RSRQ)와 단말(1100)로부터의 상향링크 신호(SRS/PRACH)를 바탕으로 직접 추정한 값을 비교하여 단말로부터(1100) 일정 기준값(Threshold)에 미치지 않는 값이 보고된 서빙셀에 대해서만 경로 손실 참조 서빙셀이 변경되도록 할 수도 있다.On the other hand, as another example, the determination unit 1221 compares the value directly estimated based on the channel information (CSI, RSRP, RSRQ) reported from the terminal 1100 and the uplink signal (SRS / PRACH) from the terminal 1100. Does not reach a certain threshold from the terminal (1100) The path loss reference serving cell may be changed only for the serving cell whose value is reported.
상술한 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 본 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.The above-described processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit and / or a data processing device. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The RF unit may include a baseband circuit for processing a radio signal. When the present embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Claims (10)

  1. 무선 통신 시스템에서의 경로 손실(path-loss) 추정 방법에 있어서,A path-loss estimation method in a wireless communication system,
    면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간의 반송파 집성(carrier aggregation)이 구성된 단말이 기지국으로부터 RRC(Radio Resource Control) 메시지를 수신하는 단계; 및Receiving a radio resource control (RRC) message from a base station by a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band; And
    상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀에 대한 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정하는 단계Estimating a path loss during uplink transmission through the secondary serving cell configured in the unlicensed band based on the information on the path loss reference serving cell included in the RRC message.
    를 포함하는 경로 손실 추정 방법.Path loss estimation method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 경로 손실 참조 서빙셀에 대한 정보는,Information about the path loss reference serving cell,
    상기 비면허 대역에 설정된 부서빙셀 중 상기 경로 손실의 추정에 이용할 부서빙셀의 인덱스를 포함하는 것을 특징으로 하는 경로 손실 추정 방법.And the index of the secondary serving cell to be used for the estimation of the path loss among the secondary serving cells set in the unlicensed band.
  3. 제2항에 있어서,The method of claim 2,
    상기 경로 손실의 추정에 이용할 부서빙셀은,The secondary serving cell to be used for the estimation of the path loss,
    상기 비면허 대역에 설정된 서빙셀 중 상기 상향링크 전송에 사용되는 부서빙셀과는 다른 부서빙셀인 것을 특징으로 하는 경로 손실 추정 방법.And a secondary serving cell different from the secondary serving cell used for the uplink transmission among the serving cells configured in the unlicensed band.
  4. 제2항에 있어서,The method of claim 2,
    상기 경로 손실의 추정에 이용할 부서빙셀은,The secondary serving cell to be used for the estimation of the path loss,
    PUCCH(Physical Uplink Control Channel)의 전송이 가능한 부서빙셀인 것을 특징으로 하는 경로 손실 추정 방법.Path loss estimation method characterized in that the secondary serving cell capable of transmitting the PUCCH (Physical Uplink Control Channel).
  5. 무선 통신 시스템에서의 경로 손실(path-loss) 추정 방법에 있어서,A path-loss estimation method in a wireless communication system,
    면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간의 반송파 집성(carrier aggregation)이 구성된 단말이 채널 획득 여부를 기반으로 상기 비면허 대역의 부서빙셀 중 하나를 동적으로 선택하는 단계; 및Dynamically selecting one of the secondary serving cells of the unlicensed band based on channel acquisition by a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band; And
    상기 선택한 부서빙셀을 기반으로 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정하는 단계Estimating a path loss during uplink transmission through the secondary serving cell configured in the unlicensed band based on the selected secondary serving cell
    를 포함하는 경로 손실 추정 방법.Path loss estimation method comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 선택하는 단계는,The selecting step,
    상기 상향링크 전송에 사용되는 부서빙셀에 연결된 하향링크 요소 반송파를 포함하는 서빙셀이 존재하는 경우, 상기 하향링크 요소 반송파를 포함하는 서빙셀을 우선적으로 선택하는 단계를 포함하는 것을 특징으로 하는 경로 손실 추정 방법.If there is a serving cell including a downlink component carrier connected to the secondary serving cell used for the uplink transmission, selecting a serving cell including the downlink component carrier first; Loss Estimation Method.
  7. 제5항에 있어서,The method of claim 5,
    상기 선택하는 단계는,The selecting step,
    상기 비면허 대역의 서빙셀 중 채널이 획득된 부서빙셀이 복수개인 경우, 가장 작은 부서빙셀 인덱스를 가지는 부서빙셀을 경로 손실 참조 서빙셀로서 선택하거나, RRC(Radio Resource Control)시그널링에 의해 지시된 우선순위를 기반으로 경로 손실 참조 서빙셀을 선택하는 단계를 포함하는 것을 특징으로 하는 경로 손실 추정 방법.When there are a plurality of secondary serving cells in which channels are acquired among the serving cells of the unlicensed band, the secondary serving cell having the smallest secondary serving cell index is selected as a path loss reference serving cell or indicated by RRC (Radio Resource Control) signaling. Selecting a path loss reference serving cell based on the priorities.
  8. 무선 통신 시스템에서의 경로 손실(path-loss) 추정 방법에 있어서,A path-loss estimation method in a wireless communication system,
    면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간의 반송파 집성(carrier aggregation)이 구성된 단말로부터 수신한 신호를 기반으로 상기 단말의 단말의 채널 환경을 추정하는 단계;Estimating a channel environment of a terminal of the terminal based on a signal received from a terminal configured with carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band;
    상기 추정된 채널 환경을 기반으로 상기 단말의 경로 손실 참조 서빙셀을 변경할지 여부를 결정하는 단계; 및Determining whether to change a path loss reference serving cell of the terminal based on the estimated channel environment; And
    경로 손실 참조 서빙셀의 변경이 결정되는 경우, 상기 단말로 상기 경로 손실 참조 서빙셀의 변경을 지시하는 RRC(Radio Resource Control) 메시지를 전송하는 단계If a change of the path loss reference serving cell is determined, transmitting a radio resource control (RRC) message indicating a change of the path loss reference serving cell to the terminal;
    를 포함하는 경로 손실 추정 방법.Path loss estimation method comprising a.
  9. 제8항에 있어서,The method of claim 8,
    상기 추정하는 단계는,The estimating step,
    상기 단말로부터 수신한 경로 손실 값, 상기 단말로부터 수신한 상향링크 신호를 기반으로 측정한 경로 손실 값 및 상기 단말로부터 수신한 블록의 에러율 중 적어도 하나를 기반으로 상기 단말로부터 수신한 경로 손실 값의 신뢰성을 판단하는 단계를 포함하는 것을 특징으로 하는 경로 손실 추정 방법.Reliability of a path loss value received from the terminal based on at least one of a path loss value received from the terminal, a path loss value measured based on an uplink signal received from the terminal, and an error rate of a block received from the terminal And determining the path loss.
  10. 무선 통신 시스템에서 면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간의 반송파 집성(carrier aggregation)이 구성된 단말에 있어서,A terminal in which carrier aggregation is configured between a serving cell of a licensed band and a serving cell of an unlicensed band in a wireless communication system,
    기지국으로부터 RRC(Radio Resource Control) 메시지를 수신하는 RF(Radio Frequency) 부; 및A radio frequency (RF) unit for receiving a radio resource control (RRC) message from a base station; And
    상기 RRC 메시지에 포함된 경로 손실 참조 서빙셀에 대한 정보를 기반으로 상기 비면허 대역에 설정된 부서빙셀에 대한 경로 손실 참조 서빙셀을 설정하고 상기 비면허 대역에 설정된 부서빙셀을 통한 상향링크 전송 시의 경로 손실을 추정하는 프로세서When setting a path loss reference serving cell for a secondary serving cell configured in the unlicensed band based on the information on the path loss reference serving cell included in the RRC message, and performing uplink transmission through the secondary serving cell configured in the unlicensed band Processor to estimate path loss
    를 포함하는 단말.Terminal comprising a.
PCT/KR2015/013598 2015-01-30 2015-12-11 Method and device for estimating path loss in wireless communication system supporting laa WO2016122112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0015187 2015-01-30
KR1020150015187A KR102299242B1 (en) 2015-01-30 2015-01-30 Method for estimatingpass-loss in wireless communication system supporting licensed assisted access and apparatus using the method

Publications (1)

Publication Number Publication Date
WO2016122112A1 true WO2016122112A1 (en) 2016-08-04

Family

ID=56543680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013598 WO2016122112A1 (en) 2015-01-30 2015-12-11 Method and device for estimating path loss in wireless communication system supporting laa

Country Status (2)

Country Link
KR (1) KR102299242B1 (en)
WO (1) WO2016122112A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565877A (en) * 2016-08-18 2019-04-02 Lg 电子株式会社 The equipment for sending the method for uplink signal by multiple unauthorized component carriers in the wireless communication system for supporting unlicensed frequency band and supporting this method
CN112088550A (en) * 2018-05-11 2020-12-15 联想(新加坡)私人有限公司 Method and apparatus for transmitting uplink transmissions based on path loss estimation
US11395173B2 (en) * 2016-01-29 2022-07-19 Ofinno, Llc First and second unlicensed cells jointly serving as reference cells
CN112088550B (en) * 2018-05-11 2024-04-26 联想(新加坡)私人有限公司 Method and apparatus for transmitting uplink transmissions based on path loss estimation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136504A2 (en) * 2010-04-29 2011-11-03 한국전자통신연구원 Carrier-aggregation-based handover method
WO2013006006A2 (en) * 2011-07-07 2013-01-10 엘지전자 주식회사 Method and apparatus for transmitting a signal in a wireless communication system
US20130114398A1 (en) * 2011-11-07 2013-05-09 Industrial Technology Research Institute Method of Reference Cell Maintenance
KR20130049132A (en) * 2011-11-03 2013-05-13 주식회사 팬택 Apparatus and method for performing uplink synchronization in multiple component carrier system
US20140112243A1 (en) * 2012-10-19 2014-04-24 Research In Motion Limited Using a cell as a pathloss or timing reference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136504A2 (en) * 2010-04-29 2011-11-03 한국전자통신연구원 Carrier-aggregation-based handover method
WO2013006006A2 (en) * 2011-07-07 2013-01-10 엘지전자 주식회사 Method and apparatus for transmitting a signal in a wireless communication system
KR20130049132A (en) * 2011-11-03 2013-05-13 주식회사 팬택 Apparatus and method for performing uplink synchronization in multiple component carrier system
US20130114398A1 (en) * 2011-11-07 2013-05-09 Industrial Technology Research Institute Method of Reference Cell Maintenance
US20140112243A1 (en) * 2012-10-19 2014-04-24 Research In Motion Limited Using a cell as a pathloss or timing reference

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395173B2 (en) * 2016-01-29 2022-07-19 Ofinno, Llc First and second unlicensed cells jointly serving as reference cells
US20220369147A1 (en) * 2016-01-29 2022-11-17 Ofinno, Llc Pathloss Measurement Using Multiple Unlicensed Cells
US11722922B2 (en) 2016-01-29 2023-08-08 Ofinno, Llc Pathloss measurement using multiple unlicensed cells
CN109565877A (en) * 2016-08-18 2019-04-02 Lg 电子株式会社 The equipment for sending the method for uplink signal by multiple unauthorized component carriers in the wireless communication system for supporting unlicensed frequency band and supporting this method
CN109565877B (en) * 2016-08-18 2022-07-08 Lg 电子株式会社 Method for transmitting uplink signal through multiple unlicensed component carriers in wireless communication system supporting unlicensed band and apparatus supporting the same
CN112088550A (en) * 2018-05-11 2020-12-15 联想(新加坡)私人有限公司 Method and apparatus for transmitting uplink transmissions based on path loss estimation
CN112088550B (en) * 2018-05-11 2024-04-26 联想(新加坡)私人有限公司 Method and apparatus for transmitting uplink transmissions based on path loss estimation

Also Published As

Publication number Publication date
KR102299242B1 (en) 2021-09-07
KR20160094079A (en) 2016-08-09

Similar Documents

Publication Publication Date Title
US11177869B2 (en) Method for performing measurement, user equipment and base station
US10757637B2 (en) User terminal, radio base station, and radio communication method
CN106538016B (en) Device, network and method for communication with fast adaptive transmission and reception
US20200314946A1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
JP6724248B2 (en) Method and user equipment for performing measurements in an EN-DC situation
US10506634B2 (en) Method and terminal for receiving data through unlicensed band in mobile communication system
WO2015167232A1 (en) Method and apparatus for performing cell on/off operation in wireless communication system
US11147081B2 (en) User terminal, radio base station, and radio communication method
US10368277B2 (en) Method for transmitting data by terminal in wireless communication system supporting high-speed uplink, and apparatus for same
WO2017030053A1 (en) Radio base station, user terminal and radio communication method
WO2014148875A1 (en) Method and apparatus for performing interference coordination in wireless communication system
WO2014051333A1 (en) Method and apparatus for supporting a control plane and a user plane in a wireless communication system
US10841921B2 (en) Radio base station, user terminal and radio communication method
WO2016182046A1 (en) User terminal and wireless communication method
EP3393161B1 (en) User terminal, radio base station, and radio communication method
WO2017135701A1 (en) Method and device for determining lbt priority class
WO2016021945A1 (en) Method and device for communicating in unlicensed band
WO2018123483A1 (en) Terminal device, base station device, and communication method
WO2017023039A1 (en) Method and device for transmitting data in unlicensed band
WO2017051726A1 (en) User terminal, wireless base station, and wireless communication method
JP6297742B2 (en) User terminal, radio base station, and radio communication method
JPWO2017026488A1 (en) User terminal, radio base station, and radio communication method
WO2017026489A1 (en) Wireless base station, user terminal, and wireless communication method
WO2019194603A1 (en) Method and device for mitigating interference in unlicensed band
WO2016144129A1 (en) Method for receiving data in unlicensed band and device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15880292

Country of ref document: EP

Kind code of ref document: A1