WO2016122111A1 - Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation - Google Patents

Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation Download PDF

Info

Publication number
WO2016122111A1
WO2016122111A1 PCT/KR2015/013575 KR2015013575W WO2016122111A1 WO 2016122111 A1 WO2016122111 A1 WO 2016122111A1 KR 2015013575 W KR2015013575 W KR 2015013575W WO 2016122111 A1 WO2016122111 A1 WO 2016122111A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpc
dci
pucch
serving cell
tpc command
Prior art date
Application number
PCT/KR2015/013575
Other languages
French (fr)
Korean (ko)
Inventor
박동현
Original Assignee
주식회사 아이티엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티엘 filed Critical 주식회사 아이티엘
Publication of WO2016122111A1 publication Critical patent/WO2016122111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for performing uplink power control in a wireless communication system supporting carrier aggregation.
  • CA Carrier Aggregation
  • CC component carriers
  • Each component carrier is defined by a bandwidth and a center frequency.
  • CA technology basically requires a primary serving cell (PCell), which serves as an anchor for communication, and a secondary serving cell (SCell).
  • PCell primary serving cell
  • SCell secondary serving cell
  • LTE long term evolution
  • PUCCH physical uplink control channel
  • a method in which the PUCCH is transmitted in the secondary serving cell may be mentioned. If the PUCCH is additionally configured in the secondary serving cell in addition to the primary serving cell, a small cell that reduces overhead due to uplink control information (UCI) concentrated in the primary serving cell and provides efficient uplink transmission is provided. It can help you with deployment. As a result, it is possible to implement reliable uplink control signal transmission.
  • UCI uplink control information
  • the uplink transmission power control of the terminal is a technique for solving interference or attenuation according to the distance between the terminal and the base station, and is also called a transmission power control (TPC) command.
  • the TPC command is signaling transmitted from the base station to the terminal to perform power control of a PUCCH or a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the TPC command allows the base station to receive an uplink signal with a uniform power strength.
  • TPC commands for PUCCH or PUSCH are currently applied to both CA-supported terminals and CA-unsupported terminals through a common control region of the main serving cell, but TPC has not yet been applied for PUCCH (SCell) or PUSCH, which is a newly added feature in LTE systems. It is not discussed whether or not the order should be applied.
  • An object of the present invention is to provide an apparatus and method for performing uplink power control in a wireless communication system supporting carrier aggregation.
  • Another technical problem of the present invention is to provide a power control apparatus and method for uplink power control to effectively support the CA of the LTE system.
  • Another technical problem of the present invention is to provide a power control apparatus and method for a PUCCH or a PUSCH configured in a secondary serving cell like a main serving cell in a wireless communication system supporting CA.
  • a power control method by a terminal supporting carrier aggregation based on a plurality of serving cells.
  • the method includes a first transmission power control (TPC) index for an uplink control channel (hereinafter referred to as PUCCH (PCell)) on a primary serving cell (PCell) and a secondary serving cell.
  • TPC transmission power control
  • a power control apparatus supporting carrier aggregation based on a plurality of serving cells.
  • the apparatus includes an RF unit for receiving an upper layer message and a TPC command message from a base station, and an uplink control channel (hereinafter referred to as PUCCH (PCell)) on a primary serving cell (PCell) from the received message.
  • PUCCH uplink control channel
  • a first transmission power control (TPC) index and a second TPC index for an uplink control channel (hereinafter called PUCCH (SCell)) on a secondary serving cell (SCell) are identified, and the first Confirming a first TPC command corresponding to a TPC index and a second TPC command corresponding to the second TPC index, controlling power of the PUCCH (PCell) based on the first TPC command, and performing the second TPC command Based on the processor to control the power of the PUCCH (SCell).
  • PUCCH uplink control channel
  • the CA may be effectively supported by performing power control on the PUCCH or the PUSCH configured in the secondary serving cell.
  • FIG. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
  • FIG. 3 is a flowchart in which uplink power control is performed according to an example of the present invention.
  • FIG. 4 illustrates an example of a correspondence relationship between a TPC index and a group TPC command.
  • FIG. 5 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to an example of the present invention.
  • FIG. 6 is a diagram illustrating a method for transmitting and monitoring a group TPC command according to another example of the present invention.
  • FIG. 7 is a view for explaining a method for transmitting and monitoring a group TPC command according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to another example of the present invention.
  • FIG. 9 illustrates an example of a correspondence relationship between a TPC index and a group TPC command, according to an exemplary embodiment.
  • FIG. 10 is a block diagram illustrating a terminal and a base station according to an embodiment.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • FIG. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a specific geographic area or frequency area and may be called a site.
  • the site may be divided into a plurality of regions 15a, 15b, and 15c, which may be called sectors, and the sectors may have different cell IDs.
  • the UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • MS mobile station
  • MS mobile terminal
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • wireless modem wireless modem
  • handheld device handheld device
  • the base station 11 generally refers to a station communicating with the terminal 12, and includes an evolved-nodeb (eNodeB), a base transceiver system (BTS), an access point, an femto base station, a femto eNodeB, and a household It may be called other terms such as a base station (Home eNodeB: HeNodeB), a relay, a remote radio head (RRH), and the like.
  • Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
  • downlink refers to a communication or communication path from the base station 11 to the terminal 12
  • uplink refers to a communication or communication path from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • Layers of a radio interface protocol between the terminal 12 and the base station 11 may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • the physical layer is connected to a higher layer, a media access control (MAC) layer, through a transport channel.
  • Data is transmitted through a transport channel between the MAC layer and the physical layer.
  • Transport channels are classified according to how data is transmitted over the air interface.
  • data is transmitted through a physical channel between different physical layers (that is, between a physical layer of a terminal and a base station).
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes space generated by time, frequency, and a plurality of antennas as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel (PDCCH) of a physical channel informs a terminal of resource allocation of a PCH (Paging CHannel) and DL-SCH (DownLink Shared CHannel) and HARQ (Hybrid Automatic Repeat Request) information related to the DL-SCH,
  • the terminal may carry an uplink scheduling grant informing of resource allocation of uplink transmission.
  • Physical Uplink Shared Channel (PDSCH) carries DL-SCH including downlink data.
  • the Physical Uplink Control CHannel (PUCCH) carries uplink control information such as HARQ ACK / NACK, scheduling request, and CQI for downlink transmission.
  • the PUSCH Physical Uplink Shared CHannel
  • UL-SCH Uplink Shared CHannel
  • the PUSCH may include channel state information (CSI) information such as HARQ ACK / NACK and CQI.
  • CSI channel state information
  • a serving cell may be defined as an element frequency band that may be aggregated by a CA based on a multiple component carrier system.
  • the serving cell includes a primary serving cell (PCell) and a secondary serving cell (SCell).
  • the primary serving cell is one that provides security input and non-access stratum (NAS) mobility information in a radio resource control (RRC) connection or re-establishment state. It means a serving cell.
  • RRC radio resource control
  • at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell.
  • the set of serving cells configured for one terminal may consist of only one main serving cell or one main serving cell and at least one secondary serving cell. Each serving cell may be operated in an activated or deactivated state.
  • Uplink transmission power control of the terminal is performed by a TPC command.
  • the TPC command is signaling transmitted by the base station to the terminal to perform power control of the PUCCH or the PUSCH.
  • the PUCCH (SCell) is introduced in the LTE system, if a PUCCH (SCell) is additionally configured to the UE where the CA is configured, some uplink control information (UCI) transmitted only through the existing PUCCH (PCell) It may be sent to PUCCH (SCell).
  • UCI information may be sent on a PUSCH (SCell) according to the existence of an uplink grant. Accordingly, in order to effectively support a PUCCH (SCell) based CA, power control regarding the PUCCH (SCell) or the PUSCH is required like the main serving cell.
  • a main serving cell (PCell) and a secondary serving cell (SCell) are configured as CAs in a terminal.
  • the PUCCH region and the PUSCH region are divided on the frequency axis of each serving cell.
  • a signal of the PUCCH region and a signal of the PUSCH region may be controlled by its transmit power by a group TPC command.
  • the group TPC command is a TPC command for a terminal group. That is, the group TPC command includes a TPC command for each of the plurality of terminals.
  • the group TPC command may include a TPC command of the primary serving cell and the secondary serving cell for the same terminal.
  • Signals of the PUCCH region whose power is controlled by the group TPC command include periodic CSI reporting, HARQ-ACK, SR, and the like.
  • PUCCH (PCell) is controlled by TPC command 1 and PUCCH (SCell) is controlled by TPC command 2.
  • TPC command 1 PUCCH
  • SCell PUCCH
  • TPC command 2 PUCCH
  • the TPC commands 1 and 2 may be included in one group TPC command or may be included in different group TPC commands.
  • the TPC command 1 and the TPC command 2 may be provided by one downlink control information (DCI) or may be provided by different DCIs.
  • DCI downlink control information
  • the DCI is transmitted to the UE through the PDCCH in the common search space.
  • the group TPC command will be briefly described as controlling a PUCCH (PCell) (hereinafter referred to as PUCCH (PCell)) and a PUCCH (SCell) (hereinafter referred to as PUCCH (SCell)), but the group TPC command includes a main serving cell and a PUCCH ( Of course, the PUSCH can be controlled as well as the SCell.
  • PCell PUCCH
  • SCell PUCCH
  • the PUSCH can be controlled as well as the SCell.
  • FIG. 3 is a flowchart in which uplink power control is performed according to an example of the present invention.
  • the base station transmits a message of a higher layer that provides a TPC index to the terminal (S300).
  • the TPC index determines an index to a TPC command for the terminal (TPC index determines an index to TPC command for a given UE).
  • the TPC index may have an N or M value, and N and M are distinguished based on the DCI format. For example, in case of DCI format 3, the TPC index has an N value, and in case of DCI format 3A, the TPC index has an M value.
  • the upper layer message may be an RRC message.
  • the RRC message is TPC-PDCCH-Config, which is used to specify indexes and RNTIs for power control of PUCCH and PUSCH. Power control of the PUCCH and PUSCH may be set or released using TPC-PDCCH-Config.
  • a plurality of TPC indexes for a terminal may be assigned to a primary serving cell and a secondary serving cell of one terminal, and may correspond to respective TPC commands for the primary serving cell and the secondary serving cell.
  • the TPC index for the UE may include a first TPC index for PUCCH (PCell) and a second TPC index for PUCCH (SCell).
  • the second TPC index may be referred to as an index added to the first TPC index.
  • the upper layer message eg, RRC message or TPC-PDCCH-Config
  • the upper layer message for setting both the first TPC index and the second TPC index may have a structure as shown in the following table.
  • the tpc-Index field indicates [TPC-Index, TPC-Index_r13].
  • the TPC-Index field indicates a first TPC index and has an indexOfFormat3 or indexOfFormat3A value according to the DCI format.
  • indexOfFormat3 is a natural number of any one of 1 to 15
  • indexOfFormat3A is a natural number of any one of 1 to 31.
  • the TPC-Index_r13 field indicates the second TPC index and has an indexOfFormat3 or indexOfFormat3A value according to the DCI format.
  • indexOfFormat3 is a natural number of any one of 1 to 15
  • indexOfFormat3A is a natural number of any one of 1 to 31.
  • the terminal receiving the higher layer message uses the TPC-Index field as the TPC index for the TPC command for the PUCCH (PCell), and uses the TPC-Index_r13 field as the TPC index for the TPC command for the PUCCH (SCell). do. That is, the TPC index for the primary serving cell and the TPC index for the secondary serving cell may be distinguished.
  • the first TPC index and the second TPC index may be set independently or separately by the base station, and may be set to be associated with or the same as each other.
  • the UE may perform power control for PUCCH (PCell) and PUCCH (SCell) transmission using two TPC indexes.
  • the TPC-Index_r13 field may be replaced with a name including a term regarding a secondary serving cell such as TPC-Index_SCell.
  • the PUCCH for the primary serving cell and the PUCCH for the secondary serving cell may belong to one UE.
  • the terminal completes the TPC settings for the primary serving cell and secondary serving cell.
  • the base station transmits a group TPC command to the terminal (S305).
  • the group TPC command is included in the DCI and transmitted.
  • the length and contents of the group TPC command may differ depending on which DCI format is used for transmitting the group TPC command. Same as “TPC command number 1, TPC command number 2, ..., TPC command number N" for DCI format 3, "TPC command number 1, TPC command number 2, ..., TPC command” for DCI format 3A number M ".
  • N and M are the parameters described in Table 1.
  • both DCI formats 3 and 3A may be used to transmit a group TPC command, and other formats of DCI may also be used.
  • the group TPC command of various embodiments may be used in step S305.
  • the group TPC command is a single group TPC command, in which a single group TPC command is included in one DCI.
  • the DCI including the single group TPC command is transmitted mapped to the PDCCH scrambled by the TPC-PUCCH RNTI.
  • the DCI including the single group TPC command is transmitted on the primary serving cell (see FIG. 5).
  • both DCI format 3 and DCI format 3A have a specific length, which is referred to as 11 bits in FIG. 4.
  • UE1, UE2, UE3 perform PUCCH power control by one group TPC command. Only UE1 of UE1 to UE3 is configured with PUCCH (SCell), so that an additional TPC command (2 bits) for power control of PUCCH (SCell) is allocated to UE1. PUCCH (SCell) is not configured in the remaining UE2 and UE3. Every two bits in DCI format 3 are one TPC command, with each TPC command sequentially corresponding to a specific TPC index.
  • the first and second bits correspond to TPC index 1
  • the third and fourth bits correspond to TPC index 2
  • the fifth and sixth bits corresponds to TPC index 3
  • the 7,8th bit corresponds to TPC index 4.
  • TPC index 1 relates to PUCCH (PCell) of UE1
  • TPC index 4 relates to PUCCH (SCell) of UE1. This is because only UE1 is configured with a PUCCH (SCell), so that an additional TPC command (2 bits) for power control of the PUCCH (SCell) is allocated to UE1.
  • UE1 to UE6 perform PUCCH / PUSCH power control by one group TPC command.
  • PUCCH (SCell) is configured in UE1 and UE6 among UE1 to UE6, and an additional TPC command (1 bit) for power control of PUCCH (SCell) is allocated to UE1 and UE6, respectively.
  • Every 1 bit in DCI format 3A is a TPC command, with each TPC command sequentially corresponding to a specific TPC index.
  • TPC index 1 relates to PUCCH (PCell) of UE1
  • TPC index 3 relates to PUCCH (SCell) of UE1.
  • TPC index 7 relates to PUCCH (PCell) of UE6, and TPC index 8 relates to PUCCH (SCell) of UE6.
  • the group TPC command is a multi-group TPC command, which is a first group TPC command (power control for PUCCH (PCell)) and a second group TPC command (power for PUCCH (SCell)). Controls) are included in different DCIs. Both the first DCI including the first group TPC command and the second DCI including the second group TPC command are transmitted on the primary serving cell (see FIGS. 6 and 7).
  • the group TPC command is a multi-group TPC command, wherein the first group TPC command (power control for PUCCH (PCell)) and the second group TPC command (power control for PUCCH (SCell)) are different from each other. Included in The first DCI including the first group TPC command is transmitted on the primary serving cell, and the second DCI including the second group TPC command is transmitted on the secondary serving cell (see FIG. 8).
  • the terminal receives the DCI including the group TPC command, and performs power control of the PUCCH and the PUSCH in the primary serving cell and the secondary serving cell based on the group TPC command (S310).
  • the power control according to the group TPC command according to the present invention may be performed based on an accumulative power control mode. For example, when the terminal receives a group TPC command for the secondary serving cell configured with the PUCCH, the terminal accumulates the power control value of the PUCCH according to the group TPC command to the previous value.
  • the terminal may perform the accumulation operation based on the following equation.
  • Table 2 shows the group TPC command in case of DCI format 1A / 1B / 1D / 1 / 2A / 2B / 2C / 2D / 2/3.
  • Table 3 shows the mapping relationship with values
  • Table 3 shows the group TPC command in case of DCI format 3A. Represents a mapping relationship with a value.
  • Equation 1 g (i) represents a current PUCCH power control adjustment state.
  • M 1, and in TDD, M is the number of downlink subframes associated with one PUCCH transmission, and its value may vary depending on downlink HARQ timing.
  • k m is a value corresponding to downlink HARQ timing and indicates each of the associated downlink subframes. If m is the current subframe, it means nk m downlink subframe. The k m value is indicated, for example, in Table 4 below.
  • the terminal transmits the PUCCH and / or PUSCH to the base station on the primary serving cell and / or secondary serving cell based on the power controlled by step S310 (S315).
  • FIG. 5 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to an example of the present invention.
  • a first TPC command for a PUCCH (PCell) and a second TPC command for a PUCCH (SCell) are included in a single group TPC command and mapped to one DCI. That is, this embodiment shares one DCI for power control of two PUCCHs (PCells) and PUCCHs (SCells).
  • the DCI including such a single group TPC command may be as shown in FIG. 4, for example.
  • DCI including a single group TPC command is mapped and transmitted to a PDCCH scrambled by TPC-PUCCH # 0 (RNTI).
  • PDCCH PDCCH with TPC-PUCCH RNTI
  • CSS common search space
  • the scrambled PDCCH is mapped to CSS of the main serving cell and transmitted to the terminal.
  • the UE monitors the CSS of the main serving cell in order to receive a TPC command to the PUCCH (SCell).
  • the present embodiment is different from the terminal configured with two dual connectivity (DCS) monitoring two CSS on PCell and PSCell (CSS).
  • Examples of PDCCHs mapped to common search spaces include PDCCH scrambled with Random Access-Radio Network Temporary Identifier (RA-RNTI) and PDCCH scrambled with C-RNTI (common-RNTI).
  • C-RNTI PDCCH scrambled with Temporary C-RNTI
  • PDCCH scrambled with TPC-PUSCH-RNTI PDCCH scrambled with eIMTA-RNTI (PDCCH with eIMTA-RNTI)
  • PDCCH scrambled with SPS-RNTI PDCCH with P-RNTI scrambled with P-RNTI
  • PDCCH scrambled with SI-RNTI RNTI PDCCH scrambled with SI-RNTI RNTI
  • FIG. 6 is a diagram illustrating a method for transmitting and monitoring a group TPC command according to another example of the present invention.
  • a first group TPC command for PUCCH (PCell) and a second group TPC command for PUCCH (SCell) are included in different DCIs.
  • the first DCI including the first group TPC command and the second DCI including the second group TPC command are both transmitted on the primary serving cell.
  • the first DCI is mapped to PDCCH1 scrambled with TPC-PUCCH # 0 RNTI
  • the second DCI is mapped to PDCCH2 scrambled with TPC-PUCCH # 0 RNTI and transmitted. That is, one TPC-PUCCH RNTI value is commonly applied to two PDCCHs having different TPC commands (or DCIs).
  • both PDCCH1 and PDCCH2 are mapped to CSS on the main serving cell. Since PDCCH1 and PDCCH2 are mapped to the same CSS and the same TPC-PUCCH RNTI value is applied, information for distinguishing PDCCH1 and PDCCH2 is necessary.
  • a carrier indicator field may be used to distinguish between PDCCH1 and PDCCH2.
  • the CIF may be included in the second DCI related to the PUCCH (SCell).
  • CIF may be used to distinguish between the first DCI and the second DCI.
  • the CIF may be used to distinguish the first group TPC command from the second group TPC command.
  • the base station can configure cross-carrier scheduling through RRC signaling to terminals configured with PUCCH (SCell) in the common search space similarly to cross carrier scheduling that can be configured in the UE-specific search space.
  • the CIF value activated in the DCI serves as an indicator indicating only the DCI information for the PUCCH (SCell), not the serving cell to which the PDSCH or the PUSCH is transmitted as in the UE-specific search space. Therefore, only 1 bit can be used as the CIF value.
  • the bit value for the CIF value may increase accordingly. For example, when the CIF value of 1 bit is 0, the UE recognizes that the corresponding DCI provides a group TPC command for PUCCH (SCell). On the other hand, if a 1-bit CIF value is 1, it is reserved.
  • cross-carrier scheduling in the common search space is set through RRC signaling, and is indicated (or activated) by a 3-bit CIF field or a 1-bit CIF field based on the setting of the RRC signaling. All unused fields in the CIF field are reserved. And the UE must monitor the CSS of the main serving cell in order to receive the group TPC command for the PUCCH (SCell).
  • the following is an RRC signaling information element for cross carrier scheduling.
  • the schedulingCellId value should be the serving cell index of the primary serving cell (that is, 0). And cif-presence is activated and only 3 bits or 1 bit is activated in DCI (format 3 / 3A).
  • CrossCarrierSchedulingConfig-r10 SEQUENCE ⁇ schedulingCellInfo-r10 CHOICE ⁇ own-r10 SEQUENCE ⁇ -No cross carrier scheduling cif-Presence-r10 BOOLEAN ⁇ , other-r10 SEQUENCE ⁇ -Cross carrier scheduling schedulingCellId-r10 ServCellIndex-r10, pdsch-Start-r10 INTEGER (1..4) ⁇ ⁇ ⁇ -ASN1STOP
  • the base station From the operation point of view of the base station and the terminal, the base station first generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell). At this time, the base station includes a CIF indicating the primary serving cell in the second DCI.
  • the base station scrambles PDCCH1 including the first DCI to TPC-PUCCH RNTI and scrambles PDCCH2 including the second DCI to TPC-PUCCH RNTI.
  • the base station maps both the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell and transmits them to the terminal. And the UE monitors the CSS of the main serving cell in order to receive a TPC command to the PUCCH (SCell).
  • cross-carrier scheduling is possible not only for PDCCHs mapped on UE-specific search space (USS) but also for PDCCHs mapped on CSS.
  • CIF UE-specific search space
  • FIG. 7 is a view for explaining a method for transmitting and monitoring a group TPC command according to another embodiment of the present invention. This is different in that the new RNTI is used for the PDCCH2 transmitted on the CSS of the main serving cell when compared with FIG. 6.
  • a first group TPC command for PUCCH (PCell) and a second group TPC command for PUCCH (SCell) are included in different DCIs.
  • the first DCI including the first group TPC command and the second DCI including the second group TPC command are both transmitted on the primary serving cell.
  • the first DCI is mapped to PDCCH1 scrambled with TPC-PUCCH # 0 RNTI
  • the second DCI is mapped to PDCCH2 scrambled with TPC-PUCCH-SCell RNTI and transmitted. That is, different RNTI values are applied to two PDCCHs having different TPC commands (or DCIs).
  • the TPC_PUCCH-SCell RNTI newly defined in the present embodiment for power control of the PUCCH (SCell) may be replaced with another term that performs the same function.
  • both PDCCH1 and PDCCH2 are mapped to CSS on the main serving cell.
  • PDCCH1 and PDCCH2 are mapped to the same CSS, different RNTI values are applied to scramble of the PDCCH, so that no separate information for distinguishing PDCCH1 and PDCCH2 is necessary. That is, since different RNTI values and different TPC index values are set and transmitted on the PDCCH, there is no need to set a separate CIF value.
  • the base station first generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell).
  • the base station scrambles PDCCH1 including the first DCI to TPC-PUCCH RNTI and scrambles PDCCH2 including the second DCI to TPC-PUCCH-SCell RNTI.
  • the base station maps both the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell and transmits them to the terminal.
  • the UE monitors the CSS of the primary serving cell using the TPC-PUCCH-SCell RNTI to receive a TPC command to the PUCCH (SCell).
  • FIG. 8 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to another example of the present invention.
  • a first group TPC command for PUCCH (PCell) and a second group TPC command for PUCCH (SCell) are included in different DCIs.
  • the first DCI including the first group TPC command is transmitted on the primary serving cell, and the second DCI including the second group TPC command is transmitted on the secondary serving cell.
  • the first DCI is mapped to PDCCH1 scrambled with TPC-PUCCH RNTI, and PDCCH1 is mapped to CSS on the main serving cell.
  • the second DCI is mapped to PDCCH2 scrambled with TPC-PUCCH RNTI, and PDCCH2 is mapped to CSS on the secondary serving cell.
  • the PDCCH2 In order for the UE to receive the PDCCH2, it must first be known that the PDCCH2 is mapped to the CSS on the secondary serving cell.
  • the mapping of the PDCCH2 to the CSS on the secondary serving cell may be implied by the base station and the terminal, or may be explicitly informed by the base station to the terminal.
  • the UE may transmit capability information indicating that the UE can support a multimedia broadcast multicast service (MBMS) to the base station.
  • the base station receiving the capability information may map PDCCH2 to CSS on the secondary serving cell. have. That is, the performance information may be information that implicitly informs the base station to transmit PDCCH2 by mapping it to CSS on the secondary serving cell.
  • the terminal transmitting the capability information may implicitly know that it is necessary to monitor the CSS on the secondary serving cell in order to receive a group TPC command related to the PUCCH (SCell).
  • a physical channel related to MBMS a PMCH (Phsycal MBMS Channel) is transmitted on a carrier (or secondary serving cell) other than the primary serving cell, and PDCCH with M-RNTI (PDCCH) necessary for decoding the PMCH is not a primary serving cell.
  • PMCH is mapped to the CSS of the carrier (or secondary serving cell) to be transmitted. Therefore, in order to receive the MBMS, the MBMS capable terminal must monitor the CSS on the secondary serving cell in which the PMCH is transmitted, not the main serving cell.
  • the secondary serving cell includes an uplink component carrier (UL CC) for transmitting a PUCCH (SCell) and a downlink component carrier (DL CC) connected to the UL CC and SIB-2. Accordingly, the UE monitors the PDCCH scrambled with the TPC-PUCCH RNTI in the CSS on the DL CC.
  • UL CC uplink component carrier
  • DL CC downlink component carrier
  • PUCCH (SCell) is configured in the terminal To be.
  • the terminal can monitor the CSS on the secondary serving cell to receive a group TPC command (or DCI).
  • the UE sends a group TPC command for power control of the PUCCH (SCell). Monitor the CSS on the DL CC (SCell) associated with the UL CC (SCell) and the SIB-2 link to which the PUCCH (SCell) is transmitted to receive the.
  • Performance information indicating that the MBMS can be supported may be defined as shown in Table 6 below. It may be included in parameter information related to MBMS (MBMS-Parameters-r11).
  • MBMS-Parameters-r11 SEQUENCE ⁇ mbms-SCell-r11 ENUMERATED ⁇ supported ⁇ OPTIONAL, mbms-NonServingCell-r11 ENUMERATED ⁇ supported ⁇ OPTIONAL ⁇
  • parameter information related to MBMS may be information included in UE-EUTRA-Capability IE.
  • mbms-SCell-r11 is performance information indicating that MBMS can be supported in a secondary serving cell, and may be optionally included in parameter information related to MBMS, and when mbms-SCell-r11 indicates ⁇ supported ⁇ .
  • the terminal indicates that the secondary serving cell can support reception of the MBMS.
  • the terminal If the performance information indicating that the MBMS can be supported is displayed as "supported", the terminal expects to monitor the CSS on the secondary serving cell in order to receive a group TPC command on the PUCCH (SCell) later. This is because the terminal can already monitor the CSS on the secondary serving cell or non-serving cell (non-ServingCell).
  • the UE implicitly applies CSS on the secondary serving cell to receive PDCCH2. Can be monitored.
  • the base station also implicitly maps PDCCH2 to CSS on the secondary serving cell and transmits it to the terminal.
  • FIG. 9 illustrates an example of a correspondence relationship between a TPC index and a group TPC command, according to an exemplary embodiment.
  • the base station may set a TPC index value set by higher layer signaling to a value common to each terminal.
  • the TPC index value may be shared without setting the TPC index value differently for each UE.
  • This method is valid only for new terminals configured with a PUCCH (SCell) and is indicated in the same DCI format as a legacy terminal (FIG. 5) or when a PUCCH (SCell) is designated through another DCI (FIG. 5). 6, 7 or 8) can be applied.
  • the specific method is as follows.
  • the legacy terminal UE 2/4/5 is configured as in the prior art, and the new terminals UE 1/7/8 and UE6 / 10/11/12 are each set to the same value of the TPC index.
  • the base station may provide a power value by distinguishing the time between the terminals (e.g. UE1 / 7/8 or UE6 / 10/11/12).
  • the equation for classifying time is as follows.
  • K value is the number of terminals sharing one TPC index.
  • Different TPC index values can be provided to the.
  • Each terminal can share a bit value in the same TPC field through a subframe corresponding to each i value. According to this, the group TPC command value can be provided by utilizing the TPC index value more efficiently.
  • FIG. 10 is a block diagram illustrating a terminal and a base station according to an embodiment.
  • the terminal 1000 includes a processor 1010, an RF unit 1020, and a memory 1025.
  • the memory 1025 is connected to the processor 1010 and stores various information for driving the processor 1010.
  • the RF unit 1020 is connected to the processor 1010 and transmits and / or receives a radio signal.
  • the RF unit 1020 receives a message of a higher layer that gives a TPC index from the base station 1050.
  • the definition and function of the TPC index is as described in step S300.
  • the upper layer message may be an RRC message.
  • the RRC message is TPC-PDCCH-Config, as shown in Table 1, and is used to specify indexes and RNTIs for power control of PUCCH and PUSCH. Power control of the PUCCH and PUSCH may be set or released using TPC-PDCCH-Config.
  • the first TPC index and the second TPC index may be set independently or individually by the processor 1060 of the base station 1050, or may be set to be associated with or the same as each other.
  • the processor 1010 implements the functions, processes, and / or methods of the terminal proposed in FIGS. 2 to 8 of the present specification.
  • the processor 1010 completes the TPC setting for the primary serving cell and the secondary serving cell.
  • the processor 1010 uses the TPC-Index field as the TPC index for the TPC command for the PUCCH (PCell), and uses the TPC-Index_r13 field as the TPC index for the TPC command for the PUCCH (SCell). That is, the processor 1010 may distinguish the TPC index of the primary serving cell from the TPC index of the secondary serving cell.
  • the processor 1010 may perform power control for PUCCH (PCell) and PUCCH (SCell) transmission using two TPC indexes.
  • the RF unit 1020 receives a group TPC command from the base station 1050.
  • the group TPC command is included in the DCI and received. Definitions, functions, and structures regarding the group TPC command are as described in step S305.
  • the group TPC command of various embodiments may be used in step S305. 5 to 8 may be used as a method of transmitting a group TPC command.
  • the processor 1010 monitors the CSS of the primary serving cell to receive a TPC command to the PUCCH (SCell).
  • the processor 1010 monitors the CSS of the primary serving cell using the TPC-PUCCH-SCell RNTI to receive a TPC command to the PUCCH (SCell).
  • the processor 1010 may generate performance information indicating that the MBMS can be supported and transmit the performance information to the RF unit 1020, and the RF unit 1020 may transmit a message as shown in Table 2 to the base station 1050. .
  • the processor 1010 monitors the CSS of the secondary serving cell to receive the MBMS, but monitors the PDCCH2 regarding the group TPC command on the PUCCH (SCell) together in the CSS on the secondary serving cell.
  • the processor 1010 implicitly selects the PDCCH2 when the terminal 1000 supports the PUCCH (SCell) (or when the PUCCH (SCell) is configured), regardless of whether the terminal 1000 supports MBMS. You can monitor the CSS on the secondary serving cell to receive it.
  • the processor 1010 Upon receiving the group TPC command by monitoring, the processor 1010 performs power control of the PUCCH and the PUSCH in the primary and secondary serving cells based on the group TPC command. In detail, the processor 1010 may perform power control on the PUCCH of the secondary serving cell based on an cumulative power control mode. For example, when a group TPC command for the secondary serving cell configured with the PUCCH is received, the processor 1010 accumulates the power control value of the PUCCH according to the group TPC command to the previous value.
  • the RF unit 1065 transmits the PUCCH (PCell) and / or the PUCCH (SCell) from the terminal 1000 to the base station 1050 according to the power controlled by the group TPC command.
  • the base station 1050 includes a memory 1055, a processor 1060, and a radio frequency (RF) unit 1065.
  • the memory 1055 is connected to the processor 1060 and stores various information for driving the processor 1060.
  • the RF unit 1065 is connected to the processor 1060 and transmits and / or receives a radio signal.
  • the RF unit 1065 transmits a message of a higher layer that provides a TPC index to the terminal 1000.
  • the RF unit 1065 transmits a group TPC command to the terminal 1000 on the main serving cell and / or the secondary serving cell.
  • the RF unit 1065 may map a DCI including a single group TPC command to the PDCCH scrambled by the TPC-PUCCH RNTI and transmit it on the primary serving cell.
  • the RF unit 1065 receives performance information related to MBMS shown in Table 2 from the terminal 1000.
  • the RF unit 1065 receives a PUCCH (PCell) and / or a PUCCH (SCell) from the terminal 1000.
  • the processor 1060 implements the functions, processes, and / or methods related to the base stations of FIGS. 2-8 herein.
  • the processor 1060 generates one DCI for power control of two PUCCHs (PCells) and a PUCCH (SCell), scrambles the PDCCH including the generated DCIs with a TPC-PUCCH RNTI, and scrambles
  • the PDCCH is mapped to the CSS of the main serving cell.
  • the processor 1060 generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell). At this time, the processor 1060 includes a CIF indicating the primary serving cell in the second DCI.
  • the processor 1060 scrambles PDCCH1 including the first DCI with the TPC-PUCCH RNTI, and scrambles PDCCH2 including the second DCI with the TPC-PUCCH RNTI.
  • the processor 1060 maps the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell.
  • the processor 1060 generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell).
  • the processor 1060 scrambles PDCCH1 including the first DCI with the TPC-PUCCH RNTI, and scrambles PDCCH2 including the second DCI with the TPC-PUCCH-SCell RNTI.
  • the processor 1060 maps the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell.
  • the processor 1060 maps the PDCCH1 scrambled with the TPC-PUCCH RNTI to the CSS on the main serving cell, and the PDCCH2 scrambled with the TPC-PUCCH RNTI to the CSS on the secondary serving cell. This is a case where the RF unit 1060 receives performance information indicating that the MBMS can be supported from the terminal 1000.
  • the above-described processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit and / or a data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

The present invention relates to an apparatus and a method for performing an uplink power control in a wireless communication system. The present specification discloses a power control method comprising the steps of: receiving an upper layer message including a first TPC index with respect to a PUCCH (PCell) and a second TPC index with respect to a PUCCH (SCell), from a base station; receiving a first TPC order corresponding to the first TPC index and a second TPC order corresponding to the second TPC index, from the base station; controlling a power of the PUCCH (PCell) on the basis of the first TPC order; and controlling a power of the PUCCH (SCell) on the basis of the second TPC order.

Description

반송파 집성을 지원하는 무선통신 시스템에서 상향링크 전력제어를 수행하는 장치 및 방법Apparatus and method for performing uplink power control in a wireless communication system supporting carrier aggregation
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 반송파 집성을 지원하는 무선통신 시스템에서 상향링크 전력제어를 수행하는 장치 및 방법에 관한 것이다. The present invention relates to wireless communication, and more particularly, to an apparatus and method for performing uplink power control in a wireless communication system supporting carrier aggregation.
반송파 집성(CA: Carrier Aggregation)은 복수의 반송파를 지원하는 것으로서 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(CC: Component Carrier)라고 한다. 각 요소 반송파는 대역폭과 중심 주파수로 정의된다. CA를 사용하면, 주파수 영역에서 물리적으로 연속(continuous) 또는 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 낼 수 있다. Carrier Aggregation (CA) supports a plurality of carriers and is also called spectrum aggregation or bandwidth aggregation. Individual unit carriers bound by carrier aggregation are called component carriers (CC). Each component carrier is defined by a bandwidth and a center frequency. Using CA, it is possible to combine a plurality of bands that are physically continuous or non-continuous in the frequency domain, such as to use a logically large band.
CA 기술은 기본적으로 통신의 앵커(anchor)역할을 하는 주서빙셀(primary serving cell: PCell)과 그에 부수적인 부서빙셀(secondary serving cell: SCell)을 필요로 한다. 기존의 LTE(long term evolution)는 PUCCH(physical uplink control channel)과 같은 상향링크 제어채널이 주서빙셀에서만 전송되는 것으로 구현되었다. 그러나 최근 LTE 시스템에서 CA를 강화하기 위한 기술적 특징의 추가가 고려되고 있으며, 그 예로서 PUCCH가 부서빙셀에서도 전송되는 방식을 들 수 있다. PUCCH가 주서빙셀 이외에 부서빙셀에서도 추가적으로 설정되면, 주서빙셀로 집중되는 UCI(uplink control information)로 인한 오버헤드(overhead)를 줄이고, 효율적인 상향링크 전송을 제공하는 스몰셀(small cell)이 배치(deploy)되는데 도움을 줄 수 있다. 결과적으로 신뢰성있는 상향링크 제어신호 전송의 구현이 가능해진다. CA technology basically requires a primary serving cell (PCell), which serves as an anchor for communication, and a secondary serving cell (SCell). Conventional long term evolution (LTE) has been implemented such that an uplink control channel such as a physical uplink control channel (PUCCH) is transmitted only in a primary serving cell. However, in recent years, the addition of technical features for strengthening CA in the LTE system has been considered. For example, a method in which the PUCCH is transmitted in the secondary serving cell may be mentioned. If the PUCCH is additionally configured in the secondary serving cell in addition to the primary serving cell, a small cell that reduces overhead due to uplink control information (UCI) concentrated in the primary serving cell and provides efficient uplink transmission is provided. It can help you with deployment. As a result, it is possible to implement reliable uplink control signal transmission.
한편, 단말의 상향링크 전송전력제어는 단말과 기지국간의 거리에 따른 간섭이나 감쇄를 해결하기 위한 기술로서, 전송 전력 제어(Transmission Power Control, TPC) 명령(command)이라고도 불린다. 그리고 TPC 명령은 기지국에서 PUCCH 또는 PUSCH(physical uplink shared channel)의 전력 제어를 수행하기 위해 단말에게 전달되는 시그널링이다. TPC 명령으로 인해 기지국은 균일한 크기의 전력 세기로 상향링크 신호를 수신할 수 있다. Meanwhile, the uplink transmission power control of the terminal is a technique for solving interference or attenuation according to the distance between the terminal and the base station, and is also called a transmission power control (TPC) command. The TPC command is signaling transmitted from the base station to the terminal to perform power control of a PUCCH or a physical uplink shared channel (PUSCH). The TPC command allows the base station to receive an uplink signal with a uniform power strength.
현재 CA 지원 단말과 CA 미지원 단말에는 모두 주서빙셀의 공통 제어 영역을 통해 PUCCH 또는 PUSCH에 대한 TPC 명령이 적용되고 있으나, LTE 시스템에서 새롭게 추가되는 특징인 PUCCH(SCell) 또는 PUSCH에 대하여 아직까지 TPC 명령의 적용 여부나 적용 방식에 대하여 논의되고 있지 않다. TPC commands for PUCCH or PUSCH are currently applied to both CA-supported terminals and CA-unsupported terminals through a common control region of the main serving cell, but TPC has not yet been applied for PUCCH (SCell) or PUSCH, which is a newly added feature in LTE systems. It is not discussed whether or not the order should be applied.
본 발명의 기술적 과제는 반송파 집성을 지원하는 무선통신 시스템에서 상향링크 전력제어를 수행하는 장치 및 방법을 제공함에 있다. An object of the present invention is to provide an apparatus and method for performing uplink power control in a wireless communication system supporting carrier aggregation.
본 발명의 다른 기술적 과제는 LTE 시스템의 CA를 효과적으로 지원하기 위한 상향링크 전력제어를 위한 전력제어 장치 및 방법을 제공함에 있다. Another technical problem of the present invention is to provide a power control apparatus and method for uplink power control to effectively support the CA of the LTE system.
본 발명의 또 따른 기술적 과제는 CA를 지원하는 무선통신 시스템에서 주서빙셀과 마찬가지로 부서빙셀에 구성된 PUCCH 또는 PUSCH에 관한 전력제어 장치 및 방법을 제공함에 있다. Another technical problem of the present invention is to provide a power control apparatus and method for a PUCCH or a PUSCH configured in a secondary serving cell like a main serving cell in a wireless communication system supporting CA.
본 발명의 일 양태에 따르면, 복수의 서빙셀(serving cell)에 기반한 반송파 집성을 지원하는 단말에 의한 전력 제어방법을 제공한다. 상기 방법은 주서빙셀(primary serving cell: PCell)상에서의 상향링크 제어채널(이하 PUCCH(PCell))에 관한 제1 전송전력 제어(transmission power control: TPC) 인덱스와, 부서빙셀(secondary serving cell: SCell)상에서의 상향링크 제어채널(이하 PUCCH(SCell))에 관한 제2 TPC 인덱스를 포함하는 상위계층 메시지를 기지국으로부터 수신하는 단계, 상기 제1 TPC 인덱스에 대응하는 제1 TPC 명령과 상기 제2 TPC 인덱스에 대응하는 제2 TPC 명령을 상기 기지국으로부터 수신하는 단계, 및 상기 제1 TPC 명령에 기반하여 상기 PUCCH(PCell)의 전력을 제어하고, 상기 제2 TPC 명령에 기반하여 상기 PUCCH(SCell)의 전력을 제어하는 단계를 포함한다. According to an aspect of the present invention, there is provided a power control method by a terminal supporting carrier aggregation based on a plurality of serving cells. The method includes a first transmission power control (TPC) index for an uplink control channel (hereinafter referred to as PUCCH (PCell)) on a primary serving cell (PCell) and a secondary serving cell. : Receiving from the base station an upper layer message including a second TPC index on an uplink control channel (hereinafter called PUCCH (SCell)) on a SCell, a first TPC command corresponding to the first TPC index and the first TPC index; Receiving a second TPC command corresponding to a 2 TPC index from the base station, and controlling the power of the PUCCH (PCell) based on the first TPC command, and based on the second TPC command, the SCC (SCell) Controlling the power of n).
본 발명의 다른 양태에 따르면, 복수의 서빙셀(serving cell)에 기반한 반송파 집성을 지원하는 전력 제어 장치를 제공한다. 상기 장치는 기지국으로부터 상위 계층 메시지 및 TPC 명령 메시지를 수신하는 RF부와, 상기 수신된 메시지로부터 주서빙셀(primary serving cell: PCell)상에서의 상향링크 제어채널(이하 PUCCH(PCell))에 관한 제1 전송전력 제어(transmission power control: TPC) 인덱스와, 부서빙셀(secondary serving cell: SCell)상에서의 상향링크 제어채널(이하 PUCCH(SCell))에 관한 제2 TPC 인덱스를 확인하고, 상기 제1 TPC 인덱스에 대응하는 제1 TPC 명령과 상기 제2 TPC 인덱스에 대응하는 제2 TPC 명령을 확인하여, 상기 제1 TPC 명령에 기반하여 상기 PUCCH(PCell)의 전력을 제어하고, 상기 제2 TPC 명령에 기반하여 상기 PUCCH(SCell)의 전력을 제어하는 프로세서를 포함한다. According to another aspect of the present invention, a power control apparatus supporting carrier aggregation based on a plurality of serving cells is provided. The apparatus includes an RF unit for receiving an upper layer message and a TPC command message from a base station, and an uplink control channel (hereinafter referred to as PUCCH (PCell)) on a primary serving cell (PCell) from the received message. A first transmission power control (TPC) index and a second TPC index for an uplink control channel (hereinafter called PUCCH (SCell)) on a secondary serving cell (SCell) are identified, and the first Confirming a first TPC command corresponding to a TPC index and a second TPC command corresponding to the second TPC index, controlling power of the PUCCH (PCell) based on the first TPC command, and performing the second TPC command Based on the processor to control the power of the PUCCH (SCell).
부서빙셀에 구성되는 PUCCH 또는 PUSCH에 대한 전력제어를 수행하여 CA를 효과적으로 지원할 수 있다. The CA may be effectively supported by performing power control on the PUCCH or the PUSCH configured in the secondary serving cell.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
도 2는 본 발명에 따른 서빙셀의 채널구조에서 TPC 명령이 적용되는 모습의 일례이다. 2 is an example of a TPC command applied to the channel structure of the serving cell according to the present invention.
도 3은 본 발명의 일례에 따른 상향링크 전력 제어가 수행되는 흐름도이다.3 is a flowchart in which uplink power control is performed according to an example of the present invention.
도 4는 TPC 인덱스와 그룹 TPC 명령의 대응관계에 관한 예시이다. 4 illustrates an example of a correspondence relationship between a TPC index and a group TPC command.
도 5는 본 발명의 일례에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 5 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to an example of the present invention.
도 6은 본 발명의 다른 예에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 6 is a diagram illustrating a method for transmitting and monitoring a group TPC command according to another example of the present invention.
도 7은 본 발명의 또 다른 예에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 7 is a view for explaining a method for transmitting and monitoring a group TPC command according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 예에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 8 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to another example of the present invention.
도 9는 일 실시예에 따른 TPC 인덱스와 그룹 TPC 명령의 대응관계에 관한 예시이다.9 illustrates an example of a correspondence relationship between a TPC index and a group TPC command, according to an exemplary embodiment.
도 10은 일 실시예에 따른 단말과 기지국을 도시한 블록도이다.10 is a block diagram illustrating a terminal and a base station according to an embodiment.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다.In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역 또는 주파수 영역에 대해 통신 서비스를 제공하며, 사이트(site)라고 불릴 수 있다. 사이트(site)는 섹터라 부를 수 있는 다수의 영역들(15a, 15b, 15c)로 나누어질 수 있으며, 상기 섹터는 각기 서로 다른 셀 아이디를 가질 수가 있다. Referring to FIG. 1, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a specific geographic area or frequency area and may be called a site. The site may be divided into a plurality of regions 15a, 15b, and 15c, which may be called sectors, and the sectors may have different cell IDs.
단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 지점(station)을 말하며, eNodeB (evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(Femto eNodeB), 가내 기지국(Home eNodeB: HeNodeB), 릴레이(relay), 원격 무선 헤드(Remote Radio Head: RRH)등 다른 용어로 불릴 수 있다. 셀(15a, 15b, 15c)은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 generally refers to a station communicating with the terminal 12, and includes an evolved-nodeb (eNodeB), a base transceiver system (BTS), an access point, an femto base station, a femto eNodeB, and a household It may be called other terms such as a base station (Home eNodeB: HeNodeB), a relay, a remote radio head (RRH), and the like. Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템(10)에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. Hereinafter, downlink refers to a communication or communication path from the base station 11 to the terminal 12, and uplink refers to a communication or communication path from the terminal 12 to the base station 11. . In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system 10. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used.
단말(12)과 기지국(11) 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공한다.Layers of a radio interface protocol between the terminal 12 and the base station 11 may be divided into a first layer L1, a second layer L2, and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
물리계층은 상위 계층인 매체접근제어(MAC: Media Access Control) 계층과 전송채널(transport channel)을 통해 연결된다. 데이터는 MAC 계층과 물리계층 사이에서 전송채널을 통해 전달된다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 전송되는가에 따라 분류된다. 또한, 데이터는 서로 다른 물리계층 사이(즉, 단말과 기지국의 물리계층 사이)에서 물리채널을 통해 전달된다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수 및 복수의 안테나로 생성된 공간을 무선자원으로 활용한다.The physical layer is connected to a higher layer, a media access control (MAC) layer, through a transport channel. Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface. In addition, data is transmitted through a physical channel between different physical layers (that is, between a physical layer of a terminal and a base station). The physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes space generated by time, frequency, and a plurality of antennas as radio resources.
일 예로, 물리채널 중 PDCCH(Physical Downlink Control CHannel)는 단말에게 PCH(Paging CHannel)와 DL-SCH(DownLink Shared CHannel)의 자원 할당 및 DL-SCH와 관련된 HARQ(Hybrid Automatic Repeat Request) 정보를 알려주며, 단말로 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. PDSCH(Physical Uplink Shared Channel)는 하향링크 데이터를 포함하는 DL-SCH를 나른다. 또한, PUCCH(Physical Uplink Control CHannel)는 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. 또한, PUSCH(Physical Uplink Shared CHannel)는 상향링크 데이터를 포함하는 UL-SCH(UpLink Shared CHannel)을 나른다. 기지국의 설정 및 요청에 따라 필요 시 PUSCH는 HARQ ACK/NACK 및 CQI와 같은 CSI(Channel State Information) 정보를 포함할 수 있다.For example, a physical downlink control channel (PDCCH) of a physical channel informs a terminal of resource allocation of a PCH (Paging CHannel) and DL-SCH (DownLink Shared CHannel) and HARQ (Hybrid Automatic Repeat Request) information related to the DL-SCH, The terminal may carry an uplink scheduling grant informing of resource allocation of uplink transmission. Physical Uplink Shared Channel (PDSCH) carries DL-SCH including downlink data. In addition, the Physical Uplink Control CHannel (PUCCH) carries uplink control information such as HARQ ACK / NACK, scheduling request, and CQI for downlink transmission. In addition, the PUSCH (Physical Uplink Shared CHannel) carries a UL-SCH (Uplink Shared CHannel) including uplink data. If necessary according to the configuration and request of the base station, the PUSCH may include channel state information (CSI) information such as HARQ ACK / NACK and CQI.
이하에서, 다중 반송파(multiple carrier) 시스템이라 함은 반송파 집성(CA)을 지원하는 시스템을 포함한다. 서빙셀(serving cell)은 다중 요소 반송파 시스템(multiple component carrier system)에 기반하여 CA에 의해 집성될 수 있는 요소 주파수 대역으로서 정의될 수 있다. 서빙셀에는 주서빙셀(PCell: primary serving cell)과 부서빙셀(SCell: secondary serving cell)이 있다. 주서빙셀은 RRC(Radio Resource Control) 연결(establishment) 또는 재연결(re-establishment) 상태에서, 보안입력(security input)과 NAS(Non-Access Stratum) 이동 정보(mobility information)을 제공하는 하나의 서빙셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 주서빙셀과 함께 서빙셀의 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 부서빙셀이라 한다. 하나의 단말에 대해 설정된 서빙셀의 집합은 하나의 주서빙셀만으로 구성되거나, 또는 하나의 주서빙셀과 적어도 하나의 부서빙셀로 구성될 수 있다. 각 서빙셀은 활성화 또는 비활성화 상태로 운용될 수 있다.Hereinafter, a multiple carrier system includes a system supporting carrier aggregation (CA). A serving cell may be defined as an element frequency band that may be aggregated by a CA based on a multiple component carrier system. The serving cell includes a primary serving cell (PCell) and a secondary serving cell (SCell). The primary serving cell is one that provides security input and non-access stratum (NAS) mobility information in a radio resource control (RRC) connection or re-establishment state. It means a serving cell. According to the capabilities of the terminal, at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell. The set of serving cells configured for one terminal may consist of only one main serving cell or one main serving cell and at least one secondary serving cell. Each serving cell may be operated in an activated or deactivated state.
단말의 상향링크 전송전력제어는 TPC 명령에 의해 수행된다. TPC 명령은 기지국이 PUCCH 또는 PUSCH의 전력 제어를 수행하기 위해 단말로 전송하는 시그널링이다. LTE 시스템에서 PUCCH(SCell)가 도입됨에 따라, CA가 설정된 단말에게 부가적으로 PUCCH(SCell)이 설정된다면, 기존 PUCCH(PCell)으로만 전송되던 일부 상향링크 제어정보(uplink control information :UCI)들이 PUCCH(SCell)으로 보내질 수 있다. 또한 상향링크 그랜트(Uplink grant) 유무에 따라서 PUSCH(SCell)상으로도 UCI 정보들이 보내질 수 있다. 따라서, PUCCH(SCell) 기반의 CA를 효과적으로 지원하기 위해 주서빙셀과 마찬가지로 PUCCH(SCell) 또는 PUSCH에 관한 전력제어가 요구된다. Uplink transmission power control of the terminal is performed by a TPC command. The TPC command is signaling transmitted by the base station to the terminal to perform power control of the PUCCH or the PUSCH. As the PUCCH (SCell) is introduced in the LTE system, if a PUCCH (SCell) is additionally configured to the UE where the CA is configured, some uplink control information (UCI) transmitted only through the existing PUCCH (PCell) It may be sent to PUCCH (SCell). In addition, UCI information may be sent on a PUSCH (SCell) according to the existence of an uplink grant. Accordingly, in order to effectively support a PUCCH (SCell) based CA, power control regarding the PUCCH (SCell) or the PUSCH is required like the main serving cell.
도 2는 본 발명에 따른 서빙셀의 채널구조에서 TPC 명령이 적용되는 모습의 일례이다. 2 is an example of a TPC command applied to the channel structure of the serving cell according to the present invention.
도 2를 참조하면, 단말에 주서빙셀(PCell)과 부서빙셀(SCell)이 CA로 구성되어 있다. 각 서빙셀의 주파수 축상으로 PUCCH 영역과 PUSCH 영역이 구분된다. PUCCH 영역의 신호와 PUSCH 영역의 신호는 그룹(group) TPC 명령에 의해 그것의 전송전력이 제어될 수 있다. 그룹 TPC 명령은 단말 그룹에 대한 TPC 명령이다. 즉, 그룹 TPC 명령은 다수의 단말들 각각에 대한 TPC 명령을 포함한다. 다수의 단말 중 적어도 하나가 PUCCH(SCell)를 지원하는 경우, 그룹 TPC 명령은 동일 단말에 대한 주서빙셀과 부서빙셀의 TPC 명령을 포함할 수 있다. 그룹 TPC 명령에 의해 전력이 제어되는 PUCCH 영역의 신호로서 주기적인 CSI 보고(periodic CSI reporting), HARQ-ACK, SR, 등이 있다. Referring to FIG. 2, a main serving cell (PCell) and a secondary serving cell (SCell) are configured as CAs in a terminal. The PUCCH region and the PUSCH region are divided on the frequency axis of each serving cell. A signal of the PUCCH region and a signal of the PUSCH region may be controlled by its transmit power by a group TPC command. The group TPC command is a TPC command for a terminal group. That is, the group TPC command includes a TPC command for each of the plurality of terminals. When at least one of the plurality of terminals supports the PUCCH (SCell), the group TPC command may include a TPC command of the primary serving cell and the secondary serving cell for the same terminal. Signals of the PUCCH region whose power is controlled by the group TPC command include periodic CSI reporting, HARQ-ACK, SR, and the like.
각 서빙셀에서의PUCCH/PUSCH 전송 전력 제어를 위한 그룹 TPC 명령이 적용되는 동작을 구체적으로 살펴보면, PUCCH(PCell)는 TPC 명령1에 의해 제어되고, PUCCH(SCell)는 TPC 명령2에 의해 제어된다(본 실시예에서 PUSCH에 관한 TPC 명령은 편의상 생략한다). Specifically, the operation of applying the group TPC command for PUCCH / PUSCH transmission power control in each serving cell will be described. PUCCH (PCell) is controlled by TPC command 1 and PUCCH (SCell) is controlled by TPC command 2. (In this embodiment, the TPC command for the PUSCH is omitted for convenience).
여기서 TPC 명령1, 2는 하나의 그룹 TPC 명령에 포함될 수도 있고, 서로 다른 그룹 TPC 명령에 포함될 수도 있다. 다시 말해, TPC 명령1과 TPC 명령2는 하나의 DCI(downlink control information)에 의해 제공될 수도 있고, 서로 다른 DCI에 의해 제공될 수도 있다. 해당 DCI는common search space상에서 PDCCH를 통해 단말에게 전송된다.Here, the TPC commands 1 and 2 may be included in one group TPC command or may be included in different group TPC commands. In other words, the TPC command 1 and the TPC command 2 may be provided by one downlink control information (DCI) or may be provided by different DCIs. The DCI is transmitted to the UE through the PDCCH in the common search space.
본 실시예에서는 하나의 단말에 주서빙셀과 부서빙셀이 각각 1개씩 구성된 것으로 가정하였고, 그에 따른 TPC 명령이 2개인 것으로 가정하였으나, 이는 예시일 뿐이고 하나의 단말에는 PUCCH가 구성된 부서빙셀이 하나 이상 존재할 수 있으며, 그에 따라 TPC 명령의 개수가 증가할 수 있다. 이하 그룹 TPC 명령이 PUCCH(PCell)(이하 PUCCH(PCell)이라 함)와 PUCCH(SCell)(이하 PUCCH(SCell)이라 함)를 제어하는 것으로 간략히 설명하나, 그룹 TPC 명령은 주서빙셀과 PUCCH(SCell) 뿐만 아니라 PUSCH도 제어할 수 있음은 물론이다. In this embodiment, it is assumed that one main serving cell and one secondary serving cell are configured in one terminal, and it is assumed that there are two TPC commands. However, this is only an example, and one terminal has a secondary serving cell configured with a PUCCH. There may be more than one, and thus the number of TPC commands may increase. Hereinafter, the group TPC command will be briefly described as controlling a PUCCH (PCell) (hereinafter referred to as PUCCH (PCell)) and a PUCCH (SCell) (hereinafter referred to as PUCCH (SCell)), but the group TPC command includes a main serving cell and a PUCCH ( Of course, the PUSCH can be controlled as well as the SCell.
이하에서, 본 발명에 따른 그룹 TPC 명령에 의해 상향링크 전력 제어를 수행하는 방법에 관해 상세히 게시된다. In the following, the method of performing uplink power control by a group TPC command according to the present invention is posted in detail.
도 3은 본 발명의 일례에 따른 상향링크 전력 제어가 수행되는 흐름도이다.3 is a flowchart in which uplink power control is performed according to an example of the present invention.
도 3을 참조하면, 기지국은 단말에 TPC 인덱스(index)를 부여하는 상위계층의 메시지를 전송한다(S300). TPC 인덱스는 상기 단말에 관한 TPC 명령으로의 인덱스를 결정한다(TPC index determines an index to TPC command for a given UE). TPC 인덱스는 N 또는 M 값을 가질 수 있으며, N과 M은 DCI 포맷에 기반하여 구별된다. 예를 들어, DCI 포맷 3일 경우 TPC 인덱스는 N값을 가지고, DCI 포맷 3A일 경우 TPC 인덱스는 M값을 가진다. 상기 상위계층의 메시지는 RRC 메시지일 수 있다. 예를 들어 RRC 메시지는 TPC-PDCCH-Config으로서, PUCCH와 PUSCH의 전력 제어를 위한 인덱스들과 RNTI들을 특정하는데 사용된다. 상기 PUCCH와 PUSCH의 전력 제어는 TPC-PDCCH-Config을 사용하여 설정되거나 해제될 수 있다. Referring to FIG. 3, the base station transmits a message of a higher layer that provides a TPC index to the terminal (S300). The TPC index determines an index to a TPC command for the terminal (TPC index determines an index to TPC command for a given UE). The TPC index may have an N or M value, and N and M are distinguished based on the DCI format. For example, in case of DCI format 3, the TPC index has an N value, and in case of DCI format 3A, the TPC index has an M value. The upper layer message may be an RRC message. For example, the RRC message is TPC-PDCCH-Config, which is used to specify indexes and RNTIs for power control of PUCCH and PUSCH. Power control of the PUCCH and PUSCH may be set or released using TPC-PDCCH-Config.
본 실시예에서, 단말에 대한 TPC 인덱스는 복수 개로서 한 단말의 주서빙셀과 부서빙셀에 각각 부여되고, 주서빙셀과 부서빙셀에 관한 각각의 TPC 명령에 대응될 수 있다. 일례로서, 단말에 대한 TPC 인덱스는 PUCCH(PCell)에 대한 제1 TPC 인덱스와, PUCCH(SCell)에 대한 제2 TPC 인덱스를 포함할 수 있다. 제2 TPC 인덱스는 제1 TPC 인덱스에 추가적인 인덱스라 할 수 있다. 이러한 제1 TPC 인덱스와 제2 TPC 인덱스를 모두 설정하기 위한 상위계층의 메시지(예컨대 RRC 메시지 또는 TPC-PDCCH-Config)는 다음의 표와 같은 구조를 가질 수 있다. In the present embodiment, a plurality of TPC indexes for a terminal may be assigned to a primary serving cell and a secondary serving cell of one terminal, and may correspond to respective TPC commands for the primary serving cell and the secondary serving cell. As an example, the TPC index for the UE may include a first TPC index for PUCCH (PCell) and a second TPC index for PUCCH (SCell). The second TPC index may be referred to as an index added to the first TPC index. The upper layer message (eg, RRC message or TPC-PDCCH-Config) for setting both the first TPC index and the second TPC index may have a structure as shown in the following table.
표 1
-- ASN1START
TPC-PDCCH-Config ::= CHOICE {
release NULL,
setup SEQUENCE {
tpc-RNTI BIT STRING (SIZE (16)),
tpc-Index [TPC-Index, TPC-Index_r13]
}
}
TPC-Index ::= CHOICE {
indexOfFormat3 INTEGER (1..15),
indexOfFormat3A INTEGER (1..31)
TPC-Index_r13(SCell PUCCH) ::= CHOICE {
indexOfFormat3 INTEGER (1..15),
indexOfFormat3A INTEGER (1..31)
}
-- ASN1STOP
Table 1
-ASN1START
TPC-PDCCH-Config :: = CHOICE {
release NULL,
setup SEQUENCE {
tpc-RNTI BIT STRING (SIZE (16)),
tpc-Index [TPC-Index, TPC-Index_r13]
}
}
TPC-Index :: = CHOICE {
indexOfFormat3 INTEGER (1..15),
indexOfFormat3A INTEGER (1..31)
TPC-Index_r13 (SCell PUCCH) :: = CHOICE {
indexOfFormat3 INTEGER (1..15),
indexOfFormat3A INTEGER (1..31)
}
-ASN1STOP
표 1을 참조하면, tpc-Index 필드는 [TPC-Index, TPC-Index_r13]을 지시한다. 여기서 TPC-Index 필드는 제1 TPC 인덱스를 지시하며 DCI 포맷에 따라 indexOfFormat3 또는 indexOfFormat3A 값을 가진다. indexOfFormat3는 1 내지 15 중 어느 하나의 자연수이고, indexOfFormat3A는 1 내지 31 중 어느 하나의 자연수이다. 한편, TPC-Index_r13 필드는 제2 TPC 인덱스를 지시하며 DCI 포맷에 따라 indexOfFormat3 또는 indexOfFormat3A 값을 가진다. indexOfFormat3는 1 내지 15 중 어느 하나의 자연수이고, indexOfFormat3A는 1 내지 31 중 어느 하나의 자연수이다. Referring to Table 1, the tpc-Index field indicates [TPC-Index, TPC-Index_r13]. Here, the TPC-Index field indicates a first TPC index and has an indexOfFormat3 or indexOfFormat3A value according to the DCI format. indexOfFormat3 is a natural number of any one of 1 to 15, and indexOfFormat3A is a natural number of any one of 1 to 31. Meanwhile, the TPC-Index_r13 field indicates the second TPC index and has an indexOfFormat3 or indexOfFormat3A value according to the DCI format. indexOfFormat3 is a natural number of any one of 1 to 15, and indexOfFormat3A is a natural number of any one of 1 to 31.
상기 상위계층 메시지를 수신한 단말은, PUCCH(PCell)에 대한 TPC 명령을 위한 TPC 인덱스로서 TPC-Index 필드를 사용하고, PUCCH(SCell)에 대한 TPC 명령을 위한 TPC 인덱스로서 TPC-Index_r13 필드를 사용한다. 즉 주서빙셀에 관한 TPC 인덱스와 부서빙셀에 관한 TPC 인덱스가 구분될 수 있다. 제1 TPC 인덱스와 제2 TPC 인덱스는 기지국에 의해 독립적, 개별적으로 설정될 수도 있고, 서로 연관되거나 동일하게 설정될 수도 있다. 단말은 2개의 TPC 인덱스들을 사용하여 PUCCH(PCell)와 PUCCH(SCell) 전송에 대한 전력제어를 수행할 수 있다. TPC-Index_r13 필드는 TPC-Index_SCell 등 부서빙셀에 관한 용어가 포함된 명칭으로 대체될 수 있다. 여기서, 상기 주서빙셀에 관한 PUCCH와 부서빙셀에 관한 PUCCH는 하나의 단말에 속하는 것일 수 있다. The terminal receiving the higher layer message uses the TPC-Index field as the TPC index for the TPC command for the PUCCH (PCell), and uses the TPC-Index_r13 field as the TPC index for the TPC command for the PUCCH (SCell). do. That is, the TPC index for the primary serving cell and the TPC index for the secondary serving cell may be distinguished. The first TPC index and the second TPC index may be set independently or separately by the base station, and may be set to be associated with or the same as each other. The UE may perform power control for PUCCH (PCell) and PUCCH (SCell) transmission using two TPC indexes. The TPC-Index_r13 field may be replaced with a name including a term regarding a secondary serving cell such as TPC-Index_SCell. Here, the PUCCH for the primary serving cell and the PUCCH for the secondary serving cell may belong to one UE.
기지국이 단계 S300과 같이 설정된 다수의 TPC 인덱스들을 단말에 제공하면, 단말은 주서빙셀과 부서빙셀에 관한 TPC 설정을 완료한다. If the base station provides a plurality of TPC indexes set in step S300 to the terminal, the terminal completes the TPC settings for the primary serving cell and secondary serving cell.
이후, 기지국은 그룹 TPC 명령을 단말로 전송한다(S305). 그룹 TPC 명령은 DCI에 포함되어 전송된다. 그룹 TPC 명령의 전송에 어떤 DCI 포맷이 사용되는지에 따라 그룹 TPC 명령의 길이와 내용이 다를 수 있다. DCI 포맷 3의 경우 "TPC command number 1, TPC command number 2,..., TPC command number N"와 같고, DCI 포맷 3A의 경우 "TPC command number 1, TPC command number 2,..., TPC command number M"과 같다. N과 M은 표 1에서 설명된 파라미터들이다. 본 발명에서는 그룹 TPC 명령을 전송하는데 DCI 포맷 3과 3A가 모두 사용될 수 있으며, 그 외 다른 포맷의 DCI도 사용 가능하다. Thereafter, the base station transmits a group TPC command to the terminal (S305). The group TPC command is included in the DCI and transmitted. The length and contents of the group TPC command may differ depending on which DCI format is used for transmitting the group TPC command. Same as "TPC command number 1, TPC command number 2, ..., TPC command number N" for DCI format 3, "TPC command number 1, TPC command number 2, ..., TPC command" for DCI format 3A number M ". N and M are the parameters described in Table 1. In the present invention, both DCI formats 3 and 3A may be used to transmit a group TPC command, and other formats of DCI may also be used.
단말 또는 기지국이 PUCCH(PCell)에 대한 전력 제어와 PUCCH(SCell)에 대한 전력 제어를 모두 수행하기 위하여, 단계 S305에서 다양한 실시예의 그룹 TPC 명령이 사용될 수 있다. In order to allow the terminal or the base station to perform both power control for the PUCCH (PCell) and power control for the PUCCH (SCell), the group TPC command of various embodiments may be used in step S305.
일례로서, 그룹 TPC 명령은 단일 그룹 TPC 명령으로서, 하나의 DCI에 단일 그룹 TPC 명령이 포함된다. 단일 그룹 TPC 명령을 포함하는 DCI는 TPC-PUCCH RNTI에 의해 스크램블된 PDCCH에 맵핑되어 전송된다. 또한 상기 단일 그룹 TPC 명령을 포함하는 DCI는 주서빙셀상에서 전송된다(도 5 참조). As an example, the group TPC command is a single group TPC command, in which a single group TPC command is included in one DCI. The DCI including the single group TPC command is transmitted mapped to the PDCCH scrambled by the TPC-PUCCH RNTI. In addition, the DCI including the single group TPC command is transmitted on the primary serving cell (see FIG. 5).
일례로서, TPC 인덱스와 그룹 TPC 명령의 대응관계에 관한 예시는 도 4와 같다. 도 4를 참조하면, DCI 포맷 3과 DCI 포맷 3A는 모두 특정 길이를 가지며, 도 4에서는 예시적으로 11비트라 한다. As an example, an example of the correspondence between the TPC index and the group TPC command is shown in FIG. 4. Referring to FIG. 4, both DCI format 3 and DCI format 3A have a specific length, which is referred to as 11 bits in FIG. 4.
DCI 포맷 3의 예시에서, UE1, UE2, UE3이 하나의 그룹 TPC 명령에 의해 PUCCH 전력제어를 수행한다. UE1~UE3 중에서 UE1만이 PUCCH(SCell)가 구성되어 있어, PUCCH(SCell)의 전력제어를 위한 추가적인 TPC 명령(2비트)이 UE1에게 할당된다. 나머지 UE2, UE3에는 PUCCH(SCell)이 구성되지 않은 상태이다. DCI 포맷 3내에서 매 2개 비트들이 하나의 TPC 명령으로서, 각 TPC 명령이 순차적으로 특정 TPC 인덱스에 대응한다. 1,2번째 비트(또는 TPC 명령1)는 TPC 인덱스 1에 대응하고, 3,4번째 비트(또는 TPC 명령2)는 TPC 인덱스 2에 대응하며, 5,6번째 비트(또는 TPC 명령3)는 TPC 인덱스 3에 대응하고, 7,8번째 비트(또는 TPC 명령4)는 TPC 인덱스 4에 대응한다. 그리고 각 TPC 인덱스들이 어떤 단말 또는 어떤 서빙셀에 관한 것인지는 표 1과 같은 시그널링에 의해 미리 설정된다. 예를 들어, TPC 인덱스 1은 UE1의 PUCCH(PCell)에 관한 것이고, TPC 인덱스 4는 UE1의 PUCCH(SCell)에 관한 것이다. 이는 UE1만이 PUCCH(SCell)가 구성되어 있어, PUCCH(SCell)의 전력제어를 위한 추가적인 TPC 명령(2비트)이 UE1에게 할당되기 때문이다. In the example of DCI format 3, UE1, UE2, UE3 perform PUCCH power control by one group TPC command. Only UE1 of UE1 to UE3 is configured with PUCCH (SCell), so that an additional TPC command (2 bits) for power control of PUCCH (SCell) is allocated to UE1. PUCCH (SCell) is not configured in the remaining UE2 and UE3. Every two bits in DCI format 3 are one TPC command, with each TPC command sequentially corresponding to a specific TPC index. The first and second bits (or TPC command 1) correspond to TPC index 1, the third and fourth bits (or TPC command 2) correspond to TPC index 2, and the fifth and sixth bits (or TPC command 3) Corresponds to TPC index 3, and the 7,8th bit (or TPC command 4) corresponds to TPC index 4. And, which UE or which serving cell each TPC index relates to is previously set by signaling as shown in Table 1. For example, TPC index 1 relates to PUCCH (PCell) of UE1 and TPC index 4 relates to PUCCH (SCell) of UE1. This is because only UE1 is configured with a PUCCH (SCell), so that an additional TPC command (2 bits) for power control of the PUCCH (SCell) is allocated to UE1.
다음으로, DCI 포맷 3A의 예시에서, UE1~UE6들이 하나의 그룹 TPC 명령에 의해 PUCCH/PUSCH 전력제어를 수행한다. UE1~UE6 중에서 UE1과 UE6에 PUCCH(SCell)가 구성되어 있어, PUCCH(SCell)의 전력제어를 위한 추가적인 TPC 명령(1비트)이 각각 UE1과 UE6에게 할당된다. DCI 포맷 3A내에서 매 1개 비트들이 하나의 TPC 명령으로서, 각 TPC 명령이 순차적으로 특정 TPC 인덱스에 대응한다. 1번째 비트(또는 TPC 명령1), 2번째 비트(또는 TPC 명령2), 3번째 비트(또는 TPC 명령3), 4번째 비트(또는 TPC 명령4),..., M번째 비트(또는 TPC 명령 M)는 각각 TPC 인덱스 1, TPC 인덱스 2, TPC 인덱스 3, TPC 인덱스 4,..., TPC 인덱스 M에 대응한다. 그리고 각 TPC 인덱스들이 어떤 단말 또는 어떤 서빙셀에 관한 것인지는 표 1과 같은 시그널링에 의해 미리 설정된다. 예를 들어, TPC 인덱스 1은 UE1의 PUCCH(PCell)에 관한 것이고, TPC 인덱스 3은 UE1의 PUCCH(SCell)에 관한 것이다. 또한 TPC 인덱스 7은 UE6의 PUCCH(PCell)에 관한 것이고, TPC 인덱스 8은 UE6의 PUCCH(SCell)에 관한 것이다. Next, in the example of DCI format 3A, UE1 to UE6 perform PUCCH / PUSCH power control by one group TPC command. PUCCH (SCell) is configured in UE1 and UE6 among UE1 to UE6, and an additional TPC command (1 bit) for power control of PUCCH (SCell) is allocated to UE1 and UE6, respectively. Every 1 bit in DCI format 3A is a TPC command, with each TPC command sequentially corresponding to a specific TPC index. 1st bit (or TPC command 1), 2nd bit (or TPC command 2), 3rd bit (or TPC command 3), 4th bit (or TPC command 4), ..., Mth bit (or TPC Command M) corresponds to TPC index 1, TPC index 2, TPC index 3, TPC index 4, ..., and TPC index M, respectively. And, which UE or which serving cell each TPC index relates to is previously set by signaling as shown in Table 1. For example, TPC index 1 relates to PUCCH (PCell) of UE1 and TPC index 3 relates to PUCCH (SCell) of UE1. In addition, TPC index 7 relates to PUCCH (PCell) of UE6, and TPC index 8 relates to PUCCH (SCell) of UE6.
다시 도 3을 참조하면, 다른 예로서, 그룹 TPC 명령은 다중 그룹 TPC 명령으로서, 제1 그룹 TPC 명령(PUCCH(PCell)에 대한 전력 제어)과 제2 그룹 TPC 명령(PUCCH(SCell)에 대한 전력 제어)들이 서로 다른 DCI에 포함된다. 제1 그룹 TPC 명령을 포함하는 제1 DCI와, 제2 그룹 TPC 명령을 포함하는 제2 DCI는 모두 주서빙셀상에서 전송된다(도 6 및 도 7 참조). Referring again to FIG. 3, as another example, the group TPC command is a multi-group TPC command, which is a first group TPC command (power control for PUCCH (PCell)) and a second group TPC command (power for PUCCH (SCell)). Controls) are included in different DCIs. Both the first DCI including the first group TPC command and the second DCI including the second group TPC command are transmitted on the primary serving cell (see FIGS. 6 and 7).
또 다른 예로서, 그룹 TPC 명령은 다중 그룹 TPC 명령으로서, 제1 그룹 TPC 명령(PUCCH(PCell)에 대한 전력 제어)과 제2 그룹 TPC 명령(PUCCH(SCell)에 대한 전력 제어)들이 서로 다른 DCI에 포함된다. 제1 그룹 TPC 명령을 포함하는 제1 DCI는 주서빙셀상에서 전송되고, 제2 그룹 TPC 명령을 포함하는 제2 DCI는 부서빙셀상에서 전송된다(도 8 참조). As another example, the group TPC command is a multi-group TPC command, wherein the first group TPC command (power control for PUCCH (PCell)) and the second group TPC command (power control for PUCCH (SCell)) are different from each other. Included in The first DCI including the first group TPC command is transmitted on the primary serving cell, and the second DCI including the second group TPC command is transmitted on the secondary serving cell (see FIG. 8).
단말은 그룹 TPC 명령을 포함하는 DCI를 수신하고, 그룹 TPC 명령에 기반하여 주서빙셀과 부서빙셀에서의 PUCCH 및 PUSCH의 전력제어를 수행한다(S310). 구체적으로, 본 발명에 따른 그룹 TPC 명령에 따른 전력제어는 누적적 전력 제어모드(accumulative power control mode)에 기반하여 수행될 수 있다. 예를 들어, 단말이 PUCCH가 구성된 부서빙셀을 위한 그룹 TPC 명령을 수신하면, 단말은 그룹 TPC 명령에 따른 PUCCH의 전력 제어값을 직전 값에 누적하여 연산한다. The terminal receives the DCI including the group TPC command, and performs power control of the PUCCH and the PUSCH in the primary serving cell and the secondary serving cell based on the group TPC command (S310). Specifically, the power control according to the group TPC command according to the present invention may be performed based on an accumulative power control mode. For example, when the terminal receives a group TPC command for the secondary serving cell configured with the PUCCH, the terminal accumulates the power control value of the PUCCH according to the group TPC command to the previous value.
예를 들어, 단말은 상기 누적 연산 동작을 아래와 같은 수학식에 기반하여 수행할 수 있다. For example, the terminal may perform the accumulation operation based on the following equation.
수학식 1
Figure PCTKR2015013575-appb-M000001
Equation 1
Figure PCTKR2015013575-appb-M000001
Figure PCTKR2015013575-appb-I000001
는 DCI 포맷 3/3A를 통해서 단말에게 지시된 그룹 TPC명령에 해당하는 값으로 dB단위를 사용하고 아래 표 2 및 표 3을 통해서 그 값이 지시될 수 있다.
Figure PCTKR2015013575-appb-I000001
Is used as a value corresponding to the group TPC command indicated to the terminal through the DCI format 3 / 3A, and the value may be indicated through Tables 2 and 3 below.
표 2
DCI 포맷 3A에서 TPC 명령 필드
Figure PCTKR2015013575-appb-I000002
[dB}
0 -1
TABLE 2
TPC Command Field in DCI Format 3A
Figure PCTKR2015013575-appb-I000002
[dB}
0 -One
표 3
DCI 포맷 1A/1B/1D/1/2A/2B/2C/2D/2/3에서 TPC 명령 필드
Figure PCTKR2015013575-appb-I000003
[dB}
0 -1
1 0
2 1
3 3
TABLE 3
TPC command field in DCI format 1A / 1B / 1D / 1 / 2A / 2B / 2C / 2D / 2/3
Figure PCTKR2015013575-appb-I000003
[dB}
0 -One
One 0
2 One
3 3
표 2 및 표 3을 참조하면, 표 2는 DCI 포맷 1A/1B/1D/1/2A/2B/2C/2D/2/3인 경우에 그룹 TPC 명령과
Figure PCTKR2015013575-appb-I000004
값과의 매핑관계를 나타내고, 표 3은 DCI 포맷 3A인 경우에 그룹 TPC 명령과
Figure PCTKR2015013575-appb-I000005
값과의 매핑관계를 나타낸다.
Referring to Table 2 and Table 3, Table 2 shows the group TPC command in case of DCI format 1A / 1B / 1D / 1 / 2A / 2B / 2C / 2D / 2/3.
Figure PCTKR2015013575-appb-I000004
Table 3 shows the mapping relationship with values, and Table 3 shows the group TPC command in case of DCI format 3A.
Figure PCTKR2015013575-appb-I000005
Represents a mapping relationship with a value.
다시 수학식 1에서 g(i)는 현재 PUCCH 전력 제어 조절 상태를 나타낸다. FDD에서는 M=1이고 TDD에서는 M은 하나의 PUCCH 전송에 연관된 하향링크 서브프레임의 수이고 그 값은 하향링크 HARQ 타이밍에 따라 달라 질 수 있다. km은 하향링크 HARQ 타이밍에 해당하는 값으로 위의 연관된 하향링크 서브프레임 각각을 지시하는 값으로 현재 서브프레임이 n이라면 n-km 하향링크 서브프레임을 의미한다. km값은 예를 들어 하기 표 4로 지시된다. In Equation 1, g (i) represents a current PUCCH power control adjustment state. In FDD, M = 1, and in TDD, M is the number of downlink subframes associated with one PUCCH transmission, and its value may vary depending on downlink HARQ timing. k m is a value corresponding to downlink HARQ timing and indicates each of the associated downlink subframes. If m is the current subframe, it means nk m downlink subframe. The k m value is indicated, for example, in Table 4 below.
표 4
UL/DL설정 서브프레임 n
0 1 2 3 4 5 6 7 8 9
0 - - 6 - 4 - - 6 - 4
1 - - 7, 6 4 - - - 7, 6 4 -
2 - - 8, 7, 4, 6 - - - - 8, 7, 4, 6 - -
3 - - 7, 6, 11 6, 5 5, 4 - - - - -
4 - - 12, 8, 7, 11 6, 5, 4, 7 - - - - - -
5 - - 13, 12, 9, 8, 7, 5, 4, 11, 6 - - - - - - -
6 - - 7 7 5 - - 7 7 -
Table 4
UL / DL setting Subframe n
0 One 2 3 4 5 6 7 8 9
0 - - 6 - 4 - - 6 - 4
One - - 7, 6 4 - - - 7, 6 4 -
2 - - 8, 7, 4, 6 - - - - 8, 7, 4, 6 - -
3 - - 7, 6, 11 6, 5 5, 4 - - - - -
4 - - 12, 8, 7, 11 6, 5, 4, 7 - - - - - -
5 - - 13, 12, 9, 8, 7, 5, 4, 11, 6 - - - - - - -
6 - - 7 7 5 - - 7 7 -
단말은 단계 S310에 의해 제어된 전력에 기반하여 PUCCH 및/또는 PUSCH를 주서빙셀 및/또는 부서빙셀상에서 기지국으로 전송한다(S315). The terminal transmits the PUCCH and / or PUSCH to the base station on the primary serving cell and / or secondary serving cell based on the power controlled by step S310 (S315).
이하, 단계 S305에서 게시된 그룹 TPC 명령의 전송에 관한 다양한 실시예들을 도면을 이용하여 좀더 상세히 설명하도록 한다. Hereinafter, various embodiments related to the transmission of the group TPC command posted in step S305 will be described in more detail with reference to the accompanying drawings.
도 5는 본 발명의 일례에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 5 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to an example of the present invention.
도 5를 참조하면, PUCCH(PCell)에 대한 제1 TPC 명령과 PUCCH(SCell)에 대한 제2 TPC 명령은 단일 그룹 TPC 명령에 포함되고 하나의 DCI에 맵핑된다. 즉, 본 실시예는 하나의 DCI를 2개의 PUCCH(PCell)과 PUCCH(SCell)의 전력 제어를 위해 공유한다. 이러한 단일 그룹 TPC 명령을 포함하는 DCI는 예를 들어 도 4와 같을 수 있다. Referring to FIG. 5, a first TPC command for a PUCCH (PCell) and a second TPC command for a PUCCH (SCell) are included in a single group TPC command and mapped to one DCI. That is, this embodiment shares one DCI for power control of two PUCCHs (PCells) and PUCCHs (SCells). The DCI including such a single group TPC command may be as shown in FIG. 4, for example.
본 실시예에 따른 단일 그룹 TPC 명령을 포함하는 DCI는 TPC-PUCCH#0 (RNTI)에 의해 스크램블된(scrambled) PDCCH에 맵핑되어 전송된다. 또한 상기 단일 그룹 TPC 명령에 관련된 PDCCH(PDCCH with TPC-PUCCH RNTI)는 주서빙셀상의 공통검색공간(common search space: CSS)에 맵핑된다. 기지국과 단말의 동작 관점에서 볼 때, 먼저 기지국은 2개의 PUCCH(PCell)과 PUCCH(SCell)의 전력 제어를 위한 하나의 DCI를 생성하고, 상기 생성된 DCI를 포함하는 PDCCH를 TPC-PUCCH RNTI로 스크램블하며(정확히는 CRC비트에 스크램블링), 스크램블된 PDCCH를 주서빙셀의 CSS에 맵핑하여 단말로 전송한다. 그리고 단말은 PUCCH(SCell)에 TPC 명령을 수신하기 위해 주서빙셀의 CSS에 대한 모니터링을 수행한다. 이 점에서, 본 실시예는 2개의 이중연결(Dual-Connectivity)이 설정된 단말이 2개의 CSS(CSS on PCell and PSCell)을 모니터링하는 것과는 차이가 있다. DCI including a single group TPC command according to the present embodiment is mapped and transmitted to a PDCCH scrambled by TPC-PUCCH # 0 (RNTI). In addition, PDCCH (PDCCH with TPC-PUCCH RNTI) related to the single group TPC command is mapped to a common search space (CSS) on the main serving cell. From the operation point of view of the base station and the terminal, the base station first generates one DCI for power control of two PUCCH (PCell) and PUCCH (SCell), and converts the PDCCH including the generated DCI into TPC-PUCCH RNTI. It is scrambled (exactly scrambled in the CRC bit), and the scrambled PDCCH is mapped to CSS of the main serving cell and transmitted to the terminal. And the UE monitors the CSS of the main serving cell in order to receive a TPC command to the PUCCH (SCell). In this regard, the present embodiment is different from the terminal configured with two dual connectivity (DCS) monitoring two CSS on PCell and PSCell (CSS).
그외 공통검색공간에 맵핑되는 PDCCH의 예로서 RA-RNTI(Random Access-Radio Network Temporary Identifier)로 스크램블된 PDCCH (PDCCH with RA-RNTI), C-RNTI(common-RNTI)로 스크램블된 PDCCH(PDCCH with C-RNTI), 임시(Temporary) C-RNTI로 스크램블된 PDCCH(PDCCH with TC-RNTI), TPC-PUSCH-RNTI로 스크램블된 PDCCH(PDCCH with TPC-PUSCH-RNTI), eIMTA-RNTI로 스크램블된 PDCCH(PDCCH with eIMTA-RNTI), SPS-RNTI로 스크램블된 PDCCH(PDCCH with SPS-RNTI), P-RNTI로 스크램블된 PDCCH(PDCCH with P-RNTI), SI-RNTI로 스크램블된 PDCCH(PDCCH with SI-RNTI) 등이 있다. Examples of PDCCHs mapped to common search spaces include PDCCH scrambled with Random Access-Radio Network Temporary Identifier (RA-RNTI) and PDCCH scrambled with C-RNTI (common-RNTI). C-RNTI), PDCCH scrambled with Temporary C-RNTI, PDCCH scrambled with TPC-PUSCH-RNTI, PDCCH scrambled with eIMTA-RNTI (PDCCH with eIMTA-RNTI), PDCCH scrambled with SPS-RNTI, PDCCH with P-RNTI scrambled with P-RNTI, PDCCH scrambled with SI-RNTI RNTI).
도 6은 본 발명의 다른 예에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 6 is a diagram illustrating a method for transmitting and monitoring a group TPC command according to another example of the present invention.
도 6을 참조하면, PUCCH(PCell)에 대한 제1 그룹 TPC 명령과 PUCCH(SCell)에 대한 제2 그룹 TPC 명령은 서로 다른 DCI에 포함된다. 그리고, 제1 그룹 TPC 명령을 포함하는 제1 DCI와, 제2 그룹 TPC 명령을 포함하는 제2 DCI는 모두 주서빙셀상에서 전송된다. 제1 DCI는 TPC-PUCCH#0 RNTI로 스크램블된 PDCCH1에 맵핑되고, 제2 DCI는 TPC-PUCCH#0 RNTI로 스크램블된 PDCCH2에 맵핑되어 전송된다. 즉, 하나의 TPC-PUCCH RNTI값이 서로 다른 TPC 명령(또는 DCI)을 가지는 2개의 PDCCH에 공통으로 적용된다. 또한 PDCCH1과 PDCCH2는 모두 주서빙셀상의 CSS에 맵핑된다. PDCCH1과 PDCCH2가 동일한 CSS에 맵핑되고, 동일한 TPC-PUCCH RNTI 값이 적용되므로, PDCCH1과 PDCCH2를 구별하기 위한 정보가 필요하다. Referring to FIG. 6, a first group TPC command for PUCCH (PCell) and a second group TPC command for PUCCH (SCell) are included in different DCIs. The first DCI including the first group TPC command and the second DCI including the second group TPC command are both transmitted on the primary serving cell. The first DCI is mapped to PDCCH1 scrambled with TPC-PUCCH # 0 RNTI, and the second DCI is mapped to PDCCH2 scrambled with TPC-PUCCH # 0 RNTI and transmitted. That is, one TPC-PUCCH RNTI value is commonly applied to two PDCCHs having different TPC commands (or DCIs). Also, both PDCCH1 and PDCCH2 are mapped to CSS on the main serving cell. Since PDCCH1 and PDCCH2 are mapped to the same CSS and the same TPC-PUCCH RNTI value is applied, information for distinguishing PDCCH1 and PDCCH2 is necessary.
일례로서, CIF(carrier indicator field)가 PDCCH1과 PDCCH2를 구별하는데 사용될 수 있다. 예를 들어, PUCCH(SCell)에 관련된 제2 DCI에 CIF가 포함될 수 있다. 다시 말해, CIF가 제1 DCI와 제2 DCI를 구별하는데 사용될 수 있다. 다시 말해, CIF가 제1 그룹 TPC 명령과 제2 그룹 TPC 명령을 구별하는데 사용될 수 있다. 이에 따르면, 기지국은 단말 특정 검색공간에서 설정될 수 있는 교차 반송파 스케줄링(cross carrier scheduling)와 유사하게 공용검색공간에도 PUCCH(SCell)이 설정된 단말들에게 RRC 시그널링을 통해 교차반송파 스케줄링을 설정할 수 있다. 단, 여기서 DCI내에 활성화되는 CIF값은 단말 특정 검색공간에서와 같이 PDSCH 또는 PUSCH가 전송되는 서빙셀을 지시하는 것이 아닌 PUCCH(SCell)을 위한 DCI라는 정보만 지시하는 지시자 역할을 수행한다. 따라서 1비트만이 CIF 값으로서 사용될 수 있다. 물론 PUCCH(SCell)이 구성된 부서빙셀이 2개 이상이 되면 그에 따라 CIF 값을 위한 비트값은 증가할 수도 있다. 예를 들어 1비트의 CIF 값이 0인 경우에는 단말은 해당 DCI가 PUCCH(SCell)을 위한 그룹 TPC명령을 제공함을 인지한다. 반면 1비트의 CIF 값이 1인 경우는 예비(reserved)된다. 따라서 공용검색공간내 교차 반송파 스케줄링이 RRC 시그널링을 통해 설정되고, RRC 시그널링의 설정에 기반하여 DCI내 3비트의 CIF 필드 또는 1비트의 CIF 필드로 지시(또는 활성화)된다. CIF필드내 사용되지 않는 필드들은 모두 예비(reserved)된다. 그리고 단말은 PUCCH(SCell)에 관한 그룹 TPC 명령을 수신하기 위해서 주서빙셀의 CSS를 모니터링 해야한다. 아래는 교차 반송파 스케쥴링을 위한 RRC 시그널링 정보 요소이다. 여기서 주서빙셀상에서 교차 반송파 스케쥴링을 지시하기 위해서는 schedulingCellId 값이 주서빙셀의 서빙셀 인덱스이어야 한다(즉0임). 그리고 cif-presence가 활성화되고 DCI(format 3/3A)내에는 3비트 또는 1비트만이 활성화된다.As an example, a carrier indicator field (CIF) may be used to distinguish between PDCCH1 and PDCCH2. For example, the CIF may be included in the second DCI related to the PUCCH (SCell). In other words, CIF may be used to distinguish between the first DCI and the second DCI. In other words, the CIF may be used to distinguish the first group TPC command from the second group TPC command. Accordingly, the base station can configure cross-carrier scheduling through RRC signaling to terminals configured with PUCCH (SCell) in the common search space similarly to cross carrier scheduling that can be configured in the UE-specific search space. Here, the CIF value activated in the DCI serves as an indicator indicating only the DCI information for the PUCCH (SCell), not the serving cell to which the PDSCH or the PUSCH is transmitted as in the UE-specific search space. Therefore, only 1 bit can be used as the CIF value. Of course, when there are two or more secondary serving cells configured with PUCCH (SCell), the bit value for the CIF value may increase accordingly. For example, when the CIF value of 1 bit is 0, the UE recognizes that the corresponding DCI provides a group TPC command for PUCCH (SCell). On the other hand, if a 1-bit CIF value is 1, it is reserved. Accordingly, cross-carrier scheduling in the common search space is set through RRC signaling, and is indicated (or activated) by a 3-bit CIF field or a 1-bit CIF field based on the setting of the RRC signaling. All unused fields in the CIF field are reserved. And the UE must monitor the CSS of the main serving cell in order to receive the group TPC command for the PUCCH (SCell). The following is an RRC signaling information element for cross carrier scheduling. In order to indicate cross-carrier scheduling on the primary serving cell, the schedulingCellId value should be the serving cell index of the primary serving cell (that is, 0). And cif-presence is activated and only 3 bits or 1 bit is activated in DCI (format 3 / 3A).
표 5
-- ASN1START
CrossCarrierSchedulingConfig-r10 ::= SEQUENCE {
schedulingCellInfo-r10 CHOICE {
own-r10 SEQUENCE { -- No cross carrier scheduling
cif-Presence-r10 BOOLEAN
},
other-r10 SEQUENCE { -- Cross carrier scheduling
schedulingCellId-r10 ServCellIndex-r10,
pdsch-Start-r10 INTEGER (1..4)
}
}
}
-- ASN1STOP
Table 5
-ASN1START
CrossCarrierSchedulingConfig-r10 :: = SEQUENCE {
schedulingCellInfo-r10 CHOICE {
own-r10 SEQUENCE {-No cross carrier scheduling
cif-Presence-r10 BOOLEAN
},
other-r10 SEQUENCE {-Cross carrier scheduling
schedulingCellId-r10 ServCellIndex-r10,
pdsch-Start-r10 INTEGER (1..4)
}
}
}
-ASN1STOP
기지국과 단말의 동작 관점에서 볼 때, 먼저 기지국은 PUCCH(PCell)의 전력 제어를 위한 제1 DCI를 생성하고, PUCCH(SCell)의 전력 제어를 위한 제2 DCI를 생성한다. 이때 기지국은 제2 DCI에 주서빙셀을 지시하는 CIF를 포함시킨다. 기지국은 제1 DCI를 포함하는 PDCCH1을 TPC-PUCCH RNTI로 스크램블하며, 제2 DCI를 포함하는 PDCCH2를 TPC-PUCCH RNTI로 스크램블한다. 그리고 기지국은 스크램블된 PDCCH1 및 PDCCH2를 모두 주서빙셀의 CSS에 맵핑하여 단말로 전송한다. 그리고 단말은 PUCCH(SCell)에 TPC 명령을 수신하기 위해 주서빙셀의 CSS에 대한 모니터링을 수행한다. From the operation point of view of the base station and the terminal, the base station first generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell). At this time, the base station includes a CIF indicating the primary serving cell in the second DCI. The base station scrambles PDCCH1 including the first DCI to TPC-PUCCH RNTI and scrambles PDCCH2 including the second DCI to TPC-PUCCH RNTI. The base station maps both the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell and transmits them to the terminal. And the UE monitors the CSS of the main serving cell in order to receive a TPC command to the PUCCH (SCell).
본 실시예에 따르면, 교차 반송파 스케줄링이 단말 특정검색공간(UE-specific search space: USS)상에 맵핑되는 PDCCH들에만 가능한 것이 아니라, CSS상에 맵핑되는 PDCCH들에도 가능하게 된다. 또한 CIF를 사용함으로써, PDCCH1과 PDCCH2를 구별하기 위한 별도의 RNTI가 도입될 필요가 없다. According to this embodiment, cross-carrier scheduling is possible not only for PDCCHs mapped on UE-specific search space (USS) but also for PDCCHs mapped on CSS. In addition, by using CIF, a separate RNTI does not need to be introduced to distinguish between PDCCH1 and PDCCH2.
도 7은 본 발명의 또 다른 예에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 이는 도 6과 비교할 때 주서빙셀의 CSS상으로 전송되는 PDCCH2에 대해 새로운 RNTI를 사용하는 점에서 차이가 있다. 7 is a view for explaining a method for transmitting and monitoring a group TPC command according to another embodiment of the present invention. This is different in that the new RNTI is used for the PDCCH2 transmitted on the CSS of the main serving cell when compared with FIG. 6.
도 7을 참조하면, PUCCH(PCell)에 대한 제1 그룹 TPC 명령과 PUCCH(SCell)에 대한 제2 그룹 TPC 명령은 서로 다른 DCI에 포함된다. 그리고, 제1 그룹 TPC 명령을 포함하는 제1 DCI와, 제2 그룹 TPC 명령을 포함하는 제2 DCI는 모두 주서빙셀상에서 전송된다. 제1 DCI는 TPC-PUCCH#0 RNTI로 스크램블된 PDCCH1에 맵핑되고, 제2 DCI는 TPC-PUCCH-SCell RNTI로 스크램블된 PDCCH2에 맵핑되어 전송된다. 즉, 서로 다른 TPC 명령(또는 DCI)을 가지는 2개의 PDCCH에 서로 다른 RNTI 값이 적용된다. PUCCH(SCell)의 전력제어를 위해 본 실시예에서 새롭게 정의되는 TPC_PUCCH-SCell RNTI는 동일한 기능을 수행하는 다른 용어로 대체될 수 있음은 물론이다. Referring to FIG. 7, a first group TPC command for PUCCH (PCell) and a second group TPC command for PUCCH (SCell) are included in different DCIs. The first DCI including the first group TPC command and the second DCI including the second group TPC command are both transmitted on the primary serving cell. The first DCI is mapped to PDCCH1 scrambled with TPC-PUCCH # 0 RNTI, and the second DCI is mapped to PDCCH2 scrambled with TPC-PUCCH-SCell RNTI and transmitted. That is, different RNTI values are applied to two PDCCHs having different TPC commands (or DCIs). Of course, the TPC_PUCCH-SCell RNTI newly defined in the present embodiment for power control of the PUCCH (SCell) may be replaced with another term that performs the same function.
한편, PDCCH1과 PDCCH2는 모두 주서빙셀상의 CSS에 맵핑된다. PDCCH1과 PDCCH2가 동일한 CSS에 맵핑되지만, 서로 다른 RNTI 값이 PDCCH의 스크램블에 적용되므로, PDCCH1과 PDCCH2를 구별하기 위한 별도의 정보가 필요하지 않다. 즉, 서로 다른 RNTI값과 서로 다른 TPC 인덱스 값이 각각 PDCCH에 설정되어 전송되므로, 별도의 CIF 값의 설정이 필요하지 않다.  On the other hand, both PDCCH1 and PDCCH2 are mapped to CSS on the main serving cell. Although PDCCH1 and PDCCH2 are mapped to the same CSS, different RNTI values are applied to scramble of the PDCCH, so that no separate information for distinguishing PDCCH1 and PDCCH2 is necessary. That is, since different RNTI values and different TPC index values are set and transmitted on the PDCCH, there is no need to set a separate CIF value.
기지국과 단말의 동작 관점에서 볼 때, 먼저 기지국은 PUCCH(PCell)의 전력 제어를 위한 제1 DCI를 생성하고, PUCCH(SCell)의 전력 제어를 위한 제2 DCI를 생성한다. 기지국은 제1 DCI를 포함하는 PDCCH1을 TPC-PUCCH RNTI로 스크램블하며, 제2 DCI를 포함하는 PDCCH2를 TPC-PUCCH-SCell RNTI로 스크램블한다. 그리고 기지국은 스크램블된 PDCCH1 및 PDCCH2를 모두 주서빙셀의 CSS에 맵핑하여 단말로 전송한다. 그리고 단말은 PUCCH(SCell)에 TPC 명령을 수신하기 위해 TPC-PUCCH-SCell RNTI를 사용하여 주서빙셀의 CSS에 대한 모니터링을 수행한다. From the operation point of view of the base station and the terminal, the base station first generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell). The base station scrambles PDCCH1 including the first DCI to TPC-PUCCH RNTI and scrambles PDCCH2 including the second DCI to TPC-PUCCH-SCell RNTI. The base station maps both the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell and transmits them to the terminal. And the UE monitors the CSS of the primary serving cell using the TPC-PUCCH-SCell RNTI to receive a TPC command to the PUCCH (SCell).
도 8은 본 발명의 또 다른 예에 따른 그룹 TPC 명령을 전송하고 모니터링하는 방법을 설명하는 도면이다. 8 is a diagram illustrating a method of transmitting and monitoring a group TPC command according to another example of the present invention.
도 8을 참조하면, PUCCH(PCell)에 대한 제1 그룹 TPC 명령과 PUCCH(SCell)에 대한 제2 그룹 TPC 명령은 서로 다른 DCI에 포함된다. 그리고 제1 그룹 TPC 명령을 포함하는 제1 DCI는 주서빙셀상에서 전송되고, 제2 그룹 TPC 명령을 포함하는 제2 DCI는 부서빙셀상에서 전송된다. Referring to FIG. 8, a first group TPC command for PUCCH (PCell) and a second group TPC command for PUCCH (SCell) are included in different DCIs. The first DCI including the first group TPC command is transmitted on the primary serving cell, and the second DCI including the second group TPC command is transmitted on the secondary serving cell.
제1 DCI는 TPC-PUCCH RNTI로 스크램블된 PDCCH1에 맵핑되고, PDCCH1은 주서빙셀상의 CSS에 맵핑된다. 제2 DCI는 TPC-PUCCH RNTI로 스크램블된 PDCCH2에 맵핑되고, PDCCH2는 부서빙셀상의 CSS에 맵핑된다. The first DCI is mapped to PDCCH1 scrambled with TPC-PUCCH RNTI, and PDCCH1 is mapped to CSS on the main serving cell. The second DCI is mapped to PDCCH2 scrambled with TPC-PUCCH RNTI, and PDCCH2 is mapped to CSS on the secondary serving cell.
단말이 PDCCH2를 수신하기 위해서는, PDCCH2가 부서빙셀상의 CSS에 맵핑되는 것을 먼저 알고 있어야 한다. PDCCH2가 부서빙셀상의 CSS에 맵핑됨은, 기지국과 단말이 묵시적으로 약속할 수도 있고, 기지국이 단말로 명시적으로 알려줄 수도 있다. In order for the UE to receive the PDCCH2, it must first be known that the PDCCH2 is mapped to the CSS on the secondary serving cell. The mapping of the PDCCH2 to the CSS on the secondary serving cell may be implied by the base station and the terminal, or may be explicitly informed by the base station to the terminal.
일례로서, 단말이 MBMS(Multimedia Broadcast Multicast Service)를 지원 가능함을 지시하는 성능정보(capability information)를 기지국으로 전송할 수 있는데, 상기 성능정보를 수신하는 기지국은 PDCCH2를 부서빙셀상의 CSS에 맵핑할 수 있다. 즉, 상기 성능정보는 PDCCH2를 부서빙셀상의 CSS에 맵핑하여 전송하도록 묵시적으로 기지국에 알려주는 정보일 수 있다. 그리고 상기 성능정보를 전송한 단말은 추후 PUCCH(SCell)에 관한 그룹 TPC 명령을 수신하기 위해 부서빙셀상의 CSS를 모니터링해야 함을 묵시적으로 알 수 있다. As an example, the UE may transmit capability information indicating that the UE can support a multimedia broadcast multicast service (MBMS) to the base station. The base station receiving the capability information may map PDCCH2 to CSS on the secondary serving cell. have. That is, the performance information may be information that implicitly informs the base station to transmit PDCCH2 by mapping it to CSS on the secondary serving cell. In addition, the terminal transmitting the capability information may implicitly know that it is necessary to monitor the CSS on the secondary serving cell in order to receive a group TPC command related to the PUCCH (SCell).
이러한 동작이 가능한 이유는 다음과 같다. MBMS에 관련된 물리채널인 PMCH(Phsycal MBMS Channel)은 주서빙셀이 아닌 다른 반송파(또는 부서빙셀)상에서 전송되고, PMCH의 복호를 위해 필요한 PDCCH(PDCCH with M-RNTI)는 주서빙셀이 아닌 PMCH가 전송되는 반송파(또는 부서빙셀)의 CSS에 맵핑된다. 따라서, MBMS 지원 가능한 단말이 MBMS를 수신하려면 주서빙셀이 아닌 PMCH가 전송되는 부서빙셀상의 CSS를 모니터링해야 한다. 단말은 MBMS의 수신을 위해 부서빙셀의 CSS를 모니터링해야 하는 상황이므로, PUCCH(SCell)에 관한 그룹 TPC 명령에 관한 PDCCH2를 상기 부서빙셀상의 CSS에서 함께 모니터링하는 것이 가능하다. 여기서, 상기 부서빙셀은 PUCCH(SCell)를 전송하는 상향링크 요소 반송파(UL CC) 및 상기 UL CC와 SIB-2로 연결된 하향링크 요소 반송파(DL CC)로 구성된다. 따라서, 단말은 상기 DL CC상의 CSS에서 TPC-PUCCH RNTI로 스크램블된 PDCCH를 모니터링한다. The reason for such an operation is as follows. A physical channel related to MBMS, a PMCH (Phsycal MBMS Channel) is transmitted on a carrier (or secondary serving cell) other than the primary serving cell, and PDCCH with M-RNTI (PDCCH) necessary for decoding the PMCH is not a primary serving cell. PMCH is mapped to the CSS of the carrier (or secondary serving cell) to be transmitted. Therefore, in order to receive the MBMS, the MBMS capable terminal must monitor the CSS on the secondary serving cell in which the PMCH is transmitted, not the main serving cell. Since the UE needs to monitor the CSS of the secondary serving cell in order to receive the MBMS, it is possible to monitor the PDCCH2 regarding the group TPC command on the PUCCH (SCell) together in the CSS on the secondary serving cell. Here, the secondary serving cell includes an uplink component carrier (UL CC) for transmitting a PUCCH (SCell) and a downlink component carrier (DL CC) connected to the UL CC and SIB-2. Accordingly, the UE monitors the PDCCH scrambled with the TPC-PUCCH RNTI in the CSS on the DL CC.
본 실시예에 따라 단말이 PDCCH2를 수신하기 위해 부서빙셀상의 CSS를 모니터링하려면, i) 단말이 MBMS를 지원 가능함을 지시하는 성능 정보를 기지국으로 전송할 것, ii) 단말에 PUCCH(SCell)이 구성될 것을 요한다. 다시 말해, 단말이 MBMS를 지원 가능하고, PUCCH(SCell)을 지원 가능할 경우, 단말은 그룹 TPC 명령(또는 DCI)를 수신하기 위해 부서빙셀상의 CSS를 모니터링할 수 있다. 다른 관점에서, mbms-SCell에 해당하는 단말의 성능(UE capability)를 가지는 단말이 PUCCH(SCell)를 지원하고, 그것이 기지국에 의해서 설정된 경우, 단말은 PUCCH(SCell)의 전력 제어를 위한 그룹 TPC 명령을 수신하기 위해 PUCCH(SCell)이 전송되는 UL CC(SCell)와 SIB-2 링크로 연관된 DL CC(SCell)상의 CSS를 모니터링한다.In order to monitor the CSS on the secondary serving cell in order for the terminal to receive PDCCH2 according to the present embodiment, i) transmit performance information indicating that the terminal supports MBMS to the base station, ii) PUCCH (SCell) is configured in the terminal To be. In other words, when the terminal can support the MBMS and can support the PUCCH (SCell), the terminal can monitor the CSS on the secondary serving cell to receive a group TPC command (or DCI). In another aspect, when a UE having a UE capability corresponding to mbms-SCell supports a PUCCH (SCell), and it is set by a base station, the UE sends a group TPC command for power control of the PUCCH (SCell). Monitor the CSS on the DL CC (SCell) associated with the UL CC (SCell) and the SIB-2 link to which the PUCCH (SCell) is transmitted to receive the.
MBMS를 지원 가능함을 지시하는 성능 정보(mbms-SCell-r11)는 하기 표 6과 같이 정의될 수 있다. MBMS에 관련된 파라미터 정보(MBMS-Parameters-r11)에 포함될 수 있다. Performance information indicating that the MBMS can be supported (mbms-SCell-r11) may be defined as shown in Table 6 below. It may be included in parameter information related to MBMS (MBMS-Parameters-r11).
표 6
MBMS-Parameters-r11 ::= SEQUENCE {
mbms-SCell-r11 ENUMERATED {supported} OPTIONAL,
mbms-NonServingCell-r11 ENUMERATED {supported} OPTIONAL
}
Table 6
MBMS-Parameters-r11 :: = SEQUENCE {
mbms-SCell-r11 ENUMERATED {supported} OPTIONAL,
mbms-NonServingCell-r11 ENUMERATED {supported} OPTIONAL
}
표 6을 참조하면, MBMS에 관련된 파라미터 정보(MBMS-Parameters-r11)은 UE-EUTRA-Capability IE내에 포함되는 정보일 수 있다. mbms-SCell-r11은 부서빙셀에서 MBMS를 지원 가능함을 지시하는 성능정보로서, MBMS에 관련된 파라미터 정보 내에 선택적으로 포함될 수 있으며, mbms-SCell-r11이 {지원됨(supported)}을 표시할 경우 해당 단말은 부서빙셀에서 MBMS의 수신을 지원할 수 있음을 나타낸다. Referring to Table 6, parameter information related to MBMS (MBMS-Parameters-r11) may be information included in UE-EUTRA-Capability IE. mbms-SCell-r11 is performance information indicating that MBMS can be supported in a secondary serving cell, and may be optionally included in parameter information related to MBMS, and when mbms-SCell-r11 indicates {supported}. The terminal indicates that the secondary serving cell can support reception of the MBMS.
만약 MBMS를 지원 가능함을 지시하는 성능 정보가 "supported"로 표시되면, 단말은 추후 PUCCH(SCell)에 관한 그룹 TPC 명령을 수신하기 위해 부서빙셀상의 CSS를 모니터링할 것을 기대한다. 왜냐하면 상기 단말은 이미 부서빙셀 또는 비서빙셀(non-ServingCell) 상의 CSS를 모니터링 할 수 있기 때문이다. If the performance information indicating that the MBMS can be supported is displayed as "supported", the terminal expects to monitor the CSS on the secondary serving cell in order to receive a group TPC command on the PUCCH (SCell) later. This is because the terminal can already monitor the CSS on the secondary serving cell or non-serving cell (non-ServingCell).
다른 예로서, 단말의 MBMS 지원 가능 여부와 무관하게, 단말이 PUCCH(SCell)를 지원하는 경우(또는 PUCCH(SCell)이 구성된 경우), 단말은 묵시적으로 PDCCH2를 수신하기 위해 부서빙셀상의 CSS를 모니터링할 수 있다. 이 경우, 기지국 또한 묵시적으로 PDCCH2를 부서빙셀상의 CSS에 맵핑하여 단말로 전송한다. As another example, regardless of whether the UE supports MBMS, when the UE supports PUCCH (SCell) (or when PUCCH (SCell) is configured), the UE implicitly applies CSS on the secondary serving cell to receive PDCCH2. Can be monitored. In this case, the base station also implicitly maps PDCCH2 to CSS on the secondary serving cell and transmits it to the terminal.
도 9는 일 실시예에 따른 TPC 인덱스와 그룹 TPC 명령의 대응관계에 관한 예시이다. 9 illustrates an example of a correspondence relationship between a TPC index and a group TPC command, according to an exemplary embodiment.
도 9를 참조하면, 기지국은 상위계층 시그널링으로 설정되는 TPC 인덱스 값을 각각의 단말에게 공통된 값으로 설정할 수 있다. 다시 말해, 도 4에서와 달리 TPC 인덱스 값을 각 단말에게 다르게 설정하지 않고 그 값을 공유할 수 있다. 이 방법은 PUCCH(SCell)이 설정된 새로운 단말들에게만 유효한 방법으로 레거시(legacy) 단말과 같은 DCI 포맷으로 지시되는 경우(도 5) 또는 PUCCH(SCell)을 전용해 다른 DCI를 통해 지시하는 경우(도 6, 도 7 또는 도 8)에 모두 적용 가능하다. 구체적인 방법은 다음과 같다.Referring to FIG. 9, the base station may set a TPC index value set by higher layer signaling to a value common to each terminal. In other words, unlike FIG. 4, the TPC index value may be shared without setting the TPC index value differently for each UE. This method is valid only for new terminals configured with a PUCCH (SCell) and is indicated in the same DCI format as a legacy terminal (FIG. 5) or when a PUCCH (SCell) is designated through another DCI (FIG. 5). 6, 7 or 8) can be applied. The specific method is as follows.
레거시 단말인 UE 2/4/5는 종래와 같이 설정되고 새로운 단말인 UE 1/7/8과 UE6/10/11/12는 각각 TPC 인덱스 값을 같은 값으로 설정된다. 그리고 기지국은 그 단말들 사이(e.g. UE1/7/8또는 UE6/10/11/12)에는 시간으로 구별하여 전력값을 제공할 수 있다. 시간을 구분하기 위한 수학식은 다음과 같다. The legacy terminal UE 2/4/5 is configured as in the prior art, and the new terminals UE 1/7/8 and UE6 / 10/11/12 are each set to the same value of the TPC index. The base station may provide a power value by distinguishing the time between the terminals (e.g. UE1 / 7/8 or UE6 / 10/11/12). The equation for classifying time is as follows.
수학식 2
Figure PCTKR2015013575-appb-M000002
Equation 2
Figure PCTKR2015013575-appb-M000002
수학식 2를 참조하면, K값은 하나의 TPC 인덱스를 공유하는 단말의 수이다. 본 예시에서는 K=3또는 K=4가 될 수 있다. 예를 들어K=3인UE 1/7/8에서는 기지국은 사전에 UE1에게i=0을 설정하고, UE7에게i=1을 설정하며, UE8에게i=2를 설정하여 서브프레임 별로 3개의 단말에게 각각 다른 TPC 인덱스 값을 제공할 수 있다. 각각의 i값에 해당하는 서브프레임을 통해 각 단말은 동일한 TPC필드내의 비트값을 공유해서 사용할 수 있다. 이에 따르면, TPC 인덱스 값을 보다 효율적으로 활용하여 그룹 TPC 명령값을 제공할 수 있다.Referring to Equation 2, K value is the number of terminals sharing one TPC index. In this example, K = 3 or K = 4. For example, in UE 1/7/8 where K = 3, the base station sets i = 0 to UE1, i = 1 for UE7, and i = 2 for UE8, so that three UEs are provided per subframe. Different TPC index values can be provided to the. Each terminal can share a bit value in the same TPC field through a subframe corresponding to each i value. According to this, the group TPC command value can be provided by utilizing the TPC index value more efficiently.
도 10은 일 실시예에 따른 단말과 기지국을 도시한 블록도이다.10 is a block diagram illustrating a terminal and a base station according to an embodiment.
도 10을 참조하면, 단말(1000)은 프로세서(processor, 1010), RF부(RF(radio frequency) unit, 1020) 및 메모리(memory, 1025)를 포함한다. 메모리(1025)는 프로세서(1010)와 연결되어, 프로세서(1010)를 구동하기 위한 다양한 정보를 저장한다. RF부(1020)는 프로세서(1010)와 연결되어, 무선 신호를 송신 및/또는 수신한다. Referring to FIG. 10, the terminal 1000 includes a processor 1010, an RF unit 1020, and a memory 1025. The memory 1025 is connected to the processor 1010 and stores various information for driving the processor 1010. The RF unit 1020 is connected to the processor 1010 and transmits and / or receives a radio signal.
RF부(1020)는 기지국(1050)으로부터 TPC 인덱스(index)를 부여하는 상위계층의 메시지를 수신한다. TPC 인덱스의 정의 및 기능은 단계 S300에서 설명된 바와 같다. 상기 상위계층의 메시지는 RRC 메시지일 수 있다. 예를 들어 RRC 메시지는 표 1과 같이 TPC-PDCCH-Config으로서, PUCCH와 PUSCH의 전력 제어를 위한 인덱스들과 RNTI들을 특정하는데 사용된다. 상기 PUCCH와 PUSCH의 전력 제어는 TPC-PDCCH-Config을 사용하여 설정되거나 해제될 수 있다. 제1 TPC 인덱스와 제2 TPC 인덱스는 기지국(1050)의 프로세서(1060)에 의해 독립적, 개별적으로 설정될 수도 있고, 서로 연관되거나 동일하게 설정될 수도 있다. The RF unit 1020 receives a message of a higher layer that gives a TPC index from the base station 1050. The definition and function of the TPC index is as described in step S300. The upper layer message may be an RRC message. For example, the RRC message is TPC-PDCCH-Config, as shown in Table 1, and is used to specify indexes and RNTIs for power control of PUCCH and PUSCH. Power control of the PUCCH and PUSCH may be set or released using TPC-PDCCH-Config. The first TPC index and the second TPC index may be set independently or individually by the processor 1060 of the base station 1050, or may be set to be associated with or the same as each other.
프로세서(1010)는 본 명세서의 도 2 내지 도 8에서 제안된 단말의 기능, 과정 및/또는 방법을 구현한다. The processor 1010 implements the functions, processes, and / or methods of the terminal proposed in FIGS. 2 to 8 of the present specification.
구체적으로, RF부(1020)가 상위계층 메시지를 수신하면, 프로세서(1010)는 주서빙셀과 부서빙셀에 관한 TPC 설정을 완료한다. 그리고 프로세서(1010)는 PUCCH(PCell)에 대한 TPC 명령을 위한 TPC 인덱스로서 TPC-Index 필드를 사용하고, PUCCH(SCell)에 대한 TPC 명령을 위한 TPC 인덱스로서 TPC-Index_r13 필드를 사용한다. 즉 프로세서(1010)는 주서빙셀에 관한 TPC 인덱스와 부서빙셀에 관한 TPC 인덱스를 구분할 수 있다. 프로세서(1010)는 2개의 TPC 인덱스들을 사용하여 PUCCH(PCell)와 PUCCH(SCell) 전송에 대한 전력제어를 수행할 수 있다. Specifically, when the RF unit 1020 receives the higher layer message, the processor 1010 completes the TPC setting for the primary serving cell and the secondary serving cell. The processor 1010 uses the TPC-Index field as the TPC index for the TPC command for the PUCCH (PCell), and uses the TPC-Index_r13 field as the TPC index for the TPC command for the PUCCH (SCell). That is, the processor 1010 may distinguish the TPC index of the primary serving cell from the TPC index of the secondary serving cell. The processor 1010 may perform power control for PUCCH (PCell) and PUCCH (SCell) transmission using two TPC indexes.
또한, RF부(1020)는 그룹 TPC 명령을 기지국(1050)으로부터 수신한다. 그룹 TPC 명령은 DCI에 포함되어 수신된다. 그룹 TPC 명령에 관한 정의 및 기능, 구조는 단계 S305에서 설명된 바와 같다. 프로세서(1010)이 PUCCH(PCell)에 대한 전력 제어와 PUCCH(SCell)에 대한 전력 제어를 모두 수행하기 위하여, 단계 S305에서 다양한 실시예의 그룹 TPC 명령이 사용될 수 있다. 그룹 TPC 명령의 전송 방법은 도 5 내지 도 8의 실시예들이 사용될 수 있다. In addition, the RF unit 1020 receives a group TPC command from the base station 1050. The group TPC command is included in the DCI and received. Definitions, functions, and structures regarding the group TPC command are as described in step S305. In order to the processor 1010 to perform both power control for the PUCCH (PCell) and power control for the PUCCH (SCell), the group TPC command of various embodiments may be used in step S305. 5 to 8 may be used as a method of transmitting a group TPC command.
일례로서, 프로세서(1010)는 PUCCH(SCell)에 TPC 명령을 수신하기 위해 주서빙셀의 CSS에 대한 모니터링을 수행한다. In one example, the processor 1010 monitors the CSS of the primary serving cell to receive a TPC command to the PUCCH (SCell).
다른 예로서, 프로세서(1010)는 PUCCH(SCell)에 TPC 명령을 수신하기 위해 TPC-PUCCH-SCell RNTI를 사용하여 주서빙셀의 CSS에 대한 모니터링을 수행한다. As another example, the processor 1010 monitors the CSS of the primary serving cell using the TPC-PUCCH-SCell RNTI to receive a TPC command to the PUCCH (SCell).
또 다른 예로서, 프로세서(1010)는 MBMS를 지원 가능함을 지시하는 성능 정보를 생성하여 RF부(1020)으로 보내고, RF부(1020)는 표 2와 같은 메시지를 기지국(1050)으로 전송할 수 있다. 그리고 프로세서(1010)는 단말은 MBMS의 수신을 위해 부서빙셀의 CSS를 모니터링하되, PUCCH(SCell)에 관한 그룹 TPC 명령에 관한 PDCCH2를 상기 부서빙셀상의 CSS에서 함께 모니터링한다. As another example, the processor 1010 may generate performance information indicating that the MBMS can be supported and transmit the performance information to the RF unit 1020, and the RF unit 1020 may transmit a message as shown in Table 2 to the base station 1050. . The processor 1010 monitors the CSS of the secondary serving cell to receive the MBMS, but monitors the PDCCH2 regarding the group TPC command on the PUCCH (SCell) together in the CSS on the secondary serving cell.
다른 예로서, 프로세서(1010)는 단말(1000)의 MBMS 지원 가능 여부와 무관하게, 단말(1000)이 PUCCH(SCell)를 지원하는 경우(또는 PUCCH(SCell)이 구성된 경우), 묵시적으로 PDCCH2를 수신하기 위해 부서빙셀상의 CSS를 모니터링할 수 있다.As another example, the processor 1010 implicitly selects the PDCCH2 when the terminal 1000 supports the PUCCH (SCell) (or when the PUCCH (SCell) is configured), regardless of whether the terminal 1000 supports MBMS. You can monitor the CSS on the secondary serving cell to receive it.
모니터링에 의해 그룹 TPC 명령을 수신하면, 프로세서(1010)는 그룹 TPC 명령에 기반하여 주서빙셀과부서빙셀에서의 PUCCH 및 PUSCH의 전력제어를 수행한다. 구체적으로, 프로세서(1010)는 누적적 전력 제어모드(accumulative power control mode)에 기반하여 부서빙셀의 PUCCH에 대한 전력 제어를 수행할 수 있다. 예를 들어, PUCCH가 구성된 부서빙셀을 위한 그룹 TPC 명령이 수신되면, 프로세서(1010)는 그룹 TPC 명령에 따른 PUCCH의 전력 제어값을 직전 값에 누적하여 연산한다. Upon receiving the group TPC command by monitoring, the processor 1010 performs power control of the PUCCH and the PUSCH in the primary and secondary serving cells based on the group TPC command. In detail, the processor 1010 may perform power control on the PUCCH of the secondary serving cell based on an cumulative power control mode. For example, when a group TPC command for the secondary serving cell configured with the PUCCH is received, the processor 1010 accumulates the power control value of the PUCCH according to the group TPC command to the previous value.
RF부(1065)는 단말(1000)로부터 그룹 TPC 명령에 의해 제어된 전력에 따라 PUCCH(PCell) 및/또는 PUCCH(SCell)를 기지국(1050)으로 전송한다. The RF unit 1065 transmits the PUCCH (PCell) and / or the PUCCH (SCell) from the terminal 1000 to the base station 1050 according to the power controlled by the group TPC command.
기지국(1050)은 메모리(1055), 프로세서(1060) 및 RF부(RF(radio frequency) unit, 1065)를 포함한다. 메모리(1055)는 프로세서(1060)와 연결되어, 프로세서(1060)를 구동하기 위한 다양한 정보를 저장한다. RF부(1065)는 프로세서(1060)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 구체적으로 RF부(1065)는 TPC 인덱스(index)를 부여하는 상위계층의 메시지를 단말(1000)로 전송한다. 또한 RF부(1065)는 그룹 TPC 명령을 주서빙셀 및/또는 부서빙셀상에서 단말(1000)로 전송한다. 예컨대, RF부(1065)는 단일 그룹 TPC 명령을 포함하는 DCI를 TPC-PUCCH RNTI에 의해 스크램블된 PDCCH에 맵핑하여 주서빙셀상에서 전송할 수 있다. 또한 RF부(1065)는 단말(1000)로부터 표 2와 같은 MBMS에 관련된 성능 정보를 수신한다. 또한 RF부(1065)는 단말(1000)로부터 PUCCH(PCell) 및/또는 PUCCH(SCell)를 수신한다. The base station 1050 includes a memory 1055, a processor 1060, and a radio frequency (RF) unit 1065. The memory 1055 is connected to the processor 1060 and stores various information for driving the processor 1060. The RF unit 1065 is connected to the processor 1060 and transmits and / or receives a radio signal. In detail, the RF unit 1065 transmits a message of a higher layer that provides a TPC index to the terminal 1000. In addition, the RF unit 1065 transmits a group TPC command to the terminal 1000 on the main serving cell and / or the secondary serving cell. For example, the RF unit 1065 may map a DCI including a single group TPC command to the PDCCH scrambled by the TPC-PUCCH RNTI and transmit it on the primary serving cell. In addition, the RF unit 1065 receives performance information related to MBMS shown in Table 2 from the terminal 1000. In addition, the RF unit 1065 receives a PUCCH (PCell) and / or a PUCCH (SCell) from the terminal 1000.
프로세서(1060)는 본 명세서의 도 2 내지 도 8의 기지국에 관한 기능, 과정 및/또는 방법을 구현한다. The processor 1060 implements the functions, processes, and / or methods related to the base stations of FIGS. 2-8 herein.
일례로서, 프로세서(1060)는 2개의 PUCCH(PCell)과 PUCCH(SCell)의 전력 제어를 위한 하나의 DCI를 생성하고, 상기 생성된 DCI를 포함하는 PDCCH를 TPC-PUCCH RNTI로 스크램블하며, 스크램블된 PDCCH를 주서빙셀의 CSS에 맵핑한다. As an example, the processor 1060 generates one DCI for power control of two PUCCHs (PCells) and a PUCCH (SCell), scrambles the PDCCH including the generated DCIs with a TPC-PUCCH RNTI, and scrambles The PDCCH is mapped to the CSS of the main serving cell.
다른 예로서, 프로세서(1060)는 PUCCH(PCell)의 전력 제어를 위한 제1 DCI를 생성하고, PUCCH(SCell)의 전력 제어를 위한 제2 DCI를 생성한다. 이때 프로세서(1060)는 제2 DCI에 주서빙셀을 지시하는 CIF를 포함시킨다. 프로세서(1060)는 제1 DCI를 포함하는 PDCCH1을 TPC-PUCCH RNTI로 스크램블하며, 제2 DCI를 포함하는 PDCCH2를 TPC-PUCCH RNTI로 스크램블한다. 그리고 프로세서(1060)는 스크램블된 PDCCH1 및 PDCCH2를 모두 주서빙셀의 CSS에 맵핑한다. As another example, the processor 1060 generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell). At this time, the processor 1060 includes a CIF indicating the primary serving cell in the second DCI. The processor 1060 scrambles PDCCH1 including the first DCI with the TPC-PUCCH RNTI, and scrambles PDCCH2 including the second DCI with the TPC-PUCCH RNTI. The processor 1060 maps the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell.
또 다른 예로서, 프로세서(1060)는 PUCCH(PCell)의 전력 제어를 위한 제1 DCI를 생성하고, PUCCH(SCell)의 전력 제어를 위한 제2 DCI를 생성한다. 프로세서(1060)는 제1 DCI를 포함하는 PDCCH1을 TPC-PUCCH RNTI로 스크램블하며, 제2 DCI를 포함하는 PDCCH2를 TPC-PUCCH-SCell RNTI로 스크램블한다. 그리고 프로세서(1060)는 스크램블된 PDCCH1 및 PDCCH2를 모두 주서빙셀의 CSS에 맵핑한다. As another example, the processor 1060 generates a first DCI for power control of the PUCCH (PCell), and generates a second DCI for power control of the PUCCH (SCell). The processor 1060 scrambles PDCCH1 including the first DCI with the TPC-PUCCH RNTI, and scrambles PDCCH2 including the second DCI with the TPC-PUCCH-SCell RNTI. The processor 1060 maps the scrambled PDCCH1 and PDCCH2 to the CSS of the main serving cell.
또 다른 예로서, 프로세서(1060)는 TPC-PUCCH RNTI로 스크램블된 PDCCH1를 주서빙셀상의 CSS에 맵핑하고, TPC-PUCCH RNTI로 스크램블된 PDCCH2를 부서빙셀상의 CSS에 맵핑한다. 이는 단말(1000)로부터 MBMS를 지원 가능함을 지시하는 성능정보를 RF부(1060)가 수신한 경우이다. As another example, the processor 1060 maps the PDCCH1 scrambled with the TPC-PUCCH RNTI to the CSS on the main serving cell, and the PDCCH2 scrambled with the TPC-PUCCH RNTI to the CSS on the secondary serving cell. This is a case where the RF unit 1060 receives performance information indicating that the MBMS can be supported from the terminal 1000.
상술한 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 본 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.The above-described processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit and / or a data processing device. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The RF unit may include a baseband circuit for processing a radio signal. When the present embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Claims (16)

  1. 복수의 서빙셀(serving cell)에 기반한 반송파 집성을 지원하는 단말에 의한 전력 제어방법으로서, A power control method by a terminal supporting carrier aggregation based on a plurality of serving cells,
    주서빙셀(primary serving cell: PCell)상에서의 상향링크 제어채널(이하 PUCCH(PCell))에 관한 제1 전송전력 제어(transmission power control: TPC) 인덱스와, 부서빙셀(secondary serving cell: SCell)상에서의 상향링크 제어채널(이하 PUCCH(SCell))에 관한 제2 TPC 인덱스를 포함하는 상위계층 메시지를 기지국으로부터 수신하는 단계; A first transmission power control (TPC) index for an uplink control channel (hereinafter referred to as PUCCH (PCell)) on a primary serving cell (PCell) and a secondary serving cell (SCell) Receiving an upper layer message from a base station including a second TPC index on an uplink control channel (hereinafter, referred to as PUCCH (SCell)) on a base station;
    상기 제1 TPC 인덱스에 대응하는 제1 TPC 명령과 상기 제2 TPC 인덱스에 대응하는 제2 TPC 명령을 상기 기지국으로부터 수신하는 단계; 및Receiving a first TPC command corresponding to the first TPC index and a second TPC command corresponding to the second TPC index from the base station; And
    상기 제1 TPC 명령에 기반하여 상기 PUCCH(PCell)의 전력을 제어하고, 상기 제2 TPC 명령에 기반하여 상기 PUCCH(SCell)의 전력을 제어하는 단계를 포함하는 전력 제어방법. Controlling the power of the PUCCH (PCell) based on the first TPC command, and controlling the power of the PUCCH (SCell) based on the second TPC command.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제1 TPC 명령과 상기 제2 TPC 명령은 하나의 DCI(downlink control information)에 포함되어 상기 기지국으로부터 수신됨을 특징으로 하는, 전력 제어방법. Wherein the first TPC command and the second TPC command are included in one downlink control information (DCI) and received from the base station.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 DCI는 상기 주서빙셀상의 공통검색공간상에 맵핑되어 수신됨을 특징으로 하는, 전력 제어방법. And the DCI is mapped and received on a common search space on the main serving cell.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 제1 TPC 명령은 제1 DCI에 포함되어 상기 기지국으로부터 수신되고, 과 상기 제2 TPC 명령은 제2 DCI에 포함되어 상기 기지국으로부터 수신됨을 특징으로 하는, 전력 제어방법. Wherein the first TPC command is included in a first DCI and received from the base station, and the second TPC command is included in a second DCI and received from the base station.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제1 DCI 및 제2 DCI는 상기 주서빙셀상의 공통검색공간상에 맵핑되어 수신됨을 특징으로 하는, 전력 제어방법. And the first DCI and the second DCI are mapped and received on a common search space on the main serving cell.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제1 DCI에 관한 PDCCH와 상기 제2 DCI에 관한 PDCCH는 동일한 RNTI(radio network temporary indentifier)에 의해 스크램블되고, The PDCCH for the first DCI and the PDCCH for the second DCI are scrambled by the same radio network temporary indentifier (RNTI),
    상기 제2 DCI는 상기 부서빙셀을 지시하는 CIF(carrier indicator field)를 포함하는 것을 특징으로 하는, 전력 제어방법. The second DCI comprises a carrier indicator field (CIF) indicating the secondary serving cell, power control method.
  7. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제1 DCI에 관한 PDCCH와 상기 제2 DCI에 관한 PDCCH는 서로 다른 동일한 RNTI에 의해 스크램블되는 것을 특징으로 하는, 전력 제어방법. And the PDCCH for the first DCI and the PDCCH for the second DCI are scrambled by different identical RNTIs.
  8. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제1 DCI는 상기 주서빙셀상의 공통검색공간상에 맵핑되어 수신되고, The first DCI is received mapped on the common search space on the main serving cell,
    상기 제2 DCI는 상기 부서빙셀상의 공통검색공간상에 맵핑되어 수신됨을 특징으로 하는, 전력 제어방법. And the second DCI is mapped and received on a common search space on the secondary serving cell.
  9. 복수의 서빙셀(serving cell)에 기반한 반송파 집성을 지원하는 전력 제어 장치에 있어서, A power control apparatus supporting carrier aggregation based on a plurality of serving cells,
    기지국으로부터 상위 계층 메시지 및 TPC 명령 메시지를 수신하는 RF부와, An RF unit for receiving an upper layer message and a TPC command message from a base station;
    상기 수신된 메시지로부터 주서빙셀(primary serving cell: PCell)상에서의 상향링크 제어채널(이하 PUCCH(PCell))에 관한 제1 전송전력 제어(transmission power control: TPC) 인덱스와, 부서빙셀(secondary serving cell: SCell)상에서의 상향링크 제어채널(이하 PUCCH(SCell))에 관한 제2 TPC 인덱스를 확인하고, 상기 제1 TPC 인덱스에 대응하는 제1 TPC 명령과 상기 제2 TPC 인덱스에 대응하는 제2 TPC 명령을 확인하여, 상기 제1 TPC 명령에 기반하여 상기 PUCCH(PCell)의 전력을 제어하고, 상기 제2 TPC 명령에 기반하여 상기 PUCCH(SCell)의 전력을 제어하는 프로세서를 포함하는 전력 제어 장치. A first transmission power control (TPC) index for an uplink control channel (hereinafter referred to as PUCCH (PCell)) on a primary serving cell (PCell) from the received message, and a secondary serving cell serving cell: identifying a second TPC index on an uplink control channel (hereinafter, referred to as a PUCCH (SCell)) on a SCell, and a first TPC command corresponding to the first TPC index and a second TPC index corresponding to the second TPC index. A power control including a processor that checks a 2 TPC command, controls power of the PUCCH (PCell) based on the first TPC command, and controls power of the PUCCH (SCell) based on the second TPC command Device.
  10. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    상기 제1 TPC 명령과 상기 제2 TPC 명령을 포함하는 하나의 DCI(downlink control information)에 확인하여 전력제어를 수행함을 특징으로 하는 전력 제어 장치.And controlling power by checking one downlink control information (DCI) including the first TPC command and the second TPC command.
  11. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    상기 주서빙셀상의 공통검색공간상에 맵핑되어 있는 상기 DCI를 수신하여 확인함을 특징으로 하는, 전력 제어장치. And receiving and confirming the DCI mapped on the common search space on the main serving cell.
  12. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    제1 DCI에 포함되어 있는 상기 제1 TPC 명령을 상기 기지국으로부터 수신하여 확인하고, 제2 DCI에 포함되어 있는 상기 제2 TPC 명령은 상기 기지국으로부터 수신하여 확인함 특징으로 하는, 전력 제어장치. And receiving and confirming the first TPC command included in a first DCI from the base station, and confirming and receiving the second TPC command included in a second DCI from the base station.
  13. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    상기 주서빙셀상의 공통검색공간상에 맵핑되어 있는 상기 제1 DCI 및 제2 DCI는 수신하여 확인함을 특징으로 하는, 전력 제어장치. And receiving and confirming the first DCI and the second DCI mapped to the common search space on the main serving cell.
  14. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    상기 제1 DCI에 관한 PDCCH와 상기 제2 DCI에 관한 PDCCH가 동일한 RNTI(radio network temporary indentifier)에 의해 스크램블되고, The PDCCH for the first DCI and the PDCCH for the second DCI are scrambled by the same radio network temporary indentifier (RNTI),
    상기 제2 DCI는 상기 부서빙셀을 지시하는 CIF(carrier indicator field)를 포함함을 확인하는 것을 특징으로 하는, 전력 제어장치. And confirming that the second DCI includes a carrier indicator field (CIF) indicating the secondary serving cell.
  15. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    상기 제1 DCI에 관한 PDCCH와 상기 제2 DCI에 관한 PDCCH는 서로 다른 동일한 RNTI에 의해 스크램블되는 것을 확인함을 특징으로 하는, 전력 제어장치. And determining that the PDCCH for the first DCI and the PDCCH for the second DCI are scrambled by different identical RNTIs.
  16. 제 9항에 있어서, 상기 프로세서는, The processor of claim 9, wherein the processor comprises:
    상기 주서빙셀상의 공통검색공간상에 맵핑되어 있는 상기 제1 DCI를 확인하고Identify the first DCI mapped on the common search space on the primary serving cell
    상기 부서빙셀상의 공통검색공간상에 맵핑되어 있는 상기 제2 DCI를 확인함을 특징으로 하는, 전력 제어장치. And identifying the second DCI mapped on the common search space on the secondary serving cell.
PCT/KR2015/013575 2015-01-30 2015-12-11 Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation WO2016122111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0015415 2015-01-30
KR1020150015415A KR102206361B1 (en) 2015-01-30 2015-01-30 Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation

Publications (1)

Publication Number Publication Date
WO2016122111A1 true WO2016122111A1 (en) 2016-08-04

Family

ID=56543679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013575 WO2016122111A1 (en) 2015-01-30 2015-12-11 Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation

Country Status (2)

Country Link
KR (1) KR102206361B1 (en)
WO (1) WO2016122111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073976A (en) * 2008-12-23 2010-07-01 엘지전자 주식회사 Method and appratus of controlling uplink transmission power
US20110250918A1 (en) * 2010-04-07 2011-10-13 Yu-Chih Jen Communication device and method thereof
KR20110123199A (en) * 2010-05-06 2011-11-14 엘지전자 주식회사 Apparatus and method of transmitting control information in wireless communication system
WO2013048570A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Uplink power control signaling with carrier aggregation
WO2014077607A1 (en) * 2012-11-14 2014-05-22 엘지전자 주식회사 Method for operating terminal in carrier aggregation system, and apparatus using said method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073976A (en) * 2008-12-23 2010-07-01 엘지전자 주식회사 Method and appratus of controlling uplink transmission power
US20110250918A1 (en) * 2010-04-07 2011-10-13 Yu-Chih Jen Communication device and method thereof
KR20110123199A (en) * 2010-05-06 2011-11-14 엘지전자 주식회사 Apparatus and method of transmitting control information in wireless communication system
WO2013048570A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Uplink power control signaling with carrier aggregation
WO2014077607A1 (en) * 2012-11-14 2014-05-22 엘지전자 주식회사 Method for operating terminal in carrier aggregation system, and apparatus using said method

Also Published As

Publication number Publication date
KR20160094164A (en) 2016-08-09
KR102206361B1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US9503990B2 (en) Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation
WO2015142125A1 (en) Method for controlling tpc command timing based on consideration of tdd-fdd aggregation and device therefor
WO2012150822A2 (en) Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
WO2014123335A1 (en) Method and apparatus for performing resource allocation in wireless communication system
WO2015170934A1 (en) Method and apparatus for controlling transmission power in wireless communication system
WO2013105832A1 (en) Method for receiving downlink control signal, user equipment, method for transmitting downlink control signal and base station
WO2012150823A2 (en) Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
WO2012138154A2 (en) Method and device for transmitting random access and other uplink channels of other cell in mobile communication system carrier aggregation
WO2014175638A1 (en) Method and apparatus for controlling data transmission in wireless communication system
WO2013141546A1 (en) Method and wireless device for transmitting data packet
WO2014046457A1 (en) Method and apparatus for performing uplink transmission in a wireless communication system
WO2013015637A2 (en) Method for transmitting uplink signal, user equipment, method for receiving uplink signal, and base station
WO2010011104A2 (en) Method and apparatus of receiving data in wireless communication system
WO2014025228A1 (en) Method and apparatus for supporting burst transmission in a wireless communication system
WO2015002516A1 (en) Method and device for acquiring control information in wireless communication system
WO2009116824A1 (en) Monitoring control channel in wireless communication system
WO2012108688A2 (en) Method and apparatus for monitoring scheduling information
WO2018048273A1 (en) Signal transmission method for v2x communication in wireless communication system and device therefor
WO2012060671A2 (en) Method and device for activating secondary carrier in wireless communication system for using carrier aggregation technique
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2013168960A1 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in wireless communication system
WO2013125871A1 (en) Communication method for user equipment and user equipment, and communication method for base station and base station
WO2018084382A1 (en) Method for transmitting sr in wireless communication system and terminal therefor
WO2015020501A1 (en) Method and apparatus for requesting scheduling in cellular mobile communication system
WO2015005724A1 (en) Communication method and wireless device for supporting variable bandwidth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15880291

Country of ref document: EP

Kind code of ref document: A1