WO2016122110A1 - Method and device for performing communication through unlicensed band in wireless communication system - Google Patents

Method and device for performing communication through unlicensed band in wireless communication system Download PDF

Info

Publication number
WO2016122110A1
WO2016122110A1 PCT/KR2015/013572 KR2015013572W WO2016122110A1 WO 2016122110 A1 WO2016122110 A1 WO 2016122110A1 KR 2015013572 W KR2015013572 W KR 2015013572W WO 2016122110 A1 WO2016122110 A1 WO 2016122110A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
scell
serving cell
unlicensed band
terminal
Prior art date
Application number
PCT/KR2015/013572
Other languages
French (fr)
Korean (ko)
Inventor
박동현
권기범
Original Assignee
주식회사 아이티엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티엘 filed Critical 주식회사 아이티엘
Publication of WO2016122110A1 publication Critical patent/WO2016122110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for performing communication on an unlicensed band in a wireless communication system.
  • the access method in the existing licensed band cannot be applied as it is, and the radio frame structure in the unlicensed band may be different from the radio frame structure in the licensed band.
  • the present invention relates to a method and apparatus for performing communication on an unlicensed band in a wireless communication system.
  • Another technical problem of the present invention is to provide an unlicensed band resource management method and apparatus in a wireless communication system.
  • Another technical problem of the present invention is to provide a method and apparatus for utilizing unlicensed band resources in support of licensed band communication.
  • Another technical problem of the present invention is to provide a method and apparatus for indicating the occupancy of the unlicensed band to the terminal.
  • Another technical problem of the present invention is to provide a method and apparatus for a terminal to monitor an unlicensed band.
  • LAA License Assisted Access
  • the communication method includes performing an RRC connection reconfiguration procedure for configuring an unlicensed band carrier as an SCell for a terminal, transmitting an activation indicator for the configured SCell to the terminal, and obtaining a channel for the SCell.
  • Performing channel generating channel acquisition information indicating at least one of channel acquisition and acquired subframes for the SCell based on the channel acquisition procedure, and generating the generated channel acquisition information on the SCell. Characterized in that it comprises the step of transmitting to the terminal.
  • LAA License Assisted Access
  • the method includes performing an RRC connection reconfiguration procedure for configuring an unlicensed band carrier as an SCell, receiving an activation indicator for the configured SCell from the base station on a first subframe, based on the activation indicator Transitioning an SCell to an active state, and receiving channel acquisition information indicating at least one of channel acquisition and acquired subframes for the SCell from the base station.
  • performing license assisted access (LAA) based communication in a wireless communication system supporting carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band It provides a terminal.
  • the terminal includes a processor for performing an RRC connection reconfiguration procedure for configuring the carrier in the unlicensed band as an SCell, and an RF unit for receiving an activation indicator for the configured SCell from the base station on a first subframe.
  • the SCell transitions to an active state based on the activation indicator, and the RF unit receives channel acquisition information indicating at least one of channel acquisition for the SCell and acquired subframes from the base station.
  • data transmission in addition to performing data transmission and reception through a licensed band in a wireless communication system, data transmission can be performed through an unlicensed band, thereby improving transmission efficiency.
  • carrier aggregation between a carrier in a licensed band and a carrier in an unlicensed band can be smoothly supported.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 shows examples of a LAA deployment scenario to which the present invention is applied.
  • FIG 3 shows an example of timing for an FBE according to the present invention.
  • FIG. 4 shows an example of a LAA based communication operation flow diagram according to the present invention.
  • FIG. 5 is a diagram exemplarily illustrating a case in which CA sets of different carriers are configured according to respective terminals.
  • FIG. 6 is an example of a MAC CE structure including an activation / deactivation indicator.
  • FIG. 7 is a diagram schematically illustrating a LAA operation according to a layer according to the present invention.
  • FIG 9 shows an example in which the UE performs CSI reporting according to the above-described other embodiment.
  • FIG. 10 illustrates an example of a SCell deactivation timer related operation according to an embodiment described above.
  • FIG. 11 is a flowchart illustrating an example of an LAA based communication operation performed by a LAA base station according to the present invention.
  • FIG. 12 is a flowchart illustrating an example of an LAA based communication operation performed by a terminal according to the present invention.
  • FIG. 13 is an example of a block diagram illustrating a LAA supporting base station and a terminal according to the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be performed in a terminal included in the network.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station 11 (evolved-NodeB, eNB). Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c. The cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 may be referred to by other terms such as a base station (BS), a base transceiver system (BTS), an access point, an femto base station, a home node B, a relay, and the like.
  • a cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
  • downlink means communication from the base station 11 to the terminal 12
  • uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • Carrier aggregation supports a plurality of carriers, also referred to as spectrum aggregation or bandwidth aggregation. Individual unit carriers bound by carrier aggregation are called component carriers (CCs).
  • the serving cell may be defined as an element frequency band that may be aggregated by carrier aggregation based on a multiple component carrier system.
  • the serving cell includes a primary serving cell (PCell) and a secondary serving cell (SCell).
  • the primary serving cell is one that provides security input and non-access stratum (NAS) mobility information in a radio resource control (RRC) establishment or reestablishment state. It means a serving cell.
  • NAS radio resource control
  • At least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell.
  • the set of serving cells configured for one terminal may consist of only one main serving cell or one main serving cell and at least one secondary serving cell.
  • the downlink component carrier corresponding to the main serving cell is referred to as a downlink primary carrier (DL PCC), and the uplink component carrier corresponding to the main serving cell is referred to as an uplink major carrier (UL PCC).
  • DL PCC downlink primary carrier
  • UL PCC uplink major carrier
  • the component carrier corresponding to the secondary serving cell is called a downlink sub-component carrier (DL SCC)
  • DL SCC downlink sub-component carrier
  • UL SCC uplink sub-component carrier
  • Only one DL CC may correspond to one serving cell, and a DL CC and a UL CC may correspond together.
  • the small cell serves a smaller area than the macro cell, it is advantageous to the macro cell in terms of the throughput that can be provided for a single terminal.
  • the small cells as described above are actively used, but more frequency is urgently needed to improve performance.
  • the present invention proposes a method for performing wireless communication in an unlicensed band in consideration of support / management / operation of a licensed band communication technique for smoothly supporting wireless communication in an unlicensed band.
  • LAA Low-power Assisted Access
  • an established SCell on the unlicensed band may be located within macro coverage, or may be located outside of macro coverage.
  • the SCell set on the unlicensed band may be arranged in an indoor place such as a general home or a specific complex, or may be arranged in an outdoor place.
  • the carriers of the licensed band and the unlicensed band may be co-location or non-co-located with each other.
  • the same location location may mean that a base station operating a carrier of a licensed band and a base station operating a carrier of an unlicensed band are the same base station or adjacent to RF (radio frequency) units.
  • the first base station operating the carriers of the licensed band and the second base station operating the carriers of the unlicensed band are ideally backhauled to support smooth carrier aggregation.
  • the ideal backhaul may generally mean a backhaul having a delay of 2.5 s or less and a capacity of 10 Gbps or more, and the criteria for this may vary according to a communication environment and a wireless communication protocol.
  • FIG. 2 shows examples of a LAA deployment scenario to which the present invention is applied.
  • the number of licensed carriers and unlicensed carriers may be one or more in each scenario.
  • scenario 1 is a case where a macro cell using a licensed carrier F1 (frequency # 1) and a small cell using an unlicensed carrier F3 are connected by carrier aggregation (CA).
  • CA carrier aggregation
  • the macro cell and the small cell may be non-co-located with each other, and may be connected to each other by an ideal backhaul.
  • the small cell may be RRH.
  • scenario 2 is a case in which small cell # 1 using a licensed carrier F2 outside of macro cell coverage and small cell # 2 using an unlicensed carrier F3 are connected by carrier aggregation.
  • the small cell # 1 and the small cell # 2 may be co-located with each other, and thus an ideal backhaul may be assumed.
  • scenario 3 is a case where there is a macro cell using a licensed carrier F1 and a small cell # 1, and the small cell # 1 and the small cell # 2 using an unlicensed carrier F3 are connected by carrier aggregation.
  • the macro cell and the small cell # 1 may be connected to each other by an ideal or non-ideal backhaul
  • the small cell # 1 and the small cell # 2 may be connected to each other by an ideal backhaul (and co-located).
  • scenario 4 includes a macro cell using a licensed carrier, F1, a small cell # 1 using a licensed carrier, F2, and a small cell # 2 using an unlicensed carrier, and a small cell # 1 and a small cell.
  • # 2 is connected by carrier aggregation.
  • the macro cell and the small cell # 1 may be connected to each other by an ideal or non-ideal backhaul, and the small cell # 1 and the small cell # 2 may be connected to each other by an ideal backhaul (and co-located).
  • the macro cell and the small cell # 1 are ideally backhauled, the macro cell F1, the small cell # 1 (F2), and the small cell # 2 (F3) may be connected by carrier aggregation. .
  • the terminal may establish dual connectivity through two or more base stations among the base stations configuring at least one serving cell.
  • Dual connectivity is an operation in which the terminal consumes radio resources provided by at least two different network points (eg, macro base station and small base station) in a radio resource control connection (RRC_CONNECTED) mode. If dual connectivity is possible, dual connectivity between macro cell and small cell (s) may be configured in the above scenarios.
  • the regulations and standards to be followed in order to use the unlicensed band may be defined differently for each region and country.
  • the nominal channel bandwidth of the unlicensed carrier may be at least 5 MHz.
  • the channel bandwidth occupies substantially 80% to 100% of the nominal channel bandwidth. Therefore, the unlicensed band used in the LAA system for the efficiency of the overall wireless communication system may support at least 10MHz or 20MHz bandwidth, may not support a bandwidth below 5MHz.
  • the channel access mechanism (mechanism) for the unlicensed band includes the following.
  • the channel access mechanism according to the present invention provides opportunistic channel access.
  • a wireless channel device applies a clear channel assessment (CCA) before using the channel. This is to avoid concurrent transmission on the same channel as other RLAN (Radio Local Area Network) systems.
  • the CCA represents a procedure of determining whether the channel is in the state of channel interference or channel occupancy, that is, whether the channel is busy or idle through energy scan or detection of the channel.
  • CCA may be performed based on whether energy was detected during a certain monitoring time.
  • EIRP equivalent isotropic radio power
  • the CCA check may be performed based on "energy detection" for a CCA monitoring time of 20 s or more.
  • the channel access mechanism according to the present invention based on the carrier sense (CS), etc. may be referred to as List Before Talk (LBT).
  • CS carrier sense
  • LBT List Before Talk
  • the ECCA may be used in LBT.
  • the ECCA performs energy scans or detections by the duration of a factor N multiplied by a CCA observation time to determine whether the channel is in channel interference or channel occupancy. May be indicated.
  • the factor N may be a random factor.
  • the factor N may represent the number of clear idle slots. Intact idle slots consequently result in a full idle period, and the idle period needs to be monitored before starting transmission.
  • LBT can be divided into, for example, two kinds of behavior. One is Frame Based Equipment (FBE) and the other is Load Based Equipment (LBE).
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • FIG 3 shows an example of timing for an FBE according to the present invention.
  • the CCA is performed in the FBE and resources that can be obtained through the FBE are defined as one frame structure.
  • an idle period and a channel occupancy time are included in one frame period.
  • the idle period here may be at least 5% of the channel occupation time.
  • the children's period includes CCA (surveillance) time.
  • the CCA time may be, for example, 20 s or more.
  • CCA is performed once in one frame.
  • the (E) CCA check may be performed at any time.
  • the corresponding transmitting node or base station may occupy the channel.
  • the N value is randomly selected within a predetermined interval.
  • the N value is randomly selected from "in the range of 1 to q value" and the q value has a "value between 4 and 32". Where q is a parameter used to determine N (the number of times the channel is idle after CCA).
  • TPC Transmit Power Control
  • many radio equipment using the unlicensed band must perform at least a certain level (for example, 3dB) power control. Through this, interference between wireless devices can be controlled in the unlicensed band.
  • DFS dynamic frequency selection
  • the DFS requirement is based on long period values, the requirement can be met through higher layer signaling such as an SCell deactivation / deconfiguration message.
  • the transmitting node should be able to appropriately select one or some carriers in the unlicensed band in order to reduce fairness and interference between the wireless devices. . This may be called a carrier selection operation (in an unlicensed band).
  • the occupation of radio resources in the unlicensed band is discontinuous.
  • the occupation of radio resources in the unlicensed band should be discontinuous.
  • Discontinuous transmission is required for the LAA system according to the present invention to operate based on a global single framework. Support is required.
  • a LAA system many channels / carriers in an unlicensed band may be selected and used by a base station. For example, for the 5 GHz unlicensed band, as much as 450 MHz in Europe and 580 MHz in the United States may be used as an unlicensed band. Therefore, a large number of carriers can be configured in the unlicensed band and can be considered for a wireless communication scheme such as a CA. Carrier selection described above may also be utilized to maintain a channel usage distribution that is equivalent to efficient radio resource utilization with multiple nodes and other communication technology (eg, WiFi) nodes on this unlicensed band.
  • WiFi wireless communication technology
  • a base station supporting a LAA system may measure channels / carriers in an unlicensed band or request a terminal to measure and report channels / carriers in an unlicensed band.
  • the serving cell (s) in the unlicensed band may be configured through RRC signaling as a serving cell (ie, SCell) capable of potential scheduling with a specific carrier or set of carriers.
  • specific carrier (s) may be set to be occupied by fixedly transmitting nodes. For example, the number of nodes accessing a specific channel / carrier or performing data transmission based on long-term statistics, data load status (overload, medium load, or light load).
  • Specific carrier (s) may be fixedly used in accordance with the operator's policy (e.g., a list of restricted channels / carriers accessible) or related regulations (LBT, DFS, TPC).
  • the present invention proposes a method for performing wireless communication in an unlicensed band in support of a licensed band communication technique to smoothly support wireless communication in an unlicensed band.
  • the present invention proposes how to perform resource management of the unlicensed band, and how to perform wireless communication through the unlicensed band.
  • the present invention proposes a procedure and a signaling method for selecting carriers in an unlicensed band and utilizing resources of the corresponding carriers.
  • FIG. 4 shows an example of a LAA based communication operation flow diagram according to the present invention.
  • the LAA base station performs a carrier selection operation (S400).
  • the carrier selection includes a carrier selection operation in the unlicensed band.
  • the LAA base station can detect the occupancy frequency and the degree of interference of carriers (hereinafter, referred to as "u-carriers") on the unlicensed band.
  • u-carriers the degree of interference of carriers
  • the LAA base station measures information on the occupancy frequency and interference status of each u-carrier according to the LAA network and the WiFi network deployment environment, and measures channel measurement report of the corresponding LAA base station and / or terminals in the cell. You can figure it out. In this case, it is difficult to accurately identify the short-term channel environment, but the frequency of long-term channel utilization can be relatively accurately identified.
  • the LAA base station may select at least one unlicensed carrier in consideration of at least one of the following criteria. For example, the LAA base station may preferentially select idle carrier (s). In addition, the number of u-carriers to be selected may be determined according to traffic loading. For example, the LAA base station currently available at the LAA base station is semi-static in consideration of various conditions such as coordination among operators, regional regulatory requirements, and operator's deployment policy. The entire set of u-carriers may be determined.
  • the LAA base station performs an RRC connection reconfiguration procedure with the terminal (S410).
  • the RRC connection reconfiguration procedure includes a step in which a LAA base station generates an RRC connection reconfiguration message and transmits it to a terminal, and the terminal transmits an RRC connection reconfiguration complete message to the LAA base station.
  • the RRC connection reconfiguration message may be transmitted to the terminal through a PCell using a licensed carrier.
  • the RRC connection reconfiguration message may include secondary cell configuration information regarding the selected unlicensed carriers for the terminal.
  • the RRC connection reconfiguration message may include a secondary serving cell configuration information field including content of configuring the selected unlicensed carriers by secondary serving cells. Configuration of a serving cell for carrier aggregation (CA) is performed UE-specifically.
  • CA carrier aggregation
  • CA-specific configuration of the UE may be performed according to the capability of the UE (eg, how many CCs can be aggregated) and the number of the selected carriers to which an LAA base station can be allocated.
  • the LAA base station may set the CA to different sets of carriers independently for each terminal.
  • a PCell may be used for a licensed carrier and a licensed carrier and / or an unlicensed carrier may be used for an SCell.
  • FIG. 5 illustrates an example in which up to 16 carriers are configured by CA in a terminal, which is no more than 5 or 32 or less carriers in accordance with the performance of the terminal, the LAA base station, and the configuration between the terminals. It may be set.
  • UE1 of FIG. 5 is capable of supporting LAA and has a capability of performing CA operation on a larger number of carriers (eg, 16 CCs) than 5 CCs.
  • UE2 / UE3 supports LAA, but CA can be performed by combining the carrier (s) of the licensed band and the carrier (s) of the unlicensed band within five CCs or less.
  • the carrier of the licensed band can be set to PCell or SCell
  • the carrier of the unlicensed band can be set to SCell.
  • the LAA base station may instruct the terminal of activation / deactivation of the CA configured SCell (S420, dotted line).
  • the secondary serving cell activation / deactivation procedure receives an activation / deactivation indicator from the base station to activate / deactivate some or all of the secondary serving cells configured in the terminal by the LAA base station, and the terminal is based on the activation / deactivation indicator. Some or all of the configured secondary serving cells may be activated or deactivated.
  • the activation / deactivation indicator may be received through the PCell of the licensed band.
  • the activation / deactivation signaling includes an activation / deactivation indicator in a media access control (MAC) layer for an unlicensed serving cell.
  • the activation / deactivation indicator may be included in the MAC message and received by the terminal.
  • the MAC message includes at least one MAC Control Element (MAC CE), and the at least one MAC CE includes an activation / deactivation indicator for the Scell of the unlicensed band.
  • MAC CE MAC Control Element
  • the MAC CE as shown in FIG. 6 may be used to indicate activation / deactivation of the SCells.
  • the MAC CE may include n Ci fields and R fields.
  • the Ci field may include C7, C6, C5, C4, C3, C2, and C1 fields.
  • the Ci field may indicate activation / deactivation of the corresponding secondary serving cell based on a value of 1 or 0, respectively. For example, when set to 1, the C1 field indicates activation of the secondary serving cell # 1, and when set to 0, indicates the deactivation of the secondary serving cell # 1.
  • the R field is a reserved bit and may be set to zero.
  • the PCell and the Physical Uplink Control Channel (PUCCH) SCell (SCell with PUCCH transmission set) may always be configured to be in an active state. In this case, the activation / deactivation indication is meaningless, so the field corresponding to the PCell and the PUCCH SCell is an R field. Can be set.
  • PUCCH Physical Uplink Control Channel
  • the activation / deactivation indication for the unlicensed serving cell may be performed without the separate MAC signaling.
  • the base station may transmit an on / off indicator for the Scell through the PHY layer, to indicate the activation / deactivation for the Scell.
  • the UE may perform physical downlink control channel (PDCCH) / extended PDCCH (EPDCCH) monitoring and decoding on the secondary serving cell, and transmit data and channel state information (CSI). Report and so on.
  • PDCCH physical downlink control channel
  • EPDCCH extended PDCCH
  • CSI channel state information
  • the UE does not perform PDCCH / EPDCCH monitoring and decoding on the secondary serving cell, and does not perform data transmission or CSI reporting.
  • the deactivated secondary serving cell may be used for a path-loss reference
  • the path loss reference of the deactivated secondary serving cell may be used less frequently than the activated secondary serving cell.
  • SIB System Information Block
  • the DL CC of the secondary serving cell and the UL CC linked to the System Information Block (SIB) 2 are also deactivated, and the Physical Uplink Shared Channel (PUSCH) and the Sounding Reference (SRS) on the secondary serving cell are also deactivated. Uplink transmission of a signal is also prohibited.
  • SIB System Information Block
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference
  • the LAA operation will be schematically described according to a layer. This is the same as FIG.
  • C1 to C6 and C10 to C12 of a plurality of unlicensed component carriers are CA configured in a terminal by RRC layer signaling, and C1 to C3 and C11 among the CA carriers configured by MAC layer signaling.
  • To C12 are activated, and the remaining C4, C5, C6 and C10 are inactive.
  • the LAA base station and the UE perform LAA wireless communication operation based on CA on the unlicensed band. Can be done.
  • the LAA base station performs a PHY signaling procedure to the terminal, the terminal checks the PHY signaling (S430).
  • the PHY signaling may include at least one of a preamble and (E) PDCCH transmission transmitted from the PCell.
  • the terminal If the terminal receives an activation indicator for SCell (unlicensed carrier based) in subframe n from the LAA base station, the terminal starts preamble monitoring from subframe n + m.
  • the preamble may include or indicate at least one of channel occupancy of the corresponding SCell, channel occupied location and interval, scheduling information, and cell ID of the corresponding SCell.
  • M is an integer, and may be, for example, 4 or 8.
  • SCell # 1 to SCell # 5 are configured in a terminal, and MAC signaling (activation / activation indicator included) indicating activation of SCell # 1 and SCell # 3 in subframe n from the LAA base station. ),
  • the UE starts preamble monitoring from subframe n + m (here 8) of SCell # 1 and SCell # 3, and does not perform preamble monitoring on the remaining SCells that are not activated.
  • the UE needs to perform preamble monitoring for all CCs configured only for RRC (ie, CA), this may cause too much processing complexity and power consumption for the UE. For example, if up to 32 CCs are configured, if the UE monitors all CCs unnecessarily, this may be too much burden on the UE. In addition, considering the purpose of activation / deactivation signaling introduced for the purpose of minimizing power consumption of the UE, it is not appropriate to perform monitoring for all RRC configured CCs.
  • the UE monitors the reception of the preamble on the SCell from subframe n + m when the activation indicator for the specific SCell of the unlicensed band is received in the subframe n. That is, only on the SCell indicated by the activation indicator among the set SCells, the UE monitors preamble reception to obtain channel occupancy information due to LBT execution, RRM (Radio resource management), synchronization, CSI measurement and reporting, and AGC (automatic gain). control) and the like.
  • the AGC includes adjusting and providing the power received from the antenna to an appropriate power level that can be interpreted in the baseband chip according to the movement or channel environment of the terminal.
  • the UE may perform CSI reporting on the activated SCell.
  • the LAA base station may adjust a modulation coding scheme (MCS) level and the like in performing scheduling to the LAA terminal based on the CSI report, and may provide scheduling suitable for a channel environment.
  • MCS modulation coding scheme
  • the CSI report includes channel quality in the time and frequency domain, and information necessary for proper antenna processing in case of spatial multiplexing.
  • the CSI report may include a Channel Quality Indicator (CQI), a Precoding Matrix Index (PMI), a Precoding Type Indicator (PTI), and a Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • PTI Precoding Type Indicator
  • RI Rank Indication
  • the UE starts after the subframe n + m starting the above-described preamble monitoring up to a subframe n + X at a later time, whether the UE periodically or not acquires the CSI report regardless of channel acquisition (or occupancy) based on the LBT of the base station. Can be performed aperiodically. If the terminal sometimes the wrong CSI (especially CQI) value is derived (that is, when the out-of-range value is derived) it reports to the LAA base station.
  • the X value is defined by a timer or after the subframe n + m (preamble monitoring start subframe), at least by a value of a multiple of the maximum channel occupancy time or an arbitrary value through RRC signaling. Can be set. Its value can also be infinite. Therefore, once the UE starts monitoring the preamble, it may mean that the UE continues to monitor the preamble until the deactivation command is received.
  • the base station occupies (or obtains) a channel based on (E) CCA after the subframe n + m starting the above-described preamble monitoring
  • the information is transmitted to the terminal through the physical layer signaling such as the above-described preamble.
  • the terminal may perform CSI reporting on the activated SCell from subframe k in the occupied channel (occupied subframes).
  • the CSI reporting may be performed through a serving cell (for example, a PUCCH transmitting serving cell) determined to perform CSI reporting.
  • the value of k is a value depending on occupying the channel through the (E) CCA operation, and includes an arbitrary value. 9 shows an example of performing CSI reporting according to an embodiment of the present invention.
  • the UE receives an activation indicator for SCell # 1 and SCell # 3 or an indicator for cell selection (SCell on / off signaling) among a plurality of SCells configured in RRC, and receives subframe n + m (
  • preamble monitoring is started from 8
  • the base station performs (E) CCA, CSI reporting starts from subframe k in occupied subframes.
  • E when the subframe occupied immediately by the CCA starts, CSI reporting can be started from the starting point k 'of the occupied subframes.
  • the LAA base station may transmit SCell on / off signaling to the terminal.
  • the SCell on / off signaling includes an SCell on / off status indicator indicating whether the SCell of the unlicensed band is on / off.
  • the CSI report may be triggered when the UE receives the above-described preamble transmitted on the SCell or receives a physical channel (eg, PDCCH) including an on state indicator for the SCell.
  • a physical channel eg, PDCCH
  • the SCell deactivation timer for the corresponding SCell is driven.
  • the deactivation timer is a value set to the terminal by the base station and receives an activation indicator or an indicator for cell selection (SCell on / off signaling) in subframe n as described above.
  • the terminal transitions the serving cell to the deactivated state without the deactivation indicator.
  • the SCell deactivation timer for the corresponding SCell starts from subframe n + m.
  • M is an integer, and may be, for example, 4 or 8.
  • FIG. 10 is a diagram illustrating an operation for an SCell deactivation timer according to an embodiment of the present invention.
  • the UE when the UE receives activation indicators for SCell # 1 and SCell # 3 of the unlicensed band in subframe n, the UE receives the corresponding SCell # 1 and SCell # 3 from subframe n + m (here 8).
  • Each SCell deactivation timer for is started.
  • SCell # 1 expires, SCell # 1 transitions to an inactive state.
  • SCell # 3 when the SCell deactivation timer succeeds in occupying the channel while driving, that is, when information such as a preamble indicating that the channel is acquired based on CCA from the LAA base station is received, the SCell deactivation timer for SCell # 3 Will restart.
  • the base station occupies a channel based on (E) CCA and the channel acquisition (or occupancy) information is known to the terminal through signaling such as preamble or PDCCH, acquisition
  • the SCell deactivation timer for the corresponding SCell may be started from the start of the (or occupied) subframe.
  • the SCell deactivation timer is initialized (ie, restarted).
  • the SCell deactivation timer may be restarted, thereby preventing the SCell from being inadequately deactivated. have. This is useful when instructing the terminal of channel acquisition information of the base station through the preamble.
  • the terminal may transmit the SRS on the corresponding SCell.
  • the channel is acquired based on (E) CCA after subframe n + m, and the channel acquisition information is signaled such as preamble or PDCCH.
  • the SRS is triggered and transmitted in at least one subframe set among occupied subframes. That is, in the terminal where the LAA is set, the SRS transmission timing is determined according to the state of channel occupancy of the base station or the terminal. Based on this, SRS transmission can be performed on the SCell of the unlicensed band.
  • the step S420 is omitted, and when the on / off mechanism of the SCell of the unlicensed band is dynamically applied by PHY signaling, the time of receiving the RRC signaling or the time of receiving the channel acquisition information, etc.
  • the above-described embodiments can be performed based on the above.
  • availability of a corresponding channel may be determined depending on PHY signaling. In this case, the following may be additionally considered in performing PHR.
  • the PHR is an operation in which the terminal reports surplus power of the current terminal to the base station, and the base station can schedule within the surplus power range. If a channel is acquired through (E) CCA operation, PHR may be triggered at this time. In this case, even if a channel is acquired on only one SCell, PHR for all configured SCell cells may be performed. In addition, if a serving cell group is used, PHR for all SCells in the serving cell group to which the channel is obtained may be triggered, or PHR for SCells in all serving cell groups may be triggered. The triggered PHR is calculated based on the difference between the calculated Pcmax, c value of each serving cell and the calculated uplink transmission power value, and the terminal reports this to the base station. Then, the LAA base station and the terminal are located on the SCell. Uplink / downlink communication may be performed on the occupied subframes (S440).
  • FIG. 11 is a flowchart illustrating an example of an LAA based communication operation performed by a LAA base station according to the present invention.
  • the LAA base station performs an RRC connection reconfiguration procedure for configuring unlicensed carriers in an unlicensed band as SCells for a terminal (S1100).
  • the RRC connection reconfiguration procedure includes a step in which a LAA base station generates an RRC connection reconfiguration message and transmits it to a terminal, and the terminal transmits an RRC connection reconfiguration complete message to the LAA base station.
  • the RRC connection reconfiguration message may be transmitted to the terminal through a PCell using a licensed carrier.
  • the RRC connection reconfiguration message may include secondary serving cell configuration information regarding the unlicensed carriers for the terminal.
  • Those related to the present invention in the configuration information in the RRC connection reconfiguration message include information for preamble monitoring, information on a CSI measurement subframe, information on a deactivation timer setting value, and configuration information for uplink SRS / PHR reporting. can do.
  • the LAA base station transmits an activation / deactivation indicator for the SCells of the configured unlicensed band to the terminal (S1110).
  • the activation / deactivation indicator may be transmitted through the PCell of the licensed band.
  • the activation / deactivation indicator may be transmitted to the terminal through a MAC message. Indicate the status.
  • the LAA base station may transmit a physical channel (for example, PDCCH) including a SCell on / off state indicator indicating whether the SCell of the unlicensed band is on / off state to the terminal.
  • a physical channel for example, PDCCH
  • SCell on / off state indicator indicating whether the SCell of the unlicensed band is on / off state
  • the LAA base station performs a CCA based channel acquisition procedure on the SCells of the activated unlicensed band (S1120).
  • the LAA base station performs a PHY signaling procedure including a preamble (or PDCCH) transmission including channel acquisition information for at least one SCell of the unlicensed band based on the channel acquisition procedure (S1130).
  • the channel acquisition information may indicate a channel-acquired SCell and subframes acquired for the corresponding SCell.
  • the PHY signaling procedure includes at least one of receiving a CSI report for the SCell of the at least one unlicensed band, receiving an SRS for the SCell of the at least one unlicensed band, and receiving a PHR for the SCell of the at least one unlicensed band. It may further include.
  • the LAA base station transmits the channel acquisition information on the SCell of the unlicensed band through the preamble (or PDCCH) from subframe n + m or later. Can be.
  • the LAA base station may receive a CSI report performed by the UE on the SCell of the unlicensed band starting at a time after the subframe n + m and at the latest within the subframe n + X.
  • the LAA base station may receive a CSI report on the SCell of the unlicensed band from subframe k in the occupied subframes of the SCell.
  • the LAA base station may receive the SRS on at least one subframe of the occupied subframes of the SCell.
  • the LAA base station may receive a PHR for the SCell from the terminal when there is an SCell of the channel-licensed unlicensed band.
  • the LAA base station may receive the PHR for the SCell of all configured unlicensed bands from the terminal.
  • the base station receives channel occupancy and other information (CSI report triggering, automatic gain control (AGC), synchronization, etc.) to prepare for future data scheduling.
  • CSI report triggering automatic gain control (AGC), synchronization, etc.
  • AGC automatic gain control
  • the UE performs the CSI report to which the proposed method is applied, it is used for downlink scheduling after channel acquisition of the base station.
  • SRS transmission and PHR related to uplink scheduling are performed from the terminal through the proposed method and transmitted to the base station, and the base station is used for future uplink scheduling through the received SRS and PHR.
  • the LAA base station performs data transmission / reception with the terminal on the occupied subframes on the at least one SCell of the unlicensed band indicated by the channel acquisition information (S1140).
  • the S1110 procedure may be omitted.
  • the LAA base station performs a CCA-based channel acquisition procedure on all of the SCells configured for the terminal or a part of the selected SCells according to a predetermined criterion. Can be done.
  • FIG. 12 is a flowchart illustrating an example of an LAA based communication operation performed by a terminal according to the present invention.
  • the UE performs an RRC connection reconfiguration procedure for configuring unlicensed carriers of an unlicensed band with SCells (S1200).
  • the RRC connection reconfiguration procedure includes a terminal receiving an RRC connection reconfiguration message to a LAA base station, and the terminal transmitting an RRC connection reconfiguration complete message to the LAA base station.
  • the RRC connection reconfiguration message may include secondary serving cell configuration information regarding the unlicensed carriers for the terminal.
  • the secondary serving cell configuration information may include frequency band and center carrier information to which an unlicensed carrier is assigned. Since this is derived through the EARFCN value, the EARFCN value may be included in the secondary serving cell configuration information to indicate which frequency band and which center carrier the corresponding serving cell corresponds to.
  • the terminal receives an activation / deactivation indicator for the SCells of the configured unlicensed band from the LAA base station (S1210).
  • the UE may receive a physical channel (eg, PDCCH) including an SCell on / off state indicator indicating whether the SCell of the unlicensed band is on / off.
  • PDCCH physical channel
  • the LAA base station performs a PHY signaling procedure including receiving a preamble (or PDCCH) including channel acquisition information for at least one SCell of the unlicensed band of the activated unlicensed band (S1220).
  • the channel acquisition information may indicate a channel-acquired SCell and subframes acquired for the corresponding SCell.
  • the PHY signaling procedure may perform one of CSI reporting for SCells in at least one unlicensed band, SRS transmission for SCells in at least one unlicensed band, and PHR reporting for SCells in at least one unlicensed band. .
  • the terminal may perform preamble monitoring on the SCell of the unlicensed band from subframe n + m or later.
  • Channel acquisition information may be received through the preamble (or PDCCH).
  • the UE may perform CSI reporting on the SCell of the unlicensed band starting from after the subframe n + m and at the latest within the subframe n + X.
  • the LAA base station may perform CSI reporting on the SCell of the unlicensed band from subframe k in the occupied subframes of the SCell.
  • the UE may transmit the SRS on at least one subframe among the occupied subframes of the SCell.
  • the terminal may perform PHR for the SCell of the corresponding unlicensed band.
  • PHR for SCells of all configured unlicensed bands may be performed.
  • the terminal performs data transmission and reception with an LAA base station on the occupied subframes on the SCell of the at least one unlicensed band indicated by the channel acquisition information (S1230).
  • the S1210 procedure may be omitted according to the configuration between the LAA base station and the terminal.
  • the terminal may perform preamble monitoring on all of the configured SCells or a part of the selected SCells according to a predetermined criterion.
  • One PHY signaling procedure may be performed.
  • FIG. 13 is an example of a block diagram illustrating a LAA supporting base station and a terminal according to the present invention.
  • the base station 1300 includes a memory 1305, a processor 1310, and an RF unit 1320.
  • the memory 1305 is connected to the processor 1310 and stores various information for driving the processor 1310.
  • the RF unit 1320 is connected to the processor 1310 and transmits and / or receives a radio signal.
  • the processor 1310 implements a proposed function, process, and / or method for performing operations in accordance with the present invention. In the above-described embodiments, the operation of the base station may be implemented by the control of the processor 1310.
  • the processor 1310 includes a serving cell configuration unit 1311, an activation processing unit 1312, a CCA execution unit 1313, and a PHY processing unit 1314.
  • the serving cell configuration unit 1311 performs unlicensed carrier selection.
  • the serving cell configuration unit 1311 may detect the occupancy frequency and the degree of interference of the unlicensed carriers on the unlicensed band, and select unlicensed carriers to be used for LAA operation with the terminal in the unlicensed band.
  • the serving cell configuration unit 1311 may generate an RRC connection reconfiguration message including information for configuring the selected unlicensed carriers as SCells for the terminal and transmit the generated RRC connection reconfiguration message to the terminal through the RF unit 1320.
  • the SCell configuration information may include frequency band and center carrier information to which an unlicensed carrier is assigned. Since this is derived through the EARFCN value, the EARFCN value may be included in the secondary serving cell configuration information to indicate which frequency band and which center carrier the corresponding serving cell corresponds to.
  • the RRC connection reconfiguration message may be transmitted through a PCell using a license carrier.
  • the RF unit 1320 may receive an RRC connection reconfiguration complete message from the terminal 1350.
  • the activation processor 1312 may generate an activation / deactivation indicator for the SCells in the unlicensed band configured in the terminal 1350 and transmit the activation / deactivation indicator to the terminal through the RF unit 1320.
  • the activation / deactivation indicator may be included in a MAC message and transmitted to the terminal through the PCell.
  • the CCA execution unit 1313 performs a channel acquisition procedure for the SCells of the activated unlicensed band.
  • the sound channel acquisition procedure may be performed based on CCA.
  • the CCA performer 1313 may generate channel acquisition information for at least one SCell of the unlicensed band based on the channel acquisition procedure.
  • the channel acquisition information may indicate a channel-acquired SCell and subframes acquired (occupied) for the corresponding SCell.
  • the PHY processor 1314 may generate a preamble (or PDCCH) including the channel acquisition information and transmit the preamble (or PDCCH) to the terminal through the RF unit 1320.
  • the PHY processor 1314 may control to perform CSI reporting, SRS reception, and PHR reception for the SCell of the channel-licensed unlicensed band.
  • the PHY processor 1314 may process and interpret the CSI report, SRS, and PHR. If the PHY processor 1314 transmits the activation indicator for the SCell of the unlicensed band in subframe n, the RF unit 1320 transmits the channel acquisition information to the preamble (or PDCCH) from subframe n + m or later. It can be controlled to transmit on the SCell of the unlicensed band through.
  • the PHY processor 1314 may control the terminal 1350 to receive the CSI report performed by the UE 1350 on the SCell of the unlicensed band at the latest after the subframe n + m and at the latest within the subframe n + X.
  • the RF unit 1320 may control to receive a CSI report on the SCell of the unlicensed band from subframe k in the occupied subframes of the SCell.
  • the PHY processor 1314 may control to receive the SRS on at least one subframe of the acquired (occupied) subframes of the SCell.
  • the PHY processing unit 1314 may control to receive the PHR for the SCell from the terminal 1350 when there is an SCell of the channel-licensed unlicensed band.
  • the RF unit 1320 may control to receive the PHR for the SCell of all configured unlicensed bands from the terminal 1350.
  • the processor 1310 processes the PHY signaling in consideration of the operation of the PHY processing unit 1314, and then on the acquired (occupied) subframes of the SCell of the unlicensed band through the RF unit 1320. Scheduling is performed to perform data transmission / reception with the terminal 1350.
  • the terminal 1350 includes a memory 1355, a processor 1360, and an RF unit 1370.
  • the memory 1355 is connected to the processor 1360 and stores various information for driving the processor 1360.
  • the RF unit 1370 is connected to the processor 1360 and transmits and / or receives a radio signal.
  • Processor 1360 implements the proposed functions, processes, and / or methods for performing operations in accordance with the present invention. In the above-described embodiment, the operation of the terminal may be implemented by the control of the processor 1360.
  • the RF unit 1370 receives the RRC connection reconfiguration message, the activation / deactivation indicator, and the channel acquisition information from the base station 1300.
  • the processor 1360 includes a serving cell component 1361, an activation processor 1362, and a PHY processor 1363.
  • the serving cell configuration unit 1361 configures SCells in the unlicensed band based on the RRC connection reconfiguration message. Thereafter, the serving cell configuration unit 1361 generates an RRC connection reconfiguration complete message and transmits the RRC connection reconfiguration complete message to the base station 1300 through the RF unit 1370.
  • the activation processing unit 1362 transitions the SCells of the configured unlicensed band to an activated or deactivated state based on the received activation / deactivation indicator.
  • the PHY processor 1363 may identify the channel-acquired SCell and the subframes acquired (occupied) for the corresponding SCell based on the channel acquisition information.
  • the PHY processor 1363 may perform preamble monitoring on the SCell of the unlicensed band from subframe n + m or later, and the channel The acquisition information may be controlled to be received through the preamble (or PDCCH).
  • the PHY processing unit 1363 may perform CSI reporting on the SCell of the unlicensed band starting from after the subframe n + m through the RF unit 1370 and at the latest within the subframe n + X.
  • the PHY processing unit 1363 receives the CSI for the SCell of the unlicensed band from the subframe k in the occupied subframes of the SCell through the RF unit 1370. Report can be performed.
  • the PHY processor 1363 may transmit an SRS on at least one subframe of the occupied subframes of the SCell through the RF unit 1370.
  • the PHY processing unit 1363 may perform the PHR for the SCell of the unlicensed band or the PHR for the SCell of all configured unlicensed bands through the RF unit 1370 when there is a SCell of the channel-licensed unlicensed band.
  • the PHY processing unit 1363 may perform data transmission / reception with the base station 1300 on the acquired (occupied) subframes of the SCell of the unlicensed band through the RF unit 1370.
  • the processor may include an application-specific integrated circuit (ASIC), another chipset, logic circuit and / or data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method of performing license assisted access (LAA)-based communication in a wireless communication system supporting carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band. The wireless communication system can perform data transmission through the unlicensed band, as well as perform data transmission/reception through the licensed band, thereby improving transmission efficiency.

Description

무선 통신 시스템에서 비면허 대역을 통해 통신을 수행하는 방법 및 장치Method and apparatus for performing communication through unlicensed band in wireless communication system
본 발명은 무선 통신에 관한 것으로 보다 상세하게는 무선 통신 시스템에서 비면허 대역 상에서의 통신 수행 방법 및 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for performing communication on an unlicensed band in a wireless communication system.
무선 통신 트래픽이 급증함에 따라 스몰 셀(small cell)들, 예를 들어 피코 셀(Pico Cell), 펨토 셀(Femto Cell), 마이크로 셀(Micro Cell), 원격 무선 헤드(remote radio head: RRH), 릴레이(relay), 중계기(repeater) 등이 적극적으로 활용되고 있으나, 여전히 보다 많은 주파수 확보가 시급한 문제로 대두되고 있다. 이에 따라 면허 대역(licensed band, L-band) 뿐 아니라 WiFi 대역과 같은 비면허 대역(unlicensed band, U-band)의 주파수들를 활용하여 무선 통신을 수행하는 방안이 논의되고 있다. As wireless communication traffic surges, small cells such as pico cells, femto cells, micro cells, remote radio heads (RRHs), Relays and repeaters are actively used, but securing more frequencies is an urgent problem. Accordingly, a method of performing wireless communication using not only a licensed band (L-band) but also frequencies of an unlicensed band (U-band) such as a WiFi band has been discussed.
그러나, 비면허 대역은 경쟁적 접근을 허용하고 있기에 기존 면허 대역에서의 접근(access) 방식을 그대로 적용할 수 없으며, 비면허 대역에서의 무선 프레임 구조는 면허 대역에서의 무선 프레임 구조와 상이할 수 있다. However, since the unlicensed band allows competitive access, the access method in the existing licensed band cannot be applied as it is, and the radio frame structure in the unlicensed band may be different from the radio frame structure in the licensed band.
따라서, 비면허 대역에서의 무선 통신을 원활하게 지원하기 위한 면허 대역 통신 기법의 지원/관리/운용을 고려한 무선 통신기술이 요구된다. Accordingly, there is a need for a wireless communication technology in consideration of support / management / operation of a licensed band communication technique for smoothly supporting wireless communication in an unlicensed band.
본 발명의 기술적 과제는 무선 통신 시스템에서 비면허 대역 상에서의 통신 수행 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for performing communication on an unlicensed band in a wireless communication system.
본 발명의 다른 기술적 과제는 무선 통신 시스템에서 비면허 대역 자원 관리 방법 및 장치를 제공함에 있다. Another technical problem of the present invention is to provide an unlicensed band resource management method and apparatus in a wireless communication system.
본 발명의 다른 기술적 과제는 면허 대역의 통신 지원 하에 비면허 대역 자원을 활용하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for utilizing unlicensed band resources in support of licensed band communication.
본 발명의 또 다른 기술적 과제는 비면허 대역의 점유를 단말로 지시하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for indicating the occupancy of the unlicensed band to the terminal.
본 발명의 또 다른 기술적 과제는 단말이 비면허 대역을 모니터링하기 위한 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for a terminal to monitor an unlicensed band.
본 발명의 일 양태에 따르면, 면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간에 반송파 집성(carrier aggregation)을 지원하는 무선 통신 시스템에서 기지국의 LAA(License Assisted Access) 기반 통신 방법을 제공한다. 상기 통신 방법은 상기 비면허 대역의 반송파를 단말에 대하여 SCell로 구성하기 위한 RRC 연결 재구성 절차를 수행하는 단계, 상기 구성된 SCell에 대한 활성화 지시자를 상기 단말로 전송하는 단계, 상기 SCell에 대한 채널 획득 절차를 수행하는 단계, 상기 채널 획득 절차를 기반으로 상기 SCell에 대하여 채널 획득 여부 및 획득된 서브프레임들 중 적어도 하나를 지시하는 채널 획득 정보를 생성하는 단계, 및 상기 생성된 채널 획득 정보를 상기 SCell 상에서 상기 단말로 전송하는 단계를 포함함을 특징으로 한다.According to an aspect of the present invention, a License Assisted Access (LAA) based communication method of a base station in a wireless communication system supporting carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band To provide. The communication method includes performing an RRC connection reconfiguration procedure for configuring an unlicensed band carrier as an SCell for a terminal, transmitting an activation indicator for the configured SCell to the terminal, and obtaining a channel for the SCell. Performing channel, generating channel acquisition information indicating at least one of channel acquisition and acquired subframes for the SCell based on the channel acquisition procedure, and generating the generated channel acquisition information on the SCell. Characterized in that it comprises the step of transmitting to the terminal.
본 발명의 다른 양태에 따르면, 면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간에 반송파 집성(carrier aggregation)을 지원하는 무선 통신 시스템에서 단말의 LAA(License Assisted Access) 기반 통신 방법을 제공한다. 상기 방법은 상기 비면허 대역의 반송파를 SCell로 구성하기 위한 RRC 연결 재구성 절차를 수행하는 단계, 상기 구성된 SCell에 대한 활성화 지시자를 제1 서브프레임 상에서 상기 기지국으로부터 수신하는 단계, 상기 활성화 지시자를 기반으로 상기 SCell을 활성 상태로 천이시키는 단계, 및 상기 SCell에 대한 채널 획득 여부 및 획득된 서브프레임들 중 적어도 하나를 지시하는 채널 획득 정보를 상기 기지국으로부터 수신하는 단계를 포함함을 특징으로 한다.According to another aspect of the present invention, a License Assisted Access (LAA) based communication method of a terminal in a wireless communication system supporting carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band To provide. The method includes performing an RRC connection reconfiguration procedure for configuring an unlicensed band carrier as an SCell, receiving an activation indicator for the configured SCell from the base station on a first subframe, based on the activation indicator Transitioning an SCell to an active state, and receiving channel acquisition information indicating at least one of channel acquisition and acquired subframes for the SCell from the base station.
본 발명의 또 다른 양태에 따르면, 면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간에 반송파 집성(carrier aggregation)을 지원하는 무선 통신 시스템에서 LAA(License Assisted Access) 기반 통신을 수행하는 단말을 제공한다. 상기 단말은 상기 비면허 대역의 반송파를 SCell로 구성하기 위한 RRC 연결 재구성 절차를 수행하는 프로세서, 및 상기 구성된 SCell에 대한 활성화 지시자를 제1 서브프레임 상에서 상기 기지국으로부터 수신하는 RF부를 포함하되, 상기 프로세서는 상기 활성화 지시자를 기반으로 상기 SCell을 활성 상태로 천이시키고, 상기 RF부는 상기 SCell에 대한 채널 획득 여부 및 획득된 서브프레임들 중 적어도 하나를 지시하는 채널 획득 정보를 상기 기지국으로부터 수신함을 특징으로 한다.According to another aspect of the present invention, performing license assisted access (LAA) based communication in a wireless communication system supporting carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band. It provides a terminal. The terminal includes a processor for performing an RRC connection reconfiguration procedure for configuring the carrier in the unlicensed band as an SCell, and an RF unit for receiving an activation indicator for the configured SCell from the base station on a first subframe. The SCell transitions to an active state based on the activation indicator, and the RF unit receives channel acquisition information indicating at least one of channel acquisition for the SCell and acquired subframes from the base station.
본 발명에 따르면 무선 통신 시스템에서 면허 대역을 통하여 데이터 송수신을 수행할 뿐 아니라, 비면허 대역을 통하여 데이터 전송을 수행할 수 있어 전송 효율을 높일 수 있다.According to the present invention, in addition to performing data transmission and reception through a licensed band in a wireless communication system, data transmission can be performed through an unlicensed band, thereby improving transmission efficiency.
또한 본 발명에 따르면, 면허 대역의 반송파와 비면허 대역의 반송파 간 반송파 집성을 원활하게 지원할 수 있다.According to the present invention, carrier aggregation between a carrier in a licensed band and a carrier in an unlicensed band can be smoothly supported.
도 1은 본 발명이 적용되는 무선 통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명이 적용되는 LAA 배치(deployment) 시나리오의 예들을 나타낸다.2 shows examples of a LAA deployment scenario to which the present invention is applied.
도 3은 본 발명에 따른 FBE을 위한 타이밍의 일 예를 나타낸다.3 shows an example of timing for an FBE according to the present invention.
도 4는 본 발명에 따른 LAA 기반 통신 동작 흐름도의 예를 나타낸다.4 shows an example of a LAA based communication operation flow diagram according to the present invention.
도 5는 각 단말에 따라 서로 다른 반송파들의 집합이 CA 설정된 경우를 예시적으로 나타내는 도면이다.FIG. 5 is a diagram exemplarily illustrating a case in which CA sets of different carriers are configured according to respective terminals.
도 6은 활성화/비활성화 지시자를 포함하는 MAC CE 구조의 일 예이다.6 is an example of a MAC CE structure including an activation / deactivation indicator.
도 7은 본 발명에 따른 LAA 동작을 계층에 따라 개략적으로 나타내는 도면이다.7 is a diagram schematically illustrating a LAA operation according to a layer according to the present invention.
도 8은 단말이 프리앰블 모니터링을 수행하는 예를 나타낸다.8 shows an example in which the UE performs preamble monitoring.
도 9는 단말이 상술한 다른 실시예에 따른 CSI 보고를 수행하는 예를 나타낸다.9 shows an example in which the UE performs CSI reporting according to the above-described other embodiment.
도 10은 상술한 일 실시예에 따른 SCell 비활성화 타이머 관련 동작의 예를 나타낸다.10 illustrates an example of a SCell deactivation timer related operation according to an embodiment described above.
도 11은 본 발명에 따른 LAA 기지국에 의하여 수행되는 LAA 기반 통신 동작의 예를 나타내는 흐름도이다.11 is a flowchart illustrating an example of an LAA based communication operation performed by a LAA base station according to the present invention.
도 12는 본 발명에 따른 단말에 의하여 수행되는 LAA 기반 통신 동작의 예를 나타내는 흐름도이다.12 is a flowchart illustrating an example of an LAA based communication operation performed by a terminal according to the present invention.
도 13은 본 발명에 따른 LAA 지원 기지국 및 단말을 나타내는 블록도의 예이다.13 is an example of a block diagram illustrating a LAA supporting base station and a terminal according to the present invention.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 포함된 단말에서 작업이 이루어질 수 있다.In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be performed in a terminal included in the network.
도 1은 본 발명이 적용되는 무선 통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; evolved-NodeB, eNB)을 포함한다. 각 기지국(11)은 특정한 셀(cell)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. The wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station 11 (evolved-NodeB, eNB). Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c. The cell can in turn be divided into a number of regions (called sectors).
단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 BS(base station), BTS(base transceiver system), 액세스 포인트(access point), 펨토(femto) 기지국, 가내 기지국(Home nodeB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 셀은 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 may be referred to by other terms such as a base station (BS), a base transceiver system (BTS), an access point, an femto base station, a home node B, a relay, and the like. A cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
이하에서 하향링크(downlink: DL)는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크(uplink: UL)는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink (DL) means communication from the base station 11 to the terminal 12, and uplink (UL) means communication from the terminal 12 to the base station 11. In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
반송파 집성(carrier aggregation; CA)은 복수의 반송파를 지원하는 것으로서, 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(component carrier; CC)라고 한다. 서빙셀(serving cell)은 다중 요소 반송파 시스템(multiple component carrier system)에 기반하여 반송파 집성(carrier aggregation)에 의해 집성될 수 있는 요소 주파수 대역으로서 정의될 수 있다. 서빙셀에는 주서빙셀(primary serving cell: PCell)과 부서빙셀(secondary serving cell: SCell)이 있다. 주서빙셀은 RRC(Radio Resource Control) 설립(establishment) 또는 재설립(re-establishment) 상태에서, 보안입력(security input)과 NAS(Non-Access Stratum) 이동 정보(mobility information)을 제공하는 하나의 서빙셀을 의미한다. 단말의 성능(capabilities)에 따라, 적어도 하나의 셀이 주서빙셀과 함께 서빙셀의 집합을 형성하도록 구성될 수 있는데, 상기 적어도 하나의 셀을 부서빙셀(secondary serving cell)이라 한다. 하나의 단말에 대해 설정된 서빙셀의 집합은 하나의 주서빙셀만으로 구성되거나, 또는 하나의 주서빙셀과 적어도 하나의 부서빙셀로 구성될 수 있다. Carrier aggregation (CA) supports a plurality of carriers, also referred to as spectrum aggregation or bandwidth aggregation. Individual unit carriers bound by carrier aggregation are called component carriers (CCs). The serving cell may be defined as an element frequency band that may be aggregated by carrier aggregation based on a multiple component carrier system. The serving cell includes a primary serving cell (PCell) and a secondary serving cell (SCell). The primary serving cell is one that provides security input and non-access stratum (NAS) mobility information in a radio resource control (RRC) establishment or reestablishment state. It means a serving cell. According to the capabilities of the terminal, at least one cell may be configured to form a set of serving cells together with the main serving cell, wherein the at least one cell is called a secondary serving cell. The set of serving cells configured for one terminal may consist of only one main serving cell or one main serving cell and at least one secondary serving cell.
주서빙셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소반송파(DL PCC)라 하고, 주서빙셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소반송파(UL PCC)라 한다. 또한, 하향링크에서, 부서빙셀에 대응하는 요소 반송파를 하향링크 부요소반송파(DL SCC)라 하고, 상향링크에서, 부서빙셀에 대응하는 요소 반송파를 상향링크 부요소반송파(UL SCC)라 한다. 하나의 서빙셀에는 하향링크 요소 반송파만이 대응할 수도 있고, DL CC와 UL CC가 함께 대응할 수도 있다.The downlink component carrier corresponding to the main serving cell is referred to as a downlink primary carrier (DL PCC), and the uplink component carrier corresponding to the main serving cell is referred to as an uplink major carrier (UL PCC). In the downlink, the component carrier corresponding to the secondary serving cell is called a downlink sub-component carrier (DL SCC), and in the uplink, the component carrier corresponding to the secondary serving cell is called an uplink sub-component carrier (UL SCC). do. Only one DL CC may correspond to one serving cell, and a DL CC and a UL CC may correspond together.
일반적으로 스몰 셀은 매크로 셀에 비해 작은 지역에 대하여 서비스하기 때문에 단일 단말에 대하여 제공할 수 있는 성능(Throughput) 측면에서 매크로 셀에 비하여 유리하다. 무선 통신 트래픽이 급증함에 따라 상기와 같은 스몰 셀이 적극적으로 활용되고 있으나, 성능 향상을 위하여 보다 많은 주파수 확보가 시급한 문제로 대두되고 있다. In general, since the small cell serves a smaller area than the macro cell, it is advantageous to the macro cell in terms of the throughput that can be provided for a single terminal. As the wireless communication traffic rapidly increases, the small cells as described above are actively used, but more frequency is urgently needed to improve performance.
이와 관련하여, 최근 면허 대역(licensed band) 뿐 아니라 WiFi 대역과 같은 비면허(unlicensed) 대역(band)의 주파수들를 활용하여 무선 통신을 수행하는 방안이 논의되고 있다. 이를 위하여, 본 발명에서는 비면허 대역에서의 무선 통신을 원활하게 지원하기 위한 면허 대역의 통신 기법의 지원/관리/운용을 고려한 비면허 대역에서의 무선 통신을 수행하는 방안을 제안한다. In this regard, a method of performing wireless communication using not only a licensed band but also frequencies of an unlicensed band such as a WiFi band has been discussed. To this end, the present invention proposes a method for performing wireless communication in an unlicensed band in consideration of support / management / operation of a licensed band communication technique for smoothly supporting wireless communication in an unlicensed band.
이하 본 발명에서 LAA(License Assisted Access)라 함은 면허 대역 또는 스펙트럼(spectrum)에서 동작하는 PCell의 제어(Assisted)를 기반으로 비면허 대역 또는 비면허 스펙트럼에서 동작하는 하나 또는 그 이상의 SCell들에 대한 반송파 집성 동작을 지원하는 무선 통신 기법이다. LAA 배치 시나리오에서 비면허 대역상의 설정된 SCell은 매크로 커버리지 내에 위치할 수 있고, 또는 매크로 커버리지 외에 위치할 수도 있다. 또한 비면허 대역상의 설정된 SCell은 일반 가정집이나 특정 단지(complex) 등의 실내(indoor) 장소에 배치될 수 있고, 또는 실외(outdoor) 장소에 배치될 수도 있다. 또한, 면허 대역과 비면허 대역의 반송파들은 서로 동일 장소위치(co-location) 또는 비동일 장소위치(non-co-located)일 수 있다. 여기서 동일 장소위치라 함은 면허 대역의 반송파를 운용하는 기지국과 비면허 대역의 반송파를 운용하는 기지국이 동일한 기지국이거나, 또는 RF(radio frequency) 유닛들을 서로 인접하여 위치하는 것을 의미할 수 있다. Hereinafter, in the present invention, LAA (License Assisted Access) refers to carrier aggregation for one or more SCells operating in an unlicensed band or unlicensed spectrum based on the control of a PCell operating in a licensed band or spectrum. A wireless communication technique that supports operation. In a LAA deployment scenario, an established SCell on the unlicensed band may be located within macro coverage, or may be located outside of macro coverage. In addition, the SCell set on the unlicensed band may be arranged in an indoor place such as a general home or a specific complex, or may be arranged in an outdoor place. In addition, the carriers of the licensed band and the unlicensed band may be co-location or non-co-located with each other. Here, the same location location may mean that a base station operating a carrier of a licensed band and a base station operating a carrier of an unlicensed band are the same base station or adjacent to RF (radio frequency) units.
만일 면허 대역과 비면허 대역의 반송파들이 비동일 장소위치에 존재하는 경우, 원활한 반송파 집성을 지원하기 위하여 면허 대역의 반송파를 운용하는 제1 기지국과 비면허 대역의 반송파를 운용하는 제2 기지국은 서로 이상적 백홀(ideal backhaul)로 연결될 수 있다. 여기서 이상적 백홀이라 함은 일반적으로 2.5 s 이하의 지연과 10Gbps 이상의 용량(capacity)를 갖는 백홀을 의미할 수 있으며, 이를 위한 기준은 통신 환경 및 무선 통신 규약 등에 따라 달라질 수 있다.If carriers in the licensed and unlicensed bands exist at non-uniform location locations, the first base station operating the carriers of the licensed band and the second base station operating the carriers of the unlicensed band are ideally backhauled to support smooth carrier aggregation. (ideal backhaul) can be connected. Here, the ideal backhaul may generally mean a backhaul having a delay of 2.5 s or less and a capacity of 10 Gbps or more, and the criteria for this may vary according to a communication environment and a wireless communication protocol.
도 2는 본 발명이 적용되는 LAA 배치(deployment) 시나리오의 예들을 나타낸다.2 shows examples of a LAA deployment scenario to which the present invention is applied.
도 2를 참조하면, 각 시나리오들에서 면허 반송파(licensed carrier) 및 비면허 반송파(unlicensed carrier)의 수는 각각 하나 또는 그 이상이 될 수 있다. 일 예로 시나리오 1은 면허 반송파인 F1(frequency #1)을 사용하는 매크로 셀과, 비면허 반송파인 F3을 사용하는 스몰 셀이 반송파 집성(CA)으로 연결된 경우이다. 이 경우 상기 매크로 셀과 상기 스몰 셀은 서로 비동일장소에 배치될(non-co-located) 수 있고, 서로 이상적 백홀로 연결될 수 있다. 예를 들어 상기 스몰 셀은 RRH일 수 있다. Referring to FIG. 2, the number of licensed carriers and unlicensed carriers may be one or more in each scenario. For example, scenario 1 is a case where a macro cell using a licensed carrier F1 (frequency # 1) and a small cell using an unlicensed carrier F3 are connected by carrier aggregation (CA). In this case, the macro cell and the small cell may be non-co-located with each other, and may be connected to each other by an ideal backhaul. For example, the small cell may be RRH.
다른 예로 시나리오 2는 매크로 셀 커버리지 외에(without macro cell coverage) 면허 반송파인 F2를 사용하는 스몰 셀#1과 비면허 반송파인 F3을 사용하는 스몰 셀#2이 반송파 집성으로 연결된 경우이다. 이 경우 상기 스몰 셀#1과 상기 스몰 셀#2은 서로 동일장소에 배치될(co-located) 수 있고, 따라서 서로 이상적 백홀을 가정할 수 있다. As another example, scenario 2 is a case in which small cell # 1 using a licensed carrier F2 outside of macro cell coverage and small cell # 2 using an unlicensed carrier F3 are connected by carrier aggregation. In this case, the small cell # 1 and the small cell # 2 may be co-located with each other, and thus an ideal backhaul may be assumed.
또 다른 예로, 시나리오 3은 면허 반송파인 F1을 사용하는 매크로 셀과 스몰 셀#1이 있고, 상기 스몰 셀#1과, 비면허 반송파인 F3을 사용하는 스몰 셀#2가 반송파 집성으로 연결된 경우이다. 이 경우 상기 매크로 셀과 상기 스몰 셀#1은 서로 이상적 또는 비이상적(non-ideal) 백홀로 연결될 수 있고, 상기 스몰 셀#1과 상기 스몰 셀#2는 서로 이상적 백홀로 연결(및 co-located)될 수 있다. As another example, scenario 3 is a case where there is a macro cell using a licensed carrier F1 and a small cell # 1, and the small cell # 1 and the small cell # 2 using an unlicensed carrier F3 are connected by carrier aggregation. In this case, the macro cell and the small cell # 1 may be connected to each other by an ideal or non-ideal backhaul, and the small cell # 1 and the small cell # 2 may be connected to each other by an ideal backhaul (and co-located). Can be
또 다른 예로, 시나리오 4는 면허 반송파인 F1을 사용하는 매크로 셀, 면허 반송파인 F2를 사용하는 스몰 셀#1, 비면허 반송파인 F3을 사용하는 스몰 셀#2이 있고, 스몰 셀#1과 스몰 셀#2이 반송파 집성으로 연결된 경우이다. 이 경우 상기 매크로 셀과 상기 스몰 셀#1은 서로 이상적 또는 비이상적(non-ideal) 백홀로 연결될 수 있고, 상기 스몰 셀#1과 상기 스몰 셀#2은 서로 이상적 백홀로 연결(및 co-located)될 수 있다. 만약, 상기 매크로 셀과 상기 스몰 셀#1이 서로 이상적 백홀로 연결된 경우, 상기 매크로 셀(F1), 상기 스몰 셀#1(F2) 및 상기 스몰 셀#2(F3) 간에 반송파 집성으로 연결될 수도 있다. As another example, scenario 4 includes a macro cell using a licensed carrier, F1, a small cell # 1 using a licensed carrier, F2, and a small cell # 2 using an unlicensed carrier, and a small cell # 1 and a small cell. # 2 is connected by carrier aggregation. In this case, the macro cell and the small cell # 1 may be connected to each other by an ideal or non-ideal backhaul, and the small cell # 1 and the small cell # 2 may be connected to each other by an ideal backhaul (and co-located). Can be If the macro cell and the small cell # 1 are ideally backhauled, the macro cell F1, the small cell # 1 (F2), and the small cell # 2 (F3) may be connected by carrier aggregation. .
한편, 단말은 적어도 하나의 서빙셀을 설정하는 기지국들 중 둘 이상의 기지국을 통하여 이중 연결(dual connectivity)을 설정할 수 있다. 이중 연결은 무선 자원 제어 연결(RRC_CONNECTED) 모드에서 적어도 두 개의 서로 다른 네트워크 포인트(예, 매크로 기지국 및 스몰 기지국)에 의해 제공되는 무선 자원들을 해당 단말이 소비하는 동작(operation)이다. 이중 연결이 가능한 경우, 상기 시나리오들에서 매크로 셀과 스몰 셀(들)간 이중 연결이 구성될 수도 있다.Meanwhile, the terminal may establish dual connectivity through two or more base stations among the base stations configuring at least one serving cell. Dual connectivity is an operation in which the terminal consumes radio resources provided by at least two different network points (eg, macro base station and small base station) in a radio resource control connection (RRC_CONNECTED) mode. If dual connectivity is possible, dual connectivity between macro cell and small cell (s) may be configured in the above scenarios.
한편, 비면허 대역을 사용하기 위하여 따라야 하는 규정 및 기준은 지역별, 나라별로 다르게 정의될 수 있으며, 일 예로 비면허 반송파의 노미널(nominal) 채널 대역폭(channel bandwidth)은 적어도 5MHz일 수 있다. 그리고 비면허 대역에서 채널 대역폭은 실질적으로 노미널 채널 대역폭의 약 80%에서 100%를 차지한다(occupy). 따라서, 전체적인 무선 통신 시스템의 효율을 위하여 LAA 시스템에서 사용하는 비면허 대역은 적어도 10MHz 또는 20MHz 대역폭을 지원할 수 있고, 5MHz 이하의 대역폭은 지원하지 않을 수 있다. On the other hand, the regulations and standards to be followed in order to use the unlicensed band may be defined differently for each region and country. For example, the nominal channel bandwidth of the unlicensed carrier may be at least 5 MHz. And in the unlicensed band, the channel bandwidth occupies substantially 80% to 100% of the nominal channel bandwidth. Therefore, the unlicensed band used in the LAA system for the efficiency of the overall wireless communication system may support at least 10MHz or 20MHz bandwidth, may not support a bandwidth below 5MHz.
한편, 비면허 대역에 대한 경쟁 기반 채널 접속 방법은 여러 가지가 있을 수 있으며, 본 발명에 따른 비면허 대역에 대한 채널 접속(access) 메커니즘(mechanism)은 다음을 포함한다.On the other hand, there may be a variety of contention-based channel access method for the unlicensed band, the channel access mechanism (mechanism) for the unlicensed band according to the present invention includes the following.
본 발명에 따른 채널 접속 메커니즘은 기회적(opportunistic) 채널 접속을 제공한다. 상기 기회적 채널 접속을 위하여 무선 통신 장치(device)가 해당 채널을 사용하기 전에 CCA(Clear Channel Assessment)를 적용한다. 이는 다른 RLAN(Radio Local Area Network) 시스템들과 동일 채널에서의 동시에 발생하는(concurrent) 전송을 피하기(avoid) 위해서이다. 여기서 CCA는 해당 채널에 대한 에너지 스캔 또는 탐지(detection)을 통하여 해당 채널이 채널간섭 또는 채널점유 상태인지, 즉 해당 채널이 비지(busy)인지 아이들(idle)한지 여부를 판단하는 절차를 나타낸다. CCA는 일정 감시 시간 동안 에너지가 탐지되었는지 여부를 기반으로 수행될 수 있다. 여기서 에너지 탐지를 통해서 획득된 EIRP(equivalent isotropic radio power)와 미리 정의된 CCA 임계(threshold) 값을 비교하여 해당 채널이 비지인지 아이들인지 판단할 수 있다. CCA 체크는 20 s 이상의 CCA 감시 시간동안 "에너지 탐지"에 기반하여 수행될 수 있다. 상기와 같은 반송파 감지(carrier sense, CS) 등에 기반한 본 발명에 따른 채널 접속 매커니즘은 LBT(Listen Before Talk)와 같이 불릴 수 있다.The channel access mechanism according to the present invention provides opportunistic channel access. In order to access the opportunity channel, a wireless channel device applies a clear channel assessment (CCA) before using the channel. This is to avoid concurrent transmission on the same channel as other RLAN (Radio Local Area Network) systems. Here, the CCA represents a procedure of determining whether the channel is in the state of channel interference or channel occupancy, that is, whether the channel is busy or idle through energy scan or detection of the channel. CCA may be performed based on whether energy was detected during a certain monitoring time. Here, it is possible to determine whether the corresponding channel is busy or idle by comparing an equivalent isotropic radio power (EIRP) obtained through energy detection with a predefined CCA threshold. The CCA check may be performed based on "energy detection" for a CCA monitoring time of 20 s or more. The channel access mechanism according to the present invention based on the carrier sense (CS), etc. may be referred to as List Before Talk (LBT).
LBT에서는 ECCA가 사용될 수도 있다. ECCA는 인자(factor) N 곱하기 CCA 감시 시간의 지속구간(duration of a factor N multiplied by a CCA observation time)만큼 에너지 스캔 또는 탐지를 수행하여 이를 기반으로 해당 채널이 채널간섭 또는 채널점유 상태인지를 파악함을 나타낼 수 있다. 여기서 상기 인자 N은 랜덤 인자일 수 있다. 상기 인자 N은 온전한(clear) 아이들 슬롯들(slots)의 수를 나타낼 수 있다. 온전한 아이들 슬롯들은 결과적으로 전체 아이들 기간을 야기하며(resulting in), 전송을 시작하기 전에 해당 아이들 기간이 감시되는 것이 필요하다. ECCA may be used in LBT. The ECCA performs energy scans or detections by the duration of a factor N multiplied by a CCA observation time to determine whether the channel is in channel interference or channel occupancy. May be indicated. Herein, the factor N may be a random factor. The factor N may represent the number of clear idle slots. Intact idle slots consequently result in a full idle period, and the idle period needs to be monitored before starting transmission.
LBT는 예를 들어 두 종류의 행동 방식(behaviour)으로 구분될 수 있다. 하나는 FBE(Frame Based Equipment)이고, 다른 하나는 LBE(Load Based Equipment)이다. LBT can be divided into, for example, two kinds of behavior. One is Frame Based Equipment (FBE) and the other is Load Based Equipment (LBE).
FBE 및 LBE에서의 타이밍 적용을 구체적으로 설명하면 다음과 같다.The timing application in the FBE and LBE will be described in detail as follows.
도 3은 본 발명에 따른 FBE을 위한 타이밍의 일 예를 나타낸다.3 shows an example of timing for an FBE according to the present invention.
도 3을 참조하면, FBE에서 CCA 수행과 그것을 통해 획득할 수 있는 자원을 하나의 프레임 구조로 정의된다. FBE에서 하나의 프레임 주기 내에 아이들 기간(idle period)과 채널 점유 시간(channel occupancy time)이 포함된다. 여기서 아이들 기간은 채널 점유 시간의 적어도 5% 이상일 수 있다. 또한 아이들 기간은 CCA (감시) 시간을 포함한다. 여기서 CCA 시간은 예를 들어 20 s 이상일 수 있다. FBE에서 CCA는 하나의 프레임 내에서 한번 수행된다.Referring to FIG. 3, the CCA is performed in the FBE and resources that can be obtained through the FBE are defined as one frame structure. In an FBE, an idle period and a channel occupancy time are included in one frame period. The idle period here may be at least 5% of the channel occupation time. Also the children's period includes CCA (surveillance) time. Here, the CCA time may be, for example, 20 s or more. In FBE, CCA is performed once in one frame.
한편, LBE에서는 FBE와 다르게 특정 프레임구조가 사용되지 않고, 만약 데이터 전송의 요구(demand)가 있는 경우 언제든(any time) (E)CCA 체크가 수행될 수 있다. ECCA 체크를 수행함에 있어서는, N개의 CCA 시간 동안에 채널이 점유되지 않으면 해당 송신 노드(또는 기지국)가 채널을 점유할 수 있다. N값은 정해진 구간 내에서 랜덤하게 선택된다. 상기 N값은 "1부터 q값의 범위내"에서 랜덤하게 선택되고 q값은 "4부터 32 사이의 값"을 가진다. 여기서 q값은 N값(CCA후 채널이 idle 상태의 횟수)을 결정하기 위해 사용되는 파라미터이다.Unlike the FBE, a specific frame structure is not used in the LBE, and if there is a demand for data transmission (E), the (E) CCA check may be performed at any time. In performing the ECCA check, if the channel is not occupied for N CCA times, the corresponding transmitting node (or base station) may occupy the channel. The N value is randomly selected within a predetermined interval. The N value is randomly selected from "in the range of 1 to q value" and the q value has a "value between 4 and 32". Where q is a parameter used to determine N (the number of times the channel is idle after CCA).
한편, 비면허 대역에서의 TPC(Transmit Power Control)를 수행함에 있어서, 비면허 대역을 사용하는 수많은 무선장비들은 적어도 일정 레벨(예를 들어 3dB)의 전력제어를 수행해야 한다. 이를 통하여 비면허 대역내에서 무선 장비들 간의 간섭이 제어될 수 있다. On the other hand, in performing the TPC (Transmit Power Control) in the unlicensed band, many radio equipment using the unlicensed band must perform at least a certain level (for example, 3dB) power control. Through this, interference between wireless devices can be controlled in the unlicensed band.
그리고, 비면허 대역을 사용하는 경우 다이나믹 주파수 선택 (dynamic frequency selection, DFS) 동작이 고려될 수 있다. DFS의 목적은 레이더(radar) 시스템들과의 간섭을 회피하고, 5GHz 등의 대역에서 거의 균일한(near-uniform) 자원활용을 이루기(achieve) 위한 것이다. DFS 요구사항은 일 예로 다음 표와 같이 나타낼 수 있다.In addition, when using an unlicensed band, dynamic frequency selection (DFS) operation may be considered. The purpose of DFS is to avoid interference with radar systems and to achieve near-uniform resource utilization in bands such as 5 GHz. DFS requirements can be represented as the following table as an example.
표 1
파라미터(parameters) 요구사항(requirement)
DFS 임계(threshold) 지역 특유(Region Specific)
채널 가용성 체크(channel availability check) >60 sec
채널 이동 시간(channel move time) <10 sec
비점유 시간(non-occupancy time) >30 min
Table 1
Parameters Requirement
DFS threshold Region Specific
Channel availability check > 60 sec
Channel move time <10 sec
Non-occupancy time > 30 min
상기와 같은 DFS 요구사항은 긴 주기값들을 기반으로 하기 때문에 SCell 비활성(deactivation)/비구성(deconfiguration) 메시지 등과 같은 상위 계층 시그널링을 통하여 해당 요구사항을 충족시킬(meet) 수 있다. Since the DFS requirement is based on long period values, the requirement can be met through higher layer signaling such as an SCell deactivation / deconfiguration message.
그리고, 비면허 대역내의 많은 반송파들이 다양한 무선 통신 시스템들 간에 사용될 수 있으므로, 무선 장비들간의 공평과 서로 간의 간섭을 줄이기 위하여 송신 노드는 비면허 대역내의 하나 또는 일부(some) 반송파를 적절하게 선택할 수 있어야 한다. 이는 (비면허 대역에서의) 반송파 선택(Carrier Selection) 동작이라 불릴 수 있다.In addition, since many carriers in the unlicensed band can be used between various wireless communication systems, the transmitting node should be able to appropriately select one or some carriers in the unlicensed band in order to reduce fairness and interference between the wireless devices. . This may be called a carrier selection operation (in an unlicensed band).
또한, 비면허 대역에서의 무선 자원의 점유는 비연속적이다. 예를 들어 유럽과 일본 같은 경우 비면허 대역에서의 무선 자원의 점유는 비연속적이어야 함을 규정하고 있으며, 글로벌 단일 프레임워크를 기반으로 본 발명에 따른 LAA 시스템이 동작하기 위하여 비연속적인 전송(Discontinuous transmission)을 지원할 것이 요구된다.In addition, the occupation of radio resources in the unlicensed band is discontinuous. For example, in Europe and Japan, the occupation of radio resources in the unlicensed band should be discontinuous. Discontinuous transmission is required for the LAA system according to the present invention to operate based on a global single framework. Support is required.
LAA 시스템에서는 비면허 대역 내의 많은 채널/반송파들이 기지국에 의하여 선택되어 사용될 수 있다. 예를 들어 5GHz 비면허 대역에 대하여, 유럽에서는 현재 450MHz, 미국에서는 현재 580MHz 만큼의 대역이 비면허 대역으로 활용될 수 있다. 그러므로 많은 수의 반송파들이 비면허 대역에서 구성될 수 있고, CA 등의 무선 통신 기법(scheme)을 위하여 고려될 수 있다. 또한 상술한 반송파 선택은 이러한 비면허 대역상의 다수의 노드들 및 다른 통신 테크놀로지(예를 들어 WiFi) 노드들과의 효율적인 무선 자원 활용과 동등한 채널 사용 분포를 유지하게 만들기 위하여 활용될 수 있다. In a LAA system, many channels / carriers in an unlicensed band may be selected and used by a base station. For example, for the 5 GHz unlicensed band, as much as 450 MHz in Europe and 580 MHz in the United States may be used as an unlicensed band. Therefore, a large number of carriers can be configured in the unlicensed band and can be considered for a wireless communication scheme such as a CA. Carrier selection described above may also be utilized to maintain a channel usage distribution that is equivalent to efficient radio resource utilization with multiple nodes and other communication technology (eg, WiFi) nodes on this unlicensed band.
예를 들어 LAA 시스템을 지원하는 기지국(이하 LAA 기지국)은 비면허 대역내의 채널/반송파들을 측정하거나 또는 단말에게 비면허 대역내의 채널/반송파들의 측정 및 보고를 요구할 수 있다. 그 결과 비면허 대역내의 서빙셀(들)은 특정 반송파 또는 반송파들의 집합으로, 잠재적인 스케줄링이 가능한 서빙셀(즉 SCell)로서 RRC 시그널링을 통하여 설정될 수 있다. 물론 경우에 따라서 특정 반송파(들)을 고정적으로 전송노드들이 점유해서 사용하도록 설정될 수도 있다. 예를 들어, 장기간(long-term) 통계치(statistic)을 기반으로 특정 채널/반송파에 엑세스(access)를 수행하거나, 데이터 전송을 수행하는 노드들의 수, 데이터 부하 상태(과부하, 중간 부하, 또는 경부하 여부), 사업자의 정책(예를 들어 엑세스 가능한 제한된 채널/반송파들의 리스트)나 관련 규정(LBT, DFS, TPC) 등에 따라서 특정 반송파(들)이 고정적으로 사용될 수도 있다. For example, a base station supporting a LAA system (hereinafter referred to as a LAA base station) may measure channels / carriers in an unlicensed band or request a terminal to measure and report channels / carriers in an unlicensed band. As a result, the serving cell (s) in the unlicensed band may be configured through RRC signaling as a serving cell (ie, SCell) capable of potential scheduling with a specific carrier or set of carriers. In some cases, of course, specific carrier (s) may be set to be occupied by fixedly transmitting nodes. For example, the number of nodes accessing a specific channel / carrier or performing data transmission based on long-term statistics, data load status (overload, medium load, or light load). Specific carrier (s) may be fixedly used in accordance with the operator's policy (e.g., a list of restricted channels / carriers accessible) or related regulations (LBT, DFS, TPC).
본 발명에서는 비면허 대역에서의 무선 통신을 원활하게 지원하기 위하여 면허 대역의 통신 기법의 지원 하에 비면허 대역에서의 무선 통신을 수행하는 방법을 제안한다. 또한 본 발명에서는 상기 비면허 대역의 자원 관리를 어떻게 수행하고, 상기 비면허 대역을 통하여 어떻게 무선 통신을 수행할 것인지를 제안한다. 또한 본 발명에서는 비면허 대역내의 반송파들을 선택하고, 해당 반송파들의 자원을 활용하기 위한 절차와 시그널링 방법을 제안한다.The present invention proposes a method for performing wireless communication in an unlicensed band in support of a licensed band communication technique to smoothly support wireless communication in an unlicensed band. In addition, the present invention proposes how to perform resource management of the unlicensed band, and how to perform wireless communication through the unlicensed band. In addition, the present invention proposes a procedure and a signaling method for selecting carriers in an unlicensed band and utilizing resources of the corresponding carriers.
도 4는 본 발명에 따른 LAA 기반 통신 동작 흐름도의 예를 나타낸다.4 shows an example of a LAA based communication operation flow diagram according to the present invention.
도 4를 참조하면, LAA 기지국은 반송파 선택 동작을 수행한다(S400). 여기서 반송파 선택은 비면허 대역에서의 반송파 선택 동작을 포함한다. LAA 기지국은 비면허 대역상의 반송파(이하, u-carrier)들의 점유 빈도 및 간섭 정도를 검출할 수 있다. 예를 들어 LAA 기지국은 LAA 네트워크와 WiFi 네트워크 배치 환경에 따라서 각 u-carrier의 점유 빈도 및 간섭 상황 등에 대한 정보를 해당 LAA 기지국의 측정 및/또는 셀 내의 단말들의 채널 측정 보고(channel measurement report)를 통해서 파악할 수 있다. 이 경우 단기간(short-term)의 채널 환경은 정확한 파악이 어려우나 장기간(long-term)의 채널 활용 빈도 등은 비교적 정확히 파악할 수 있다.Referring to FIG. 4, the LAA base station performs a carrier selection operation (S400). In this case, the carrier selection includes a carrier selection operation in the unlicensed band. The LAA base station can detect the occupancy frequency and the degree of interference of carriers (hereinafter, referred to as "u-carriers") on the unlicensed band. For example, the LAA base station measures information on the occupancy frequency and interference status of each u-carrier according to the LAA network and the WiFi network deployment environment, and measures channel measurement report of the corresponding LAA base station and / or terminals in the cell. You can figure it out. In this case, it is difficult to accurately identify the short-term channel environment, but the frequency of long-term channel utilization can be relatively accurately identified.
LAA 기지국은 하기의 기준 중 적어도 하나를 고려하여 적어도 하나의 비면허 반송파를 선택할 수 있다. 예를 들어, LAA 기지국은 유휴(idle) 반송파(들)을 우선하여 선택할 수 있다. 추가적으로 트래픽 부하(traffic loading)에 따라 선택해야 할 u-carrier들의 수를 결정할 수도 있다. 예를 들어, 오퍼레이터들 간의 조화(coordination), 지역별 규제 요구사항(regulatory requirement), 오프레이터의 배치(deployment) 정책 등 여러 가지 조건들을 고려하여 반정적(semi-static)으로 현재 LAA 기지국이 가용한 u-carrier들의 전체 집합을 결정할 수도 있다. The LAA base station may select at least one unlicensed carrier in consideration of at least one of the following criteria. For example, the LAA base station may preferentially select idle carrier (s). In addition, the number of u-carriers to be selected may be determined according to traffic loading. For example, the LAA base station currently available at the LAA base station is semi-static in consideration of various conditions such as coordination among operators, regional regulatory requirements, and operator's deployment policy. The entire set of u-carriers may be determined.
LAA 기지국은 단말과 RRC 연결 재구성(RRC connection reconfiguration) 절차를 수행한다(S410). 상기 RRC 연결 재구성 절차는 LAA 기지국이 RRC 연결 재구성 메시지를 생성하여 단말로 전송하고, 단말은 RRC 연결 재구성 완료 메시지를 LAA 기지국으로 전송하는 단계를 포함한다. 상기 RRC 연결 재구성 메시지는 면허 반송파를 사용하는 PCell을 통해서 단말에게 전송될 수 있다. The LAA base station performs an RRC connection reconfiguration procedure with the terminal (S410). The RRC connection reconfiguration procedure includes a step in which a LAA base station generates an RRC connection reconfiguration message and transmits it to a terminal, and the terminal transmits an RRC connection reconfiguration complete message to the LAA base station. The RRC connection reconfiguration message may be transmitted to the terminal through a PCell using a licensed carrier.
상기 RRC 연결 재구성 메시지는 단말에 대한 상기 선택된 비면허 반송파들에 관한 부서빙셀 구성 정보를 포함할 수 있다. 상기, RRC 연결 재구성 메시지는 단말에 상기 선택된 비면허 반송파들을 부서빙셀들로 구성하는 내용을 포함하는 부서빙셀 구성 정보필드(information field)를 포함할 수 있다. 반송파 집성(CA)을 위한 서빙셀의 설정은 단말 특유(UE specific)하게 수행된다. The RRC connection reconfiguration message may include secondary cell configuration information regarding the selected unlicensed carriers for the terminal. The RRC connection reconfiguration message may include a secondary serving cell configuration information field including content of configuring the selected unlicensed carriers by secondary serving cells. Configuration of a serving cell for carrier aggregation (CA) is performed UE-specifically.
예를 들어, 해당 단말의 성능(capability, 예를 들어 몇 개의 CC들을 집성할 수 있는지)와 LAA 기지국이 할당 가능한 상기 선택된 반송파들의 수에 따라 단말 전용(specific)의 CA 설정이 수행될 수 있다. 이 경우, LAA 기지국은 각 단말별로 독립적으로 서로 다른 반송파들 집합으로 CA를 설정할 수 있다. 참고로, 이 경우 해당 단말에 대하여 PCell은 면허 반송파가 사용되고, SCell은 면허 반송파 및/또는 비면허 반송파가 사용될 수 있다.For example, CA-specific configuration of the UE may be performed according to the capability of the UE (eg, how many CCs can be aggregated) and the number of the selected carriers to which an LAA base station can be allocated. In this case, the LAA base station may set the CA to different sets of carriers independently for each terminal. For reference, in this case, a PCell may be used for a licensed carrier and a licensed carrier and / or an unlicensed carrier may be used for an SCell.
여기서, 상기 CA 설정에 대하여 간략히 설명하고자 한다. 도 5와 같이 각 단말에 따라 서로 다른 반송파들의 집합이 CA 설정된 경우를 가정한다. 도 5는 최대 16개의 반송파가 단말에 CA 설정되는 예를 도시한 것이며, 이는 단말의 성능, LAA 기지국 및 단말간 설정에 따라 5개 이하(no more than 5), 또는 32개 이하의 반송파가 CA 설정될 수도 있다.Here, the CA configuration will be briefly described. As shown in FIG. 5, it is assumed that a set of different carriers is set according to each UE. FIG. 5 illustrates an example in which up to 16 carriers are configured by CA in a terminal, which is no more than 5 or 32 or less carriers in accordance with the performance of the terminal, the LAA base station, and the configuration between the terminals. It may be set.
도 5의 UE1은 LAA 지원 가능하며, 5 CC보다 많은 수의 반송파들(예를 들어 16개의 CC들) 상에서 CA 동작을 수행할 수 있는 성능을 가진 단말이다. 반면 UE2/UE3는 LAA는 지원하나, 5개 이하의 CC 내에서 면허 대역의 반송파(들)과 비면허 대역의 반송파(들)을 조합하여 CA 수행이 가능하다. 일 예로, 면허 대역의 반송파는 PCell 또는 SCell로 설정 가능하며, 비면허 대역의 반송파는 SCell로 설정 가능하다.UE1 of FIG. 5 is capable of supporting LAA and has a capability of performing CA operation on a larger number of carriers (eg, 16 CCs) than 5 CCs. On the other hand, UE2 / UE3 supports LAA, but CA can be performed by combining the carrier (s) of the licensed band and the carrier (s) of the unlicensed band within five CCs or less. For example, the carrier of the licensed band can be set to PCell or SCell, the carrier of the unlicensed band can be set to SCell.
다시 도 4를 참조하면, LAA 기지국은 CA 구성된 SCell에 대한 활성/비활성을 단말에 지시할 수도 있다(S420, 점선). 상기 부서빙셀 활성화/비활성화 절차는 LAA 기지국이 단말에 구성된 부서빙셀들 중 일부 또는 전부를 활성화/비활성화시키는 활성화/비활성화 지시자를 기지국으로부터 수신하고, 단말은 상기 활성화/비활성화 지시자를 기반으로 단말에 구성된 부서빙셀들 중 일부 또는 전부를 활성화 또는 비활성화할 수 있다. 상기 활성화/비활성화 지시자는 면허 대역의 PCell을 통하여 수신될 수 있다. Referring back to FIG. 4, the LAA base station may instruct the terminal of activation / deactivation of the CA configured SCell (S420, dotted line). The secondary serving cell activation / deactivation procedure receives an activation / deactivation indicator from the base station to activate / deactivate some or all of the secondary serving cells configured in the terminal by the LAA base station, and the terminal is based on the activation / deactivation indicator. Some or all of the configured secondary serving cells may be activated or deactivated. The activation / deactivation indicator may be received through the PCell of the licensed band.
본 발명의 일 예에 따라 상기 활성/비활성 시그널링은 비면허 서빙셀을 위한 MAC(Media Access Control) 계층(layer)에서의 활성/비활성 지시자를 포함한다. 상기 활성화/비활성화 지시자는 MAC 메시지에 포함되어 단말에 수신될 수 있다. 상기 MAC 메시지는 적어도 하나의 MAC CE(Control Element)를 포함하며, 상기 적어도 하나의 MAC CE는 상기 비면허 대역의 Scell에 대한 활성화/비활성화 지시자를 포함한다. According to an example of the present invention, the activation / deactivation signaling includes an activation / deactivation indicator in a media access control (MAC) layer for an unlicensed serving cell. The activation / deactivation indicator may be included in the MAC message and received by the terminal. The MAC message includes at least one MAC Control Element (MAC CE), and the at least one MAC CE includes an activation / deactivation indicator for the Scell of the unlicensed band.
상기 RRC 구성된(configured) 서빙셀들은 PCell을 제외하고는(즉, SCell들) 처음에는 비활성화 상태이므로, SCell들의 활성화/비활성화를 지시하기 위하여 도 6과 같은 MAC CE가 사용될 수도 있다. Since the RRC configured serving cells are initially inactive except the PCell (ie, SCells), the MAC CE as shown in FIG. 6 may be used to indicate activation / deactivation of the SCells.
도 6을 참조하면, MAC CE는 n개의 Ci 필드 및 R 필드를 포함할 수 있다. 예를 들어 Ci 필드는 C7, C6, C5, C4, C3, C2, C1 필드를 포함할 수 있다. Ci 필드는 1 또는 0 값을 기반으로 각각 대응되는 부서빙셀의 활성화/비활성화를 지시할 수 있다. 예를 들어, C1 필드는 1로 설정된 경우 부서빙셀#1의 활성화를 지시하고, 0으로 설정된 경우 부서빙셀#1의 비활성화를 지시한다. R 필드는 유보된(reserved) 비트이고, 0으로 설정될 수 있다. PCell 및 PUCCH(Physical Uplink Control Channel) SCell(PUCCH 전송이 설정된 SCell)은 항상 활성화 상태로 구성될 수 있으며, 이 경우 활성화/비활성화 지시가 무의미하므로, 해당 PCell 및 PUCCH SCell에 대응하는 필드는 R 필드로 설정될 수 있다. Referring to FIG. 6, the MAC CE may include n Ci fields and R fields. For example, the Ci field may include C7, C6, C5, C4, C3, C2, and C1 fields. The Ci field may indicate activation / deactivation of the corresponding secondary serving cell based on a value of 1 or 0, respectively. For example, when set to 1, the C1 field indicates activation of the secondary serving cell # 1, and when set to 0, indicates the deactivation of the secondary serving cell # 1. The R field is a reserved bit and may be set to zero. The PCell and the Physical Uplink Control Channel (PUCCH) SCell (SCell with PUCCH transmission set) may always be configured to be in an active state. In this case, the activation / deactivation indication is meaningless, so the field corresponding to the PCell and the PUCCH SCell is an R field. Can be set.
한편, 본 발명의 다른 일 예에 따라, 상기 비면허 서빙셀을 위한 활성/ 비활성 지시는 상기 별도의 MAC 시그널링 없이 수행될 수도 있다. 이 경우, 기지국은 PHY 계층을 통해 상기 Scell에 대한 온/오프 지시자를 전송하여, 상기 Scell에 대한 활성/비활성화를 지시할 수 있다.Meanwhile, according to another embodiment of the present invention, the activation / deactivation indication for the unlicensed serving cell may be performed without the separate MAC signaling. In this case, the base station may transmit an on / off indicator for the Scell through the PHY layer, to indicate the activation / deactivation for the Scell.
본 발명에 따라 부서빙셀이 활성화된 경우, 단말은 해당 부서빙셀 상에서 PDCCH(Physical Downlink Control Channel)/EPDCCH(Extended PDCCH) 모니터링 및 복호를 수행할 수 있고, 데이터 전송 및 CSI(Channel state information) 보고(report) 등을 수행할 수 있다. 반면, 부서빙셀이 비활성화된 경우, 단말은 해당 부서빙셀 상에서 PDCCH/EPDCCH 모니터링 및 복호를 수행하지 않고, 데이터 전송, CSI 보고 등도 수행하지 않는다. When the secondary serving cell is activated according to the present invention, the UE may perform physical downlink control channel (PDCCH) / extended PDCCH (EPDCCH) monitoring and decoding on the secondary serving cell, and transmit data and channel state information (CSI). Report and so on. On the other hand, when the secondary serving cell is deactivated, the UE does not perform PDCCH / EPDCCH monitoring and decoding on the secondary serving cell, and does not perform data transmission or CSI reporting.
한편, 경로손실 참조(path-loss reference)를 위하여 비활성화된 부서빙셀이 사용될 수도 있으나, 상기 비활성화 부서빙셀의 경로손실 참조는, 활성화된 부서빙셀보다는 덜 빈번하게 사용될 수 있다. 또한, 부서빙셀이 비활성화된 경우, 해당 부서빙셀의 DL CC와 SIB(System Information Block)2 링크된 UL CC 또한 비활성화되고, 해당 부서빙셀상에서 PUSCH(Physical Uplink Shared Channel) 및 SRS(Sounding Reference Signal)의 상향링크 전송 또한 금지된다. Meanwhile, although the deactivated secondary serving cell may be used for a path-loss reference, the path loss reference of the deactivated secondary serving cell may be used less frequently than the activated secondary serving cell. In addition, when the secondary serving cell is deactivated, the DL CC of the secondary serving cell and the UL CC linked to the System Information Block (SIB) 2 are also deactivated, and the Physical Uplink Shared Channel (PUSCH) and the Sounding Reference (SRS) on the secondary serving cell are also deactivated. Uplink transmission of a signal is also prohibited.
한편, 본 발명의 일 예에 따라 LAA 동작을 계층에 따라 개략적으로 설명하고자 한다. 이는 도 7과 같다. Meanwhile, according to an example of the present invention, the LAA operation will be schematically described according to a layer. This is the same as FIG.
도 7을 참조하면, RRC 계층 시그널링에 의하여, 다수의 비면허 요소 반송파들 중 C1 내지 C6 및 C10 내지 C12가 단말에 CA 구성되고, MAC 계층 시그널링에 의하여 상기 CA 구성된 요소 반송파들 중에서 C1 내지 C3 및 C11 내지 C12가 활성화되고, 나머지 C4, C5, C6, C10은 비활성화된 상태이다. PHY 계층 동작 및 시그널링에 의해서, LBT 후 C1, C2 및 C11이 해당 단말을 위하여 점유되고, C3 및 C12는 점유되지 못하는 경우, LAA 기지국 및 단말은 비면허 대역 상에서 CA 등을 기반으로 LAA 무선 통신 동작을 수행할 수 있다. Referring to FIG. 7, C1 to C6 and C10 to C12 of a plurality of unlicensed component carriers are CA configured in a terminal by RRC layer signaling, and C1 to C3 and C11 among the CA carriers configured by MAC layer signaling. To C12 are activated, and the remaining C4, C5, C6 and C10 are inactive. When C1, C2 and C11 are occupied for the corresponding UE after LBT and C3 and C12 are not occupied by the PHY layer operation and signaling, the LAA base station and the UE perform LAA wireless communication operation based on CA on the unlicensed band. Can be done.
이와 관련하여, LAA 기지국은 단말로 PHY 시그널링 절차를 수행하고, 단말은 PHY 시그널링을 체크한다(S430). 여기서 PHY 시그널링은 프리앰블, PCell로부터 전송되는 (E)PDCCH 전송 중 적어도 하나를 포함할 수 있다. In this regard, the LAA base station performs a PHY signaling procedure to the terminal, the terminal checks the PHY signaling (S430). Here, the PHY signaling may include at least one of a preamble and (E) PDCCH transmission transmitted from the PCell.
1) 프리앰블 모니터링1) Preamble Monitoring
단말이 LAA 기지국으로부터 서브프레임 n에서 SCell(비면허 반송파 기반)을 위한 활성화 지시자를 수신한다면, 단말은 서브프레임 n+m부터 프리앰블(preamble) 모니터링을 시작한다. 여기서 프리앰블은 해당 SCell의 채널 점유 여부, 채널 점유된 위치 및 구간, 스케줄링 정보 및 해당 SCell의 셀 ID 중 적어도 하나를 포함 또는 지시할 수 있다. 상기 m은 정수로서, 예를 들어 4 또는 8일 수 있다. If the terminal receives an activation indicator for SCell (unlicensed carrier based) in subframe n from the LAA base station, the terminal starts preamble monitoring from subframe n + m. Here, the preamble may include or indicate at least one of channel occupancy of the corresponding SCell, channel occupied location and interval, scheduling information, and cell ID of the corresponding SCell. M is an integer, and may be, for example, 4 or 8.
본 발명의 일 예에 따른 단말이 프리앰블 모니터링을 수행하는 과정을 도 8을 통해 설명한다.A process of performing preamble monitoring by the terminal according to an embodiment of the present invention will be described with reference to FIG. 8.
도 8을 참조하면, 단말에 SCell#1 내지 SCell#5가 구성되어 있고, 그 중 LAA 기지국으로부터 서브프레임 n에서 SCell#1 및 SCell#3의 활성화를 지시하는 MAC 시그널링(활설화/활성화 지시자 포함)를 수신한 경우, 단말은 SCell#1 및 SCell#3의 서브프레임 n+m(여기서는 8)에서부터 프리앰블 모니터링을 시작하고, 활성화되지 않은 나머지 SCells에서는 프리앰블 모니터링을 수행하지 않는다.Referring to FIG. 8, SCell # 1 to SCell # 5 are configured in a terminal, and MAC signaling (activation / activation indicator included) indicating activation of SCell # 1 and SCell # 3 in subframe n from the LAA base station. ), The UE starts preamble monitoring from subframe n + m (here 8) of SCell # 1 and SCell # 3, and does not perform preamble monitoring on the remaining SCells that are not activated.
만약 단말이 오직 RRC 구성된(즉, CA 구성된) 모든 CC들을 대상으로 프리앰블 모니터링을 수행해야 한다면, 이는 단말에 너무 큰 처리 복잡도와 파워소비를 야기시킬 수 있다. 예를 들어, 만약 최대 32개의 CC가 구성된 경우 단말이 모든 CC를 불필요하게 모니터링한다면 이는 단말에게 너무 큰 부담이 될 수 있다. 또한 단말의 전력소모의 최소화 목적으로 도입된 활성화/부활성화 시그널링의 취지를 고려할 때, 모든 RRC 구성된 CC들을 대상으로 모니터링을 수행함은 타당하지 않다. If the UE needs to perform preamble monitoring for all CCs configured only for RRC (ie, CA), this may cause too much processing complexity and power consumption for the UE. For example, if up to 32 CCs are configured, if the UE monitors all CCs unnecessarily, this may be too much burden on the UE. In addition, considering the purpose of activation / deactivation signaling introduced for the purpose of minimizing power consumption of the UE, it is not appropriate to perform monitoring for all RRC configured CCs.
따라서, 상기와 같은 복잡도 및 불필요한 파워소비를 피하기 위하여 단말은 서브프레임 n에서 비면허 대역의 특정 SCell에 대한 활성화 지시자가 수신된 경우, 서브프레임 n+m부터 해당 SCell 상에서 프리앰블 수신을 모니터링한다. 즉, 설정된 SCell들 중에서 활성화 지시자에 의하여 지시된 SCell 상에서만 단말은 프리앰블 수신을 모니터링 하여 LBT 수행으로 인한 채널 점유정보를 획득하거나 RRM(Radio resource management), 동기화, CSI 측정 및 보고, AGC(automatic gain control) 등의 동작을 수행할 수 있다. 여기서, 상기 AGC은 단말의 이동 또는 채널환경에 따라 단말 베이스 밴드(Baseband) 칩(chip)내에서 해석할 수 있는 적절 파워레벨로 안테나로부터 수신된 파워를 조절하여 제공하는 것을 포함한다.Accordingly, in order to avoid the complexity and unnecessary power consumption, the UE monitors the reception of the preamble on the SCell from subframe n + m when the activation indicator for the specific SCell of the unlicensed band is received in the subframe n. That is, only on the SCell indicated by the activation indicator among the set SCells, the UE monitors preamble reception to obtain channel occupancy information due to LBT execution, RRM (Radio resource management), synchronization, CSI measurement and reporting, and AGC (automatic gain). control) and the like. Here, the AGC includes adjusting and providing the power received from the antenna to an appropriate power level that can be interpreted in the baseband chip according to the movement or channel environment of the terminal.
2) CSI 보고2) CSI Reporting
단말은 활성화된 SCell에 관한 CSI 보고를 수행할 수 있다. LAA 기지국은 상기 CSI 보고를 기반으로 LAA 단말에게 스케줄링을 수행함에 있어 MCS(Modulation Coding Scheme) 레벨 등을 조절할 수 있고, 채널 환경에 적합한 스케줄링을 제공할 수 있다. CSI 보고는 시간 및 주파수 영역에서의 채널 품질과, 공간다중화의 경우에는 적절한 안테나 프로세싱을 위해 필요한 정보를 포함한다. CSI 보고는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), PTI(Precoding Type Indicator) 및 RI(Rank Indication)를 포함할 수 있다. The UE may perform CSI reporting on the activated SCell. The LAA base station may adjust a modulation coding scheme (MCS) level and the like in performing scheduling to the LAA terminal based on the CSI report, and may provide scheduling suitable for a channel environment. The CSI report includes channel quality in the time and frequency domain, and information necessary for proper antenna processing in case of spatial multiplexing. The CSI report may include a Channel Quality Indicator (CQI), a Precoding Matrix Index (PMI), a Precoding Type Indicator (PTI), and a Rank Indication (RI).
일 실시예로, 상술한 프리앰블 모니터링을 시작하는 서브프레임 n+m 이후부터 시작하여 늦어도 서브프레임 n+X까지 단말은 기지국의 LBT에 기반한 채널 획득(또는 점유) 여부에 상관없이 CSI 보고를 주기적 또는 비주기적으로 수행할 수 있다. 만약 단말은 때때로 잘못된 CSI(특히 CQI) 값이 유도되는 경우(즉, Out-of-range 값이 유도되는 경우) 이를 LAA 기지국으로 보고한다. 상기 X값은 타이머에 의해서 정의되거나 또는 서브프레임 n+m(프리엠블 모니터링 시작 서브프레임) 이후, 적어도 최대 채널 점유시간(Channel occupancy time)의 배수의 값 또는 RRC signaling을 통해 임의의 값으로 기지국이 설정할 수 있다. 또한 그 값은 무한한 값(infinite)을 가질 수 있다. 따라서, 한번 프리엠블 모니터링을 시작한 단말은 deactivation command를 수신하기 전까지 계속 프리엠블을 모니터링 하는 것을 의미할 수 있다.In one embodiment, the UE starts after the subframe n + m starting the above-described preamble monitoring up to a subframe n + X at a later time, whether the UE periodically or not acquires the CSI report regardless of channel acquisition (or occupancy) based on the LBT of the base station. Can be performed aperiodically. If the terminal sometimes the wrong CSI (especially CQI) value is derived (that is, when the out-of-range value is derived) it reports to the LAA base station. The X value is defined by a timer or after the subframe n + m (preamble monitoring start subframe), at least by a value of a multiple of the maximum channel occupancy time or an arbitrary value through RRC signaling. Can be set. Its value can also be infinite. Therefore, once the UE starts monitoring the preamble, it may mean that the UE continues to monitor the preamble until the deactivation command is received.
다른 실시 예로, 상술한 프리앰블 모니터링을 시작하는 서브프레임 n+m 이후 만약 기지국이 (E)CCA 기반하여 채널을 점유(또는 획득)하고, 그 정보가 상술한 프리앰블 등의 물리계층 시그널링을 통하여 단말에게 지시되었다면, 단말은 상기 점유된 채널(점유된 서브프레임들) 내의 서브프레임 k에서부터 상기 활성화된 SCell에 관한 CSI 보고를 수행할 수 있다. 상기 CSI 보고는 CSI 보고를 수행하도록 결정된 서빙셀(예를 들어 PUCCH 전송 서빙셀)을 통해서 수행될 수 있다. 여기서, 상기 k의 값은 (E)CCA 동작을 통해서 채널을 점유한 것에 의존되는 값으로, 임의의 값을 포함한다. 도 9는 본 발명의 일 예에 따른 CSI 보고를 수행하는 예를 나타낸다.In another embodiment, if the base station occupies (or obtains) a channel based on (E) CCA after the subframe n + m starting the above-described preamble monitoring, the information is transmitted to the terminal through the physical layer signaling such as the above-described preamble. If indicated, the terminal may perform CSI reporting on the activated SCell from subframe k in the occupied channel (occupied subframes). The CSI reporting may be performed through a serving cell (for example, a PUCCH transmitting serving cell) determined to perform CSI reporting. Here, the value of k is a value depending on occupying the channel through the (E) CCA operation, and includes an arbitrary value. 9 shows an example of performing CSI reporting according to an embodiment of the present invention.
도 9를 참조하면, 단말은 RRC 구성된 다수의 SCells 중, SCell#1 및 SCell#3에 대한 활성화 지시자, 또는 셀선택을 위한 지시자(SCell on/off 시그널링)를 수신하고, 서브프레임 n+m(여기서는 8)부터 프리앰블 모니터링을 개시하며, 기지국이 (E)CCA를 수행한 후, 점유된 서브프레임들 내의 서브프레임 k부터 CSI 보고를 시작한다. 또는 (E)CCA 바로 점유된 서브프레임이 시작하는 경우, 해당 점유된 서브프레임들의 시작점 k`부터 CSI 보고가 개시될 수 있다.Referring to FIG. 9, the UE receives an activation indicator for SCell # 1 and SCell # 3 or an indicator for cell selection (SCell on / off signaling) among a plurality of SCells configured in RRC, and receives subframe n + m ( In this case, preamble monitoring is started from 8), and after the base station performs (E) CCA, CSI reporting starts from subframe k in occupied subframes. Or (E) when the subframe occupied immediately by the CCA starts, CSI reporting can be started from the starting point k 'of the occupied subframes.
한편, LAA 기지국은 SCell on/off 시그널링을 단말로 전송할 수 있다. 상기 SCell on/off 시그널링은 상기 비면허 대역의 SCell이 on/off 상태인지 여부를 나타내는 SCell on/off 상태 지시자를 포함한다. 단말이 해당 SCell 상에서 전송되는 상술한 프리앰블을 수신 또는 해당 SCell에 관한 on 상태 지시자를 포함하는 물리채널(예를 들어 PDCCH)을 수신하는 경우 상기 CSI 보고가 트리거링될 수도 있다. Meanwhile, the LAA base station may transmit SCell on / off signaling to the terminal. The SCell on / off signaling includes an SCell on / off status indicator indicating whether the SCell of the unlicensed band is on / off. The CSI report may be triggered when the UE receives the above-described preamble transmitted on the SCell or receives a physical channel (eg, PDCCH) including an on state indicator for the SCell.
한편, 비면허 대역의 SCell이 활성화된 경우 해당 SCell에 대한 SCell 비활성화 타이머가 구동한다. 상기 SCell 비활성화 타이머가 만료되는 경우 해당 SCell은 다시 비활성화 상태로 천이한다. 상기 비활성화 타이머는 기지국에 의해서 단말에게 설정되는 값으로 상기 설명과 같이 활성화지시자 또는 셀선택을 위한 지시자(SCell on/off 시그널링)을 서브프레임 n에서 수신하고 서브프레임 n+8부터 비활성화 타이머는 시작이 되어 지시된 타이머 값이 만료되는 순간 비활성화 지시자 없이도 단말은 해당 서빙셀을 비활성화 상태로 천이한다.On the other hand, when the SCell of the unlicensed band is activated, the SCell deactivation timer for the corresponding SCell is driven. When the SCell deactivation timer expires, the SCell transitions back to the deactivation state. The deactivation timer is a value set to the terminal by the base station and receives an activation indicator or an indicator for cell selection (SCell on / off signaling) in subframe n as described above. As soon as the indicated timer value expires, the terminal transitions the serving cell to the deactivated state without the deactivation indicator.
일 실시예로, 단말이 서브프레임 n에서 활성화 지시자를 수신한 경우, 서브프레임 n+m부터 해당 SCell을 위한 SCell 비활성화 타이머가 시작된다. 상기 m은 정수이고, 예를 들어 4 또는 8이 될 수 있다.In an embodiment, when the terminal receives the activation indicator in subframe n, the SCell deactivation timer for the corresponding SCell starts from subframe n + m. M is an integer, and may be, for example, 4 or 8.
도 10은 본 발명의 일 실시예에 따른 SCell 비활성화 타이머에 대한동작을 도시한 도면이다.10 is a diagram illustrating an operation for an SCell deactivation timer according to an embodiment of the present invention.
도 10을 참조하면, 단말이 서브프레임 n에서 비면허 대역의 SCell#1 및 SCell#3에 대한 활성화 지시자를 수신한 경우, 서브프레임 n+m(여기서는 8)부터 해당 SCell#1 및 SCell#3에 대한 각각의 SCell 비활성화 타이머가 시작된다. SCell#1에 대한 타이머가 만료되면 SCell#1은 비활성화 상태로 천이한다. 한편, SCell#3의 경우와 같이 SCell 비활성화 타이머가 구동 중에 채널 점유에 성공한 경우, 즉, LAA 기지국으로부터 CCA 기반으로 채널 획득하였음을 나타내는 프리앰블 등의 정보를 수신한 경우 SCell#3에 대한 SCell 비활성화 타이머가 재시작한다. Referring to FIG. 10, when the UE receives activation indicators for SCell # 1 and SCell # 3 of the unlicensed band in subframe n, the UE receives the corresponding SCell # 1 and SCell # 3 from subframe n + m (here 8). Each SCell deactivation timer for is started. When the timer for SCell # 1 expires, SCell # 1 transitions to an inactive state. Meanwhile, as in the case of SCell # 3, when the SCell deactivation timer succeeds in occupying the channel while driving, that is, when information such as a preamble indicating that the channel is acquired based on CCA from the LAA base station is received, the SCell deactivation timer for SCell # 3 Will restart.
한편, 다른 실시예로, 서브프레임 n+m 이후, 기지국이 (E)CCA를 기반으로 채널을 점유하고 그 채널 획득(또는 점유) 정보가 프리앰블 또는 PDCCH와 같은 시그널링을 통해서 단말에게 알려졌다면, 획득(또는 점유)된 서브프레임의 시작부터 해당 SCell을 위한 SCell 비활성화 타이머가 시작될 수 있다. Meanwhile, in another embodiment, after the subframe n + m, if the base station occupies a channel based on (E) CCA and the channel acquisition (or occupancy) information is known to the terminal through signaling such as preamble or PDCCH, acquisition The SCell deactivation timer for the corresponding SCell may be started from the start of the (or occupied) subframe.
상기 SCell 비활성화 타이머가 시작된 이후 만료되기 전에, SCell 활성화 지시자가 다시 단말에 수신되거나 또는 채널 점유 정보가 단말에 수신된다면, SCell 비활성화 타이머는 초기화(즉, 재시작)된다. 특히, 상기 활성화 자시자에 의하여 이미 시작된 SCell 비활성화 타이머가 구동 중이며 기지국에 의한 채널 획득 정보를 단말이 수신한 경우, 상기 SCell 비활성화 타이머는 다시 시작될 수 있으며, 이에 SCell이 부적절하게 비활성화되는 상황을 막을 수 있다. 이는 상기 프리앰블을 통하여 기지국의 채널 획득 정보를 단말에 지시하는 경우에 유용하다.If the SCell activation indicator is received by the terminal again or the channel occupancy information is received by the terminal before it expires after the SCell deactivation timer starts, the SCell deactivation timer is initialized (ie, restarted). In particular, when the SCell deactivation timer already started by the activator is running and the terminal receives the channel acquisition information by the base station, the SCell deactivation timer may be restarted, thereby preventing the SCell from being inadequately deactivated. have. This is useful when instructing the terminal of channel acquisition information of the base station through the preamble.
3) SRS(Sounding Reference Signal)3) SRS (Sounding Reference Signal)
비면허 대역의 SCell에서 상향링크(UL) 전송이 허락되는 경우, 단말은 SRS를 해당 SCell 상에서 전송할 수 있다. 일 예로 단말이 서브프레임 n에서 SCell에 대한 활성화 지시자를 수신하거나 PHY 시그널링을 수신 경우, 서브프레임 n+m 이후 (E)CCA를 기반으로 채널이 획득되고, 채널 획득 정보가 프리앰블 또는 PDCCH와 같은 시그널링을 통하여 단말로 알려진 경우, SRS는 점유된 서브프레임들 중에 설정된 적어도 하나의 서브프레임에서 트리거되고 전송된다. 즉, LAA가 설정된 단말은 기지국 또는 단말의 채널 점유에 대한 상태에 따라서 SRS 전송 타이밍이 결정된다. 이를 기반으로 비면허 대역의 SCell 상에서 SRS 전송을 수행할 수 있다. When uplink (UL) transmission is allowed in the SCell of the unlicensed band, the terminal may transmit the SRS on the corresponding SCell. For example, when the UE receives the activation indicator for the SCell or PHY signaling in subframe n, the channel is acquired based on (E) CCA after subframe n + m, and the channel acquisition information is signaled such as preamble or PDCCH. If known as a terminal through, the SRS is triggered and transmitted in at least one subframe set among occupied subframes. That is, in the terminal where the LAA is set, the SRS transmission timing is determined according to the state of channel occupancy of the base station or the terminal. Based on this, SRS transmission can be performed on the SCell of the unlicensed band.
한편, 본 발명의 일 예에 따라 상기 S420 단계가 생략되고, PHY 시그널링에 의하여 다이나믹하게 비면허 대역의 SCell의 on/off 메커니즘이 적용되는 경우, 상기 RRC 시그널링 수신 시점 또는 채널 획득 정보의 수신 시점 등을 기반으로 상술한 실시예들을 수행할 수 있다. Meanwhile, according to an embodiment of the present invention, the step S420 is omitted, and when the on / off mechanism of the SCell of the unlicensed band is dynamically applied by PHY signaling, the time of receiving the RRC signaling or the time of receiving the channel acquisition information, etc. The above-described embodiments can be performed based on the above.
활성화/비활성화 시그널링이 없는 LAA 환경에서는, PHY 시그널링에 의존하여 해당 채널의 가용유무를 결정할 수 있으며, 이 경우 PHR을 수행함에 있어 다음을 추가적으로 고려할 수 있다.In an LAA environment without activation / deactivation signaling, availability of a corresponding channel may be determined depending on PHY signaling. In this case, the following may be additionally considered in performing PHR.
4) PHR(Power Headroom Report)4) Power Headroom Report (PHR)
PHR은 단말이 현재 단말의 잉여전력을 기지국으로 보고하는 동작으로, 기지국은 상기 잉여전력 범위내에서 스케줄링을 할 수 있다. 만약 (E)CCA 동작을 통하여 채널이 획득된 경우, 이 때 PHR이 트리거링 될 수 있다. 이 경우 오직 하나의 SCell 상에서 채널이 획득되었다고 하더라도, 모든 구성된 SCell셀을 위한 PHR이 수행될 수도 있다. 추가적으로 만약 서빙셀 그룹이 사용되는 경우, 채널이 획득된 SCell이 속한 서빙셀 그룹 내의 모든 SCell들에 대한 PHR이 트리거링 될 수도 있고, 모든 서빙셀 그룹 내의 SCell들에 대한 PHR이 트리거링 될 수도 있다. 상기 트리거링된 PHR은 각 서빙셀의 Pcmax,c값과 계산된 상향링크 전송 전력값의 차이값을 기반으로 계산되며, 이에 단말은 이를 기지국에게 보고한다.그 후, LAA 기지국 및 단말은 SCell상의 상기 점유된 서브프레임들 상에서 상향링크/하향링크 통신을 수행할 수 있다(S440). The PHR is an operation in which the terminal reports surplus power of the current terminal to the base station, and the base station can schedule within the surplus power range. If a channel is acquired through (E) CCA operation, PHR may be triggered at this time. In this case, even if a channel is acquired on only one SCell, PHR for all configured SCell cells may be performed. In addition, if a serving cell group is used, PHR for all SCells in the serving cell group to which the channel is obtained may be triggered, or PHR for SCells in all serving cell groups may be triggered. The triggered PHR is calculated based on the difference between the calculated Pcmax, c value of each serving cell and the calculated uplink transmission power value, and the terminal reports this to the base station. Then, the LAA base station and the terminal are located on the SCell. Uplink / downlink communication may be performed on the occupied subframes (S440).
도 11은 본 발명에 따른 LAA 기지국에 의하여 수행되는 LAA 기반 통신 동작의 예를 나타내는 흐름도이다.11 is a flowchart illustrating an example of an LAA based communication operation performed by a LAA base station according to the present invention.
도 11을 참조하면, LAA 기지국은 비면허 대역의 비면허 반송파들을 단말에 대하여 SCell들로 구성하는 RRC 연결 재구성 절차를 수행한다(S1100). 상기 RRC 연결 재구성 절차는 LAA 기지국이 RRC 연결 재구성 메시지를 생성하여 단말로 전송하고, 단말은 RRC 연결 재구성 완료 메시지를 LAA 기지국으로 전송하는 단계를 포함한다. 상기 RRC 연결 재구성 메시지는 면허 반송파를 사용하는 PCell을 통해서 단말에게 전송될 수 있다. 상기 RRC 연결 재구성 메시지는 단말에 대한 상기 비면허 반송파들에 관한 부서빙셀 구성 정보를 포함할 수 있다. 상기 RRC 연결 재구성 메세지내의 그 구성정보내에 본 발명과 연관된 것들은 프리엠블 모니터링을 위한 정보, CSI measurement 서브프레임에 대한 정보, 비활성화 타이머 설정값에 대한 정보, 상향링크 SRS/PHR 보고를 위한 설정정보들을 포함할 수 있다.Referring to FIG. 11, the LAA base station performs an RRC connection reconfiguration procedure for configuring unlicensed carriers in an unlicensed band as SCells for a terminal (S1100). The RRC connection reconfiguration procedure includes a step in which a LAA base station generates an RRC connection reconfiguration message and transmits it to a terminal, and the terminal transmits an RRC connection reconfiguration complete message to the LAA base station. The RRC connection reconfiguration message may be transmitted to the terminal through a PCell using a licensed carrier. The RRC connection reconfiguration message may include secondary serving cell configuration information regarding the unlicensed carriers for the terminal. Those related to the present invention in the configuration information in the RRC connection reconfiguration message include information for preamble monitoring, information on a CSI measurement subframe, information on a deactivation timer setting value, and configuration information for uplink SRS / PHR reporting. can do.
LAA 기지국은 상기 구성된 비면허 대역의 SCell들에 대한 활성화/비활성화 지시자를 단말로 전송한다(S1110). 상기 활성화/비활성화 지시자는 면허 대역의 PCell을 통하여 전송될 수 있다. 상기 활성화/비활성화 지시자는 MAC 메시지를 통해 단말로 전송될 수 있다. 상태를 지시한다.The LAA base station transmits an activation / deactivation indicator for the SCells of the configured unlicensed band to the terminal (S1110). The activation / deactivation indicator may be transmitted through the PCell of the licensed band. The activation / deactivation indicator may be transmitted to the terminal through a MAC message. Indicate the status.
또는 본 발명의 다른 일 예에 따라, LAA 기지국은 상기 비면허 대역의 SCell이 on/off 상태인지 여부를 나타내는 SCell on/off 상태 지시자를 포함하는 물리채널(예를 들어 PDCCH)을 상기 단말에 전송할 수도 있다. Alternatively, according to another embodiment of the present invention, the LAA base station may transmit a physical channel (for example, PDCCH) including a SCell on / off state indicator indicating whether the SCell of the unlicensed band is on / off state to the terminal. have.
LAA 기지국은 활성화된 비면허 대역의 SCell들 상에서 CCA 기반 채널 획득 절차를 수행한다(S1120).The LAA base station performs a CCA based channel acquisition procedure on the SCells of the activated unlicensed band (S1120).
LAA 기지국은 상기 채널 획득 절차를 기반으로 비면허 대역의 적어도 하나의 SCell에 대한 채널 획득 정보를 포함하는 프리앰블(또는 PDCCH) 전송을 포함하는 PHY 시그널링 절차를 수행한다(S1130). 상기 채널 획득 정보는 채널 획득된 SCell 및 해당 SCell에 대하여 획득된 서브프레임들을 지시할 수 있다. 상기 PHY 시그널링 절차는 상기 적어도 하나의 비면허 대역의 SCell에 대한 CSI 보고 수신, 상기 적어도 하나의 비면허 대역의 SCell에 대한 SRS 수신, 상기 적어도 하나의 비면허 대역의 SCell에 대한 PHR 수신중 적어도 하나의 절차를 더 포함할 수 있다. The LAA base station performs a PHY signaling procedure including a preamble (or PDCCH) transmission including channel acquisition information for at least one SCell of the unlicensed band based on the channel acquisition procedure (S1130). The channel acquisition information may indicate a channel-acquired SCell and subframes acquired for the corresponding SCell. The PHY signaling procedure includes at least one of receiving a CSI report for the SCell of the at least one unlicensed band, receiving an SRS for the SCell of the at least one unlicensed band, and receiving a PHR for the SCell of the at least one unlicensed band. It may further include.
만약 서브프레임 n에서 비면허 대역의 SCell을 위한 활성화 지시자를 전송하는 경우, LAA 기지국은 서브프레임 n+m 또는 그 이후부터 상기 채널 획득 정보를 상기 프리앰블(또는 PDCCH)를 통하여 상기 비면허 대역의 SCell 상에서 전송할 수 있다. If the activation indicator for the SCell of the unlicensed band is transmitted in subframe n, the LAA base station transmits the channel acquisition information on the SCell of the unlicensed band through the preamble (or PDCCH) from subframe n + m or later. Can be.
또한, LAA 기지국은 서브프레임 n+m 이후부터 시작하여 늦어도 서브프레임 n+X 내에서 단말이 상기 비면허 대역의 SCell에 대하여 수행한 CSI 보고를 수신할 수 있다. 또는 LAA 기지국은 상기 채널 획득 정보를 전송한 이후, 상기 SCell의 점유된 서브프레임들 내의 서브프레임 k에서부터 상기 비면허 대역의 SCell에 관한 CSI 보고를 수신할 수 있다.In addition, the LAA base station may receive a CSI report performed by the UE on the SCell of the unlicensed band starting at a time after the subframe n + m and at the latest within the subframe n + X. Alternatively, after transmitting the channel acquisition information, the LAA base station may receive a CSI report on the SCell of the unlicensed band from subframe k in the occupied subframes of the SCell.
또한, LAA 기지국은 상기 SCell의 점유된 서브프레임들 중 적어도 하나의 서브프레임 상에서 SRS를 수신할 수 있다. In addition, the LAA base station may receive the SRS on at least one subframe of the occupied subframes of the SCell.
또한, LAA 기지국은 채널 획득된 비면허 대역의 SCell이 있는 경우 해당 SCell을 위한 PHR을 단말로부터 수신할 수 있다. LAA 기지국은 모든 구성된 비면허 대역의 SCell을 위한 PHR을 단말로부터 수신할 수도 있다.In addition, the LAA base station may receive a PHR for the SCell from the terminal when there is an SCell of the channel-licensed unlicensed band. The LAA base station may receive the PHR for the SCell of all configured unlicensed bands from the terminal.
상기 프리엠블 모니터링을 제안된 타이밍상에서 시작함으로써 기지국의 채널 점유 여부와 기타 다른 정보(CSI 보고 트리거링, 자동 게인 제어(AGC), 동기 등등) 들을 수신하여 향후 데이터 스케줄링에 대비한다. 마찬가지로 제안된 방법이 적용된 CSI 보고를 단말이 기지국에 수행함으로써 향후 기지국의 채널 획득 이후 하향링크 스케쥴링에 이용된다. 또한 상향링크 스케중링에 연관된 SRS 전송 및 PHR은 제안된 방법을 통해서 단말로부터 수행되어 기지국에게 전송되고 기지국은 수신된 SRS 및 PHR을 통해서 향후 상향링크 스케중링에 이용한다.By starting the preamble monitoring on the proposed timing, the base station receives channel occupancy and other information (CSI report triggering, automatic gain control (AGC), synchronization, etc.) to prepare for future data scheduling. Likewise, since the UE performs the CSI report to which the proposed method is applied, it is used for downlink scheduling after channel acquisition of the base station. In addition, SRS transmission and PHR related to uplink scheduling are performed from the terminal through the proposed method and transmitted to the base station, and the base station is used for future uplink scheduling through the received SRS and PHR.
LAA 기지국은 상기 채널 획득 정보가 지시하는 비면허 대역의 상기 적어도 하나의 SCell상의 점유된 서브프레임들 상에서 단말과 데이터 송수신을 수행한다(S1140).The LAA base station performs data transmission / reception with the terminal on the occupied subframes on the at least one SCell of the unlicensed band indicated by the channel acquisition information (S1140).
한편, LAA 기지국과 단말간 설정에 따라 S1110 절차는 생략될 수 있으며, 이 경우 S1120 절차에서 LAA 기지국은 단말에 대하여 구성된 SCell들 전부 또는 정해진 기준에 따라 선택된 SCell들 일부에 대하여 CCA 기반 채널 획득 절차를 수행할 수 있다.Meanwhile, according to a configuration between the LAA base station and the terminal, the S1110 procedure may be omitted. In this case, in the S1120 procedure, the LAA base station performs a CCA-based channel acquisition procedure on all of the SCells configured for the terminal or a part of the selected SCells according to a predetermined criterion. Can be done.
도 12는 본 발명에 따른 단말에 의하여 수행되는 LAA 기반 통신 동작의 예를 나타내는 흐름도이다.12 is a flowchart illustrating an example of an LAA based communication operation performed by a terminal according to the present invention.
도 12를 참조하면, 단말은 비면허 대역의 비면허 반송파들을 SCell들로 구성하는 RRC 연결 재구성 절차를 수행한다(S1200). 상기 RRC 연결 재구성 절차는 단말이 LAA 기지국으로 RRC 연결 재구성 메시지를 수신하고, 단말은 RRC 연결 재구성 완료 메시지를 LAA 기지국으로 전송하는 단계를 포함한다. 상기 RRC 연결 재구성 메시지는 단말에 대한 상기 비면허 반송파들에 관한 부서빙셀 구성 정보를 포함할 수 있다. 상기 부서빙셀 구성 정보는, 비면허 반송파가 할당되어 있는 주파수밴드 및 센터 캐리어 정보 등 포함될 수 있다. 이는 EARFCN값을 통해서 유도되므로 상기 EARFCN 값이 부서빙셀 구성 정보에 포함되어, 해당 부서빙셀이 어느 주파수밴드 어느 센터 캐리어에 해당되는지를 지시할 수 있다. Referring to FIG. 12, the UE performs an RRC connection reconfiguration procedure for configuring unlicensed carriers of an unlicensed band with SCells (S1200). The RRC connection reconfiguration procedure includes a terminal receiving an RRC connection reconfiguration message to a LAA base station, and the terminal transmitting an RRC connection reconfiguration complete message to the LAA base station. The RRC connection reconfiguration message may include secondary serving cell configuration information regarding the unlicensed carriers for the terminal. The secondary serving cell configuration information may include frequency band and center carrier information to which an unlicensed carrier is assigned. Since this is derived through the EARFCN value, the EARFCN value may be included in the secondary serving cell configuration information to indicate which frequency band and which center carrier the corresponding serving cell corresponds to.
단말은 상기 구성된 비면허 대역의 SCell들에 대한 활성화/비활성화 지시자를 LAA 기지국으로부터 수신한다(S1210). 한편, 본 발명의 다른 예에 따라 단말은, 상기 비면허 대역의 SCell이 on/off 상태인지 여부를 나타내는 SCell on/off 상태 지시자를 포함하는 물리채널(예를 들어 PDCCH)을 수신할 수도 있다.The terminal receives an activation / deactivation indicator for the SCells of the configured unlicensed band from the LAA base station (S1210). Meanwhile, according to another example of the present invention, the UE may receive a physical channel (eg, PDCCH) including an SCell on / off state indicator indicating whether the SCell of the unlicensed band is on / off.
LAA 기지국은 활성화된 비면허 대역의 SCell들 중 적어도 하나의 비면허 대역의 SCell에 대한 채널 획득 정보를 포함하는 프리앰블(또는 PDCCH) 수신을 포함하는 PHY 시그널링 절차를 수행한다(S1220). 상기 채널 획득 정보는 채널 획득된 SCell 및 해당 SCell에 대하여 획득된 서브프레임들을 지시할 수 있다. 상기 PHY 시그널링 절차는, 적어도 하나의 비면허 대역의 SCell에 대한 CSI 보고, 적어도 하나의 비면허 대역의 SCell에 대한 SRS 전송, 적어도 하나의 비면허 대역의 SCell에 대한 PHR 보고 중 하나의 절차를 수행할 수 있다. The LAA base station performs a PHY signaling procedure including receiving a preamble (or PDCCH) including channel acquisition information for at least one SCell of the unlicensed band of the activated unlicensed band (S1220). The channel acquisition information may indicate a channel-acquired SCell and subframes acquired for the corresponding SCell. The PHY signaling procedure may perform one of CSI reporting for SCells in at least one unlicensed band, SRS transmission for SCells in at least one unlicensed band, and PHR reporting for SCells in at least one unlicensed band. .
보다 구체적으로, 만약 단말이 서브프레임 n에서 비면허 대역의 SCell을 위한 활성화 지시자를 수신하는 경우, 단말은 서브프레임 n+m 또는 그 이후부터 상기 비면허 대역의 SCell 상에서 프리앰블 모니터링을 수행할 수 있고, 상기 채널 획득 정보를 상기 프리앰블(또는 PDCCH)를 통하여 수신할 수 있다. 그후, 단말은 서브프레임 n+m 이후부터 시작하여 늦어도 서브프레임 n+X 내에서 상기 비면허 대역의 SCell에 대하여 CSI 보고를 수행할 수 있다. 또는 LAA 기지국은 상기 채널 획득 정보를 수신한 이후, 상기 SCell의 점유된 서브프레임들 내의 서브프레임 k에서부터 상기 비면허 대역의 SCell에 관한 CSI 보고를 수행할 수 있다. 또한, 단말은 상기 SCell의 점유된 서브프레임들 중 적어도 하나의 서브프레임 상에서 SRS를 전송할 수 있다. 또한, 단말은 채널 획득된 비면허 대역의 SCell이 있는 경우 해당 비면허 대역의 SCell을 위한 PHR을 수행할 수 있다. 또는 모든 구성된 비면허 대역의 SCell을 위한 PHR을 수행할 수도 있다.More specifically, if the terminal receives the activation indicator for the SCell of the unlicensed band in subframe n, the terminal may perform preamble monitoring on the SCell of the unlicensed band from subframe n + m or later. Channel acquisition information may be received through the preamble (or PDCCH). Thereafter, the UE may perform CSI reporting on the SCell of the unlicensed band starting from after the subframe n + m and at the latest within the subframe n + X. Alternatively, after receiving the channel acquisition information, the LAA base station may perform CSI reporting on the SCell of the unlicensed band from subframe k in the occupied subframes of the SCell. In addition, the UE may transmit the SRS on at least one subframe among the occupied subframes of the SCell. In addition, when there is an SCell of the channel-licensed unlicensed band, the terminal may perform PHR for the SCell of the corresponding unlicensed band. Alternatively, PHR for SCells of all configured unlicensed bands may be performed.
단말은 상기 채널 획득 정보가 지시하는 상기 적어도 하나의 비면허 대역의 SCell상의 점유된 서브프레임들 상에서 LAA 기지국과 데이터 송수신을 수행한다(S1230).The terminal performs data transmission and reception with an LAA base station on the occupied subframes on the SCell of the at least one unlicensed band indicated by the channel acquisition information (S1230).
한편, LAA 기지국과 단말간 설정에 따라 S1210 절차는 생략될 수 있으며, 이 경우 S1220 절차에서 단말은 상기 구성된 SCell들 전부 또는 정해진 기준에 따라 선택된 SCell들 일부에 대하여 프리앰블 모니터링을 수행할 수 있고, 상술한 PHY 시그널링 절차를 수행할 수 있다. Meanwhile, the S1210 procedure may be omitted according to the configuration between the LAA base station and the terminal. In this case, in the S1220 procedure, the terminal may perform preamble monitoring on all of the configured SCells or a part of the selected SCells according to a predetermined criterion. One PHY signaling procedure may be performed.
도 13은 본 발명에 따른 LAA 지원 기지국 및 단말을 나타내는 블록도의 예이다.13 is an example of a block diagram illustrating a LAA supporting base station and a terminal according to the present invention.
도 13을 참조하면, 기지국(1300)은 메모리(1305), 프로세서(1310) 및 RF부(radio frequency unit, 1320)을 포함한다. 메모리(1305)는 프로세서(1310)와 연결되어, 프로세서(1310)을 구동하기 위한 다양한 정보를 저장한다. RF부(1320)는 프로세서(1310)와 연결되고, 무선 신호를 전송 및/또는 수신한다. 프로세서(1310)는 본 발명에 따른 동작을 수행하기 위한 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예들에서 기지국의 동작은 프로세서(1310)의 제어에 의해 구현될 수 있다. Referring to FIG. 13, the base station 1300 includes a memory 1305, a processor 1310, and an RF unit 1320. The memory 1305 is connected to the processor 1310 and stores various information for driving the processor 1310. The RF unit 1320 is connected to the processor 1310 and transmits and / or receives a radio signal. The processor 1310 implements a proposed function, process, and / or method for performing operations in accordance with the present invention. In the above-described embodiments, the operation of the base station may be implemented by the control of the processor 1310.
프로세서(1310)는 서빙셀 구성부(1311), 활성화 처리부(1312), CCA 수행부(1313) 및 PHY 처리부(1314)를 포함한다. The processor 1310 includes a serving cell configuration unit 1311, an activation processing unit 1312, a CCA execution unit 1313, and a PHY processing unit 1314.
서빙셀 구성부(1311)는 비면허 반송파 선택을 수행한다. 서빙셀 구성부(1311)는 비면허 대역상의 비면허 반송파들의 점유 빈도 및 간섭 정도를 검출할 수 있고, 비면허 대역 내에서 단말과의 LAA 동작을 위하여 사용할 비면허 반송파들을 선택할 수 있다. The serving cell configuration unit 1311 performs unlicensed carrier selection. The serving cell configuration unit 1311 may detect the occupancy frequency and the degree of interference of the unlicensed carriers on the unlicensed band, and select unlicensed carriers to be used for LAA operation with the terminal in the unlicensed band.
또한, 서빙셀 구성부(1311)는 상기 선택된 비면허 반송파들을 단말에 대하여 SCell들로 구성하기 위한 정보를 포함하는 RRC 연결 재구성 메시지를 생성하고, RF부(1320)를 통하여 단말로 전송할 수 있다. 상기 SCell 구성 정보는, 비면허 반송파가 할당되어 있는 주파수밴드 및 센터 캐리어 정보 등 포함될 수 있다. 이는 EARFCN값을 통해서 유도되므로 상기 EARFCN 값이 부서빙셀 구성 정보에 포함되어, 해당 부서빙셀이 어느 주파수밴드 어느 센터 캐리어에 해당되는지를 지시할 수 있다. 상기 RRC 연결 재구성 메시지는 면허 반송파를 사용하는 PCell을 통하여 전송될 수 있다. RF부(1320)는 RRC 연결 재구성 완료 메시지를 단말(1350)로부터 수신할 수 있다.In addition, the serving cell configuration unit 1311 may generate an RRC connection reconfiguration message including information for configuring the selected unlicensed carriers as SCells for the terminal and transmit the generated RRC connection reconfiguration message to the terminal through the RF unit 1320. The SCell configuration information may include frequency band and center carrier information to which an unlicensed carrier is assigned. Since this is derived through the EARFCN value, the EARFCN value may be included in the secondary serving cell configuration information to indicate which frequency band and which center carrier the corresponding serving cell corresponds to. The RRC connection reconfiguration message may be transmitted through a PCell using a license carrier. The RF unit 1320 may receive an RRC connection reconfiguration complete message from the terminal 1350.
활성화 처리부(1312)는 단말(1350)에 구성된 비면허 대역의 SCell들에 대한 활성화/비활성화 지시자를 생성하고, RF부(1320)를 통하여 단말로 전송할 수 있다. 상기 활성화/비활성화 지시자는 MAC 메시지에 포함되어 상기 PCell을 통하여 단말로 전송될 수 있다.The activation processor 1312 may generate an activation / deactivation indicator for the SCells in the unlicensed band configured in the terminal 1350 and transmit the activation / deactivation indicator to the terminal through the RF unit 1320. The activation / deactivation indicator may be included in a MAC message and transmitted to the terminal through the PCell.
CCA 수행부(1313)는 상기 활성화된 비면허 대역의 SCell들에 대한 채널 획득 절차를 수행한다. 사익 채널 획득 절차는 CCA 기반으로 수행될 수 있다. CCA 수행부(1313)는 상기 채널 획득 절차를 기반으로 비면허 대역의 적어도 하나의 SCell에 대한 채널 획득 정보를 생성할 수 있다. 상기 채널 획득 정보는 채널 획득된 SCell 및 해당 SCell에 대하여 획득된(점유된) 서브프레임들을 지시할 수 있다. The CCA execution unit 1313 performs a channel acquisition procedure for the SCells of the activated unlicensed band. The sound channel acquisition procedure may be performed based on CCA. The CCA performer 1313 may generate channel acquisition information for at least one SCell of the unlicensed band based on the channel acquisition procedure. The channel acquisition information may indicate a channel-acquired SCell and subframes acquired (occupied) for the corresponding SCell.
PHY 처리부(1314)는 상기 채널 획득 정보를 포함하는 프리앰블(또는 PDCCH)를 생성하고, RF부(1320)을 통하여 단말로 전송할 수 있다. 상기 PHY 처리부(1314)는 상기 채널 획득된 비면허 대역의 SCell에 대한 CSI 보고, SRS 수신, PHR 수신을 수행하도록 제어할 수 있다. PHY 처리부(1314)는 상기 CSI 보고, SRS 및 PHR을 처리하고 해석할 수 있다. PHY 처리부(1314)는 만약 서브프레임 n에서 비면허 대역의 SCell을 위한 활성화 지시자를 전송하는 경우, RF부(1320)는 서브프레임 n+m 또는 그 이후부터 상기 채널 획득 정보를 상기 프리앰블(또는 PDCCH)를 통하여 상기 비면허 대역의 SCell 상에서 전송하도록 제어할 수 있다. 또한, PHY 처리부(1314)는 서브프레임 n+m 이후부터 시작하여 늦어도 서브프레임 n+X 내에서 단말(1350)이 상기 비면허 대역의 SCell에 대하여 수행한 CSI 보고를 수신하도록 제어할 수 있다. 또는 RF부(1320)는 상기 채널 획득 정보를 전송한 이후, 상기 SCell의 점유된 서브프레임들 내의 서브프레임 k에서부터 상기 비면허 대역의 SCell에 관한 CSI 보고를 수신하도록 제어할 수 있다. 또한, PHY 처리부(1314)는 상기 SCell의 획득된(점유된) 서브프레임들 중 적어도 하나의 서브프레임 상에서 SRS를 수신하도록 제어할 수 있다. 또한, PHY 처리부(1314)는 채널 획득된 비면허 대역의 SCell이 있는 경우 해당 SCell을 위한 PHR을 단말(1350)로부터 수신하도록 제어할 수 있다. RF부(1320)는 모든 구성된 비면허 대역의 SCell을 위한 PHR을 단말(1350)로부터 수신하도록 제어할 수도 있다.The PHY processor 1314 may generate a preamble (or PDCCH) including the channel acquisition information and transmit the preamble (or PDCCH) to the terminal through the RF unit 1320. The PHY processor 1314 may control to perform CSI reporting, SRS reception, and PHR reception for the SCell of the channel-licensed unlicensed band. The PHY processor 1314 may process and interpret the CSI report, SRS, and PHR. If the PHY processor 1314 transmits the activation indicator for the SCell of the unlicensed band in subframe n, the RF unit 1320 transmits the channel acquisition information to the preamble (or PDCCH) from subframe n + m or later. It can be controlled to transmit on the SCell of the unlicensed band through. In addition, the PHY processor 1314 may control the terminal 1350 to receive the CSI report performed by the UE 1350 on the SCell of the unlicensed band at the latest after the subframe n + m and at the latest within the subframe n + X. Alternatively, after transmitting the channel acquisition information, the RF unit 1320 may control to receive a CSI report on the SCell of the unlicensed band from subframe k in the occupied subframes of the SCell. In addition, the PHY processor 1314 may control to receive the SRS on at least one subframe of the acquired (occupied) subframes of the SCell. In addition, the PHY processing unit 1314 may control to receive the PHR for the SCell from the terminal 1350 when there is an SCell of the channel-licensed unlicensed band. The RF unit 1320 may control to receive the PHR for the SCell of all configured unlicensed bands from the terminal 1350.
따라서, 상기 프로세서(1310)는 상기 PHY 처리부(1314)의 동작을 고려하여, PHY 시그널링들을 처리한 후, RF부(1320)을 통하여 상기 비면허 대역의 SCell의 획득된(점유된) 서브프레임들 상에서 단말(1350)과 데이터 송수신을 수행할 수 있도록 스케줄링을 수행한다.Accordingly, the processor 1310 processes the PHY signaling in consideration of the operation of the PHY processing unit 1314, and then on the acquired (occupied) subframes of the SCell of the unlicensed band through the RF unit 1320. Scheduling is performed to perform data transmission / reception with the terminal 1350.
단말(1350)은 메모리(1355), 프로세서(1360) 및 RF부(1370)을 포함한다. 메모리(1355)는 프로세서(1360)와 연결되어, 프로세서(1360)를 구동하기 위한 다양한 정보를 저장한다. RF부(1370)는 프로세서(1360)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1360)는 본 발명에 따른 동작을 수행하기 위한 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 단말의 동작은 프로세서(1360)의 제어에 의해 구현될 수 있다. The terminal 1350 includes a memory 1355, a processor 1360, and an RF unit 1370. The memory 1355 is connected to the processor 1360 and stores various information for driving the processor 1360. The RF unit 1370 is connected to the processor 1360 and transmits and / or receives a radio signal. Processor 1360 implements the proposed functions, processes, and / or methods for performing operations in accordance with the present invention. In the above-described embodiment, the operation of the terminal may be implemented by the control of the processor 1360.
RF부(1370)는 상기 RRC 연결 재구성 메시지, 상기 활성화/비활성화 지시자, 상기 채널 획득 정보를 기지국(1300)으로부터 수신한다.The RF unit 1370 receives the RRC connection reconfiguration message, the activation / deactivation indicator, and the channel acquisition information from the base station 1300.
프로세서(1360)는 서빙셀 구성부(1361), 활성화 처리부(1362) 및 PHY 처리부(1363)를 포함한다. The processor 1360 includes a serving cell component 1361, an activation processor 1362, and a PHY processor 1363.
서빙셀 구성부(1361)는 상기 RRC 연결 재구성 메시지를 기반으로 상기 비면허 대역의 SCell들을 구성한다. 이후 서빙셀 구성부(1361)은 RRC 연결 재구성 완료 메시지를 생성하고 RF부(1370)을 통하여 기지국(1300)으로 전송한다.The serving cell configuration unit 1361 configures SCells in the unlicensed band based on the RRC connection reconfiguration message. Thereafter, the serving cell configuration unit 1361 generates an RRC connection reconfiguration complete message and transmits the RRC connection reconfiguration complete message to the base station 1300 through the RF unit 1370.
활성화 처리부(1362)는 상기 수신한 활성화/비활성화 지시자를 기반으로, 상기 구성된 비면허 대역의 SCell들을 활성화 또는 비활성화 상태로 천이시킨다. The activation processing unit 1362 transitions the SCells of the configured unlicensed band to an activated or deactivated state based on the received activation / deactivation indicator.
PHY 처리부(1363)는 상기 채널 획득 정보를 기반으로 채널 획득된 SCell 및 해당 SCell에 대하여 획득된(점유된) 서브프레임들을 파악할 수 있다. The PHY processor 1363 may identify the channel-acquired SCell and the subframes acquired (occupied) for the corresponding SCell based on the channel acquisition information.
또한, PHY 처리부(1363)는 서브프레임 n에서 비면허 대역의 SCell을 위한 활성화 지시자를 수신하는 경우, 서브프레임 n+m 또는 그 이후부터 상기 비면허 대역의 SCell 상에서 프리앰블 모니터링을 수행할 수 있고, 상기 채널 획득 정보를 상기 프리앰블(또는 PDCCH)를 통하여 수신하도록 제어할 수 있다. In addition, when receiving the activation indicator for the SCell of the unlicensed band in subframe n, the PHY processor 1363 may perform preamble monitoring on the SCell of the unlicensed band from subframe n + m or later, and the channel The acquisition information may be controlled to be received through the preamble (or PDCCH).
또한, PHY 처리부(1363)는 RF부(1370)를 통하여 서브프레임 n+m 이후부터 시작하여 늦어도 서브프레임 n+X 내에서 상기 비면허 대역의 SCell에 대하여 CSI 보고를 수행할 수 있다. 또는 PHY 처리부(1363)는 RF부(1370)가 상기 채널 획득 정보를 수신한 이후, 상기 SCell의 점유된 서브프레임들 내의 서브프레임 k에서부터 RF부(1370)를 통하여 상기 비면허 대역의 SCell에 관한 CSI 보고를 수행할 수 있다.In addition, the PHY processing unit 1363 may perform CSI reporting on the SCell of the unlicensed band starting from after the subframe n + m through the RF unit 1370 and at the latest within the subframe n + X. Alternatively, after the RF unit 1370 receives the channel acquisition information, the PHY processing unit 1363 receives the CSI for the SCell of the unlicensed band from the subframe k in the occupied subframes of the SCell through the RF unit 1370. Report can be performed.
또한, PHY 처리부(1363)는 RF부(1370)를 통하여 상기 SCell의 점유된 서브프레임들 중 적어도 하나의 서브프레임 상에서 SRS를 전송할 수 있다. In addition, the PHY processor 1363 may transmit an SRS on at least one subframe of the occupied subframes of the SCell through the RF unit 1370.
또한,PHY 처리부(1363)는 채널 획득된 비면허 대역의 SCell이 있는 경우 해당 비면허 대역의 SCell을 위한 PHR 또는 모든 구성된 비면허 대역의 SCell을 위한PHR을 RF부(1370)를 통하여 수행할 수 있다.In addition, the PHY processing unit 1363 may perform the PHR for the SCell of the unlicensed band or the PHR for the SCell of all configured unlicensed bands through the RF unit 1370 when there is a SCell of the channel-licensed unlicensed band.
또한, PHY 처리부(1363)는 RF부(1370)을 통하여 상기 비면허 대역의 SCell의 획득된(점유된) 서브프레임들 상에서 기지국(1300)과 데이터 송수신을 수행할 수 있다.In addition, the PHY processing unit 1363 may perform data transmission / reception with the base station 1300 on the acquired (occupied) subframes of the SCell of the unlicensed band through the RF unit 1370.
본 발명에서 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. In the present invention, the processor may include an application-specific integrated circuit (ASIC), another chipset, logic circuit and / or data processing device. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The RF unit may include a baseband circuit for processing a radio signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Claims (11)

  1. 무선 통신 시스템에서 단말의 비면허 대역을 통해 통신을 수행하는 방법에 있어서,In the method for performing communication through the unlicensed band of the terminal in a wireless communication system,
    면허(licensed) 대역의 제1서빙셀과 무선자원제어(RRC) 연결되어 있는 과정과; Connecting a first serving cell of a licensed band to a radio resource control (RRC);
    상기 제1서빙셀을 통해 비면허(unlicensed) 대역의 제2서빙셀에 대한 정보를 포함하는 RRC 연결 설정 메시지를 수신하는 단계와; 상기 비면허(unlicensed) 대역의 제2서빙셀에 대한 정보는 상기 제1서빙셀과 반송파 집성(carrier aggregation)을 지원하기 위한 상기 비면허 대역에 대한 셀 정보를 포함하며, Receiving an RRC connection establishment message including information on a second serving cell of an unlicensed band through the first serving cell; The information on the second serving cell of the unlicensed band includes cell information of the unlicensed band for supporting carrier aggregation with the first serving cell.
    상기 제1서빙셀을 통해 상기 제2서빙셀에 대한 활성화/비활성화 지시자를 포함하는 메시지를 수신하는 단계와;Receiving a message including an activation / deactivation indicator for the second serving cell through the first serving cell;
    상기 제2서빙셀에 대하여 채널 획득 절차를 수행하는 단계와; 상기 채널 획득 절차는 미리 정해진 시간 동안 상기 제2서빙셀의 채널 간섭 또는 채널 점유 상태를 확인하는 것이며; Performing a channel acquisition procedure on the second serving cell; The channel acquisition procedure is for checking channel interference or channel occupation state of the second serving cell for a predetermined time;
    상기 채널 획득 절차를 고려하여 상기 제2서빙셀을 통해 프리앰블 모니터링을 수행하거나, 채널상태정보(CSI) 보고를 수행하거나, 사운링 참조 신호(SRS) 보고를 수행하거나, 또는 파워 헤드룸(PHR) 보고 중 적어도 하나를 수행하는 단계를 포함하는 것을 특징으로 하는, 통신 방법.In consideration of the channel acquisition procedure, preamble monitoring is performed through the second serving cell, channel state information (CSI) reporting, sounding reference signal (SRS) reporting, or power headroom (PHR). Performing at least one of the reporting.
  2. 제 1항에 있어서,The method of claim 1,
    상기 활성화/비활성화 지시자는 제1 서브프레임 상에서 전송되고, 상기 채널 획득 정보는 제2 서브프레임 또는 상기 제2 서브프레임 이후에 전송되며, 상기 제2 서브프레임은 상기 제1 서브프레임 이후 8번째 서브프레임인 것을 특징으로 하는, 통신 방법.The activation / deactivation indicator is transmitted on a first subframe, the channel acquisition information is transmitted after a second subframe or the second subframe, and the second subframe is an eighth subframe after the first subframe. The communication method characterized by the above-mentioned.
  3. 제 2항에 있어서,The method of claim 2,
    제3 서브프레임 상에서 상기 단말로부터 상기 제2서빙셀에 대한 채널상태정보(CSI) 보고(report)를 수신하는 단계를 더 포함하되,Receiving a channel state information (CSI) report for the second serving cell from the terminal on a third subframe;
    상기 제3 서브프레임은 시간 도메인에서 상기 제2 서브프레임 이후에 위치함을 특징으로 하는, 통신 방법.And wherein the third subframe is located after the second subframe in the time domain.
  4. 제 2항에 있어서,The method of claim 2,
    상기 제3 서브프레임은 상기 획득된 서브프레임들 중 한 서브프레임인 것을 특징으로 하는, 통신 방법.And the third subframe is one of the obtained subframes.
  5. 제 2항에 있어서,The method of claim 2,
    상기 제2서빙셀의 상기 획득된 서브프레임들 중 적어도 하나의 서브프레임 상에서 SRS(Sounding Reference Signal)을 상기 단말로부터 수신함을 특징으로 하는, 통신 방법.And receiving a Sounding Reference Signal (SRS) from the terminal on at least one subframe of the obtained subframes of the second serving cell.
  6. 면허(licensed) 대역의 제1서빙셀과 비면허(unlicensed) 대역의 제2서빙셀 간에 반송파 집성(carrier aggregation)을 지원하는 무선 통신 시스템에서 단말의 LAA(License Assisted Access) 기반 통신 방법에 있어서,In a communication assisted access (LAA) based communication method of a terminal in a wireless communication system supporting carrier aggregation between a first serving cell of a licensed band and a second serving cell of an unlicensed band,
    상기 비면허 대역의 반송파를 SCell로 구성하기 위한 RRC 연결 재구성 절차를 수행하는 단계;Performing an RRC connection reconfiguration procedure for configuring the carrier in the unlicensed band as an SCell;
    상기 구성된 SCell에 대한 활성화 지시자를 제1 서브프레임 상에서 상기 기지국으로부터 수신하는 단계;Receiving an activation indicator for the configured SCell from the base station on a first subframe;
    상기 활성화 지시자를 기반으로 상기 SCell을 활성 상태로 천이시키는 단계; 및Transitioning the SCell to an active state based on the activation indicator; And
    상기 SCell에 대한 채널 획득 여부 및 획득된 서브프레임들 중 적어도 하나를 지시하는 채널 획득 정보를 상기 기지국으로부터 수신하는 단계를 포함하는, 통신 방법.And receiving channel acquisition information indicating at least one of the acquired subframes and the channel for the SCell from the base station.
  7. 제 6항에 있어서,The method of claim 6,
    제2 서브프레임에서부터 상기 SCell 상에서 채널 획득 정보에 관한 모니터링을 수행하는 단계를 더 포함하되,Performing monitoring on channel acquisition information on the SCell from a second subframe;
    상기 제2 서브프레임은 상기 제1 서브프레임 이후 8번째 서브프레임인 것을 특징으로 하는, 통신 방법.And the second subframe is an eighth subframe after the first subframe.
  8. 제 7항에 있어서,The method of claim 7, wherein
    제3 서브프레임 상에서 상기 단말로부터 상기 SCell에 대한 CSI(Channel State Information) 보고(report)를 수행하는 단계를 더 포함하되,The method may further include performing channel state information (CSI) report on the SCell from the terminal on a third subframe.
    상기 제3 서브프레임은 시간 도메인에서 상기 제2 서브프레임 이후에 위치함을 특징으로 하는, 통신 방법.And wherein the third subframe is located after the second subframe in the time domain.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 제3 서브프레임은 상기 획득된 서브프레임들 중 한 서브프레임인 것을 특징으로 하는, 통신 방법.And the third subframe is one of the obtained subframes.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 SCell의 상기 획득된 서브프레임들 중 적어도 하나의 서브프레임 상에서 SRS(Sounding Reference Signal)을 상기 단말로부터 수신함을 특징으로 하는, 통신 방법.And receiving a Sounding Reference Signal (SRS) from the terminal on at least one subframe of the obtained subframes of the SCell.
  11. 면허(licensed) 대역의 서빙셀과 비면허(unlicensed) 대역의 서빙셀 간에 반송파 집성(carrier aggregation)을 지원하는 무선 통신 시스템에서 LAA(License Assisted Access) 기반 통신을 수행하는 단말로서,A terminal for performing LAA (License Assisted Access) based communication in a wireless communication system supporting carrier aggregation between a serving cell of a licensed band and a serving cell of an unlicensed band.
    상기 비면허 대역의 반송파를 SCell로 구성하기 위한 RRC 연결 재구성 절차를 수행하는 프로세서; 및A processor that performs an RRC connection reconfiguration procedure for configuring the unlicensed band carrier as an SCell; And
    상기 구성된 SCell에 대한 활성화 지시자를 제1 서브프레임 상에서 상기 기지국으로부터 수신하는 RF부를 포함하되,An RF unit for receiving the activation indicator for the configured SCell from the base station on a first subframe,
    상기 프로세서는 상기 활성화 지시자를 기반으로 상기 SCell을 활성 상태로 천이시키고, The processor transitions the SCell to an active state based on the activation indicator,
    상기 RF부는 상기 SCell에 대한 채널 획득 여부 및 획득된 서브프레임들 중 적어도 하나를 지시하는 채널 획득 정보를 상기 기지국으로부터 수신함을 특징으로 하는, 단말.The RF unit, characterized in that for receiving the channel acquisition information indicating at least one of the channel acquisition and the obtained subframe for the SCell, the terminal.
PCT/KR2015/013572 2015-01-28 2015-12-11 Method and device for performing communication through unlicensed band in wireless communication system WO2016122110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0013350 2015-01-28
KR1020150013350A KR20160092680A (en) 2015-01-28 2015-01-28 Method and apparatus of performing communication on unlicensed band in wireless communication system

Publications (1)

Publication Number Publication Date
WO2016122110A1 true WO2016122110A1 (en) 2016-08-04

Family

ID=56543678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013572 WO2016122110A1 (en) 2015-01-28 2015-12-11 Method and device for performing communication through unlicensed band in wireless communication system

Country Status (2)

Country Link
KR (1) KR20160092680A (en)
WO (1) WO2016122110A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160227476A1 (en) * 2015-01-29 2016-08-04 Qualcomm Incorporated Timing information for discovery in unlicensed spectrum
WO2018034485A1 (en) * 2016-08-18 2018-02-22 엘지전자 주식회사 Method for transmitting uplink signal through multiple unlicensed component carriers in wireless communication system supporting unlicensed band, and device supporting same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315114A1 (en) * 2011-02-10 2013-11-28 Lg Electronics Inc. Method and device for scheduling in carrier aggregate system
US20130336156A1 (en) * 2011-03-01 2013-12-19 Renesas Mobile Corporation Operating A Wireless System in an Unlicensed Band
US20140043979A1 (en) * 2011-03-07 2014-02-13 Intel Corporation Opportunistic carrier aggregation for dynamic flow switching between radio access technologies
US20140112277A1 (en) * 2011-04-25 2014-04-24 Lg Electronics Inc. Method for configuring resource for carrier aggregation and apparatus for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315114A1 (en) * 2011-02-10 2013-11-28 Lg Electronics Inc. Method and device for scheduling in carrier aggregate system
US20130336156A1 (en) * 2011-03-01 2013-12-19 Renesas Mobile Corporation Operating A Wireless System in an Unlicensed Band
US20140043979A1 (en) * 2011-03-07 2014-02-13 Intel Corporation Opportunistic carrier aggregation for dynamic flow switching between radio access technologies
US20140112277A1 (en) * 2011-04-25 2014-04-24 Lg Electronics Inc. Method for configuring resource for carrier aggregation and apparatus for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITL INC.: "The On/off State Indication of SCell in LAA Unlicensed Carrier for DL Measurement", R1-145110, 3GPP TSG RAN WG1 MEETING #79, 9 November 2014 (2014-11-09), San Francisco, USA, Retrieved from the Internet <URL:httg://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_79/Docs/R1-145110.zip> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160227476A1 (en) * 2015-01-29 2016-08-04 Qualcomm Incorporated Timing information for discovery in unlicensed spectrum
US10512033B2 (en) * 2015-01-29 2019-12-17 Qualcomm Incorporated Timing information for discovery in unlicensed spectrum
WO2018034485A1 (en) * 2016-08-18 2018-02-22 엘지전자 주식회사 Method for transmitting uplink signal through multiple unlicensed component carriers in wireless communication system supporting unlicensed band, and device supporting same
US10952249B2 (en) 2016-08-18 2021-03-16 Lg Electronics Inc. Method for transmitting uplink signal through multiple unlicensed component carriers in wireless communication system supporting unlicensed band, and device supporting same

Also Published As

Publication number Publication date
KR20160092680A (en) 2016-08-05

Similar Documents

Publication Publication Date Title
EP3403446B1 (en) Communications device, infrastructure equipment, wireless communications network and methods
WO2018062898A1 (en) Method and apparatus for selecting resource and transmitting pssch in wireless communication system
WO2017023056A1 (en) Method for transmitting signal on basis of clear channel assessment in unlicensed band channel, and mobile communication system
WO2017183926A1 (en) Method for connecting to a base station with flexible bandwidth
WO2016036081A1 (en) Method for transmitting data on unlicensed band and base station therefor
WO2017039372A1 (en) Method and apparatus for performing cell search in wireless communication system
WO2018066923A1 (en) Method and apparatus for supporting energy saving mechanisms for nr in wireless communication system
WO2016186406A1 (en) Method, device, and system for signal transmission in unlicensed band
WO2016163656A1 (en) Method for performing a pdcch monitoring in a carrier aggregation with at least one scell operating in an unlicensed spectrum and a device therefor
WO2015167232A1 (en) Method and apparatus for performing cell on/off operation in wireless communication system
WO2016039559A1 (en) Cell detection, synchronization and measurement on unlicensed spectrum
WO2019022470A1 (en) Method and apparatus for performing sidelink transmissions on multiple carriers in wireless communication system
WO2019013564A1 (en) Method and apparatus for supporting bandwidth part switching in wireless communication system
WO2014051333A1 (en) Method and apparatus for supporting a control plane and a user plane in a wireless communication system
WO2018030809A1 (en) Method for receiving paging signal in nb-iot and method for performing random access procedure in nb-iot
WO2011071329A2 (en) Method and apparatus for reducing inter-cell interference in a wireless communication system
US20200404707A1 (en) Apparatus and method for listen-before-talk in a frequency band
WO2017138802A1 (en) Method and apparatus for transmitting receipt acknowledgement in wireless communication system
WO2018021824A1 (en) Uplink signal transmission method and user equipment, and uplink signal reception method and base station
WO2019022477A1 (en) Method and apparatus for selecting carrier for sidelink transmission in wireless communication system
WO2015194857A1 (en) Method and apparatus for performing d2d operation in non-activated carrier in wireless communication system
WO2018174684A1 (en) Method and apparatus for transmitting sidelink signal in wireless communication system
WO2019107969A1 (en) Method and apparatus for measuring signal quality in wireless communication system
WO2019004784A1 (en) Measurement execution method and user equipment, and measurement configuration method and base station
WO2019022480A1 (en) Method and apparatus for allocating resource based on anchor carrier in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15880290

Country of ref document: EP

Kind code of ref document: A1