WO2016121994A1 - Cell culture apparatus - Google Patents

Cell culture apparatus Download PDF

Info

Publication number
WO2016121994A1
WO2016121994A1 PCT/JP2016/052836 JP2016052836W WO2016121994A1 WO 2016121994 A1 WO2016121994 A1 WO 2016121994A1 JP 2016052836 W JP2016052836 W JP 2016052836W WO 2016121994 A1 WO2016121994 A1 WO 2016121994A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
cell culture
polymer
surface layer
layer
Prior art date
Application number
PCT/JP2016/052836
Other languages
French (fr)
Japanese (ja)
Inventor
正道 森田
美子 茂原
浩治 久保田
Original Assignee
ダイキン工業株式会社
株式会社大塚製薬工場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 株式会社大塚製薬工場 filed Critical ダイキン工業株式会社
Publication of WO2016121994A1 publication Critical patent/WO2016121994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to cell culture equipment and uses thereof.
  • Cell culture equipment having at least part of a surface on which anchorage-dependent cells are difficult to adhere is used.
  • a cell culture device is used for, for example, suspension culture (three-dimensional culture) of anchorage-dependent cells or selective culture of anchorage-independent cells.
  • Non-Patent Document 1 a surface having a high contact angle in water with respect to water (approximately 90 ° or more) may be used as a surface on which anchorage-dependent cells are difficult to adhere.
  • an object of the present invention is to provide a cell culture device having at least a surface capable of sufficiently suppressing the adhesion of anchorage-dependent cells.
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems, and unlike the conventionally proposed theory, if the surface has a high contact angle in water with respect to water, the anchorage-dependent cell adhesion can be sufficiently achieved. It was found that can be suppressed.
  • Item 1 (A) a support; and (B) a cell culture device containing a surface layer containing a fluorine-containing compound, The surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers, The cell culture equipment whose water contact angle in 37 degreeC of the surface of the said surface layer (B) is 80 degrees or more.
  • Item 2. Item 2. The cell culture device according to Item 1, wherein the surface layer (B) is a layer that has been surface-modified using a fluorine-containing compound.
  • Item 3. Item 3.
  • the cell culture device according to Item 2 wherein the surface layer (B) is a layer subjected to plasma treatment using a fluorine-containing gas.
  • Item 4. Item 2. The cell culture device according to Item 1, wherein the surface layer (B) is a layer containing a fluorine-containing polymer.
  • the fluorine-containing polymer is at least one fluorine-containing polymer having a softening point of 30 ° C. or higher selected from the group consisting of a fluoro (meth) acrylate-based polymer, a fluoro (meth) acrylamide-based polymer, and an olefin-based fluorine-containing polymer.
  • the cell culture equipment according to Item 4. Item 6.
  • Item 6. Item 6.
  • Item 7. Item 7. A composition capable of forming the surface layer (B), which is used for producing the cell culture device according to any one of Items 1 and 4 to 6.
  • Item 8. Item 8. The composition according to Item 7, comprising a fluorine-containing polymer and / or a monomer capable of forming a fluorine-containing polymer.
  • the cell culture device of the present invention has an effect that adhesion of anchorage-dependent cells is sufficiently suppressed on at least a part of the surface thereof.
  • the cell culture equipment of the present invention is: (A) a support; and (B) a cell culture device containing a surface layer containing a fluorine-containing compound,
  • the surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers, It is a cell culture equipment whose water contact angle in 37 degreeC of the surface of the said surface layer (B) is 80 degrees or more.
  • the composition of both may change critically or may change in an inclined manner.
  • the cell culture device of the present invention contains a fluorine-containing compound and has a surface layer having an underwater contact angle of 80 ° or more at 37 ° C., so that anchorage-dependent cells are difficult to adhere. Using this characteristic, it can be used for various applications. Although it does not specifically limit, for example, the cell culture equipment for carrying out suspension culture (three-dimensional culture) of an anchorage dependent cell, the cell culture equipment for selectively culture
  • suspension culture three-dimensional culture
  • ES cell embryoid body (EB) formation and spheroid formation, as well as production of useful substances and drug screening.
  • anchorage-independent cells include cancer cells and blood cells.
  • these cell culture equipments are used for a wide range of purposes such as cell medicine production, tissue engineering, stem cell differentiation and cell culture experiments, protein preparations and / or cell preparation storage bags, etc. it can.
  • the cell culture device of the present invention does not include those exhibiting temperature responsiveness below 37 ° C., more specifically those having an underwater contact angle below 37 ° C. smaller than the underwater contact angle at 37 ° C. .
  • the support can be appropriately selected depending on the purpose of use of the cell culture equipment, and is not particularly limited.
  • the material of the support is selected from resin, glass, ceramic, metal and the like. Specific examples thereof include polyolefins such as polystyrene, polyethylene terephthalate, polyethylene and polypropylene, EVA (Ethylene-vinyl acetate), cycloolefin, polytetrafluoroethylene, and stainless steel.
  • the shape of the support is not particularly limited as long as it is usually used, and examples thereof include a dish, a plate, and a bag.
  • the surface shape of the support may be smooth or uneven, and may have a smooth region and an uneven region.
  • the well shape of the plate may be a flat bottom or a round bottom, and the well diameter is not particularly limited, and may be, for example, 34 mm (6 wells), 9 mm (96 wells), or the like.
  • it may be a micro space plate partitioned into a micrometer order space, for example, a space having a width of 200 ⁇ m and a depth of 100 ⁇ m.
  • the support is preferable in that the surface layer (B) can be formed on the surface by surface graft polymerization if at least the surface thereof contains a material capable of forming a polymerization initiation point by radiation irradiation.
  • the support may contain only a material capable of forming a polymerization starting point on the surface, or may contain such a material as a whole.
  • Examples of materials that can form the polymerization starting point include resins, and specifically, acrylics such as polystyrene, polyethylene terephthalate, low density polyethylene, medium density polyethylene, high density polyethylene, polyurethane, urethane acrylate, and polymethyl methacrylate.
  • examples thereof include resin, polyamide (nylon), polycarbonate, natural rubber having conjugated bond, synthetic rubber having conjugated bond, and silicone rubber.
  • the material may be a blend polymer or polymer alloy containing two or more of these.
  • the support may be surface-treated as necessary as long as the effect of the present invention is not hindered, and may further have another layer on the surface.
  • the surface layer (B) contains a fluorine-containing compound, and the contact angle in water at 37 ° C is 80 ° or more.
  • the surface layer (B) preferably has an underwater contact angle at 37 ° C. of 80 ° or more, more preferably 90 ° or more.
  • the underwater contact angle is usually 120 ° or less.
  • the surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers.
  • the surface layer (B) may be disposed directly or via one or more other layers in an area of at least 50% of the surface of the support (A). It may be arranged directly or via one or more other layers in an area of at least 90% of the surface of the support (A).
  • the underwater contact angle is specifically measured as follows.
  • the surface layer (B) may be a surface-modified layer using a fluorine-containing compound.
  • the surface layer (B) is the surface portion of the support that is surface-modified, if the other layer is interposed between the support and the surface layer (B), the outermost layer thereof. Point to.
  • fluorine-containing compound used in the surface modification examples include at least one fluorine-containing compound selected from the group consisting of fluorine gas, fluorine-containing gas, and fluorine-containing polymer.
  • the fluorinated gas is not particularly limited, tetrafluoromethane (CF 4), hexafluoroethane (C 2 F 6), perfluoro ethylene (C 3 F 6), hexafluoropropene oxide (C 3 OF 6),
  • fluorine groups can be introduced into the surface of the polymer substrate by plasma treatment using perfluoropropane (C 3 F 8 ) or the like.
  • the conditions for the plasma treatment can be set as appropriate according to the type of polymer substrate and gaseous fluorine-containing compound. Usually, so-called low-temperature plasma treatment is performed in the presence of a gaseous fluorine-containing compound.
  • the surface layer (B) may be a layer containing a fluorine-containing compound as an aspect different from the above-described surface-modified one. That is, in this case, the surface layer (B) is not a part of the modified lower layer but is originally a different layer from the lower layer.
  • a fluorine-containing compound used in the aspect which provides a surface layer (B) as a layer different from a lower layer originally for example, an acrylic acid type compound, an acrylate type compound, an acrylamide type compound, an olefin And compounds in which at least one hydrogen atom is substituted with a fluorine atom in a benzene compound, a styrene compound, an acrylonitrile compound, a vinyl pyrrolidone compound, a vinyl ether compound, a pyrrole compound, and the like.
  • the acrylic acid-based compound is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, maleic acid, fumaric acid, and crotonic acid.
  • the acrylate compound is not particularly limited.
  • examples thereof include ⁇ , ⁇ -ethylenically unsaturated carboxylic acid esters such as methacrylate, behenyl acrylate, and behenyl methacrylate.
  • the acrylamide compound is not particularly limited, and examples thereof include octyl acrylamide and stearyl acrylamide.
  • an acrylate compound or an acrylamide compound for example, it has a fluoroalkyl group that is ester-bonded or amide-bonded directly or via a divalent organic group to the carboxyl group, and may have a substituent at the ⁇ -position, Examples thereof include acrylic acid esters (hereinafter sometimes abbreviated as “fluoroalkyl group-containing acrylic acid esters”) or acrylamides (hereinafter sometimes abbreviated as “fluoroalkyl group-containing acrylamides”).
  • fluoroalkyl group-containing acrylic acid esters hereinafter sometimes abbreviated as “fluoroalkyl group-containing acrylic acid esters”
  • acrylamides hereinafter sometimes abbreviated as “fluoroalkyl group-containing acrylamides”.
  • X represents a hydrogen atom, a linear or branched alkyl group having 1 to 21 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (where X 1 and X 2 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group or A substituted or unsubstituted phenyl group; Y is —O— or
  • —CH 2 CH (OZ 1 ) CH 2 — group (wherein Z 1 is a hydrogen atom or an acetyl group. ), — (CH 2 ) m —SO 2 — (CH 2 ) n — group, — (CH 2 ) m —S— (CH 2 ) n — group (m is 1 to 10, and n is 0 to Or a — (CH 2 ) m —COO— group, where m is 1 to 10; Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms which may have a hetero atom.
  • An acrylate ester or acrylamide represented by the formula:
  • the fluoroalkyl group represented by Rf is an alkyl group which may have a hetero atom, in which at least one hydrogen atom is substituted with a fluorine atom, and all the hydrogen atoms are fluorine.
  • a perfluoroalkyl group which may be substituted with an atom and may have a hetero atom is also included.
  • Examples of the fluoroalkyl group having a heteroatom represented by Rf include a perfluoropolyether group.
  • Rf is preferably a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, and particularly having 1 to 3 carbon atoms. It is preferably a linear or branched perfluoroalkyl group.
  • EPA US Environmental Protection Agency
  • a compound having a fluoroalkyl group having 8 or more carbon atoms is a high environmental load that may decompose and accumulate in the environment and living organisms.
  • Rf when Rf is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, such environmental problems are pointed out. Because it is not.
  • examples of the Rf group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CFHCF 3 , —CF (CF 3 ).
  • the fluorine-containing compound is preferably a non-telomer.
  • the Rf group may be a fluoroalkyl group having 1 to 2 carbon atoms, or two or more carbon atoms having 1 to 3 carbon atoms interposed by a hetero atom.
  • acrylic acid ester or acrylamide represented by the general formula (1) are as follows.
  • the olefin compound is not particularly limited, and examples thereof include alkenes and alkyl vinyl ethers.
  • the alkene is not particularly limited, and examples thereof include ethylene and propylene.
  • Alkenes may have at least a part of hydrogen atoms substituted with fluorine atoms, and are not particularly limited. Specific examples include tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • the alkyl vinyl ether is not particularly limited, and examples thereof include alkyl vinyl ethers having an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms.
  • the alkyl vinyl ether may be a perfluoroalkyl vinyl ether. Specific examples of the perfluoroalkyl vinyl ether are not particularly limited, and examples thereof include perfluoropropyl vinyl ether.
  • the above olefinic compounds can be used alone or in combination of two or more.
  • the styrene compound is not particularly limited, and examples thereof include styrene and alkylstyrene.
  • the above styrenic compounds can be used singly or in combination of two or more.
  • the acrylonitrile-based compound is not particularly limited, and examples thereof include acrylonitrile.
  • the above acrylonitrile compounds can be used singly or in combination of two or more.
  • the vinyl pyrrolidone compound is not particularly limited, and examples thereof include vinyl pyrrolidone.
  • the above-mentioned vinylpyrrolidone compounds can be used singly or in combination of two or more.
  • the vinyl ether compound is not particularly limited, and examples thereof include alkyl vinyl ethers such as ethyl vinyl ether and butyl vinyl ether.
  • the above vinyl ether compounds can be used singly or in combination of two or more.
  • the pyrrole compound is not particularly limited, and examples thereof include pyrrole.
  • the above pyrrole compounds can be used singly or in combination of two or more.
  • Examples of the fluorine-containing compound used in a mode in which the surface layer (B) is originally provided as a layer different from the lower layer include a fluorine-containing polymer.
  • the surface layer (B) may further contain a fluorine-containing compound different from that in addition to the fluorine-containing polymer.
  • the fluorine-containing polymer is not particularly limited, but for example, at least one of acrylate compounds, acrylamide compounds, olefin compounds, styrene compounds, acrylonitrile compounds, vinyl pyrrolidone compounds, vinyl ether compounds and pyrrole compounds. And those having a structural unit based on one in which two hydrogen atoms are substituted with fluorine atoms.
  • the surface layer (B) may contain 1 type, or 2 or more types of fluorine-containing polymers. As the various compounds serving as the basis of these structural units, those described above as the fluorine-containing compounds that can be contained in the surface layer (B) can be used.
  • the fluorine-containing polymer is preferably a fluoro (meth) acrylate-based polymer, a fluoro (meth) acrylamide-based polymer, or an olefin-based fluorine-containing polymer. Furthermore, these polymers are more preferable if the softening point is 30 ° C. or higher.
  • the fluoro (meth) acrylate polymer, fluoro (meth) acrylamide polymer or olefinic fluorine-containing polymer used as the fluorine-containing polymer is more preferable as the softening point is higher in terms of the effect of suppressing the anchorage-dependent cell adhesion. Show the trend.
  • the numerical range of the softening point is preferably in the order of 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, and 70 ° C. or higher.
  • the fluoro (meth) acrylate polymer and the fluoro (meth) acrylamide polymer are polymers containing structural units based on at least fluoro (meth) acrylate and fluoro (meth) acrylamide, respectively.
  • the polymer having a softening point of 30 ° C. or higher is easy to maintain hydrophobicity because reorientation of Rf group (hydrophobic) and carbonyl group (hydrophilicity) hardly occurs in water at 37 ° C. it is conceivable that.
  • fluoro (meth) acrylate polymer and the fluoro (meth) acrylamide polymer are configurations based on the fluoroalkyl group-containing (meth) acrylic acid ester and / or the fluoroalkyl group-containing (meth) acrylamide. What has a unit etc. are mentioned.
  • the one in which Rf is a perfluoropolyether group has a softening point. It becomes less than 30 ° C.
  • the olefinic fluorine-containing polymer means a fluorine-containing polymer which may contain a structural unit based on a polymerized olefin monomer and a structural unit based on at least one other comonomer.
  • the olefinic fluorine-containing polymer preferably contains a structural unit based on a polymerized olefin monomer corresponding to a majority quantity based on the weight of the polymer.
  • the fluorine atom may be contained only in the structural unit based on the polymerized olefin monomer, may be contained only in the structural unit based on the other comonomer, or may be contained in both of them. Good. At least one of the structural units may be one in which all of the hydrogen atoms are substituted with fluorine atoms, or both of the structural units may be one in which all of the hydrogen atoms are substituted with fluorine atoms. . In the above, in other structural units, a part of hydrogen atoms may be substituted with fluorine atoms, or the hydrogen atoms may not be substituted at all with fluorine atoms.
  • the polymerized olefin monomer is not particularly limited, and examples thereof include alkenes and alkyl vinyl ethers.
  • the alkene is not particularly limited, and examples thereof include ethylene and propylene.
  • Alkenes may have at least a part of hydrogen atoms substituted with fluorine atoms, and are not particularly limited. Specific examples include tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • the alkyl vinyl ether is not particularly limited, and examples thereof include alkyl vinyl ethers having an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms.
  • the alkyl vinyl ether may be a perfluoroalkyl vinyl ether. Specific examples of the perfluoroalkyl vinyl ether are not particularly limited, and examples thereof include perfluoropropyl vinyl ether.
  • olefinic fluoropolymer examples include, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer.
  • PFA polytetrafluoroethylene
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVDF polyvinylidene fluoride
  • vinylidene fluoride-tetrafluoroethylene copolymer examples include, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer.
  • PFA polytetrafluoroethylene
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVDF polyvinylidene flu
  • the surface layer (B) may further contain a non-fluorine-containing compound. It does not specifically limit, An acrylamide type compound, an olefin type compound, a styrene type compound, etc. are mentioned. Among these, a single species may be used, or a plurality of species may be used in combination.
  • the acrylamide compound is not particularly limited, and examples thereof include acrylamide and methylol methacrylamide. These may be used alone or in combination.
  • the styrene compound is not particularly limited, and examples thereof include styrene and alkylstyrene. These may be used alone or in combination.
  • the surface layer (B) may contain a silicone compound and is not particularly limited, and examples thereof include a polymer of dimethylpolysiloxane and a silicone macromonomer.
  • the surface layer (B) may have a functional group capable of chemically bonding such as an epoxy group, an isocyanate group, a succinimide group, an amino group, a carboxyl group, or a hydroxyl group.
  • the chemical bonds of the present invention refer to covalent bonds, ionic bonds, metal bonds, hydrogen bonds, and intermolecular forces.
  • the softening point of a polymer means a melting point in the case of a crystalline polymer and a glass transition temperature in the case of an amorphous polymer. These are measured as follows.
  • the polymer softening point is the melting point (Tm) or glass transition point (Tg) measured by differential scanning calorimetry. From the thermogram of the 2nd cycle when 10 mg of polymer powder was measured with a differential scanning calorimeter (DSC) under the conditions of a temperature range of ⁇ 50 to 150 ° C. and a heating rate of 10 ° C./min. The melting point is read from the top of the melting peak, and in the case of an amorphous polymer, the extrapolated glass transition end temperature (JIS K7121-1987) is read.
  • the surface layer (B) may be disposed on the underlying surface by physical adsorption or may be bonded via a chemical bond.
  • the surface layer (B) is preferably bonded to the underlying surface via a chemical bond in that the effect of suppressing cell adhesion can be maintained over a long period of time.
  • the surface layer (B) is fixed to the underlying surface via chemical bonding. It may be.
  • the thickness of the surface layer (B) is 0.2 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more. If thickness is 0.2 micrometer or more, it will become easy to exhibit sufficient cell adhesion suppression ability.
  • the other layers are not particularly limited, and examples thereof include a support reinforcing layer, a primer layer, and a radiation modification auxiliary layer.
  • the support reinforcing layer is a layer that mechanically or chemically reinforces the support. Specifically, it is used when the mechanical strength of the support is low, or when chemical corrosion occurs on the support due to the influence of the solvent and / or monomer used in forming the surface layer.
  • the mechanical strength can be improved by laminating a polyethylene terephthalate film having a thickness of 250 ⁇ m on a polyethylene film having a thickness of 10 ⁇ m.
  • the chemical corrosion with respect to a solvent and / or a monomer can be prevented by sticking a FEP film on a polystyrene base material.
  • the primer layer is a layer for improving the adhesion between the support (A) and the surface layer (B), and is not particularly limited.
  • both surfaces for attaching an FEP film on the above-mentioned polystyrene base material. Tape etc. are mentioned.
  • the radiation modification auxiliary layer is used when the support (A) is made of a material that hardly generates radicals when irradiated with radiation, such as polystyrene.
  • a material that hardly generates radicals when irradiated with radiation such as polystyrene.
  • a polyethylene film as a radiation modification auxiliary layer on the surface of polystyrene equipment, a large amount of radicals are generated when irradiated with radiation, and graft polymerization can be easily performed.
  • the manufacturing method of a cell culture equipment is not specifically limited, the cell culture equipment of this invention is obtained by applying the surface treatment agent which can make the water contact angle in 37 degreeC of the process surface 80 degree or more to the surface used as a foundation
  • the surface treatment agent can be applied to the underlying surface by a coating method such as a solvent casting method, a dipping method, a spray method, a spin coating method, a bar coating method, or a brush coating method.
  • a coating method such as a solvent casting method, a dipping method, a spray method, a spin coating method, a bar coating method, or a brush coating method.
  • a solvent casting method a solution in which components such as the above-mentioned fluorine-containing compounds are dissolved in a solvent is uniformly applied to the base surface, and then the solvent is evaporated to form a film on the base surface.
  • the solvent used to make the above-mentioned fluorine-containing compound or the like into a solution by various coating methods is not particularly limited, but, for example, those having a boiling point of 120 ° C. or less, particularly 50 to 110 ° C. under normal pressure are preferable.
  • any fluorine-containing compound, alcohol, ether, etc. may be used as long as the solvent has a fluorine atom in the molecule and the solubility of the fluorine-containing polymer is good.
  • Any of the family may be used.
  • the perfluoroaliphatic hydrocarbon is not particularly limited, but preferably has 5 to 12 carbon atoms. Specific examples include perfluorohexane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, perfluorodihydropropanol (pentafluoropropanol), and the like.
  • the polyfluoroaromatic hydrocarbon is not particularly limited, and examples thereof include bis (trifluoromethyl) benzene and hexafluoro-m-xylene.
  • the polyfluoroaliphatic hydrocarbon is not particularly limited.
  • C 6 F 13 CH 2 CH 3 for example, Asahi Clin (registered trademark) AC-6000 manufactured by Asahi Glass Co., Ltd.]
  • 1, 1, 2, 2 , 3,3,4-heptafluorocyclopentane for example, ZEOLOR (registered trademark) H manufactured by Nippon Zeon Co., Ltd.].
  • Hydrofluorocarbon is not particularly limited, and examples thereof include 1,1,1,3,3-pentafluorobutane (HFC-365mfc).
  • Hydrochlorofluorocarbon is not particularly limited, but preferably has 2 to 5 carbon atoms. Specific examples include, but are not limited to, HCFC-225 [dichloropentafluoropropane: Asahiklin (registered trademark) AK225], HCFC141b (dichlorofluoroethane), CFC316 (2,2,3,3-tetrachlorohexafluorobutane) )) and C 5 H 2 F 10 (for example, Vertrel (registered trademark) XF manufactured by DuPont).
  • HCFC-225 diichloropentafluoropropane: Asahiklin (registered trademark) AK225
  • HCFC141b diichlorofluoroethane
  • CFC316 2,2,3,3-tetrachlorohexafluorobutane
  • Vertrel registered trademark
  • the hydrofluoroether (HFE) is not particularly limited, for example, perfluoropropyl methyl ether (C 3 F 7 OCH 3) [ for example, Sumitomo 3M Limited of Novec (TM) 7000] and CF 3 CH 2 OCF 2 CHF 2 [for example, Asahi Clin (registered trademark) AE-3000 manufactured by Asahi Glass Co., Ltd.] and the like.
  • the hydrofluoroolefin (HFO) is not particularly limited.
  • 1,2-dichloro-1,3,3,3-tetrafluoro-1-propene for example, Vertrel (registered by Mitsui DuPont Fluorochemical) (registered) Trademark) Scion] and the like.
  • the perfluoroalkyl group and the alkyl group may be either linear or branched.
  • Specific examples include, but are not limited to, perfluorobutyl methyl ether (C 4 F 9 OCH 3 ) [for example, Novec (trade name) 7100 manufactured by Sumitomo 3M Limited], perfluorobutyl ethyl ether (C 4 F 9).
  • OC 2 H 5 for example, Novec (trade name) 7200 manufactured by Sumitomo 3M Limited
  • perfluorohexyl methyl ether C 2 F 5 CF (OCH 3 ) C 3 F 7
  • Novec (trade name) 7300 and the like.
  • solvents used to make the above-mentioned fluorine-containing compounds and the like into solutions include alcohol solvents such as methanol, ethanol and isopropyl alcohol, ketone solvents such as acetone and methyl isobutyl ketone, ethyl acetate and butyl acetate.
  • An ester solvent such as tetrahydrofuran and an ether solvent such as tetrahydrofuran can be used.
  • the solvent for dissolving the fluorine-containing compound only one kind of solvent may be used, or two or more kinds of solvents may be mixed and used. If necessary, an additive may be added to the solvent.
  • the fluorine-containing compound used for the surface layer (B) has a functional group capable of chemically bonding such as an epoxy group, an isocyanate group, a succinimide group, an amino group, a carboxyl group, or a hydroxyl group
  • a solution of a fluorine-containing compound or the like is applied to the surface of the container and chemically bonded.
  • a cell culture vessel can also be obtained by a method of removing unreacted polymer after evaporation to form a coating layer.
  • the fluorine compound or the like may be fixed to the base surface by chemical bonding also by the following method. (1) a step of dissolving components such as the above-mentioned fluorine-containing compound in a solvent; and (2) a step of applying the solution obtained in (1) above to the underlying surface and further polymerizing them as necessary.
  • the equipment of the present invention can be obtained by the method of including.
  • step (1) the solvent for dissolving the fluorine-containing compound is the same as in various coating methods.
  • the surface of the base may be coated with the fluorine-containing compound dissolved in the solvent and then polymerized to form a polymer on the surface. After the formation, the base surface may be covered with the obtained polymer.
  • the polymerization method is not particularly limited, but may be, for example, radical polymerization, and more specifically, electron beam irradiation (EB), ⁇ -ray irradiation, ultraviolet irradiation, plasma treatment, corona treatment, and organic polymerization reaction. Etc.
  • EB electron beam irradiation
  • ⁇ -ray irradiation ultraviolet irradiation
  • plasma treatment corona treatment
  • organic polymerization reaction organic polymerization reaction.
  • the method of coating the surface of the equipment with a polymer formed in advance is not particularly limited, and may be performed by simple physical adsorption such as coating and kneading, and further includes electron beam irradiation (EB), ⁇ -ray irradiation, By performing ultraviolet irradiation, plasma treatment, corona treatment, or the like, the polymer may be fixed to the surface of the base via a chemical bond.
  • EB electron beam irradiation
  • ⁇ -ray irradiation By performing ultraviolet irradiation, plasma treatment, corona treatment, or the like, the polymer may be fixed to the surface of the base via a chemical bond.
  • the surface treatment agent of the present invention is a composition capable of forming the surface layer (B) used for producing the cell culture device of the present invention.
  • the surface treatment agent of the present invention is a surface treatment agent that can make the contact angle of the treated surface at 37 ° C. in water of 80 ° or more.
  • the surface treatment agent of the present invention is a surface treatment agent capable of setting the contact angle of the treated surface at 37 ° C. in water to preferably 80 ° or more, more preferably 90 ° or more.
  • the surface treatment agent of the present invention is a surface treatment agent applied to a surface having a contact angle in water at 37 ° C. of preferably 50 ° or less, more preferably 40 ° or less.
  • cultivation) of an anchorage-dependent cell the cell culture equipment for selectively culture
  • suspension culture three-dimensional culture
  • ES cell embryoid body (EB) formation and spheroid formation, as well as production of useful substances and drug screening.
  • anchorage-independent cells include cancer cells and blood cells.
  • these cell culture equipments can be used for a wide range of purposes, such as cell medicine production, tissue engineering, stem cell differentiation and cell culture experiments, and protein preparations and / or cell preparation storage bags. Can be used.
  • the surface treatment agent of the present invention is not particularly limited as an active ingredient, but includes, for example, the above-mentioned fluorine-containing compound.
  • the surface treatment agent of the present invention contains a solvent that dissolves the active ingredient.
  • the solvent for dissolving it is not particularly limited, but those described in the above “2. Method for producing cell culture equipment” may be used.
  • HCFC-225 was used in the case of fluorine-containing (meth) acrylate, and isooctane was used in the case of non-fluorinated (meth) acrylate.
  • the monomer concentration was 20% by weight, and 1 mol% (based on monomer) of azobisisobutylnitrile was used as a polymerization initiator, and polymerization was carried out at 50 ° C. for 12 hours.
  • the polymer was purified by dropping the obtained polymer solution into a poor solvent and precipitating, isolating and drying.
  • Fluororesin film A flat-bottomed 6-well plate (# 92006) (diameter: 3.4 cm) made by TPP, a double-sided tape was applied to the well, and an FEP film (film thickness of 50 ⁇ m) was attached thereon.
  • PE film 2.4 A double-sided tape was applied in the same well as the polyethylene (PE) film 2.3, and a PE film (film thickness 100 ⁇ m) was stuck thereon.
  • the polymer softening point was the melting point (Tm) or glass transition point (Tg) measured by differential scanning calorimetry.
  • Tm melting point
  • Tg glass transition point
  • DSC822e manufactured by Mettler Toledo, USA
  • Cell adhesion test A cell adhesion test was carried out using C3H / 10T1 / 2clone 8 (CL8) cells (cultured cells like mesenchymal stem cells derived from mouse embryos). Prior to this, a 6-well plate (TPP) was prepared as a sample to be subjected to the cell adhesion test, in which each well bottom surface was treated with various polymers.
  • C3H / 10T1 / 2clone 8 (CL8) cells cultured cells like mesenchymal stem cells derived from mouse embryos. Prior to this, a 6-well plate (TPP) was prepared as a sample to be subjected to the cell adhesion test, in which each well bottom surface was treated with various polymers.
  • 100 ⁇ l of the cell suspension was seeded in a 6-well plate in which 2 ml of medium was filled in each well in advance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention addresses the problem of providing a cell culture apparatus wherein at least a portion of the surface is capable of sufficiently inhibiting the adhesion of anchorage-dependent cells. As a means of solving said problem, a cell culture apparatus comprising a support body (A) and a surface layer (B), which includes a fluorine-containing compound, is provided, wherein the surface layer (B) is disposed directly or with one or more other layers therebetween on at least a portion of the surface of the support body (A), and the water contact angle of the surface of the surface layer (B) at 37°C is 80° or greater.

Description

細胞培養器材Cell culture equipment
 本発明は、細胞培養器材及びその用途に関する。 The present invention relates to cell culture equipment and uses thereof.
 足場依存性細胞が接着しにくい表面を少なくとも一部に有する細胞培養器材が用いられている。このような細胞培養器材は、例えば、足場依存性細胞を浮遊培養(三次元培養)させるため、あるいは足場非依存性細胞を選択的に培養するため等の用途に用いられる。 Cell culture equipment having at least part of a surface on which anchorage-dependent cells are difficult to adhere is used. Such a cell culture device is used for, for example, suspension culture (three-dimensional culture) of anchorage-dependent cells or selective culture of anchorage-independent cells.
 従来、足場依存性細胞が接着しにくい表面として、水に対する空気中での接触角が高い(概ね90°以上)表面を利用すればよいことが提案されている(非特許文献1)。 Conventionally, it has been proposed that a surface having a high contact angle in water with respect to water (approximately 90 ° or more) may be used as a surface on which anchorage-dependent cells are difficult to adhere (Non-Patent Document 1).
 本発明者らは、水に対する空気中での接触角が高い(概ね90°以上)表面であっても、実際には足場依存性細胞の接着を十分に抑制できない場合があることを見出した。したがって、本発明は、足場依存性細胞の接着を十分に抑制できる表面を少なくとも一部に有する細胞培養器材を提供することを課題とする。 The inventors of the present invention have found that even a surface having a high contact angle in water with respect to water (approximately 90 ° or more) may not actually sufficiently suppress adhesion of anchorage-dependent cells. Therefore, an object of the present invention is to provide a cell culture device having at least a surface capable of sufficiently suppressing the adhesion of anchorage-dependent cells.
 本発明者らは、上記課題の解決に向けて鋭意検討を重ね、従来提唱されていた理論とは異なり、水に対する水中での接触角が高い表面であれば、十分に足場依存性細胞の接着を抑制できることを見出した。 The inventors of the present invention have intensively studied to solve the above-mentioned problems, and unlike the conventionally proposed theory, if the surface has a high contact angle in water with respect to water, the anchorage-dependent cell adhesion can be sufficiently achieved. It was found that can be suppressed.
 本発明は、かかる知見に基づいてさらなる試行錯誤を重ねることにより完成されたものであり、以下の実施態様を含む。
項1.
(A)支持体;及び
(B)含フッ素化合物を含有する表面層
を含有する細胞培養器材であって、
前記表面層(B)が、前記支持体(A)の表面の少なくとも一部に、直接又は一以上の他の層を介して配置されており、
前記表面層(B)の表面の37℃における水中接触角が、80°以上である、細胞培養器材。
項2.
前記表面層(B)が、含フッ素化合物を用いて表面改質された層である、項1に記載の細胞培養器材。
項3.
前記表面層(B)が、含フッ素ガスを用いてプラズマ処理された層である、項2に記載の細胞培養器材。
項4.
前記表面層(B)が、含フッ素ポリマーを含有する層である、項1に記載の細胞培養器材。
項5.
前記含フッ素ポリマーが、フルオロ(メタ)アクリレート系ポリマー、フルオロ(メタ)アクリルアミド系ポリマー及びオレフィン系含フッ素ポリマーからなる群より選択される少なくとも一種の、軟化点30℃以上の含フッ素ポリマーである、項4に記載の細胞培養器材。
項6.
前記表面層(B)が、下地となる面に化学結合を介して結合している、項1、4及び5のいずれか一項に記載の細胞培養器材。
項7.
項1及び4~6のいずれか一項に記載の細胞培養器材を製造するために用いられる、前記表面層(B)を形成しうる組成物。
項8.
含フッ素ポリマー及び/又は
含フッ素ポリマーを形成しうるモノマー
を含有する、項7に記載の組成物。
The present invention has been completed by further trial and error based on such findings, and includes the following embodiments.
Item 1.
(A) a support; and (B) a cell culture device containing a surface layer containing a fluorine-containing compound,
The surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers,
The cell culture equipment whose water contact angle in 37 degreeC of the surface of the said surface layer (B) is 80 degrees or more.
Item 2.
Item 2. The cell culture device according to Item 1, wherein the surface layer (B) is a layer that has been surface-modified using a fluorine-containing compound.
Item 3.
Item 3. The cell culture device according to Item 2, wherein the surface layer (B) is a layer subjected to plasma treatment using a fluorine-containing gas.
Item 4.
Item 2. The cell culture device according to Item 1, wherein the surface layer (B) is a layer containing a fluorine-containing polymer.
Item 5.
The fluorine-containing polymer is at least one fluorine-containing polymer having a softening point of 30 ° C. or higher selected from the group consisting of a fluoro (meth) acrylate-based polymer, a fluoro (meth) acrylamide-based polymer, and an olefin-based fluorine-containing polymer. Item 5. The cell culture equipment according to Item 4.
Item 6.
Item 6. The cell culture device according to any one of Items 1, 4, and 5, wherein the surface layer (B) is bonded to a surface to be a base via a chemical bond.
Item 7.
Item 7. A composition capable of forming the surface layer (B), which is used for producing the cell culture device according to any one of Items 1 and 4 to 6.
Item 8.
Item 8. The composition according to Item 7, comprising a fluorine-containing polymer and / or a monomer capable of forming a fluorine-containing polymer.
 本発明の細胞培養器材は、その少なくとも一部の表面において、足場依存性細胞の接着が十分に抑制されているという効果を有する。 The cell culture device of the present invention has an effect that adhesion of anchorage-dependent cells is sufficiently suppressed on at least a part of the surface thereof.
  1. 細胞培養器材
 本発明の細胞培養器材は、
(A)支持体;及び
(B)含フッ素化合物を含有する表面層
を含有する細胞培養器材であって、
前記表面層(B)が、前記支持体(A)の表面の少なくとも一部に、直接又は一以上の他の層を介して配置されており、
前記表面層(B)の表面の37℃における水中接触角が、80°以上である、細胞培養器材である。
1. Cell culture equipment The cell culture equipment of the present invention is:
(A) a support; and (B) a cell culture device containing a surface layer containing a fluorine-containing compound,
The surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers,
It is a cell culture equipment whose water contact angle in 37 degreeC of the surface of the said surface layer (B) is 80 degrees or more.
 本発明における二層間の境界においては、両者の組成が臨界的に変化していてもよいし、傾斜的に変化していてもよい。 In the boundary between two layers in the present invention, the composition of both may change critically or may change in an inclined manner.
 本発明の細胞培養器材は、含フッ素化合物を含有し、37℃における水中接触角が、80°以上である表面層を有していることにより、足場依存性細胞が接着しにくい。この特性を利用して、各種用途に用いることができる。特に限定されないが、例えば、足場依存性細胞を浮遊培養(三次元培養)させるための細胞培養器材、及び足場非依存性細胞を選択的に培養するための細胞培養器材等が挙げられる。 The cell culture device of the present invention contains a fluorine-containing compound and has a surface layer having an underwater contact angle of 80 ° or more at 37 ° C., so that anchorage-dependent cells are difficult to adhere. Using this characteristic, it can be used for various applications. Although it does not specifically limit, For example, the cell culture equipment for carrying out suspension culture (three-dimensional culture) of an anchorage dependent cell, the cell culture equipment for selectively culture | cultivating an anchorage independent cell, etc. are mentioned.
 特に限定されないが、浮遊培養(三次元培養)の目的としては、例えば、ES細胞の胚葉体(EB)形成及びスフェロイド形成等のほか、有用物質の生産及び薬剤スクリーニング等が挙げられる。 Although not particularly limited, the purpose of suspension culture (three-dimensional culture) includes, for example, ES cell embryoid body (EB) formation and spheroid formation, as well as production of useful substances and drug screening.
 特に限定されないが、足場非依存性細胞の例としては、がん細胞及び血球系細胞等が挙げられる。 Although not particularly limited, examples of anchorage-independent cells include cancer cells and blood cells.
 また、これらの細胞培養器材は、上に挙げたものの他、例えば、細胞医薬品の製造、ティッシュエンジニアリング、幹細胞の分化及び細胞培養実験、タンパク製剤及び/又は細胞製剤の保存バッグ等の幅広い目的に使用できる。 In addition to those listed above, these cell culture equipments are used for a wide range of purposes such as cell medicine production, tissue engineering, stem cell differentiation and cell culture experiments, protein preparations and / or cell preparation storage bags, etc. it can.
 なお、本発明の細胞培養器材には、37℃未満で温度応答性を示すもの、より具体的には37℃未満における水中接触角が、37℃における水中接触角より小さくなるものは含まれない。 The cell culture device of the present invention does not include those exhibiting temperature responsiveness below 37 ° C., more specifically those having an underwater contact angle below 37 ° C. smaller than the underwater contact angle at 37 ° C. .
 (A)支持体
 支持体は、細胞培養器材の使用目的等によって適宜選択することができ、特に限定されない。支持体の素材は樹脂、ガラス、セラミック及び金属等から選択される。具体的には、ポリスチレン、ポリエチレンテレフタレート、ポリエチレン及びポリプロピレン等のポリオレフィン、EVA(Ethylene-vinyl acetate)、シクロオレフィン、ポリテトラフルオロエチレン及びステンレス等が挙げられる。
(A) Support The support can be appropriately selected depending on the purpose of use of the cell culture equipment, and is not particularly limited. The material of the support is selected from resin, glass, ceramic, metal and the like. Specific examples thereof include polyolefins such as polystyrene, polyethylene terephthalate, polyethylene and polypropylene, EVA (Ethylene-vinyl acetate), cycloolefin, polytetrafluoroethylene, and stainless steel.
 支持体の形状は、通常用いられるものであればよく、特に限定されないが、例えば、ディッシュ、プレート及びバッグ等が挙げられる。支持体の表面形状は平滑状でも凹凸状でもよく、また、平滑状の領域と凹凸状の領域を備えていてもよい。プレートのウェル形状は平底でも丸底でもよいし、ウェル径も特に限定されず、例えば、34mm(6ウェル)、9mm(96ウェル)等であってもよい。また、マイクロメートルオーダーの空間、例えば幅200μm、深さ100μmのような空間、に仕切られたマイクロ空間プレートであってもよい。 The shape of the support is not particularly limited as long as it is usually used, and examples thereof include a dish, a plate, and a bag. The surface shape of the support may be smooth or uneven, and may have a smooth region and an uneven region. The well shape of the plate may be a flat bottom or a round bottom, and the well diameter is not particularly limited, and may be, for example, 34 mm (6 wells), 9 mm (96 wells), or the like. Alternatively, it may be a micro space plate partitioned into a micrometer order space, for example, a space having a width of 200 μm and a depth of 100 μm.
 支持体は、少なくともその表面が、放射線照射により重合開始点を形成し得る材料を含むものであれば、表面グラフト重合によって、表面層(B)を表面に形成することができる点で好ましい。この場合、支持体は、重合開始点を形成し得る材料を表面にのみ含んでいてもよいし、全体がそのような材料を含むものであってもよい。 The support is preferable in that the surface layer (B) can be formed on the surface by surface graft polymerization if at least the surface thereof contains a material capable of forming a polymerization initiation point by radiation irradiation. In this case, the support may contain only a material capable of forming a polymerization starting point on the surface, or may contain such a material as a whole.
 重合開始点を形成し得る材料として、樹脂類が挙げられ、具体的には、ポリスチレン、ポリエチレンテレフタレート、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリウレタン、ウレタンアクリレート及びポリメチルメタクリレート等のアクリル系樹脂、ポリアミド(ナイロン)、ポリカーボネート、共役結合を持つ天然ゴム、共役結合を持つ合成ゴム及びシリコーンゴム等が挙げられる。材料はこれらを2種以上含むブレンドポリマー又はポリマーアロイであってもよい。 Examples of materials that can form the polymerization starting point include resins, and specifically, acrylics such as polystyrene, polyethylene terephthalate, low density polyethylene, medium density polyethylene, high density polyethylene, polyurethane, urethane acrylate, and polymethyl methacrylate. Examples thereof include resin, polyamide (nylon), polycarbonate, natural rubber having conjugated bond, synthetic rubber having conjugated bond, and silicone rubber. The material may be a blend polymer or polymer alloy containing two or more of these.
 支持体は、本発明の効果を妨げない限り必要に応じて、表面処理がされていてもよいし、表面にさらに他の層を有していてもよい。 The support may be surface-treated as necessary as long as the effect of the present invention is not hindered, and may further have another layer on the surface.
 (B)表面層
 表面層(B)は、含フッ素化合物を含有し、37℃における水中接触角が、80°以上である。このような特性を有する表面を有していることにより、本発明の細胞培養器材は、十分に足場依存性細胞の接着を抑制できる。この点で、表面層(B)は、表面の37℃における水中接触角が、80°以上であれば好ましく、90°以上であればより好ましい。なお、水中接触角は、通常120°以下である。
(B) Surface layer The surface layer (B) contains a fluorine-containing compound, and the contact angle in water at 37 ° C is 80 ° or more. By having a surface having such characteristics, the cell culture device of the present invention can sufficiently suppress adhesion of anchorage-dependent cells. In this respect, the surface layer (B) preferably has an underwater contact angle at 37 ° C. of 80 ° or more, more preferably 90 ° or more. The underwater contact angle is usually 120 ° or less.
 表面層(B)は、前記支持体(A)の表面の少なくとも一部に、直接又は一以上の他の層を介して配置されている。特に限定されず、例えば、表面層(B)は、前記支持体(A)の表面の少なくとも50%の面積に、直接又は一以上の他の層を介して配置されていてもよいし、前記支持体(A)の表面の少なくとも90%の面積に、直接又は一以上の他の層を介して配置されていてもよい。 The surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers. There is no particular limitation, and for example, the surface layer (B) may be disposed directly or via one or more other layers in an area of at least 50% of the surface of the support (A). It may be arranged directly or via one or more other layers in an area of at least 90% of the surface of the support (A).
 本発明において水中接触角は、具体的には以下のようにして測定する。 In the present invention, the underwater contact angle is specifically measured as follows.
 測定サンプルを水中に固定し、37℃に温度調節されているホットプレート上に30分間放置して、平衡状態とする。三態系逆針を備えるシリンジを用いて気泡(約10μL)を数滴、測定サンプル表面に付着させ、その気泡の接触角をDropMaster701(協和界面科学製)又はその同等品を用いて水中接触角を測定する。 ¡Fix the measurement sample in water and let it stand on a hot plate whose temperature is adjusted to 37 ° C for 30 minutes to achieve an equilibrium state. A few drops of bubbles (about 10 μL) were attached to the surface of the measurement sample using a syringe equipped with a three-phase reverse needle, and the contact angle of the bubbles was determined using DropMaster 701 (Kyowa Interface Science) or equivalent underwater contact angle. Measure.
 表面層(B)は、含フッ素化合物を用いて表面改質された層であってもよい。この場合、表面層(B)とは、支持体の、あるいは支持体と表面層(B)との間にその他の層が介在する場合はその最表層の、表面改質がなされている表面部分を指す。 The surface layer (B) may be a surface-modified layer using a fluorine-containing compound. In this case, the surface layer (B) is the surface portion of the support that is surface-modified, if the other layer is interposed between the support and the surface layer (B), the outermost layer thereof. Point to.
 上記表面改質において使用する含フッ素化合物としては、フッ素ガス、含フッ素ガス及び含フッ素ポリマーからなる群より選択される少なくとも一種の含フッ素化合物等が挙げられる。含フッ素ガスとしては、特に限定されないが、テトラフルオロメタン(CF)、ヘキサフルオロエタン(C)、パーフルオロエチレン(C)、ヘキサフルオロプロペンオキシド(COF)、及びパーフルオロプロパン(C)等を用い、プラズマ処理することにより高分子基材の表面にフッ素基の導入を行うことができる。プラズマ処理の条件としては、高分子基材やガス状のフッ素含有化合物の種類等に応じて適宜設定することができる。通常、ガス状のフッ素含有化合物の存在下でいわゆる低温プラズマ処理を行う。 Examples of the fluorine-containing compound used in the surface modification include at least one fluorine-containing compound selected from the group consisting of fluorine gas, fluorine-containing gas, and fluorine-containing polymer. The fluorinated gas is not particularly limited, tetrafluoromethane (CF 4), hexafluoroethane (C 2 F 6), perfluoro ethylene (C 3 F 6), hexafluoropropene oxide (C 3 OF 6), In addition, fluorine groups can be introduced into the surface of the polymer substrate by plasma treatment using perfluoropropane (C 3 F 8 ) or the like. The conditions for the plasma treatment can be set as appropriate according to the type of polymer substrate and gaseous fluorine-containing compound. Usually, so-called low-temperature plasma treatment is performed in the presence of a gaseous fluorine-containing compound.
 表面層(B)は、上記の表面改質されたものとは別の態様として、含フッ素化合物を含有する層であってもよい。すなわち、この場合、表面層(B)は、改質された下層の一部ではなく、下層とは元来別の層である。 The surface layer (B) may be a layer containing a fluorine-containing compound as an aspect different from the above-described surface-modified one. That is, in this case, the surface layer (B) is not a part of the modified lower layer but is originally a different layer from the lower layer.
 このように、下層とは元来別の層として表面層(B)を設ける態様において用いられる含フッ素化合物として、特に限定されないが、例えば、アクリル酸系化合物、アクリレート系化合物、アクリルアミド系化合物、オレフィン系化合物、スチレン系化合物、アクリロニトリル系化合物、ビニルピロリドン系化合物、ビニルエーテル系化合物及びピロール系化合物等において、少なくとも一つの水素原子がフッ素原子に置換されたものが挙げられる。 Thus, although it does not specifically limit as a fluorine-containing compound used in the aspect which provides a surface layer (B) as a layer different from a lower layer originally, For example, an acrylic acid type compound, an acrylate type compound, an acrylamide type compound, an olefin And compounds in which at least one hydrogen atom is substituted with a fluorine atom in a benzene compound, a styrene compound, an acrylonitrile compound, a vinyl pyrrolidone compound, a vinyl ether compound, a pyrrole compound, and the like.
 上記においてアクリル酸系化合物としては、特に限定されないが、例えば、アクリル酸、メタクリル酸、イタコン酸、無水マレイン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。 In the above, the acrylic acid-based compound is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, maleic acid, fumaric acid, and crotonic acid.
 上記においてアクリレート系化合物としては、特に限定されないが、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-プロピルアクリレート、n-プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、ラウリルアクリレート、ステアリルアクリレート、ステアリルメタクリレート、ベヘニルアクリレート、ベヘニルメタクリレート等のα,β-エチレン性不飽和カルボン酸エステル等が挙げられる。 In the above, the acrylate compound is not particularly limited. For example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, lauryl acrylate, stearyl acrylate, stearyl Examples thereof include α, β-ethylenically unsaturated carboxylic acid esters such as methacrylate, behenyl acrylate, and behenyl methacrylate.
 上記においてアクリルアミド系化合物としては、特に限定されないが、例えば、オクチルアクリルアミド、ステアリルアクリルアミド等が挙げられる。 In the above, the acrylamide compound is not particularly limited, and examples thereof include octyl acrylamide and stearyl acrylamide.
 アクリレート系化合物又はアクリルアミド系化合物として、例えば、カルボキシル基に対して直接又は2価の有機基を介してエステル結合又はアミド結合したフルオロアルキル基を有し、α位に置換基を有することのある、アクリル酸エステル(以下、「フルオロアルキル基含有アクリル酸エステル」と略記することがある。)又はアクリルアミド(以下、「フルオロアルキル基含有アクリルアミド」と略記することがある。)等が挙げられる。 As an acrylate compound or an acrylamide compound, for example, it has a fluoroalkyl group that is ester-bonded or amide-bonded directly or via a divalent organic group to the carboxyl group, and may have a substituent at the α-position, Examples thereof include acrylic acid esters (hereinafter sometimes abbreviated as “fluoroalkyl group-containing acrylic acid esters”) or acrylamides (hereinafter sometimes abbreviated as “fluoroalkyl group-containing acrylamides”).
 フルオロアルキル基含有アクリル酸エステル又はフルオロアルキル基含有アクリルアミドの好ましい具体例としては、下記一般式(1):
  CH=C(-X)-C(=O)-Y-Z-Rf       (1)
[式中、Xは、水素原子、炭素数1~21の直鎖状又は分岐状のアルキル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、X及びXは、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基又は置換若しくは非置換のフェニル基であり;
Yは、-O-又は-NH-であり;
Zは、炭素数1~10の脂肪族基、炭素数6~10の芳香族基若しくは環状脂肪族基、
-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基である。
)、-CHCH(OZ)CH-基(但し、Zは水素原子又はアセチル基である。
)、-(CH-SO-(CH-基、-(CH-S-(CH-基(mは1~10であり、かつnは0~10である。)又は-(CH-COO-基(mは1~10である。)であり;
Rfは、ヘテロ原子を有していてもよい、炭素数1~20の直鎖状又は分岐状のフルオロアルキル基である。]で表されるアクリル酸エステル又はアクリルアミドを例示できる。
Preferable specific examples of the fluoroalkyl group-containing acrylate ester or the fluoroalkyl group-containing acrylamide include the following general formula (1):
CH 2 = C (-X) -C (= O) -YZ-Rf (1)
[Wherein, X represents a hydrogen atom, a linear or branched alkyl group having 1 to 21 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (where X 1 and X 2 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group or A substituted or unsubstituted phenyl group;
Y is —O— or —NH—;
Z is an aliphatic group having 1 to 10 carbon atoms, an aromatic group having 6 to 10 carbon atoms or a cyclic aliphatic group,
—CH 2 CH 2 N (R 1 ) SO 2 — group (where R 1 is an alkyl group having 1 to 4 carbon atoms).
), —CH 2 CH (OZ 1 ) CH 2 — group (wherein Z 1 is a hydrogen atom or an acetyl group.
), — (CH 2 ) m —SO 2 — (CH 2 ) n — group, — (CH 2 ) m —S— (CH 2 ) n — group (m is 1 to 10, and n is 0 to Or a — (CH 2 ) m —COO— group, where m is 1 to 10;
Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms which may have a hetero atom. An acrylate ester or acrylamide represented by the formula:
 上記一般式(1)において、Rfで示されるフルオロアルキル基は、少なくとも一個の水素原子がフッ素原子で置換された、ヘテロ原子を有していてもよいアルキル基であり、全ての水素原子がフッ素原子で置換された、ヘテロ原子を有していてもよいパーフルオロアルキル基も包含するものである。また、Rfで示される、ヘテロ原子を有しているフルオロアルキル基の例としては、パーフルオロポリエーテル基等が挙げられる。 In the general formula (1), the fluoroalkyl group represented by Rf is an alkyl group which may have a hetero atom, in which at least one hydrogen atom is substituted with a fluorine atom, and all the hydrogen atoms are fluorine. A perfluoroalkyl group which may be substituted with an atom and may have a hetero atom is also included. Examples of the fluoroalkyl group having a heteroatom represented by Rf include a perfluoropolyether group.
 上記一般式(1)で表されるアクリル酸エステル又はアクリルアミドにおいては、Rfが炭素数1~6の直鎖状又は分岐状のフルオロアルキル基であることが好ましく、特に、炭素数1~3の直鎖状又は分岐状のパーフルオロアルキル基であることが好ましい。近年、EPA(米国環境保護庁)により、炭素数が8以上のフルオロアルキル基を有する化合物は、環境、生体中で分解して蓄積するおそれがある環境負荷が高い化合物であることが指摘されているが、一般式(1)で表されるアクリル酸エステル又はアクリルアミドにおいてRfが炭素数1~6の直鎖状又は分岐状のフルオロアルキル基である場合には、この様な環境問題が指摘されていないためである。 In the acrylic ester or acrylamide represented by the general formula (1), Rf is preferably a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, and particularly having 1 to 3 carbon atoms. It is preferably a linear or branched perfluoroalkyl group. In recent years, it has been pointed out by the EPA (US Environmental Protection Agency) that a compound having a fluoroalkyl group having 8 or more carbon atoms is a high environmental load that may decompose and accumulate in the environment and living organisms. However, in the acrylic ester or acrylamide represented by the general formula (1), when Rf is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, such environmental problems are pointed out. Because it is not.
 上記式(1)において、Rf基の例として、-CF3、-CF2CF3、-CF2CF2H、-CF2CF2CF3、-CF2CFHCF3、-CF(CF3)2、-CF2CF2CF2CF3、-CF2CF(CF3)2、-C(CF3)3、-(CF2)4CF3、-(CF2)2CF(CF3)2、-CF2C(CF3)3、-CF(CF3)CF2CF2CF3、-(CF2)5CF3、-(CF2)3CF(CF3)2等が挙げられる。 In the above formula (1), examples of the Rf group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CFHCF 3 , —CF (CF 3 ). 2 , -CF 2 CF 2 CF 2 CF 3 , -CF 2 CF (CF 3 ) 2 , -C (CF 3 ) 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 2 CF (CF 3 ) 2 , -CF 2 C (CF 3 ) 3 , -CF (CF 3 ) CF 2 CF 2 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 3 CF (CF 3 ) 2 etc. .
 さらに、含フッ素化合物は、非テロマーであることが好ましく、この点で、Rf基としては、炭素数1~2のフルオロアルキル基、又はヘテロ原子によって介在された二以上の炭素数1~3のフルオロアルキル基が好ましい。具体例としては、C3F7OCF(CF3)CF2OCF(CF3)-、(CF3)2NCnF2n-(n=1~6)等が挙げられる。 Further, the fluorine-containing compound is preferably a non-telomer. In this respect, the Rf group may be a fluoroalkyl group having 1 to 2 carbon atoms, or two or more carbon atoms having 1 to 3 carbon atoms interposed by a hetero atom. A fluoroalkyl group is preferred. Specific examples include C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 )-, (CF 3 ) 2 NC n F 2n- (n = 1 to 6), and the like.
 上記した一般式(1)で表されるアクリル酸エステル又はアクリルアミドの具体例は、次の通りである。 Specific examples of the acrylic acid ester or acrylamide represented by the general formula (1) are as follows.
  CH2=C(-H)-C(=O)-O-(CH2)2-Rf
  CH2=C(-H)-C(=O)-O-C6H4-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)2-Rf
  CH2=C(-H)-C(=O)-O-(CH2)2N(-CH3)SO2-Rf
  CH2=C(-H)-C(=O)-O-(CH2)2N(-C2H5)SO2-Rf
  CH2=C(-H)-C(=O)-O-CH2CH(-OH)CH2-Rf
  CH2=C(-H)-C(=O)-O-CH2CH(-OCOCH3)CH2-Rf
  CH2=C(-H)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-H)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-H)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-H)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-H)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)2-Rf
  CH2=C(-CH3)-C(=O)-O-C6H4-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)2N(-CH3)SO2-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)2N(-C2H5)SO2-Rf
  CH2=C(-CH3)-C(=O)-O-CH2CH(-OH)CH2-Rf
  CH2=C(-CH3)-C(=O)-O-CH2CH(-OCOCH3)CH2-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-CH3)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-CH3)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-F)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-F)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-F)-C(=O)-O-(CH2)2-SO2-Rf
  CH2=C(-F)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-F)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)2-SO2-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-Cl)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)2-SO2-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-CF3)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)2-SO2-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-CF2H)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)2-SO2-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-CN)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)2-S-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)2-S-(CH2)2-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)2-SO2-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
  CH2=C(-CF2CF3)-C(=O)-NH-(CH2)2-Rf
  CH2=C(-F)-C(=O)-O-(CH2)3-S-Rf
  CH2=C(-F)-C(=O)-O-(CH2)3-S-(CH2)2-Rf
  CH2=C(-F)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-F)-C(=O)-O-(CH2)3-SO2-(CH2)2-Rf
  CH2=C(-F)-C(=O)-NH-(CH2)3-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)3-S-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)3-S-(CH2)2-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-Cl)-C(=O)-O-(CH2)3-SO2-(CH2)2-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)3-S-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)3-S-(CH2)2-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-CF3)-C(=O)-O-(CH2)3-SO2-(CH2)2-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)3-S-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)3-S-(CH2)2-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-CF2H)-C(=O)-O-(CH2)3-SO2-(CH2)2-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)3-S-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)3-S-(CH2)2-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-CN)-C(=O)-O-(CH2)3-SO2-(CH2)2-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)3-S-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)3-S-(CH2)2-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)3-SO2-Rf
  CH2=C(-CF2CF3)-C(=O)-O-(CH2)2-SO2-(CH2)2-Rf
[上記式中、Rfは、炭素数1~6、好ましくは、1~3のフルオロアルキル基である。]
  C3F7OCF(CF3)CF2O-CF(CF3)CH2-MAc
  C3F7OCF(CF3)CF2O-CF(CF3)CH2-Ac
  (CF3)2CH-Ac
  C2F5CH2-MAc
  C2F5CH2-Ac
[上記式中において、Acはアクリレート、MAcはメタクリレートを、それぞれ示す。]
 上記したフルオロアルキル基含有アクリル酸エステル又はアクリルアミドは、一種単独又は二種以上混合して用いることができる。
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 2 -Rf
CH 2 = C (-H) -C (= O) -O-C 6 H 4 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 2 -Rf
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 2 N (-CH 3 ) SO 2 -Rf
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 2 N (-C 2 H 5 ) SO 2 -Rf
CH 2 = C (-H) -C (= O) -O-CH 2 CH (-OH) CH 2 -Rf
CH 2 = C (-H) -C (= O) -O-CH 2 CH (-OCOCH 3 ) CH 2 -Rf
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-H) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-H) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O-C 6 H 4 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 2 N (-CH 3 ) SO 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 2 N (-C 2 H 5 ) SO 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O-CH 2 CH (-OH) CH 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O-CH 2 CH (-OCOCH 3 ) CH 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CH 3 ) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 2 -SO 2 -Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-F) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 2 -SO 2 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-Cl) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 2 -SO 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 2 -SO 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 2 -SO 2 -Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CN) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 2 -S-Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 2 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 2 -SO 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -NH- (CH 2 ) 2 -Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 3 -S-Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 3 -S- (CH 2 ) 2 -Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-F) -C (= O) -O- (CH 2 ) 3 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-F) -C (= O) -NH- (CH 2 ) 3 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 3 -S-Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 3 -S- (CH 2 ) 2 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-Cl) -C (= O) -O- (CH 2 ) 3 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 3 -S-Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 3 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-CF 3 ) -C (= O) -O- (CH 2 ) 3 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 3 -S-Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 3 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-CF 2 H) -C (= O) -O- (CH 2 ) 3 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 3 -S-Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 3 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-CN) -C (= O) -O- (CH 2 ) 3 -SO 2- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 3 -S-Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 3 -S- (CH 2 ) 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 3 -SO 2 -Rf
CH 2 = C (-CF 2 CF 3 ) -C (= O) -O- (CH 2 ) 2 -SO 2- (CH 2 ) 2 -Rf
[In the above formula, Rf is a fluoroalkyl group having 1 to 6, preferably 1 to 3 carbon atoms. ]
C 3 F 7 OCF (CF 3 ) CF 2 O-CF (CF 3 ) CH 2 -MAc
C 3 F 7 OCF (CF 3 ) CF 2 O-CF (CF 3 ) CH 2 -Ac
(CF 3 ) 2 CH-Ac
C 2 F 5 CH 2 -MAc
C 2 F 5 CH 2 -Ac
[In the above formula, Ac represents acrylate, and MAc represents methacrylate, respectively. ]
The above-mentioned fluoroalkyl group-containing acrylic acid ester or acrylamide can be used alone or in combination of two or more.
 オレフィン系化合物としては、特に限定されず、例えば、アルケン及びアルキルビニルエーテル等が挙げられる。アルケンとしては、特に限定されず、例えば、エチレン、プロピレン等が挙げられる。アルケンは、少なくとも一部の水素原子がフッ素原子に置換されていてもよく、特に限定されないが、具体的には、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン及びフッ化ビニリデン等が挙げられる。アルキルビニルエーテルとしては、特に限定されず、例えば、炭素数1~6、好ましくは炭素数1~3、のアルキル基を有するアルキルビニルエーテル等が挙げられる。アルキルビニルエーテルは、パーフルオロアルキルビニルエーテルであってもよい。パーフルオロアルキルビニルエーテルの具体例としては、特に限定されず、例えば、パーフルオロプロピルビニルエーテル等が挙げられる。 The olefin compound is not particularly limited, and examples thereof include alkenes and alkyl vinyl ethers. The alkene is not particularly limited, and examples thereof include ethylene and propylene. Alkenes may have at least a part of hydrogen atoms substituted with fluorine atoms, and are not particularly limited. Specific examples include tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. The alkyl vinyl ether is not particularly limited, and examples thereof include alkyl vinyl ethers having an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. The alkyl vinyl ether may be a perfluoroalkyl vinyl ether. Specific examples of the perfluoroalkyl vinyl ether are not particularly limited, and examples thereof include perfluoropropyl vinyl ether.
 上記したオレフィン系化合物は、一種単独又は二種以上混合して用いることができる。 The above olefinic compounds can be used alone or in combination of two or more.
 上記においてスチレン系化合物としては、特に限定されないが、例えば、スチレン、アルキルスチレン等が挙げられる。上記したスチレン系化合物は、一種単独又は二種以上混合して用いることができる。 In the above, the styrene compound is not particularly limited, and examples thereof include styrene and alkylstyrene. The above styrenic compounds can be used singly or in combination of two or more.
 上記においてアクリロニトリル系化合物としては、特に限定されないが、例えば、アクリロニトリルが挙げられる。上記したアクリロニトリル系化合物は、一種単独又は二種以上混合して用いることができる。 In the above, the acrylonitrile-based compound is not particularly limited, and examples thereof include acrylonitrile. The above acrylonitrile compounds can be used singly or in combination of two or more.
 上記においてビニルピロリドン系化合物としては、特に限定されないが、例えば、ビニルピロリドンが挙げられる。上記したビニルピロリドン系化合物は、一種単独又は二種以上混合して用いることができる。 In the above, the vinyl pyrrolidone compound is not particularly limited, and examples thereof include vinyl pyrrolidone. The above-mentioned vinylpyrrolidone compounds can be used singly or in combination of two or more.
 上記においてビニルエーテル系化合物としては、特に限定されないが、例えば、エチルビニルエーテル、ブチルビニルエーテル等のアルキルビニルエーテルが挙げられる。上記したビニルエーテル系化合物は、一種単独又は二種以上混合して用いることができる。 In the above, the vinyl ether compound is not particularly limited, and examples thereof include alkyl vinyl ethers such as ethyl vinyl ether and butyl vinyl ether. The above vinyl ether compounds can be used singly or in combination of two or more.
 上記においてピロール系化合物としては、特に限定されないが、例えば、ピロールが挙げられる。上記したピロール系化合物は、一種単独又は二種以上混合して用いることができる。 In the above, the pyrrole compound is not particularly limited, and examples thereof include pyrrole. The above pyrrole compounds can be used singly or in combination of two or more.
 下層とは元来別の層として表面層(B)を設ける態様において用いられる含フッ素化合物としては、例えば、含フッ素ポリマー等も挙げられる。この場合、表面層(B)は、含フッ素ポリマーに加えてさらにそれとは異なる含フッ素化合物を含んでいてもよい。 Examples of the fluorine-containing compound used in a mode in which the surface layer (B) is originally provided as a layer different from the lower layer include a fluorine-containing polymer. In this case, the surface layer (B) may further contain a fluorine-containing compound different from that in addition to the fluorine-containing polymer.
 含フッ素ポリマーとしては、特に限定されないが、例えば、アクリレート系化合物、アクリルアミド系化合物、オレフィン系化合物、スチレン系化合物、アクリロニトリル系化合物、ビニルピロリドン系化合物、ビニルエーテル系化合物及びピロール系化合物等において、少なくとも一つの水素原子がフッ素原子に置換されたものに基づく構成単位を有するもの等が挙げられる。また、表面層(B)は、一種又は二種以上の含フッ素ポリマーを含有していてもよい。これらの構成単位の基礎となる各種化合物については、表面層(B)に含まれうる含フッ素化合物として前述したものを用いることができる。 The fluorine-containing polymer is not particularly limited, but for example, at least one of acrylate compounds, acrylamide compounds, olefin compounds, styrene compounds, acrylonitrile compounds, vinyl pyrrolidone compounds, vinyl ether compounds and pyrrole compounds. And those having a structural unit based on one in which two hydrogen atoms are substituted with fluorine atoms. Moreover, the surface layer (B) may contain 1 type, or 2 or more types of fluorine-containing polymers. As the various compounds serving as the basis of these structural units, those described above as the fluorine-containing compounds that can be contained in the surface layer (B) can be used.
 上記において、含フッ素ポリマーは、フルオロ(メタ)アクリレート系ポリマー、フルオロ(メタ)アクリルアミド系ポリマー又はオレフィン系含フッ素ポリマーであれば好ましい。さらに、これらのポリマーは、軟化点が30℃以上であればより好ましい。 In the above, the fluorine-containing polymer is preferably a fluoro (meth) acrylate-based polymer, a fluoro (meth) acrylamide-based polymer, or an olefin-based fluorine-containing polymer. Furthermore, these polymers are more preferable if the softening point is 30 ° C. or higher.
 足場依存性細胞の接着を抑制する効果の点で、含フッ素ポリマーとして使用するフルオロ(メタ)アクリレート系ポリマー、フルオロ(メタ)アクリルアミド系ポリマー又はオレフィン系含フッ素ポリマーは、軟化点がより高いほど好ましい傾向を示す。この点で上記軟化点の数値範囲は、40℃以上、50℃以上、60℃以上及び70℃以上、の順に好ましい。 The fluoro (meth) acrylate polymer, fluoro (meth) acrylamide polymer or olefinic fluorine-containing polymer used as the fluorine-containing polymer is more preferable as the softening point is higher in terms of the effect of suppressing the anchorage-dependent cell adhesion. Show the trend. In this respect, the numerical range of the softening point is preferably in the order of 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, and 70 ° C. or higher.
 フルオロ(メタ)アクリレート系ポリマー及びフルオロ(メタ)アクリルアミド系ポリマーとは、それぞれ、少なくともフルオロ(メタ)アクリレート及びフルオロ(メタ)アクリルアミドに基づく構成単位を含有するポリマーである。特に理論に束縛されないが、軟化点が30℃以上の上記ポリマーは、37℃の水中でRf基(疎水性)とカルボニル基(親水性)の再配向が起こりにくいため、疎水性を維持しやすいと考えられる。この場合、フルオロ(メタ)アクリレート系ポリマー及びフルオロ(メタ)アクリルアミド系ポリマーの好ましい具体例としては、前記フルオロアルキル基含有(メタ)アクリル酸エステル及び/又はフルオロアルキル基含有(メタ)アクリルアミドに基づく構成単位を有するもの等が挙げられる。 The fluoro (meth) acrylate polymer and the fluoro (meth) acrylamide polymer are polymers containing structural units based on at least fluoro (meth) acrylate and fluoro (meth) acrylamide, respectively. Although not particularly bound by theory, the polymer having a softening point of 30 ° C. or higher is easy to maintain hydrophobicity because reorientation of Rf group (hydrophobic) and carbonyl group (hydrophilicity) hardly occurs in water at 37 ° C. it is conceivable that. In this case, preferred specific examples of the fluoro (meth) acrylate polymer and the fluoro (meth) acrylamide polymer are configurations based on the fluoroalkyl group-containing (meth) acrylic acid ester and / or the fluoroalkyl group-containing (meth) acrylamide. What has a unit etc. are mentioned.
 例えば、前記フルオロアルキル基含有(メタ)アクリル酸エステル及び/又はフルオロアルキル基含有(メタ)アクリルアミドに基づく構成単位を有するものであっても、Rfがパーフルオロポリエーテル基であるものは、軟化点30℃未満となる。 For example, even if it has a structural unit based on the fluoroalkyl group-containing (meth) acrylic acid ester and / or fluoroalkyl group-containing (meth) acrylamide, the one in which Rf is a perfluoropolyether group has a softening point. It becomes less than 30 ° C.
 オレフィン系含フッ素ポリマーとは、重合オレフィンモノマーに基づく構成単位と、さらに少なくとも1種のその他のコモノマーに基づく構成単位とを含んでいてもよい、含フッ素ポリマーを意味する。上記において、オレフィン系含フッ素ポリマーは、好ましくは、ポリマーの重量を基準として過半数量に相当する重合オレフィンモノマーに基づく構成単位を含む。 The olefinic fluorine-containing polymer means a fluorine-containing polymer which may contain a structural unit based on a polymerized olefin monomer and a structural unit based on at least one other comonomer. In the above, the olefinic fluorine-containing polymer preferably contains a structural unit based on a polymerized olefin monomer corresponding to a majority quantity based on the weight of the polymer.
 上記において、フッ素原子は、重合オレフィンモノマーに基づく構成単位にのみ含まれていてもよいし、その他のコモノマーに基づく構成単位にのみ含まれていてもよいし、それらの両方に含まれていてもよい。少なくともいずれかの構成単位が、水素原子が全てフッ素原子で置換されているものであってもよいし、両方の構成単位が、水素原子が全てフッ素原子で置換されているものであってもよい。上記において、その他の構成単位が、水素原子の一部がフッ素原子で置換されていてもよいし、水素原子がフッ素原子で全く置換されていなくてもよい。 In the above, the fluorine atom may be contained only in the structural unit based on the polymerized olefin monomer, may be contained only in the structural unit based on the other comonomer, or may be contained in both of them. Good. At least one of the structural units may be one in which all of the hydrogen atoms are substituted with fluorine atoms, or both of the structural units may be one in which all of the hydrogen atoms are substituted with fluorine atoms. . In the above, in other structural units, a part of hydrogen atoms may be substituted with fluorine atoms, or the hydrogen atoms may not be substituted at all with fluorine atoms.
 上記において、重合オレフィンモノマーとしては、特に限定されず、例えば、アルケン及びアルキルビニルエーテル等が挙げられる。アルケンとしては、特に限定されず、例えば、エチレン、プロピレン等が挙げられる。アルケンは、少なくとも一部の水素原子がフッ素原子に置換されていてもよく、特に限定されないが、具体的には、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン及びフッ化ビニリデン等が挙げられる。アルキルビニルエーテルとしては、特に限定されず、例えば、炭素数1~6、好ましくは炭素数1~3、のアルキル基を有するアルキルビニルエーテル等が挙げられる。アルキルビニルエーテルは、パーフルオロアルキルビニルエーテルであってもよい。パーフルオロアルキルビニルエーテルの具体例としては、特に限定されず、例えば、パーフルオロプロピルビニルエーテル等が挙げられる。 In the above, the polymerized olefin monomer is not particularly limited, and examples thereof include alkenes and alkyl vinyl ethers. The alkene is not particularly limited, and examples thereof include ethylene and propylene. Alkenes may have at least a part of hydrogen atoms substituted with fluorine atoms, and are not particularly limited. Specific examples include tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. The alkyl vinyl ether is not particularly limited, and examples thereof include alkyl vinyl ethers having an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. The alkyl vinyl ether may be a perfluoroalkyl vinyl ether. Specific examples of the perfluoroalkyl vinyl ether are not particularly limited, and examples thereof include perfluoropropyl vinyl ether.
 特に限定されないが、オレフィン系含フッ素ポリマーの具体例として、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン―ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン―パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン―エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)及びフッ化ビニリデン―テトラフルオロエチレン共重合体等が挙げられる。これらを単独で用いてもよいし、複数を組み合わせて用いてもよい。 Although not particularly limited, specific examples of the olefinic fluoropolymer include, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), and vinylidene fluoride-tetrafluoroethylene copolymer. These may be used alone or in combination.
 表面層(B)は、非フッ素含有化合物をさらに含んでいてもよい。特に限定されず、アクリルアミド系化合物、オレフィン系化合物及びスチレン系化合物等が挙げられる。これらのうち単独種を用いてもよいし、複数種を組み合わせて用いてもよい。 The surface layer (B) may further contain a non-fluorine-containing compound. It does not specifically limit, An acrylamide type compound, an olefin type compound, a styrene type compound, etc. are mentioned. Among these, a single species may be used, or a plurality of species may be used in combination.
 アクリルアミド系化合物としては、特に限定されないが、例えば、アクリルアミド及びメチロールメタクリルアミド等が挙げられる。これらを単独で用いてもよいし、複数を組み合わせて用いてもよい。 The acrylamide compound is not particularly limited, and examples thereof include acrylamide and methylol methacrylamide. These may be used alone or in combination.
 上記においてスチレン系化合物としては、特に限定されないが、例えば、スチレン及びアルキルスチレン等が挙げられる。これらを単独で用いてもよいし、複数を組み合わせて用いてもよい。 In the above, the styrene compound is not particularly limited, and examples thereof include styrene and alkylstyrene. These may be used alone or in combination.
 表面層(B)は、シリコーン化合物を含有するものであってもよく、特に限定されないが、例えば、ジメチルポリシロキサン及びシリコーンマクロモノマーの重合体等が挙げられる。 The surface layer (B) may contain a silicone compound and is not particularly limited, and examples thereof include a polymer of dimethylpolysiloxane and a silicone macromonomer.
 表面層(B)は、エポキシ基、イソシアネート基、スクシンイミド基、アミノ基、カルボキシル基又は水酸基等の化学結合可能な官能基を有していてもよい。本発明の化学結合は、共有結合、イオン結合、金属結合、水素結合、分子間力を指す。 The surface layer (B) may have a functional group capable of chemically bonding such as an epoxy group, an isocyanate group, a succinimide group, an amino group, a carboxyl group, or a hydroxyl group. The chemical bonds of the present invention refer to covalent bonds, ionic bonds, metal bonds, hydrogen bonds, and intermolecular forces.
 本発明において、ポリマーの軟化点は、結晶性ポリマーの場合は融点を、非晶性ポリマーの場合はガラス転移温度をそれぞれ意味する。これらはそれぞれ以下のようにして測定する。ポリマー軟化点は、示差走査熱量測定法により測定した融点(Tm)またはガラス転移点(Tg)とする。10mgのポリマー粉末を示差走査熱量計(DSC)により、温度範囲-50~150℃、昇温速度10℃/minの条件で測定したときの2ndサイクル目のサーモグラムより、結晶性ポリマーの場合は融解ピークの頂点から融点を、非晶性ポリマーの場合は補外ガラス転移終了温度(JIS K7121-1987)を読み取る。 In the present invention, the softening point of a polymer means a melting point in the case of a crystalline polymer and a glass transition temperature in the case of an amorphous polymer. These are measured as follows. The polymer softening point is the melting point (Tm) or glass transition point (Tg) measured by differential scanning calorimetry. From the thermogram of the 2nd cycle when 10 mg of polymer powder was measured with a differential scanning calorimeter (DSC) under the conditions of a temperature range of −50 to 150 ° C. and a heating rate of 10 ° C./min. The melting point is read from the top of the melting peak, and in the case of an amorphous polymer, the extrapolated glass transition end temperature (JIS K7121-1987) is read.
 表面層(B)は、下地となる表面に物理的吸着により配置されていてもよいし、化学結合を介して結合していてもよい。表面層(B)は、細胞の接着を抑制できる効果を長期間に渡り維持することができるという点で、下地となる表面に化学結合を介して結合していれば好ましい。 The surface layer (B) may be disposed on the underlying surface by physical adsorption or may be bonded via a chemical bond. The surface layer (B) is preferably bonded to the underlying surface via a chemical bond in that the effect of suppressing cell adhesion can be maintained over a long period of time.
 特に限定されないが、例えば、電子線照射(EB)、γ線照射、紫外線照射、プラズマ処理及びコロナ処理等を行うことにより、化学結合を介して表面層(B)が下地となる表面に固定されていてもよい。 Although not particularly limited, for example, by performing electron beam irradiation (EB), γ-ray irradiation, ultraviolet irradiation, plasma treatment, corona treatment, etc., the surface layer (B) is fixed to the underlying surface via chemical bonding. It may be.
 表面層(B)の厚みは、0.2μm以上、好ましくは、1μm以上、より好ましくは5μm以上である。厚みが0.2μm以上であれば、十分な細胞接着抑制能を発揮しやすくなる。 The thickness of the surface layer (B) is 0.2 μm or more, preferably 1 μm or more, more preferably 5 μm or more. If thickness is 0.2 micrometer or more, it will become easy to exhibit sufficient cell adhesion suppression ability.
 (C)他の層
 他の層としては、特に限定されないが、例えば、支持体補強層、プライマー層及び放射線改質補助層等が挙げられる。
(C) Other layers The other layers are not particularly limited, and examples thereof include a support reinforcing layer, a primer layer, and a radiation modification auxiliary layer.
 支持体補強層は、支持体を力学的又は化学的に補強する層である。具体的には、支持体の力学的強度が低い場合や、表面層形成の際に使用される溶剤及び/又はモノマー等の影響で支持体に化学的腐蝕が起こる場合等に使用される。例えば、膜厚10μmのポリエチレンフィルムの上に膜厚250μmのポリエチレンテレフタレートフィルムを積層することにより力学的強度を改善できる。また、ポリスチレン基材上にFEPフィルムを貼り付けることにより、溶剤及び/又はモノマーに対する化学的腐蝕を防止できる。 The support reinforcing layer is a layer that mechanically or chemically reinforces the support. Specifically, it is used when the mechanical strength of the support is low, or when chemical corrosion occurs on the support due to the influence of the solvent and / or monomer used in forming the surface layer. For example, the mechanical strength can be improved by laminating a polyethylene terephthalate film having a thickness of 250 μm on a polyethylene film having a thickness of 10 μm. Moreover, the chemical corrosion with respect to a solvent and / or a monomer can be prevented by sticking a FEP film on a polystyrene base material.
 プライマー層は、支持体(A)と表面層(B)との密着性を改善するための層であり、特に限定されないが、例えば、上述のポリスチレン基材上にFEPフィルムを貼り付けるための両面テープ等が挙げられる。 The primer layer is a layer for improving the adhesion between the support (A) and the surface layer (B), and is not particularly limited. For example, both surfaces for attaching an FEP film on the above-mentioned polystyrene base material. Tape etc. are mentioned.
 放射線改質補助層は、ポリスチレンのように放射線を照射したときにラジカルが発生し難い素材を支持体(A)とする場合に使用される。例えば、ポリスチレン製器材の表面に放射線改質補助層としてポリエチレンフィルムを貼り付けることにより、放射線を照射したときに多量のラジカルが発生して、容易にグラフト重合することが可能となる。 The radiation modification auxiliary layer is used when the support (A) is made of a material that hardly generates radicals when irradiated with radiation, such as polystyrene. For example, by attaching a polyethylene film as a radiation modification auxiliary layer on the surface of polystyrene equipment, a large amount of radicals are generated when irradiated with radiation, and graft polymerization can be easily performed.
 2. 細胞培養器材の製造方法
 特に限定されないが、本発明の細胞培養器材は、下地となる面に、処理表面の37℃における水中接触角を80°以上にし得る表面処理剤を適用することによって、得ることができる。
2. Although the manufacturing method of a cell culture equipment is not specifically limited, the cell culture equipment of this invention is obtained by applying the surface treatment agent which can make the water contact angle in 37 degreeC of the process surface 80 degree or more to the surface used as a foundation | substrate. be able to.
 以下に、含フッ素化合物を含有する表面処理剤を用いる場合を例にとって具体的な方法を説明する。なお、含フッ素化合物とは異なる化合物を含有する表面処理剤を用いる場合も、以下の例を参考にして、必要に応じて適宜条件を変更することにより同様に行うことができる。 Hereinafter, a specific method will be described by taking as an example the case of using a surface treatment agent containing a fluorine-containing compound. In addition, also when using the surface treating agent containing a compound different from a fluorine-containing compound, it can carry out similarly by referring to the following examples and changing conditions suitably as needed.
 溶媒キャスト法、浸漬法、スプレー法、スピンコート法、バーコート法、刷毛塗り法などの塗布方法により、上記表面処理剤を下地となる面に適用することができる。例えば、溶媒キャスト法においては、上記含フッ素化合物等の成分を溶剤に溶解させた溶液を、下地となる面に均一に塗布後、溶剤を蒸発させることにより、下地となる面上に膜を形成させる。各種塗布方法で、上記含フッ素化合物等を溶液とするために使用される溶剤は、特に限定されないが、例えば、常圧下において沸点120℃以下、特に50~110℃のものが好ましい。具体例として、分子中にフッ素原子を有し、フッ素含有重合体の溶解性が良好な溶剤であれば、炭化フッ素化合物、アルコール、エーテル等のいずれであってもよく、また、脂肪族及び芳香族のいずれであってもよい。例えば、パーフルオロ脂肪族炭化水素、ポリフルオロ芳香族炭化水素、ポリフルオロ脂肪族炭化水素、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、ヒドロフルオロエーテル(HFE)、ハイドロフルオロオレフィン(HFO)及びアルキルパーフルオロアルキルエーテル等が挙げられる。 The surface treatment agent can be applied to the underlying surface by a coating method such as a solvent casting method, a dipping method, a spray method, a spin coating method, a bar coating method, or a brush coating method. For example, in the solvent casting method, a solution in which components such as the above-mentioned fluorine-containing compounds are dissolved in a solvent is uniformly applied to the base surface, and then the solvent is evaporated to form a film on the base surface. Let The solvent used to make the above-mentioned fluorine-containing compound or the like into a solution by various coating methods is not particularly limited, but, for example, those having a boiling point of 120 ° C. or less, particularly 50 to 110 ° C. under normal pressure are preferable. As specific examples, any fluorine-containing compound, alcohol, ether, etc. may be used as long as the solvent has a fluorine atom in the molecule and the solubility of the fluorine-containing polymer is good. Any of the family may be used. For example, perfluoroaliphatic hydrocarbon, polyfluoroaromatic hydrocarbon, polyfluoroaliphatic hydrocarbon, hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), hydrofluoroether (HFE), hydrofluoroolefin (HFO) and Examples thereof include alkyl perfluoroalkyl ethers.
 パーフルオロ脂肪族炭化水素は、特に限定されないが、好ましくは炭素数5~12である。特に限定されないが、具体例として、パーフルオロヘキサン、パーフルオロメチルシクロヘキサン、パーフルオロ-1,3-ジメチルシクロヘキサン及びパーフルオロジヒドロプロパノール(ペンタフルオロプロパノール)等が挙げられる。 The perfluoroaliphatic hydrocarbon is not particularly limited, but preferably has 5 to 12 carbon atoms. Specific examples include perfluorohexane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, perfluorodihydropropanol (pentafluoropropanol), and the like.
 ポリフルオロ芳香族炭化水素としては、特に限定されないが、例えば、ビス(トリフルオロメチル)ベンゼン及びヘキサフルオロ-m-キシレン等が挙げられる。 The polyfluoroaromatic hydrocarbon is not particularly limited, and examples thereof include bis (trifluoromethyl) benzene and hexafluoro-m-xylene.
 ポリフルオロ脂肪族炭化水素としては、特に限定されないが、例えば、C13CHCH[例えば、旭硝子株式会社製のアサヒクリン(登録商標)AC-6000]、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン[例えば、日本ゼオン株式会社製のゼオローラ(登録商標)H]等が挙げられる。 The polyfluoroaliphatic hydrocarbon is not particularly limited. For example, C 6 F 13 CH 2 CH 3 [for example, Asahi Clin (registered trademark) AC-6000 manufactured by Asahi Glass Co., Ltd.], 1, 1, 2, 2 , 3,3,4-heptafluorocyclopentane [for example, ZEOLOR (registered trademark) H manufactured by Nippon Zeon Co., Ltd.].
 ハイドロフルオロカーボン(HFC)としては、特に限定されないが、例えば、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)等が挙げられる。 Hydrofluorocarbon (HFC) is not particularly limited, and examples thereof include 1,1,1,3,3-pentafluorobutane (HFC-365mfc).
 ハイドロクロロフルオロカーボン(HCFC)は、特に限定されないが、好ましくは炭素数2~5である。具体例としては、特に限定されないが、HCFC-225[ジクロロペンタフルオロプロパン:アサヒクリン(登録商標)AK225]、HCFC141b(ジクロロフルオロエタン)、CFC316(2,2,3,3-テトラクロロヘキサフルオロブタン,)及びC10(例えば、デュポン社製のバートレル(登録商標)XF)等が挙げられる。 Hydrochlorofluorocarbon (HCFC) is not particularly limited, but preferably has 2 to 5 carbon atoms. Specific examples include, but are not limited to, HCFC-225 [dichloropentafluoropropane: Asahiklin (registered trademark) AK225], HCFC141b (dichlorofluoroethane), CFC316 (2,2,3,3-tetrachlorohexafluorobutane) )) And C 5 H 2 F 10 (for example, Vertrel (registered trademark) XF manufactured by DuPont).
 ヒドロフルオロエーテル(HFE)としては、特に限定されないが、例えば、パーフルオロプロピルメチルエーテル(COCH)[例えば、住友スリーエム株式会社製のNovec(商標名)7000]及びCFCHOCFCHF[例えば、旭硝子株式会社製のアサヒクリン(登録商標)AE-3000]等が挙げられる。 The hydrofluoroether (HFE), is not particularly limited, for example, perfluoropropyl methyl ether (C 3 F 7 OCH 3) [ for example, Sumitomo 3M Limited of Novec (TM) 7000] and CF 3 CH 2 OCF 2 CHF 2 [for example, Asahi Clin (registered trademark) AE-3000 manufactured by Asahi Glass Co., Ltd.] and the like.
 ハイドロフルオロオレフィン(HFO)としては、特に限定されないが、例えば、1,2-ジクロロ-1,3,3,3-テトラフルオロ-1-プロペン[例えば、三井・デュポンフロロケミカル社製のバートレル(登録商標)サイオン]等が挙げられる。 The hydrofluoroolefin (HFO) is not particularly limited. For example, 1,2-dichloro-1,3,3,3-tetrafluoro-1-propene [for example, Vertrel (registered by Mitsui DuPont Fluorochemical) (registered) Trademark) Scion] and the like.
 アルキルパーフルオロアルキルエーテルにおいて、パーフルオロアルキル基及びアルキル基は直鎖又は分枝状のいずれであってよい。具体例としては、特に限定されないが、パーフルオロブチルメチルエーテル(COCH)[例えば、住友スリーエム株式会社製のNovec(商標名)7100]、パーフルオロブチルエチルエーテル(COC)[例えば、住友スリーエム株式会社製のNovec(商標名)7200]及びパーフルオロヘキシルメチルエーテル(CCF(OCH)C)[例えば、住友スリーエム株式会社製のNovec(商標名)7300]等が挙げられる。 In the alkyl perfluoroalkyl ether, the perfluoroalkyl group and the alkyl group may be either linear or branched. Specific examples include, but are not limited to, perfluorobutyl methyl ether (C 4 F 9 OCH 3 ) [for example, Novec (trade name) 7100 manufactured by Sumitomo 3M Limited], perfluorobutyl ethyl ether (C 4 F 9). OC 2 H 5 ) [for example, Novec (trade name) 7200 manufactured by Sumitomo 3M Limited] and perfluorohexyl methyl ether (C 2 F 5 CF (OCH 3 ) C 3 F 7 ) [for example, manufactured by Sumitomo 3M Limited. Novec (trade name) 7300] and the like.
 上記含フッ素化合物等を溶液とするために使用される溶剤としては、他にも、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤、アセトン、メチルイソブチルケトン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤及びテトラヒドロフラン等のエーテル系溶剤等を用いることができる。 Other solvents used to make the above-mentioned fluorine-containing compounds and the like into solutions include alcohol solvents such as methanol, ethanol and isopropyl alcohol, ketone solvents such as acetone and methyl isobutyl ketone, ethyl acetate and butyl acetate. An ester solvent such as tetrahydrofuran and an ether solvent such as tetrahydrofuran can be used.
 上記含フッ素化合物を溶解させる溶剤として、一種の溶剤のみを用いてもよいし、二種以上の溶剤を混合して用いてもよい。溶剤には、さらに必要に応じて添加剤を添加して用いてもよい。 As the solvent for dissolving the fluorine-containing compound, only one kind of solvent may be used, or two or more kinds of solvents may be mixed and used. If necessary, an additive may be added to the solvent.
 表面層(B)に使用される含フッ素化合物等が、エポキシ基、イソシアネート基、スクシンイミド基、アミノ基、カルボキシル基又は水酸基等の化学結合可能な官能基を有する場合は、容器表面のアミノ基、カルボキシル基又は水酸基等(予め、プラズマ処理、コロナ処理などの手法で導入しておく)と化学反応させるために、含フッ素化合物等の溶液を容器表面に塗布して化学結合させた後、溶剤を蒸発させて被覆層を形成した後に、未反応の重合体を洗浄除去する方法によっても細胞培養容器を得ることができる。 When the fluorine-containing compound used for the surface layer (B) has a functional group capable of chemically bonding such as an epoxy group, an isocyanate group, a succinimide group, an amino group, a carboxyl group, or a hydroxyl group, In order to chemically react with a carboxyl group or a hydroxyl group (previously introduced by a technique such as plasma treatment or corona treatment), a solution of a fluorine-containing compound or the like is applied to the surface of the container and chemically bonded. A cell culture vessel can also be obtained by a method of removing unreacted polymer after evaporation to form a coating layer.
 また、本発明では、以下の方法によっても、フッ素化合物等を下地の面に化学結合により固定してもよい。
(1)上記含フッ素化合物等の成分を溶剤に溶解させる工程;及び
(2)上記(1)で得られた溶液を下地となる表面に適用し、さらに必要に応じてこれらを重合させる工程
を含む方法により、本発明の器材を得ることができる。
In the present invention, the fluorine compound or the like may be fixed to the base surface by chemical bonding also by the following method.
(1) a step of dissolving components such as the above-mentioned fluorine-containing compound in a solvent; and (2) a step of applying the solution obtained in (1) above to the underlying surface and further polymerizing them as necessary. The equipment of the present invention can be obtained by the method of including.
 工程(1)において、上記含フッ素化合物を溶解させる溶剤は、各種塗布方法と同じである。 In step (1), the solvent for dissolving the fluorine-containing compound is the same as in various coating methods.
 重合工程(2)においては、溶剤中に溶解させた上記含フッ素化合物で下地の面を被覆してから重合を行って表面上でポリマーを形成してもよいし、予め重合を行ってポリマーを形成しておいてから、得られたポリマーで下地の面を被覆してもよい。 In the polymerization step (2), the surface of the base may be coated with the fluorine-containing compound dissolved in the solvent and then polymerized to form a polymer on the surface. After the formation, the base surface may be covered with the obtained polymer.
 重合の方法としては、特に限定されないが、例えば、ラジカル重合であってもよく、さらに具体的には、電子線照射(EB)、γ線照射、紫外線照射、プラズマ処理、コロナ処理及び有機重合反応等が挙げられる。 The polymerization method is not particularly limited, but may be, for example, radical polymerization, and more specifically, electron beam irradiation (EB), γ-ray irradiation, ultraviolet irradiation, plasma treatment, corona treatment, and organic polymerization reaction. Etc.
 予め形成しておいたポリマーで器材の表面を被覆する方法は、特に限定されず、塗布及び混練等の単なる物理的吸着により行ってもよいし、さらに電子線照射(EB)、γ線照射、紫外線照射、プラズマ処理及びコロナ処理等を行うことにより、化学結合を介してポリマーを下地の面に固定してもよい。 The method of coating the surface of the equipment with a polymer formed in advance is not particularly limited, and may be performed by simple physical adsorption such as coating and kneading, and further includes electron beam irradiation (EB), γ-ray irradiation, By performing ultraviolet irradiation, plasma treatment, corona treatment, or the like, the polymer may be fixed to the surface of the base via a chemical bond.
 3. 表面処理剤
 本発明の表面処理剤は、本発明の細胞培養器材を製造するために用いられる、前記表面層(B)を形成しうる組成物である。
3. Surface Treatment Agent The surface treatment agent of the present invention is a composition capable of forming the surface layer (B) used for producing the cell culture device of the present invention.
 本発明の表面処理剤は、すなわち、処理表面の37℃における水中接触角を80°以上にし得る、表面処理剤である。本発明の表面処理剤は、処理表面の37℃における水中接触角を、好ましくは80°以上、より好ましくは90°以上にし得る、表面処理剤である。 The surface treatment agent of the present invention is a surface treatment agent that can make the contact angle of the treated surface at 37 ° C. in water of 80 ° or more. The surface treatment agent of the present invention is a surface treatment agent capable of setting the contact angle of the treated surface at 37 ° C. in water to preferably 80 ° or more, more preferably 90 ° or more.
 本発明の表面処理剤は、37℃における水中接触角が、好ましくは50°以下、より好ましくは40°以下の表面に対して適用される、表面処理剤である。 The surface treatment agent of the present invention is a surface treatment agent applied to a surface having a contact angle in water at 37 ° C. of preferably 50 ° or less, more preferably 40 ° or less.
 適用対象としては、特に限定されないが、例えば、足場依存性細胞を浮遊培養(三次元培養)させるための細胞培養器材、及び足場非依存性細胞を選択的に培養するための細胞培養器材等が挙げられる。 Although it does not specifically limit as an application object, For example, the cell culture equipment for carrying out suspension culture (three-dimensional culture | cultivation) of an anchorage-dependent cell, the cell culture equipment for selectively culture | cultivating an anchorage-independent cell, etc. Can be mentioned.
 特に限定されないが、浮遊培養(三次元培養)の目的としては、例えば、ES細胞の胚葉体(EB)形成及びスフェロイド形成等のほか、有用物質の生産及び薬剤スクリーニング等が挙げられる。 Although not particularly limited, the purpose of suspension culture (three-dimensional culture) includes, for example, ES cell embryoid body (EB) formation and spheroid formation, as well as production of useful substances and drug screening.
 特に限定されないが、足場非依存性細胞の例としては、がん細胞及び血球系細胞等が挙げられる。 Although not particularly limited, examples of anchorage-independent cells include cancer cells and blood cells.
 また、これらの細胞培養器材は、上に挙げたものの他、例えば、細胞医薬品の製造、ティッシュエンジニアリング、幹細胞の分化及び細胞培養実験、並びにタンパク製剤及び/又は細胞製剤の保存バッグ等の幅広い目的に使用できる。 In addition to those listed above, these cell culture equipments can be used for a wide range of purposes, such as cell medicine production, tissue engineering, stem cell differentiation and cell culture experiments, and protein preparations and / or cell preparation storage bags. Can be used.
 本発明の表面処理剤は、有効成分として、特に限定されないが、例えば、上記含フッ素化合物等を含む。 The surface treatment agent of the present invention is not particularly limited as an active ingredient, but includes, for example, the above-mentioned fluorine-containing compound.
 本発明の表面処理剤は、有効成分を溶解させる溶剤を含む。例えば、上記含フッ素化合物を有効成分として含む場合、それを溶解させる溶剤としては、特に限定されないが、上記「2.細胞培養器材の製造方法」で説明したものを使用してもよい。 The surface treatment agent of the present invention contains a solvent that dissolves the active ingredient. For example, when the fluorine-containing compound is contained as an active ingredient, the solvent for dissolving it is not particularly limited, but those described in the above “2. Method for producing cell culture equipment” may be used.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 1.溶液重合による(メタ)アクリレートポリマーの調製方法
 表1に示す(メタ)アクリレートポリマーを調製した。
1. Preparation Method of (Meth) acrylate Polymer by Solution Polymerization (Meth) acrylate polymer shown in Table 1 was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 重合溶剤は、含フッ素(メタ)アクリレートの場合はHCFC-225を、非含フッ素(メタ)アクリレートの場合はイソオクタンを用いた。モノマー濃度は20重量%とし、重合開始剤として1mol%(対モノマー)のアゾビスイソブチルニトリルを使用し、50℃で12時間重合した。得られたポリマー溶液を貧溶剤中に滴下して析出、単離及び乾燥することにより、ポリマーを精製した。 As the polymerization solvent, HCFC-225 was used in the case of fluorine-containing (meth) acrylate, and isooctane was used in the case of non-fluorinated (meth) acrylate. The monomer concentration was 20% by weight, and 1 mol% (based on monomer) of azobisisobutylnitrile was used as a polymerization initiator, and polymerization was carried out at 50 ° C. for 12 hours. The polymer was purified by dropping the obtained polymer solution into a poor solvent and precipitating, isolating and drying.
 2.細胞培養ディッシュの表面処理法
 上記1.で得られたポリマーを用いて表面処理を行った。
2. Surface treatment method of cell culture dish Surface treatment was performed using the polymer obtained in (1).
 2.1 キャスト膜
 溶剤として、含フッ素(メタ)アクリレートポリマーの場合はHCFC-225、非含フッ素(メタ)アクリレートポリマーの場合はイソオクタンを用いて調製した1重量%溶液 0.5mLを用いて、ペトリディッシュ(直径3.5cm)[米国コーニングインターナショナル社(旧ベクトン・ディキンソン・ラブウェア社)製Falcon1008]に、溶媒キャスト法により製膜した。
2.1 As a cast film solvent, 0.5 mL of a 1 wt% solution prepared using HCFC-225 in the case of a fluorine-containing (meth) acrylate polymer and isooctane in the case of a non-fluorine-containing (meth) acrylate polymer, A film was formed on a Petri dish (diameter: 3.5 cm) [Falcon 1008 manufactured by Corning International, Inc. (formerly Becton Dickinson Labware), USA] by a solvent casting method.
 2.2 放射線改質膜
 (1)モノマーのグラフト重合
 ペトリディッシュ(直径3.5cm)に窒素置換した10重量%モノマー溶液を適量注入した後、窒素雰囲気下のパックに梱包した。次に線量100kGyで電子線またはガンマ線を照射することにより、PS器材表面にグラフト重合した。モノマーの良溶剤で洗浄後、乾燥することにより放射線改質膜を調製した。
2.2 Radiation-modified film (1) Graft polymerization of monomer A suitable amount of a 10 wt% monomer solution substituted with nitrogen was injected into a Petri dish (diameter 3.5 cm), and then packed in a pack in a nitrogen atmosphere. Next, graft polymerization was performed on the surface of the PS device by irradiating an electron beam or gamma rays at a dose of 100 kGy. A radiation-modified film was prepared by washing with a good monomer solvent and drying.
 (2)キャスト膜の架橋
 上記キャスト膜に電子線またはガンマ線を照射し、ポリマーをPS器材に架橋させた後、モノマーの良溶剤で洗浄、乾燥することにより放射線改質膜を調製した。
(2) Crosslinking of cast film The cast film was irradiated with an electron beam or gamma ray to crosslink the polymer to PS equipment, and then washed with a good monomer solvent and dried to prepare a radiation modified film.
 2.3 フッ素樹脂フィルム
 TPP社製平底6 well plate(#92006)(直径3.4cm)のwell内に両面テープを貼り、その上からFEPフィルム(膜厚50μm)を張り付けたものを作製した。
2.3 Fluororesin film A flat-bottomed 6-well plate (# 92006) (diameter: 3.4 cm) made by TPP, a double-sided tape was applied to the well, and an FEP film (film thickness of 50 μm) was attached thereon.
 2.4 ポリエチレン(PE)フィルム
 2.3と同じwell内に両面テープを貼り、その上からPEフィルム(膜厚100μm)を張り付けたものを作製した。
2.4 A double-sided tape was applied in the same well as the polyethylene (PE) film 2.3, and a PE film (film thickness 100 μm) was stuck thereon.
 2.5 CF4ガスでプラズマ処理したPEフィルム
 2.3と同じwell内に両面テープを貼り、その上からCF4ガスで真空低温プラズマ処理したPEフィルム(膜厚100μm)を張り付けたものを作製した。
2.5 A double-sided tape was affixed in the same well as the PE film 2.3 plasma treated with CF4 gas, and a PE film (film thickness 100 μm) vacuum-treated with CF4 gas was produced thereon.
 3.ポリマー軟化点の測定
 ポリマー軟化点は、示差走査熱量測定法により測定した融点(Tm)またはガラス転移点(Tg)とした。10mgのポリマー粉末をDSC822e(米国Mettler Toledo社製)により、温度範囲-50~150℃、昇温速度10℃/minの条件で測定したときの2ndサイクル目のサーモグラムより、結晶性ポリマーの場合は融解ピークの頂点から融点を、非晶性ポリマーの場合は補外ガラス転移終了温度(JIS K7121-1987)を読み取った。
3. Measurement of polymer softening point The polymer softening point was the melting point (Tm) or glass transition point (Tg) measured by differential scanning calorimetry. In the case of a crystalline polymer, a 10 mg polymer powder was measured with DSC822e (manufactured by Mettler Toledo, USA) under the conditions of a temperature range of −50 to 150 ° C. and a heating rate of 10 ° C./min. Read the melting point from the top of the melting peak and, in the case of an amorphous polymer, the extrapolated glass transition end temperature (JIS K7121-1987).
 4.接触角(空気中、水中)
 接触角は、細胞培養ディッシュの底面を切り出し、協和界面科学(株)製Drop Master 701で測定し、5回測定の平均値を採用した。
4). Contact angle (in air, underwater)
For the contact angle, the bottom surface of the cell culture dish was cut out, measured with a Drop Master 701 manufactured by Kyowa Interface Science Co., Ltd., and an average value of five measurements was adopted.
 4.1 空気中接触角
 25℃の大気中で、水またはn-ヘキサデカン(以下、HDと略す)2μlを滴下し、滴下後1秒後の接触角を測定した。
4.1 In air at a contact angle of 25 ° C., 2 μl of water or n-hexadecane (hereinafter abbreviated as HD) was dropped, and the contact angle one second after the dropping was measured.
 4.2 水中接触角
 ガラス製セル(60×60×40mm、厚み2mm)に水を満たし、切り出した細胞培養ディッシュの底面を処理面を下向きにして完全に水に浸るよう固定した。次に、37℃で30分間加熱した後、水中に固定した処理面にマイクロシリンジを用いて気泡10μlを付着させて、気泡の接触角を測定した。水中接触角は、「180―(気泡の接触角)」から算出した。
4.2 An underwater contact angle glass cell (60 × 60 × 40 mm, thickness 2 mm) was filled with water, and the bottom of the cut cell culture dish was fixed so that it was completely immersed in water with the treated surface facing downward. Next, after heating at 37 ° C. for 30 minutes, 10 μl of bubbles were attached to the treated surface fixed in water using a microsyringe, and the contact angle of the bubbles was measured. The underwater contact angle was calculated from “180- (bubble contact angle)”.
 5.細胞接着試験
 C3H/10T1/2clone 8(CL8)細胞(マウス胚由来の間葉系幹細胞様の培養細胞)を用いて、細胞接着試験を行った。これに先立ち、細胞接着試験を行うサンプルとして、各ウェル底面をそれぞれ各種ポリマーで表面処理した6ウェルプレート(TPP社)を用意した。
5). Cell adhesion test A cell adhesion test was carried out using C3H / 10T1 / 2clone 8 (CL8) cells (cultured cells like mesenchymal stem cells derived from mouse embryos). Prior to this, a 6-well plate (TPP) was prepared as a sample to be subjected to the cell adhesion test, in which each well bottom surface was treated with various polymers.
 (1)培養条件
 培地:10%FBS(fetal bovine serum)含有DMEM(Dulbecco’s modified Eagle’s medium)-high glucose (ナカライテスク) 2ml
 (2)評価用の細胞調製方法
 一旦、細胞培養用ディッシュ(Falcon3001)で本細胞を培養後、細胞を剥離させて集めてから細胞数を数え、1×10cells/mlになるように培地を用いて細胞懸濁液を用意した。
(1) Culture conditions Medium: DMEM (Dulbecco's modified Eagle's medium) -high glucose (Nacalai Tesque) 2 ml containing 10% FBS (fetal bovine serum)
(2) Cell preparation method for evaluation Once the cells are cultured in a cell culture dish (Falcon 3001), the cells are detached and collected, the number of cells is counted, and the medium is adjusted to 1 × 10 6 cells / ml. A cell suspension was prepared using
 あらかじめ各ウェルに2mlの培地を満たした6ウェルプレートに、該細胞懸濁液を100μlづつ播種した。 100 μl of the cell suspension was seeded in a 6-well plate in which 2 ml of medium was filled in each well in advance.
 細胞の観察には、顕微鏡「ニコンTE300」(倍率40~100培)及びカメラ「ライカMC120HD」を用いた。 For the observation of cells, a microscope “Nikon TE300” (magnification 40 to 100 culture) and camera “Leica MC120HD” were used.
 (3)判定基準
 三日間培養した後に顕微鏡観察し、以下の基準で判定した。
(3) Judgment criteria After culturing for 3 days, the sample was observed under a microscope and judged according to the following criteria.
 A:完全に非接着
 B:視野あたり1個以上、5個未満の細胞の伸展が観察される
 C:視野あたり5個以上、10個未満の細胞の伸展が観察される
 D:視野あたり10個以上、20個未満の細胞の伸展が観察される
 E:視野あたり20個以上の細胞の伸展が観察される
 ×:培養用シャーレ(TPP社製6ウェルプレート)と同等の結果
 結果を表2に示す。37℃における水中接触角が、80°以上である表面は、細胞が接着しにくいことが判った。さらに、37℃における水中接触角が80°以上であって、かつ軟化点が30℃以上の場合には、細胞がより接着しにくくなることが判った。
A: Completely non-adhering B: Extension of 1 or more and less than 5 cells per field is observed C: Extension of 5 or more and less than 10 cells per field is observed D: 10 per field As described above, the extension of less than 20 cells is observed. E: The extension of 20 or more cells per field of view is observed. X: Results equivalent to the petri dish for culture (6-well plate manufactured by TPP) The results are shown in Table 2. Show. It was found that the surface where the contact angle in water at 37 ° C. is 80 ° or more is difficult for cells to adhere. Furthermore, it was found that when the contact angle in water at 37 ° C. is 80 ° or more and the softening point is 30 ° C. or more, the cells are more difficult to adhere.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 

Claims (8)

  1. (A)支持体;及び
    (B)含フッ素化合物を含有する表面層
    を含有する細胞培養器材であって、
    前記表面層(B)が、前記支持体(A)の表面の少なくとも一部に、直接又は一以上の他の層を介して配置されており、
    前記表面層(B)の表面の37℃における水中接触角が、80°以上である、細胞培養器材。
    (A) a support; and (B) a cell culture device containing a surface layer containing a fluorine-containing compound,
    The surface layer (B) is disposed on at least a part of the surface of the support (A) directly or via one or more other layers,
    The cell culture equipment whose water contact angle in 37 degreeC of the surface of the said surface layer (B) is 80 degrees or more.
  2. 前記表面層(B)が、含フッ素化合物を用いて表面改質された層である、請求項1に記載の細胞培養器材。 The cell culture device according to claim 1, wherein the surface layer (B) is a layer whose surface has been modified using a fluorine-containing compound.
  3. 前記表面層(B)が、含フッ素ガスを用いてプラズマ処理された層である、請求項2に記載の細胞培養器材。 The cell culture device according to claim 2, wherein the surface layer (B) is a layer subjected to plasma treatment using a fluorine-containing gas.
  4. 前記表面層(B)が、含フッ素ポリマーを含有する層である、請求項1に記載の細胞培養器材。 The cell culture device according to claim 1, wherein the surface layer (B) is a layer containing a fluorine-containing polymer.
  5. 前記含フッ素ポリマーが、フルオロ(メタ)アクリレート系ポリマー、フルオロ(メタ)アクリルアミド系ポリマー及びオレフィン系含フッ素ポリマーからなる群より選択される少なくとも一種の、軟化点30℃以上の含フッ素ポリマーである、請求項4に記載の細胞培養器材。 The fluorine-containing polymer is at least one fluorine-containing polymer having a softening point of 30 ° C. or higher selected from the group consisting of a fluoro (meth) acrylate-based polymer, a fluoro (meth) acrylamide-based polymer, and an olefin-based fluorine-containing polymer. The cell culture equipment according to claim 4.
  6. 前記表面層(B)が、下地となる面に化学結合を介して結合している、請求項1、4及び5のいずれか一項に記載の細胞培養器材。 The cell culture device according to any one of claims 1, 4, and 5, wherein the surface layer (B) is bonded to a base surface via a chemical bond.
  7. 請求項1及び4~6のいずれか一項に記載の細胞培養器材を製造するために用いられる、前記表面層(B)を形成しうる組成物。 A composition capable of forming the surface layer (B), which is used for producing the cell culture device according to any one of claims 1 and 4 to 6.
  8. 含フッ素ポリマー及び/又は
    含フッ素ポリマーを形成しうるモノマー
    を含有する、請求項7に記載の組成物。
     
     
    The composition of Claim 7 containing the monomer which can form a fluoropolymer and / or a fluoropolymer.

PCT/JP2016/052836 2015-01-29 2016-01-29 Cell culture apparatus WO2016121994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-015993 2015-01-29
JP2015015993 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121994A1 true WO2016121994A1 (en) 2016-08-04

Family

ID=56543596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052836 WO2016121994A1 (en) 2015-01-29 2016-01-29 Cell culture apparatus

Country Status (2)

Country Link
JP (1) JP6165280B2 (en)
WO (1) WO2016121994A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206612B1 (en) * 2017-03-07 2017-10-04 東洋インキScホールディングス株式会社 Cell culture bags
WO2018135593A1 (en) * 2017-01-20 2018-07-26 旭硝子株式会社 Cell production method and kit for producing cells
WO2018135595A1 (en) * 2017-01-20 2018-07-26 旭硝子株式会社 Cell production method and kit for producing cells
US10961493B2 (en) 2015-07-16 2021-03-30 Daikin Industries, Ltd. Container for cell administration, storage or culturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053093A (en) * 2016-09-28 2018-04-05 株式会社潤工社 Polymer substrate having adsorption control surface and manufacturing method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (en) * 1988-02-17 1988-08-17 Daikin Ind Ltd Cultivation apparatus
WO2005094524A2 (en) * 2004-03-25 2005-10-13 Human Genome Sciences, Inc. Cell culture apparatus and methods
JP2007046056A (en) * 2005-08-05 2007-02-22 Becton Dickinson & Co Method for producing surface having resistance to non-specific protein bonding and cell adhesion
JP2008538929A (en) * 2005-04-29 2008-11-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-step process for producing therapeutic proteins
WO2009066769A1 (en) * 2007-11-21 2009-05-28 Ulvac, Inc. Substrate for cell adhesion or culture and method for producing the same
WO2012133514A1 (en) * 2011-03-30 2012-10-04 住友ベークライト株式会社 Culture vessel for forming embryoid body
WO2013140822A1 (en) * 2012-03-23 2013-09-26 国立大学法人名古屋大学 Cell culture base material and cell culture method
WO2015115568A1 (en) * 2014-01-29 2015-08-06 ダイキン工業株式会社 Temperature-responsive base material, method for producing same, and method for evaluating same
WO2015163043A1 (en) * 2014-04-22 2015-10-29 株式会社日本触媒 Cell culture substrate containing fluorine-containing polymer on surface
WO2016002796A1 (en) * 2014-06-30 2016-01-07 旭硝子株式会社 Protein adhesion inhibitor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (en) * 1988-02-17 1988-08-17 Daikin Ind Ltd Cultivation apparatus
WO2005094524A2 (en) * 2004-03-25 2005-10-13 Human Genome Sciences, Inc. Cell culture apparatus and methods
JP2008538929A (en) * 2005-04-29 2008-11-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-step process for producing therapeutic proteins
JP2007046056A (en) * 2005-08-05 2007-02-22 Becton Dickinson & Co Method for producing surface having resistance to non-specific protein bonding and cell adhesion
WO2009066769A1 (en) * 2007-11-21 2009-05-28 Ulvac, Inc. Substrate for cell adhesion or culture and method for producing the same
WO2012133514A1 (en) * 2011-03-30 2012-10-04 住友ベークライト株式会社 Culture vessel for forming embryoid body
WO2013140822A1 (en) * 2012-03-23 2013-09-26 国立大学法人名古屋大学 Cell culture base material and cell culture method
WO2015115568A1 (en) * 2014-01-29 2015-08-06 ダイキン工業株式会社 Temperature-responsive base material, method for producing same, and method for evaluating same
WO2015163043A1 (en) * 2014-04-22 2015-10-29 株式会社日本触媒 Cell culture substrate containing fluorine-containing polymer on surface
WO2016002796A1 (en) * 2014-06-30 2016-01-07 旭硝子株式会社 Protein adhesion inhibitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGAHIRO SAITO ET AL.: "Template of Cell Culture for Body Tissue using Preparation Technique of Ultra Thin Films", BIO INDUSTRY, vol. 23, no. 2, 2006, pages 20 - 26 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961493B2 (en) 2015-07-16 2021-03-30 Daikin Industries, Ltd. Container for cell administration, storage or culturing
WO2018135593A1 (en) * 2017-01-20 2018-07-26 旭硝子株式会社 Cell production method and kit for producing cells
WO2018135595A1 (en) * 2017-01-20 2018-07-26 旭硝子株式会社 Cell production method and kit for producing cells
JP6206612B1 (en) * 2017-03-07 2017-10-04 東洋インキScホールディングス株式会社 Cell culture bags
JP2018143180A (en) * 2017-03-07 2018-09-20 東洋インキScホールディングス株式会社 Bag-shaped vessel for cell culture
CN110402282A (en) * 2017-03-07 2019-11-01 东洋油墨Sc控股株式会社 Cell culture bag-like container and its manufacturing method
CN110402282B (en) * 2017-03-07 2022-09-20 东洋油墨Sc控股株式会社 Cell culture baglike container and method for producing same

Also Published As

Publication number Publication date
JP2016144447A (en) 2016-08-12
JP6165280B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6165280B2 (en) Cell culture equipment
JP6759958B2 (en) Temperature-responsive substrate, its manufacturing method and its evaluation method
Li et al. Supramolecular adhesion at extremely low temperatures: a combined experimental and theoretical investigation
Jiang et al. Novel fluorinated polymers containing short perfluorobutyl side chains and their super wetting performance on diverse substrates
US6793821B2 (en) Super water-repellent organic/inorganic composite membrane
JP6786820B2 (en) Manufacturing method of molded product
JP6214583B2 (en) Polymer substrate, use thereof and production method thereof
TW201236741A (en) Oil-repellent waterproof air-permeable filter and method for producing same
JP6617704B2 (en) Protein adhesion inhibitor
JP2016026520A (en) Compound for prevention of protein deposition, coating liquid and medical device
JPH08500628A (en) Purification of fluoropolymers
JP6720956B2 (en) Substrate and its application
JPWO2016104596A1 (en) Low protein adsorbing material, low protein adsorbing article, low cell adhering material and low cell adhering article
JP2017164315A (en) Method for producing medical device
EP4056648A1 (en) Coating-forming composition, coating, and chemical liquid
JP2012046674A (en) Coating composition and method manufacturing the same
TWI770183B (en) Ink based on fluorinated polymer having improved adhesion
KR20190022459A (en) Resin composition, coating liquid, mold with mold release and manufacturing method thereof
Koguchi et al. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA
JP2017155188A (en) Liquid composition for forming antifouling film, and a method of forming antifouling film using the liquid composition
JP2018053093A (en) Polymer substrate having adsorption control surface and manufacturing method therefor
JP2022069292A (en) Biological substance adhesion prevention base material and instrument comprising the base material
TW201816048A (en) A fluorinated pressure sensitive adhesives and articles thereof
JP5880390B2 (en) Releasable composition for pressure-sensitive adhesive
TW202100585A (en) Coating agent and article treated with said coating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743597

Country of ref document: EP

Kind code of ref document: A1