WO2016121890A1 - Synthetic resin container - Google Patents

Synthetic resin container Download PDF

Info

Publication number
WO2016121890A1
WO2016121890A1 PCT/JP2016/052539 JP2016052539W WO2016121890A1 WO 2016121890 A1 WO2016121890 A1 WO 2016121890A1 JP 2016052539 W JP2016052539 W JP 2016052539W WO 2016121890 A1 WO2016121890 A1 WO 2016121890A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral wall
synthetic resin
leg
movable bottom
container
Prior art date
Application number
PCT/JP2016/052539
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 正樹
和志 松清
卓 細貝
秀人 門前
祐一 宮崎
山崎 和彦
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015048742A external-priority patent/JP6691655B2/en
Priority claimed from JP2015063877A external-priority patent/JP2016182971A/en
Priority claimed from JP2015080746A external-priority patent/JP2016199294A/en
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2016121890A1 publication Critical patent/WO2016121890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents

Definitions

  • the present invention relates to a synthetic resin container having a vacuum absorption performance at the bottom, and more specifically, has a bottom structure that can cope with a change in internal pressure associated with hot filling and subsequent vacuum absorption, as well as the self-supporting property of the container and the bottom. Or it is related with the container made from a synthetic resin excellent also in the shape stability of a container.
  • Synthetic resin containers are widely used as packaging containers for various liquids because they are excellent in light weight and impact resistance.
  • a stretch-molded container formed by stretch-blow-molding polyethylene terephthalate (PET) has a combination of transparency, gas barrier properties, light weight, impact resistance, appropriate rigidity, etc., and is used for containing liquid contents. Widely used as a packaging container.
  • Patent Documents 1 to 3 various synthetic resin containers having a vacuum absorbing performance at the bottom have been proposed.
  • JP 2012-91830 A Japanese Patent No. 5408501 JP 2013-144560 A
  • the container when the internal pressure changes after filling and the inside of the container is depressurized and the bottom surface is deformed toward the inside of the container, the container is deformed as desired due to the thickness distribution on the bottom surface, filling conditions, surrounding environment, etc. Otherwise, it may deform non-uniformly and impair the shape stability of the bottom or container.
  • an object of the present invention is to have a bottom structure that has excellent decompression absorption performance and can cope with a change in internal pressure accompanying hot filling and subsequent decompression absorption.
  • the object is to provide a synthetic resin container excellent in shape stability.
  • the bottom part is a synthetic resin container having a reduced pressure absorption performance
  • the bottom part is formed with an outer peripheral wall continuous from the trunk part, a leg part including an earthing part and an inner peripheral wall.
  • a movable bottom portion located above the grounding portion is formed on the inner side of the inner peripheral wall.
  • a plurality of protrusions project in the radial direction and are formed in the circumferential direction.
  • a synthetic resin container is provided that includes a curved portion and a groove portion between the curved portions that connects the inner edge of the movable bottom portion so as to be positioned above the outer edge in the container axial direction.
  • the grooves are formed radially; 2.
  • the groove has a curved bottom portion projecting downward; 3.
  • the depth of the groove is 0.1 to 3.0 mm at the center position between the inner and outer edges of the movable bottom, 4).
  • the angle of inclination of the curved bottom with respect to the horizontal direction is 2 to 15 ° at the center position between the inner and outer edges of the movable bottom; 5.
  • the curvature radius R of the curved bottom is 30 to 300 mm; 6).
  • the width of the groove is wider or narrower than the width of the inner and outer edges at the center position between the inner and outer edges of the movable bottom; 7).
  • An annular protrusion protruding downward is formed at the boundary between the inner edge of the movable bottom part and the outer edge of the central part, 8).
  • a folded portion is formed at the upper end of the inner peripheral wall of the leg portion, and the inner edge of the folded portion is connected in line with the position of the outer edge of the movable bottom portion; 9.
  • the central portion protrudes upward or downward; 10.
  • the synthetic resin is polyester, the outer peripheral wall upper end and the outer edge of the movable bottom portion are connected by an annular support, and the crystallinity by the density method of the annular support is 30% or more, 11.
  • a plurality of heel portions and a plurality of leg groove portions are alternately provided in the circumferential direction on the grounding portion; 12 A step is formed between the outer peripheral wall of the leg and the grounding portion; 13 The center line of the leg groove part is located on an imaginary straight line extending from the center line of the groove part of the movable bottom part; 14 The number of the leg groove portions and the number of the groove portions of the movable bottom portion are the same; Is preferred.
  • a polyester container having a vacuum absorbing performance at the bottom, wherein the bottom is formed with an outer peripheral wall continuous from the trunk, a grounding portion and an inner peripheral wall. A movable bottom portion is formed on the inner side of the inner peripheral wall and positioned above the grounding portion.
  • a polyester container characterized in that the annular support connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom has a crystallinity of 30% or more by density method.
  • the bottom part is formed with an outer peripheral wall continuous from the body part, a leg part made up of a grounding part and an inner peripheral wall, inside the inner peripheral wall of the leg part and above the grounding part.
  • a method for producing a polyester container comprising: a movable bottom portion positioned; and an annular support portion connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom portion, When the preform is biaxially stretch blow-molded using the body mold and the bottom mold, the portion corresponding to the annular support portion of the bottom mold is adjusted to a temperature of 130 to 160 ° C.
  • a method of manufacturing a polyester container is provided.
  • the synthetic resin container of the present invention protrudes in the radial direction on the inner side of the leg formed on the bottom of the container, and plural in the circumferential direction.
  • a movable bottom portion is formed that includes the formed curved portion and a groove portion that is present between the curved portions and is inclined upward toward the center portion. According to such a configuration, it is possible to increase the distance (height distance) between the movable bottom portion and the grounding surface, and when the movable bottom portion protrudes downward due to the heat or weight of the contents in hot filling, It is possible to prevent the movable bottom from protruding beyond the ground plane.
  • the internal pressure change is coupled with the fact that the amount of deformation of the movable bottom portion is controlled as described above. Even if this occurs, the height of the container can be kept constant at all times, the independence of the container is maintained, and the transportability is excellent.
  • the container of the present invention is made of polyester and has an annular support having a high degree of crystallinity
  • the heat or weight of the contents is applied during hot filling and the movable bottom protrudes downward.
  • the crystallinity of the annular support connecting the inner peripheral wall of the leg and the outer edge of the movable bottom is set to 30% or more by ordinary one-stage blow molding.
  • Such a polyester container can be produced with high productivity.
  • FIG. 2A is an empty state
  • FIG. 2B is a state immediately after hot filling
  • C is decompression after hot filling.
  • the state (D) shows the superposition of (A) to (C).
  • FIG. 6A is a sectional view taken along the line aa in FIG. 6A
  • FIG. 6B is a sectional view taken along the line bb in FIG.
  • FIG. 6A is a sectional view taken along the line aa in FIG. 6A
  • FIG. 6B is a sectional view taken along the line bb in FIG.
  • FIG. 6A is a sectional view taken along the line aa in FIG. 6A
  • FIG. 6B is a sectional view taken along the line bb in FIG.
  • It is a bottom view which shows another example of the container shown in FIG.
  • It is a side view which shows an example of the container of this invention in case it has an annular support part.
  • FIG. (A) and partial cutaway schematic view (B) show another example of the container of this invention in the case of having an annular support part. It is a figure for demonstrating an example of the suitable manufacturing method of the container of this invention in case it has an annular support part. It is a side view which shows an example of the container of this invention in case a knurling is provided in the leg part. It is a figure explaining the bottom part of the container of FIG. (A) is a bottom view and (B) is a partial cross-sectional schematic view. It is a figure explaining the bottom part of the container of FIG. (C) is a partially enlarged view of the leg portion shown in FIG.
  • FIG. 14-1 (B), and (D) is an enlarged view taken along arrow DD in FIG. 14-1 (A). It is a figure which shows the aspect which provided the knurling and the level
  • a container 1 of the present invention shown in FIG. 1 includes a mouth portion 2, a shoulder portion 3, a trunk portion 4 and a bottom portion 5.
  • the body part 4 includes an upper body part 4a continuous from the shoulder part 3, a lower body part 4b continuous from the bottom part, and a central body part 4c located between the upper body part 4a and the lower body part 4b.
  • the central body 4c has three circumferential ribs 6, 6, and 6 formed in parallel and at equal intervals to ensure the mechanical strength of the body and the shape retaining property against internal pressure deformation. Moreover, the outer peripheral surface except the rib 6 part is formed straight in the axial direction, and a label (not shown) can be wound around the body part.
  • ribs 7 are also formed between the lower body 4b and the bottom 5, and the body 4 and the bottom 5 are clearly defined by the ribs 7.
  • the body 4 and the bottom 5 do not necessarily have to be clearly defined.
  • the bottom portion 5 includes an annular leg portion 8, a movable bottom portion 9 located inside the leg portion 8, and a central portion 12 located inside the movable bottom portion 9.
  • the leg portion 8 is located below the rib 7 and includes an outer peripheral wall 8a continuous from the trunk portion 4, a grounding portion 8b, and an inner peripheral wall 8c that forms a rising upward from the grounding portion 8b.
  • the movable bottom portion 9 is located above the grounding portion 8 b and is connected to the upper end of the inner peripheral wall 8 c of the leg portion 8.
  • a substantially flat central portion 12 defined by an annular protrusion 11 protruding downward is formed.
  • the central portion 12 is located at the uppermost position in the container axis direction in the region surrounded by the grounding portion 8b.
  • the annular protrusion 11 is not necessarily formed, the annular protrusion 11 is formed at the boundary between the inner edge of the movable bottom portion 9 and the outer edge of the central portion 12 as in the present embodiment, so that the movement of the movable bottom portion 9 can be performed. It is possible to absorb the bending in the radial direction.
  • FIG. 2A there is a gap between the outer edge of the movable bottom portion 9 and the inner edge in contact with the central portion 12 (the outer edge of the annular protrusion 11 when the annular protrusion 11 is formed) in the radial direction.
  • a plurality of curved portions 13 projecting in the circumferential direction (16 in the radial direction in FIG. 2) are formed at equal intervals, and between the adjacent curved portions 13, 13, the inner edge (annular shape) of the movable bottom portion 9 is formed.
  • a plurality of groove portions 14 (16 in FIG.
  • the curved portion 13 and the groove portion 14 are formed in a uniform shape and at equal intervals in order to ensure uniform deformation during filling of the contents or during decompression. desirable.
  • the groove portion 14 has a curved bottom portion 14 a protruding downward, and is inclined upward from the outer edge of the movable bottom portion 9 toward the central portion 12. That is, the groove portion 14 is formed such that the inner edge (outer edge of the annular protrusion 11) in contact with the center portion 12 is positioned higher in the container axial direction than the outer edge of the movable bottom portion 9.
  • the groove 14 absorbs the bending that occurs in the bottom radial direction when the contents are heavy or when heat is applied due to hot filling or the like. It is preferable to set the depth and width of the groove, the inclination angle of the curved bottom, the radius of curvature, and the like so that the shape restoring action can be exerted smoothly.
  • the depth D of the groove portion is near the center position M1 between the inner and outer edges of the movable bottom 9 (in the specific example shown in the figure, the position of the inner edge is the outer edge of the annular protrusion 11). It is preferable that it is deepest.
  • the depth D is preferably in the range of 0.1 to 3.0 mm.
  • the depth D can also be adjusted suitably in the radial direction of a groove part.
  • the center position M1 is drawn by a line segment X1 connecting the inner and outer edges of the movable bottom 9 in the groove portion 14, and passes through the midpoint of the line segment X1.
  • a line segment X2 is a line segment connecting the inner and outer edges of the movable bottom 9 in the bending portion 13
  • M2 is a straight line Y2 that passes through the midpoint of the line segment X2 and is perpendicular to the line segment X2 and the bending portion 13. It is a crossing point.
  • the width in the circumferential direction of the groove portion 14 is the widest in the vicinity of the center position M1, that is, the groove portion 14 is formed in a substantially spindle shape, but is movable. Even if it is formed so as to be wide in the vicinity of the inner and outer edges of the bottom portion 9 and narrowest in the vicinity of the center position M1, it is preferable because the movable bottom portion can be easily moved and restored.
  • the inclination angle ⁇ of the curved bottom 14a of the groove with respect to the horizontal direction is preferably in the range of 2 to 15 ° at the center position M1. Specifically, as shown in FIG. 3A, the inclination angle ⁇ is expressed by an angle with respect to the horizontal direction of the tangent line Z by drawing the tangent line Z of the curved bottom 14a of the groove at the center position M1. .
  • the curvature radius R of the curved bottom portion 14a of the groove is preferably in the range of 30 to 300 mm.
  • the thickness of the groove 14 is preferably thin. As a result, when weight and heat are applied due to hot filling or the like, the adjacent curved portions 13 are easily bent so as to widen the interval, and at the time of decompression, the adjacent curved portions 13 are narrowed so as to reduce the interval. It becomes possible to move the entire movable bottom 9 uniformly and gently upward.
  • FIG. 4 is a diagram for explaining the fluctuation of the bottom according to the change in the internal pressure of the container of the present invention.
  • (A) is an empty state
  • (B) is a state immediately after hot filling (for example, 87 ° C.)
  • (C) is a partial sectional view showing a decompressed state after filling in (B)
  • (D) is FIG. 4 is a diagram in which (A) to (C) are superimposed.
  • the movable bottom portion 9 moves downward from the empty state (A) due to the weight of the contents. Even when filled and sealed at a high temperature of ° C., as described above, since the groove portion 14 is formed, the movable bottom portion does not move excessively downward. Further, in the case of being cooled after being hot-filled and in a reduced pressure state (C), the movable bottom portion 9 smoothly moves upward by utilizing the shape restoring action of the groove portion 14, and the movable bottom portion after absorbing the reduced pressure. 9 comes to be positioned above the empty state (A).
  • FIG. 4D which is a superposition of these figures
  • the movable bottom 9 is If it does not move excessively downward, and then is in a reduced pressure state, the movable bottom portion 9 is gently deformed to rise to the inside of the container, thereby exhibiting a desired reduced pressure absorption performance. can do.
  • FIGS. 6B and 7 an annular shape that protrudes upward from the upper end of the inner peripheral wall 8c to the upper end of the inner peripheral wall 8c of the leg 8 and then turns downward. 1 is different from the container of the present invention shown in FIG. 1 in that an inner edge 15a of the folded portion 15 is connected in line with the position of the outer edge of the movable bottom 9.
  • the depth of the folded portion 15 is not limited to this, but is preferably in the range of 0.5 to 3.0 mm in the vertical distance from the upper end of the folded portion to the inner edge 15a of the folded portion. If the folded portion is shallower than the above range, the possibility that the inner peripheral wall 8c of the leg portion 8 will fall inward when the movable bottom portion 9 moves downward is increased as compared with the case where it is within the above range. If the folded portion is deeper than the above range, the moldability may be inferior to that in the above range.
  • the movable bottom portion 9 is connected to the inner peripheral wall 8c of the leg portion 8 via the folded portion 15 having an appropriate depth, so that the weight and heat of the contents are transferred by the hot filling or the like.
  • the inner peripheral wall 8 c of the leg portion 8 is prevented from being excessively drawn in the central direction of the movable bottom portion 9 (inward falling), and the inner edge 15 a of the folded portion 15 is also excessively drawn. Effectively prevented.
  • the bottom of the container according to the present embodiment having the folded portion is reduced in pressure because the movable bottom 9 does not protrude excessively or does not deform unevenly. Even uniform deformation sometimes occurs, and it can cope with hot filling at a high temperature of 87 ° C. or higher.
  • the container is made of polyester, and as is clear from FIGS. 10A and 10B, the outer edge 9 a of the movable bottom portion 9 is interposed between the upper end of the inner peripheral wall 8 c of the leg portion 8 and the annular support portion 16. linked.
  • the annular support 16 is adjusted to have a high degree of crystallinity, that is, has a higher rigidity than other parts.
  • an annular support having a crystallinity of 30% or more by the density method, particularly 30 to 40%, is formed at a position connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom. It has important characteristics.
  • the crystallinity degree by the said density method is calculated
  • X (%) ( ⁇ c / ⁇ ) ⁇ [( ⁇ a) / ( ⁇ c ⁇ a)] ⁇ 100
  • indicates the density (g / cm 3 ) of the measurement site measured by the density gradient tube.
  • ⁇ c represents the density (g / cm 3 ) of the crystal.
  • ⁇ a represents the amorphous density (g / cm 3 ).
  • polyethylene terephthalate is used as the polyester resin
  • the degree of crystallinity is determined using values of 1.455 (g / cm 3 ) as ⁇ c and 1.335 (g / cm 3 ) as ⁇ a.
  • FIG. 11 is a bottom view (A) and a partial cross-sectional view (B) showing another example of the polyester container of the present embodiment.
  • an annular support 16 is formed on the upper end of the inner peripheral wall 8c of the leg 8 at the upper end of the inner peripheral wall 8c, and then protrudes upward from the upper end of the inner peripheral wall 8c.
  • the shape of the annular support portion 16 is a concave shape that is recessed inward of the container from the outer edge 9 a of the movable bottom portion 9.
  • the depth of the concave portion of the annular support portion 16 having the concave shape is not limited to this, but is preferably in the range of 0.5 to 3.0 mm in the vertical distance from the upper end of the concave portion to the outer edge 9a of the movable bottom portion 9.
  • the depth of the concave portion is in the above range, coupled with the high crystallinity of the annular support portion 16, the inward tilting of the inner peripheral wall 8 c of the leg portion 8 when the movable bottom portion 9 moves downward is very effective. Can be prevented.
  • the concave portion is deeper than the above range, the moldability may be inferior to that in the above range.
  • the movable bottom portion 9 is connected to the inner peripheral wall 8c of the leg portion 8 via the annular support portion 16 having a high degree of crystallinity, so that the weight and heat of the contents are transferred by the hot filling or the like. Even when acting on, the inner peripheral wall 8c of the leg portion 8 is extremely effectively prevented from being drawn excessively (inwardly falling) toward the center of the movable bottom portion 9. Furthermore, when the annular support portion 16 has a recessed shape that is recessed inward of the container, not only the leg can be prevented from falling down but also the outer edge 9a of the movable bottom portion 9 can be effectively prevented from being pulled in.
  • the bottom of the container of the present invention is uniformly deformed even during decompression because the movable bottom 9 does not protrude excessively or does not deform unevenly. For example, it can cope with hot filling at a high temperature of 87 ° C. or higher.
  • the annular support 16 at the bottom has a crystallinity of 30% or more.
  • the crystallinity of the movable bottom portion 9 is similarly set to 30% or more, particularly 30 to 40%. From the viewpoint of heat resistance of the polyester container, it is desirable that the crystallinity of the barrel is in the range of 27 to 40%.
  • the movable bottom portion 9 to 11 show the movable bottom portion 9 having the bending portion 13 and the groove portion 14.
  • the movable bottom portion 9 is the bending portion. 13 and the groove part 14 may not necessarily be provided.
  • the movable bottom part may have another shape. That is, from the viewpoint of maximizing the self-supporting property and shape stability of the container, it is preferable that the movable bottom portion 9 includes the curved portion 13 and the groove portion 14, but the self-supporting property and the shape stability of the container are improved.
  • the movable bottom 9 has other shapes.
  • FIG. 13 are views for explaining an embodiment in which a so-called knurling is provided on a leg in the container of the present invention.
  • an important feature is that a plurality of leg groove portions 17 are provided at equal intervals in the circumferential direction in the ground contact portion 8b of the leg portion 8, and a heel portion 18 is provided between the adjacent leg groove portions 17 and 17. is there. Due to this feature, in the container according to the present embodiment, even if the impact due to the drop is received, the leg portion 8 is less likely to be wrinkled or crushed due to the buffering effect of the leg groove portion 17.
  • the leg portion 8 does not necessarily have the same thickness as the conventional one, and there is no problem even if the movable bottom portion is enlarged and the leg portion is narrowed instead, so the shape of the bottom portion can be freely set. I can decide. Furthermore, by providing the heel part and the leg groove part in the leg part, the leg part itself also exhibits the reduced pressure absorption performance.
  • the radial dimension of the grounding portion 8b is shortened and the leg portion 8 is made thin, sufficient drop resistance can be exhibited.
  • the ratio of the inner diameter to the outer diameter of the grounding portion 8b is preferably 0.75 to 0.95. If the leg portion 8 is too thin, the heel portion 18 and the leg groove portion 17 are poorly shaped, and wobble tends to occur when grounded, so that the self-supporting property may be impaired. If the leg portion 8 is too thick, the effect of the present embodiment can be sufficiently obtained even if the movable bottom portion 9 is enlarged in order to improve the vacuum absorption performance, and even if the leg portion 8 is made thin instead, sufficient fall resistance can be maintained. There is a possibility that it cannot be demonstrated.
  • the outer diameter of the grounding portion 8b is represented by a line segment N′N ′′, and the inner diameter of the grounding portion 8b is represented by a line segment O′O ′′.
  • N, N ′, N ′′, O, O ′, and O ′′ will be described in detail later.
  • the heel portion 18 and the leg groove portion 17 reversibly deform the entire grounding portion 8b and transmit the drop impact even when the leg portion 8 has the radial dimension described above when the drop impact load is applied. It is preferable to set the following shape so that the direction can be controlled and wrinkles and crushing can be more effectively prevented from occurring at the bottom.
  • the end points of the heel portion 18 and the leg groove portion 17 are N
  • the start points of the heel portion 18 and the leg groove portion 17 are O
  • the heel portion when the container 1 is placed empty A grounding point with 18 grounding planes G is P.
  • the starting point O is located at the boundary between the ground contact portion 8b and the inner peripheral wall 8c.
  • a point on the groove bottom curve NO when the valley depth of the leg groove portion 17 with respect to the heel portion 18 is maximum is Q
  • a point on the heel portion curve NPO is R.
  • N ′ and O ′ be the projections of points N and O onto the ground plane G in the vertical direction, respectively.
  • Points N ′ and O ′ that are symmetrical with respect to the central axis (not shown) of the container 1 are denoted by N ′′ and O ′′, respectively.
  • the leg height, radial length, inner diameter height, and valley depth of the heel portion 18 are defined as follows.
  • the preferred ranges for each are as follows.
  • Line segment NN ′ represents the leg height of the heel portion 18 and is preferably 1 to 3 mm.
  • Line segment N′O ′ represents the length of the heel portion 18 in the radial direction, preferably 3 to 7 mm.
  • Line segment OO ′ represents the height of the inner diameter of the heel portion 18 and is preferably 0.1 to 1.0 mm.
  • Line QR Represents the valley depth of the heel portion 18 and is preferably 0.2 to 1.0 mm.
  • the heel curve NPO is preferably arcuate, and when the arc radius is defined as the tip radius, the tip radius is preferably 2 to 6 mm.
  • the entire ground contact portion 8b can be reversibly deformed effectively.
  • the outer peripheral width b of the heel portion 18 is represented by the outer edge length of the heel portion 18 and is preferably 4 to 72 mm.
  • the heel portion 18 and the leg groove portion 17 are reversibly deformed with the end point N and its vicinity as a fulcrum.
  • production of the wrinkles by the compression of the circumferential direction of the outer peripheral wall 8a is suppressed.
  • the ratio of the outer peripheral width b of the heel portion 18 to the radial length N′O ′ of the heel portion 18 is preferably 0.5 to 20.
  • the bottom surface of the heel portion 18 is preferably formed in a shape that is closer to a square, whereby the load that has acted on the heel portion 18 is more effectively distributed in the radial direction and the circumferential direction. The occurrence of irreversible deformation such as buckling at 18 is suppressed, and reversible deformation of the entire ground contact portion 8b is promoted.
  • the leg groove portion 17 is sandwiched between the side surfaces 181 and 181 of the two adjacent heel portions 18 and 18 and is formed by a curved surface extending in the radial direction.
  • a groove bottom 171 is provided. Both side surfaces 181 and 181 form an angle ⁇ .
  • the angle ⁇ is preferably 80 to 100 °.
  • the width d of the groove bottom 171 of the leg groove is preferably 0.5 to 2.0 mm.
  • connection portion between the groove bottom 171 of the leg groove portion and the side surface 181 of the heel portion and the connection portion between the side surface 181 of the heel portion and the tip end surface 182 are formed of a curved surface.
  • the boundary between the groove bottom 171 of the leg groove and the side surface 181 of the heel portion is preferably an arc surface having a radius of 0.3 to 1.0 mm, and the boundary between the side surface 181 of the heel portion and the tip surface 182 is It is preferably an arc surface having a radius of 0.5 to 2.0 mm.
  • the groove bottom 171 of the leg groove part is formed by a gentle line (curve or straight line) along the radial direction as shown in FIG. 14-2 (C).
  • a gentle line curve or straight line
  • bending deformation is likely to occur between the heel portion 18 and the leg groove portion 17 adjacent to each other, and deformation that is bent in the middle of the leg groove portion 17 is suppressed.
  • the direction can be reversibly deformed.
  • FIG. 15 is a view showing a mode in which a step 30 is provided in the container of the present embodiment.
  • the heel portions 18 and the leg groove portions 17 described above are alternately provided on the ground contact portion 8b of the leg portion 8, but as shown in FIG. It is preferable that a step 30 is provided in the circumferential direction between 8a and the grounding portion 8b.
  • the step 30 is preferably formed of a curved surface.
  • the depth of the step 30 is preferably 0.1 to 1.0 mm.
  • the depth of the step 30 is defined as S at the boundary between the step 30 and the outer peripheral wall 8a, and T at the boundary between the step 30 and the grounding portion 8b, and is perpendicular to the line ST at the midpoint of the line segment ST. Is represented by a distance u from the intersection of the right-angle line and the step 30 to the line segment ST.
  • the leg portion 8 is not limited to the specific example described above, and various modifications can be made.
  • the plurality of heel portions 18 and leg groove portions 17 are respectively formed in 16 pieces, but the heel portion 18 and the leg groove portions 17 are not limited thereto.
  • the heel portion 18 and the leg groove portion 17 are preferably arranged symmetrically in the ground contact portion 8b, and the number thereof is 3 to 72, more preferably 8 to 24, although it depends on the diameter of the movable bottom portion 9. It is desirable to be within the range in order to improve the ground contact performance and drop resistance performance of the legs 8.
  • the cushioning effect of the legs 8 is reduced as compared with the case where the number is within the above range, and the drop resistance may be deteriorated. If the number exceeds 72, the width of the leg groove portion 17 becomes smaller than that in the above range, and molding may be difficult.
  • the shape of the leg groove portion 17 constituted by the side surfaces 181 and 181 of the heel portion and the groove bottom 171 is preferably a substantially trapezoidal shape, but is not limited thereto, and may be, for example, an arc shape or a V shape. Good.
  • the movable bottom portion 9 does not necessarily include the curved portion 13 and the groove portion 14, in other words, as long as the bottom portion has a reduced-pressure absorbing performance
  • the shape may also be That is, from the viewpoint of maximizing the self-supporting property and shape stability of the container, it is preferable that the movable bottom portion 9 includes the curved portion 13 and the groove portion 14, but the self-supporting property and the shape stability of the container are improved.
  • the movable bottom 9 has other shapes.
  • the positional relationship between the curved bottom portion 13 and the groove portion 14, the heel portion 18 and the leg groove portion 17 is preferably as follows. That is, as shown in FIGS. 16 and 17, the bending portion 13 and the groove portion 14 are formed in a uniform shape and radially at equal intervals from the viewpoint of ensuring uniform deformation at the time of filling the contents or at the time of decompression.
  • the arrangement of the groove portions 14 is preferably determined so that the center line of the leg groove portion 17 provided in the leg portion 8 is located in a virtual straight line extending the center line of the groove portion 14, and is the same as the number of the leg groove portions 17.
  • the arrangement of the groove portions 14 is determined so that the groove portions 14 are provided only and the center lines of the leg groove portions 17 are positioned in a virtual straight line extending from the center lines of the groove portions 14.
  • the direction in which the impact of the drop is transmitted can be controlled, and the load due to the impact does not concentrate locally, so that the reduced pressure absorption performance and the drop resistance can be maximized.
  • the design of the container can be improved, the mold can be easily manufactured, and the mold can be easily removed during the manufacture.
  • the container of this invention is not limited to embodiment mentioned above, A various change is possible.
  • 16 curved portions 13, 13... And 16 groove portions 14, 14... are formed in the movable bottom 9, but the present invention is not limited to this.
  • the curved portion 13 and the groove portion 14 are preferably formed symmetrically on the movable bottom portion 9.
  • the number is in the range of 3 to 36 in order to increase the movable region of the movable bottom portion and to exhibit a greater reduced pressure absorption performance. If the number is less than 3, the bending width at the time of decompression may be smaller than that in the above range, and the reduced pressure absorption performance may be reduced. If the number exceeds 36, The width of the groove portions 14, 14... Is smaller than that in the range, and molding may be difficult.
  • the curved portions 13, 13... are not limited to the shape shown in the figure as long as the adjacent grooves 14, 14,... Can be restored, but ensure a movable region that can cope with a large change in internal pressure.
  • a shape protruding downward is preferable as in the specific example shown in the figure.
  • annular recess is formed concentrically from the center of the central portion 12 so as to be recessed inward of the container, and the curved portions 13, 13... And the groove portions 14, 14. It is also possible to divide into two. As a result, the movable bottom portion on the outer edge side of the annular recess is less likely to bend than the movable bottom portion on the inner edge side of the annular recess, so that not only the movable bottom portion is prevented from falling too downward, but also the contents cool down.
  • the fulcrum for the movable bottom to move upward becomes the outer edge of the movable bottom (in the case of providing an annular fulcrum or folded part), the annular fulcrum or the folded part, and the fulcrum moves further upward. It becomes easy.
  • the interval at which the aforementioned annular recesses are arranged concentrically from the center of the central portion 12 is not particularly limited, but an equal interval is suitable.
  • the groove portion 14 may have a portion that is partially inclined downward in the radial direction of the bottom portion as long as the inner edge of the movable bottom portion 9 is formed so as to be positioned above the outer edge in the container axial direction. .
  • the folded portion 15 shown in FIG. 6 is formed in an annular shape. However, when the rigidity is insufficient due to a problem such as wall thickness, the folded portion 15 is changed to the curved portion 13 as shown in FIG. It is preferable not to form in the corresponding part, but to form in the part corresponding to the groove part 14 at intervals. Thereby, it can prevent effectively that the inner edge 15a of the folding
  • the central portion 12 is formed to be substantially flat, but the central portion 12 may protrude upward or downward. As a result, the central portion 12 can be made thinner, and a greater reduced pressure absorption performance can be exhibited.
  • the annular protrusion 11 is not necessarily required, but a diameter generated in accordance with the movement of the movable bottom portion 9 is formed by forming the annular protrusion at a portion where the inner edge of the movable bottom portion 9 and the outer edge of the central portion 12 are in contact with each other. It becomes possible to absorb the deflection of the direction.
  • the outer edge 9a of the movable bottom portion 9 forms a circle, but the shape of the outer edge 9a of the movable bottom portion is not limited to this. That is, the outer edge 9a of the movable bottom portion may be formed by a plurality of straight lines and / or curved lines, and specifically, appropriately changed to a polygonal shape or a petal shape depending on the shape and width of the curved portion and the groove portion. can do.
  • the outer edge 9a has a polygonal shape
  • the outer edge 9a serves as a starting point when the movable bottom portion 9 is deformed in the circumferential direction at the time of decompression, and suppresses generation of wrinkles at the outer edge 9a.
  • the movable bottom portion 9 has an outer diameter of 85 to 95% of the diameter of the grounding portion at the bottom portion, in order to secure the self-supporting property of the container and to ensure the maximum vacuum absorption performance. If the outer diameter of the movable bottom portion 9 is too large, the angle between the movable bottom portion 9 and the inner peripheral wall 8c of the leg portion may become steep and it may be difficult to mold.
  • the central portion 12 preferably has an outer diameter of 20 to 35% of the outer diameter of the movable bottom portion 9.
  • the circle connecting the tops of the curved portions 13, 13... Has a diameter of 60 to 90% of the outer diameter of the movable bottom portion 9. If the size of the circle is less than 60% of the outer diameter of the movable bottom 9, the bending width at the time of depressurization becomes smaller than that in the above range, and the depressurization absorption performance may be lowered. If it exceeds 90% of the outer diameter of the bottom 9, the angle with the inner peripheral wall becomes steep as compared with the case where it is in the above range, and there is a possibility that molding becomes difficult.
  • the thickness of the bottom is preferably equal to or less than the thickness of the thinnest portion of the trunk, and is 0.15 to 0 depending on the diameter of the movable bottom 9. It is desirable that the thickness is reduced to 0.4 mm, preferably 0.2 to 0.3 mm.
  • the crystallinity of at least the inner peripheral wall 8c of the leg 8 is preferably 20 to 50%, more preferably 30 to 50%. preferable.
  • the container of the present invention can be molded by a conventionally known method for producing a synthetic resin container as long as it has the bottom shape described above, but is preferably molded by a stretch blow molding method.
  • a stretch blow molding method In order to allow the movable bottom 9 to move up and down due to changes in the internal pressure of the container, it is important that the movable bottom 9 is thin.
  • stretch blow molding enables the movable bottom 9 to be thin.
  • a preform made of a thermoplastic polyester resin such as polyethylene terephthalate is prepared and molded using this preform and a bottom mold capable of shaping the bottom shape described above into the container bottom.
  • a bottom mold capable of shaping the bottom shape described above into the container bottom.
  • the bottom mold preferably has a rough surface. Accordingly, even in the molded container, the portions (such as the surface of the movable bottom portion 9 and the surface of the inner peripheral wall 8c of the leg portion 8) that are in contact with the bottom mold are formed to be rough.
  • thermoplastic polyester resins conventionally used for stretch blow molding particularly ethylene terephthalate thermoplastic polyesters are advantageously used.
  • other polyesters such as polybutylene terephthalate and polyethylene naphthalate are used.
  • a blend of a polyester resin and a polycarbonate, an arylate resin, or the like can be used.
  • the container of the present invention may have not only a single layer structure of the thermoplastic polyester resin, but also a multilayer structure of the thermoplastic polyester resin layer and a gas barrier resin or oxygen-absorbing resin layer. .
  • the mouth portion of the preform used is thermally crystallized in order to provide heat resistance that can withstand hot filling at high temperatures.
  • Stretch blow molding conditions can be molded under conventionally known conditions as long as a bottom mold capable of imparting the above-described shape to the bottom can be used, and can be molded by two-stage blow molding as well as single-stage blow molding. It is preferable to perform heat setting from the viewpoint of heat resistance.
  • the container of the present invention can be produced by appropriately selecting a conventionally known method.
  • the container of the present invention is made of polyester and an annular support having a high degree of crystallinity is provided at the bottom, it is manufactured by single-stage blow molding, which is a conventionally known biaxial stretch blow molding, from the viewpoint of manufacturing with high productivity. It is preferable to do. This will be described in detail below.
  • a conventionally known polyester preform can be used as the preform used for molding.
  • a bottomed preform made of an ethylene terephthalate-based polyester resin which has been conventionally used for biaxial stretch blow molding can be used.
  • the ethylene terephthalate-based polyester resin is such that terephthalic acid accounts for 50 mol% or more, particularly 80 mol% or more of the dicarboxylic acid component, and ethylene glycol is 50 mol% or more, particularly 80 mol, of the diol component. It is a polyester occupying a ratio of more than%. Examples of the remaining components include components conventionally used in polyester resins.
  • aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid
  • alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid
  • aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid and dodecanedioic acid
  • a dicarboxylic acid component consisting of one or a combination of two or more of propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexylene glycol, cyclohexanedimethanol, ethylene oxide adduct of bisphenol A, etc.
  • the diol component which consists of 1 type (s) or 2 or more types can be mentioned.
  • the polyester resin should have at least a molecular weight sufficient to form a film.
  • an injection grade or extrusion grade is used depending on the application.
  • the intrinsic viscosity (IV) is generally in the range of 0.6 to 1.4 dL / g, particularly 0.63 to 1.3 dL / g.
  • the bottom mold 24 is set so that the crystallinity of the annular support is 30% or more. It is important that the temperature of the portion corresponding to the annular support is adjusted to a temperature of 130 to 160 ° C.
  • FIG. 12 is a diagram for explaining a biaxial stretching blow process for a polyester container having an annular support.
  • the molding die denoted as 21 as a whole is composed of a core die 22 for fixing the mouth portion of the preform 20, body die 23 and 23 composed of a pair of split dies, and a bottom die 24.
  • the preform is heated to the stretching temperature.
  • the body molds 23 and 23 form portions corresponding to the shoulder 3 and the body 4 of the container shown in FIG. It has a surface that is adjacent to the mold 24 and is continuous with the surface of the bottom mold 24 that forms a portion corresponding to the ground contact portion 8b together with the outer peripheral wall 8a.
  • the bottom mold 24 is an outer bottom mold 24a that forms an annular support at the bottom of the polyester container, and is located concentrically with the outer bottom mold 24a inside the outer bottom mold 24a. It consists of a combination with the inner bottom mold 24b to be formed. These are integrally movable in the axial direction.
  • the surface of the outer bottom mold 24a is adjusted to a temperature of 130 to 160 ° C. so that the annular support 16 can be heat-set by contacting with the annular support 16 so that its crystallinity can be 30% or more.
  • the inner bottom mold 24b may be configured as a bottom mold 24 integrated with the outer bottom mold 24a, and the bottom mold 24 may be adjusted to a temperature of 130 to 160 ° C. The mold may be adjusted to different temperatures.
  • the crystallinity does not become 30% or more.
  • the temperature of the bottom mold 24 is higher than 160 ° C., the crystallinity is higher than 30%, but the transparency of the container is lowered, the durability of the mold is lowered, and the production efficiency is lowered.
  • FIG. 12 (A) is a diagram showing a state before the bottom mold 24 is moved.
  • the bottom mold 24 is in a position where portions corresponding to the inner peripheral wall 8c of the leg portion and the movable bottom portion 9 are extended below the grounding portion position 23a of the trunk mold.
  • the outer bottom mold 24a that forms the annular support 16 of the container be lower than the ground contact portion position 23a by the length of the inner peripheral wall 8c.
  • the preform 20 installed in the molding die is stretched and stretched in the axial direction by the stretch rod 25, and blow air is introduced into the interior to be expanded and stretched in the circumferential direction.
  • the container being molded in this way contacts the surface of the body part mold 23 to form a body wall and extends downward from the grounding part position 23a of the body part mold.
  • the bottom mold 24 is raised in the container axial direction while flowing blow air into the container, so that the container being stretched and molded is completely attached to the bottom mold 24.
  • the portion that contacts and corresponds to the annular support portion 16 comes into contact with the outer bottom mold 24a that is temperature-controlled at the above temperature, and is heat set.
  • a portion corresponding to the inner peripheral wall 8c is formed, and a portion corresponding to the movable bottom portion 9 is formed in a raised bottom shape that rises inward from the grounding portion 8b.
  • the mold temperature of the body mold 23 is adjusted to the range of 125 to 160 ° C.
  • the inner bottom mold 24 b is an integral configuration as the bottom mold 24 and the temperature is adjusted.
  • the time for the container to contact the mold is preferably in the range of 1 to 3 seconds.
  • the movable bottom portion 9 is sufficiently stretched and thinned by biaxial stretch blow molding in order to exhibit the reduced pressure absorption performance by the bottom portion. This makes it possible to easily move up and down due to a change in the internal pressure of the container, starting from the annular support 16 to which crystallization is promoted and rigidity is given.
  • the preferred manufacturing method is not limited to the above-described embodiment, and various modifications can be made.
  • the bottom mold 24 is raised after the portion to be the annular support 16 is extended below the grounding portion position 23 a of the body mold 23, the bottom mold 24 is connected to the annular support 16 and the movable bottom 9. Since it rises while contacting, it becomes possible to form the movable bottom 9 and heat set the annular support 16 and the movable bottom 9.
  • the part which should become the annular support part 16 of the container being formed contacts the outer mold 24a earlier, the contact time with the outer bottom mold 24a of the part which becomes the annular support part 16 becomes longer, and the annular support part 16 Crystallization can be promoted, and the crystallinity of the annular support 16 can be reliably increased (30% or more).
  • the outer bottom mold 24a shown in FIG. 12 is shaped to protrude further upward than the surface of the inner bottom mold 24b. Others may be formed in the same manner. Also in this case, the annular support 16 is maintained by a method of maintaining the temperature of the outer bottom mold 24a at a higher temperature than that of the inner bottom mold 24b, or a method of increasing the contact time between the outer bottom mold 24a and the portion to be the annular support 16. Crystallization can be promoted.
  • polyester container having an annular branch having a crystallinity of 30% or more will be described in the following experimental example.
  • the molding method and measurement method of the polyester container in each experimental example are as follows.
  • PET polyethylene terephthalate
  • the molded PET bottle was filled and sealed with water heated to 87 degrees. When the leg part of the PET bottle falls inward, the movable bottom part falls below the grounding part. After sealing and cooling, whether the height of the movable bottom part partially falls below the grounding part was visually evaluated.
  • the evaluation criteria are as follows. The height of the movable bottom is above the ground contact: Good The height of the movable bottom is below the ground contact: Evil
  • the bottom mold temperature is higher than 160 ° C.
  • the crystallinity is higher than 30%, but the transparency of the container is lowered, the durability of the mold is lowered, and the production efficiency is lowered. End up. Therefore, the bottom mold temperature is preferably 130 to 160 ° C.
  • the vacuum absorption performance is imparted to the bottom that does not affect the container appearance, it can be effectively used as a container for seasonings and the like filled by hot filling.
  • the present invention can be applied to contents filled at a relatively high temperature.

Abstract

The purpose of the present invention is to provide a synthetic resin container having excellent decompression absorption performance, having a bottom structure capable of withstanding internal pressure changes associated with hot-packing and subsequent decompression absorption, and having excellent freestanding capability in the container, and excellent shape stability in the bottom or the container. According to the present invention, provided is a synthetic resin container having decompression absorption performance in the bottom, wherein the synthetic resin container is characterized in that: a leg part comprising an outer peripheral wall, a ground-contacting part, and an inner peripheral wall is formed at the bottom thereof; a moveable bottom is formed farther to the inside than the inner peripheral wall of the leg part; and curved parts and grooved parts are provided between the outer edge of the moveable bottom and an inner edge in contact with a center part.

Description

合成樹脂製容器Plastic container
 本発明は、底部に減圧吸収性能を有する合成樹脂製容器に関し、より詳細には、熱間充填及びその後の減圧吸収に伴う内圧変化に対応可能な底部構造を有すると共に、容器の自立性及び底部或いは容器の形状安定性にも優れた合成樹脂製容器に関する。 The present invention relates to a synthetic resin container having a vacuum absorption performance at the bottom, and more specifically, has a bottom structure that can cope with a change in internal pressure associated with hot filling and subsequent vacuum absorption, as well as the self-supporting property of the container and the bottom. Or it is related with the container made from a synthetic resin excellent also in the shape stability of a container.
 合成樹脂製の容器は、軽量性及び耐衝撃性に優れていることから、各種液体に対する包装容器として広く使用されている。特にポリエチレンテレフタレート(PET)を延伸ブロー成形して成る延伸成形容器は、透明性、ガスバリヤー性、軽量性、耐衝撃性、適度な剛性等の組合せを有し、液体内容物を収容させるための包装容器として広く使用されている。 Synthetic resin containers are widely used as packaging containers for various liquids because they are excellent in light weight and impact resistance. In particular, a stretch-molded container formed by stretch-blow-molding polyethylene terephthalate (PET) has a combination of transparency, gas barrier properties, light weight, impact resistance, appropriate rigidity, etc., and is used for containing liquid contents. Widely used as a packaging container.
 内容物の保存性を高めるために内容物を熱間充填することは、ポリエステル等の合成樹脂製容器において広く行われているが、冷却による内容物の容積収縮により、合成樹脂製容器においては減圧変形が必ず生じる。これを防止するために、底部に減圧吸収性能を付与した合成樹脂製容器が種々提案されている(特許文献1~3)。 Hot filling of the contents to enhance the shelf life of the contents is widely used in synthetic resin containers such as polyester, but due to the volumetric shrinkage of the contents due to cooling, the pressure is reduced in the synthetic resin containers. Deformation always occurs. In order to prevent this, various synthetic resin containers having a vacuum absorbing performance at the bottom have been proposed (Patent Documents 1 to 3).
特開2012-91830号公報JP 2012-91830 A 特許第5408501号公報Japanese Patent No. 5408501 特開2013-144560号公報JP 2013-144560 A
 上記特許文献1~3に記載された底部形状を有する合成樹脂製容器はいずれも、底部において上げ底状の底面が減圧時に容器の内部方向へ変形することにより減圧性能を発揮するものであり、より優れた減圧吸収性能を発揮させるため、前記底面の可動量を大きくする等の種々の改良が行われている。 The synthetic resin containers having the bottom shape described in Patent Documents 1 to 3 above all exhibit a pressure reducing performance by raising the bottom-like bottom surface toward the inside of the container at the time of pressure reduction. Various improvements, such as increasing the amount of movement of the bottom surface, have been made in order to exhibit excellent vacuum absorption performance.
 しかしながら、このような容器内部方向へ大きく変形する構造を有する底部においては、熱間充填により内容物を充填し、かかる上げ底状の底面に内容物の重さと熱が作用すると、上げ底状の底面が容器の接地面よりも下方に突出してしまい、容器の自立性を損なうおそれがある。 However, in such a bottom portion having a structure that is greatly deformed toward the inside of the container, when the contents are filled by hot filling and the weight and heat of the contents act on the raised bottom surface, the raised bottom surface becomes The container may protrude downward from the grounding surface of the container, which may impair the independence of the container.
 また、充填後に内圧が変化して容器内が減圧になり底面が容器の内部方向へ変形する際に、底面の肉厚分布や、充填条件、周辺環境などに起因して、容器が所望の変形とならずに不均一に変形して、底部或いは容器の形状安定性を損なうおそれがある。 In addition, when the internal pressure changes after filling and the inside of the container is depressurized and the bottom surface is deformed toward the inside of the container, the container is deformed as desired due to the thickness distribution on the bottom surface, filling conditions, surrounding environment, etc. Otherwise, it may deform non-uniformly and impair the shape stability of the bottom or container.
 従って本発明の目的は、優れた減圧吸収性能を有すると共に、熱間充填及びその後の減圧吸収に伴う内圧変化にも対応可能な底部構造を有し、更に、容器の自立性および底部或いは容器の形状安定性に優れている合成樹脂製容器を提供することである。 Accordingly, an object of the present invention is to have a bottom structure that has excellent decompression absorption performance and can cope with a change in internal pressure accompanying hot filling and subsequent decompression absorption. The object is to provide a synthetic resin container excellent in shape stability.
 本発明によれば、底部が減圧吸収性能を有する合成樹脂製容器であって、前記底部には、胴部から連なる外周壁、接地部及び内周壁から成る脚部が形成され、該脚部の内周壁よりも内側に、前記接地部よりも上方に位置する可動底部が形成されており、前記可動底部の外縁及び中央部と接する内縁間において、径方向にかけて突出し、周方向に複数形成された湾曲部、及び該湾曲部間に、前記可動底部の内縁を外縁より容器軸方向において上方に位置するように接続する溝部を備えることを特徴とする合成樹脂製容器が提供される。 According to the present invention, the bottom part is a synthetic resin container having a reduced pressure absorption performance, and the bottom part is formed with an outer peripheral wall continuous from the trunk part, a leg part including an earthing part and an inner peripheral wall. A movable bottom portion located above the grounding portion is formed on the inner side of the inner peripheral wall. Between the inner edge contacting the outer edge and the central portion of the movable bottom portion, a plurality of protrusions project in the radial direction and are formed in the circumferential direction. A synthetic resin container is provided that includes a curved portion and a groove portion between the curved portions that connects the inner edge of the movable bottom portion so as to be positioned above the outer edge in the container axial direction.
 本発明の合成樹脂製容器においては、
1.前記溝部が、放射状に形成されていること、
2.前記溝部が、下方に突出する湾曲底部を有していること、
3.前記溝部の深さが、前記可動底部の内外縁の間の中心位置において0.1~3.0mmであること、
4.前記湾曲底部の水平方向に対する傾斜角度が、前記可動底部の内外縁の間の中心位置において2~15°であること、
5.前記湾曲底部の曲率半径Rが、30~300mmであること、
6.前記溝部の幅が、前記可動底部の内外縁の間の中心位置において、前記内外縁における幅よりも幅広又は幅狭であること、
7.前記可動底部の内縁と中央部外縁の境界に、下方に突出する環状突起が形成されていること、
8.前記脚部の内周壁の上端に折り返し部が形成され、前記折り返し部の内縁が可動底部の外縁の位置と一致して連接されていること、
9.前記中央部が、上方又は下方に突出していること、
10.前記合成樹脂がポリエステルであり、前記内周壁上端と可動底部の外縁が環状支部でつながれており、該環状支部の密度法による結晶化度が30%以上であること、
11.前記接地部に、複数のヒール部と複数の脚溝部が周方向に交互に設けられていること、
12.前記脚部の外周壁と接地部との間に段差が形成されていること、
13.前記脚溝部の中心線が、前記可動底部の溝部の中心線を延長した仮想直線上に位置すること、
14.前記脚溝部の数と、前記可動底部の溝部の数が同じであること、
が好適である。
In the synthetic resin container of the present invention,
1. The grooves are formed radially;
2. The groove has a curved bottom portion projecting downward;
3. The depth of the groove is 0.1 to 3.0 mm at the center position between the inner and outer edges of the movable bottom,
4). The angle of inclination of the curved bottom with respect to the horizontal direction is 2 to 15 ° at the center position between the inner and outer edges of the movable bottom;
5. The curvature radius R of the curved bottom is 30 to 300 mm;
6). The width of the groove is wider or narrower than the width of the inner and outer edges at the center position between the inner and outer edges of the movable bottom;
7). An annular protrusion protruding downward is formed at the boundary between the inner edge of the movable bottom part and the outer edge of the central part,
8). A folded portion is formed at the upper end of the inner peripheral wall of the leg portion, and the inner edge of the folded portion is connected in line with the position of the outer edge of the movable bottom portion;
9. The central portion protrudes upward or downward;
10. The synthetic resin is polyester, the outer peripheral wall upper end and the outer edge of the movable bottom portion are connected by an annular support, and the crystallinity by the density method of the annular support is 30% or more,
11. A plurality of heel portions and a plurality of leg groove portions are alternately provided in the circumferential direction on the grounding portion;
12 A step is formed between the outer peripheral wall of the leg and the grounding portion;
13 The center line of the leg groove part is located on an imaginary straight line extending from the center line of the groove part of the movable bottom part;
14 The number of the leg groove portions and the number of the groove portions of the movable bottom portion are the same;
Is preferred.
 また、本発明によれば、底部に減圧吸収性能を有するポリエステル容器であって、前記底部には、胴部から連なる外周壁、接地部及び内周壁から成る脚部が形成され、該脚部の内周壁よりも内側に、前記接地部よりも上方に位置する可動底部が形成されており、
 前記内周壁上端と可動底部の外縁をつなぐ環状支部の密度法による結晶化度が30%以上であることを特徴とするポリエステル容器が提供される。
Further, according to the present invention, there is provided a polyester container having a vacuum absorbing performance at the bottom, wherein the bottom is formed with an outer peripheral wall continuous from the trunk, a grounding portion and an inner peripheral wall. A movable bottom portion is formed on the inner side of the inner peripheral wall and positioned above the grounding portion.
There is provided a polyester container characterized in that the annular support connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom has a crystallinity of 30% or more by density method.
 更にまた、本発明によれば、底部に、胴部から連なる外周壁、接地部及び内周壁から成る脚部が形成され、該脚部の内周壁よりも内側に、前記接地部よりも上方に位置する可動底部、および、前記内周壁上端と可動底部の外縁をつなぐ環状支部が形成されて成るポリエステル容器の製造方法であって、
 プリフォームを胴部金型及び底部金型を用いて二軸延伸ブロー成形するに際して、前記底部金型の環状支部に対応する部分が130~160℃の温度に調整されていることを特徴とするポリエステル容器の製造方法が提供される。
Furthermore, according to the present invention, the bottom part is formed with an outer peripheral wall continuous from the body part, a leg part made up of a grounding part and an inner peripheral wall, inside the inner peripheral wall of the leg part and above the grounding part. A method for producing a polyester container, comprising: a movable bottom portion positioned; and an annular support portion connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom portion,
When the preform is biaxially stretch blow-molded using the body mold and the bottom mold, the portion corresponding to the annular support portion of the bottom mold is adjusted to a temperature of 130 to 160 ° C. A method of manufacturing a polyester container is provided.
 本発明の合成樹脂製容器(本明細書では「本発明の容器」と略称することがある。)においては、容器底部に形成された脚部の内側に、径方向にかけて突出し、周方向に複数形成された湾曲部と、この湾曲部間に存在し且つ中央部に向かって上方傾斜する溝部とから成る可動底部が形成されている。このような構成によれば、可動底部と接地面の間隔(高さ距離)を大きくとることができ、熱間充填において内容物の熱または自重がかかって可動底部が下方に突出する際に、可動底部が接地面を超えて突出する事態を防ぐことができる。 In the synthetic resin container of the present invention (in this specification, it may be abbreviated as “container of the present invention”), it protrudes in the radial direction on the inner side of the leg formed on the bottom of the container, and plural in the circumferential direction. A movable bottom portion is formed that includes the formed curved portion and a groove portion that is present between the curved portions and is inclined upward toward the center portion. According to such a configuration, it is possible to increase the distance (height distance) between the movable bottom portion and the grounding surface, and when the movable bottom portion protrudes downward due to the heat or weight of the contents in hot filling, It is possible to prevent the movable bottom from protruding beyond the ground plane.
 また、上方傾斜する溝部においては、熱間充填等により内容物の重みと熱がかかると、底部径方向に生じる撓みが吸収される一方で、元の形状(上方傾斜状態)に戻ろうとする応力が作用する。そのため、内容物が冷えて容器内が減圧になると、前述の作用を利用して可動底部全体がスムーズに上方に移動する。 In addition, when the weight of the contents and heat are applied by hot filling or the like in the upwardly inclined groove portion, the bending that occurs in the radial direction of the bottom portion is absorbed, while the stress that tries to return to the original shape (upward inclined state) Act. Therefore, when the contents are cooled and the inside of the container is depressurized, the entire movable bottom portion moves smoothly upward using the above-described action.
 更に、本発明の容器において減圧吸収に寄与しない脚部が底部に形成されている場合には、上述の通り可動底部の下方への変形量が制御されていることと相俟って、内圧変化が生じても容器の高さを常に一定に維持することが可能であると共に、容器の自立性が維持され、搬送性にも優れている。 Furthermore, in the container of the present invention, when the leg portion that does not contribute to the vacuum absorption is formed at the bottom portion, the internal pressure change is coupled with the fact that the amount of deformation of the movable bottom portion is controlled as described above. Even if this occurs, the height of the container can be kept constant at all times, the independence of the container is maintained, and the transportability is excellent.
 また、本発明の容器がポリエステル製であり、結晶化度の高い環状支部を有している場合には、熱間充填において内容物の熱または自重がかかって可動底部が下方に突出する際に、内周壁の容器径方向内方への撓みがより有効に防止され、可動底部が接地部を超えて突出する事態をより確実に防ぐことができる。底部の脚部の内周壁と可動底部の外縁をつなぐ環状支部の結晶化度が30%以上と高く、剛性を有しているからである。 In addition, when the container of the present invention is made of polyester and has an annular support having a high degree of crystallinity, the heat or weight of the contents is applied during hot filling and the movable bottom protrudes downward. Further, it is possible to more effectively prevent the inner peripheral wall from being bent inward in the container radial direction, and more reliably prevent the movable bottom portion from protruding beyond the ground contact portion. This is because the degree of crystallinity of the annular support portion connecting the inner peripheral wall of the leg portion of the bottom portion and the outer edge of the movable bottom portion is as high as 30% or more and has rigidity.
 更にまた、上述の環状支部を有するポリエステル容器の製造方法においては、通常の一段ブロー成形で、脚部の内周壁と可動底部の外縁をつなぐ環状支部の結晶化度を30%以上とすることで、かかるポリエステル容器を生産性良く製造することができる。 Furthermore, in the above-described method for producing a polyester container having an annular support, the crystallinity of the annular support connecting the inner peripheral wall of the leg and the outer edge of the movable bottom is set to 30% or more by ordinary one-stage blow molding. Such a polyester container can be produced with high productivity.
本発明の容器の一例を示す側面図である。It is a side view which shows an example of the container of this invention. 図1に示した容器の底面図(A)及び一部断面概略図(B)である。It is the bottom view (A) and partial cross section schematic (B) of the container shown in FIG. 図1に示した容器の可動挙動を説明するための底部の一部拡大断面図である。(a)は、図2(A)におけるa-a断面図であり、(b)は、図2(A)におけるb-b断面図である。It is a partially expanded sectional view of the bottom part for demonstrating the movable behavior of the container shown in FIG. 2A is a cross-sectional view taken along the line aa in FIG. 2A, and FIG. 2B is a cross-sectional view taken along the line bb in FIG. 図1に示した容器の底部の挙動を説明するための一部断面図であり、(A)は空の状態、(B)は熱間充填直後の状態、(C)は熱間充填後減圧状態、(D)は(A)~(C)を重ね合わせたものをそれぞれ示す。It is a partial cross section figure for demonstrating the behavior of the bottom part of the container shown in FIG. 1, (A) is an empty state, (B) is a state immediately after hot filling, (C) is decompression after hot filling. The state (D) shows the superposition of (A) to (C). 折り返し部を有する場合の本発明の容器の一例を示す側面図である。It is a side view which shows an example of the container of this invention in case it has a folding | turning part. 図5に示した容器の底面図(A)及び一部断面概略図(B)である。It is the bottom view (A) and partial cross-sectional schematic (B) of the container shown in FIG. 図5に示した容器の可動挙動を説明するための底部の一部拡大断面図である。(a)は、図6(A)におけるa-a断面図であり、(b)は、図6(A)におけるb-b断面図である。It is a partially expanded sectional view of the bottom part for demonstrating the movable behavior of the container shown in FIG. FIG. 6A is a sectional view taken along the line aa in FIG. 6A, and FIG. 6B is a sectional view taken along the line bb in FIG. 図5に示した容器の他の一例を示す底面図である。It is a bottom view which shows another example of the container shown in FIG. 環状支部を有する場合の本発明の容器の一例を示す側面図である。It is a side view which shows an example of the container of this invention in case it has an annular support part. 図9に示した容器の底面図(A)及び一部断面概略図(B)である。It is the bottom view (A) and partial cross-sectional schematic (B) of the container shown in FIG. 環状支部を有する場合の本発明の容器の他の一例を示す底面図(A)及び一部断概略面図(B)である。It is the bottom view (A) and partial cutaway schematic view (B) which show another example of the container of this invention in the case of having an annular support part. 環状支部を有する場合の本発明の容器の好適な製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the suitable manufacturing method of the container of this invention in case it has an annular support part. 脚部にナーリングが設けられている場合の本発明の容器の一例を示す側面図である。It is a side view which shows an example of the container of this invention in case a knurling is provided in the leg part. 図13の容器の底部を説明する図である。(A)は底面図であり、(B)は一部断面概略図である。It is a figure explaining the bottom part of the container of FIG. (A) is a bottom view and (B) is a partial cross-sectional schematic view. 図13の容器の底部を説明する図である。(C)は図14-1(B)で示された脚部の一部拡大図であり、(D)は図14-1(A)におけるD-D矢視拡大図である。It is a figure explaining the bottom part of the container of FIG. (C) is a partially enlarged view of the leg portion shown in FIG. 14-1 (B), and (D) is an enlarged view taken along arrow DD in FIG. 14-1 (A). 本発明の容器において脚部にナーリングおよび段差30を設けた態様を示す図である。It is a figure which shows the aspect which provided the knurling and the level | step difference 30 in the leg part in the container of this invention. 脚部にナーリングが設けられている場合の本発明の容器の別の実施形態を示す側面図である。It is a side view which shows another embodiment of the container of this invention in case a knurling is provided in the leg part. 図16に示した容器の底部を説明する図である。(A)は底面図であり、(B)は一部断面概略図である。It is a figure explaining the bottom part of the container shown in FIG. (A) is a bottom view and (B) is a partial cross-sectional schematic view.
 本発明の容器を添付図面に示す具体例に基づいて説明する。図1に示す本発明の容器1は、口部2、肩部3、胴部4及び底部5から成る。胴部4は、肩部3から連なる上部胴部4a、底部に連なる下部胴部4b、および、上部胴部4aと下部胴部4bとの間に位置する中央胴部4cから成る。 The container of the present invention will be described based on specific examples shown in the accompanying drawings. A container 1 of the present invention shown in FIG. 1 includes a mouth portion 2, a shoulder portion 3, a trunk portion 4 and a bottom portion 5. The body part 4 includes an upper body part 4a continuous from the shoulder part 3, a lower body part 4b continuous from the bottom part, and a central body part 4c located between the upper body part 4a and the lower body part 4b.
 中央胴部4cには、周方向リブ6,6,6が平行且つ等間隔に3本形成され、胴部の機械的強度及び内圧変形に対する保形性が確保されている。また、リブ6の部分を除いた外周面が軸方向にストレートに形成されており、ラベル(図示せず)を胴部に一周巻きつけることも可能である。 The central body 4c has three circumferential ribs 6, 6, and 6 formed in parallel and at equal intervals to ensure the mechanical strength of the body and the shape retaining property against internal pressure deformation. Moreover, the outer peripheral surface except the rib 6 part is formed straight in the axial direction, and a label (not shown) can be wound around the body part.
 図1に示す具体例では、下部胴部4bと底部5の間にもリブ7が形成されており、このリブ7により胴部4と底部5とを明確に区画しているが、本発明では、胴部4と底部5とは必ずしも明確に区画されていなくてもよい。 In the specific example shown in FIG. 1, ribs 7 are also formed between the lower body 4b and the bottom 5, and the body 4 and the bottom 5 are clearly defined by the ribs 7. The body 4 and the bottom 5 do not necessarily have to be clearly defined.
 底部5は、大まかに言って、環状の脚部8、この脚部8の内側に位置する可動底部9および可動底部9の内側に位置する中央部12から成る。脚部8は、リブ7より下方に位置し、胴部4から連なる外周壁8a、接地部8b、および接地部8bから上方に立ち上がりを形成する内周壁8cから成る。可動底部9は、接地部8bよりも上方に位置し、且つ、脚部8の内周壁8cの上端と連接している。 Roughly speaking, the bottom portion 5 includes an annular leg portion 8, a movable bottom portion 9 located inside the leg portion 8, and a central portion 12 located inside the movable bottom portion 9. The leg portion 8 is located below the rib 7 and includes an outer peripheral wall 8a continuous from the trunk portion 4, a grounding portion 8b, and an inner peripheral wall 8c that forms a rising upward from the grounding portion 8b. The movable bottom portion 9 is located above the grounding portion 8 b and is connected to the upper end of the inner peripheral wall 8 c of the leg portion 8.
 底部の中央には、下方に突出する環状突起11によって区画されたほぼ平坦な中央部12が形成されている。この中央部12は、接地部8bで囲まれた領域において最も容器軸方向上方に位置している。尚、環状突起11は、必ずしも形成されていなくてもよいが、本実施形態のように可動底部9の内縁と中央部12の外縁の境界に形成されることにより、可動底部9の移動に応じて生じる径方向の撓みを吸収することが可能となる。 At the center of the bottom portion, a substantially flat central portion 12 defined by an annular protrusion 11 protruding downward is formed. The central portion 12 is located at the uppermost position in the container axis direction in the region surrounded by the grounding portion 8b. Although the annular protrusion 11 is not necessarily formed, the annular protrusion 11 is formed at the boundary between the inner edge of the movable bottom portion 9 and the outer edge of the central portion 12 as in the present embodiment, so that the movement of the movable bottom portion 9 can be performed. It is possible to absorb the bending in the radial direction.
<湾曲部、溝部>
 図2(A)から明らかなように、可動底部9の外縁と中央部12に接する内縁(環状突起11が形成される場合は、環状突起11の外縁)との間には、径方向にかけて下方に突出した湾曲部13が周方向に複数個(図2では放射状に16個)、等間隔に形成されていると共に、隣接する湾曲部13,13の間には、可動底部9の内縁(環状突起11の外縁)を可動底部9の外縁より容器軸方向において上方に位置するように接続する溝部14が複数個(図2では16個)、等間隔に形成されている。これらの湾曲部13及び溝部14は、図に示すように、均一形状であり且つ放射状に等間隔で形成されていることが、内容物の充填時或いは減圧時における均一な変形を確保する上で望ましい。
<Curved part, groove part>
As is clear from FIG. 2A, there is a gap between the outer edge of the movable bottom portion 9 and the inner edge in contact with the central portion 12 (the outer edge of the annular protrusion 11 when the annular protrusion 11 is formed) in the radial direction. A plurality of curved portions 13 projecting in the circumferential direction (16 in the radial direction in FIG. 2) are formed at equal intervals, and between the adjacent curved portions 13, 13, the inner edge (annular shape) of the movable bottom portion 9 is formed. A plurality of groove portions 14 (16 in FIG. 2) are formed at equal intervals so as to connect the outer edge of the protrusion 11 so as to be positioned above the outer edge of the movable bottom portion 9 in the container axis direction. As shown in the drawing, the curved portion 13 and the groove portion 14 are formed in a uniform shape and at equal intervals in order to ensure uniform deformation during filling of the contents or during decompression. desirable.
 溝部14は、図2から明らかなように、下方に突出する湾曲底部14aを有するとともに、可動底部9の外縁から中央部12に向かって上方に傾斜している。即ち、溝部14は、可動底部9の外縁よりも中央部12と接する内縁(環状突起11の外縁)のほうが容器軸方向の上方に位置するように形成されている。 As is clear from FIG. 2, the groove portion 14 has a curved bottom portion 14 a protruding downward, and is inclined upward from the outer edge of the movable bottom portion 9 toward the central portion 12. That is, the groove portion 14 is formed such that the inner edge (outer edge of the annular protrusion 11) in contact with the center portion 12 is positioned higher in the container axial direction than the outer edge of the movable bottom portion 9.
 溝部14は、内容物の重さがかかった場合或いは熱間充填等によって更に熱が作用した場合に、底部径方向に生じる撓みを吸収するように、また、減圧時に元の形状(上方傾斜状態)にスムーズに復元する形状復元作用を発揮することができるように、溝の深さ、幅、湾曲底部の傾斜角度、曲率半径等を設定することが好適である。 The groove 14 absorbs the bending that occurs in the bottom radial direction when the contents are heavy or when heat is applied due to hot filling or the like. It is preferable to set the depth and width of the groove, the inclination angle of the curved bottom, the radius of curvature, and the like so that the shape restoring action can be exerted smoothly.
 溝部の深さDは、図3(a)に示すように、可動底部9の内外縁(図に示す具体例では、前記内縁の位置は環状突起11の外縁)の間の中心位置M1付近で最も深くなっていることが好ましい。深さDは0.1~3.0mmの範囲にあることが好適である。また、溝部の径方向においてその深さDを適宜調整することもできる。尚、中心位置M1は、具体的には、図3(a)に示す通り、溝部14において、可動底部9の内外縁を結ぶ線分X1をひき、線分X1の中点を通り線分X1に対して垂直な直線Y1と溝部の湾曲底部14aとが交わる点を意味する。深さDは、図3(a)(b)を参照し、線分X1と点M1の間の距離D1と、線分X2と点M2の間の距離D2の差、即ちD2-D1で表される。線分X2は、湾曲部13において、可動底部9の内外縁を結ぶ線分であり、M2は、線分X2の中点を通り線分X2に対して垂直な直線Y2と湾曲部13とが交わる点である。 As shown in FIG. 3A, the depth D of the groove portion is near the center position M1 between the inner and outer edges of the movable bottom 9 (in the specific example shown in the figure, the position of the inner edge is the outer edge of the annular protrusion 11). It is preferable that it is deepest. The depth D is preferably in the range of 0.1 to 3.0 mm. Moreover, the depth D can also be adjusted suitably in the radial direction of a groove part. Specifically, as shown in FIG. 3A, the center position M1 is drawn by a line segment X1 connecting the inner and outer edges of the movable bottom 9 in the groove portion 14, and passes through the midpoint of the line segment X1. Means a point where a straight line Y1 perpendicular to the crossing of the curved bottom portion 14a of the groove portion intersects. The depth D is expressed by the difference between the distance D1 between the line segment X1 and the point M1 and the distance D2 between the line segment X2 and the point M2, that is, D2-D1 with reference to FIGS. Is done. A line segment X2 is a line segment connecting the inner and outer edges of the movable bottom 9 in the bending portion 13, and M2 is a straight line Y2 that passes through the midpoint of the line segment X2 and is perpendicular to the line segment X2 and the bending portion 13. It is a crossing point.
 溝部14の周方向の幅は、図2(A)に示す具体例では、上記中心位置M1付近において最も幅が広くなっており、即ち、溝部14は略紡錘形状に形成されているが、可動底部9の内外縁付近において幅広で、上記中心位置M1付近で最も幅が狭くなるように形成されていても、可動底部の移動及び復元が容易になるので好ましい。 In the specific example shown in FIG. 2A, the width in the circumferential direction of the groove portion 14 is the widest in the vicinity of the center position M1, that is, the groove portion 14 is formed in a substantially spindle shape, but is movable. Even if it is formed so as to be wide in the vicinity of the inner and outer edges of the bottom portion 9 and narrowest in the vicinity of the center position M1, it is preferable because the movable bottom portion can be easily moved and restored.
 溝部の湾曲底部14aの水平方向に対する傾斜角度θは、中心位置M1において2~15°の範囲にあることが好適である。傾斜角度θは、具体的には、図3(a)に示されている通り、上記中心位置M1において溝部の湾曲底部14aの接線Zをひき、かかる接線Zの水平方向に対する角度で表される。 The inclination angle θ of the curved bottom 14a of the groove with respect to the horizontal direction is preferably in the range of 2 to 15 ° at the center position M1. Specifically, as shown in FIG. 3A, the inclination angle θ is expressed by an angle with respect to the horizontal direction of the tangent line Z by drawing the tangent line Z of the curved bottom 14a of the groove at the center position M1. .
 溝部の湾曲底部14aの曲率半径Rは、30~300mmの範囲にあることが好適である。これにより、可動底部9の外縁を起点に可動底部9が移動する際に、湾曲底部が非曲面状の場合(例えば1または2以上の平面で構成されている場合)と比して径方向に生じる撓みを軽減することができる。 The curvature radius R of the curved bottom portion 14a of the groove is preferably in the range of 30 to 300 mm. Thereby, when the movable bottom part 9 moves from the outer edge of the movable bottom part 9 as a starting point, the curved bottom part has a non-curved surface shape (for example, constituted by one or two or more planes) in the radial direction. The bending which arises can be reduced.
 溝部14の肉厚は薄肉とすることが好ましい。これにより、熱間充填等により重さ及び熱が作用する場合には、隣り合う湾曲部13がその間隔を広めるように、また減圧時には隣り合う湾曲部13がその間隔を狭めるように撓み易くなり、可動底部9全体を均一且つ緩やかに上方に向かって移動させることが可能になる。 The thickness of the groove 14 is preferably thin. As a result, when weight and heat are applied due to hot filling or the like, the adjacent curved portions 13 are easily bent so as to widen the interval, and at the time of decompression, the adjacent curved portions 13 are narrowed so as to reduce the interval. It becomes possible to move the entire movable bottom 9 uniformly and gently upward.
 図4は、本発明の容器の内圧変化に応じた底部の変動を説明するための図である。(A)は空の状態、(B)は熱間充填(例えば87℃)直後の状態、(C)は(B)の充填後減圧状態をそれぞれ示す一部断面図であり、(D)は(A)~(C)を重ね合わせた図である。 FIG. 4 is a diagram for explaining the fluctuation of the bottom according to the change in the internal pressure of the container of the present invention. (A) is an empty state, (B) is a state immediately after hot filling (for example, 87 ° C.), (C) is a partial sectional view showing a decompressed state after filling in (B), and (D) is FIG. 4 is a diagram in which (A) to (C) are superimposed.
 本発明の容器においては、充填温度にかかわらず、内容物が充填された直後(B)においては、可動底部9は内容物の自重により空の状態(A)よりも下方に移動するが、87℃という高温で充填・密封された場合でも、前述したとおり、溝部14が形成されていることにより、可動底部が過度に下方に移動することがない。また熱間充填された後に冷却され、減圧状態になった場合(C)には、溝部14の形状復元作用を利用して、可動底部9がスムーズに上方に移動し、減圧吸収後の可動底部9は、空の状態(A)よりも上方に位置するようになる。 In the container of the present invention, regardless of the filling temperature, immediately after the contents are filled (B), the movable bottom portion 9 moves downward from the empty state (A) due to the weight of the contents. Even when filled and sealed at a high temperature of ° C., as described above, since the groove portion 14 is formed, the movable bottom portion does not move excessively downward. Further, in the case of being cooled after being hot-filled and in a reduced pressure state (C), the movable bottom portion 9 smoothly moves upward by utilizing the shape restoring action of the groove portion 14, and the movable bottom portion after absorbing the reduced pressure. 9 comes to be positioned above the empty state (A).
 これらの図を重ね合わせてなる図4(D)から明らかなように、本発明の容器では、内容物が高温で充填され、内容物の重さ及び熱が作用した場合でも、可動底部9は下方に過度に移動することがなく、しかもその後減圧状態になった場合には、可動底部9が緩やかに変形して容器内方にせり上がった状態になることによって、所望の減圧吸収性能を発揮することができる。 As is clear from FIG. 4D, which is a superposition of these figures, in the container of the present invention, even when the contents are filled at a high temperature and the weight and heat of the contents act, the movable bottom 9 is If it does not move excessively downward, and then is in a reduced pressure state, the movable bottom portion 9 is gently deformed to rise to the inside of the container, thereby exhibiting a desired reduced pressure absorption performance. can do.
<折り返し部>
 次に、本発明の別の実施形態について図5~図7を用いて説明する。本実施形態では、特に図6(B)及び図7から明らかなように、脚部8の内周壁8cの上端に、内周壁8cの上端から上方に突出したのち、下方に向かって折り返される環状の折り返し部15が形成され、この折り返し部15の内縁15aが、可動底部9の外縁の位置と一致して連接されている点で、図1に示す本発明の容器と異なっている。
<Folding part>
Next, another embodiment of the present invention will be described with reference to FIGS. In the present embodiment, as is apparent from FIGS. 6B and 7 in particular, an annular shape that protrudes upward from the upper end of the inner peripheral wall 8c to the upper end of the inner peripheral wall 8c of the leg 8 and then turns downward. 1 is different from the container of the present invention shown in FIG. 1 in that an inner edge 15a of the folded portion 15 is connected in line with the position of the outer edge of the movable bottom 9.
 折り返し部15の深さは、これに限定されないが、折り返し部の上端から折り返し部の内縁15aまでの垂直距離で0.5~3.0mmの範囲にあることが好適である。上記範囲よりも折り返し部が浅いと、上記範囲にある場合に比して、可動底部9が下方移動する際に脚部8の内周壁8cが内倒れする可能性が高まる。折り返し部が上記範囲よりも深い場合には、上記範囲にある場合に比して成形性に劣る虞がある。 The depth of the folded portion 15 is not limited to this, but is preferably in the range of 0.5 to 3.0 mm in the vertical distance from the upper end of the folded portion to the inner edge 15a of the folded portion. If the folded portion is shallower than the above range, the possibility that the inner peripheral wall 8c of the leg portion 8 will fall inward when the movable bottom portion 9 moves downward is increased as compared with the case where it is within the above range. If the folded portion is deeper than the above range, the moldability may be inferior to that in the above range.
 このように、可動底部9が、適宜な深さを有する折り返し部15を介して脚部8の内周壁8cに連接されていることにより、熱間充填等により内容物の重みと熱が可動底部9に作用した場合でも、脚部8の内周壁8cが可動底部9の中央方向に過度に引き込まれること(内倒れ)が防止されるとともに、折り返し部15の内縁15aも過度に引き込まれることが有効に防止される。その結果、熱間充填等に賦されても、可動底部9が過度に下方に突出することや、或いは不均一な変形が生じないことから、折り返し部を有する本実施形態の容器の底部は減圧時にも均一変形し、87℃以上の高温での熱間充填にも対応し得る。 As described above, the movable bottom portion 9 is connected to the inner peripheral wall 8c of the leg portion 8 via the folded portion 15 having an appropriate depth, so that the weight and heat of the contents are transferred by the hot filling or the like. 9, the inner peripheral wall 8 c of the leg portion 8 is prevented from being excessively drawn in the central direction of the movable bottom portion 9 (inward falling), and the inner edge 15 a of the folded portion 15 is also excessively drawn. Effectively prevented. As a result, even if it is applied to hot filling or the like, the bottom of the container according to the present embodiment having the folded portion is reduced in pressure because the movable bottom 9 does not protrude excessively or does not deform unevenly. Even uniform deformation sometimes occurs, and it can cope with hot filling at a high temperature of 87 ° C. or higher.
<環状支部>
 本発明の更に別の実施形態を、図9~図11を用いて説明する。本実施形態では、容器はポリエステル製であり、図10(A)及び(B)から明らかなように、可動底部9の外縁9aは脚部8の内周壁8cの上端と環状支部16を介してつながっている。
<Annular branch>
Still another embodiment of the present invention will be described with reference to FIGS. In this embodiment, the container is made of polyester, and as is clear from FIGS. 10A and 10B, the outer edge 9 a of the movable bottom portion 9 is interposed between the upper end of the inner peripheral wall 8 c of the leg portion 8 and the annular support portion 16. linked.
 この環状支部16は、結晶化度が高く調整されており、即ち、他の部位に比して剛性が高く構成されている。具体的に、本実施形態のポリエステル容器は、内周壁上端と可動底部の外縁をつなぐ位置に密度法による結晶化度が30%以上、特に30~40%である環状支部が形成されている点に重要な特徴を有する。 The annular support 16 is adjusted to have a high degree of crystallinity, that is, has a higher rigidity than other parts. Specifically, in the polyester container of the present embodiment, an annular support having a crystallinity of 30% or more by the density method, particularly 30 to 40%, is formed at a position connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom. It has important characteristics.
 尚、上記密度法による結晶化度は、下記式で求められる。
  X(%)=(ρc/ρ)×〔(ρ―ρa)/(ρc-ρa)]×100
 式中、
  ρは密度勾配管により測定された測定部位の密度(g/cm)を示す
  。
  ρcは結晶体の密度(g/cm)を示す。
  ρaは非晶体の密度(g/cm)を示す。
ポリエステル樹脂としてポリエチレンテレフタレートを使用する場合には、ρcとしては1.455(g/cm)、ρaとしては1.335(g/cm)の値を使用して、結晶化度を求める。
In addition, the crystallinity degree by the said density method is calculated | required by a following formula.
X (%) = (ρc / ρ) × [(ρ−ρa) / (ρc−ρa)] × 100
Where
ρ indicates the density (g / cm 3 ) of the measurement site measured by the density gradient tube.
ρc represents the density (g / cm 3 ) of the crystal.
ρa represents the amorphous density (g / cm 3 ).
When polyethylene terephthalate is used as the polyester resin, the degree of crystallinity is determined using values of 1.455 (g / cm 3 ) as ρc and 1.335 (g / cm 3 ) as ρa.
 図11は、本実施形態のポリエステル容器の他の一例を示す底面図(A)及び一部断面図(B)である。この実施形態は、上述した折り返し部15と同様に、脚部8の内周壁8cの上端に、内周壁8cの上端から上方に突出したのち、下方に向かって折り返される環状支部16が形成されている点で、図9および図10に示すポリエステル容器と異なっている。言い換えると、この実施形態において、環状支部16の形状は、可動底部9の外縁9aよりも容器内方にへこんだ凹部形状となっている。 FIG. 11 is a bottom view (A) and a partial cross-sectional view (B) showing another example of the polyester container of the present embodiment. In this embodiment, an annular support 16 is formed on the upper end of the inner peripheral wall 8c of the leg 8 at the upper end of the inner peripheral wall 8c, and then protrudes upward from the upper end of the inner peripheral wall 8c. This is different from the polyester container shown in FIGS. In other words, in this embodiment, the shape of the annular support portion 16 is a concave shape that is recessed inward of the container from the outer edge 9 a of the movable bottom portion 9.
 凹部形状を有する環状支部16の凹部の深さは、これに限定されないが、凹部の上端から可動底部9の外縁9aまでの垂直距離で0.5~3.0mmの範囲にあることが好ましい。凹部の深さが上記範囲にあると、環状支部16の結晶化度が高いことと相俟って、可動底部9が下方移動する際の脚部8の内周壁8cの内倒れを非常に有効に防止することができる。凹部が上記範囲よりも深い場合、上記範囲にある場合に比して成形性に劣る虞がある。 The depth of the concave portion of the annular support portion 16 having the concave shape is not limited to this, but is preferably in the range of 0.5 to 3.0 mm in the vertical distance from the upper end of the concave portion to the outer edge 9a of the movable bottom portion 9. When the depth of the concave portion is in the above range, coupled with the high crystallinity of the annular support portion 16, the inward tilting of the inner peripheral wall 8 c of the leg portion 8 when the movable bottom portion 9 moves downward is very effective. Can be prevented. When the concave portion is deeper than the above range, the moldability may be inferior to that in the above range.
 このように、可動底部9が、結晶化度が高い環状支部16を介して脚部8の内周壁8cと接続されていることにより、熱間充填等により内容物の重みと熱が可動底部9に作用した場合でも、脚部8の内周壁8cが可動底部9の中央方向に過度に引き込まれること(内倒れ)が非常に有効に防止される。更に、環状支部16が容器内方にへこんだ凹部形状を有する場合には、脚部の内倒れ防止のみならず、可動底部9の外縁9aが過度に引き込まれることも有効に防止される。その結果、熱間充填等に賦されても、可動底部9が過度に下方に突出することや、或いは不均一な変形が生じないことから、本発明の容器の底部は、減圧時にも均一変形し、例えば87℃以上の高温での熱間充填にも対応し得る。 Thus, the movable bottom portion 9 is connected to the inner peripheral wall 8c of the leg portion 8 via the annular support portion 16 having a high degree of crystallinity, so that the weight and heat of the contents are transferred by the hot filling or the like. Even when acting on, the inner peripheral wall 8c of the leg portion 8 is extremely effectively prevented from being drawn excessively (inwardly falling) toward the center of the movable bottom portion 9. Furthermore, when the annular support portion 16 has a recessed shape that is recessed inward of the container, not only the leg can be prevented from falling down but also the outer edge 9a of the movable bottom portion 9 can be effectively prevented from being pulled in. As a result, even when subjected to hot filling or the like, the bottom of the container of the present invention is uniformly deformed even during decompression because the movable bottom 9 does not protrude excessively or does not deform unevenly. For example, it can cope with hot filling at a high temperature of 87 ° C. or higher.
 尚、本実施形態のポリエステル容器においては、前述したとおり、内周壁8cの内倒れを有効に防止するために、底部の環状支部16が30%以上の結晶化度を有することが重要であるが、内周壁8cの内倒れをより有効に防止するには、可動底部9の結晶化度も同様に30%以上、特に30~40%の範囲にすることが望ましい。ポリエステル容器の耐熱性の面から、胴部の結晶化度は27~40%の範囲にあることが望ましい。 In the polyester container of the present embodiment, as described above, in order to effectively prevent the inner wall 8c from falling down, it is important that the annular support 16 at the bottom has a crystallinity of 30% or more. In order to more effectively prevent the inner peripheral wall 8c from falling down, it is desirable that the crystallinity of the movable bottom portion 9 is similarly set to 30% or more, particularly 30 to 40%. From the viewpoint of heat resistance of the polyester container, it is desirable that the crystallinity of the barrel is in the range of 27 to 40%.
 また、図9~図11には、湾曲部13および溝部14を備えた可動底部9が示されているが、結晶化度の高い環状支部を有する本実施形態においては、可動底部9は湾曲部13および溝部14を必ずしも備えていなくてもよく、言い換えると、底部が減圧吸収性能を有する限り、可動底部は他の形状であってもよい。即ち、容器の自立性や形状安定性を最大限に向上させるという観点からは、可動底部9が湾曲部13および溝部14を備えていることが好ましいが、容器の自立性および形状安定性の向上だけでなく、底部の加飾性向上等の他の要求もある場合には、可動底部9がその他の形状を有していることが好ましい。 9 to 11 show the movable bottom portion 9 having the bending portion 13 and the groove portion 14. In the present embodiment having the annular support portion having a high degree of crystallinity, the movable bottom portion 9 is the bending portion. 13 and the groove part 14 may not necessarily be provided. In other words, as long as the bottom part has the reduced pressure absorption performance, the movable bottom part may have another shape. That is, from the viewpoint of maximizing the self-supporting property and shape stability of the container, it is preferable that the movable bottom portion 9 includes the curved portion 13 and the groove portion 14, but the self-supporting property and the shape stability of the container are improved. In addition, when there are other demands such as improvement of the decorating property of the bottom, it is preferable that the movable bottom 9 has other shapes.
<脚部>
 図13、図14-1および図14-2は、本発明の容器において脚部に所謂ナーリングを設けた実施形態を説明する図である。本実施形態では、脚部8の接地部8bにおいて複数の脚溝部17を周方向に等間隔で設け、隣り合う脚溝部17、17の間にヒール部18を設けている点に重要な特徴がある。かかる特徴により、本実施形態の容器においては、落下による衝撃を受けても、脚溝部17の緩衝効果により脚部8にシワや潰れが発生しにくい。そのため、本実施形態においては、減圧吸収性能向上のために可動底部9を大面積化し、代わりに接地部8bの径方向寸法を短くして脚部8を細くしても、落下による衝撃を脚部が受けた場合に脚溝部の緩衝効果により十分な耐落下性能を確保することができる。よって、本実施形態においては、脚部は必ずしも従来通りの太さにする必要はなく、可動底部を大きくして代わりに脚部を細くしても問題が生じないので、底部の形状を自由に決めることができる。更に、脚部にヒール部と脚溝部を設けることで、脚部自体も減圧吸収性能を発揮するようになる。
<Leg>
FIG. 13, FIG. 14-1 and FIG. 14-2 are views for explaining an embodiment in which a so-called knurling is provided on a leg in the container of the present invention. In the present embodiment, an important feature is that a plurality of leg groove portions 17 are provided at equal intervals in the circumferential direction in the ground contact portion 8b of the leg portion 8, and a heel portion 18 is provided between the adjacent leg groove portions 17 and 17. is there. Due to this feature, in the container according to the present embodiment, even if the impact due to the drop is received, the leg portion 8 is less likely to be wrinkled or crushed due to the buffering effect of the leg groove portion 17. For this reason, in this embodiment, even if the movable bottom portion 9 is enlarged in order to improve the vacuum absorption performance, and instead the leg portion 8 is narrowed by shortening the radial dimension of the grounding portion 8b, the impact due to dropping is reduced. Sufficient drop-proof performance can be ensured by the buffering effect of the leg groove when the part is received. Therefore, in this embodiment, the leg portion does not necessarily have the same thickness as the conventional one, and there is no problem even if the movable bottom portion is enlarged and the leg portion is narrowed instead, so the shape of the bottom portion can be freely set. I can decide. Furthermore, by providing the heel part and the leg groove part in the leg part, the leg part itself also exhibits the reduced pressure absorption performance.
 このように、本実施形態の容器においては、接地部8bの径方向寸法を短くして脚部8を細くしても十分な耐落下性能を発揮できるのであるが、具体的な脚部8としては、接地部8bの外径に対する内径の比が0.75~0.95であることが好ましい。脚部8が細すぎると、ヒール部18および脚溝部17の賦形が悪くなり、接地したときにぐらつきが生じやすくなるので自立性が損なわれる虞がある。脚部8が太すぎると、減圧吸収性能向上のために可動底部9を大面積化し代わりに脚部8を細くしても、十分な耐落下性能を維持できるという本実施形態の効果を充分に発揮できない虞がある。尚、接地部8bの外径は、線分N’N’’で表され、接地部8bの内径は線分O’O’’で表される。N、N’、N’’、O、O’、O’’については後で詳述する。 Thus, in the container of this embodiment, even if the radial dimension of the grounding portion 8b is shortened and the leg portion 8 is made thin, sufficient drop resistance can be exhibited. The ratio of the inner diameter to the outer diameter of the grounding portion 8b is preferably 0.75 to 0.95. If the leg portion 8 is too thin, the heel portion 18 and the leg groove portion 17 are poorly shaped, and wobble tends to occur when grounded, so that the self-supporting property may be impaired. If the leg portion 8 is too thick, the effect of the present embodiment can be sufficiently obtained even if the movable bottom portion 9 is enlarged in order to improve the vacuum absorption performance, and even if the leg portion 8 is made thin instead, sufficient fall resistance can be maintained. There is a possibility that it cannot be demonstrated. The outer diameter of the grounding portion 8b is represented by a line segment N′N ″, and the inner diameter of the grounding portion 8b is represented by a line segment O′O ″. N, N ′, N ″, O, O ′, and O ″ will be described in detail later.
 ヒール部18および脚溝部17は、脚部8が上記径方向寸法を有する場合であっても、落下衝撃の負荷を受けたときに接地部8b全体を可逆的に変形させるとともに、落下衝撃の伝わる方向を制御して、シワや潰れが底部に発生することをより有効に防げるよう、下記の形状に設定することが好適である。 The heel portion 18 and the leg groove portion 17 reversibly deform the entire grounding portion 8b and transmit the drop impact even when the leg portion 8 has the radial dimension described above when the drop impact load is applied. It is preferable to set the following shape so that the direction can be controlled and wrinkles and crushing can be more effectively prevented from occurring at the bottom.
 図14-2(C)に示すように、ヒール部18および脚溝部17の終点をN、ヒール部18および脚溝部17の始点をO、及び容器1が空で載置されたときにおけるヒール部18の接地面Gとの接地点をPとする。始点Oは接地部8bと内周壁8cとの境に位置する。また、ヒール部18に対する脚溝部17の谷深さが最大となるときの溝底曲線NO上の点をQ、ヒール部曲線NPO上の点をRとする。点N、Oの接地面Gへの鉛直方向の射影をそれぞれN’、O’とする。点N’、O’の容器1の中心軸(図示せず)に関して対称な点をそれぞれN’’、O’’とする。 As shown in FIG. 14-2 (C), the end points of the heel portion 18 and the leg groove portion 17 are N, the start points of the heel portion 18 and the leg groove portion 17 are O, and the heel portion when the container 1 is placed empty. A grounding point with 18 grounding planes G is P. The starting point O is located at the boundary between the ground contact portion 8b and the inner peripheral wall 8c. Further, a point on the groove bottom curve NO when the valley depth of the leg groove portion 17 with respect to the heel portion 18 is maximum is Q, and a point on the heel portion curve NPO is R. Let N ′ and O ′ be the projections of points N and O onto the ground plane G in the vertical direction, respectively. Points N ′ and O ′ that are symmetrical with respect to the central axis (not shown) of the container 1 are denoted by N ″ and O ″, respectively.
 本実施形態では、以下の通り、ヒール部18の脚高さ、径方向長さ、内径高さ及び谷深さは定義される。それぞれの好適な範囲は以下の通りである。
  線分NN’:ヒール部18の脚高さを表し、1~3mmが好ましい。
  線分N’O’:ヒール部18の径方向長さを表し、3~7mmが好まし
         い。
  線分OO’:ヒール部18の内径高さを表し、0.1~1.0mmが好
        ましい。
  線分QR:ヒール部18の谷深さを表し、0.2~1.0mmが好まし
       い。
In the present embodiment, the leg height, radial length, inner diameter height, and valley depth of the heel portion 18 are defined as follows. The preferred ranges for each are as follows.
Line segment NN ′ represents the leg height of the heel portion 18 and is preferably 1 to 3 mm.
Line segment N′O ′: represents the length of the heel portion 18 in the radial direction, preferably 3 to 7 mm.
Line segment OO ′: represents the height of the inner diameter of the heel portion 18 and is preferably 0.1 to 1.0 mm.
Line QR: Represents the valley depth of the heel portion 18 and is preferably 0.2 to 1.0 mm.
 また、ヒール部曲線NPOは円弧状であることが好ましく、その円弧半径を先端半径と定義したとき、先端半径は2~6mmが好ましい。 Further, the heel curve NPO is preferably arcuate, and when the arc radius is defined as the tip radius, the tip radius is preferably 2 to 6 mm.
 ヒール部18が上記数値範囲を満たす形状を有することにより、接地部8b全体の可逆変形を効果的に行うことができる。 When the heel portion 18 has a shape that satisfies the above numerical range, the entire ground contact portion 8b can be reversibly deformed effectively.
 図14-1(A)を参照して、ヒール部18の外周幅bは、ヒール部18の外縁長さで表され、4~72mmであることが好ましい。これにより、落下衝撃による負荷がかかったときには、終点N及びその近傍を支点としてヒール部18および脚溝部17が可逆的に変形する。また、ヒール部18と脚溝部17との間における周方向の撓みが生じやすくなり、外周壁8aの周方向の圧縮による皺の発生が抑制される。 Referring to FIG. 14-1 (A), the outer peripheral width b of the heel portion 18 is represented by the outer edge length of the heel portion 18 and is preferably 4 to 72 mm. Thus, when a load due to a drop impact is applied, the heel portion 18 and the leg groove portion 17 are reversibly deformed with the end point N and its vicinity as a fulcrum. Moreover, it becomes easy to produce the bending of the circumferential direction between the heel part 18 and the leg groove part 17, and generation | occurrence | production of the wrinkles by the compression of the circumferential direction of the outer peripheral wall 8a is suppressed.
 更に、本発明においては、ヒール部18の外周幅bの、ヒール部18の径方向長さN’O’に対する比が0.5~20であることが好ましい。また、ヒール部18の底面はより正方形に近い形状で形成されることが好ましく、これにより、ヒール部18に作用した負荷は、径方向と周方向に一層効果的に分散され、個々のヒール部18における座屈などの不可逆的な変形の発生が抑制され、接地部8b全体の可逆変形が促される。 Furthermore, in the present invention, the ratio of the outer peripheral width b of the heel portion 18 to the radial length N′O ′ of the heel portion 18 is preferably 0.5 to 20. In addition, the bottom surface of the heel portion 18 is preferably formed in a shape that is closer to a square, whereby the load that has acted on the heel portion 18 is more effectively distributed in the radial direction and the circumferential direction. The occurrence of irreversible deformation such as buckling at 18 is suppressed, and reversible deformation of the entire ground contact portion 8b is promoted.
 また、図14-2(D)に示すように、脚溝部17は、隣り合う2つのヒール部18、18のそれぞれの側面181、181に挟まれており、径方向に伸びる曲面で形成された溝底171を有している。両側面181、181は角度αを成している。角度αは80~100°が好ましい。脚溝部の溝底171の幅dは0.5~2.0mmが好ましい。 Further, as shown in FIG. 14-2 (D), the leg groove portion 17 is sandwiched between the side surfaces 181 and 181 of the two adjacent heel portions 18 and 18 and is formed by a curved surface extending in the radial direction. A groove bottom 171 is provided. Both side surfaces 181 and 181 form an angle α. The angle α is preferably 80 to 100 °. The width d of the groove bottom 171 of the leg groove is preferably 0.5 to 2.0 mm.
 脚溝部の溝底171とヒール部の側面181との接続部、及び、ヒール部の側面181と先端面182との接続部は曲面で構成されていることが好ましい。さらに、脚溝部の溝底171とヒール部の側面181との境界は半径0.3~1.0mmの円弧面となっていることが好ましく、ヒール部の側面181と先端面182との境界は半径0.5~2.0mmの円弧面となっていることが好ましい。 It is preferable that the connection portion between the groove bottom 171 of the leg groove portion and the side surface 181 of the heel portion and the connection portion between the side surface 181 of the heel portion and the tip end surface 182 are formed of a curved surface. Further, the boundary between the groove bottom 171 of the leg groove and the side surface 181 of the heel portion is preferably an arc surface having a radius of 0.3 to 1.0 mm, and the boundary between the side surface 181 of the heel portion and the tip surface 182 is It is preferably an arc surface having a radius of 0.5 to 2.0 mm.
 さらに、脚溝部の溝底171は、図14-2(C)に示すように、径方向に沿ってなだらかな線(曲線または直線)で形成されることが好ましい。これにより、互いに隣接するヒール部18と脚溝部17との間で撓み変形が生じやすくなると共に、脚溝部17の途中で屈曲するような変形が抑制されるため、接地部8bの径方向及び周方向の可逆的な変形が可能となる。 Furthermore, it is preferable that the groove bottom 171 of the leg groove part is formed by a gentle line (curve or straight line) along the radial direction as shown in FIG. 14-2 (C). As a result, bending deformation is likely to occur between the heel portion 18 and the leg groove portion 17 adjacent to each other, and deformation that is bent in the middle of the leg groove portion 17 is suppressed. The direction can be reversibly deformed.
 図15は、本実施形態の容器において段差30を設けた態様を示す図である。本実施形態においては、脚部8の接地部8bに上記で説明したヒール部18および脚溝部17が交互に設けられているのであるが、更に、図15に表されているように、外周壁8aと接地部8bの間に周方向に段差30が設けられていることが好ましい。これにより、過度の負荷がヒール部18および脚溝部17にかかった場合でも、ヒール部18と脚溝部17との境界における撓み変形が過度に進行して折れ痕が外周壁8aにつくことを抑制できるからである。段差30は、曲面で構成されていることが好ましい。段差30の深さは、0.1~1.0mmであることが好ましい。尚、段差30の深さは、段差30と外周壁8aとの境をS、段差30と接地部8bとの境をTとし、線分STの中点において線分STに対して直角に線をひき、この直角線と段差30との交点から線分STまでの距離uで表される。 FIG. 15 is a view showing a mode in which a step 30 is provided in the container of the present embodiment. In the present embodiment, the heel portions 18 and the leg groove portions 17 described above are alternately provided on the ground contact portion 8b of the leg portion 8, but as shown in FIG. It is preferable that a step 30 is provided in the circumferential direction between 8a and the grounding portion 8b. As a result, even when an excessive load is applied to the heel portion 18 and the leg groove portion 17, it is possible to prevent the bending deformation at the boundary between the heel portion 18 and the leg groove portion 17 from proceeding excessively and causing a fold mark on the outer peripheral wall 8a. Because it can. The step 30 is preferably formed of a curved surface. The depth of the step 30 is preferably 0.1 to 1.0 mm. The depth of the step 30 is defined as S at the boundary between the step 30 and the outer peripheral wall 8a, and T at the boundary between the step 30 and the grounding portion 8b, and is perpendicular to the line ST at the midpoint of the line segment ST. Is represented by a distance u from the intersection of the right-angle line and the step 30 to the line segment ST.
 脚部8は、上述した具体例に限定されず、種々の変更が可能である。たとえば、図14-1に示した具体例では、複数のヒール部18および脚溝部17は、それぞれ16個形成されていたが、ヒール部18および脚溝部17はこれに限定されるものではない。ヒール部18および脚溝部17は、接地部8bにおいて対称に配置されることが好適であり、またその数は、可動底部9の径にもよるが、3~72個、さらに好ましくは8~24個の範囲にあることが、脚部8の接地性能および耐落下性能を高める上で望ましい。前述の個数が3個未満であると、上記範囲にある場合に比して脚部8の緩衝効果が小さくなって耐落下性能が低下する虞がある。前述の個数が72個を越えると、上記範囲にある場合に比して脚溝部17の幅が小さくなり成形が困難になる虞がある。 The leg portion 8 is not limited to the specific example described above, and various modifications can be made. For example, in the specific example shown in FIG. 14A, the plurality of heel portions 18 and leg groove portions 17 are respectively formed in 16 pieces, but the heel portion 18 and the leg groove portions 17 are not limited thereto. The heel portion 18 and the leg groove portion 17 are preferably arranged symmetrically in the ground contact portion 8b, and the number thereof is 3 to 72, more preferably 8 to 24, although it depends on the diameter of the movable bottom portion 9. It is desirable to be within the range in order to improve the ground contact performance and drop resistance performance of the legs 8. If the number is less than 3, the cushioning effect of the legs 8 is reduced as compared with the case where the number is within the above range, and the drop resistance may be deteriorated. If the number exceeds 72, the width of the leg groove portion 17 becomes smaller than that in the above range, and molding may be difficult.
 ヒール部の両側面181、181と溝底171によって構成される脚溝部17の形状としては、略台形状が好適あるが、これに限定されることはなく、例えば円弧形状やV字形状としてもよい。 The shape of the leg groove portion 17 constituted by the side surfaces 181 and 181 of the heel portion and the groove bottom 171 is preferably a substantially trapezoidal shape, but is not limited thereto, and may be, for example, an arc shape or a V shape. Good.
 耐落下性能維持の観点からは、ヒール部18および脚溝部17を備える脚部8の結晶化度を、20~50%まで高めることが好ましい。 From the viewpoint of maintaining the drop-proof performance, it is preferable to increase the crystallinity of the leg portion 8 including the heel portion 18 and the leg groove portion 17 to 20 to 50%.
 また、脚部にナーリングを設けた本実施形態においては、可動底部9は湾曲部13および溝部14を必ずしも備えていなくてもよく、換言すると、底部が減圧吸収性能を有する限り、可動底部は他の形状であってもよい。即ち、容器の自立性や形状安定性を最大限に向上させるという観点からは、可動底部9が湾曲部13および溝部14を備えていることが好ましいが、容器の自立性および形状安定性の向上だけでなく、底部の加飾性向上等の他の要求もある場合には、可動底部9がその他の形状を有していることが好ましい。 Further, in the present embodiment in which the knurling is provided in the leg portion, the movable bottom portion 9 does not necessarily include the curved portion 13 and the groove portion 14, in other words, as long as the bottom portion has a reduced-pressure absorbing performance, The shape may also be That is, from the viewpoint of maximizing the self-supporting property and shape stability of the container, it is preferable that the movable bottom portion 9 includes the curved portion 13 and the groove portion 14, but the self-supporting property and the shape stability of the container are improved. In addition, when there are other demands such as improvement of the decorating property of the bottom, it is preferable that the movable bottom 9 has other shapes.
 可動底部9が湾曲部13と溝部14とを有する場合において、湾曲底部13および溝部14と、ヒール部18および脚溝部17との位置関係は、次の通りであることが好ましい。即ち、図16および17に示すように、湾曲部13及び溝部14は、内容物の充填時或いは減圧時における均一な変形を確保する観点から、均一形状で放射状に等間隔で形成されている。脚部8に設けられた脚溝部17の中心線が、溝部14の中心線を延長した仮想直線状に位置するように、溝部14の配置を決定することが好ましく、脚溝部17の数と同じだけ溝部14を設け、且つ、脚溝部17の中心線が、溝部14の中心線を延長した仮想直線状に位置するようにして溝部14の配置を決定することが最も好ましい。これにより、落下の衝撃が伝わる方向を制御でき、衝撃による負荷が局部的に集中することがないので、減圧吸収性能および耐落下性能を最大限に付与することができる。更に、容器の意匠性を高めたり、金型の製造を容易にしたり、製造時の型抜きをしやすくすることもできる。 When the movable bottom portion 9 has the curved portion 13 and the groove portion 14, the positional relationship between the curved bottom portion 13 and the groove portion 14, the heel portion 18 and the leg groove portion 17 is preferably as follows. That is, as shown in FIGS. 16 and 17, the bending portion 13 and the groove portion 14 are formed in a uniform shape and radially at equal intervals from the viewpoint of ensuring uniform deformation at the time of filling the contents or at the time of decompression. The arrangement of the groove portions 14 is preferably determined so that the center line of the leg groove portion 17 provided in the leg portion 8 is located in a virtual straight line extending the center line of the groove portion 14, and is the same as the number of the leg groove portions 17. It is most preferable that the arrangement of the groove portions 14 is determined so that the groove portions 14 are provided only and the center lines of the leg groove portions 17 are positioned in a virtual straight line extending from the center lines of the groove portions 14. Thereby, the direction in which the impact of the drop is transmitted can be controlled, and the load due to the impact does not concentrate locally, so that the reduced pressure absorption performance and the drop resistance can be maximized. Furthermore, the design of the container can be improved, the mold can be easily manufactured, and the mold can be easily removed during the manufacture.
<種々の変更>
 本発明の容器は、上述した実施形態に限定されず、種々の変更が可能である。図に示した具体例では、可動底部9において湾曲部13,13・・・及び溝部14,14・・・は、それぞれ16個形成されていたが、これに限定されるものではない。湾曲部13および溝部14は、可動底部9において対称に形成されていることが好適である。また、可動底部9の径にもよるが、その数が3~36個の範囲にあることが、可動底部の可動領域を増加してより大きな減圧吸収性能を発揮する上で望ましい。前述の個数が3個未満であると、上記範囲にある場合に比して減圧時の撓み幅が小さくなって減圧吸収性能が低下するおそれがあり、前述の個数が36個を越えると、上記範囲にある場合に比して溝部14,14・・・の幅が小さくなり成形が困難になるおそれがある。
<Various changes>
The container of this invention is not limited to embodiment mentioned above, A various change is possible. In the specific example shown in the figure, 16 curved portions 13, 13... And 16 groove portions 14, 14... Are formed in the movable bottom 9, but the present invention is not limited to this. The curved portion 13 and the groove portion 14 are preferably formed symmetrically on the movable bottom portion 9. Further, although depending on the diameter of the movable bottom portion 9, it is desirable that the number is in the range of 3 to 36 in order to increase the movable region of the movable bottom portion and to exhibit a greater reduced pressure absorption performance. If the number is less than 3, the bending width at the time of decompression may be smaller than that in the above range, and the reduced pressure absorption performance may be reduced. If the number exceeds 36, The width of the groove portions 14, 14... Is smaller than that in the range, and molding may be difficult.
 また湾曲部13,13・・・は、隣り合う溝部14,14・・・が復元可能である限り図に示された形状に限定されないが、大きな内圧変化にも対応し得る可動領域を確保するためには、図に示した具体例のように、下方に突出した形状であることが好適である。 The curved portions 13, 13... Are not limited to the shape shown in the figure as long as the adjacent grooves 14, 14,... Can be restored, but ensure a movable region that can cope with a large change in internal pressure. For this purpose, a shape protruding downward is preferable as in the specific example shown in the figure.
 さらに、図示していないが、中央部12の中心から同心円状に、容器内方にへこんだ環状凹部を形成し、湾曲部13,13・・・、及び溝部14,14・・・を径方向に分断することも可能である。これにより、環状凹部より内縁側の可動底部に比べて環状凹部より外縁側の可動底部の方が撓みにくくなるため、可動底部が下方へ下がりすぎることを抑制するだけでなく、内容物が冷えて容器内が減圧の時には、可動底部が上方へ移動する支点が可動底部外縁(環状支部または折り返し部を設ける場合には、環状支部または折り返し部)と環状凹部の2つとなり、より上方へ移動しやすくなる。前述の環状凹部が中央部12の中心から同心円状に配置される間隔は、特に限定されないが、等間隔が好適である。 Further, although not shown, an annular recess is formed concentrically from the center of the central portion 12 so as to be recessed inward of the container, and the curved portions 13, 13... And the groove portions 14, 14. It is also possible to divide into two. As a result, the movable bottom portion on the outer edge side of the annular recess is less likely to bend than the movable bottom portion on the inner edge side of the annular recess, so that not only the movable bottom portion is prevented from falling too downward, but also the contents cool down. When the inside of the container is depressurized, the fulcrum for the movable bottom to move upward becomes the outer edge of the movable bottom (in the case of providing an annular fulcrum or folded part), the annular fulcrum or the folded part, and the fulcrum moves further upward. It becomes easy. The interval at which the aforementioned annular recesses are arranged concentrically from the center of the central portion 12 is not particularly limited, but an equal interval is suitable.
 溝部14は、可動底部9の内縁を外縁よりも容器軸方向において上方に位置するように形成されている限り、底部の径方向において一部下方に向けて傾斜する部分を有していてもよい。 The groove portion 14 may have a portion that is partially inclined downward in the radial direction of the bottom portion as long as the inner edge of the movable bottom portion 9 is formed so as to be positioned above the outer edge in the container axial direction. .
 図6に示した折り返し部15は、環状に形成されていたが、肉厚等の問題で剛性が不足するような場合には、図8に示すように、折り返し部15を、湾曲部13に対応する箇所には形成せず、溝部14に対応する箇所に間隔を置いて形成することが好ましい。これにより、折り返し部15の内縁15aが、可動底部の移動に応じて内倒れすることが有効に防止できる。 The folded portion 15 shown in FIG. 6 is formed in an annular shape. However, when the rigidity is insufficient due to a problem such as wall thickness, the folded portion 15 is changed to the curved portion 13 as shown in FIG. It is preferable not to form in the corresponding part, but to form in the part corresponding to the groove part 14 at intervals. Thereby, it can prevent effectively that the inner edge 15a of the folding | turning part 15 falls inward according to a movement of a movable bottom part.
 更に、図に示した具体例では、中央部12は、ほぼ平坦に形成されているが、中央部12は上方または下方に突出していてもよい。これにより、中央部12を一層薄肉化することが可能となって、より大きな減圧吸収性能を発揮することができる。また前述したとおり、環状突起11は必ずしも必要でないが、環状突起が可動底部9の内縁と中央部12の外縁とが接する部位に形成されていることにより、可動底部9の移動に応じて生じる径方向の撓みを吸収することが可能となる。 Furthermore, in the specific example shown in the figure, the central portion 12 is formed to be substantially flat, but the central portion 12 may protrude upward or downward. As a result, the central portion 12 can be made thinner, and a greater reduced pressure absorption performance can be exhibited. Further, as described above, the annular protrusion 11 is not necessarily required, but a diameter generated in accordance with the movement of the movable bottom portion 9 is formed by forming the annular protrusion at a portion where the inner edge of the movable bottom portion 9 and the outer edge of the central portion 12 are in contact with each other. It becomes possible to absorb the deflection of the direction.
 更に、図に示した具体例では、可動底部9の外縁9aは円を形成していたが、可動底部の外縁9aの形状はこれに限定されない。即ち、可動底部の外縁9aは、複数の直線及び/又は曲線により形成されていてもよく、具体的には、湾曲部及び溝部の形状及び幅などによって、多角形状、或いは花弁状等に適宜変更することができる。なお、外縁9aを多角形状とした場合、かかる外縁9aは減圧時に可動底部9が周方向に変形する際の起点となり、外縁9aでのシワの発生を抑止する。 Furthermore, in the specific example shown in the figure, the outer edge 9a of the movable bottom portion 9 forms a circle, but the shape of the outer edge 9a of the movable bottom portion is not limited to this. That is, the outer edge 9a of the movable bottom portion may be formed by a plurality of straight lines and / or curved lines, and specifically, appropriately changed to a polygonal shape or a petal shape depending on the shape and width of the curved portion and the groove portion. can do. When the outer edge 9a has a polygonal shape, the outer edge 9a serves as a starting point when the movable bottom portion 9 is deformed in the circumferential direction at the time of decompression, and suppresses generation of wrinkles at the outer edge 9a.
 可動底部9は、底部の接地部径の85~95%の外径を有することが、容器の自立性を確保すると共に減圧吸収性能を最大限に確保する上で好ましい。可動底部9の外径が大きすぎると、可動底部9と脚部の内周壁8cとの角度が急になり成形が困難になる虞がある。また、中央部12は可動底部9の外径の20~35%の外径を有することが好ましい。 It is preferable that the movable bottom portion 9 has an outer diameter of 85 to 95% of the diameter of the grounding portion at the bottom portion, in order to secure the self-supporting property of the container and to ensure the maximum vacuum absorption performance. If the outer diameter of the movable bottom portion 9 is too large, the angle between the movable bottom portion 9 and the inner peripheral wall 8c of the leg portion may become steep and it may be difficult to mold. The central portion 12 preferably has an outer diameter of 20 to 35% of the outer diameter of the movable bottom portion 9.
 更に、湾曲部13,13・・・の頂部をつなぐ円が、可動底部9の外径の60~90%の径を有することが好適である。かかる円の大きさが、可動底部9の外径の60%未満であると、上記範囲にある場合に比して減圧時の撓み幅が小さくなって減圧吸収性能が低下する虞があり、可動底部9の外径の90%を越えると、上記範囲にある場合に比して内周壁との角度が急になり成形が困難になるおそれがある。 Further, it is preferable that the circle connecting the tops of the curved portions 13, 13... Has a diameter of 60 to 90% of the outer diameter of the movable bottom portion 9. If the size of the circle is less than 60% of the outer diameter of the movable bottom 9, the bending width at the time of depressurization becomes smaller than that in the above range, and the depressurization absorption performance may be lowered. If it exceeds 90% of the outer diameter of the bottom 9, the angle with the inner peripheral wall becomes steep as compared with the case where it is in the above range, and there is a possibility that molding becomes difficult.
 また、本発明の容器においては、底部の厚みが、胴部の最も薄い部分の厚みと同等或いはそれ以下であることが好適であり、可動底部9の径にもよるが、0.15~0.4mm、好適には0.2~0.3mmの範囲に薄肉化されていることが望ましい。 In the container of the present invention, the thickness of the bottom is preferably equal to or less than the thickness of the thinnest portion of the trunk, and is 0.15 to 0 depending on the diameter of the movable bottom 9. It is desirable that the thickness is reduced to 0.4 mm, preferably 0.2 to 0.3 mm.
 さらに、脚部8の内周壁8cの内倒れを抑制するため、少なくとも脚部8の内周壁8cの結晶化度が、20~50%であることが好ましく、30~50%であることがより好ましい。 Further, in order to suppress the internal falling of the inner peripheral wall 8c of the leg 8, the crystallinity of at least the inner peripheral wall 8c of the leg 8 is preferably 20 to 50%, more preferably 30 to 50%. preferable.
<製造方法>
 本発明の容器は、上述した底部形状を有する限り、従来公知の合成樹脂製容器の製造方法により成形することができるが、延伸ブロー成形法により成形することが好ましい。容器の内圧変化による可動底部9の上下動を可能にする上で、可動底部9が薄肉であることが重要であるが、延伸ブロー成形は可動底部9を薄肉に成形可能だからである。
<Manufacturing method>
The container of the present invention can be molded by a conventionally known method for producing a synthetic resin container as long as it has the bottom shape described above, but is preferably molded by a stretch blow molding method. In order to allow the movable bottom 9 to move up and down due to changes in the internal pressure of the container, it is important that the movable bottom 9 is thin. However, stretch blow molding enables the movable bottom 9 to be thin.
 延伸ブロー成形においては、ポリエチレンテレフタレート等の熱可塑性ポリエステル樹脂から成るプリフォームを用意し、このプリフォームと、上述した底部形状を容器底部に賦形可能な底金型とを用いて成形する。この際、折り返し部15、湾曲部13,13・・・、溝部14,14・・・等から成る凹凸形状が底部に賦形されることから、底金型の離型性を向上するために底金型は粗面を有していることが好適である。従って、成形された容器においても、かかる底金型と接触する部分(可動底部9の表面、脚部8の内周壁8cの表面など)は粗面に形成される。 In stretch blow molding, a preform made of a thermoplastic polyester resin such as polyethylene terephthalate is prepared and molded using this preform and a bottom mold capable of shaping the bottom shape described above into the container bottom. At this time, since the concave / convex shape composed of the folded portion 15, the curved portions 13, 13..., The groove portions 14, 14... Is formed on the bottom portion, in order to improve the releasability of the bottom mold. The bottom mold preferably has a rough surface. Accordingly, even in the molded container, the portions (such as the surface of the movable bottom portion 9 and the surface of the inner peripheral wall 8c of the leg portion 8) that are in contact with the bottom mold are formed to be rough.
 本発明の容器には、従来延伸ブロー成形に用いられていた熱可塑性ポリエステル樹脂、特にエチレンテレフタレート系熱可塑性ポリエステルが有利に使用されるが、勿論、ポリブチレンテレフタレート、ポリエチレンナフタレートなどの他のポリエステルを用いることもできるし、或いは、ポリエステル樹脂とポリカーボネートやアリレート樹脂等とのブレンド物を用いることもできる。 For the container of the present invention, thermoplastic polyester resins conventionally used for stretch blow molding, particularly ethylene terephthalate thermoplastic polyesters are advantageously used. Of course, other polyesters such as polybutylene terephthalate and polyethylene naphthalate are used. Or a blend of a polyester resin and a polycarbonate, an arylate resin, or the like can be used.
 また、本発明の容器は、上記熱可塑性ポリエステル樹脂の単層構造のみならず、上記熱可塑性ポリエステル樹脂の層とガスバリヤー性樹脂又は酸素吸収性樹脂の層との多層構造を有しても良い。 The container of the present invention may have not only a single layer structure of the thermoplastic polyester resin, but also a multilayer structure of the thermoplastic polyester resin layer and a gas barrier resin or oxygen-absorbing resin layer. .
 用いるプリフォームの口部は、高温での熱間充填に耐え得る耐熱性を付与すべく、熱結晶化されていることが好ましい。 It is preferable that the mouth portion of the preform used is thermally crystallized in order to provide heat resistance that can withstand hot filling at high temperatures.
 延伸ブロー成形条件は、上述した形状を底部に付与可能な底金型を使用し得る限り、従来公知の条件で成形でき、一段ブロー成形の他、二段ブロー成形によっても成形することができる。耐熱性の見地から熱固定を行うことが好適である。 Stretch blow molding conditions can be molded under conventionally known conditions as long as a bottom mold capable of imparting the above-described shape to the bottom can be used, and can be molded by two-stage blow molding as well as single-stage blow molding. It is preferable to perform heat setting from the viewpoint of heat resistance.
 このように、本発明の容器は、従来公知の方法を適宜選択して製造することができる。しかし、本発明の容器をポリエステル製とし且つ結晶化度の高い環状支部を底部に設ける場合には、生産性良く製造するという観点から、従来公知の二軸延伸ブロー成形である一段ブロー成形により製造することが好ましい。以下詳述する。 Thus, the container of the present invention can be produced by appropriately selecting a conventionally known method. However, when the container of the present invention is made of polyester and an annular support having a high degree of crystallinity is provided at the bottom, it is manufactured by single-stage blow molding, which is a conventionally known biaxial stretch blow molding, from the viewpoint of manufacturing with high productivity. It is preferable to do. This will be described in detail below.
 この場合、成形に用いるプリフォームとしては、従来公知のポリエステル製プリフォームを使用することができる。特に好適には、従来二軸延伸ブロー成形に用いられていたエチレンテレフタレート系ポリエステル樹脂から成る有底プリフォームを使用することができる。 In this case, a conventionally known polyester preform can be used as the preform used for molding. Particularly preferably, a bottomed preform made of an ethylene terephthalate-based polyester resin which has been conventionally used for biaxial stretch blow molding can be used.
 尚、エチレンテレフタレート系ポリエステル樹脂とは、ジカルボン酸成分のうちテレフタル酸が50モル%以上、特に80モル%以上の割合を占めており、ジオール成分のうちエチレングリコールが50モル%以上、特に80モル%以上の割合を占めているポリエステルである。残余の成分としては、従来ポリエステル樹脂に用いられている成分を挙げることができる。具体的には、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;の1種又は2種以上の組合せから成るジカルボン酸成分や、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上から成るジオール成分を挙げることができる。 The ethylene terephthalate-based polyester resin is such that terephthalic acid accounts for 50 mol% or more, particularly 80 mol% or more of the dicarboxylic acid component, and ethylene glycol is 50 mol% or more, particularly 80 mol, of the diol component. It is a polyester occupying a ratio of more than%. Examples of the remaining components include components conventionally used in polyester resins. Specifically, aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid and dodecanedioic acid A dicarboxylic acid component consisting of one or a combination of two or more of propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexylene glycol, cyclohexanedimethanol, ethylene oxide adduct of bisphenol A, etc. The diol component which consists of 1 type (s) or 2 or more types can be mentioned.
 結晶化度の高い環状支部を有するポリエステル容器の好適な製造方法(以下「好適な製造方法」と略称することがある。)において、ポリエステル樹脂は、少なくともフィルムを形成するに足る分子量を有するべきであり、用途に応じて、射出グレード或いは押出グレードのものが使用される。その固有粘度(I.V.)は一般的に0.6~1.4dL/g、特に0.63~1.3dL/gの範囲にあるものが望ましい。 In a preferred method for producing a polyester container having an annular branch having a high degree of crystallinity (hereinafter sometimes referred to as “preferred production method”), the polyester resin should have at least a molecular weight sufficient to form a film. Yes, an injection grade or extrusion grade is used depending on the application. The intrinsic viscosity (IV) is generally in the range of 0.6 to 1.4 dL / g, particularly 0.63 to 1.3 dL / g.
 好適な製造方法においては、胴部金型及び底部金型を用いて上記プリフォームを二軸延伸ブロー成形するに際して、環状支部の結晶化度が30%以上となるように、少なくとも底部金型24の環状支部に対応する部分の温度が130~160℃の温度に調整されていることが重要である。 In a preferred manufacturing method, when the preform is biaxially stretch blow-molded using the body mold and the bottom mold, at least the bottom mold 24 is set so that the crystallinity of the annular support is 30% or more. It is important that the temperature of the portion corresponding to the annular support is adjusted to a temperature of 130 to 160 ° C.
 図12は、環状支部を有するポリエステル容器の二軸延伸ブロー工程を説明するための図である。全体を21で表す成形金型は、プリフォーム20の口部を固定するためのコア金型22、一対の割型から成る胴部金型23,23及び底部金型24から成る。尚、プリフォームは延伸温度に加熱されている。図12から明らかなように、胴部金型23,23は、図9に示した容器の肩部3、胴部4に相当する部分を形成すると共に、その下部の接地部位置23aにおいて、底部金型24と隣接し、外周壁8aと共に、接地部8bに相当する部分を形成する底部金型24の表面と連続する面を有している。 FIG. 12 is a diagram for explaining a biaxial stretching blow process for a polyester container having an annular support. The molding die denoted as 21 as a whole is composed of a core die 22 for fixing the mouth portion of the preform 20, body die 23 and 23 composed of a pair of split dies, and a bottom die 24. The preform is heated to the stretching temperature. As is apparent from FIG. 12, the body molds 23 and 23 form portions corresponding to the shoulder 3 and the body 4 of the container shown in FIG. It has a surface that is adjacent to the mold 24 and is continuous with the surface of the bottom mold 24 that forms a portion corresponding to the ground contact portion 8b together with the outer peripheral wall 8a.
 底部金型24は、ポリエステル容器の底部に環状支部を形成する外底型24aと、かかる外底型24aの内側において、外底型24aと同心状に位置し、可動底部9や中央部12を形成する内底型24bとの組み合わせから成る。これらは一体に軸方向に移動可能である。外底型24aの表面は、環状支部16と接触することにより環状支部16を熱固定(ヒートセット)して、その結晶化度を30%以上とし得るように、130~160℃の温度に調節されている。このとき、内底型24bを、外底型24aと一体の底部金型24として構成し、底部金型24を130~160℃の温度に調節してもよいし、内底型24bを別の金型として、異なる温度に調節しても良い。 The bottom mold 24 is an outer bottom mold 24a that forms an annular support at the bottom of the polyester container, and is located concentrically with the outer bottom mold 24a inside the outer bottom mold 24a. It consists of a combination with the inner bottom mold 24b to be formed. These are integrally movable in the axial direction. The surface of the outer bottom mold 24a is adjusted to a temperature of 130 to 160 ° C. so that the annular support 16 can be heat-set by contacting with the annular support 16 so that its crystallinity can be 30% or more. Has been. At this time, the inner bottom mold 24b may be configured as a bottom mold 24 integrated with the outer bottom mold 24a, and the bottom mold 24 may be adjusted to a temperature of 130 to 160 ° C. The mold may be adjusted to different temperatures.
 底部金型24の温度が130℃より低い場合、結晶化度が30%以上とならない。一方、底部金型24の温度が160℃より高いと、結晶化度は30%より高くなるが、容器の透明性が低下し、また金型の耐久性が低下して、生産効率が下がる。 When the temperature of the bottom mold 24 is lower than 130 ° C., the crystallinity does not become 30% or more. On the other hand, when the temperature of the bottom mold 24 is higher than 160 ° C., the crystallinity is higher than 30%, but the transparency of the container is lowered, the durability of the mold is lowered, and the production efficiency is lowered.
 図12(A)は、底部金型24が移動する前の状態を示す図である。この状態において、底部金型24は、脚部の内周壁8cおよび可動底部9に相当する部分が胴部金型の接地部位置23aよりも下方に延伸される位置にある。特に、容器の環状支部16を形成する外底型24aは、接地部位置23aよりも内周壁8cの長さ分だけ下方にあることが好適である。この状態で、成形金型内に設置されたプリフォーム20は、ストレッチロッド25によって軸方向に引張延伸されると共に、内部にブローエアが流入され周方向に膨張延伸されて成形されていく。このように成形されつつある容器は、胴部金型23表面に接触して胴壁を形成すると共に、胴部金型の接地部位置23aよりも下方に延伸される。 FIG. 12 (A) is a diagram showing a state before the bottom mold 24 is moved. In this state, the bottom mold 24 is in a position where portions corresponding to the inner peripheral wall 8c of the leg portion and the movable bottom portion 9 are extended below the grounding portion position 23a of the trunk mold. In particular, it is preferable that the outer bottom mold 24a that forms the annular support 16 of the container be lower than the ground contact portion position 23a by the length of the inner peripheral wall 8c. In this state, the preform 20 installed in the molding die is stretched and stretched in the axial direction by the stretch rod 25, and blow air is introduced into the interior to be expanded and stretched in the circumferential direction. The container being molded in this way contacts the surface of the body part mold 23 to form a body wall and extends downward from the grounding part position 23a of the body part mold.
 次いで、図12(B)に示すように、容器内部にブローエアを流入しながら底部金型24を容器軸方向に上昇させることにより、延伸されて成形されつつある容器は底部金型24に完全に接触し、環状支部16に相当する部分は、上記温度に温調された外底型24aに接触してヒートセットされる。そして、内周壁8cに相当する部分が形成されると共に、可動底部9に相当する部分が接地部8bよりも容器内方にせりあがった上げ底状に形成される。 Next, as shown in FIG. 12 (B), the bottom mold 24 is raised in the container axial direction while flowing blow air into the container, so that the container being stretched and molded is completely attached to the bottom mold 24. The portion that contacts and corresponds to the annular support portion 16 comes into contact with the outer bottom mold 24a that is temperature-controlled at the above temperature, and is heat set. A portion corresponding to the inner peripheral wall 8c is formed, and a portion corresponding to the movable bottom portion 9 is formed in a raised bottom shape that rises inward from the grounding portion 8b.
 環状支部を有するポリエステル容器においては、環状支部16のみならず、肩部、胴部及び底部全体もヒートセットされていることが好適である。そのため、胴部金型23の金型温度が125~160℃の範囲に温度調節され、また、内底型24bは底部金型24として一体の構成で、温度調整されていることが好適である。胴部金型23、底部金型24共に、容器が金型に接触する時間は1~3秒の範囲になることが好ましい。 In a polyester container having an annular support, it is preferable that not only the annular support 16 but also the entire shoulder, trunk and bottom are heat set. Therefore, it is preferable that the mold temperature of the body mold 23 is adjusted to the range of 125 to 160 ° C., and the inner bottom mold 24 b is an integral configuration as the bottom mold 24 and the temperature is adjusted. . For both the body mold 23 and the bottom mold 24, the time for the container to contact the mold is preferably in the range of 1 to 3 seconds.
 好適な製造方法においては、前述したとおり、底部による減圧吸収性能を発現させるために、二軸延伸ブロー成形により可動底部9を充分に延伸薄肉化することが好ましい。これにより、結晶化が促進され剛性が付与された環状支部16を基点に、容器の内圧変化による上下動を容易に行うことが可能になる。 In the preferred manufacturing method, as described above, it is preferable that the movable bottom portion 9 is sufficiently stretched and thinned by biaxial stretch blow molding in order to exhibit the reduced pressure absorption performance by the bottom portion. This makes it possible to easily move up and down due to a change in the internal pressure of the container, starting from the annular support 16 to which crystallization is promoted and rigidity is given.
 好適な製造方法は、上述した態様に限定されず、種々の変更が可能である。例えば、環状支部16となるべき部分を胴部金型23の接地部位置23aよりも下方に延伸した後、底部金型24を上昇させると、底部金型24は環状支部16および可動底部9と接触しながら上昇することになるので、可動底部9を形成すると共に環状支部16と可動底部9をヒートセットすることが可能になる。これにより、成形されつつある容器の環状支部16となるべき部分が早く外金型24aに接触し、環状支部16となる部分の外底型24aとの接触時間がより長くなり、環状支部16の結晶化を促進することが可能になり、環状支部16の結晶化度を確実に高く(30%以上)することができる。 The preferred manufacturing method is not limited to the above-described embodiment, and various modifications can be made. For example, when the bottom mold 24 is raised after the portion to be the annular support 16 is extended below the grounding portion position 23 a of the body mold 23, the bottom mold 24 is connected to the annular support 16 and the movable bottom 9. Since it rises while contacting, it becomes possible to form the movable bottom 9 and heat set the annular support 16 and the movable bottom 9. Thereby, the part which should become the annular support part 16 of the container being formed contacts the outer mold 24a earlier, the contact time with the outer bottom mold 24a of the part which becomes the annular support part 16 becomes longer, and the annular support part 16 Crystallization can be promoted, and the crystallinity of the annular support 16 can be reliably increased (30% or more).
 図11に示したように、環状支部16が容器内方にへこんだ凹部形状を有する場合には、図12に示した外底型24aを内底型24b表面よりも更に上方に突出した形状に形成し、その他は同様にして成形すればよい。この場合においても、外底型24aの温度を内底型24bよりも高温に維持する方法、或いは外底型24aと環状支部16となるべき部分の接触時間をより長くする方法によって、環状支部16の結晶化を促進することができる。 As shown in FIG. 11, when the annular support 16 has a concave shape recessed inward of the container, the outer bottom mold 24a shown in FIG. 12 is shaped to protrude further upward than the surface of the inner bottom mold 24b. Others may be formed in the same manner. Also in this case, the annular support 16 is maintained by a method of maintaining the temperature of the outer bottom mold 24a at a higher temperature than that of the inner bottom mold 24b, or a method of increasing the contact time between the outer bottom mold 24a and the portion to be the annular support 16. Crystallization can be promoted.
 本発明の容器のうち、結晶化度30%以上の環状支部を有するポリエステル容器を次の実験例にて説明する。各実験例におけるポリエステル容器の成形方法および測定方法は次の通りである。 Among the containers of the present invention, a polyester container having an annular branch having a crystallinity of 30% or more will be described in the following experimental example. The molding method and measurement method of the polyester container in each experimental example are as follows.
(ポリエステル容器)
 ポリエチレンテレフタレート(以下、PET)を用いて射出成形することにより得られたプリフォーム(PF)を加熱し、一段ブロー成形機を用いて表1の条件でPETボトルを成形した。その他の共通の条件は下記に示す。
PF加熱温度:100℃
ブロー金型温度(胴部):145℃
(Polyester container)
A preform (PF) obtained by injection molding using polyethylene terephthalate (hereinafter referred to as PET) was heated, and a PET bottle was molded under the conditions shown in Table 1 using a single-stage blow molding machine. Other common conditions are shown below.
PF heating temperature: 100 ° C
Blow mold temperature (body): 145 ° C
(結晶化度測定)
 成形したPETボトルの底部の環状支部から3mm×5mmの切片を切り出し、密度勾配管を使用して結晶化度を測定した。
(Measurement of crystallinity)
A 3 mm × 5 mm section was cut out from the annular support at the bottom of the molded PET bottle, and the crystallinity was measured using a density gradient tube.
(耐熱性評価)
 成形したPETボトルに、87度に加熱した水を充填密封した。PETボトルの脚部が内倒れすると可動底部が接地部より下がることから、密封および冷却後、可動底部の高さが一部でも接地部より下がっていないかを目視で評価した。評価基準は以下の通りである。
  可動底部の高さが接地部より上:良
  可動底部の高さが接地部より下:悪
(Heat resistance evaluation)
The molded PET bottle was filled and sealed with water heated to 87 degrees. When the leg part of the PET bottle falls inward, the movable bottom part falls below the grounding part. After sealing and cooling, whether the height of the movable bottom part partially falls below the grounding part was visually evaluated. The evaluation criteria are as follows.
The height of the movable bottom is above the ground contact: Good The height of the movable bottom is below the ground contact: Evil
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、環状支部の結晶化度が30%以上の場合、脚部の内周壁の傾きがなく、耐熱性を維持した可動底部を形成することが確認できた。また、底部金型温度が130~160℃の場合、結晶化度が30%以上の環状支部を持つ可動底部を形成できることも確認できた。底部金型温度が130℃より低い場合、結晶化度が30%にならず、脚部の内周壁が内倒れし、底部が接地部より突出してしまった。一方、底部金型温度が160℃よりも高いと、結晶化度は30%よりも高くなるが、容器の透明性が低下し、また金型の耐久性が低下して、生産効率が下がってしまう。よって、底部金型温度は130~160℃とすることが好適である。 As can be seen from Table 1, it was confirmed that when the crystallinity of the annular support portion was 30% or more, there was no inclination of the inner peripheral wall of the leg portion and a movable bottom portion maintaining heat resistance was formed. It was also confirmed that when the bottom mold temperature is 130 to 160 ° C., it is possible to form a movable bottom having an annular support having a crystallinity of 30% or more. When the bottom mold temperature was lower than 130 ° C., the degree of crystallinity did not reach 30%, the inner peripheral wall of the leg part fell down, and the bottom part protruded from the grounding part. On the other hand, when the bottom mold temperature is higher than 160 ° C., the crystallinity is higher than 30%, but the transparency of the container is lowered, the durability of the mold is lowered, and the production efficiency is lowered. End up. Therefore, the bottom mold temperature is preferably 130 to 160 ° C.
 本発明の容器においては、容器外観に影響を与えない底部に減圧吸収性能が付与されていることから、熱間充填により充填される調味料等の容器として有効に利用できる。またこのような内容物以外にも、比較的高温で充填される内容物に対しても適用可能である。 In the container of the present invention, since the vacuum absorption performance is imparted to the bottom that does not affect the container appearance, it can be effectively used as a container for seasonings and the like filled by hot filling. In addition to such contents, the present invention can be applied to contents filled at a relatively high temperature.
 1 合成樹脂製容器、2 口部、3 肩部、4 胴部、5 底部、6 リブ、8 脚部、8a 外周壁、8b 接地部、8c 内周壁、9 可動底部、9a 可動底部の外縁、11 環状突起、12 中央部、13 湾曲部、14 溝部、14a 湾曲底部、15 折り返し部、16 環状支部、17 脚溝部、18 ヒール部、30 段差。 1 plastic container, 2 mouth part, 3 shoulder part, 4 body part, 5 bottom part, 6 ribs, 8 leg parts, 8a outer peripheral wall, 8b grounding part, 8c inner peripheral wall, 9 movable bottom part, 9a outer edge of movable bottom part, 11 annular protrusion, 12 central part, 13 curved part, 14 groove part, 14a curved bottom part, 15 folded part, 16 annular support part, 17 leg groove part, 18 heel part, 30 steps.

Claims (17)

  1.  底部が減圧吸収性能を有する合成樹脂製容器であって、前記底部には、胴部から連なる外周壁、接地部及び内周壁から成る脚部が形成され、該脚部の内周壁よりも内側に、前記接地部よりも上方に位置する可動底部が形成されており、
     前記可動底部の外縁及び中央部と接する内縁間において、径方向にかけて突出し、周方向に複数形成された湾曲部、及び該湾曲部間に、前記可動底部の内縁を外縁より容器軸方向において上方に位置するように接続する溝部を備えることを特徴とする合成樹脂製容器。
    The bottom part is a synthetic resin container having a reduced pressure absorption performance, and the bottom part is formed with an outer peripheral wall continuous from the trunk part, a leg part consisting of a grounding part and an inner peripheral wall, and inside the inner peripheral wall of the leg part. , A movable bottom portion located above the grounding portion is formed,
    Between the outer edge of the movable bottom part and the inner edge in contact with the central part, it protrudes in the radial direction, and a plurality of circumferentially formed curved parts, and between the curved parts, the inner edge of the movable bottom part is above the outer edge in the container axis direction. A synthetic resin container comprising a groove portion connected so as to be positioned.
  2.  前記溝部が、放射状に形成されている請求項1記載の合成樹脂製容器。 The synthetic resin container according to claim 1, wherein the grooves are formed radially.
  3.  前記溝部が、下方に突出する湾曲底部を有している請求項1又は2記載の合成樹脂製容器。 The synthetic resin container according to claim 1 or 2, wherein the groove portion has a curved bottom portion protruding downward.
  4.  前記溝部の深さが、前記可動底部の内外縁の間の中心位置において0.1~3.0mmである請求項1~3の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 1 to 3, wherein a depth of the groove portion is 0.1 to 3.0 mm at a center position between inner and outer edges of the movable bottom portion.
  5.  前記湾曲底部の水平方向に対する傾斜角度が、前記可動底部の内外縁の間の中心位置において2~15°である請求項3又は4記載の合成樹脂製容器。 The synthetic resin container according to claim 3 or 4, wherein an inclination angle of the curved bottom portion with respect to a horizontal direction is 2 to 15 ° at a center position between inner and outer edges of the movable bottom portion.
  6.  前記湾曲底部の曲率半径Rが、30~300mmである請求項3~5の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 3 to 5, wherein a radius of curvature R of the curved bottom portion is 30 to 300 mm.
  7.  前記溝部の幅が、前記可動底部の内外縁の間の中心位置において、前記内外縁における幅よりも幅広又は幅狭である請求項1~6の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 1 to 6, wherein a width of the groove portion is wider or narrower than a width of the inner and outer edges at a center position between the inner and outer edges of the movable bottom portion.
  8.  前記可動底部の内縁と中央部外縁との境界に、下方に突出する環状突起が形成されている請求項1~7の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 1 to 7, wherein an annular projection protruding downward is formed at a boundary between an inner edge of the movable bottom portion and an outer edge of the central portion.
  9.  前記脚部の内周壁の上端に折り返し部が形成され、前記折り返し部の内縁が可動底部の外縁の位置と一致して連接されている請求項1~8の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 1 to 8, wherein a folded portion is formed at an upper end of an inner peripheral wall of the leg portion, and an inner edge of the folded portion is connected in alignment with a position of an outer edge of the movable bottom portion. .
  10.  前記中央部が、上方又は下方に突出している請求項1~9の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 1 to 9, wherein the central portion protrudes upward or downward.
  11.  前記合成樹脂がポリエステルであり、
     前記内周壁上端と可動底部の外縁が環状支部でつながれており、
     該環状支部の密度法による結晶化度が30%以上である、請求項1~8の何れかに記載の合成樹脂製容器。
    The synthetic resin is polyester;
    The inner peripheral wall upper end and the outer edge of the movable bottom are connected by an annular support,
    The synthetic resin container according to any one of claims 1 to 8, wherein the crystallinity of the annular support portion by a density method is 30% or more.
  12.  前記接地部に、複数のヒール部と複数の脚溝部が周方向に交互に設けられている、請求項1~11の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 1 to 11, wherein a plurality of heel portions and a plurality of leg groove portions are alternately provided in the circumferential direction on the grounding portion.
  13.  前記脚部の外周壁と接地部との間に段差が形成されている請求項12に記載の合成樹脂製容器。 The synthetic resin container according to claim 12, wherein a step is formed between an outer peripheral wall of the leg portion and a ground contact portion.
  14.  前記脚溝部の中心線が、前記可動底部の溝部の中心線を延長した仮想直線上に位置する請求項12又は13に記載の合成樹脂製容器。 The synthetic resin container according to claim 12 or 13, wherein the center line of the leg groove part is located on a virtual straight line extending from the center line of the groove part of the movable bottom part.
  15.  前記脚溝部の数と、前記可動底部の溝部の数が同じである請求項12~14の何れかに記載の合成樹脂製容器。 The synthetic resin container according to any one of claims 12 to 14, wherein the number of the leg groove portions and the number of the groove portions of the movable bottom portion are the same.
  16.  底部に減圧吸収性能を有するポリエステル容器であって、前記底部には、胴部から連なる外周壁、接地部及び内周壁から成る脚部が形成され、該脚部の内周壁よりも内側に、前記接地部よりも上方に位置する可動底部が形成されており、
     前記内周壁上端と可動底部の外縁をつなぐ環状支部の密度法による結晶化度が30%以上であることを特徴とするポリエステル容器。
    A polyester container having a vacuum absorbing performance at the bottom, wherein the bottom is formed with an outer peripheral wall that is continuous from the trunk, a leg that includes a grounding portion and an inner peripheral wall, and on the inner side of the inner peripheral wall of the leg, A movable bottom located above the grounding part is formed,
    A polyester container having a crystallinity of 30% or more by a density method of an annular support portion connecting the upper end of the inner peripheral wall and the outer edge of the movable bottom portion.
  17.  底部に、胴部から連なる外周壁、接地部及び内周壁から成る脚部が形成され、該脚部の内周壁よりも内側に、前記接地部よりも上方に位置する可動底部、および、前記内周壁上端と可動底部の外縁をつなぐ環状支部が形成されて成るポリエステル容器の製造方法であって、
     プリフォームを胴部金型及び底部金型を用いて二軸延伸ブロー成形するに際して、前記底部金型の環状支部に対応する部分が130~160℃の温度に調整されていることを特徴とするポリエステル容器の製造方法。
    The bottom part is formed with an outer peripheral wall continuous from the trunk part, a leg part made up of a grounding part and an inner peripheral wall, and a movable bottom part located above the grounding part inside the inner peripheral wall of the leg part, and the inner part A method for producing a polyester container in which an annular support connecting the upper end of the peripheral wall and the outer edge of the movable bottom is formed,
    When the preform is biaxially stretch blow-molded using the body mold and the bottom mold, the portion corresponding to the annular support portion of the bottom mold is adjusted to a temperature of 130 to 160 ° C. A method for producing a polyester container.
PCT/JP2016/052539 2015-01-29 2016-01-28 Synthetic resin container WO2016121890A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015015960 2015-01-29
JP2015-015960 2015-01-29
JP2015-048742 2015-03-11
JP2015048742A JP6691655B2 (en) 2015-01-29 2015-03-11 Synthetic resin container
JP2015063877A JP2016182971A (en) 2015-03-26 2015-03-26 Polyester container having decompression absorption performance at bottom part and manufacturing method for the same
JP2015-063877 2015-03-26
JP2015-080746 2015-04-10
JP2015080746A JP2016199294A (en) 2015-04-10 2015-04-10 Synthetic resin container

Publications (1)

Publication Number Publication Date
WO2016121890A1 true WO2016121890A1 (en) 2016-08-04

Family

ID=56543495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052539 WO2016121890A1 (en) 2015-01-29 2016-01-28 Synthetic resin container

Country Status (1)

Country Link
WO (1) WO2016121890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172267A1 (en) * 2018-03-05 2019-09-12 日精エー・エス・ビー機械株式会社 Container
WO2020104187A1 (en) * 2018-11-22 2020-05-28 Alpla Werke Alwin Lehner Gmbh & Co. Kg Plastic container having at least a regional sharp-edged container geometry and process for producing the plastic container
EP4095052A1 (en) * 2018-01-18 2022-11-30 Sidel Participations Container comprising a vaulted bottom with stiffening bosses in interlocked annular strips

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146880A (en) * 1996-11-20 1998-06-02 Hokkai Can Co Ltd Production of bottle made of polyethylene terephthalate resin
JP2005059937A (en) * 2003-08-20 2005-03-10 Hokkai Can Co Ltd Heat-resistant bottle made of polyethylene terephthalate resin
JP2005112361A (en) * 2003-10-02 2005-04-28 Toyo Seikan Kaisha Ltd Plastic bottle having heat resistant lightweight bottom
JP2010535137A (en) * 2007-07-30 2010-11-18 シデル パーティシペイションズ Container having a bottom with a deformable membrane
JP2011011776A (en) * 2009-06-30 2011-01-20 Yoshino Kogyosho Co Ltd Bottle
JP2014055025A (en) * 2012-09-13 2014-03-27 Toyo Seikan Kaisha Ltd Container made of synthetic resin
WO2014113371A1 (en) * 2013-01-15 2014-07-24 Graham Packaging Company, L.P. Variable displacement container base

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146880A (en) * 1996-11-20 1998-06-02 Hokkai Can Co Ltd Production of bottle made of polyethylene terephthalate resin
JP2005059937A (en) * 2003-08-20 2005-03-10 Hokkai Can Co Ltd Heat-resistant bottle made of polyethylene terephthalate resin
JP2005112361A (en) * 2003-10-02 2005-04-28 Toyo Seikan Kaisha Ltd Plastic bottle having heat resistant lightweight bottom
JP2010535137A (en) * 2007-07-30 2010-11-18 シデル パーティシペイションズ Container having a bottom with a deformable membrane
JP2011011776A (en) * 2009-06-30 2011-01-20 Yoshino Kogyosho Co Ltd Bottle
JP2014055025A (en) * 2012-09-13 2014-03-27 Toyo Seikan Kaisha Ltd Container made of synthetic resin
WO2014113371A1 (en) * 2013-01-15 2014-07-24 Graham Packaging Company, L.P. Variable displacement container base

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4095052A1 (en) * 2018-01-18 2022-11-30 Sidel Participations Container comprising a vaulted bottom with stiffening bosses in interlocked annular strips
WO2019172267A1 (en) * 2018-03-05 2019-09-12 日精エー・エス・ビー機械株式会社 Container
JPWO2019172267A1 (en) * 2018-03-05 2021-03-11 日精エー・エス・ビー機械株式会社 container
US11352184B2 (en) 2018-03-05 2022-06-07 Nissei Asb Machine Co., Ltd. Container
JP7295842B2 (en) 2018-03-05 2023-06-21 日精エー・エス・ビー機械株式会社 container
WO2020104187A1 (en) * 2018-11-22 2020-05-28 Alpla Werke Alwin Lehner Gmbh & Co. Kg Plastic container having at least a regional sharp-edged container geometry and process for producing the plastic container
CH715582A1 (en) * 2018-11-22 2020-05-29 Alpla Werke Alwin Lehner Gmbh & Co Kg Plastic container with at least partially sharp-edged container geometry and method for producing the plastic container.
US11912458B2 (en) 2018-11-22 2024-02-27 Alpla Werke Alwin Lehner Gmbh & Co. Kg Plastic container having at least a regional sharp-edged container geometry and process for producing the plastic container

Similar Documents

Publication Publication Date Title
JP5286497B1 (en) Plastic container
US4993567A (en) Involute embossment base structure for hot fill PET container
JP5970839B2 (en) Plastic container
JP2016182971A (en) Polyester container having decompression absorption performance at bottom part and manufacturing method for the same
TW542809B (en) Biaxially stretch-blow molded lightweight synthetic resin bottle container and method for production thereof
WO2016121890A1 (en) Synthetic resin container
WO2014118016A1 (en) An assembly comprising a wide-mouth plastic preform or container having a reinforced neck finish and a screwable closure
TW200401734A (en) Synthetic resin bottle
CN101522532A (en) Bottom of a hollow body obtained by blowing or stretch-blowing a preform of a thermoplastic material, and hollow body comprising such a bottom
WO2016028302A1 (en) Container with folded sidewall
US9598206B2 (en) Container including an arched bottom having a square seat
WO2007000896A1 (en) Container made of polyester resin and method for molding thereof
JP6691655B2 (en) Synthetic resin container
JP7003448B2 (en) Plastic container
JP2013144560A (en) Synthetic resin made container
JP2017001705A (en) Synthetic resin container
JP2016199294A (en) Synthetic resin container
JP6957978B2 (en) Plastic container
CN110740941A (en) Container bottom base with double concave arch
CN112004751B (en) Container
US11794398B2 (en) Process for producing a blow-moulded plastic container and such a plastic container
JP2018150077A (en) Plastic bottle and manufacturing method of plastic bottle
JP5722529B2 (en) Pressure resistant bottle
JP5370835B2 (en) Pressure resistant bottle
JP6589289B2 (en) Preform and method for producing plastic bottle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743493

Country of ref document: EP

Kind code of ref document: A1