WO2016121576A1 - Self-propelled cleaner - Google Patents
Self-propelled cleaner Download PDFInfo
- Publication number
- WO2016121576A1 WO2016121576A1 PCT/JP2016/051441 JP2016051441W WO2016121576A1 WO 2016121576 A1 WO2016121576 A1 WO 2016121576A1 JP 2016051441 W JP2016051441 W JP 2016051441W WO 2016121576 A1 WO2016121576 A1 WO 2016121576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- floor surface
- self
- floor
- light
- detection sensor
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
Definitions
- This invention relates to a self-propelled cleaner.
- an optical system such as an infrared sensor is used. It is known that the floor surface detection sensor is installed on the surface opposite to the floor surface of the housing and the floor surface is monitored so that the vacuum cleaner does not fall into the floor (cliff) etc. (for example, see Patent Document 1).
- the present invention includes a housing having a cleaning member and capable of self-propelling the floor, an optical floor detection sensor exposed from the housing toward the floor, a cleaning member, and a floor A control unit that controls the self-running operation of the housing in response to the output of the surface detection sensor, the floor detection sensor including a light emitting element that emits a light beam toward the floor surface, and reflected light from the floor surface.
- the present invention provides a self-propelled cleaner that includes a light receiving element that receives light and a diaphragm element that restricts narrowing of the light flux.
- the width of the light intensity distribution of the light flux is narrowed, and the floor color changes (reflectance changes).
- the intensity change of the reflected light received by the light receiving element is reduced. Therefore, the variation range of the detection distance to the floor surface caused by the change in the color of the floor surface is reduced, the detection accuracy is improved, and the malfunction of the cleaner is prevented.
- FIG. 6 is a view corresponding to FIG. 5 of the floor surface detection sensor of the first embodiment. It is explanatory drawing which shows the modification of the floor surface detection sensor shown in FIG.
- FIG. 8 is a view corresponding to FIG. 7 of a floor surface detection sensor according to a second embodiment.
- FIG. 8 is a view corresponding to FIG. 7 of a floor surface detection sensor according to a third embodiment.
- a feature of the present invention is that a housing having a cleaning member and capable of self-propelling the floor, an optical floor detection sensor exposed from the housing toward the floor, and a cleaning member are controlled.
- a control unit that controls the self-running operation of the housing in response to the output of the floor detection sensor, the floor detection sensor including a light emitting element that emits a light beam toward the floor, and a reflection from the floor
- the self-propelled cleaner includes a light receiving element that receives light and a diaphragm element that restricts the opening of the light beam.
- the aperture element may be a light blocking member that blocks the light beam on the side opposite to the light receiving element with respect to the optical axis of the light emitting element.
- the aperture element may be an element having a through hole that allows the light beam to pass therethrough.
- the aperture element may be composed of an element having a slit for restricting and passing the light beam.
- the aperture element may be formed integrally with the housing.
- FIG. 1 is a top perspective view of the self-propelled cleaner according to the first embodiment of the present invention
- FIG. 2 is a bottom view of the self-propelled cleaner shown in FIG. 1
- FIG. It is a block diagram of the control circuit of the self-propelled cleaner shown in FIG.
- FIG. 4 is an explanatory diagram of the internal structure as seen from the side of the self-propelled cleaner shown in FIG.
- a self-propelled cleaner (hereinafter referred to as a cleaning robot) according to the present invention cleans a floor surface by sucking dust on the floor surface together with air and exhausting the air from which the dust is removed while traveling on the floor surface. It is supposed to be.
- the cleaning robot 1 ⁇ / b> A includes a disk-shaped housing 2, and an exhaust port 41 on the upper surface of the housing 2.
- the bottom plate 2a is provided with a rotating brush 3, a pair of side brushes 4, a suction port 11, a pair of drive wheels 5, a rear wheel 7, a front wheel 8, and a floor surface detection sensor 12.
- the detection surface of the floor surface detection sensor 12 is exposed from the bottom plate 2a toward the floor surface.
- a suction path 10 connected to the suction port 11, a dust collection unit 20 provided on the downstream side of the suction path 10, and a downstream side of the dust collection unit 20 And an exhaust passage 40 that connects the electric blower 30 and the exhaust port 41 to each other.
- the top panel 2b is provided with an operation panel 31 for inputting operation conditions and operation commands for the cleaning robot 1A.
- the bottom plate 2a (FIG. 2) is formed with a plurality of holes for projecting the lower portions of the front wheel 8 and the pair of drive wheels 5 from the inside of the housing 2 to the outside. Further, as shown in FIG. 1, a plurality of ultrasonic sensors 9 for detecting obstacles in the traveling direction of the cleaning robot 1A are provided in front of the side plate 2c.
- the pair of drive wheels 5 are provided so as to be rotatable around an axis 5a (FIG. 2) parallel to the bottom plate 2a of the housing 2.
- axis 5a FIG. 2
- the housing 2 advances and retreats.
- the drive wheels 5 rotate in opposite directions, the housing 2 rotates.
- the rotation shafts of the pair of drive wheels 5 are connected to each other so that rotational force can be obtained individually from a pair of travel motors described later, and each travel motor has a suspension mechanism directly or on the inner surface of the bottom plate 2a of the housing 2. Is fixed through.
- the front wheel 8 is made of a roller, and when contacting the step appearing on the path, the bottom plate of the housing 2 is positioned so as to slightly lift from the floor surface with which the driving wheel 5 contacts so that the housing 2 can easily get over the upstep. 2a is rotatably provided.
- the rear wheel 7 is a free wheel and is rotatably provided on a part of the bottom plate 2a of the housing 2 so as to be in contact with the floor surface.
- the pair of drive wheels 5 are arranged in the middle of the front and rear direction with respect to the housing 2, the front wheels 8 are lifted from the floor surface, and the entire weight of the cleaning robot 1 ⁇ / b> A is supported by the pair of drive wheels 5 and the rear wheels 7.
- the weight is distributed in the front-rear direction with respect to the housing 2 so that it is possible. Thereby, the dust in front of the course can be guided to the suction port 11 without being blocked by the front wheel 8.
- the rotary brush 3 described above is provided at the inlet of the suction port 11 so as to be rotatable around an axis parallel to the bottom plate 2a of the housing 2.
- the side brushes 4 on the left and right sides of the suction port 11 in the bottom plate 2a rotate about an axis perpendicular to the bottom plate 2a.
- the rotating brush 3 is formed by implanting a brush spirally on the outer peripheral surface of a roller that is a rotating shaft.
- the side brush 4 has a rotating shaft orthogonal to the bottom plate 2a and a plurality of brush bundles provided radially at the lower end of the rotating shaft.
- the rotating shaft of the rotating brush 3 and the rotating shaft of the pair of side brushes 4 are supported on the inner surface of the bottom plate 2a of the housing 2, and include a brush drive motor, which will be described later, and power including a pulley and a belt. It is connected via a transmission mechanism.
- the floor surface detection sensor 12 for detecting the floor surface is arranged in front of the front wheel 8 on the bottom plate 2a of the housing 2 so as to detect a downward step on the floor surface.
- a detection signal is transmitted to a control unit described later, and the control unit controls the drive wheels 5 to stop.
- the control unit may perform control so as to avoid the down step.
- a charging terminal (not shown) for charging a built-in battery is provided at the rear end of the side plate 2 c of the housing 2.
- the charging terminal This causes the charging terminal to come into contact with the terminal portion provided on the charging stand, and the battery is charged.
- the charging stand connected to the commercial power source (outlet) is usually installed along the side wall of the room.
- the battery supplies power to each drive control element such as various motors.
- the dust collection unit 20 illustrated in FIG. 4 includes a dust collection box 21 connected to the suction path 10 and a filter 22 provided in the dust collection box 21 so as to be detachable.
- the dust collection box 21 is usually housed in the housing 2. However, when the dust collected in the dust collection box 21 is discarded, the lid 2 b 1 (FIG. 1) of the housing 2 is opened. It comes to be taken in and out.
- the control circuit for controlling the operation of the entire cleaning robot 1A has a control unit 15a, an operation panel 31 for inputting setting conditions and operation commands related to the operation of the cleaning robot 1A, and a memory for storing a travel map 18a.
- a motor driver 17a, a control unit 12a for controlling the floor detection sensor 12, a control unit 9a for controlling the ultrasonic sensor 9, and the like are provided.
- the control unit 15a includes a microcomputer including a CPU, a ROM, and a RAM, and individually transmits control signals to the motor drivers 30a, 51a, and 17a based on program data stored in advance in the storage unit 18, and the electric blower 30, A series of cleaning operations are performed by drivingly controlling the travel motor 51 and the brush motor 17.
- the program data includes program data for a normal mode for cleaning a wide area of the floor, and for a wall-side mode for cleaning along a wall.
- control unit 15a accepts the setting conditions and operation commands by the user from the operation panel 31 and stores them in the storage unit 18.
- the travel map 18a stored in the storage unit 18 is information related to travel such as a travel route and travel speed around the installation location of the cleaning robot 1A, and is stored in the storage unit 18 in advance by the user or the cleaning robot 1A. It can automatically record itself during cleaning operation.
- the electric blower 30, the drive wheel 5, the rotating brush 3, and the side brush 4 are driven by a cleaning operation start command from the operation panel 31.
- the cleaning robot 1A is in a state where the rotating brush 3, the side brush 4, the drive wheel 5, and the rear wheel 7 are in contact with the floor surface, and the air containing dust on the floor surface from the suction port 11 while traveling in a predetermined range. Inhale.
- the cleaning robot 1A detects an obstacle on the course as described above and reaches the periphery of the cleaning area, the driving wheel 5 temporarily stops, and then the left and right driving wheels 5 are moved in opposite directions. Rotate to change direction. Accordingly, the cleaning robot 1A can perform self-propelled cleaning while avoiding obstacles in the entire installation place or the entire desired range.
- the cleaning robot 1A is in contact at the three points of the left and right drive wheels 5 and the rear wheel 7, so that the rear wheel 7 does not lift from the floor surface even if it suddenly stops when moving forward. Weight distribution.
- the drive wheel 5 is formed by fitting a rubber tire having a groove into the wheel so as not to slip even if suddenly stopped.
- FIG. 5 is an explanatory diagram showing a conventional configuration and operation of the floor detection sensor 12.
- the floor detection sensor 12 is an optical sensor, has a case 13, and includes a light emitting element (infrared light emitting diode) 14a and a light receiving element (phototransistor) 14b in the case 13.
- a transparent protective plate 15 is provided to protect the light emitting element 14a and the light receiving element 14b.
- the light beam LF emitted from the light emitting element 14a irradiates the black floor surface FB at a normal position and the white floor surface FW1 at the position of the descending step through the transparent protective plate 15, and reflects the light.
- the situation where light is received by the light receiving element 14b through the transparent protective plate 15 is shown.
- the output corresponding to the intensity of the light received by the light receiving element 14b is compared with a predetermined value by the control unit 12a (FIG. 3).
- the control unit 12a determines that the floor surface is normal when the intensity of light received by the light receiving element 14b is greater than a predetermined value. If the intensity is less than the predetermined value, the floor surface is not normal, that is, “down step”. It is judged that.
- the light beam LF emitted from the light-emitting element 14a diverges in a conical shape with an opening (divergence angle) of an angle ⁇ (for example, 20 degrees) around the optical axis Xa.
- the intensity distribution of light perpendicular to the optical axis Xa of the light beam LF generally shows a Gaussian distribution that decreases with increasing distance from the optical axis Xa in the radial direction around the optical axis Xa.
- the control unit 12a determines that the floor surface is normal when the reflected light along the light beam, that is, the reflected light on the floor surface FB from the intersection P1 of the optical axes Xa and Xb is incident on the light receiving element 14b. Yes.
- the white floor surface FW1 having a high light reflectivity low-intensity light that is greatly separated in the radial direction from the optical axis Xa irradiates the floor surface FW1 that is separated from the floor surface 2a by the distance HW1, and is applied to the optical axis Xb.
- the reflected light on the floor surface FW1 enters the light receiving element 14b from the intersection P2 between the reflected light along the optical axis Xb and the light beam LF that is separated from the optical axis Xa in the radial direction.
- the control unit 12a When the reflectance of the light on the white floor surface FW1 is sufficiently higher than that of the black floor surface FB and the reflected light has the same light intensity as the reflected light of the black floor surface FB, the control unit 12a The floor is normal. " Therefore, the white floor FW1 (at a depth HW1 from the bottom plate 2a) shown in FIG. 5 is not determined as a “downward step”.
- a diaphragm element B1 for narrowly limiting the opening (divergence angle) of the light beam LF irradiated from the light emitting element 14a is provided in the irradiation light path of the light emitting element 14a.
- the aperture element B1 shields a part of the light beam LF on the opposite side of the light receiving element 14b with respect to the optical axis Xa of the light emitting element 14a.
- the low-intensity light that is greatly separated from the optical axis Xa of the light beam LF in the radial direction does not reach the white floor FW1, so the white floor FW2 is at the intersection P3 of the light close to the optical axis Xa and the optical axis Xb.
- the reflected light from the white floor FW2 at a distance HW2 from the bottom plate 2a is received by the light receiving element 14b, and the floor is determined to be normal. That is, the distance to the white floor surface that is determined as “the floor surface is normal” is shortened from HW1 to HW2.
- FIG. 7 shows a modification of this embodiment, in which the aperture element B1 is formed integrally with the bottom plate 2a.
- FIG. 8 is an explanatory diagram showing the configuration of the floor detection sensor of this embodiment.
- the aperture element B1 shown in FIG. 6 is replaced with an aperture element B2.
- the aperture element B2 is provided with an elongated through hole 42 that narrows the opening of the light beam LF to be passed.
- the diaphragm element B2 can also be formed integrally with the bottom plate 2a.
- Other configurations and functions are the same as those of the first embodiment.
- FIG. 9 is an explanatory diagram showing the configuration of the floor detection sensor of this embodiment.
- the aperture element B1 shown in FIG. 6 is replaced with an aperture element B3.
- the aperture element B3 includes a slit 43 that narrows the opening of the light beam LF to be passed.
- the diaphragm element B3 can also be formed integrally with the bottom plate 2a.
- Other configurations and functions are the same as those of the first embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electric Vacuum Cleaner (AREA)
- Electric Suction Cleaners (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
The purpose of the present invention is to prevent malfunctions in a floor surface detection sensor (12). The present invention provides a self-propelled cleaner which comprises: a housing which has a cleaning member and can be self-propelled over a floor surface; an optical floor surface detection sensor (12) which is exposed from the housing toward the floor surface; and a control unit which controls the cleaning member and controls the self-propelled movement of the housing in response to reception of output from the floor surface detection sensor (12). The floor surface detection sensor (12) includes a light emitting element (14a) which projects light flux (LF) toward the floor surface, a light receiving element (14b) which receives reflected light from the floor surface, and a diaphragm element (B1) which limits the light flux (LF) to a narrow divergence.
Description
この発明は自走式掃除機に関する。
This invention relates to a self-propelled cleaner.
この発明の背景技術としては、自走しながら床面上の塵埃を空気と共に筐体内に吸引し、塵埃を除去した空気を外部に排出するようにした掃除機において、赤外線センサのような光学式の床面検知センサを筐体の床面との対向面に設置して床面を監視し、掃除機が床面の段差(クリフ)などに落込まないようにしたものが知られている(例えば、特許文献1参照)。
As a background art of this invention, in a vacuum cleaner that sucks dust on the floor surface together with air into the casing while self-propelled and discharges the air from which dust is removed to the outside, an optical system such as an infrared sensor is used. It is known that the floor surface detection sensor is installed on the surface opposite to the floor surface of the housing and the floor surface is monitored so that the vacuum cleaner does not fall into the floor (cliff) etc. ( For example, see Patent Document 1).
しかしながら、従来のこのような自走式掃除機においては、床面の色が異なると床面からの反射光の強度が異なるため、床面検知センサが正確に床面を検知することができなくなり、掃除機が下向きの段差(クリフ)に落下するなどの誤動作を生じていた。この発明はこのような事情を考慮してなされたものであり、床面の色の変化に対して床面検知センサの検知能力を正しく維持して掃除機の誤動作を防止するようにしたものである。
However, in such a conventional self-propelled vacuum cleaner, if the floor color is different, the intensity of the reflected light from the floor surface is different, so the floor detection sensor cannot accurately detect the floor surface. , Malfunctions such as a vacuum cleaner falling to a downward step (cliff). The present invention has been made in consideration of such circumstances, and is intended to prevent the malfunction of the vacuum cleaner by correctly maintaining the detection ability of the floor surface detection sensor with respect to the color change of the floor surface. is there.
この発明は、掃除用部材を有して床面を自走可能な筐体と、筐体から床面に向かって露出する光学式の床面検知センサと、掃除用部材を制御すると共に、床面検知センサの出力を受けて筐体の自走動作を制御する制御部とを備え、前記床面検知センサは、床面に向かって光束を照射する発光素子と、床面からの反射光を受光する受光素子と、前記光束のひらきを狭く制限する絞り素子とを備える自走式掃除機を提供するものである。
The present invention includes a housing having a cleaning member and capable of self-propelling the floor, an optical floor detection sensor exposed from the housing toward the floor, a cleaning member, and a floor A control unit that controls the self-running operation of the housing in response to the output of the surface detection sensor, the floor detection sensor including a light emitting element that emits a light beam toward the floor surface, and reflected light from the floor surface. The present invention provides a self-propelled cleaner that includes a light receiving element that receives light and a diaphragm element that restricts narrowing of the light flux.
この発明によれば、床面を照射する発光素子の光束のひらきが絞り素子により狭く制限されるので、光束の光強度分布の幅が狭くなり、床の色の変化(反射率の変化)によって受光素子が受光する反射光の強度変化が小さくなる。従って、床面の色の変化によって生じる床面までの検出距離の変動の幅が小さくなり、検出精度が向上し、掃除機の誤動作が防止される。
According to the present invention, since the light flux of the light emitting element that irradiates the floor surface is narrowly limited by the aperture element, the width of the light intensity distribution of the light flux is narrowed, and the floor color changes (reflectance changes). The intensity change of the reflected light received by the light receiving element is reduced. Therefore, the variation range of the detection distance to the floor surface caused by the change in the color of the floor surface is reduced, the detection accuracy is improved, and the malfunction of the cleaner is prevented.
この発明の特徴は、掃除用部材を有して床面を自走可能な筐体と、筐体から床面に向かって露出する光学式の床面検知センサと、掃除用部材を制御すると共に、床面検知センサの出力を受けて筐体の自走動作を制御する制御部とを備え、前記床面検知センサは、床面に向かって光束を照射する発光素子と、床面からの反射光を受光する受光素子と、前記光束のひらきを狭く制限する絞り素子とを備える自走式掃除機である。
A feature of the present invention is that a housing having a cleaning member and capable of self-propelling the floor, an optical floor detection sensor exposed from the housing toward the floor, and a cleaning member are controlled. A control unit that controls the self-running operation of the housing in response to the output of the floor detection sensor, the floor detection sensor including a light emitting element that emits a light beam toward the floor, and a reflection from the floor The self-propelled cleaner includes a light receiving element that receives light and a diaphragm element that restricts the opening of the light beam.
前記絞り素子が、発光素子の光軸に関して受光素子と反対側で前記光束を遮光する遮光部材であってもよい。
前記絞り素子が前記光束を制限して通過させる貫通孔を有する素子からなってもよい。
前記絞り素子が前記光束を制限して通過させるスリットを有する素子からなってもよい。
前記絞り素子が筐体と一体に形成されてなってもよい。 The aperture element may be a light blocking member that blocks the light beam on the side opposite to the light receiving element with respect to the optical axis of the light emitting element.
The aperture element may be an element having a through hole that allows the light beam to pass therethrough.
The aperture element may be composed of an element having a slit for restricting and passing the light beam.
The aperture element may be formed integrally with the housing.
前記絞り素子が前記光束を制限して通過させる貫通孔を有する素子からなってもよい。
前記絞り素子が前記光束を制限して通過させるスリットを有する素子からなってもよい。
前記絞り素子が筐体と一体に形成されてなってもよい。 The aperture element may be a light blocking member that blocks the light beam on the side opposite to the light receiving element with respect to the optical axis of the light emitting element.
The aperture element may be an element having a through hole that allows the light beam to pass therethrough.
The aperture element may be composed of an element having a slit for restricting and passing the light beam.
The aperture element may be formed integrally with the housing.
(第1実施形態)
図1は本発明の第1実施形態に係る自走式掃除機の上から見た斜視図であり、図2は図1に示される自走式掃除機の底面図であり、図3は図1に示す自走式掃除機の制御回路のブロック図である。また、図4は図1に示す自走式掃除機の側面から見た内部構成説明図である。 (First embodiment)
1 is a top perspective view of the self-propelled cleaner according to the first embodiment of the present invention, FIG. 2 is a bottom view of the self-propelled cleaner shown in FIG. 1, and FIG. It is a block diagram of the control circuit of the self-propelled cleaner shown in FIG. FIG. 4 is an explanatory diagram of the internal structure as seen from the side of the self-propelled cleaner shown in FIG.
図1は本発明の第1実施形態に係る自走式掃除機の上から見た斜視図であり、図2は図1に示される自走式掃除機の底面図であり、図3は図1に示す自走式掃除機の制御回路のブロック図である。また、図4は図1に示す自走式掃除機の側面から見た内部構成説明図である。 (First embodiment)
1 is a top perspective view of the self-propelled cleaner according to the first embodiment of the present invention, FIG. 2 is a bottom view of the self-propelled cleaner shown in FIG. 1, and FIG. It is a block diagram of the control circuit of the self-propelled cleaner shown in FIG. FIG. 4 is an explanatory diagram of the internal structure as seen from the side of the self-propelled cleaner shown in FIG.
この発明に係る自走式掃除機(以下、掃除ロボットという)は、床面を自走しながら、床面上の塵埃を空気と共に吸い込み、塵埃を除去した空気を排気することにより床面を掃除するようになっている。
A self-propelled cleaner (hereinafter referred to as a cleaning robot) according to the present invention cleans a floor surface by sucking dust on the floor surface together with air and exhausting the air from which the dust is removed while traveling on the floor surface. It is supposed to be.
掃除ロボット1Aは、円盤形の筐体2を備え、この筐体2の上面に排気口41を備える。図2に示すように底板2aには、回転ブラシ3、一対のサイドブラシ4、吸引口11、一対の駆動輪5、後輪7、前輪8、および床面検知センサ12が設けられている。なお、床面検知センサ12はその検知面が底板2aから床面に向かって露出している。
The cleaning robot 1 </ b> A includes a disk-shaped housing 2, and an exhaust port 41 on the upper surface of the housing 2. As shown in FIG. 2, the bottom plate 2a is provided with a rotating brush 3, a pair of side brushes 4, a suction port 11, a pair of drive wheels 5, a rear wheel 7, a front wheel 8, and a floor surface detection sensor 12. The detection surface of the floor surface detection sensor 12 is exposed from the bottom plate 2a toward the floor surface.
また、筐体2内には、図4に示すように吸引口11に接続された吸引路10と、吸引路10の下流側に設けられた集塵部20と、集塵部20の下流側に設けられた電動送風機30と、電動送風機30と排気口41とを接続する排気路40とを備える。
Further, in the housing 2, as shown in FIG. 4, a suction path 10 connected to the suction port 11, a dust collection unit 20 provided on the downstream side of the suction path 10, and a downstream side of the dust collection unit 20 And an exhaust passage 40 that connects the electric blower 30 and the exhaust port 41 to each other.
筐体2は、図1に示すように、蓋2b1および蓋2b1の後方位置に形成された排気口41を有する平面視円形の天板2bと、底板2aおよび天板2bの外周部に沿って設けられた平面視円環形の側板2cとを備えている。天板2bには掃除ロボット1Aの作動条件や作動指令を入力する操作パネル31が設けられている。
Housing 2, as shown in FIG. 1, a top plate 2b in plan view a circle having a lid 2b 1 and the exhaust port 41 formed in the rear position of the lid 2b 1, the outer peripheral portion of the bottom plate 2a and the top plate 2b And a side plate 2c having an annular shape in plan view. The top panel 2b is provided with an operation panel 31 for inputting operation conditions and operation commands for the cleaning robot 1A.
底板2a(図2)には、前輪8および一対の駆動輪5の下部を筐体2内から外部へ突出させる複数の孔部が形成されている。また、側板2cの前方には、図1に示すように掃除ロボット1Aの進行方向の障害物を検出する複数の超音波センサ9が設けられている。
The bottom plate 2a (FIG. 2) is formed with a plurality of holes for projecting the lower portions of the front wheel 8 and the pair of drive wheels 5 from the inside of the housing 2 to the outside. Further, as shown in FIG. 1, a plurality of ultrasonic sensors 9 for detecting obstacles in the traveling direction of the cleaning robot 1A are provided in front of the side plate 2c.
一対の駆動輪5は、筐体2の底板2aと平行な軸5a(図2)を中心に回転可能に設けられており、一対の駆動輪5が同一方向に回転すると筐体2が進退し、各駆動輪5が互いに逆方向に回転すると筐体2が回転するようになっている。
The pair of drive wheels 5 are provided so as to be rotatable around an axis 5a (FIG. 2) parallel to the bottom plate 2a of the housing 2. When the pair of drive wheels 5 rotate in the same direction, the housing 2 advances and retreats. When the drive wheels 5 rotate in opposite directions, the housing 2 rotates.
一対の駆動輪5の回転軸は、後述する一対の走行モータからそれぞれ個別に回転力が得られるように連結されており、各走行モータは筐体2の底板2aの内面に直接またはサスペンション機構を介して固定されている。
The rotation shafts of the pair of drive wheels 5 are connected to each other so that rotational force can be obtained individually from a pair of travel motors described later, and each travel motor has a suspension mechanism directly or on the inner surface of the bottom plate 2a of the housing 2. Is fixed through.
前輪8はローラからなり、進路上に現れた段差に接触したとき、筐体2が上りの段差を容易に乗り越えられるよう、駆動輪5が接触する床面から少し浮き上がる位置に筐体2の底板2aに回転自在に設けられている。
The front wheel 8 is made of a roller, and when contacting the step appearing on the path, the bottom plate of the housing 2 is positioned so as to slightly lift from the floor surface with which the driving wheel 5 contacts so that the housing 2 can easily get over the upstep. 2a is rotatably provided.
後輪7は自在車輪からなり、床面と接触するように筐体2の底板2aの一部に回転自在に設けられている。
このように、筐体2に対して前後方向の中間に一対の駆動輪5を配置し、前輪8を床面から浮かせ、掃除ロボット1Aの全重量を一対の駆動輪5と後輪7によって支持できるように、筐体2に対して前後方向に重量が配分されている。これにより、進路前方の塵埃を前輪8によって遮ることなく吸込口11に導くことができる。 Therear wheel 7 is a free wheel and is rotatably provided on a part of the bottom plate 2a of the housing 2 so as to be in contact with the floor surface.
In this way, the pair ofdrive wheels 5 are arranged in the middle of the front and rear direction with respect to the housing 2, the front wheels 8 are lifted from the floor surface, and the entire weight of the cleaning robot 1 </ b> A is supported by the pair of drive wheels 5 and the rear wheels 7. The weight is distributed in the front-rear direction with respect to the housing 2 so that it is possible. Thereby, the dust in front of the course can be guided to the suction port 11 without being blocked by the front wheel 8.
このように、筐体2に対して前後方向の中間に一対の駆動輪5を配置し、前輪8を床面から浮かせ、掃除ロボット1Aの全重量を一対の駆動輪5と後輪7によって支持できるように、筐体2に対して前後方向に重量が配分されている。これにより、進路前方の塵埃を前輪8によって遮ることなく吸込口11に導くことができる。 The
In this way, the pair of
前述の回転ブラシ3は、筐体2の底板2aと平行な軸を中心に回転可能に吸込口11の入口に設けられている。また、底板2aにおける吸込口11の左右両側のサイドブラシ4は、底板2aと垂直な軸を中心に回転するようになっている。回転ブラシ3は、回転軸であるローラの外周面に螺旋状にブラシを植設することにより形成されている。
The rotary brush 3 described above is provided at the inlet of the suction port 11 so as to be rotatable around an axis parallel to the bottom plate 2a of the housing 2. The side brushes 4 on the left and right sides of the suction port 11 in the bottom plate 2a rotate about an axis perpendicular to the bottom plate 2a. The rotating brush 3 is formed by implanting a brush spirally on the outer peripheral surface of a roller that is a rotating shaft.
サイドブラシ4は、底板2aに直交する回転軸と、回転軸の下端に放射状に設けられた複数本のブラシ束を有している。回転ブラシ3の回転軸および一対のサイドブラシ4の回転軸は、筐体2の底板2aの内面に支持されると共に、その付近に設けられた後述するブラシ駆動モータと、プーリおよびベルトを含む動力伝達機構を介して連結されている。
The side brush 4 has a rotating shaft orthogonal to the bottom plate 2a and a plurality of brush bundles provided radially at the lower end of the rotating shaft. The rotating shaft of the rotating brush 3 and the rotating shaft of the pair of side brushes 4 are supported on the inner surface of the bottom plate 2a of the housing 2, and include a brush drive motor, which will be described later, and power including a pulley and a belt. It is connected via a transmission mechanism.
筐体2の底板2aにおける前輪8の前方には、前述のように床面を検知する床面検知センサ12が配置され、床面における下りの段差を検知するようになっている。床面検知センサ12によって下りの段差が検知されると、その検知信号が後述の制御部に送信され、制御部が両駆動輪5を停止するよう制御する。それによって、掃除ロボット1Aの下り段差への落下が防止される。また、制御部は、床面検知センサ12が下りの段差を検知すると、下りの段差を回避して走行するように制御してもよい。
As described above, the floor surface detection sensor 12 for detecting the floor surface is arranged in front of the front wheel 8 on the bottom plate 2a of the housing 2 so as to detect a downward step on the floor surface. When a downward step is detected by the floor surface detection sensor 12, a detection signal is transmitted to a control unit described later, and the control unit controls the drive wheels 5 to stop. As a result, the cleaning robot 1A is prevented from falling to the down step. In addition, when the floor surface detection sensor 12 detects a down step, the control unit may perform control so as to avoid the down step.
筐体2の側板2cの後端には、内蔵するバッテリーの充電を行う充電端子(図示しない)が設けられている。室内を自走しながら掃除する掃除ロボット1Aは、掃除が終了すると室内に設置されている充電台に帰還する。
A charging terminal (not shown) for charging a built-in battery is provided at the rear end of the side plate 2 c of the housing 2. The cleaning robot 1 </ b> A that cleans the room while traveling by itself returns to the charging stand installed in the room when the cleaning is completed.
これにより、充電台に設けられた端子部に充電端子が接触し、バッテリーの充電が行われる。商用電源(コンセント)に接続される充電台は、通常、室内の側壁に沿って設置される。なお、バッテリーは、各種モータ等の各駆動制御要素に電力を供給する。
This causes the charging terminal to come into contact with the terminal portion provided on the charging stand, and the battery is charged. The charging stand connected to the commercial power source (outlet) is usually installed along the side wall of the room. The battery supplies power to each drive control element such as various motors.
図4に示す集塵部20は、吸引路10に接続される集塵ボックス21と、集塵ボックス21に着脱可能に設けられたフィルタ22とを有している。集塵ボックス21は、通常、筐体2内に収納されているが、集塵ボックス21内に捕集された塵埃を廃棄する際は、筐体2の蓋2b1(図1)を開いて出し入れされるようになっている。
The dust collection unit 20 illustrated in FIG. 4 includes a dust collection box 21 connected to the suction path 10 and a filter 22 provided in the dust collection box 21 so as to be detachable. The dust collection box 21 is usually housed in the housing 2. However, when the dust collected in the dust collection box 21 is discarded, the lid 2 b 1 (FIG. 1) of the housing 2 is opened. It comes to be taken in and out.
図3に示すように、掃除ロボット1A全体の動作制御を行う制御回路は、制御部15a、掃除ロボット1Aの動作に係る設定条件や作動指令を入力する操作パネル31、走行マップ18aを記憶する記憶部18、電動送風機30を駆動するためのモータドライバ30a、駆動輪5の走行モータ51を駆動するためのモータドライバ51a、回転ブラシ3とサイドブラシ4を駆動するブラシ用モータ17を駆動するためのモータドライバ17a、床面検知センサ12を制御する制御ユニット12a、超音波センサ9を制御する制御ユニット9a等を備える。
As shown in FIG. 3, the control circuit for controlling the operation of the entire cleaning robot 1A has a control unit 15a, an operation panel 31 for inputting setting conditions and operation commands related to the operation of the cleaning robot 1A, and a memory for storing a travel map 18a. Unit 18, motor driver 30 a for driving the electric blower 30, motor driver 51 a for driving the traveling motor 51 of the drive wheel 5, and brush motor 17 for driving the rotating brush 3 and the side brush 4. A motor driver 17a, a control unit 12a for controlling the floor detection sensor 12, a control unit 9a for controlling the ultrasonic sensor 9, and the like are provided.
制御部15aはCPU、ROM、RAMからなるマイクロコンピュータを備え、記憶部18に予め記憶されたプログラムデータに基いて、モータドライバ30a、51a、17aに個別に制御信号を送信し、電動送風機30、走行モータ51およびブラシ用モータ17を駆動制御して、一連の掃除運転を行う。なお、プログラムデータには、床面の広い領域を清掃する通常モード用と、壁際に沿って清掃する壁際モード用のプログラムデータなどが含まれる。
The control unit 15a includes a microcomputer including a CPU, a ROM, and a RAM, and individually transmits control signals to the motor drivers 30a, 51a, and 17a based on program data stored in advance in the storage unit 18, and the electric blower 30, A series of cleaning operations are performed by drivingly controlling the travel motor 51 and the brush motor 17. Note that the program data includes program data for a normal mode for cleaning a wide area of the floor, and for a wall-side mode for cleaning along a wall.
また、制御部15aは、ユーザーによる設定条件や作動指令を操作パネル31から受け入れて記憶部18に記憶させる。この記憶部18に記憶される走行マップ18aは、掃除ロボット1Aの設置場所周辺の走行経路や走行速度などといった走行に係る情報であり、予めユーザーによって記憶部18に記憶させるか、あるいは掃除ロボット1A自体が掃除運転中に自動的に記録することができる。
Further, the control unit 15a accepts the setting conditions and operation commands by the user from the operation panel 31 and stores them in the storage unit 18. The travel map 18a stored in the storage unit 18 is information related to travel such as a travel route and travel speed around the installation location of the cleaning robot 1A, and is stored in the storage unit 18 in advance by the user or the cleaning robot 1A. It can automatically record itself during cleaning operation.
このように構成された掃除ロボット1Aにおいて、操作パネル31からの掃除運転開始の指令により、電動送風機30、駆動輪5、回転ブラシ3およびサイドブラシ4が駆動する。これにより、回転ブラシ3、サイドブラシ4、駆動輪5および後輪7が床面に接触した状態で、掃除ロボット1Aは所定の範囲を自走しながら吸込口11から床面の塵埃を含む空気を吸い込む。
In the cleaning robot 1 </ b> A configured as described above, the electric blower 30, the drive wheel 5, the rotating brush 3, and the side brush 4 are driven by a cleaning operation start command from the operation panel 31. As a result, the cleaning robot 1A is in a state where the rotating brush 3, the side brush 4, the drive wheel 5, and the rear wheel 7 are in contact with the floor surface, and the air containing dust on the floor surface from the suction port 11 while traveling in a predetermined range. Inhale.
このとき、回転ブラシ3の回転によって床面上の塵埃は掻き上げられて吸込口11に導かれる。また、サイドブラシ4の回転によって吸込口11の側方の塵埃が吸込口11に導かれる。
At this time, the dust on the floor surface is scraped up by the rotation of the rotating brush 3 and guided to the suction port 11. Further, the dust on the side of the suction port 11 is guided to the suction port 11 by the rotation of the side brush 4.
吸込口11から筐体2内に吸い込まれた塵埃を含む空気は、筐体2の吸引路10(図4)を通り、集塵ボックス21内に流入する。集塵ボックス21内に流入した気流は、フィルター22を通過して塵埃が除去された後、電動送風機30に流入して排気路40に導かれ、排気口41から外部へ排出される。この際、集塵ボックス21内の気流に含まれる塵埃は、フィルター22によって捕獲され、集塵ボックス21内に堆積する。
The air containing dust sucked into the housing 2 from the suction port 11 flows into the dust collection box 21 through the suction path 10 (FIG. 4) of the housing 2. The airflow that has flowed into the dust collection box 21 passes through the filter 22 and dust is removed, then flows into the electric blower 30, is guided to the exhaust path 40, and is discharged from the exhaust port 41 to the outside. At this time, the dust contained in the airflow in the dust collection box 21 is captured by the filter 22 and accumulated in the dust collection box 21.
また、掃除ロボット1Aは、前述のように進路上の障害物を検出した場合および掃除領域の周縁に到達した場合、駆動輪5が一旦停止し、次に左右の駆動輪5を互いに逆方向に回転して向きを変える。これにより、掃除ロボット1Aは、設置場所全体あるいは所望範囲全体に障害物を避けながら自走して掃除をすることができる。
Further, when the cleaning robot 1A detects an obstacle on the course as described above and reaches the periphery of the cleaning area, the driving wheel 5 temporarily stops, and then the left and right driving wheels 5 are moved in opposite directions. Rotate to change direction. Accordingly, the cleaning robot 1A can perform self-propelled cleaning while avoiding obstacles in the entire installation place or the entire desired range.
また、掃除ロボット1Aは、前述のように、左右の駆動輪5と後輪7の3点で接触しており、前進時に急停止しても後輪7が床面から浮き上がらないようなバランスで重量配分されている。
Further, as described above, the cleaning robot 1A is in contact at the three points of the left and right drive wheels 5 and the rear wheel 7, so that the rear wheel 7 does not lift from the floor surface even if it suddenly stops when moving forward. Weight distribution.
そのため、掃除ロボット1Aが前進中に下りの段差の手前で急停止しても、それによって掃除ロボット1Aが前のめりに傾いて下りの段差へ落下するということが防止されている。なお、駆動輪5は、急停止してもスリップしないよう、溝を有するゴムタイヤをホイールに嵌め込んで形成されている。
Therefore, even if the cleaning robot 1A suddenly stops in front of the down step while moving forward, the cleaning robot 1A is prevented from tilting forward and falling to the down step. The drive wheel 5 is formed by fitting a rubber tire having a groove into the wheel so as not to slip even if suddenly stopped.
<床面検知センサについて>
図5は床面検知センサ12の従来の構成と作用を示す説明図である。同図に示すように床面検知センサ12は、光学式センサであり、ケース13を有し、ケース13の中に発光素子(赤外線発光ダイオード)14aと、受光素子(フォトトランジスタ)14bを備えると共に、発光素子14aと受光素子14bを保護する透明保護板15を備える。 <About the floor detection sensor>
FIG. 5 is an explanatory diagram showing a conventional configuration and operation of thefloor detection sensor 12. As shown in the figure, the floor detection sensor 12 is an optical sensor, has a case 13, and includes a light emitting element (infrared light emitting diode) 14a and a light receiving element (phototransistor) 14b in the case 13. A transparent protective plate 15 is provided to protect the light emitting element 14a and the light receiving element 14b.
図5は床面検知センサ12の従来の構成と作用を示す説明図である。同図に示すように床面検知センサ12は、光学式センサであり、ケース13を有し、ケース13の中に発光素子(赤外線発光ダイオード)14aと、受光素子(フォトトランジスタ)14bを備えると共に、発光素子14aと受光素子14bを保護する透明保護板15を備える。 <About the floor detection sensor>
FIG. 5 is an explanatory diagram showing a conventional configuration and operation of the
図5は、発光素子14aからの出射された光束LFが透明保護板15を介して正常な位置にある黒い床面FBと、下り段差の位置にある白い床面FW1とを照射し、その反射光が透明保護板15を介して受光素子14bに受光される状況を示している。
In FIG. 5, the light beam LF emitted from the light emitting element 14a irradiates the black floor surface FB at a normal position and the white floor surface FW1 at the position of the descending step through the transparent protective plate 15, and reflects the light. The situation where light is received by the light receiving element 14b through the transparent protective plate 15 is shown.
受光素子14bが受光した光の強度に対応する出力は制御ユニット12a(図3)で所定値と比較される。制御ユニット12aは、受光素子14bが受光した光の強度が所定値より大きいと、床面は正常であると判断し、所定値以下であると、床面は正常でない、つまり「下りの段差」であると判断する。そして、これらの判断結果は制御部15aへ入力される。
The output corresponding to the intensity of the light received by the light receiving element 14b is compared with a predetermined value by the control unit 12a (FIG. 3). The control unit 12a determines that the floor surface is normal when the intensity of light received by the light receiving element 14b is greater than a predetermined value. If the intensity is less than the predetermined value, the floor surface is not normal, that is, “down step”. It is judged that. These determination results are input to the control unit 15a.
図5に示すように、発光素子14aから出射される光束LFは、光軸Xaを中心に角度θ(例えば、20度)のひらき(発散角)を有して円錐状に発散する。光束LFの光軸Xaに直交する光の強度分布は、一般的に光軸Xaを中心として光軸Xaから半径方向に離れるに従って低下するガウス分布を示す。
As shown in FIG. 5, the light beam LF emitted from the light-emitting element 14a diverges in a conical shape with an opening (divergence angle) of an angle θ (for example, 20 degrees) around the optical axis Xa. The intensity distribution of light perpendicular to the optical axis Xa of the light beam LF generally shows a Gaussian distribution that decreases with increasing distance from the optical axis Xa in the radial direction around the optical axis Xa.
従って、光の反射率の低い黒い床面FBに関しては、光軸Xaに沿った強度の高い光が底板2aから距離HBだけ離れた床面FBを照射し、かつ、受光感度の高い光軸Xbに沿った反射光、つまり、光軸XaとXbの交点P1から床面FBの反射光が受光素子14bへ入射したとき、制御ユニット12aは「床面は正常である」と判断するようにしている。
Therefore, for the black floor surface FB with low light reflectivity, light with high intensity along the optical axis Xa irradiates the floor surface FB separated by the distance HB from the bottom plate 2a, and the optical axis Xb with high light receiving sensitivity. The control unit 12a determines that the floor surface is normal when the reflected light along the light beam, that is, the reflected light on the floor surface FB from the intersection P1 of the optical axes Xa and Xb is incident on the light receiving element 14b. Yes.
一方、光の反射率の高い白い床面FW1に関しては、光軸Xaから半径方向に大きく離れた強度の低い光が床面2aから距離HW1だけ離れた床面FW1を照射し、光軸Xbに沿った反射光、つまり、光束LFの光軸Xaから半径方向に離れた光と光軸Xbとの交点P2から床面FW1の反射光が受光素子14bへ入射する。
On the other hand, for the white floor surface FW1 having a high light reflectivity, low-intensity light that is greatly separated in the radial direction from the optical axis Xa irradiates the floor surface FW1 that is separated from the floor surface 2a by the distance HW1, and is applied to the optical axis Xb. The reflected light on the floor surface FW1 enters the light receiving element 14b from the intersection P2 between the reflected light along the optical axis Xb and the light beam LF that is separated from the optical axis Xa in the radial direction.
このとき、白い床面FW1の光の反射率が黒い床面FBより十分に高く、その反射光が黒い床面FBの反射光と同程度の光強度を有する場合には、制御ユニット12aは「床面は正常である」と判断してしまう。
従って、図5に示す白い床面FW1(底板2aから距離HW1の深さにある)は、「下り段差」と判断されないことになる。 At this time, when the reflectance of the light on the white floor surface FW1 is sufficiently higher than that of the black floor surface FB and the reflected light has the same light intensity as the reflected light of the black floor surface FB, thecontrol unit 12a The floor is normal. "
Therefore, the white floor FW1 (at a depth HW1 from thebottom plate 2a) shown in FIG. 5 is not determined as a “downward step”.
従って、図5に示す白い床面FW1(底板2aから距離HW1の深さにある)は、「下り段差」と判断されないことになる。 At this time, when the reflectance of the light on the white floor surface FW1 is sufficiently higher than that of the black floor surface FB and the reflected light has the same light intensity as the reflected light of the black floor surface FB, the
Therefore, the white floor FW1 (at a depth HW1 from the
そこで、この実施形態では、図6に示すように、発光素子14aから照射される光束LFのひらき(発散角)を狭く制限する絞り素子B1を発光素子14aの照射光路中に設置している。この絞り素子B1は、発光素子14aの光軸Xaに関して受光素子14bの反対側で光束LFの一部を遮光するようになっている。
Therefore, in this embodiment, as shown in FIG. 6, a diaphragm element B1 for narrowly limiting the opening (divergence angle) of the light beam LF irradiated from the light emitting element 14a is provided in the irradiation light path of the light emitting element 14a. The aperture element B1 shields a part of the light beam LF on the opposite side of the light receiving element 14b with respect to the optical axis Xa of the light emitting element 14a.
これによって、白い床面FW1には光束LFの光軸Xaから半径方向に大きく離れた強度の低い光は届かなくなるので、光軸Xaに近い光と光軸Xbとの交点P3に白い床面FW2が存在するときには、底板2aから距離HW2にある白い床面FW2からの反射光が受光素子14bに受光され、床面は正常であると判断される。つまり、「床面は正常」と判断される白い床面までの距離がHW1からHW2に短縮される。
従って、床面の色、つまり光の反射率が変化しても、「床面は正常」と検知される床面までの距離の変化が小さくなり、床面センサ12の下り段差を検知する精度が向上する。
図7はこの実施例の変形例であり、絞り素子B1が底板2aと一体に形成されている。 As a result, the low-intensity light that is greatly separated from the optical axis Xa of the light beam LF in the radial direction does not reach the white floor FW1, so the white floor FW2 is at the intersection P3 of the light close to the optical axis Xa and the optical axis Xb. Is present, the reflected light from the white floor FW2 at a distance HW2 from thebottom plate 2a is received by the light receiving element 14b, and the floor is determined to be normal. That is, the distance to the white floor surface that is determined as “the floor surface is normal” is shortened from HW1 to HW2.
Therefore, even if the color of the floor surface, that is, the reflectance of light changes, the change in the distance to the floor surface that is detected as “normal on the floor surface” becomes small, and the accuracy of detecting the descending step of thefloor surface sensor 12 is reduced. Will improve.
FIG. 7 shows a modification of this embodiment, in which the aperture element B1 is formed integrally with thebottom plate 2a.
従って、床面の色、つまり光の反射率が変化しても、「床面は正常」と検知される床面までの距離の変化が小さくなり、床面センサ12の下り段差を検知する精度が向上する。
図7はこの実施例の変形例であり、絞り素子B1が底板2aと一体に形成されている。 As a result, the low-intensity light that is greatly separated from the optical axis Xa of the light beam LF in the radial direction does not reach the white floor FW1, so the white floor FW2 is at the intersection P3 of the light close to the optical axis Xa and the optical axis Xb. Is present, the reflected light from the white floor FW2 at a distance HW2 from the
Therefore, even if the color of the floor surface, that is, the reflectance of light changes, the change in the distance to the floor surface that is detected as “normal on the floor surface” becomes small, and the accuracy of detecting the descending step of the
FIG. 7 shows a modification of this embodiment, in which the aperture element B1 is formed integrally with the
(第2実施形態)
図8はこの実施形態の床面検知センサの構成を示す説明図である。
図8に示すようにこの実施形態では、図6に示す絞り素子B1を絞り素子B2に置換している。絞り素子B2は通過させる光束LFのひらきを狭く制限する細長い貫通孔42を備える。なお、絞り素子B2も底板2aと一体に形成できる。その他の構成と機能は第1実施形態と同等である。 (Second Embodiment)
FIG. 8 is an explanatory diagram showing the configuration of the floor detection sensor of this embodiment.
As shown in FIG. 8, in this embodiment, the aperture element B1 shown in FIG. 6 is replaced with an aperture element B2. The aperture element B2 is provided with an elongated throughhole 42 that narrows the opening of the light beam LF to be passed. The diaphragm element B2 can also be formed integrally with the bottom plate 2a. Other configurations and functions are the same as those of the first embodiment.
図8はこの実施形態の床面検知センサの構成を示す説明図である。
図8に示すようにこの実施形態では、図6に示す絞り素子B1を絞り素子B2に置換している。絞り素子B2は通過させる光束LFのひらきを狭く制限する細長い貫通孔42を備える。なお、絞り素子B2も底板2aと一体に形成できる。その他の構成と機能は第1実施形態と同等である。 (Second Embodiment)
FIG. 8 is an explanatory diagram showing the configuration of the floor detection sensor of this embodiment.
As shown in FIG. 8, in this embodiment, the aperture element B1 shown in FIG. 6 is replaced with an aperture element B2. The aperture element B2 is provided with an elongated through
(第3実施形態)
図9はこの実施形態の床面検知センサの構成を示す説明図である。
図9に示すようにこの実施形態では、図6に示す絞り素子B1を絞り素子B3に置換している。絞り素子B3は通過させる光束LFのひらきを狭く制限するスリット43を備える。なお、絞り素子B3も底板2aと一体に形成できる。その他の構成と機能は第1実施形態と同等である。 (Third embodiment)
FIG. 9 is an explanatory diagram showing the configuration of the floor detection sensor of this embodiment.
As shown in FIG. 9, in this embodiment, the aperture element B1 shown in FIG. 6 is replaced with an aperture element B3. The aperture element B3 includes aslit 43 that narrows the opening of the light beam LF to be passed. The diaphragm element B3 can also be formed integrally with the bottom plate 2a. Other configurations and functions are the same as those of the first embodiment.
図9はこの実施形態の床面検知センサの構成を示す説明図である。
図9に示すようにこの実施形態では、図6に示す絞り素子B1を絞り素子B3に置換している。絞り素子B3は通過させる光束LFのひらきを狭く制限するスリット43を備える。なお、絞り素子B3も底板2aと一体に形成できる。その他の構成と機能は第1実施形態と同等である。 (Third embodiment)
FIG. 9 is an explanatory diagram showing the configuration of the floor detection sensor of this embodiment.
As shown in FIG. 9, in this embodiment, the aperture element B1 shown in FIG. 6 is replaced with an aperture element B3. The aperture element B3 includes a
1A 掃除ロボット
2 筐体
2a 底板
2b1 蓋
2b 天板
2c 側板
3 回転ブラシ
4 サイドブラシ
5 駆動輪
7 後輪
8 前輪
9 超音波センサ
10 吸引路
11 吸引口
12 床面検知センサ
13 ケース
14a 発光素子
14b 受光素子
15 保護板
20 集塵部
21 集塵ボックス
22 フィルタ
30 電動送風機
31 操作パネル
40 排気路
41 排気口
42 貫通孔
43 スリット
B1~B3 絞り素子 DESCRIPTION OFSYMBOLS 1A Cleaning robot 2 Case 2a Bottom plate 2b 1 Lid 2b Top plate 2c Side plate 3 Rotating brush 4 Side brush 5 Drive wheel 7 Rear wheel 8 Front wheel 9 Ultrasonic sensor 10 Suction path 11 Suction port 12 Floor detection sensor 13 Case 14a Light emitting element 14 b Light receiving element 15 Protective plate 20 Dust collecting part 21 Dust collecting box 22 Filter 30 Electric blower 31 Operation panel 40 Exhaust passage 41 Exhaust port 42 Through hole 43 Slit B1 to B3 Aperture element
2 筐体
2a 底板
2b1 蓋
2b 天板
2c 側板
3 回転ブラシ
4 サイドブラシ
5 駆動輪
7 後輪
8 前輪
9 超音波センサ
10 吸引路
11 吸引口
12 床面検知センサ
13 ケース
14a 発光素子
14b 受光素子
15 保護板
20 集塵部
21 集塵ボックス
22 フィルタ
30 電動送風機
31 操作パネル
40 排気路
41 排気口
42 貫通孔
43 スリット
B1~B3 絞り素子 DESCRIPTION OF
Claims (5)
- 掃除用部材を有して床面を自走可能な筐体と、筐体から床面に向かって露出する光学式の床面検知センサと、掃除用部材を制御すると共に、床面検知センサの出力を受けて筐体の自走動作を制御する制御部とを備え、前記床面検知センサは、床面に向かって光束を照射する発光素子と、床面からの反射光を受光する受光素子と、前記光束のひらきを狭く制限する絞り素子とを備える自走式掃除機。 A housing having a cleaning member and capable of self-propelling the floor, an optical floor detection sensor exposed from the housing toward the floor, a cleaning member, and a floor detection sensor A control unit that receives the output and controls the self-running operation of the housing, wherein the floor surface detection sensor is a light emitting element that emits a light beam toward the floor surface, and a light receiving element that receives reflected light from the floor surface And a diaphragm element that restricts the opening of the luminous flux narrowly.
- 前記絞り素子が、発光素子の光軸に関して受光素子と反対側で前記光束を遮光する遮光部材である請求項1記載の自走式掃除機。 The self-propelled cleaner according to claim 1, wherein the aperture element is a light shielding member that shields the light beam on the side opposite to the light receiving element with respect to the optical axis of the light emitting element.
- 前記絞り素子が前記光束を制限して通過させる貫通孔を有する素子からなる請求項1記載の自走式掃除機。 The self-propelled cleaner according to claim 1, wherein the aperture element comprises an element having a through-hole through which the luminous flux is restricted and passed.
- 前記絞り素子が前記光束を制限して通過させるスリットを有する素子からなる請求項1記載の自走式掃除機。 The self-propelled cleaner according to claim 1, wherein the aperture element comprises an element having a slit that allows the luminous flux to pass therethrough.
- 前記絞り素子が筐体と一体に形成されてなる請求項1~4のいずれか1つに記載の自走式掃除機。 The self-propelled cleaner according to any one of claims 1 to 4, wherein the aperture element is formed integrally with a casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680002393.7A CN106793906A (en) | 2015-01-30 | 2016-01-19 | Self-propelled suction cleaner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-016979 | 2015-01-30 | ||
JP2015016979A JP6475994B2 (en) | 2015-01-30 | 2015-01-30 | Self-propelled vacuum cleaner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121576A1 true WO2016121576A1 (en) | 2016-08-04 |
Family
ID=56543193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051441 WO2016121576A1 (en) | 2015-01-30 | 2016-01-19 | Self-propelled cleaner |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6475994B2 (en) |
CN (1) | CN106793906A (en) |
WO (1) | WO2016121576A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI691299B (en) * | 2017-11-08 | 2020-04-21 | 日商日立環球生活方案股份有限公司 | Autonomous walking electric sweeping robot |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TR201706484A2 (en) | 2017-05-03 | 2018-11-21 | Arcelik As | WORKING PERFORMANCE IMPROVED Broom |
CN109541633B (en) | 2018-11-09 | 2020-10-30 | 深圳市银星智能科技股份有限公司 | Ground detection device, robot and ground detection method |
KR20240062838A (en) * | 2022-11-02 | 2024-05-09 | 삼성전자주식회사 | Cleaning robot |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254853A (en) * | 1990-02-14 | 1993-10-19 | Stefan Reich | Optical sensing device |
JPH0719859A (en) * | 1993-06-29 | 1995-01-20 | Omron Corp | Reflection type photoelectric sensor |
US20020016649A1 (en) * | 2000-01-24 | 2002-02-07 | Jones Joseph L. | Robot obstacle detection system |
JP2006153730A (en) * | 2004-11-30 | 2006-06-15 | Sharp Corp | Range sensor and apparatus equipped with the same |
US20140088761A1 (en) * | 2012-09-21 | 2014-03-27 | Irobot Corporation | Proximity Sensing On Mobile Robots |
JP2014226266A (en) * | 2013-05-21 | 2014-12-08 | 株式会社東芝 | Vacuum cleaner |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4674506B2 (en) * | 2005-08-05 | 2011-04-20 | パナソニック株式会社 | Electric vacuum cleaner |
KR101412581B1 (en) * | 2007-12-11 | 2014-06-26 | 엘지전자 주식회사 | Detecting apparatus of robot cleaner |
DE102009023066A1 (en) * | 2009-04-01 | 2010-10-07 | Vorwerk & Co. Interholding Gmbh | Automatically movable device, in particular self-propelled ground dust collecting device |
-
2015
- 2015-01-30 JP JP2015016979A patent/JP6475994B2/en active Active
-
2016
- 2016-01-19 WO PCT/JP2016/051441 patent/WO2016121576A1/en active Application Filing
- 2016-01-19 CN CN201680002393.7A patent/CN106793906A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5254853A (en) * | 1990-02-14 | 1993-10-19 | Stefan Reich | Optical sensing device |
JPH0719859A (en) * | 1993-06-29 | 1995-01-20 | Omron Corp | Reflection type photoelectric sensor |
US20020016649A1 (en) * | 2000-01-24 | 2002-02-07 | Jones Joseph L. | Robot obstacle detection system |
JP2006153730A (en) * | 2004-11-30 | 2006-06-15 | Sharp Corp | Range sensor and apparatus equipped with the same |
US20140088761A1 (en) * | 2012-09-21 | 2014-03-27 | Irobot Corporation | Proximity Sensing On Mobile Robots |
JP2014226266A (en) * | 2013-05-21 | 2014-12-08 | 株式会社東芝 | Vacuum cleaner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI691299B (en) * | 2017-11-08 | 2020-04-21 | 日商日立環球生活方案股份有限公司 | Autonomous walking electric sweeping robot |
Also Published As
Publication number | Publication date |
---|---|
JP6475994B2 (en) | 2019-02-27 |
CN106793906A (en) | 2017-05-31 |
JP2016140444A (en) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271284B2 (en) | Self-propelled vacuum cleaner charging unit and charging system | |
WO2016121576A1 (en) | Self-propelled cleaner | |
WO2013164924A1 (en) | Self-propelled electronic apparatus | |
JP5937877B2 (en) | Self-propelled vacuum cleaner | |
KR102426578B1 (en) | Robot cleaner and controlling method thereof | |
JP5138895B2 (en) | Traveling robot position sensing device and robot cleaner provided with the same | |
KR20210133918A (en) | Robot cleaner | |
JP6189636B2 (en) | Electric vacuum cleaner | |
JP2017153787A (en) | Self-travel type vacuum cleaner | |
JP6116134B2 (en) | Suction port body and self-propelled vacuum cleaner provided with the same | |
JP2018057615A (en) | Autonomous travel-type vacuum cleaner | |
JP2018041253A (en) | Self-propelled vacuum cleaner | |
JP2017038768A (en) | Self-travelling type vacuum cleaner | |
JP2018061535A (en) | Self-travelling vacuum cleaner | |
JP6506972B2 (en) | Self-propelled vacuum cleaner | |
KR101052166B1 (en) | Automatic cleaner and its control method | |
JP6626723B2 (en) | A moving object that moves on the floor | |
JP6640603B2 (en) | Self-propelled vacuum cleaner | |
JP5887018B2 (en) | Self-propelled vacuum cleaner | |
JP5918899B2 (en) | Self-propelled vacuum cleaner | |
JP6140335B2 (en) | Self-propelled vacuum cleaner | |
JP2018057619A (en) | Self-propelled vacuum cleaner | |
JP2018057620A (en) | Self-travel type vacuum cleaner | |
JP2018061539A (en) | Vacuum cleaner | |
JP6581556B2 (en) | Self-propelled vacuum cleaner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743180 Country of ref document: EP Kind code of ref document: A1 |