WO2016121534A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016121534A1
WO2016121534A1 PCT/JP2016/051142 JP2016051142W WO2016121534A1 WO 2016121534 A1 WO2016121534 A1 WO 2016121534A1 JP 2016051142 W JP2016051142 W JP 2016051142W WO 2016121534 A1 WO2016121534 A1 WO 2016121534A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanner
screen
optical system
optical path
lens
Prior art date
Application number
PCT/JP2016/051142
Other languages
French (fr)
Japanese (ja)
Inventor
川井 清幸
大西 道久
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2016121534A1 publication Critical patent/WO2016121534A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen

Definitions

  • the present invention relates to a display device such as a head-up display device that forms a virtual image in front of a windshield of a vehicle using a light beam such as a laser beam.
  • Patent Document 1 includes a light source, a scanning unit that scans a light beam from the light source, a diffuser that forms an intermediate image by scanning the light beam of the scanning unit, and a projection unit that projects the intermediate image formed on the diffuser.
  • a vehicle head-up display device that projects a virtual image in front of a driver by reflecting light of an intermediate image emitted from a screen by a projection unit is disclosed.
  • the virtual image display distance can be changed by changing the position of the diffuser.
  • the plurality of diffusers are arranged so that the distance and the position from the scanning unit are different, and thereby the virtual image display distance can be changed.
  • the scan image projected on the diffuser has a higher resolution as the beam diameter of the projection light is smaller.
  • the diffuser provided at a plurality of different positions is used.
  • the scan image is projected as it is, when the parallelism of the light incident on the scanning means is low, if the beam diameter of the light projected on one of the plurality of diffusers at different positions is minimized, The beam diameter of the light beam projected on the diffuser other than the above becomes large.
  • the parallelism of the light rays incident on the scanning means is increased, the change in the beam diameter accompanying the change in the position of the diffuser is reduced, but it is difficult to narrow down the beam diameter.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a display device capable of injecting light beams while focusing on each screen on which an intermediate image is formed by scanning the light beams. It is in.
  • a display device is a display device that displays an image corresponding to an intermediate image formed on each of two screens.
  • the light source emits a light beam, and the light beam from the light source is transmitted between the two screens.
  • a scanner that selectively reflects toward either one and scans the screen with the reflected light beam, and a projection that projects an image corresponding to the intermediate image formed on the screen by scanning the light beam of the scanner
  • An optical system is disposed in at least one of an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens, and the focal point of the light beam from the scanner in the screen on the arranged optical path. And at least one intermediate optical system. In each of the two screens, the rays from the scanner are in focus.
  • the intermediate optical system is disposed in at least one of an optical path from the scanner to the one screen and an optical path from the scanner to the other screen.
  • the light beam from the scanner is focused by the intermediate optical system.
  • the light beam from the scanner is focused on the screen without using the intermediate optical system.
  • the system focuses the light beam from the scanner. Accordingly, it becomes possible to make the light beam enter the focused screen on each of the two screens on which the intermediate image is formed by scanning the light beam.
  • the intermediate optical system having a positive refractive power may be disposed in an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens.
  • the length of the optical path from the scanner to the one screen may be relatively different from the length of the optical path from the scanner to the other screen, and the optical path arranged in the relatively short optical path may be used.
  • the intermediate optical system may have a larger positive refractive power than the intermediate optical system disposed in the relatively long optical path.
  • the intermediate optical system having a negative refractive power may be disposed in an optical path from the scanner to one of the screens and an optical path from the scanner to the other screen.
  • the length of the optical path from the scanner to the one screen may be relatively different from the length of the optical path from the scanner to the other screen, and the optical path arranged in the relatively long optical path may be used.
  • the intermediate optical system may have a larger negative refractive power than the intermediate optical system disposed in the relatively short optical path.
  • the intermediate optical system having a positive refractive power is disposed in an optical path from the scanner to one of the screens, and the intermediate optical system having a negative refractive power is disposed in an optical path from the scanner to the other of the screens. May be arranged.
  • the optical path in which the intermediate optical system having the positive refractive power is arranged may be shorter than the optical path in which the intermediate optical system having the negative refractive power is arranged. According to said structure, it becomes easy to focus on each of two screens which distanced.
  • the intermediate optical system disposed in an optical path from the scanner to one of the screens and the intermediate optical system disposed in an optical path from the scanner to the other screen have a common optical axis.
  • the scanner may reflect the light beam from the light source on a reflection surface that can rotate around an axis passing through the common optical axis. According to said structure, it becomes easy to make a light beam accurately inject into each of two said intermediate
  • the intermediate optical system may be arranged in any one of an optical path from the scanner to the one screen and an optical path from the scanner to the other screen.
  • the intermediate optical system may have a positive refractive power, and the optical path in which the intermediate optical system having the positive refractive power is disposed may be shorter than the optical path in which the intermediate optical system is not disposed.
  • the intermediate optical system may have a negative refractive power, and the optical path in which the intermediate optical system having the negative refractive power is disposed is longer than the optical path in which the intermediate optical system is not disposed. It's okay. According to the above configuration, the number of intermediate optical systems used is reduced.
  • the scanner may reflect a light beam from the light source on a rotating reflecting surface.
  • the distance from the reflecting surface to the intermediate optical system and the distance from the intermediate optical system to the screen may both be equal to the focal length of the intermediate optical system.
  • the light beam can be focused on each screen (for example, a diffuser) on which the intermediate image is formed by scanning the light beam, the resolution of the intermediate image can be increased.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG. 1 shows the example which applied the display apparatus which concerns on 1st Embodiment to the head-up display apparatus for vehicles.
  • FIG. 1 is a plan view showing a configuration of a display device 10 according to the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of the display device 10 shown in FIG.
  • FIG. 3 is a partially enlarged view of FIG.
  • the display device 10 includes a light source 20, a scanner 30 as a scanning unit, a first lens 41 as an intermediate optical system, a second lens 42 as an intermediate optical system, 1 screen 51, 2nd screen 52, the projection lens 60 as a projection optical system, the light source driver 21, the scanner driver 31, the control part 70, and the memory 71 are provided.
  • the light source 20 is a light source that emits amplitude-modulated visible region laser light as parallel light, and emits light having an intensity corresponding to the amount of current supplied from the light source driver 21.
  • the amplitude modulation and the amount of current supplied from the light source driver 21 are controlled by the control unit 70.
  • the scanner 30 is, for example, a galvanometer mirror or a MEMS mirror, and the scanner driver 31 rotates the reflecting surface 33 around an axis passing through the rear shaft 60c of the projection lens 60.
  • the laser light emitted from the light source 20 is selectively reflected toward one of the first screen 51 and the second screen 52 by the rotating reflecting surface 33 and emitted as scanning light to the two scanning regions.
  • the two scanning regions are a first scanning region A1 (FIG. 3) where the scanning light is incident on the first lens 41 and a second scanning region A2 (FIG. 3) where the scanning light is incident on the second lens 42. .
  • the traveling direction of reflected light from the scanner 30 toward the first scanning region A1 is defined as a first reflecting direction D1
  • the traveling direction of reflected light from the scanner 30 toward the second scanning region A2 is defined as a second reflection. This will be described as the direction D2.
  • the rotation direction and rotation speed of the scanner 30 are controlled by the control unit 70, and the scanner driver 31 rotates the scanner 30 in accordance with a control signal from the control unit 70.
  • the axis on which the reflecting surface 33 of the scanner 30 rotates is disposed on an extension line of the optical axis 60c of the projection lens 60, and extends, for example, in the Y-axis direction and the Z-axis direction (direction perpendicular to the paper surface of FIG. 3).
  • the XY plane is a plane perpendicular to the Z-axis direction.
  • a first lens 41 and a first screen 51 are arranged in order from the scanner 30 side. That is, the first lens 41 is disposed on the optical path from the scanner 30 to the first screen 51. Further, a second lens 42 and a second screen 52 are arranged in this order from the scanner 30 side on a second reflection direction D2 different from the first reflection direction D1. That is, the second lens 42 is disposed on the optical path from the scanner 30 to the second screen 52.
  • the first lens 41 and the second lens 42 are arranged at positions where light emitted from one side does not enter the other. In other words, the first scanning area A1 and the second scanning area A2 do not overlap each other.
  • the first lens 41 is a biconvex positive lens arranged so that its optical axis is on the extended line of the optical axis 60c of the projection lens 60, and the first reflected light reflected in the first reflection direction D1 ( First scanning light) is condensed to form a first intermediate image on the first screen 51.
  • the first intermediate image is formed in a predetermined range of the first screen 51 by a scanning operation in which the incident light from the light source 20 is reflected by the reflecting surface 33 while rotating the scanner 30 around the rotation axis.
  • the optical axis of the first lens 41 connects the center of curvature of the first surface 41a (surface on the scanner 30 side) on the object side and the center of curvature of the second surface 41b (surface on the projection lens 60 side) on the image side.
  • the first lens 41 uses a portion above the optical axis in the Y-axis direction of FIG.
  • the first screen 51 is, for example, a diffuser (diffusion plate) that emits incident light as diffused light.
  • the distance from the incident surface 51a of one screen 51 is equal to the focal length f1 of the first lens 41, respectively.
  • the reflection point 33 a is disposed on an extension line of the optical axis 60 c of the projection lens 60.
  • the second lens 42 is a biconvex positive lens arranged so that its optical axis is on the extension line of the optical axis 60 c of the projection lens 60, and has a refractive index different from that of the first lens 41.
  • the second lens 42 collects the second reflected light (second scanning light) reflected in the second reflection direction D ⁇ b> 2 and forms a second intermediate image on the second screen 52.
  • the second intermediate image is formed in a predetermined range of the second screen 52 by a scanning operation in which incident light from the light source 20 is reflected by the reflecting surface 33 while rotating the scanner 30 around the rotation axis.
  • the optical axis of the second lens 42 is a line connecting the center of curvature of the first surface 42a on the object side and the center of curvature of the second surface 42b on the image side, and the second lens 42 has the Y axis in FIG. In the direction, the portion below the optical axis is used.
  • the second screen 52 is, for example, a diffuser that emits incident light as diffused light.
  • the distance from the incident surface 52a of the two screens 52 is equal to the focal length f2 of the second lens 42, respectively.
  • the light rays incident on the first lens 41 and the second lens 42 are condensed to reduce the beam diameter, and become diffused light on the first screen 51 and the second screen 52, respectively, thereby suppressing speckle noise. Can do. Further, since the first lens 41 and the second lens 42 can focus on a spot having a small beam diameter, a high-definition intermediate image can be obtained.
  • the first lens 41 and the second lens 42 may be lenses having different shapes as long as they have a positive refractive power. Moreover, it is good also as an optical system which consists of several lenses instead of a single lens.
  • the projection lens 60 is a biconvex positive lens, which enlarges the emitted light from the first screen 51 and the second screen 52, respectively, and makes virtual images I1 (first image) and I2 (first image) visible to the user's eye E. 2 images) are formed.
  • the virtual image I1 based on the first intermediate image on the first screen 51 and the virtual image I2 based on the second intermediate image on the second screen 52 are different from each other with the optical axis 60c of the projection lens 60 in the Y-axis direction as a boundary. Formed in position.
  • the virtual image I1 and the virtual image I2 are formed at different positions also in the direction of the optical axis 60c of the projection lens 60 (X-axis direction).
  • the virtual image display area is divided into two areas on the upper and lower sides of the optical axis 60c of the projection lens 60 in the Y-axis direction, that is, two areas corresponding to the two scanning areas A1 and A2.
  • the first lens 41 and the first screen 51 are arranged in the upper scanning area A1
  • the second lens 42 and the second screen 52 are arranged in the lower scanning area A2. It is arranged.
  • the light source 20, the scanner 30 as a scanning unit, and the projection lens 60 as a projection optical system were used as a common optical element. With such a configuration, different information can be displayed in the upper and lower regions in the Y-axis direction, and the images displayed in the two regions can have a difference in depth.
  • the distance from the projection lens 60 to the eye E is D
  • the distance from the projection lens 60 to the first screen 51 is S1
  • the distance from the projection lens 60 to the virtual image I1 is S2
  • the focus of the projection lens 60 When the distance is f3, the following formula (1) is established from the imaging formula.
  • the distance L between the virtual image I1 and the eye E that is, the display distance can be changed.
  • the distance S1 between the projection lens 60 and the first screen 51 is reduced, the distance S2 between the projection lens 60 and the virtual image I1 is also reduced, so that the distance L between the driver's eye E and the virtual image I1 is also reduced.
  • the first lens 41 having the positive refractive power and the first screen 51 are disposed in the first scanning region A1, and are different from the first scanning region A1.
  • a second lens 42 having a positive refractive power and a second screen 52 are arranged in the second scanning region A2, respectively, and a projection optical system based on intermediate images formed on the first screen and the second screen, respectively.
  • a projection optical system based on intermediate images formed on the first screen and the second screen, respectively.
  • the distance from the reflecting surface 33 of the scanner 30 to the front surface of the corresponding first lens 41 and the distance from the rear surface of the first lens 41 to the corresponding first screen 51 are the focal points of the first lens 41. Each distance is equal.
  • the distance from the reflecting surface 33 of the scanner 30 to the front surface of the corresponding second lens 42 and the distance from the rear surface of the second lens 42 to the corresponding second screen 52 are the focal length of the second lens 42.
  • the optical axes of the second lens 42 corresponding to the first lens 41 are on the same straight line, and the rotation axis of the reflecting surface 33 of the corresponding scanner 30 is located on this straight line.
  • the reflected light from the scanner 30 to each of the first lens 41 and the second lens 42 can be accurately and easily separated, so that the image based on the light emitted from the first lens 41 and the second lens
  • the image based on the emitted light from 42 can be displayed in a different area.
  • the positive refractive power of the first lens 41 is larger than the positive refractive power of the corresponding second lens 42, and the first screen 51 is disposed closer to the reflecting surface 33 than the second screen 52. Yes. Thereby, also in the direction of the optical axis 60c of the projection lens 60, two images can be displayed at different positions.
  • FIGS. 1 to 3 Next, an embodiment in which the display device according to this embodiment shown in FIGS. 1 to 3 is applied to a vehicle head-up display device will be described.
  • FIG. 4 is a plan view showing an example in which the display device according to the basic form is applied to a head-up display device 110 for a vehicle.
  • the second projection mirror 162 includes the light source 20, the scanner 30, the first lens 41, the second lens 42, the first screen 51, the second screen 52, and the display device shown in FIGS. Each corresponds to the projection lens 60.
  • the generated image light is reflected and enlarged by the first projection mirror 161 and the second projection mirror 162, and projected onto the display area of the windshield of the vehicle. This image light is reflected toward the driver in the display area, and at the same time, a virtual image is formed in front of the windshield.
  • the head-up display device 110 includes a case (not shown), and in this case, as shown in FIG. 4, a laser light source 120, a scanner 130 (scanning means), and a first lens 141 (on the optical base 111).
  • An intermediate optical system a second lens 142 (intermediate optical system), a first screen 151, a second screen 152, a first projection mirror 161, and a second projection mirror 162 (projection optical system).
  • the laser light source 120 is fixed to the optical base 111 and emits laser light in the visible region that is amplitude-modulated as parallel light.
  • the scanner 130 rotates around a rotation shaft 132 fixed to the optical base 111, and reflects incident light from the laser light source 120 to two scanning regions according to the direction of the reflecting surface 133. Similar to the display device shown in FIG. 1, the two scanning regions are a first scanning region where scanning light enters the first lens 141 and a second scanning region where scanning light enters the second lens 142.
  • the traveling direction of the reflected light from the scanner 130 toward the first scanning region is defined as a first reflecting direction D11
  • the traveling direction of the reflected light from the scanner 130 toward the second scanning region is defined as a second traveling direction.
  • the reflection direction is D12.
  • the operation of the scanner 130 is controlled in the same manner as the scanner 30 in FIGS.
  • a first lens 141 and a first screen 151 are arranged in this order from the scanner 130 side.
  • a second lens 142 and a second screen 152 are arranged in this order from the scanner 130 side on a second reflection direction D12 different from the first reflection direction D11.
  • the first lens 141 and the second lens 142 are disposed at a position where light emitted from one side does not enter the other. Therefore, the first scanning region and the second scanning region do not overlap each other.
  • the first lens 141 is configured and arranged in the same manner as the first lens 41 described above, and condenses the first reflected light reflected in the first reflection direction D1.
  • the condensed light is sequentially reflected by the two light transmission mirrors 143 and 144 and then formed on the first screen 151 as a first intermediate image.
  • the distance from the incident surface of one screen 151 is equal to the focal length of the first lens 141.
  • the second lens 142 is configured and arranged in the same manner as the second lens 42 described above, and condenses the second reflected light reflected in the second reflection direction D12.
  • the condensed light is sequentially reflected by the two light transmission mirrors 143 and 144 and then formed on the second screen 152 as a second intermediate image.
  • the distance from the incident surface of the two screens 152 is equal to the focal length of the second lens 142.
  • the first lens 141 and the second lens 142 are disposed outside the path of the reflected light from the first projection mirror 161.
  • the first screen 151 and the second screen 152 are, for example, diffusers (diffusion plates).
  • the light that has passed through the screens 151 and 152 becomes divergent projection light P1 and P2, respectively, and enters the first projection mirror 161 through the aperture 153a of the light shielding wall 153.
  • the reflecting surface 161a of the first projection mirror 161 is a concave mirror (magnifying mirror), and the projection lights P1 and P2 including the intermediate images formed on the screens 151 and 152 are magnified and reflected by the first projection mirror 161, respectively. . These reflected lights are incident on the second projection mirror 162, respectively.
  • the reflecting surface 162a of the second projection mirror 162 is also a concave mirror (magnifying mirror), and the incident projection lights P1 and P2 are further magnified and reflected and projected onto different positions in the display area of the windshield of the vehicle.
  • this display area functions as a semi-reflective surface, the incident image light is reflected toward the driver and a virtual image is formed in front of the windshield. By viewing the virtual image in front of the windshield, it appears to the driver that various types of information are displayed in front of the steering wheel.
  • FIG. 5 is a diagram showing an example of the configuration of a display device according to the second embodiment of the present invention.
  • the display device shown in FIG. 5 is obtained by replacing the first lens 41 and the second lens 42 as the intermediate optical system in the display device shown in FIG. 1 with a first lens 43 and a second lens 44, respectively.
  • the first lens 43 is a concave lens arranged so that its optical axis is on the extension line of the optical axis 60c of the projection lens 60, and has negative refractive power.
  • the first lens 43 forms a first intermediate image on the first screen 51 by dispersing the first reflected light (first scanning light) reflected in the first reflection direction D1.
  • the first lens 43 uses a portion above the optical axis in the Y-axis direction of FIG.
  • On the optical axis 60 c of the projection lens 60 the distance between the reflection point on the reflection surface 33 and the surface of the first lens 43 on the scanner 30 side, and the surface of the first lens 43 on the first screen 51 side and the first screen 51.
  • the distance from the incident surface is equal to the focal length of the first lens 43.
  • the reflection point of the reflection surface 33 is disposed on an extension line of the optical axis 60 c of the projection lens 60.
  • the second lens 44 is a concave lens arranged so that its optical axis is on the extension line of the optical axis 60 c of the projection lens 60, and has a negative refractive power larger than that of the first lens 43.
  • the second lens 44 disperses the second reflected light (second scanning light) reflected in the second reflection direction D ⁇ b> 2 and forms a second intermediate image on the second screen 52.
  • the second lens 44 uses a portion below the optical axis in the Y-axis direction of FIG.
  • On the optical axis 60 c of the projection lens 60 the distance between the reflection point on the reflection surface 33 and the surface of the second lens 44 on the scanner 30 side, and the surface of the second lens 44 on the second screen 52 side and the second screen 52. The distance from the incident surface is equal to the focal length of the second lens 44.
  • the second light beam is focused on these screens.
  • the lens 44 has a larger negative refractive power than the first lens 43.
  • the display device according to the present embodiment can obtain the same effects as those of the display device according to the first embodiment, and can be applied to a head-up display device as shown in FIG.
  • FIG. 6 is a diagram showing an example of the configuration of a display device according to the third embodiment of the present invention.
  • the display device shown in FIG. 6 is obtained by replacing the second lens 42 as the intermediate optical system in the display device shown in FIG.
  • the second lens 44 is the same as the component with the same reference numeral in FIG.
  • the focal length of the light incident on the first screen 51 is set. While the 1st lens 41 is shortened, the 2nd lens 44 is lengthening the focal distance of the light ray which injects into the 2nd screen 52.
  • the display device according to the present embodiment can obtain the same effects as those of the display device according to the first embodiment, and can be applied to a head-up display device as shown in FIG. Further, according to the present embodiment, when the distance between the first screen 51 and the second screen 52 is large, it is not necessary to extremely increase the refractive power of each intermediate optical system (41, 44). With a simple configuration, it is possible to easily focus on each screen.
  • FIG. 7 is a diagram showing an example of the configuration of a display device according to the fourth embodiment of the present invention.
  • the display device shown in FIG. 7 is obtained by omitting the second lens 42 in the display device shown in FIG.
  • a light beam incident on the second screen 52 is focused by setting an optical system (such as a collimator lens) built in the light source 20. Since the first screen 51 has a shorter distance from the light source 20 than the second screen 52, the light beam incident on the first screen 51 is focused by the first lens 41 having a positive refractive power. As described above, when the distance between the first screen 51 and the second screen 52 is relatively short, the two screens (51, 52) can be focused by one intermediate optical system (41).
  • FIG. 8 is a diagram showing an example of the configuration of a display device according to the fourth embodiment of the present invention.
  • the first lens 41 in the display device shown in FIG. 1 is omitted, and the second lens 42 is replaced with a second lens 44.
  • the second lens 44 is the same as the component with the same reference numeral in FIG.
  • the focus of the light beam incident on the first screen 51 is adjusted by the setting of an optical system (such as a collimator lens) built in the light source 20. Since the second screen 52 has a longer distance from the light source 20 than the first screen 51, the light beam incident on the second screen 52 is focused by the second lens 44 having a negative refractive power. Thus, when the distance between the first screen 51 and the second screen 52 is relatively short, the two screens (51, 52) can be focused by one intermediate optical system (44).
  • an optical system such as a collimator lens
  • the display device it is possible to obtain the same effect as the display device according to the first embodiment.
  • the number of intermediate optical systems used can be reduced, so that the configuration can be simplified.
  • the display device according to the present invention is useful for a head-up display device for a vehicle, and is suitable for displaying different images at a plurality of display positions.
  • Display apparatus 20 Light source 30 Scanner (scanning means) 33 Reflecting surface 41 First lens (intermediate optical system) 42 Second lens (intermediate optical system) 43 First lens (intermediate optical system) 44 Second lens (intermediate optical system) 51 First screen 52 Second screen 60 Projection lens (projection optical system) 60c Optical axis 110 Display device 120 Laser light source 130 Scanner (scanning means) 132 Rotating shaft 133 Reflecting surface 141 First lens (intermediate optical system) 142 Second lens (intermediate optical system) 151 First screen 152 Second screen 161 First projection mirror (projection optical system) 162 Second projection mirror (projection optical system) A1, A2 Scanning area D1, D2, D11, D12 Reflection direction E Eye f1, f2, f3 Focal length I1, I2 Virtual image L distance P1, P2 Projected light S1, S2 distance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

Provided is a display device capable of irradiating and focusing a beam onto each screen whereon an intermediate image is formed by beam scanning. The display device comprises: a scanner 30 for selectively reflecting a beam from a light source 20 toward either one of two screens (51, 52) and scanning the screens (51, 52) with the reflected beam; a projection optical system 60 for projecting an image according to the intermediate image formed on the screens (51, 52) by the beam scanning with the scanner 30; and intermediate optical systems (41, 42) respectively disposed in a light path from the scanner 30 to one screen 51 and in another light path from the scanner 30 to the other screen 52, and focusing the beam from the scanner 30 on the respective screens (51, 52).

Description

表示装置Display device
 本発明は、レーザ光などの光線を用いて車両のウインドシールドの前方に虚像を形成するヘッドアップディスプレイ装置などの表示装置に関する。 The present invention relates to a display device such as a head-up display device that forms a virtual image in front of a windshield of a vehicle using a light beam such as a laser beam.
 特許文献1は、光源と、光源からの光線を走査する走査手段と、走査手段の光線の走査により中間像が形成されるディフューザと、ディフューザに形成された中間像を投影する投影手段とを備え、スクリーンから出射した中間像の光を投影手段で反射させることによって、運転者の前方に虚像を投影する車両用ヘッドアップディスプレイ装置を開示している。図1、図2に示す例においては、ディフューザの位置を変更することにより虚像表示距離を変更可能としている。また、図3に示す例においては、複数のディフューザが、走査手段からの距離及び位置が異なるように配置されており、これにより、虚像表示距離を変更することができる。 Patent Document 1 includes a light source, a scanning unit that scans a light beam from the light source, a diffuser that forms an intermediate image by scanning the light beam of the scanning unit, and a projection unit that projects the intermediate image formed on the diffuser. A vehicle head-up display device that projects a virtual image in front of a driver by reflecting light of an intermediate image emitted from a screen by a projection unit is disclosed. In the example shown in FIGS. 1 and 2, the virtual image display distance can be changed by changing the position of the diffuser. In the example shown in FIG. 3, the plurality of diffusers are arranged so that the distance and the position from the scanning unit are different, and thereby the virtual image display distance can be changed.
特開2009-150947号公報JP 2009-150947 A
 ここで、ディフューザに投影されるスキャン画像は、投影光のビーム径が小さいほど解像度が高くなるが、特許文献1に示す車両用ヘッドアップディスプレイ装置においては、複数の異なる位置に設けられたディフューザに対してスキャン画像をそのまま投影していることから、走査手段に入射する光線の平行度が低い場合、異なる位置にある複数のディフューザの1つに投影される光線のビーム径を最小とすると、それ以外のディフューザに投影される光線のビーム径が大きくなってしまう。これに対して、走査手段に入射する光線の平行度を高めると、ディフューザの位置変化に伴うビーム径の変化は少なくなるが、ビーム径を小さく絞り込むことが難しくなってしまうものであった。 Here, the scan image projected on the diffuser has a higher resolution as the beam diameter of the projection light is smaller. However, in the vehicle head-up display device shown in Patent Document 1, the diffuser provided at a plurality of different positions is used. On the other hand, since the scan image is projected as it is, when the parallelism of the light incident on the scanning means is low, if the beam diameter of the light projected on one of the plurality of diffusers at different positions is minimized, The beam diameter of the light beam projected on the diffuser other than the above becomes large. On the other hand, when the parallelism of the light rays incident on the scanning means is increased, the change in the beam diameter accompanying the change in the position of the diffuser is reduced, but it is difficult to narrow down the beam diameter.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、光線の走査により中間像が結像される各スクリーンに焦点を合わせて光線を入射させることが可能な表示装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a display device capable of injecting light beams while focusing on each screen on which an intermediate image is formed by scanning the light beams. It is in.
 本発明に係る表示装置は、2つのスクリーンにそれぞれ結像される中間像に応じた画像を表示する表示装置であって、光線を出射する光源と、前記光源からの光線を前記2つのスクリーンの何れか一方に向けて選択的に反射し、当該反射した光線で前記スクリーンを走査するスキャナと、前記スキャナの光線の走査によって前記スクリーンに結像される前記中間像に応じた画像を投影する投影光学系と、前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路の少なくとも1つに配置され、当該配置された光路上の前記スクリーンにおいて前記スキャナからの光線の焦点を合わせる少なくとも1つの中間光学系とを備える。前記2つのスクリーンのそれぞれにおいて、前記スキャナからの光線の焦点が合っている。 A display device according to the present invention is a display device that displays an image corresponding to an intermediate image formed on each of two screens. The light source emits a light beam, and the light beam from the light source is transmitted between the two screens. A scanner that selectively reflects toward either one and scans the screen with the reflected light beam, and a projection that projects an image corresponding to the intermediate image formed on the screen by scanning the light beam of the scanner An optical system is disposed in at least one of an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens, and the focal point of the light beam from the scanner in the screen on the arranged optical path. And at least one intermediate optical system. In each of the two screens, the rays from the scanner are in focus.
 上記の構成によれば、前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路の少なくとも1つに前記中間光学系が配置される。前記中間光学系が配置された光路上の前記スクリーンでは、前記中間光学系により、前記スキャナからの光線の焦点が合わせられる。また、前記光路上に前記レンズが配置されない前記スクリーンが存在する場合、そのスクリーンにおいては、前記中間光学系を用いずに前記スキャナからの光線の焦点が合わせられ、その他のスクリーンでは、前記中間光学系により前記スキャナからの光線の焦点が合わせられる。従って、光線の走査により中間像が結像される前記2つのスクリーンの各々に焦点を合わせて光線を入射させることが可能となる。 According to the above configuration, the intermediate optical system is disposed in at least one of an optical path from the scanner to the one screen and an optical path from the scanner to the other screen. In the screen on the optical path where the intermediate optical system is disposed, the light beam from the scanner is focused by the intermediate optical system. Further, when there is the screen on which the lens is not disposed on the optical path, the light beam from the scanner is focused on the screen without using the intermediate optical system. The system focuses the light beam from the scanner. Accordingly, it becomes possible to make the light beam enter the focused screen on each of the two screens on which the intermediate image is formed by scanning the light beam.
 好適に、前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路に、それぞれ正の屈折力を持つ前記中間光学系が配置されてよい。
 この場合、前記スキャナから一方の前記スクリーンへ至る光路の長さと、前記スキャナから他方の前記スクリーンへ至る光路の長さとが相対的に異なっていてよく、相対的に短い前記光路に配置される前記中間光学系は、相対的に長い前記光路に配置される前記中間光学系に比べて大きな正の屈折力を持ってよい。
Preferably, the intermediate optical system having a positive refractive power may be disposed in an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens.
In this case, the length of the optical path from the scanner to the one screen may be relatively different from the length of the optical path from the scanner to the other screen, and the optical path arranged in the relatively short optical path may be used. The intermediate optical system may have a larger positive refractive power than the intermediate optical system disposed in the relatively long optical path.
 好適に、前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路に、それぞれ負の屈折力を持つ前記中間光学系が配置されてよい。
 この場合、前記スキャナから一方の前記スクリーンへ至る光路の長さと、前記スキャナから他方の前記スクリーンへ至る光路の長さとが相対的に異なっていてよく、相対的に長い前記光路に配置される前記中間光学系は、相対的に短い前記光路に配置される前記中間光学系に比べて大きな負の屈折力を持ってよい。
Preferably, the intermediate optical system having a negative refractive power may be disposed in an optical path from the scanner to one of the screens and an optical path from the scanner to the other screen.
In this case, the length of the optical path from the scanner to the one screen may be relatively different from the length of the optical path from the scanner to the other screen, and the optical path arranged in the relatively long optical path may be used. The intermediate optical system may have a larger negative refractive power than the intermediate optical system disposed in the relatively short optical path.
 好適に、前記スキャナから一方の前記スクリーンへ至る光路に正の屈折力を持つ前記中間光学系が配置され、前記スキャナから他方の前記スクリーンへ至る光路に負の屈折力を持つ前記中間光学系が配置されてよい。
 この場合、前記正の屈折力を持つ中間光学系が配置された前記光路は、前記負の屈折力を持つ中間光学系が配置された前記光路に比べて短くてよい。
 上記の構成によれば、距離が離れた2つのスクリーンの各々において焦点を合わせ易くなる。
Preferably, the intermediate optical system having a positive refractive power is disposed in an optical path from the scanner to one of the screens, and the intermediate optical system having a negative refractive power is disposed in an optical path from the scanner to the other of the screens. May be arranged.
In this case, the optical path in which the intermediate optical system having the positive refractive power is arranged may be shorter than the optical path in which the intermediate optical system having the negative refractive power is arranged.
According to said structure, it becomes easy to focus on each of two screens which distanced.
 好適に、前記スキャナから一方の前記スクリーンへ至る光路に配置された前記中間光学系と、前記スキャナから他方の前記スクリーンへ至る光路に配置された前記中間光学系とが共通の光軸を持ってよい。この場合、前記スキャナは、前記共通の光軸を通る軸の回りで回動可能な反射面において前記光源からの光線を反射してよい。
 上記の構成によれば、装置サイズの小型化を図りつつ、前記スキャナから2つの前記中間光学系の各々へ光線を正確に入射させ易くなる。
Preferably, the intermediate optical system disposed in an optical path from the scanner to one of the screens and the intermediate optical system disposed in an optical path from the scanner to the other screen have a common optical axis. Good. In this case, the scanner may reflect the light beam from the light source on a reflection surface that can rotate around an axis passing through the common optical axis.
According to said structure, it becomes easy to make a light beam accurately inject into each of two said intermediate | middle optical systems from the said scanner, aiming at size reduction of an apparatus.
 好適に、前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路の何れか1つに前記中間光学系が配置されてもよい。
 この場合、前記中間光学系は正の屈折力を持ってよく、前記正の屈折力を持つ中間光学系が配置された前記光路は、前記中間光学系が配置されない前記光路に比べて短くてよい。
 或いは、この場合、前記中間光学系は負の屈折力を持ってよく、前記負の屈折力を持つ中間光学系が配置された前記光路は、前記中間光学系が配置されない前記光路に比べて長くてよい。
 上記の構成によれば、前記中間光学系の使用個数が少なくなる。
Preferably, the intermediate optical system may be arranged in any one of an optical path from the scanner to the one screen and an optical path from the scanner to the other screen.
In this case, the intermediate optical system may have a positive refractive power, and the optical path in which the intermediate optical system having the positive refractive power is disposed may be shorter than the optical path in which the intermediate optical system is not disposed. .
Alternatively, in this case, the intermediate optical system may have a negative refractive power, and the optical path in which the intermediate optical system having the negative refractive power is disposed is longer than the optical path in which the intermediate optical system is not disposed. It's okay.
According to the above configuration, the number of intermediate optical systems used is reduced.
 好適に、前記スキャナは、回動する反射面において前記光源からの光線を反射してよい。この場合、前記反射面から前記中間光学系までの距離、及び、前記中間光学系から前記スクリーンまでの距離は、何れも前記中間光学系の焦点距離に等しくてよい。
 上記の構成によれば、前記スキャナからの光線の焦点を前記スクリーンにおいて合わせられるため、前記スクリーンにおける光線のビーム径が小さくなり、中間像の解像度が高くなる。
Preferably, the scanner may reflect a light beam from the light source on a rotating reflecting surface. In this case, the distance from the reflecting surface to the intermediate optical system and the distance from the intermediate optical system to the screen may both be equal to the focal length of the intermediate optical system.
According to the above configuration, since the light beam from the scanner can be focused on the screen, the beam diameter of the light beam on the screen is reduced, and the resolution of the intermediate image is increased.
 本発明によれば、光線の走査により中間像が結像される各スクリーン(例えばディフューザ)に焦点を合わせて光線を入射させることができるため、中間像の解像度を高めることができる。 According to the present invention, since the light beam can be focused on each screen (for example, a diffuser) on which the intermediate image is formed by scanning the light beam, the resolution of the intermediate image can be increased.
第1の実施形態に係る表示装置の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the display apparatus which concerns on 1st Embodiment. 図1に示す表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the display apparatus shown in FIG. 図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 1. 第1の実施形態に係る表示装置を車両用ヘッドアップディスプレイ装置に適用した例を示す平面図である。It is a top view which shows the example which applied the display apparatus which concerns on 1st Embodiment to the head-up display apparatus for vehicles. 第2の実施形態に係る表示装置の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the display apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る表示装置の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the display apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る表示装置の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the display apparatus which concerns on 4th Embodiment. 第5の実施形態に係る表示装置の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the display apparatus which concerns on 5th Embodiment.
<第1の実施形態>
 以下、本発明の第1の実施形態に係る表示装置について図面を参照しつつ詳しく説明する。
<First Embodiment>
Hereinafter, a display device according to a first embodiment of the present invention will be described in detail with reference to the drawings.
 図1は本実施形態に係る表示装置10の構成を示す平面図である。図2は、図1に示す表示装置10の構成を示すブロック図である。図3は、図1の一部拡大図である。
 図1又は図2に示すように、表示装置10は、光源20と、走査手段としてのスキャナ30と、中間光学系としての第1レンズ41と、中間光学系としての第2レンズ42と、第1スクリーン51と、第2スクリーン52と、投影光学系としての投影レンズ60と、光源ドライバ21と、スキャナドライバ31と、制御部70と、メモリ71とを備える。
FIG. 1 is a plan view showing a configuration of a display device 10 according to the present embodiment. FIG. 2 is a block diagram showing the configuration of the display device 10 shown in FIG. FIG. 3 is a partially enlarged view of FIG.
As shown in FIG. 1 or 2, the display device 10 includes a light source 20, a scanner 30 as a scanning unit, a first lens 41 as an intermediate optical system, a second lens 42 as an intermediate optical system, 1 screen 51, 2nd screen 52, the projection lens 60 as a projection optical system, the light source driver 21, the scanner driver 31, the control part 70, and the memory 71 are provided.
 光源20は、振幅変調された可視領域のレーザ光を平行光として出射する光源であって、光源ドライバ21から供給される電流量に応じた強度の光を出射する。振幅の変調、及び、光源ドライバ21から供給される電流量は制御部70によって制御される。 The light source 20 is a light source that emits amplitude-modulated visible region laser light as parallel light, and emits light having an intensity corresponding to the amount of current supplied from the light source driver 21. The amplitude modulation and the amount of current supplied from the light source driver 21 are controlled by the control unit 70.
 スキャナ30は、例えばガルバノミラーやMEMSミラーであって、スキャナドライバ31によって反射面33が投影レンズ60の後軸60cを通る軸のまわりで回動する。光源20から出射したレーザ光は、この回動する反射面33により第1スクリーン51及び第2スクリーン52の何れか一方に向けて選択的に反射され、2つの走査領域へ、走査光として出射される。2つの走査領域は、走査光が第1レンズ41に入射する第1の走査領域A1(図3)と、走査光が第2レンズ42に入射する第2の走査領域A2(図3)である。以下、第1の走査領域A1へのスキャナ30からの反射光の進行方向を第1の反射方向D1とし、第2の走査領域A2へのスキャナ30からの反射光の進行方向を第2の反射方向D2として説明する。 The scanner 30 is, for example, a galvanometer mirror or a MEMS mirror, and the scanner driver 31 rotates the reflecting surface 33 around an axis passing through the rear shaft 60c of the projection lens 60. The laser light emitted from the light source 20 is selectively reflected toward one of the first screen 51 and the second screen 52 by the rotating reflecting surface 33 and emitted as scanning light to the two scanning regions. The The two scanning regions are a first scanning region A1 (FIG. 3) where the scanning light is incident on the first lens 41 and a second scanning region A2 (FIG. 3) where the scanning light is incident on the second lens 42. . Hereinafter, the traveling direction of reflected light from the scanner 30 toward the first scanning region A1 is defined as a first reflecting direction D1, and the traveling direction of reflected light from the scanner 30 toward the second scanning region A2 is defined as a second reflection. This will be described as the direction D2.
 スキャナ30の回動方向及び回動速度は、制御部70によって制御され、制御部70からの制御信号にしたがって、スキャナドライバ31はスキャナ30を回動させる。スキャナ30の反射面33が回動する軸は、投影レンズ60の光軸60cの延長線上に配置されており、例えばY軸方向とZ軸方向(図3の紙面に垂直な方向)に延びている。なお、各図において、X-Y面はZ軸方向に垂直な面である。 The rotation direction and rotation speed of the scanner 30 are controlled by the control unit 70, and the scanner driver 31 rotates the scanner 30 in accordance with a control signal from the control unit 70. The axis on which the reflecting surface 33 of the scanner 30 rotates is disposed on an extension line of the optical axis 60c of the projection lens 60, and extends, for example, in the Y-axis direction and the Z-axis direction (direction perpendicular to the paper surface of FIG. 3). Yes. In each figure, the XY plane is a plane perpendicular to the Z-axis direction.
 スキャナ30による第1の反射方向D1上には、スキャナ30側から順に、第1レンズ41と第1スクリーン51が配置されている。すなわち、スキャナ30から第1スクリーン51へ至る光路上に第1レンズ41が配置される。
 また、前記第1の反射方向D1とは異なる第2の反射方向D2上には、スキャナ30側から順に、第2レンズ42と第2スクリーン52が配置されている。すなわち、スキャナ30から第2スクリーン52へ至る光路上に第2レンズ42が配置される。
On the first reflection direction D1 by the scanner 30, a first lens 41 and a first screen 51 are arranged in order from the scanner 30 side. That is, the first lens 41 is disposed on the optical path from the scanner 30 to the first screen 51.
Further, a second lens 42 and a second screen 52 are arranged in this order from the scanner 30 side on a second reflection direction D2 different from the first reflection direction D1. That is, the second lens 42 is disposed on the optical path from the scanner 30 to the second screen 52.
 第1レンズ41と第2レンズ42は、一方からの出射光が他方に入射しない位置に配置されている。別言すると、第1の走査領域A1と第2の走査領域A2は互いに重ならない。 The first lens 41 and the second lens 42 are arranged at positions where light emitted from one side does not enter the other. In other words, the first scanning area A1 and the second scanning area A2 do not overlap each other.
 第1レンズ41は、その光軸が投影レンズ60の光軸60cの延長線上にあるように配置された両凸正レンズであって、第1の反射方向D1に反射した第1の反射光(第1の走査光)を集光させて第1スクリーン51上に第1中間像を結像させる。第1中間像は、スキャナ30を回動軸の周りに回動させつつ、光源20からの入射光を反射面33で反射させるスキャン動作によって、第1スクリーン51の所定範囲に形成される。ここで、第1レンズ41の光軸は、物体側の第1面41a(スキャナ30側の面)の曲率中心と像側の第2面41b(投影レンズ60側の面)の曲率中心を結ぶ線であり、第1レンズ41は、図1のY軸方向において、光軸より上側の部分を使用している。第1スクリーン51は、例えば、入射光を拡散光として出射するディフューザ(拡散板)である。投影レンズ60の光軸60c上において、反射面33における反射点33aと第1レンズ41の第1面41a(前面)との距離、及び、第1レンズ41の第2面41b(後面)と第1スクリーン51の入射面51aとの距離は、それぞれ第1レンズ41の焦点距離f1に等しくされている。ここで、反射点33aは、投影レンズ60の光軸60cの延長線上に配置している。 The first lens 41 is a biconvex positive lens arranged so that its optical axis is on the extended line of the optical axis 60c of the projection lens 60, and the first reflected light reflected in the first reflection direction D1 ( First scanning light) is condensed to form a first intermediate image on the first screen 51. The first intermediate image is formed in a predetermined range of the first screen 51 by a scanning operation in which the incident light from the light source 20 is reflected by the reflecting surface 33 while rotating the scanner 30 around the rotation axis. Here, the optical axis of the first lens 41 connects the center of curvature of the first surface 41a (surface on the scanner 30 side) on the object side and the center of curvature of the second surface 41b (surface on the projection lens 60 side) on the image side. The first lens 41 uses a portion above the optical axis in the Y-axis direction of FIG. The first screen 51 is, for example, a diffuser (diffusion plate) that emits incident light as diffused light. On the optical axis 60c of the projection lens 60, the distance between the reflection point 33a on the reflection surface 33 and the first surface 41a (front surface) of the first lens 41, and the second surface 41b (rear surface) of the first lens 41 and the first surface. The distance from the incident surface 51a of one screen 51 is equal to the focal length f1 of the first lens 41, respectively. Here, the reflection point 33 a is disposed on an extension line of the optical axis 60 c of the projection lens 60.
 第2レンズ42は、その光軸が投影レンズ60の光軸60cの延長線上にあるように配置された両凸正レンズであって、第1レンズ41とは異なる屈折率を有する。この第2レンズ42は、第2の反射方向D2に反射した第2の反射光(第2の走査光)を集光させて第2スクリーン52上に第2中間像を結像させる。第2中間像は、スキャナ30を回動軸の周りに回動させつつ、光源20からの入射光を反射面33で反射させるスキャン動作によって、第2スクリーン52の所定範囲に形成される。ここで、第2レンズ42の光軸は、物体側の第1面42aの曲率中心と像側の第2面42bの曲率中心を結ぶ線であり、第2レンズ42は、図1のY軸方向において、光軸より下側の部分を使用している。第2スクリーン52は、例えば、入射光を拡散光として出射するディフューザである。投影レンズ60の光軸60c上において、反射面33における反射点33aと第2レンズ42の第1面42a(前面)との距離、及び、第2レンズ42の第2面42b(後面)と第2スクリーン52の入射面52aとの距離は、それぞれ第2レンズ42の焦点距離f2に等しくされている。 The second lens 42 is a biconvex positive lens arranged so that its optical axis is on the extension line of the optical axis 60 c of the projection lens 60, and has a refractive index different from that of the first lens 41. The second lens 42 collects the second reflected light (second scanning light) reflected in the second reflection direction D <b> 2 and forms a second intermediate image on the second screen 52. The second intermediate image is formed in a predetermined range of the second screen 52 by a scanning operation in which incident light from the light source 20 is reflected by the reflecting surface 33 while rotating the scanner 30 around the rotation axis. Here, the optical axis of the second lens 42 is a line connecting the center of curvature of the first surface 42a on the object side and the center of curvature of the second surface 42b on the image side, and the second lens 42 has the Y axis in FIG. In the direction, the portion below the optical axis is used. The second screen 52 is, for example, a diffuser that emits incident light as diffused light. On the optical axis 60c of the projection lens 60, the distance between the reflection point 33a on the reflection surface 33 and the first surface 42a (front surface) of the second lens 42, and the second surface 42b (rear surface) of the second lens 42 and the first surface. The distance from the incident surface 52a of the two screens 52 is equal to the focal length f2 of the second lens 42, respectively.
 第1レンズ41及び第2レンズ42に入射した光線はそれぞれ集光されてビーム径が細くなり、また、第1スクリーン51及び第2スクリーン52においてそれぞれ拡散光となるため、スペックルノイズを抑えることができる。また、第1レンズ41及び第2レンズ42によって小さなビーム径のスポットに集光できるため、高精細の中間像を得ることができる。なお、第1レンズ41と第2レンズ42は、正の屈折力を有していれば別の形状のレンズであってもよい。また、単レンズではなく複数のレンズからなる光学系としてもよい。 The light rays incident on the first lens 41 and the second lens 42 are condensed to reduce the beam diameter, and become diffused light on the first screen 51 and the second screen 52, respectively, thereby suppressing speckle noise. Can do. Further, since the first lens 41 and the second lens 42 can focus on a spot having a small beam diameter, a high-definition intermediate image can be obtained. The first lens 41 and the second lens 42 may be lenses having different shapes as long as they have a positive refractive power. Moreover, it is good also as an optical system which consists of several lenses instead of a single lens.
 投影レンズ60は両凸正レンズであり、第1スクリーン51及び第2スクリーン52からの出射光をそれぞれ拡大して、使用者の眼Eが視認可能な虚像I1(第1画像)、I2(第2画像)をそれぞれ形成する。第1スクリーン51における第1中間像に基づく虚像I1と、第2スクリーン52における第2中間像に基づく虚像I2とは、Y軸方向において投影レンズ60の光軸60cを境界として、互いに重ならない異なる位置に形成される。また、虚像I1と虚像I2は、投影レンズ60の光軸60cの方向(X軸方向)においても異なる位置に形成されている。 The projection lens 60 is a biconvex positive lens, which enlarges the emitted light from the first screen 51 and the second screen 52, respectively, and makes virtual images I1 (first image) and I2 (first image) visible to the user's eye E. 2 images) are formed. The virtual image I1 based on the first intermediate image on the first screen 51 and the virtual image I2 based on the second intermediate image on the second screen 52 are different from each other with the optical axis 60c of the projection lens 60 in the Y-axis direction as a boundary. Formed in position. Further, the virtual image I1 and the virtual image I2 are formed at different positions also in the direction of the optical axis 60c of the projection lens 60 (X-axis direction).
 表示装置10においては、虚像の表示領域を、Y軸方向において投影レンズ60の光軸60cの上側と下側の2つの領域、すなわち2つの走査領域A1、A2に対応する2つの領域に分割し、これらの領域のそれぞれに虚像を形成するために、上側の走査領域A1に第1レンズ41と第1スクリーン51を配置し、下側の走査領域A2に第2レンズ42と第2スクリーン52を配置している。また、光源20と、走査手段としてのスキャナ30と、投影光学系としての投影レンズ60とは、共通の光学素子として使用した。このような構成により、Y軸方向の上側と下側の2つの領域に異なる情報を表示することが可能となり、また、2つの領域に表示した画像に奥行き感の違いを持たせることができる。 In the display device 10, the virtual image display area is divided into two areas on the upper and lower sides of the optical axis 60c of the projection lens 60 in the Y-axis direction, that is, two areas corresponding to the two scanning areas A1 and A2. In order to form a virtual image in each of these areas, the first lens 41 and the first screen 51 are arranged in the upper scanning area A1, and the second lens 42 and the second screen 52 are arranged in the lower scanning area A2. It is arranged. Further, the light source 20, the scanner 30 as a scanning unit, and the projection lens 60 as a projection optical system were used as a common optical element. With such a configuration, different information can be displayed in the upper and lower regions in the Y-axis direction, and the images displayed in the two regions can have a difference in depth.
 図1に示すように、投影レンズ60から眼Eまでの距離をD、投影レンズ60から第1スクリーン51までの距離をS1、投影レンズ60から虚像I1までの距離をS2、投影レンズ60の焦点距離をf3とすると、結像公式から次式(1)が成り立つ。 As shown in FIG. 1, the distance from the projection lens 60 to the eye E is D, the distance from the projection lens 60 to the first screen 51 is S1, the distance from the projection lens 60 to the virtual image I1 is S2, and the focus of the projection lens 60 When the distance is f3, the following formula (1) is established from the imaging formula.
 1/S1-1/S2=1/f3   (1) 1 / S1-1 / S2 = 1 / f3 (1)
 ここで、眼Eと虚像I1との距離Lは距離Dと距離S2の和であるから、上式(1)より、次式(2)のように表すことができる。 Here, since the distance L between the eye E and the virtual image I1 is the sum of the distance D and the distance S2, it can be expressed by the following equation (2) from the above equation (1).
 L=D+S2=D+1/(1/S1-1/f3)   (2) L = D + S2 = D + 1 / (1 / S1-1 / f3) (2)
 したがって、投影レンズ60から第1スクリーン51までの距離S1を変化させれば、虚像I1と眼Eとの距離L、すなわち表示距離を変えることができる。例えば、投影レンズ60と第1スクリーン51との距離S1を小さくすると、投影レンズ60と虚像I1との距離S2も小さくなるため、運転者の眼Eと虚像I1との距離Lも小さくなる。 Therefore, if the distance S1 from the projection lens 60 to the first screen 51 is changed, the distance L between the virtual image I1 and the eye E, that is, the display distance can be changed. For example, when the distance S1 between the projection lens 60 and the first screen 51 is reduced, the distance S2 between the projection lens 60 and the virtual image I1 is also reduced, so that the distance L between the driver's eye E and the virtual image I1 is also reduced.
 これは、虚像I2についても同様であって、投影レンズ60から第2スクリーン52までの距離を変化させることによって虚像I2の表示距離を変えることができる。 This also applies to the virtual image I2, and the display distance of the virtual image I2 can be changed by changing the distance from the projection lens 60 to the second screen 52.
 以上のように構成されたことから、上記基本形態によれば、次の効果を奏する。この効果は、以下に説明する、車両用ヘッドアップディスプレイ装置に適用した例についても同様である。 Since it is configured as described above, according to the basic mode, the following effects are obtained. This effect is the same for the example applied to the vehicle head-up display device described below.
(1)上記実施形態の表示装置10においては、第1の走査領域A1に、正の屈折力を有する第1レンズ41と第1スクリーン51をそれぞれ配置し、第1の走査領域A1とは異なる第2の走査領域A2に、正の屈折力を有する第2レンズ42と第2スクリーン52をそれぞれ配置し、第1スクリーンと第2スクリーンのそれぞれで結像した中間像に基づいて、投影光学系によって、異なる領域に別個の画像を生成している。
 これにより、異なる走査領域に配置した第1スクリーンと第2スクリーン上に焦点を合わせた(ビーム径を最小とした)光線をそれぞれ入射させることができる。従って、解像度の高い第1画像と第2画像を互いに異なる領域に表示させることが可能となる。
(1) In the display device 10 according to the above-described embodiment, the first lens 41 having the positive refractive power and the first screen 51 are disposed in the first scanning region A1, and are different from the first scanning region A1. A second lens 42 having a positive refractive power and a second screen 52 are arranged in the second scanning region A2, respectively, and a projection optical system based on intermediate images formed on the first screen and the second screen, respectively. Thus, separate images are generated in different areas.
As a result, it is possible to make light beams focused (with a minimum beam diameter) incident on the first screen and the second screen arranged in different scanning regions, respectively. Therefore, it is possible to display the first image and the second image with high resolution in different areas.
(2)スキャナ30の反射面33から、対応する第1レンズ41の前面までの距離、及び、第1レンズ41の後面から、対応する第1スクリーン51までの距離は、第1レンズ41の焦点距離にそれぞれ等しくしている。また、スキャナ30の反射面33から、対応する第2レンズ42の前面までの距離、及び、第2レンズ42の後面から、対応する第2スクリーン52までの距離は、第2レンズ42の焦点距離にそれぞれ等しくしている。
 これにより、第1スクリーン51と第2スクリーン52に入射する光線のビーム径を絞ることができることから、解像度の高い画像を生成することが可能となる。
(2) The distance from the reflecting surface 33 of the scanner 30 to the front surface of the corresponding first lens 41 and the distance from the rear surface of the first lens 41 to the corresponding first screen 51 are the focal points of the first lens 41. Each distance is equal. The distance from the reflecting surface 33 of the scanner 30 to the front surface of the corresponding second lens 42 and the distance from the rear surface of the second lens 42 to the corresponding second screen 52 are the focal length of the second lens 42. Are equal to each other.
As a result, the beam diameters of the light rays incident on the first screen 51 and the second screen 52 can be reduced, so that an image with high resolution can be generated.
(3)第1レンズ41と対応する第2レンズ42の光軸は同一直線上にあり、この直線上に、対応するスキャナ30の反射面33の回動軸が位置している。
 これにより、スキャナ30から、第1レンズ41と第2レンズ42のそれぞれへの反射光を正確かつ容易に分けることが可能となるため、第1レンズ41からの出射光に基づく画像と第2レンズ42からの出射光に基づく画像とを異なる領域に表示させることができる。
(3) The optical axes of the second lens 42 corresponding to the first lens 41 are on the same straight line, and the rotation axis of the reflecting surface 33 of the corresponding scanner 30 is located on this straight line.
Thus, the reflected light from the scanner 30 to each of the first lens 41 and the second lens 42 can be accurately and easily separated, so that the image based on the light emitted from the first lens 41 and the second lens The image based on the emitted light from 42 can be displayed in a different area.
(4)第1レンズ41の正の屈折力は、対応する第2レンズ42の正の屈折力よりも大きく、第1スクリーン51は第2スクリーン52よりも反射面33に近い位置に配置されている。
 これにより、投影レンズ60の光軸60cの方向においても、互いに異なる位置に2つの画像をそれぞれ表示させることができる。
(4) The positive refractive power of the first lens 41 is larger than the positive refractive power of the corresponding second lens 42, and the first screen 51 is disposed closer to the reflecting surface 33 than the second screen 52. Yes.
Thereby, also in the direction of the optical axis 60c of the projection lens 60, two images can be displayed at different positions.
 次に、図1~図3に示す本実施形態に係る表示装置を車両用ヘッドアップディスプレイ装置に適用した実施形態について説明する。 Next, an embodiment in which the display device according to this embodiment shown in FIGS. 1 to 3 is applied to a vehicle head-up display device will be described.
 図4は、基本形態に係る表示装置を車両用のヘッドアップディスプレイ装置110に適用した例を示す平面図である。図4に示すヘッドアップディスプレイ装置110における、レーザ光源120と、スキャナ130と、第1レンズ141と、第2レンズ142と、第1スクリーン151と、第2スクリーン152と、第1投影ミラー161及び第2投影ミラー162とは、図1~図3に示す表示装置の光源20と、スキャナ30と、第1レンズ41と、第2レンズ42と、第1スクリーン51と、第2スクリーン52と、投影レンズ60とにそれぞれ対応する。このヘッドアップディスプレイ装置110においては、生成されたイメージ光が第1投影ミラー161と第2投影ミラー162で反射・拡大されて車両のウインドシールドの表示領域に投影される。このイメージ光は表示領域において運転者に向けて反射され、これと同時に、ウインドシールドの前方に虚像が形成される。 FIG. 4 is a plan view showing an example in which the display device according to the basic form is applied to a head-up display device 110 for a vehicle. In the head-up display device 110 shown in FIG. 4, the laser light source 120, the scanner 130, the first lens 141, the second lens 142, the first screen 151, the second screen 152, the first projection mirror 161, and The second projection mirror 162 includes the light source 20, the scanner 30, the first lens 41, the second lens 42, the first screen 51, the second screen 52, and the display device shown in FIGS. Each corresponds to the projection lens 60. In the head-up display device 110, the generated image light is reflected and enlarged by the first projection mirror 161 and the second projection mirror 162, and projected onto the display area of the windshield of the vehicle. This image light is reflected toward the driver in the display area, and at the same time, a virtual image is formed in front of the windshield.
 ヘッドアップディスプレイ装置110はケース(不図示)を備え、このケース内において、図4に示すように、光学ベース111上に、レーザ光源120と、スキャナ130(走査手段)と、第1レンズ141(中間光学系)と、第2レンズ142(中間光学系)と、第1スクリーン151と、第2スクリーン152と、第1投影ミラー161及び第2投影ミラー162(投影光学系)とが配置されている。 The head-up display device 110 includes a case (not shown), and in this case, as shown in FIG. 4, a laser light source 120, a scanner 130 (scanning means), and a first lens 141 (on the optical base 111). An intermediate optical system), a second lens 142 (intermediate optical system), a first screen 151, a second screen 152, a first projection mirror 161, and a second projection mirror 162 (projection optical system). Yes.
 レーザ光源120は、光学ベース111に固定され、振幅変調された可視領域のレーザ光を平行光として出射する。 The laser light source 120 is fixed to the optical base 111 and emits laser light in the visible region that is amplitude-modulated as parallel light.
 スキャナ130は、光学ベース111に固定された回動軸132を中心として回動し、レーザ光源120からの入射光を反射面133の向きに応じて2つの走査領域へ反射する。2つの走査領域は、図1に示す表示装置と同様に、走査光が第1レンズ141に入射する第1の走査領域と、走査光が第2レンズ142に入射する第2の走査領域であり、以下の説明では、第1の走査領域へのスキャナ130からの反射光の進行方向を第1の反射方向D11とし、第2の走査領域へのスキャナ130からの反射光の進行方向を第2の反射方向D12としている。スキャナ130の動作の制御は、図1~図3のスキャナ30と同様に行われる。 The scanner 130 rotates around a rotation shaft 132 fixed to the optical base 111, and reflects incident light from the laser light source 120 to two scanning regions according to the direction of the reflecting surface 133. Similar to the display device shown in FIG. 1, the two scanning regions are a first scanning region where scanning light enters the first lens 141 and a second scanning region where scanning light enters the second lens 142. In the following description, the traveling direction of the reflected light from the scanner 130 toward the first scanning region is defined as a first reflecting direction D11, and the traveling direction of the reflected light from the scanner 130 toward the second scanning region is defined as a second traveling direction. The reflection direction is D12. The operation of the scanner 130 is controlled in the same manner as the scanner 30 in FIGS.
 スキャナ130による第1の反射方向D11上には、スキャナ130側から順に、第1レンズ141と第1スクリーン151が配置されている。また、前記第1の反射方向D11とは異なる第2の反射方向D12上には、スキャナ130側から順に、第2レンズ142と第2スクリーン152が配置されている。第1レンズ141と第2レンズ142は一方からの出射光が他方に入射しない位置に配置されている。したがって、第1の走査領域と第2の走査領域は互いに重ならない。 On the first reflection direction D11 by the scanner 130, a first lens 141 and a first screen 151 are arranged in this order from the scanner 130 side. A second lens 142 and a second screen 152 are arranged in this order from the scanner 130 side on a second reflection direction D12 different from the first reflection direction D11. The first lens 141 and the second lens 142 are disposed at a position where light emitted from one side does not enter the other. Therefore, the first scanning region and the second scanning region do not overlap each other.
 第1レンズ141は、上述の第1レンズ41と同様に構成・配置されており、第1の反射方向D1に反射した第1の反射光を集光させる。集光された光は、2つの送光ミラー143、144で順に反射された後に、第1スクリーン151上に第1中間像として結像する。ここで、上述の第1レンズ41と同様に、反射面133における反射点と第1レンズ141のスキャナ130側の面との距離、及び、第1レンズ141の第1スクリーン151側の面と第1スクリーン151の入射面との距離は、それぞれ第1レンズ141の焦点距離に等しくされている。 The first lens 141 is configured and arranged in the same manner as the first lens 41 described above, and condenses the first reflected light reflected in the first reflection direction D1. The condensed light is sequentially reflected by the two light transmission mirrors 143 and 144 and then formed on the first screen 151 as a first intermediate image. Here, similarly to the first lens 41 described above, the distance between the reflection point on the reflection surface 133 and the surface of the first lens 141 on the scanner 130 side, and the surface of the first lens 141 on the first screen 151 side and the first surface. The distance from the incident surface of one screen 151 is equal to the focal length of the first lens 141.
 第2レンズ142は、上述の第2レンズ42と同様に構成・配置されており、第2の反射方向D12に反射した第2の反射光を集光させる。集光された光は、2つの送光ミラー143、144で順に反射された後に、第2スクリーン152上に第2中間像として結像する。ここで、上述の第2レンズ42と同様に、反射面133における反射点と第2レンズ142のスキャナ130側の面との距離、及び、第2レンズ142の第2スクリーン152側の面と第2スクリーン152の入射面との距離は、それぞれ第2レンズ142の焦点距離に等しくされている。 The second lens 142 is configured and arranged in the same manner as the second lens 42 described above, and condenses the second reflected light reflected in the second reflection direction D12. The condensed light is sequentially reflected by the two light transmission mirrors 143 and 144 and then formed on the second screen 152 as a second intermediate image. Here, similarly to the second lens 42 described above, the distance between the reflection point on the reflection surface 133 and the surface of the second lens 142 on the scanner 130 side, and the surface of the second lens 142 on the second screen 152 side and the second lens 142. The distance from the incident surface of the two screens 152 is equal to the focal length of the second lens 142.
 第1レンズ141と第2レンズ142は、第1投影ミラー161からの反射光の経路の外側に配置されている。また、第1スクリーン151及び第2スクリーン152は、例えばディフューザ(拡散板)である。 The first lens 141 and the second lens 142 are disposed outside the path of the reflected light from the first projection mirror 161. The first screen 151 and the second screen 152 are, for example, diffusers (diffusion plates).
 スクリーン151、152を透過した光は、それぞれ、発散光の投影光P1、P2となって、遮光壁153のアパーチャー153aを透過して第1投影ミラー161に入射する。第1投影ミラー161の反射面161aは凹面鏡(拡大鏡)であって、スクリーン151、152で結像した中間像を含む投影光P1、P2は、第1投影ミラー161でそれぞれ拡大・反射される。これらの反射光は、第2投影ミラー162にそれぞれ入射する。第2投影ミラー162の反射面162aも凹面鏡(拡大鏡)であって、入射した投影光P1、P2はさらに拡大されて反射され、車両のウインドシールドの表示領域の異なる位置に投影される。この表示領域は半反射面として機能するため、入射したイメージ光は、運転者に向けて反射されるとともに、ウインドシールドの前方に虚像が形成される。ウインドシールドの前方の虚像を目視することで、運転者には、ステアリングホイールの上方の前方に各種の情報が表示されているように見える。 The light that has passed through the screens 151 and 152 becomes divergent projection light P1 and P2, respectively, and enters the first projection mirror 161 through the aperture 153a of the light shielding wall 153. The reflecting surface 161a of the first projection mirror 161 is a concave mirror (magnifying mirror), and the projection lights P1 and P2 including the intermediate images formed on the screens 151 and 152 are magnified and reflected by the first projection mirror 161, respectively. . These reflected lights are incident on the second projection mirror 162, respectively. The reflecting surface 162a of the second projection mirror 162 is also a concave mirror (magnifying mirror), and the incident projection lights P1 and P2 are further magnified and reflected and projected onto different positions in the display area of the windshield of the vehicle. Since this display area functions as a semi-reflective surface, the incident image light is reflected toward the driver and a virtual image is formed in front of the windshield. By viewing the virtual image in front of the windshield, it appears to the driver that various types of information are displayed in front of the steering wheel.
<第2の実施形態>
 図5は、本発明の第2の実施形態に係る表示装置の構成の一例を示す図である。
 図5に示す表示装置は、図1に示す表示装置における中間光学系としての第1レンズ41及び第2レンズ42をそれぞれ第1レンズ43及び第2レンズ44に置き換えたものである。
<Second Embodiment>
FIG. 5 is a diagram showing an example of the configuration of a display device according to the second embodiment of the present invention.
The display device shown in FIG. 5 is obtained by replacing the first lens 41 and the second lens 42 as the intermediate optical system in the display device shown in FIG. 1 with a first lens 43 and a second lens 44, respectively.
 第1レンズ43は、その光軸が投影レンズ60の光軸60cの延長線上にあるように配置された凹レンズであって、負の屈折力を有する。第1レンズ43は、第1の反射方向D1に反射した第1の反射光(第1の走査光)を分散させて第1スクリーン51上に第1中間像を結像させる。第1レンズ43は、図5のY軸方向において、光軸より上側の部分を使用している。投影レンズ60の光軸60c上において、反射面33における反射点と第1レンズ43のスキャナ30側の面との距離、及び、第1レンズ43の第1スクリーン51側の面と第1スクリーン51の入射面との距離は、それぞれ第1レンズ43の焦点距離に等しくされている。ここで、反射面33の反射点は、投影レンズ60の光軸60cの延長線上に配置している。 The first lens 43 is a concave lens arranged so that its optical axis is on the extension line of the optical axis 60c of the projection lens 60, and has negative refractive power. The first lens 43 forms a first intermediate image on the first screen 51 by dispersing the first reflected light (first scanning light) reflected in the first reflection direction D1. The first lens 43 uses a portion above the optical axis in the Y-axis direction of FIG. On the optical axis 60 c of the projection lens 60, the distance between the reflection point on the reflection surface 33 and the surface of the first lens 43 on the scanner 30 side, and the surface of the first lens 43 on the first screen 51 side and the first screen 51. The distance from the incident surface is equal to the focal length of the first lens 43. Here, the reflection point of the reflection surface 33 is disposed on an extension line of the optical axis 60 c of the projection lens 60.
 第2レンズ44は、その光軸が投影レンズ60の光軸60cの延長線上にあるように配置された凹レンズであって、第1レンズ43より大きい負の屈折力を有する。第2レンズ44は、第2の反射方向D2に反射した第2の反射光(第2の走査光)を分散させて第2スクリーン52上に第2中間像を結像させる。第2レンズ44は、図5のY軸方向において、光軸より下側の部分を使用している。投影レンズ60の光軸60c上において、反射面33における反射点と第2レンズ44のスキャナ30側の面との距離、及び、第2レンズ44の第2スクリーン52側の面と第2スクリーン52の入射面との距離は、それぞれ第2レンズ44の焦点距離に等しくされている。 The second lens 44 is a concave lens arranged so that its optical axis is on the extension line of the optical axis 60 c of the projection lens 60, and has a negative refractive power larger than that of the first lens 43. The second lens 44 disperses the second reflected light (second scanning light) reflected in the second reflection direction D <b> 2 and forms a second intermediate image on the second screen 52. The second lens 44 uses a portion below the optical axis in the Y-axis direction of FIG. On the optical axis 60 c of the projection lens 60, the distance between the reflection point on the reflection surface 33 and the surface of the second lens 44 on the scanner 30 side, and the surface of the second lens 44 on the second screen 52 side and the second screen 52. The distance from the incident surface is equal to the focal length of the second lens 44.
 図5に示す表示装置では、反射面33から第1スクリーン51までの距離に比べて反射面33から第2スクリーン52までの距離が遠いため、これらのスクリーンにおいて光線の焦点を合わせるため、第2レンズ44は第1レンズ43に比べて大きな負の屈折力を有する。 In the display device shown in FIG. 5, since the distance from the reflecting surface 33 to the second screen 52 is longer than the distance from the reflecting surface 33 to the first screen 51, the second light beam is focused on these screens. The lens 44 has a larger negative refractive power than the first lens 43.
 本実施形態に係る表示装置においても、第1の実施形態に係る表示装置と同様な効果を得ることが可能であり、図4に示すようなヘッドアップディスプレイ装置へ適用可能である。 The display device according to the present embodiment can obtain the same effects as those of the display device according to the first embodiment, and can be applied to a head-up display device as shown in FIG.
<第3の実施形態>
 図6は、本発明の第3の実施形態に係る表示装置の構成の一例を示す図である。
 図6に示す表示装置は、図1に示す表示装置における中間光学系としての第2レンズ42を第2レンズ44に置き換えたものである。第2レンズ44は、図5における同一符号の構成要素と同じものである。
<Third Embodiment>
FIG. 6 is a diagram showing an example of the configuration of a display device according to the third embodiment of the present invention.
The display device shown in FIG. 6 is obtained by replacing the second lens 42 as the intermediate optical system in the display device shown in FIG. The second lens 44 is the same as the component with the same reference numeral in FIG.
 図6に示す表示装置では、反射面33から第1スクリーン51までの距離に比べて反射面33から第2スクリーン52までの距離が遠いため、第1スクリーン51へ入射される光線の焦点距離を第1レンズ41が短くするとともに、第2スクリーン52へ入射される光線の焦点距離を第2レンズ44が長くしている。 In the display device shown in FIG. 6, since the distance from the reflecting surface 33 to the second screen 52 is longer than the distance from the reflecting surface 33 to the first screen 51, the focal length of the light incident on the first screen 51 is set. While the 1st lens 41 is shortened, the 2nd lens 44 is lengthening the focal distance of the light ray which injects into the 2nd screen 52. FIG.
 本実施形態に係る表示装置においても、第1の実施形態に係る表示装置と同様な効果を得ることが可能であり、図4に示すようなヘッドアップディスプレイ装置へ適用可能である。また、本実施形態によれば、第1スクリーン51と第2スクリーン52との距離が大きく離れている場合に、各中間光学系(41,44)の屈折力を極端に大きくしなくて済むため、簡易な構成により各スクリーンへ焦点を合わせやすくすることができる。 The display device according to the present embodiment can obtain the same effects as those of the display device according to the first embodiment, and can be applied to a head-up display device as shown in FIG. Further, according to the present embodiment, when the distance between the first screen 51 and the second screen 52 is large, it is not necessary to extremely increase the refractive power of each intermediate optical system (41, 44). With a simple configuration, it is possible to easily focus on each screen.
<第4の実施形態>
 図7は、本発明の第4の実施形態に係る表示装置の構成の一例を示す図である。
 図7に示す表示装置は、図1に示す表示装置における第2レンズ42を省略したものである。第2スクリーン52に入射される光線の焦点は、光源20に内蔵される光学系(コリメータレンズ等)の設定によって合わせられる。第1スクリーン51は第2スクリーン52に比べて光源20からの距離が短いため、第1スクリーン51へ入射される光線の焦点は、正の屈折力を持つ第1レンズ41によって合わせられる。このように、第1スクリーン51と第2スクリーン52との距離が比較的近い場合は、1つの中間光学系(41)で2つのスクリーン(51,52)の焦点を合わせることが可能である。
<Fourth Embodiment>
FIG. 7 is a diagram showing an example of the configuration of a display device according to the fourth embodiment of the present invention.
The display device shown in FIG. 7 is obtained by omitting the second lens 42 in the display device shown in FIG. A light beam incident on the second screen 52 is focused by setting an optical system (such as a collimator lens) built in the light source 20. Since the first screen 51 has a shorter distance from the light source 20 than the second screen 52, the light beam incident on the first screen 51 is focused by the first lens 41 having a positive refractive power. As described above, when the distance between the first screen 51 and the second screen 52 is relatively short, the two screens (51, 52) can be focused by one intermediate optical system (41).
 本実施形態に係る表示装置においても、第1の実施形態に係る表示装置と同様な効果を得ることが可能である。 Also in the display device according to the present embodiment, it is possible to obtain the same effect as the display device according to the first embodiment.
<第5の実施形態>
 図8は、本発明の第4の実施形態に係る表示装置の構成の一例を示す図である。
 図8に示す表示装置は、図1に示す表示装置における第1レンズ41を省略し、第2レンズ42を第2レンズ44に置き換えたものである。第2レンズ44は、図5における同一符号の構成要素と同じものである。
<Fifth Embodiment>
FIG. 8 is a diagram showing an example of the configuration of a display device according to the fourth embodiment of the present invention.
In the display device shown in FIG. 8, the first lens 41 in the display device shown in FIG. 1 is omitted, and the second lens 42 is replaced with a second lens 44. The second lens 44 is the same as the component with the same reference numeral in FIG.
 第1スクリーン51に入射される光線の焦点は、光源20に内蔵される光学系(コリメータレンズ等)の設定によって合わせられる。第2スクリーン52は第1スクリーン51に比べて光源20からの距離が長いため、第2スクリーン52へ入射される光線の焦点は、負の屈折力を持つ第2レンズ44によって合わせられる。このように、第1スクリーン51と第2スクリーン52との距離が比較的近い場合は、1つの中間光学系(44)で2つのスクリーン(51,52)の焦点を合わせることが可能である。 The focus of the light beam incident on the first screen 51 is adjusted by the setting of an optical system (such as a collimator lens) built in the light source 20. Since the second screen 52 has a longer distance from the light source 20 than the first screen 51, the light beam incident on the second screen 52 is focused by the second lens 44 having a negative refractive power. Thus, when the distance between the first screen 51 and the second screen 52 is relatively short, the two screens (51, 52) can be focused by one intermediate optical system (44).
 本実施形態に係る表示装置においても、第1の実施形態に係る表示装置と同様な効果を得ることが可能である。また、本実施形態によれば、中間光学系の使用個数を減らすことができるため、構成を簡易化できる。 Also in the display device according to the present embodiment, it is possible to obtain the same effect as the display device according to the first embodiment. In addition, according to the present embodiment, the number of intermediate optical systems used can be reduced, so that the configuration can be simplified.
 本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
 以上のように、本発明に係る表示装置は、車両用のヘッドアップディスプレイ装置に有用であり、複数の表示位置に異なる画像を表示することに適している。 As described above, the display device according to the present invention is useful for a head-up display device for a vehicle, and is suitable for displaying different images at a plurality of display positions.
 10  表示装置
 20  光源
 30  スキャナ(走査手段)
 33  反射面
 41  第1レンズ(中間光学系)
 42  第2レンズ(中間光学系)
 43  第1レンズ(中間光学系)
 44  第2レンズ(中間光学系)
 51  第1スクリーン
 52  第2スクリーン
 60  投影レンズ(投影光学系)
 60c 光軸
 110  表示装置
 120  レーザ光源
 130  スキャナ(走査手段)
 132  回動軸
 133  反射面
 141  第1レンズ(中間光学系)
 142  第2レンズ(中間光学系)
 151  第1スクリーン
 152  第2スクリーン
 161  第1投影ミラー(投影光学系)
 162  第2投影ミラー(投影光学系)
 A1、A2 走査領域
 D1、D2、D11、D12 反射方向
 E   眼
 f1、f2、f3 焦点距離
 I1、I2 虚像
 L   距離
 P1、P2 投影光
 S1、S2 距離
DESCRIPTION OF SYMBOLS 10 Display apparatus 20 Light source 30 Scanner (scanning means)
33 Reflecting surface 41 First lens (intermediate optical system)
42 Second lens (intermediate optical system)
43 First lens (intermediate optical system)
44 Second lens (intermediate optical system)
51 First screen 52 Second screen 60 Projection lens (projection optical system)
60c Optical axis 110 Display device 120 Laser light source 130 Scanner (scanning means)
132 Rotating shaft 133 Reflecting surface 141 First lens (intermediate optical system)
142 Second lens (intermediate optical system)
151 First screen 152 Second screen 161 First projection mirror (projection optical system)
162 Second projection mirror (projection optical system)
A1, A2 Scanning area D1, D2, D11, D12 Reflection direction E Eye f1, f2, f3 Focal length I1, I2 Virtual image L distance P1, P2 Projected light S1, S2 distance

Claims (12)

  1.  2つのスクリーンにそれぞれ結像される中間像に応じた画像を表示する表示装置であって
     光線を出射する光源と、
     前記光源からの光線を前記2つのスクリーンの何れか一方に向けて選択的に反射し、当該反射した光線で前記スクリーンを走査するスキャナと、
     前記スキャナの光線の走査によって前記スクリーンに結像される前記中間像に応じた画像を投影する投影光学系と、
     前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路の少なくとも1つに配置され、当該配置された光路上の前記スクリーンにおいて前記スキャナからの光線の焦点を合わせる少なくとも1つの中間光学系とを備え、
     前記2つのスクリーンのそれぞれにおいて前記スキャナからの光線の焦点が合っている
     ことを特徴とする表示装置。
    A display device that displays an image corresponding to an intermediate image formed on each of two screens, and a light source that emits light;
    A scanner that selectively reflects light from the light source toward one of the two screens and scans the screen with the reflected light;
    A projection optical system for projecting an image corresponding to the intermediate image formed on the screen by scanning light beams of the scanner;
    Arranged in at least one of an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens, and at least one for focusing a light beam from the scanner on the screen on the arranged optical path. With two intermediate optical systems,
    The display device, wherein the light from the scanner is focused on each of the two screens.
  2.  前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路に、それぞれ正の屈折力を持つ前記中間光学系が配置される
     ことを特徴とする請求項1に記載の表示装置。
    The display according to claim 1, wherein the intermediate optical system having a positive refractive power is disposed in an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens. apparatus.
  3.  前記スキャナから一方の前記スクリーンへ至る光路の長さと、前記スキャナから他方の前記スクリーンへ至る光路の長さとが相対的に異なっており、
     相対的に短い前記光路に配置される前記中間光学系は、相対的に長い前記光路に配置される前記中間光学系に比べて大きな正の屈折力を持つ
     ことを特徴とする請求項2に記載の表示装置。
    The length of the optical path from the scanner to one of the screens is relatively different from the length of the optical path from the scanner to the other screen,
    The intermediate optical system disposed in the relatively short optical path has a larger positive refractive power than the intermediate optical system disposed in the relatively long optical path. Display device.
  4.  前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路に、それぞれ負の屈折力を持つ前記中間光学系が配置される
     ことを特徴とする請求項1に記載の表示装置。
    2. The display according to claim 1, wherein the intermediate optical system having negative refractive power is disposed in an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens. apparatus.
  5.  前記スキャナから一方の前記スクリーンへ至る光路の長さと、前記スキャナから他方の前記スクリーンへ至る光路の長さとが相対的に異なっており、
     相対的に長い前記光路に配置される前記中間光学系は、相対的に短い前記光路に配置される前記中間光学系に比べて大きな負の屈折力を持つ
     ことを特徴とする請求項4に記載の表示装置。
    The length of the optical path from the scanner to one of the screens is relatively different from the length of the optical path from the scanner to the other screen,
    5. The intermediate optical system disposed in the relatively long optical path has a larger negative refractive power than the intermediate optical system disposed in the relatively short optical path. Display device.
  6.  前記スキャナから一方の前記スクリーンへ至る光路に正の屈折力を持つ前記中間光学系が配置され、
     前記スキャナから他方の前記スクリーンへ至る光路に負の屈折力を持つ前記中間光学系が配置される
     ことを特徴とする請求項1に記載の表示装置。
    The intermediate optical system having a positive refractive power is arranged in an optical path from the scanner to one of the screens,
    The display device according to claim 1, wherein the intermediate optical system having a negative refractive power is disposed in an optical path from the scanner to the other screen.
  7.  前記正の屈折力を持つ中間光学系が配置された前記光路は、前記負の屈折力を持つ中間光学系が配置された前記光路に比べて短い
     ことを特徴とする請求項6に記載の表示装置。
    The display according to claim 6, wherein the optical path in which the intermediate optical system having the positive refractive power is arranged is shorter than the optical path in which the intermediate optical system having the negative refractive power is arranged. apparatus.
  8.  前記スキャナから一方の前記スクリーンへ至る光路に配置された前記中間光学系と、前記スキャナから他方の前記スクリーンへ至る光路に配置された前記中間光学系とが共通の光軸を持ち、
     前記スキャナは、前記共通の光軸を通る軸の回りで回動可能な反射面において前記光源からの光線を反射する
     ことを特徴とする請求項2乃至7の何れか一項に記載の表示装置。
    The intermediate optical system disposed in the optical path from the scanner to the one screen and the intermediate optical system disposed in the optical path from the scanner to the other screen have a common optical axis,
    The display device according to claim 2, wherein the scanner reflects a light beam from the light source on a reflection surface that is rotatable around an axis that passes through the common optical axis. .
  9.  前記スキャナから一方の前記スクリーンへ至る光路及び前記スキャナから他方の前記スクリーンへ至る光路の何れか1つに前記中間光学系が配置される
     ことを特徴とする請求項1に記載の表示装置。
    The display device according to claim 1, wherein the intermediate optical system is disposed in any one of an optical path from the scanner to one of the screens and an optical path from the scanner to the other of the screens.
  10.  前記中間光学系は正の屈折力を持ち、
     前記正の屈折力を持つ中間光学系が配置された前記光路は、前記中間光学系が配置されない前記光路に比べて短い
     ことを特徴とする請求項9に記載の表示装置。
    The intermediate optical system has a positive refractive power,
    The display device according to claim 9, wherein the optical path in which the intermediate optical system having the positive refractive power is arranged is shorter than the optical path in which the intermediate optical system is not arranged.
  11.  前記中間光学系は負の屈折力を持ち、
     前記負の屈折力を持つ中間光学系が配置された前記光路は、前記中間光学系が配置されない前記光路に比べて長い
     ことを特徴とする請求項9に記載の表示装置。
    The intermediate optical system has a negative refractive power,
    The display device according to claim 9, wherein the optical path in which the intermediate optical system having the negative refractive power is disposed is longer than the optical path in which the intermediate optical system is not disposed.
  12.  前記スキャナは、回動する反射面において前記光源からの光線を反射し、
     前記反射面から前記中間光学系までの距離、及び、前記中間光学系から前記スクリーンまでの距離は、何れも前記中間光学系の焦点距離に等しい
     ことを特徴とする請求項1乃至11の何れか一項に記載の表示装置。
     
    The scanner reflects a light beam from the light source on a rotating reflecting surface,
    The distance from the reflecting surface to the intermediate optical system and the distance from the intermediate optical system to the screen are both equal to the focal length of the intermediate optical system. The display device according to one item.
PCT/JP2016/051142 2015-01-29 2016-01-15 Display device WO2016121534A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-015534 2015-01-29
JP2015015534 2015-01-29
JP2015-110964 2015-05-29
JP2015110964 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016121534A1 true WO2016121534A1 (en) 2016-08-04

Family

ID=56543153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051142 WO2016121534A1 (en) 2015-01-29 2016-01-15 Display device

Country Status (1)

Country Link
WO (1) WO2016121534A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150947A (en) * 2007-12-19 2009-07-09 Hitachi Ltd Head-up display device for vehicle
JP2009193008A (en) * 2008-02-18 2009-08-27 Sharp Corp Image display device
JP2010049232A (en) * 2008-07-23 2010-03-04 Ricoh Co Ltd Optical scan unit, image projector including the same, head-up display, and mobile phone
JP2010164941A (en) * 2008-10-30 2010-07-29 Honda Motor Co Ltd Display device for vehicle
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System
WO2015019567A1 (en) * 2013-08-09 2015-02-12 株式会社デンソー Information display device
JP2015191221A (en) * 2014-03-31 2015-11-02 株式会社Suwaオプトロニクス image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150947A (en) * 2007-12-19 2009-07-09 Hitachi Ltd Head-up display device for vehicle
JP2009193008A (en) * 2008-02-18 2009-08-27 Sharp Corp Image display device
JP2010049232A (en) * 2008-07-23 2010-03-04 Ricoh Co Ltd Optical scan unit, image projector including the same, head-up display, and mobile phone
JP2010164941A (en) * 2008-10-30 2010-07-29 Honda Motor Co Ltd Display device for vehicle
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System
WO2015019567A1 (en) * 2013-08-09 2015-02-12 株式会社デンソー Information display device
JP2015191221A (en) * 2014-03-31 2015-11-02 株式会社Suwaオプトロニクス image display device

Similar Documents

Publication Publication Date Title
JP6650584B2 (en) Head-up display and moving object equipped with head-up display
JP5732969B2 (en) Head-up display device
JP6098375B2 (en) Head-up display device
JP6630921B2 (en) Head-up display and moving object equipped with head-up display
WO2017061040A1 (en) Projection optical system and head-up display device
JP6749334B2 (en) Projection optical system and head-up display device
US20170115553A1 (en) Scanning projector transmissive screen, and scanning projector system
JP6808745B2 (en) Projection optics and head-up display
JP7217231B2 (en) Projection optical system and head-up display device
JP2016224287A (en) Display device
JP2018004817A (en) Image display device and head-up display system
US11561396B2 (en) Head-up display device and transportation device
WO2019116730A1 (en) Head-up display and moving body with head-up display mounted thereon
JP6579180B2 (en) Virtual image display device
JP6740360B2 (en) Projection optical system and head-up display device
JP2016109883A (en) Image display device, object device, transmission screen, and screen
JP6616005B2 (en) Projection optical system and head-up display device
JP2017078827A (en) Head-up display device
JP5929204B2 (en) Scanning microscope
JP6820502B2 (en) Image display device
WO2016121534A1 (en) Display device
JP2017227681A (en) Head-up display device
JP2017009738A (en) Image display device
JP2018087900A (en) Image display device
JP6628873B2 (en) Projection optical system, head-up display device, and automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16743138

Country of ref document: EP

Kind code of ref document: A1