WO2016121319A1 - Cylindrical nonaqueous electrolyte secondary battery - Google Patents

Cylindrical nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2016121319A1
WO2016121319A1 PCT/JP2016/000213 JP2016000213W WO2016121319A1 WO 2016121319 A1 WO2016121319 A1 WO 2016121319A1 JP 2016000213 W JP2016000213 W JP 2016000213W WO 2016121319 A1 WO2016121319 A1 WO 2016121319A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
plate
secondary battery
sealing body
insulating plate
Prior art date
Application number
PCT/JP2016/000213
Other languages
French (fr)
Japanese (ja)
Inventor
雄史 山上
心 原口
森 敏彦
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2016121319A1 publication Critical patent/WO2016121319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a cylindrical nonaqueous electrolyte secondary battery.
  • Patent Document 1 a thin wall portion (bottom marking) is provided at the bottom of a battery case, and when the gas pressure rises to a predetermined value or more due to abnormal heating or the like, the thin wall portion is broken, and the bottom exhaust port generated by the breakage
  • emits gas from is described. Thereby, even when the pressure in the battery suddenly increases, it is said that cracks can be suppressed in the cylindrical part of the battery case.
  • Patent Document 2 describes that an upper end opening of a case body of a battery case is sealed with a sealing body. Patent Document 2 also describes that an opening is provided in each of the sealing body side bottom plate and the upper insulating plate constituting the sealing body, and gas generated in the battery case is exhausted.
  • the upper insulating plate is disposed between the sealing body and the electrode body inside the case body.
  • a valve body is disposed on the upper side of the sealing body side bottom plate. The valve body is broken when the lower gas pressure is increased, and a gas passage is formed.
  • a battery case is formed by combining the bottom marking described in Patent Document 1 and the opening of the upper insulating plate and the valve body of the sealing body described in Patent Document 2. It is conceivable that gas is discharged from the lower part and the upper part.
  • the upper end of the hollow portion formed at the inner end in the winding direction of the electrode body is opened through the opening of the upper insulating plate. Accordingly, the hollow portion functions as an exhaust passage through which the gas generated in the electrode body is discharged.
  • the gas tends to be discharged from the upper part of the battery, but the pressure in the hollow part is lowered inside the battery and the force to break the thin part at the bottom cannot be obtained, and the exhaust from the bottom may not occur.
  • the thin portion at the bottom is broken, the amount of gas discharged from the bottom may be reduced. As a result, the balance between the exhaust from the top and bottom of the battery is deteriorated, and the effect of cooling the battery by exhaust cannot be sufficiently obtained, and the temperature may rise inside the battery. When the battery temperature rises, the battery case may thermally expand.
  • the purpose of the cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure is to have a structure in which a valve body is disposed in a sealing body that seals an opening of a case body, and the exhaust performance from the bottom is increased, thereby It is to suppress the temperature rise.
  • a cylindrical non-aqueous electrolyte secondary battery includes a bottomed cylindrical case body having an opening at one end and accommodating an electrode body, and a valve body and sealing the one end opening of the case body.
  • a sealing body, and an insulating plate disposed between the electrode body and the sealing body, and the electrode body has a winding structure formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween.
  • the bottom of the other end of the case body has a valve portion and a thin portion that continuously or discontinuously surrounds the valve portion, the insulating plate has an opening, and the winding of the electrode body It covers at least a part of one end of the hollow portion formed at the inner end in the direction.
  • the internal pressure of the battery increases due to heat generated by an internal short circuit or the like in a configuration in which a valve body is disposed in a sealing body that seals the opening of the case body.
  • a valve body is disposed in a sealing body that seals the opening of the case body.
  • FIG. 1 It is sectional drawing of the cylindrical nonaqueous electrolyte secondary battery which is an example of embodiment. It is a bottom view of the cylindrical nonaqueous electrolyte secondary battery shown in FIG. It is a figure corresponding to Drawing 2 which shows another example of a thin part. It is the perspective view which looked at the sealing body side baseplate which comprises the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 1 from the lower side. It is the figure which looked at the upper insulating board which comprises the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 1 from upper direction. It is sectional drawing of the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment.
  • FIG. 6 It is the perspective view which looked at the sealing body side bottom board which comprises the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 6 from the lower side. It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of Experimental example 1 from upper direction. It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment from the upper direction. It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment from the upper direction. It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment from the upper direction.
  • FIG. 1 is a cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery 10 which is an example of an embodiment.
  • the cylindrical nonaqueous electrolyte secondary battery 10 includes a battery case 11, an electrode body 30 accommodated in the battery case 11, and an electrolyte (not shown).
  • the cylindrical nonaqueous electrolyte secondary battery 10 is simply referred to as a secondary battery 10.
  • the battery case 11 includes a case main body 12 which is a bottomed cylindrical metal container, and a sealing body 20 which closes one end (upper end in FIG. 1) of the case main body 12. The inside of the battery case 11 is sealed by the case body 12 and the sealing body 20.
  • the case main body 12 has an annular convex portion 15 formed by pressing one end side portion (upper portion in FIG. 1) of the cylindrical portion 12a from the outside to the inside through press working.
  • the sealing body 20 is placed on the upper surface of the convex portion 15.
  • the convex part 15 may be formed by extruding a plurality of circumferential positions of the cylindrical part 12a from the outside to the inside.
  • the sealing body 20 includes a sealing body side bottom plate 22 and an upper valve body 24 and a lower valve body 26 disposed on the upper side of the sealing body side bottom plate 22.
  • the sealing body side bottom plate 22 has a bottom plate opening 22a described later.
  • Each of the upper valve body 24 and the lower valve body 26 is broken when the pressure on the lower side increases as described later, and a gas discharge hole is formed. Thereby, the sealing body 20 functions as an upper safety valve.
  • the case body 12 is formed in a cylindrical shape having a bottom 12b by subjecting a metal plate (metal plate) containing iron as a main component to press working including drawing.
  • a metal plate metal plate
  • the case body 12 is formed by pressing a bottomed cylinder from a nickel-plated steel plate obtained by applying nickel plating to a steel plate.
  • the case body 12 may be formed of a simple steel plate that does not have nickel plating.
  • a valve portion 12d and a thin portion 13 are formed on the bottom 12b of the case body 12.
  • the thin portion 13 is broken when the battery internal pressure reaches a predetermined pressure, so that the valve portion 12d is released (opened) to form a gas exhaust port in the bottom portion 12b.
  • the bottom 12b functions as a lower safety valve.
  • the bottom 12b and the sealing body 20 will be described later.
  • the electrode body 30 has a winding structure in which a positive electrode plate 31 and a negative electrode plate 32 are wound via a separator 33. Specifically, the electrode body 30 is formed by winding a positive electrode plate 31 and a negative electrode plate 32 in a spiral shape with a separator 33 interposed between the positive electrode plate 31 and the negative electrode plate 32. A columnar hollow portion 36 is formed at the inner end of the electrode body 30 in the winding direction by winding the separator 33.
  • the diameter of the upper end of the hollow portion 36 is substantially the same as the diameter of the center in the vertical direction of the hollow portion 36, but as shown in FIG.
  • the diameter surrounded by the inclined upper end may be smaller than the diameter of the center of the hollow portion 36 in the vertical direction.
  • the secondary battery 10 includes an upper insulating plate 40 disposed between the electrode body 30 and the sealing body 20, more specifically, between the electrode body 30 and the convex portion 15.
  • the secondary battery 10 includes a lower insulating plate 41 disposed between the electrode body 30 and the bottom portion 12 b of the case body 12.
  • the positive electrode lead 34 extends to the sealing body 20 side through the first opening 40 a of the upper insulating plate 40, and the negative electrode lead 35 passes through the outside of the lower insulating plate 41 to the bottom 12 b of the case body 12. Extends to the side.
  • the upper insulating plate 40 will be described later.
  • the secondary battery 10 has, for example, a volume energy density of 700 Wh / L or more.
  • a battery having such a high energy density in the conventional configuration, as described later, the exhaust balance from the upper and lower sides of the battery deteriorates, so that the temperature easily rises, and the risk of burning off in the module environment increases.
  • a structure in which a hollow portion formed at the center portion of the electrode body 30 is covered by the upper insulating plate 40 as described later is employed to suppress exhaust from the sealing body 20 side. By doing so, the exhaust from the bottom 12b side is improved, and the rise in battery temperature can be reduced.
  • a lithium-containing transition metal oxide is used as the positive electrode active material, and a material capable of inserting and extracting lithium ions is used as the negative electrode active material. Further, a non-aqueous electrolyte is used as the electrolyte.
  • the positive electrode plate 31 is composed of, for example, a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector a metal foil that is stable within the potential range of the positive electrode plate 31 such as aluminum, or a film in which this metal is disposed on the surface layer can be used.
  • the positive electrode mixture layer includes a positive electrode active material.
  • the positive electrode mixture layer preferably includes a conductive material and a binder in addition to the positive electrode active material.
  • the positive electrode plate 31 is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material and a binder on a positive electrode current collector, drying the coating film, and rolling the positive electrode mixture layer on both surfaces of the current collector. Can be produced.
  • lithium-containing transition metal oxide used for the positive electrode active material include a general formula Li a Ni x M 1-x O 2 (0.9 ⁇ a ⁇ 1.2, 0.8 ⁇ x ⁇ 1, M is A composite oxide represented by at least one element selected from the group consisting of Co, Mn, and Al).
  • M is A composite oxide represented by at least one element selected from the group consisting of Co, Mn, and Al.
  • complex oxides Ni—Co—Mn lithium-containing transition metal complex oxides are preferable because they are excellent in regenerative characteristics in addition to output characteristics.
  • Ni—Co—Al-based lithium-containing transition metal composite oxides are more preferred because of their high capacity and excellent output characteristics.
  • the conductive material is used to increase the electrical conductivity of the positive electrode mixture layer.
  • the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder maintains a good contact state between the positive electrode active material and the conductive material, and increases the binding property of the positive electrode active material and the like to the surface of the positive electrode current collector.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • polyimide resins acrylic resins
  • acrylic resins and polyolefin resins.
  • these resins, carboxymethyl cellulose (CMC) or a salt thereof (CMC-Na, CMC-K, CMC-NH 4 or the like, may be a partially neutralized salt), polyethylene oxide (PEO), etc. May be used in combination. These may be used alone or in combination of two or more.
  • the negative electrode plate 32 includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector.
  • a metal foil that is stable in the potential range of the negative electrode plate 32 such as copper, a film in which this metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer includes a negative electrode active material.
  • the negative electrode mixture layer preferably includes a binder in addition to the negative electrode active material.
  • the negative electrode plate 32 is formed by, for example, applying a negative electrode mixture slurry containing a negative electrode active material and a binder on a negative electrode current collector, drying the coating film, and rolling the negative electrode mixture layer on both sides of the current collector. Can be produced.
  • the negative electrode active material a carbon material capable of inserting and removing lithium ions can be used.
  • the carbon material is preferably particles containing graphite.
  • the negative electrode active material preferably includes one or both of a negative electrode active material of silicon and a silicon compound and a negative electrode active material that is a carbon material.
  • the silicon compound is preferably silicon oxide particles represented by SiO x (0.5 ⁇ x ⁇ 1.5). Further, the silicon compound is more preferably coated with a material containing carbon to contain a carbon film.
  • the carbon coating is preferably composed mainly of amorphous carbon. By using amorphous carbon, it is possible to form a good and uniform film on the surface of the silicon compound, and it is possible to further promote the diffusion of lithium ions into the silicon compound.
  • the mass ratio of the carbon material to the silicon compound is preferably 99: 1 to 70:30, and more preferably 97: 3 to 90:10.
  • the binder can be a fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like, as in the case of the positive electrode.
  • PAN a fluorine resin
  • PAN polyimide resin
  • acrylic resin acrylic resin
  • polyolefin resin or the like
  • the binder can be a fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like, as in the case of the positive electrode.
  • SBR styrene-butadiene rubber
  • CMC styrene-butadiene rubber
  • PAA polyacrylic acid
  • PAA-Na, PAA-K a salt thereof
  • PVA polyvinyl alcohol
  • the separator 33 a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefin-based resins such as polyethylene and polypropylene, cellulose, and the like are preferable.
  • the separator 33 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • a heat resistant layer containing a heat resistant material is formed on the surface of the separator 33 facing the positive electrode plate 31.
  • the heat-resistant layer is composed of a resin having excellent heat resistance such as engineer plastic or an inorganic compound such as ceramics.
  • the resin constituting the heat-resistant layer polyamide resins such as aliphatic polyamide and aromatic polyamide (aramid), polyimide resins such as polyamideimide and polyimide are more preferable.
  • inorganic particles may be used for the heat-resistant layer, and examples of the inorganic particles include metal oxides and metal hydroxides.
  • alumina, titania and boehmite are more preferable, and alumina and boehmite are more preferable.
  • the electrolyte is a nonaqueous electrolyte containing, for example, a nonaqueous solvent and an electrolyte salt dissolved in a nonaqueous solvent.
  • the non-aqueous electrolyte is not limited to a non-aqueous electrolyte that is a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • non-aqueous solvent for example, a chain carbonate or a cyclic carbonate is used.
  • chain carbonate examples include diethyl carbonate (DEC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC).
  • cyclic carbonate examples include propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate (VC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • VC vinylene carbonate
  • FEC fluorinated cyclic carbonates
  • FEC fluoroethylene carbonate
  • esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone can be added to the above solvent.
  • fluorinated chain carboxylic acid esters such as fluorinated chain carbonic acid ester and methyl fluoropropionate (FMP) can also be used.
  • compounds containing a sulfone group such as propane sultone for the purpose of improving cycleability; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyl
  • a compound containing an ether such as tetrahydrofuran can be added to the solvent.
  • nitriles such as butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, etc.
  • a compound, a compound containing an amide such as dimethylformamide, and the like can also be added to the solvent.
  • a solvent in which a part of these hydrogen atoms (H) is substituted with fluorine atoms (F) can also be used.
  • the electrolyte salt dissolved in the non-aqueous solvent is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiC (C 2 F 5 SO 2), LiCF 3 CO 2, Li (P (C 2 O 4 ) F 4 ), Li (P (C 2 O 4 ) F 2 ), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li 2 B 4 O 7 , Li (B (C 2 O 4 ) 2 ) [lithium-bisoxalate borate (LiBOB) ], Borates such as Li (B (C 2 O 4 ) F 2 ), LiN (FSO 2 ) 2 , LiN (C 1 F 2l + 1 SO
  • lithium salts may be used alone or in combination of two or more.
  • the concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • FIG. 2 is a bottom view of the secondary battery 10 shown in FIG.
  • the bottom portion 12b of the case body 12 is formed in a disc shape, and includes a disc-shaped valve portion 12d disposed in the center portion, and an annular thin portion 13 that continuously surrounds the periphery of the valve portion 12d.
  • the thin portion 13 is indicated by sand.
  • the thin portion 13 is formed in a perfect circle shape centered on the center O of the bottom portion 12b in the bottom view.
  • a marking portion 14 that is a concave portion that forms a planned opening portion is formed.
  • the bottom part 12b consists of the thin part 13 and the part remove
  • the valve portion 12 d is an inner portion of the thin portion 13. The thin-walled portion 13 is broken when the gas pressure inside the battery case 11 increases, and discharges the gas inside.
  • valve portion 12d is a planned opening portion when the internal pressure is increased, and functions as a lower safety valve.
  • the ratio of the thickness of the thin portion 13 to the thickness t of the bottom portion 12b is preferably 0.15 or less in consideration of durability during normal use and operability of the safety valve when the internal pressure is increased.
  • the ratio of the area of the valve part 12d to the entire area when the bottom part 12b of the case body 12 is viewed from below is preferably 0.07 to 0.55, more preferably 0.14 to 0.45. preferable.
  • the area of the valve portion 12d is, for example, 15 mm 2 to 150 mm 2 .
  • FIG. 3 shows two other examples of the thin portion 13.
  • Another example of the thin-walled portion 13 shown in FIG. 3A forms a part of a ring centered on the center O of the bottom portion 12b. That is, the thin portion 13 is formed in a C-shape that is arcuate. And the inside of the thin part 13 becomes the valve part 12d. For this reason, the inner peripheral side and the outer peripheral side of the thin wall portion 13 are connected by the connecting portion 16 having a large thickness. As a result, the thin portion 13 discontinuously surrounds the disc-shaped valve portion 12d.
  • a gas exhaust port that breaks and discharges the gas inside the battery case 11 to the outside when the internal gas pressure increases, as in the thin-walled portion 13 in FIG. Form. *
  • each thin portion 13 has an annular shape composed of an arc and a straight line connecting both ends of the arc.
  • the two thin portions 13 have a symmetrical shape with respect to the center O.
  • An inner portion of the thin portion 13 is a valve portion 12d.
  • the shape of the thin part 13 is not limited to the shape shown in FIG. 2, FIG.
  • the thin portion 13 is not limited to an annular shape, and may be a polygon having a straight line such as a rectangle.
  • sealing body 20 is attached to the opening of the case body 12 via the gasket 42, thereby ensuring the hermeticity inside the battery case 11.
  • the convex portion 15 supports the sealing body 20 via the gasket 42.
  • the sealing body 20 includes a cap 21 that is a top plate, a sealing body-side bottom plate 22, and a current interruption mechanism (CID mechanism).
  • the current interruption mechanism is constituted by an upper valve body 24, an insulating member 25, and a lower valve body 26.
  • the current interrupting mechanism is disposed between the cap 21 and the sealing body side bottom plate 22 to form a current path that electrically connects the upper valve body 24 and the lower valve body 26.
  • a current interruption mechanism interrupts
  • the cap 21, the sealing body side bottom plate 22, the upper valve body 24, and the lower valve body 26 constituting the sealing body 20 are made of metal and have a disc shape or a ring shape.
  • the cap 21 has a disk shape having a cylindrical portion whose upper end is closed, and an outward flange 21a is formed at the lower end over the entire circumference.
  • a cap opening 21b is formed at one of the upper end portions of the cap 21 or at a plurality of positions in the circumferential direction.
  • FIG. 4 is a perspective view of the sealing body side bottom plate 22 as viewed from below. At least a part of the sealing body side bottom plate 22 is separated from the lower valve body 26. Specifically, the sealing body side bottom plate 22 has a tapered cylindrical portion 22b inclined with respect to the axial direction (vertical direction in FIG. 4), and has a shape in which the lower end is closed by the disc portion 22c. The sealing body side bottom plate 22 is formed with an outward flange 22d on the entire upper end. Bottom plate openings 22a are formed at a plurality of circumferential positions (three positions in the illustrated example) of the disk portion 22c. Further, the sum of the opening areas of the plurality of bottom plate openings 22 a is smaller than the sum of the opening areas of the cap openings 21 b of the cap 21.
  • a cap 21 is disposed at the upper end of the sealing body 20, and a sealing body side bottom plate 22 is disposed at the lower end. Accordingly, the sealing body side bottom plate 22 is disposed to face the upper side of the upper insulating plate 40 described later.
  • the outer peripheries of the upper valve body 24, the insulating member 25, and the lower valve body 26 are sandwiched in order from the upper side to the lower side.
  • the upper valve body 24 is formed in a disc shape.
  • the lower valve body 26 is also formed in a disc shape and is disposed below the upper valve body 24.
  • a convex portion 26 a that protrudes upward is formed at the central portion of the lower valve body 26, and contacts the central portion of the lower surface of the upper valve body 24.
  • the convex portion 26 a of the lower valve body 26 is preferably joined to the central portion of the lower surface of the upper valve body 24 by welding.
  • the flanges 21a and 22d of the cap 21 and the sealing body side bottom plate 22, the upper valve body 24, the insulating member 25, and the outer periphery of the lower valve body 26 are not joined.
  • the outer peripheral portions of the flanges 21 a and 22 d, the upper valve body 24, the insulating member 25, and the lower valve body 26 are sandwiched in the vertical direction by the inner peripheral portion of the gasket 42 held by the upper end portion of the case body 12.
  • each valve body 24, 26 is sufficiently smaller than the thickness of the case body 12.
  • a thin portion (not shown) is formed on the convex portion 26a of the lower valve body 26 or a portion outside the contact portion with the convex portion 26a.
  • the shape of the thin part of each valve body 24 and 26 is formed in C shape which is cyclic
  • the insulating member 25 is formed in an annular shape and is sandwiched between the outer peripheries of the upper valve body 24 and the lower valve body 26. Thereby, the cap 21 is electrically connected to the sealing body side bottom plate 22 through the current interrupting mechanism.
  • the positive electrode lead 34 is connected to the lower surface of the sealing body side bottom plate 22 by welding. As a result, the cap 21 is connected to the positive electrode plate 31 and becomes a positive electrode terminal.
  • the negative electrode lead 35 is connected to the inner surface of the bottom 12b of the case body 12 by welding. As a result, the case main body 12 is connected to the negative electrode plate 32 and becomes a negative electrode terminal.
  • the upper valve body 24 and the lower valve body 26 seal the lower space S1 of the sealing body side bottom plate 22 from the outside of the battery case 11.
  • the thin portions of the upper valve body 24 and the lower valve body 26 break. Gas passages (not shown) are formed in the upper valve body 24 and the lower valve body 26, respectively.
  • the gas inside the battery case 11 is discharged.
  • the gas generated inside the battery due to the breakage of the upper valve body 24 is discharged to the outside through the cap opening 21b.
  • the current interrupt mechanism has the function of an upper safety valve that discharges high-pressure gas.
  • the cap 21 may employ a configuration in which the cap opening 21b is not formed and the cap 21 is broken by an increase in pressure on the lower side.
  • the gas pressure in the space S2 formed between the upper valve body 24 and the lower valve body 26 is increased before the thin portion of the upper valve body 24 is broken.
  • the upper valve body 24 swells to the cap 21 side.
  • the upper valve body 24 and the lower valve body 26 are separated by a contact portion of the convex portion 26a, for example, a joint portion. Accordingly, the current path that electrically connects the upper valve body 24 and the lower valve body 26 is blocked, and the current path that electrically connects the positive electrode plate 31 and the cap 21 is also blocked.
  • the current cut-off mechanism cuts off a current path connecting the upper valve body 24 and the lower valve body 26 when the gas pressure in the space S3 between the upper valve body 24 and the lower valve body 26 is equal to or higher than a predetermined cut-off pressure. For this reason, excellent safety can be ensured.
  • valve element means a member in which a gas passage leading to the other side (upper side in FIG. 1) is formed due to breakage caused by an increase in gas pressure on one side (lower side in FIG. 1).
  • the upper insulating plate 40 is disposed between the convex portion 15 and the electrode body 30 for the purpose of preventing contact between the convex portion 15 of the case body 12 and the electrode body 30.
  • the upper insulating plate 40 is composed mainly of, for example, glass fiber reinforced phenol resin. By using a glass fiber reinforced phenol resin as a main component, an insulating plate having high strength and high heat resistance can be obtained.
  • the upper space S1 of the upper insulating plate 40 communicates with the lower space S2 of the lower valve body 26 through the bottom plate opening 22a of the sealing body side bottom plate 22.
  • FIG. 5 is a view of the upper insulating plate 40 as viewed from above.
  • the upper insulating plate 40 is disc-shaped and is arranged side by side in the circumferential direction on the substantially semicircular first opening 40a formed on one side (lower side in FIG. 5) and on the other side (upper side in FIG. 5).
  • Each of the second openings 40b is substantially the same shape and is formed in an arc shape centered on the central axis O.
  • the first opening 40 a and each second opening 40 b are provided for passing gas generated in the power generation element including the electrode body 30.
  • the first opening 40 a passes the positive electrode lead 34 (FIG. 1) from the lower side to the upper side.
  • an overhanging portion 40c that projects inward is formed in the vicinity of the central axis O on the other side (the upper side in FIG. 1) of the first opening 40a.
  • projection part 40c has covered the whole upper end of FIG. 1 which is one end of the hollow part 36 formed in the center vicinity of the electrode body 30.
  • FIG. In FIG. 5, the upper end of the hollow portion 36 is indicated by a portion with an X attached to a circle.
  • the upper insulating plate 40 may contain, for example, a reinforcing material other than fiber such as silica, clay, mica, or a resin having high heat resistance other than phenol resin (for example, epoxy resin, polyimide resin, etc.).
  • a reinforcing material other than fiber such as silica, clay, mica, or a resin having high heat resistance other than phenol resin (for example, epoxy resin, polyimide resin, etc.).
  • fibers contained in the upper insulating plate 40 boron fibers, aramid fibers, or the like may be used in addition to glass fibers.
  • the lower insulating plate 41 is formed in a disk shape having openings at a part or a plurality of positions by the same material as the material forming the upper insulating plate 40.
  • the lower insulating plate 41 has a lower opening 41 a in the center including the position facing the lower end of the hollow portion 36.
  • the opening ratio which is the ratio of the sum of the upper end opening areas of the openings 40a and 40b to the entire outer area of the upper surface of the upper insulating plate 40, is preferably 20% or more and 50% or less.
  • the aperture ratio is in the above range, the liquid injection property of the electrolytic solution is not impaired, and the upper insulating plate 40 has sufficient strength.
  • the gas is discharged to the outside through the sealing body 20. Then, before or after the gas is discharged from the sealing body 20 side, or at the same time, the valve portion 12d of the bottom portion 12b of the case body 12 is opened, and the gas is discharged also from the bottom portion 12b side.
  • the gas exhaust is generated during the thermal runaway of the battery, and the exhaust from the sealing body 20 side is the electrode body 30, the openings 40a and 40b of the upper insulating plate 40, the bottom plate opening 22a, the lower valve body 26, and the upper valve body. 24 gas passages and the cap opening 21b.
  • the upper insulating plate 40 arranged below the gas passage of the upper valve body 24 plays a role of suppressing exhaust from the sealing body 20 to the outside.
  • the upper insulating plate 40 covers the upper end of the hollow portion 36 of the electrode body 30, thereby suppressing the exhaust from the sealing body 20, and the pressure of the hollow portion 36 is increased by the upper insulating plate 40.
  • the bottom 12b of the case body 12 can be more positively broken, and a gas exhaust port is easily formed. For this reason, the amount of gas exhaust from the gas exhaust port increases.
  • the flow resistance on the sealing body 20 side is larger than the flow resistance on the bottom 12b side, so the amount of exhaust from the bottom 12b is high.
  • FIG. 6 is a cross-sectional view of a secondary battery 10 according to another example of the embodiment.
  • FIG. 7 is a perspective view of the sealing body side bottom plate 22 constituting the secondary battery 10 as viewed from below.
  • the bottom plate opening 22a is formed in the sealing body side bottom plate 22 at a plurality of circumferential positions (three positions in the illustrated example) in contact with the lower surface of the lower valve body 26.
  • the gas whose temperature has increased from the electrode body 30 is sent from the openings 40a and 40b of the upper insulating plate 40 to the bottom plate opening 22a. Then, the gas flows into a wide space S ⁇ b> 2 between the center portion of the lower valve body 26 and the sealing body side bottom plate 22 through a gap between the flange 22 d of the sealing body side bottom plate 22 and the peripheral portion of the lower valve body 26.
  • the valve bodies 24 and 26 are broken by the pressure increase in the space S2, a gas passage is formed, and the internal gas is discharged.
  • the exhaust amount from the sealing body 20 can be further suppressed. Accordingly, a gas discharge port is easily formed in the bottom portion 12b of the case body 12 during the thermal runaway of the battery. For this reason, the temperature rise of a battery can be suppressed more effectively.
  • the total opening area of the plurality of bottom plate openings 22a is, for example, 15 mm 2 or less, and is preferably 10 mm 2 or less, more preferably 5 mm 2 or less from the viewpoint of improving the exhaust performance of the battery as a whole and suppressing an increase in battery temperature.
  • the thickness is 0.5 mm 2 to 2 mm 2 .
  • Ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 20: 75: 5. Furthermore, LiPF 6 was dissolved to a concentration of 1.4 mol / L with respect to the mixed solvent to prepare a nonaqueous electrolytic solution.
  • a positive electrode lead 34 made of aluminum was attached to the positive electrode plate 31, and a negative electrode lead 35 made of nickel was attached to the negative electrode plate 32. Then, the positive electrode plate 31 and the negative electrode plate 32 were spirally wound through the separator 33 to produce a wound electrode body 30.
  • a polyethylene microporous membrane coated with a heat-resistant layer in which polyamide and alumina fillers are dispersed is used as the separator 33.
  • the electrode body 30 was accommodated in the case body 12 having an outer diameter of 18.2 mm and a height of 65 mm, and the non-aqueous electrolyte was injected.
  • the thin part 13 was formed in the bottom part 12b of the case body 12 by forming an annular (perfectly circular) marking part 14 from the outside in advance.
  • an upper insulating plate 40 and a lower insulating plate 41 are disposed above and below the electrode body 30.
  • the opening part of the case main body 12 was sealed with the gasket 42 and the sealing body 20, and the secondary battery 10 with a volume energy density of 739 Wh / L was produced by 18650 type
  • the sealing body 20 has the structure shown in FIG. 1 and FIG. 6, and three bottom plate openings 22 a are formed in the peripheral edge portion in contact with the lower valve body 26 in the sealing body side bottom plate 22.
  • the upper insulating plate 40 is provided with a plurality of openings 40a and 40b.
  • the insulating plate of FIG. 8 is not formed with an overhanging portion that covers the portion of the circular body in FIG. 8 that is the upper end of the hollow portion 36 of the electrode body 30.
  • the upper end of the hollow portion 36 faces the first opening 40 a and is not covered with the insulating plate 40.
  • Table 1 shows the results of evaluating the maximum battery temperature when the heating and ignition test was performed for the batteries of Experimental Example 1 and Experimental Example 2. For the battery maximum temperature, two tests were conducted in each of Experimental Examples 1 and 2, and the average value of the maximum temperatures in each test is shown in Table 1.
  • the shape of the upper insulating plate 40 is not limited to the shape shown in FIG. 5, and various shapes can be adopted.
  • 9 to 11 are views of an upper insulating plate 40 constituting a secondary battery 10 of another example of the embodiment as viewed from above.
  • the upper insulating plate 40 includes a circular outer peripheral portion 40d and a substantially triangular inner portion 40e, and the top of the inner portion 40e is coupled to the inner peripheral surface of the circular outer peripheral portion 40d.
  • Insulating plate openings 40f are formed at three positions between the circular outer peripheral portion 40d and the inner portion 40e.
  • the upper insulating plate 40 includes a circular outer peripheral portion 40d and a disc-shaped inner portion 40g, and the inner portion 40g is connected to the circular outer peripheral portion 40d by radial legs 40h. Then, fan-shaped (arc-shaped) openings 40i are formed at three positions between the circular outer peripheral portion 40d and the inner portion 40g.
  • semicircular openings 40j are formed at four positions at equal intervals in the circumferential direction of the upper insulating plate 40.
  • a substantially square inner portion 40k is formed inside the four openings 40j. 9 to 11, the inner portions 40e, 40g, and 40k cover the upper end of the hollow portion 36 of the electrode body 30 (the portion marked with a circle X).
  • the upper insulating plate 40 covers the entire upper end of the hollow portion 36 has been described. However, only a part of the hollow portion 36 may be covered by the upper insulating plate. However, it is preferable to cover the entire upper end of the hollow portion 36 with the upper insulating plate 40 in order to enhance the exhaustability from the bottom 12b of the case body 12 and suppress the rise in battery temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

A cylindrical nonaqueous electrolyte secondary battery which has a configuration wherein a sealing body that seals an opening of a case main body is provided with a valve element, and which is suppressed in increase of the battery temperature by enhancing the exhaust ventilation performance from the bottom. A cylindrical nonaqueous electrolyte secondary battery (10) comprises: a bottomed cylindrical case main body (12) which has an opening at one end and contains an electrode body (30); a sealing body (20) which has an upper valve element (24) and a lower valve element (26) and seals the opening at one end of the case main body (12); and an insulating plate (40) which is arranged between the electrode body (30) and the sealing body (20). The electrode body (30) has a wound structure which is obtained by winding up a positive electrode plate and a negative electrode plate, with a separator being interposed therebetween. A bottom (12b) at the other end of the case main body (12) comprises a valve part (12d) and a thin part (13) that continuously or discontinuously surrounds the valve part (12d). The insulating plate (40) has a first opening (40a) and a second opening (40b), and covers at least a part of one end of a hollow part (36) that is formed at the inner end of the winding direction of the electrode body (30).

Description

円筒形非水電解質二次電池Cylindrical non-aqueous electrolyte secondary battery
 本開示は、円筒形非水電解質二次電池に関する。 The present disclosure relates to a cylindrical nonaqueous electrolyte secondary battery.
 特許文献1には、電池ケースの底部に薄肉部(底部刻印)を設け、異常加熱などによりガス圧力が所定値以上に上昇した場合に薄肉部を破断させ、その破断により生じた底部の排気口からガスを排出させる構成が記載されている。これによって、電池内の圧力が急上昇した場合でも電池ケースの筒状部に亀裂が生じることを抑制できるとされている。 In Patent Document 1, a thin wall portion (bottom marking) is provided at the bottom of a battery case, and when the gas pressure rises to a predetermined value or more due to abnormal heating or the like, the thin wall portion is broken, and the bottom exhaust port generated by the breakage The structure which discharges | emits gas from is described. Thereby, even when the pressure in the battery suddenly increases, it is said that cracks can be suppressed in the cylindrical part of the battery case.
 特許文献2には、電池ケースのケース本体の上端開口を封口体により封止することが記載されている。また、特許文献2には、封口体を構成する封口体側底板と、上部絶縁板とのそれぞれに開口を設けて、電池ケース内に発生したガスの排気することも記載されている。上部絶縁板は、ケース本体の内部で封口体と電極体との間に配置される。封口体側底板の上側には弁体が配置される。弁体は、下側のガス圧力が高まることによって破断され、ガス通路が形成される。 Patent Document 2 describes that an upper end opening of a case body of a battery case is sealed with a sealing body. Patent Document 2 also describes that an opening is provided in each of the sealing body side bottom plate and the upper insulating plate constituting the sealing body, and gas generated in the battery case is exhausted. The upper insulating plate is disposed between the sealing body and the electrode body inside the case body. A valve body is disposed on the upper side of the sealing body side bottom plate. The valve body is broken when the lower gas pressure is increased, and a gas passage is formed.
国際公開第2014/045569号International Publication No. 2014/045569 国際公開第2014/064882号International Publication No. 2014/064882
 電池の高容量化に伴い、内部短絡等による発熱により電池ケース内でガスが温度上昇して内圧が上昇しやすくなる。このようなガスの圧力上昇を抑制するために、特許文献1に記載された底部刻印と、特許文献2に記載された上部絶縁板の開口及び封口体の弁体とを併用して、電池ケースの下部と上部とからガスを排出させることが考えられる。 As the capacity of the battery increases, the temperature of the gas in the battery case rises due to heat generated by an internal short circuit and the internal pressure tends to increase. In order to suppress such an increase in gas pressure, a battery case is formed by combining the bottom marking described in Patent Document 1 and the opening of the upper insulating plate and the valve body of the sealing body described in Patent Document 2. It is conceivable that gas is discharged from the lower part and the upper part.
 一方、特許文献1,2のいずれの場合も、電極体の巻回方向内端に形成される中空部分の上端が、上部絶縁板の開口を通じて開放される。従って、中空部分が、電極体で発生したガスが排出される排気通路として機能する。この場合、電池上部からガスが排出されやすい反面、電池内部で中空部分の圧力が低下して底部の薄肉部を破断させる力を得られず、底部からの排気が発生しない場合がある。また、底部の薄肉部が破断しても、底部からのガスの排出量が少なくなる場合がある。これによって、電池上部と底部からの排気のバランスが悪くなり排気による電池の冷却効果が十分得られなくなり、電池内部で温度が上昇する場合がある。電池温度が上昇すると、電池ケースが熱膨張する場合がある。 On the other hand, in both cases of Patent Documents 1 and 2, the upper end of the hollow portion formed at the inner end in the winding direction of the electrode body is opened through the opening of the upper insulating plate. Accordingly, the hollow portion functions as an exhaust passage through which the gas generated in the electrode body is discharged. In this case, the gas tends to be discharged from the upper part of the battery, but the pressure in the hollow part is lowered inside the battery and the force to break the thin part at the bottom cannot be obtained, and the exhaust from the bottom may not occur. In addition, even if the thin portion at the bottom is broken, the amount of gas discharged from the bottom may be reduced. As a result, the balance between the exhaust from the top and bottom of the battery is deteriorated, and the effect of cooling the battery by exhaust cannot be sufficiently obtained, and the temperature may rise inside the battery. When the battery temperature rises, the battery case may thermally expand.
 本開示の一様態である円筒形非水電解質二次電池の目的は、ケース本体の開口を封止する封口体に弁体が配置される構成で、底部からの排気性を高くして、電池温度の上昇を抑制することである。 The purpose of the cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure is to have a structure in which a valve body is disposed in a sealing body that seals an opening of a case body, and the exhaust performance from the bottom is increased, thereby It is to suppress the temperature rise.
 本開示の一様態である円筒形非水電解質二次電池は、一端開口を有し電極体を収容する有底筒状のケース本体と、弁体を有しケース本体の一端開口を封止する封口体と、電極体と封口体との間に配置される絶縁板と、を備え、電極体は、正極板及び負極板がセパレータを介して巻回して形成された巻回型構造を有し、ケース本体の他端の底部は、弁部と、弁部の周囲を連続的または不連続的に囲む薄肉部とを有し、絶縁板は開口部を有しており、電極体の巻回方向内端に形成される中空部分の一端の少なくとも一部を覆っている。 A cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure includes a bottomed cylindrical case body having an opening at one end and accommodating an electrode body, and a valve body and sealing the one end opening of the case body. A sealing body, and an insulating plate disposed between the electrode body and the sealing body, and the electrode body has a winding structure formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween. The bottom of the other end of the case body has a valve portion and a thin portion that continuously or discontinuously surrounds the valve portion, the insulating plate has an opening, and the winding of the electrode body It covers at least a part of one end of the hollow portion formed at the inner end in the direction.
 本開示の一様態である円筒形非水電解質二次電池によれば、ケース本体の開口を封止する封口体に弁体が配置される構成で、内部短絡等による発熱で電池の内圧が上昇した場合に、電池上部からの排気を抑制し、底部からの排気性を高くすることで、排気のバランスを改善し、電池温度の上昇を抑制できる。 According to the cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure, the internal pressure of the battery increases due to heat generated by an internal short circuit or the like in a configuration in which a valve body is disposed in a sealing body that seals the opening of the case body. In this case, by suppressing the exhaust from the upper part of the battery and increasing the exhaustability from the bottom part, it is possible to improve the balance of the exhaust and suppress an increase in the battery temperature.
実施形態の一例である円筒形非水電解質二次電池の断面図である。It is sectional drawing of the cylindrical nonaqueous electrolyte secondary battery which is an example of embodiment. 図1に示す円筒形非水電解質二次電池の底面図である。It is a bottom view of the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 薄肉部の別例を示している図2に対応する図である。It is a figure corresponding to Drawing 2 which shows another example of a thin part. 図1に示す円筒形非水電解質二次電池を構成する封口体側底板を下側から見た斜視図である。It is the perspective view which looked at the sealing body side baseplate which comprises the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 1 from the lower side. 図1に示す円筒形非水電解質二次電池を構成する上部絶縁板を上方から見た図である。It is the figure which looked at the upper insulating board which comprises the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 1 from upper direction. 実施形態の別例の円筒形非水電解質二次電池の断面図である。It is sectional drawing of the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment. 図6に示す円筒形非水電解質二次電池を構成する封口体側底板を下側から見た斜視図である。It is the perspective view which looked at the sealing body side bottom board which comprises the cylindrical nonaqueous electrolyte secondary battery shown in FIG. 6 from the lower side. 実験例1の円筒形非水電解質二次電池を構成する上部絶縁板を上方から見た図である。It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of Experimental example 1 from upper direction. 実施形態の別例の円筒形非水電解質二次電池を構成する上部絶縁板を上方から見た図である。It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment from the upper direction. 実施形態の別例の円筒形非水電解質二次電池を構成する上部絶縁板を上方から見た図である。It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment from the upper direction. 実施形態の別例の円筒形非水電解質二次電池を構成する上部絶縁板を上方から見た図である。It is the figure which looked at the upper insulating plate which comprises the cylindrical nonaqueous electrolyte secondary battery of another example of embodiment from the upper direction.
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率は適宜変更される。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。なお、説明の便宜上、方向を示す用語として「上下」を用いて、封口体側を「上」といい、ケース本体の底部側を「下」という。 Hereinafter, an example of the embodiment will be described in detail with reference to the drawings. The drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings are appropriately changed. Specific dimensional ratios and the like should be determined in consideration of the following description. For convenience of explanation, “upper and lower” are used as terms indicating directions, the sealing body side is referred to as “upper”, and the bottom side of the case body is referred to as “lower”.
 図1は、実施形態の一例である円筒形非水電解質二次電池10の断面図である。円筒形非水電解質二次電池10は、電池ケース11と、電池ケース11内に収容された電極体30及び電解質(図示せず)とを備える。以下、円筒形非水電解質二次電池10は単に二次電池10という。 FIG. 1 is a cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery 10 which is an example of an embodiment. The cylindrical nonaqueous electrolyte secondary battery 10 includes a battery case 11, an electrode body 30 accommodated in the battery case 11, and an electrolyte (not shown). Hereinafter, the cylindrical nonaqueous electrolyte secondary battery 10 is simply referred to as a secondary battery 10.
 電池ケース11は、有底円筒状で金属製の容器であるケース本体12と、ケース本体12の一端(図1の上端)開口を塞ぐ封口体20とを含んでいる。電池ケース11の内部は、ケース本体12及び封口体20により密閉される。 The battery case 11 includes a case main body 12 which is a bottomed cylindrical metal container, and a sealing body 20 which closes one end (upper end in FIG. 1) of the case main body 12. The inside of the battery case 11 is sealed by the case body 12 and the sealing body 20.
 ケース本体12は、筒部12aの一端側部分(図1の上側部分)を外側から内側に全周にわたってプレス加工で押し出して形成した環状の凸部15を有する。そして、ケース本体12において、凸部15の上面に封口体20が載せられている。凸部15は、封口体20を上面に支持できるものであれば、筒部12aの周方向の複数位置を外側から内側に押し出して形成したものでもよい。 The case main body 12 has an annular convex portion 15 formed by pressing one end side portion (upper portion in FIG. 1) of the cylindrical portion 12a from the outside to the inside through press working. In the case body 12, the sealing body 20 is placed on the upper surface of the convex portion 15. As long as the convex part 15 can support the sealing body 20 on the upper surface, the convex part 15 may be formed by extruding a plurality of circumferential positions of the cylindrical part 12a from the outside to the inside.
封口体20は、封口体側底板22と、封口体側底板22の上側に配置される上弁体24及び下弁体26とを有する。封口体側底板22は、後述の底板開口22aを有する。上弁体24及び下弁体26のそれぞれは、後述のように下側の圧力が上昇したときに破断され、ガス排出孔が形成される。これによって、封口体20は、上側安全弁として機能する。 The sealing body 20 includes a sealing body side bottom plate 22 and an upper valve body 24 and a lower valve body 26 disposed on the upper side of the sealing body side bottom plate 22. The sealing body side bottom plate 22 has a bottom plate opening 22a described later. Each of the upper valve body 24 and the lower valve body 26 is broken when the pressure on the lower side increases as described later, and a gas discharge hole is formed. Thereby, the sealing body 20 functions as an upper safety valve.
 ケース本体12は、鉄を主成分とする金属の板(金属板)に、絞り加工を含むプレス加工を施すことにより底部12bを有する筒状に形成される。例えばケース本体12は、鋼板にニッケルメッキを施したニッケルメッキ鋼板から、有底筒状にプレス加工を施すことにより形成される。ケース本体12は、ニッケルメッキを有しない単なる鋼板から形成されてもよい。 The case body 12 is formed in a cylindrical shape having a bottom 12b by subjecting a metal plate (metal plate) containing iron as a main component to press working including drawing. For example, the case body 12 is formed by pressing a bottomed cylinder from a nickel-plated steel plate obtained by applying nickel plating to a steel plate. The case body 12 may be formed of a simple steel plate that does not have nickel plating.
 ケース本体12の底部12bには弁部12dと、薄肉部13とが形成される。薄肉部13は、電池内圧が所定圧力に達したときに破断することで、弁部12dが抜けて(開口して)、底部12bにガス排気口を形成する。これによって、底部12bが下側安全弁として機能する。底部12b及び封口体20については後述する。 A valve portion 12d and a thin portion 13 are formed on the bottom 12b of the case body 12. The thin portion 13 is broken when the battery internal pressure reaches a predetermined pressure, so that the valve portion 12d is released (opened) to form a gas exhaust port in the bottom portion 12b. Thereby, the bottom 12b functions as a lower safety valve. The bottom 12b and the sealing body 20 will be described later.
 電極体30は、正極板31と負極板32とがセパレータ33を介して巻回されてなる巻回型構造を有する。具体的には、電極体30は、正極板31及び負極板32を、正極板31及び負極板32の間にセパレータ33を介在させて渦巻き状に巻回して形成される。電極体30の巻回方向内端には、セパレータ33が巻かれることで柱状の中空部分36が形成される。セパレータ33の上端が傾斜せず上下方向に伸びる場合、中空部分36の上端の直径は、中空部分36の上下方向中央の直径とほぼ同じであるが、図1のように、セパレータ33の内側に傾斜した上端によって囲まれて直径が、中空部分36の上下方向中央の直径より小さくなる場合もある。 The electrode body 30 has a winding structure in which a positive electrode plate 31 and a negative electrode plate 32 are wound via a separator 33. Specifically, the electrode body 30 is formed by winding a positive electrode plate 31 and a negative electrode plate 32 in a spiral shape with a separator 33 interposed between the positive electrode plate 31 and the negative electrode plate 32. A columnar hollow portion 36 is formed at the inner end of the electrode body 30 in the winding direction by winding the separator 33. When the upper end of the separator 33 is not inclined and extends in the vertical direction, the diameter of the upper end of the hollow portion 36 is substantially the same as the diameter of the center in the vertical direction of the hollow portion 36, but as shown in FIG. The diameter surrounded by the inclined upper end may be smaller than the diameter of the center of the hollow portion 36 in the vertical direction.
 正極板31には正極リード34が、負極板32には負極リード35がそれぞれ取り付けられる。二次電池10は、電極体30と封口体20との間、より詳しくは電極体30と凸部15との間に配置される上部絶縁板40を備える。また、二次電池10は、電極体30とケース本体12の底部12bとの間に配置される下部絶縁板41を備える。 A positive electrode lead 34 is attached to the positive electrode plate 31, and a negative electrode lead 35 is attached to the negative electrode plate 32. The secondary battery 10 includes an upper insulating plate 40 disposed between the electrode body 30 and the sealing body 20, more specifically, between the electrode body 30 and the convex portion 15. In addition, the secondary battery 10 includes a lower insulating plate 41 disposed between the electrode body 30 and the bottom portion 12 b of the case body 12.
 図1に示す例では、正極リード34が上部絶縁板40の第1開口部40aを通って封口体20側に延び、負極リード35が下部絶縁板41の外側を通ってケース本体12の底部12b側に延びている。上部絶縁板40については後述する。 In the example shown in FIG. 1, the positive electrode lead 34 extends to the sealing body 20 side through the first opening 40 a of the upper insulating plate 40, and the negative electrode lead 35 passes through the outside of the lower insulating plate 41 to the bottom 12 b of the case body 12. Extends to the side. The upper insulating plate 40 will be described later.
 二次電池10は、例えば体積エネルギー密度が700Wh/L以上である。このようにエネルギー密度が高い電池においては、従来の構成では後述するように電池上下からの排気バランスが悪化することで温度上昇しやすくなり、モジュール環境下における類焼リスクが高まる。実施形態ではこのようなエネルギー密度が高い電池で、後述のように上部絶縁板40によって電極体30の中心部に形成される中空部を覆う構成を採用して封口体20側からの排気を抑制することで底部12b側からの排気が改善し、電池温度の上昇を低減できる。 The secondary battery 10 has, for example, a volume energy density of 700 Wh / L or more. In a battery having such a high energy density, in the conventional configuration, as described later, the exhaust balance from the upper and lower sides of the battery deteriorates, so that the temperature easily rises, and the risk of burning off in the module environment increases. In the embodiment, in such a battery having a high energy density, a structure in which a hollow portion formed at the center portion of the electrode body 30 is covered by the upper insulating plate 40 as described later is employed to suppress exhaust from the sealing body 20 side. By doing so, the exhaust from the bottom 12b side is improved, and the rise in battery temperature can be reduced.
 また、後で詳しく説明するように、二次電池10では、正極活物質にリチウム含有遷移金属酸化物を用い、負極活物質にリチウムイオンを吸蔵・放出可能な材料を用いている。また、電解質には非水系電解質を用いている。 Also, as will be described in detail later, in the secondary battery 10, a lithium-containing transition metal oxide is used as the positive electrode active material, and a material capable of inserting and extracting lithium ions is used as the negative electrode active material. Further, a non-aqueous electrolyte is used as the electrolyte.
[正極]
 正極板31は、例えば正極集電体と、正極集電体上に形成された正極合材層とで構成される。正極集電体には、アルミニウムなどの正極板31の電位範囲で安定な金属の箔、またはこの金属を表層に配置したフィルムなどを用いることができる。正極合材層は、正極活物質を含む。正極合材層は、正極活物質の他に、導電材及び結着材を含むことが好適である。正極板31は、例えば正極集電体上に正極活物質、結着材を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して集電体の両面に正極合材層を形成することにより作製できる。
[Positive electrode]
The positive electrode plate 31 is composed of, for example, a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector. As the positive electrode current collector, a metal foil that is stable within the potential range of the positive electrode plate 31 such as aluminum, or a film in which this metal is disposed on the surface layer can be used. The positive electrode mixture layer includes a positive electrode active material. The positive electrode mixture layer preferably includes a conductive material and a binder in addition to the positive electrode active material. The positive electrode plate 31 is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material and a binder on a positive electrode current collector, drying the coating film, and rolling the positive electrode mixture layer on both surfaces of the current collector. Can be produced.
 正極活物質に用いるリチウム含有遷移金属酸化物の具体例としては、一般式LiaNix1-x2(0.9≦a≦1.2、0.8≦x<1、MはCo、Mn、Alからなる群より選択される少なくとも1種の元素)で表される複合酸化物が挙げられる。複合酸化物の中でも、Ni-Co-Mn系のリチウム含有遷移金属複合酸化物は、出力特性に加え回生特性にも優れることから好適である。Ni-Co-Al系のリチウム含有遷移金属複合酸化物は、高容量且つ出力特性に優れるためさらに好適である。 Specific examples of the lithium-containing transition metal oxide used for the positive electrode active material include a general formula Li a Ni x M 1-x O 2 (0.9 ≦ a ≦ 1.2, 0.8 ≦ x <1, M is A composite oxide represented by at least one element selected from the group consisting of Co, Mn, and Al). Among complex oxides, Ni—Co—Mn lithium-containing transition metal complex oxides are preferable because they are excellent in regenerative characteristics in addition to output characteristics. Ni—Co—Al-based lithium-containing transition metal composite oxides are more preferred because of their high capacity and excellent output characteristics.
 導電材を含む正極合材層では、導電材は正極合材層の電気伝導性を高めるために用いられる。導電材の例としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 In the positive electrode mixture layer containing a conductive material, the conductive material is used to increase the electrical conductivity of the positive electrode mixture layer. Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
 結着材を含む正極合材層では、結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 In the positive electrode mixture layer including the binder, the binder maintains a good contact state between the positive electrode active material and the conductive material, and increases the binding property of the positive electrode active material and the like to the surface of the positive electrode current collector. Used for. Examples of the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. Further, these resins, carboxymethyl cellulose (CMC) or a salt thereof (CMC-Na, CMC-K, CMC-NH 4 or the like, may be a partially neutralized salt), polyethylene oxide (PEO), etc. May be used in combination. These may be used alone or in combination of two or more.
 [負極]
 負極板32は、負極集電体と、負極集電体上に形成された負極合材層とで構成される。負極集電体には、銅などの負極板32の電位範囲で安定な金属の箔、この金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質を含む。負極合材層は、負極活物質の他に、結着材を含むことが好適である。負極板32は、例えば負極集電体上に負極活物質、結着材を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して集電体の両面に負極合材層を形成することにより作製できる。
[Negative electrode]
The negative electrode plate 32 includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector. As the negative electrode current collector, a metal foil that is stable in the potential range of the negative electrode plate 32 such as copper, a film in which this metal is disposed on the surface layer, or the like can be used. The negative electrode mixture layer includes a negative electrode active material. The negative electrode mixture layer preferably includes a binder in addition to the negative electrode active material. The negative electrode plate 32 is formed by, for example, applying a negative electrode mixture slurry containing a negative electrode active material and a binder on a negative electrode current collector, drying the coating film, and rolling the negative electrode mixture layer on both sides of the current collector. Can be produced.
 負極活物質には、リチウムイオンの挿入脱離が可能な炭素材料を用いることができる。炭素材料は、黒鉛を含む粒子が好適である。負極活物質は、ケイ素及びケイ素化合物の一方または両方の負極活物質と、炭素材料である負極活物質とを備えることが好ましい。ケイ素化合物は、SiOx(0.5≦x≦1.5)で表されるケイ素酸化物の粒子であることが好ましい。また、ケイ素化合物は表面が炭素を含む材料で被覆されて炭素皮膜を含むことがさらに好ましい。炭素被膜は、主に非晶質炭素から構成されることが好ましい。非晶質炭素を用いることで、ケイ素化合物表面に良好且つ均一な被膜を形成することが可能となり、ケイ素化合物へのリチウムイオンの拡散をより促進させることが可能となる。上記炭素材料とケイ素化合物との質量比は、99:1~70:30であることが好ましく、97:3~90:10であることがより好ましい。 As the negative electrode active material, a carbon material capable of inserting and removing lithium ions can be used. The carbon material is preferably particles containing graphite. The negative electrode active material preferably includes one or both of a negative electrode active material of silicon and a silicon compound and a negative electrode active material that is a carbon material. The silicon compound is preferably silicon oxide particles represented by SiO x (0.5 ≦ x ≦ 1.5). Further, the silicon compound is more preferably coated with a material containing carbon to contain a carbon film. The carbon coating is preferably composed mainly of amorphous carbon. By using amorphous carbon, it is possible to form a good and uniform film on the surface of the silicon compound, and it is possible to further promote the diffusion of lithium ions into the silicon compound. The mass ratio of the carbon material to the silicon compound is preferably 99: 1 to 70:30, and more preferably 97: 3 to 90:10.
 結着材を含む負極合材層では、結着材は、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて負極合材スラリーを調製する場合は、スチレン-ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。 In the negative electrode mixture layer containing the binder, the binder can be a fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like, as in the case of the positive electrode. When preparing a negative electrode mixture slurry using an aqueous solvent, styrene-butadiene rubber (SBR), CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof (PAA-Na, PAA-K, etc.) It is preferable to use polyvinyl alcohol (PVA) or the like.
[セパレータ]
 セパレータ33には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ33の材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ33は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。
[Separator]
As the separator 33, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric. As a material of the separator 33, olefin-based resins such as polyethylene and polypropylene, cellulose, and the like are preferable. The separator 33 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
 また、高温条件下での放電時の正極板31の発熱によるセパレータ33の劣化を抑制するという観点からは、セパレータ33の正極板31と対向する表面に耐熱性材料を含む耐熱層が形成されていることがさらに好ましい。例えば、耐熱層はエンジニアプラスチックなどの耐熱性に優れた樹脂やセラミックスなどの無機化合物などで構成される。耐熱層を構成する樹脂の具体例を挙げると、脂肪族系ポリアミド、芳香族系ポリアミド(アラミド)などのポリアミド樹脂、ポリアミドイミド、ポリイミドなどのポリイミド樹脂などがより好ましい。また、耐熱層には無機粒子を用いてもよく、無機粒子の例としては、金属酸化物及び金属水酸化物が挙げられる。中でもアルミナ、チタニア及びベーマイトがより好ましく、アルミナ及びベーマイトがさらに好ましい。なお、耐熱層には2種以上の無機粒子を用いてもよい。微少な短絡が生じた場合に短絡電流が流れることで熱が発生するが、耐熱層を有していることで耐熱性が改善され、熱によるセパレータ33の溶融を軽減することができるため有利である。 Further, from the viewpoint of suppressing deterioration of the separator 33 due to heat generation of the positive electrode plate 31 during discharge under high temperature conditions, a heat resistant layer containing a heat resistant material is formed on the surface of the separator 33 facing the positive electrode plate 31. More preferably. For example, the heat-resistant layer is composed of a resin having excellent heat resistance such as engineer plastic or an inorganic compound such as ceramics. As specific examples of the resin constituting the heat-resistant layer, polyamide resins such as aliphatic polyamide and aromatic polyamide (aramid), polyimide resins such as polyamideimide and polyimide are more preferable. In addition, inorganic particles may be used for the heat-resistant layer, and examples of the inorganic particles include metal oxides and metal hydroxides. Of these, alumina, titania and boehmite are more preferable, and alumina and boehmite are more preferable. In addition, you may use 2 or more types of inorganic particles for a heat resistant layer. When a short-circuit occurs, heat is generated by a short-circuit current flowing, but having a heat-resistant layer improves heat resistance and is advantageous because it can reduce melting of the separator 33 due to heat. is there.
[電解質]
 電解質は、例えば非水溶媒と、非水系溶媒に溶解した電解質塩とを含む非水電解質である。非水電解質は、液体電解質である非水電解液に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
[Electrolytes]
The electrolyte is a nonaqueous electrolyte containing, for example, a nonaqueous solvent and an electrolyte salt dissolved in a nonaqueous solvent. The non-aqueous electrolyte is not limited to a non-aqueous electrolyte that is a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
 非水系溶媒としては、例えば鎖状カーボネートや環状カーボネートが用いられる。鎖状カーボネートとしてはジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)などが挙げられる。環状カーボネートとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)などが挙げられる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として鎖状カーボネートと環状カーボネートの混合溶媒を用いることが好適である。また、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸カーボネートを用いることもできる。 As the non-aqueous solvent, for example, a chain carbonate or a cyclic carbonate is used. Examples of the chain carbonate include diethyl carbonate (DEC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC). Examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate (VC). In particular, it is preferable to use a mixed solvent of a chain carbonate and a cyclic carbonate as a non-aqueous solvent having a low viscosity, a low melting point, and a high lithium ion conductivity. Moreover, fluorinated cyclic carbonates such as fluoroethylene carbonate (FEC) can also be used.
 また、出力向上を目的として酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物を上記の溶媒に添加することができる。また、フッ素化鎖状炭酸エステルやフルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることもできる。 Also, for the purpose of improving the output, compounds containing esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone can be added to the above solvent. Moreover, fluorinated chain carboxylic acid esters such as fluorinated chain carbonic acid ester and methyl fluoropropionate (FMP) can also be used.
 また、サイクル性向上を目的としてプロパンスルトン等のスルホン基を含む化合物;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物を上記の溶媒に添加することができる。 In addition, compounds containing a sulfone group such as propane sultone for the purpose of improving cycleability; 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyl A compound containing an ether such as tetrahydrofuran can be added to the solvent.
 また、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物、ジメチルホルムアミド等のアミドを含む化合物等を上記の溶媒に添加することもできる。また、これらの水素原子(H)の一部がフッ素原子(F)により置換されている溶媒も用いることができる。 Also includes nitriles such as butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, etc. A compound, a compound containing an amide such as dimethylformamide, and the like can also be added to the solvent. A solvent in which a part of these hydrogen atoms (H) is substituted with fluorine atoms (F) can also be used.
 非水系溶媒に溶解する電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiC(C25SO2)、LiCF3CO2、Li(P(C24)F4)、Li(P(C24)F2)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)2)[リチウム-ビスオキサレートボレート(LiBOB)]、Li(B(C24)F2)等のホウ酸塩類、LiN(FSO22、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、少なくともフッ素含有リチウム塩を用いることが好ましく、例えばLiPF6を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。 The electrolyte salt dissolved in the non-aqueous solvent is preferably a lithium salt. Examples of the lithium salt, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiC (C 2 F 5 SO 2), LiCF 3 CO 2, Li (P (C 2 O 4 ) F 4 ), Li (P (C 2 O 4 ) F 2 ), LiPF 6-x (C n F 2n + 1 ) x (1 <x <6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li 2 B 4 O 7 , Li (B (C 2 O 4 ) 2 ) [lithium-bisoxalate borate (LiBOB) ], Borates such as Li (B (C 2 O 4 ) F 2 ), LiN (FSO 2 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) {l , M is an integer greater than or equal to 1} and the like. These lithium salts may be used alone or in combination of two or more. Among these, it is preferable to use at least a fluorine-containing lithium salt from the viewpoints of ion conductivity, electrochemical stability, and the like, and for example, LiPF 6 is preferably used. The concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
 以下、図2~図5を適宜参照しながら、ケース本体12の底部12b、封口体20、及び上部絶縁板40の構成について詳説する。 Hereinafter, the configurations of the bottom 12b of the case body 12, the sealing body 20, and the upper insulating plate 40 will be described in detail with reference to FIGS. 2 to 5 as appropriate.
[ケース本体の底部]
 図2は、図1に示す二次電池10の底面図である。ケース本体12の底部12bは、円板状に形成され、中心部分に配置された円板状の弁部12dと、弁部12dの周囲を連続的に囲む円環状の薄肉部13とを有する。図2では、薄肉部13を砂地で示している。具体的には、薄肉部13は、底面視で底部12bの中心Oを中心とする真円形状に形成される。環状の薄肉部13を設けることで、開口予定部を形成する凹部である刻印部14が形成される。底部12bは、薄肉部13と、薄肉部13から外れた部分、すなわち薄肉部13以外の本体部12cとからなり、薄肉部13の厚みは本体部12cの厚みより小さい。弁部12dは薄肉部13の内側部分である。薄肉部13は、電池ケース11の内部のガス圧力が増大した場合に破断され、内部のガスを外部に排出する。
[Bottom of the case body]
FIG. 2 is a bottom view of the secondary battery 10 shown in FIG. The bottom portion 12b of the case body 12 is formed in a disc shape, and includes a disc-shaped valve portion 12d disposed in the center portion, and an annular thin portion 13 that continuously surrounds the periphery of the valve portion 12d. In FIG. 2, the thin portion 13 is indicated by sand. Specifically, the thin portion 13 is formed in a perfect circle shape centered on the center O of the bottom portion 12b in the bottom view. By providing the annular thin portion 13, a marking portion 14 that is a concave portion that forms a planned opening portion is formed. The bottom part 12b consists of the thin part 13 and the part remove | deviated from the thin part 13, ie, the main-body parts 12c other than the thin part 13, and the thickness of the thin part 13 is smaller than the thickness of the main-body part 12c. The valve portion 12 d is an inner portion of the thin portion 13. The thin-walled portion 13 is broken when the gas pressure inside the battery case 11 increases, and discharges the gas inside.
 これによって、底部12bの薄肉部13で囲まれた弁部12dに対応する部分が、内圧が所定圧力に達したときに開口してガス排気口を形成する。このため、弁部12dは内圧上昇時の開口予定部であり、下側安全弁として機能する。 Thus, a portion corresponding to the valve portion 12d surrounded by the thin portion 13 of the bottom portion 12b is opened when the internal pressure reaches a predetermined pressure to form a gas exhaust port. For this reason, the valve portion 12d is a planned opening portion when the internal pressure is increased, and functions as a lower safety valve.
 また、底部12bの厚みtに対する薄肉部13の厚みの比は、通常使用時の耐久性及び内圧上昇時の安全弁の作動性を考慮して、0.15以下であることが好ましい。 The ratio of the thickness of the thin portion 13 to the thickness t of the bottom portion 12b is preferably 0.15 or less in consideration of durability during normal use and operability of the safety valve when the internal pressure is increased.
 ケース本体12の底部12bを下方から見た場合の面積全体に対する弁部12dの面積の比は、0.07~0.55であることが好ましく、0.14~0.45であることがより好ましい。弁部12dの面積は、例えば15mm2~150mm2である。 The ratio of the area of the valve part 12d to the entire area when the bottom part 12b of the case body 12 is viewed from below is preferably 0.07 to 0.55, more preferably 0.14 to 0.45. preferable. The area of the valve portion 12d is, for example, 15 mm 2 to 150 mm 2 .
 図3は、薄肉部13の2つの別例を示している。図3(a)に示す薄肉部13の別例は、底部12bの中心Oを中心とする円環の一部を形成する。すなわち、薄肉部13は、円弧状であるC字形に形成される。そして、薄肉部13の内側が弁部12dとなる。このため、薄肉部13の内周側と外周側とは、厚みの大きい連結部16で連結される。これによって、薄肉部13は、円板状の弁部12dを不連続的に囲む。図3(a)の薄肉部13の場合も、図2の薄肉部13と同様に内部のガス圧力が増大した場合に破断して電池ケース11の内部のガスを外部に排出するガス排気口を形成する。  FIG. 3 shows two other examples of the thin portion 13. Another example of the thin-walled portion 13 shown in FIG. 3A forms a part of a ring centered on the center O of the bottom portion 12b. That is, the thin portion 13 is formed in a C-shape that is arcuate. And the inside of the thin part 13 becomes the valve part 12d. For this reason, the inner peripheral side and the outer peripheral side of the thin wall portion 13 are connected by the connecting portion 16 having a large thickness. As a result, the thin portion 13 discontinuously surrounds the disc-shaped valve portion 12d. In the case of the thin-walled portion 13 in FIG. 3 (a), a gas exhaust port that breaks and discharges the gas inside the battery case 11 to the outside when the internal gas pressure increases, as in the thin-walled portion 13 in FIG. Form. *
 図3(b)に示す薄肉部13の別例は、底部12bの中心Oを挟んで両側に2つ形成される。各薄肉部13は、円弧と、円弧両端を結ぶ直線とからなる環状を有する。2つの薄肉部13は、中心Oに関して対称な形状を有する。薄肉部13の内側部分が弁部12dである。なお、薄肉部13の形状は、図2、図3に示す形状に限定しない。例えば、薄肉部13は、円環に限定せず、矩形などの直線を有する多角形であってもよい。 3B, two other examples of the thin wall portion 13 are formed on both sides of the center O of the bottom portion 12b. Each thin portion 13 has an annular shape composed of an arc and a straight line connecting both ends of the arc. The two thin portions 13 have a symmetrical shape with respect to the center O. An inner portion of the thin portion 13 is a valve portion 12d. In addition, the shape of the thin part 13 is not limited to the shape shown in FIG. 2, FIG. For example, the thin portion 13 is not limited to an annular shape, and may be a polygon having a straight line such as a rectangle.
[封口体]
 図1に戻って、封口体20は、ケース本体12の開口部にガスケット42を介して装着されることで、電池ケース11内部の密閉性を確保する。凸部15はガスケット42を介して封口体20を支持する。
[Sealing body]
Returning to FIG. 1, the sealing body 20 is attached to the opening of the case body 12 via the gasket 42, thereby ensuring the hermeticity inside the battery case 11. The convex portion 15 supports the sealing body 20 via the gasket 42.
 封口体20は、天板であるキャップ21、封口体側底板22、及び電流遮断機構(CID機構)を含む。電流遮断機構は、上弁体24、絶縁部材25、及び下弁体26によって構成される。電流遮断機構は、キャップ21と封口体側底板22との間に配置されて、上弁体24及び下弁体26を電気的に接続する電流経路を形成する。そして、電流遮断機構は、電池ケース11内のガス圧力が増大することで後述のように電流経路を遮断する。 The sealing body 20 includes a cap 21 that is a top plate, a sealing body-side bottom plate 22, and a current interruption mechanism (CID mechanism). The current interruption mechanism is constituted by an upper valve body 24, an insulating member 25, and a lower valve body 26. The current interrupting mechanism is disposed between the cap 21 and the sealing body side bottom plate 22 to form a current path that electrically connects the upper valve body 24 and the lower valve body 26. And a current interruption mechanism interrupts | blocks a current path so that it may mention later, when the gas pressure in the battery case 11 increases.
 封口体20を構成するキャップ21、封口体側底板22、上弁体24、及び下弁体26は、金属により構成され、円板形状又はリング形状を有している。例えばキャップ21は、上端が塞がれた筒部を有する円板形状であり、下端には全周にわたって外向きのフランジ21aが形成される。キャップ21の上端部の1つまたは周方向複数位置にはキャップ開口21bが形成される。 The cap 21, the sealing body side bottom plate 22, the upper valve body 24, and the lower valve body 26 constituting the sealing body 20 are made of metal and have a disc shape or a ring shape. For example, the cap 21 has a disk shape having a cylindrical portion whose upper end is closed, and an outward flange 21a is formed at the lower end over the entire circumference. A cap opening 21b is formed at one of the upper end portions of the cap 21 or at a plurality of positions in the circumferential direction.
 図4は、封口体側底板22を下側から見た斜視図である。封口体側底板22は、少なくとも一部が下弁体26から離間している。具体的には、封口体側底板22は、軸方向(図4の上下方向)に対し傾斜したテーパ状の筒部22bを有し、下端が円板部22cで塞がれた形状を有する。封口体側底板22は、上端に全周にわたって外向きのフランジ22dが形成される。円板部22cの周方向複数位置(図示の例では3つの位置)には底板開口22aが形成される。また、複数の底板開口22aの開口面積の総和は、キャップ21のキャップ開口21bの開口面積の総和より小さい。 FIG. 4 is a perspective view of the sealing body side bottom plate 22 as viewed from below. At least a part of the sealing body side bottom plate 22 is separated from the lower valve body 26. Specifically, the sealing body side bottom plate 22 has a tapered cylindrical portion 22b inclined with respect to the axial direction (vertical direction in FIG. 4), and has a shape in which the lower end is closed by the disc portion 22c. The sealing body side bottom plate 22 is formed with an outward flange 22d on the entire upper end. Bottom plate openings 22a are formed at a plurality of circumferential positions (three positions in the illustrated example) of the disk portion 22c. Further, the sum of the opening areas of the plurality of bottom plate openings 22 a is smaller than the sum of the opening areas of the cap openings 21 b of the cap 21.
 図1に戻って、封口体20の上端にはキャップ21が配置され、下端には封口体側底板22が配置される。これによって、封口体側底板22は、後述の上部絶縁板40の上側に対向配置される。キャップ21のフランジ21a及び封口体側底板22のフランジ22dの間には、上側から下側へ順に、上弁体24、絶縁部材25、及び下弁体26の外周部が挟まれる。上弁体24は円板状に形成される。下弁体26も、円板状に形成されて、上弁体24の下側に配置される。下弁体26の中央部には上側に突出する凸状部26aが形成され、上弁体24の下面の中央部に接触する。下弁体26の凸状部26aは、上弁体24の下面の中央部に溶接で接合されることが好ましい。キャップ21及び封口体側底板22のフランジ21a、22d、上弁体24、絶縁部材25、及び下弁体26の外周部の間は接合されない。また、フランジ21a、22d、上弁体24、絶縁部材25、及び下弁体26の外周部は、ケース本体12の上端部で保持したガスケット42の内周部で上下方向に挟まれる。これによって、封口体側底板22の筒部22b及び円板部22cからなる凸状部は、下弁体26から離間している。 Referring back to FIG. 1, a cap 21 is disposed at the upper end of the sealing body 20, and a sealing body side bottom plate 22 is disposed at the lower end. Accordingly, the sealing body side bottom plate 22 is disposed to face the upper side of the upper insulating plate 40 described later. Between the flange 21a of the cap 21 and the flange 22d of the sealing body side bottom plate 22, the outer peripheries of the upper valve body 24, the insulating member 25, and the lower valve body 26 are sandwiched in order from the upper side to the lower side. The upper valve body 24 is formed in a disc shape. The lower valve body 26 is also formed in a disc shape and is disposed below the upper valve body 24. A convex portion 26 a that protrudes upward is formed at the central portion of the lower valve body 26, and contacts the central portion of the lower surface of the upper valve body 24. The convex portion 26 a of the lower valve body 26 is preferably joined to the central portion of the lower surface of the upper valve body 24 by welding. The flanges 21a and 22d of the cap 21 and the sealing body side bottom plate 22, the upper valve body 24, the insulating member 25, and the outer periphery of the lower valve body 26 are not joined. The outer peripheral portions of the flanges 21 a and 22 d, the upper valve body 24, the insulating member 25, and the lower valve body 26 are sandwiched in the vertical direction by the inner peripheral portion of the gasket 42 held by the upper end portion of the case body 12. Thereby, the convex part which consists of the cylinder part 22b and the disc part 22c of the sealing body side baseplate 22 is spaced apart from the lower valve body 26. As shown in FIG.
 各弁体24,26の厚みは、ケース本体12の厚みに比べて十分に小さい。下弁体26及び上弁体24において、下弁体26の凸状部26aまたはこの凸状部26aとの接触部から外側に外れた部分には図示しない薄肉部がそれぞれ形成される。各弁体24,26の薄肉部の形状は、環状もしくは円弧状であるC字形に形成される。絶縁部材25は円環状に形成されて、上弁体24及び下弁体26の外周部の間に挟まれる。これによって、キャップ21は、電流遮断機構を介して封口体側底板22と電気的に接続される。 The thickness of each valve body 24, 26 is sufficiently smaller than the thickness of the case body 12. In the lower valve body 26 and the upper valve body 24, a thin portion (not shown) is formed on the convex portion 26a of the lower valve body 26 or a portion outside the contact portion with the convex portion 26a. The shape of the thin part of each valve body 24 and 26 is formed in C shape which is cyclic | annular or circular arc shape. The insulating member 25 is formed in an annular shape and is sandwiched between the outer peripheries of the upper valve body 24 and the lower valve body 26. Thereby, the cap 21 is electrically connected to the sealing body side bottom plate 22 through the current interrupting mechanism.
 正極リード34は、封口体側底板22の下面に溶接で接続される。これによって、キャップ21は正極板31に接続されて正極端子となる。一方、負極リード35は、ケース本体12の底部12bの内面に溶接で接続される。これによって、ケース本体12は負極板32に接続されて負極端子となる。 The positive electrode lead 34 is connected to the lower surface of the sealing body side bottom plate 22 by welding. As a result, the cap 21 is connected to the positive electrode plate 31 and becomes a positive electrode terminal. On the other hand, the negative electrode lead 35 is connected to the inner surface of the bottom 12b of the case body 12 by welding. As a result, the case main body 12 is connected to the negative electrode plate 32 and becomes a negative electrode terminal.
 上弁体24及び下弁体26は、封口体側底板22の下側空間S1を電池ケース11の外部から密封する。上弁体24及び下弁体26では、内部短絡による発熱で内部のガス圧力が上昇した場合に上弁体24及び下弁体26の薄肉部が破断する。そして、上弁体24及び下弁体26に図示しないガス通路がそれぞれ形成される。これによって電池ケース11の内部のガスが排出される。上弁体24の破断によって、電池内部で発生したガスは、キャップ開口21bを通って外部へ排出される。このように電流遮断機構は、高圧のガスを排出する上側安全弁の機能を有する。なお、キャップ21は、キャップ開口21bを形成せず、下側の圧力の上昇で破断される構成を採用してもよい。 The upper valve body 24 and the lower valve body 26 seal the lower space S1 of the sealing body side bottom plate 22 from the outside of the battery case 11. In the upper valve body 24 and the lower valve body 26, when the internal gas pressure rises due to heat generation due to an internal short circuit, the thin portions of the upper valve body 24 and the lower valve body 26 break. Gas passages (not shown) are formed in the upper valve body 24 and the lower valve body 26, respectively. As a result, the gas inside the battery case 11 is discharged. The gas generated inside the battery due to the breakage of the upper valve body 24 is discharged to the outside through the cap opening 21b. Thus, the current interrupt mechanism has the function of an upper safety valve that discharges high-pressure gas. In addition, the cap 21 may employ a configuration in which the cap opening 21b is not formed and the cap 21 is broken by an increase in pressure on the lower side.
 また、下弁体26の薄肉部が破断した後、上弁体24の薄肉部が破断する前に、上弁体24及び下弁体26の間に形成される空間S2内のガス圧力が上昇することで、上弁体24がキャップ21側に膨れる。そして、上弁体24及び下弁体26が凸状部26aの接触部、例えば接合部で離隔する。これによって、上弁体24及び下弁体26を電気的に接続する電流経路が遮断され、正極板31とキャップ21とを電気的に接続する電流経路も遮断される。電流遮断機構は、上弁体24及び下弁体26の間の空間S3内のガス圧力が所定の遮断圧以上で、上弁体24及び下弁体26を接続する電流経路を遮断する。このため、優れた安全性を確保できる。 Further, after the thin portion of the lower valve body 26 is broken, the gas pressure in the space S2 formed between the upper valve body 24 and the lower valve body 26 is increased before the thin portion of the upper valve body 24 is broken. By doing so, the upper valve body 24 swells to the cap 21 side. Then, the upper valve body 24 and the lower valve body 26 are separated by a contact portion of the convex portion 26a, for example, a joint portion. Accordingly, the current path that electrically connects the upper valve body 24 and the lower valve body 26 is blocked, and the current path that electrically connects the positive electrode plate 31 and the cap 21 is also blocked. The current cut-off mechanism cuts off a current path connecting the upper valve body 24 and the lower valve body 26 when the gas pressure in the space S3 between the upper valve body 24 and the lower valve body 26 is equal to or higher than a predetermined cut-off pressure. For this reason, excellent safety can be ensured.
 なお、上弁体24及び下弁体26には薄肉部を形成せず、下側のガス圧力の上昇によって一部が破断してガス通路が形成される構成としてもよい。本明細書全体で、「弁体」は一方側(図1では下側)のガス圧力の上昇による破断等により他方側(図1では上側)に通じるガス通路が形成される部材を意味する。 It should be noted that the upper valve body 24 and the lower valve body 26 may not be formed with a thin portion, but may be configured such that a gas passage is formed by partially breaking due to an increase in the lower gas pressure. Throughout the present specification, the “valve element” means a member in which a gas passage leading to the other side (upper side in FIG. 1) is formed due to breakage caused by an increase in gas pressure on one side (lower side in FIG. 1).
[上部絶縁板]
 上部絶縁板40は、ケース本体12の凸部15と電極体30との接触を防止することを目的として、凸部15と電極体30との間に配置される。上部絶縁板40は、例えばガラス繊維強化フェノール樹脂を主成分として構成される。ガラス繊維強化フェノール樹脂を主成分とすることにより、高強度で耐熱性が高い絶縁板が得られる。上部絶縁板40の上側空間S1は、下弁体26の下側空間S2に封口体側底板22の底板開口22aを介して通じている。
[Upper insulating plate]
The upper insulating plate 40 is disposed between the convex portion 15 and the electrode body 30 for the purpose of preventing contact between the convex portion 15 of the case body 12 and the electrode body 30. The upper insulating plate 40 is composed mainly of, for example, glass fiber reinforced phenol resin. By using a glass fiber reinforced phenol resin as a main component, an insulating plate having high strength and high heat resistance can be obtained. The upper space S1 of the upper insulating plate 40 communicates with the lower space S2 of the lower valve body 26 through the bottom plate opening 22a of the sealing body side bottom plate 22.
 上部絶縁板40の形状と封口体20による電池ケース11の上部からのガス排気との間には密接な関係がある。図5は、上部絶縁板40を上方から見た図である。上部絶縁板40は、円板状で一方側(図5の下側)に形成される略半円状の第1開口部40aと、他方側(図5の上側)に周方向に並んで配置される3つの第2開口部40bとを有する。各第2開口部40bは、ほぼ同形状で中心軸Oを中心とする円弧状に形成される。第1開口部40aと各第2開口部40bとは、電極体30を含む発電要素で発生するガスを通すために設けられる。ケース本体12の凸部15と電極体30との間に上部絶縁板40が配置された状態で、第1開口部40aは、上記の正極リード34(図1)を下側から上側に通す。第1開口部40aの他方側(図1の上側)の中心軸O付近には内側に張り出す張り出し部40cが形成される。そして、張り出し部40cが電極体30の中心付近に形成される中空部分36の一端である図1の上端の全部を覆っている。図5では、中空部分36の上端を円にXを付した部分で示している。 There is a close relationship between the shape of the upper insulating plate 40 and the gas exhaust from the upper part of the battery case 11 by the sealing body 20. FIG. 5 is a view of the upper insulating plate 40 as viewed from above. The upper insulating plate 40 is disc-shaped and is arranged side by side in the circumferential direction on the substantially semicircular first opening 40a formed on one side (lower side in FIG. 5) and on the other side (upper side in FIG. 5). Three second openings 40b. Each of the second openings 40b is substantially the same shape and is formed in an arc shape centered on the central axis O. The first opening 40 a and each second opening 40 b are provided for passing gas generated in the power generation element including the electrode body 30. In a state where the upper insulating plate 40 is disposed between the convex portion 15 of the case body 12 and the electrode body 30, the first opening 40 a passes the positive electrode lead 34 (FIG. 1) from the lower side to the upper side. In the vicinity of the central axis O on the other side (the upper side in FIG. 1) of the first opening 40a, an overhanging portion 40c that projects inward is formed. And the overhang | projection part 40c has covered the whole upper end of FIG. 1 which is one end of the hollow part 36 formed in the center vicinity of the electrode body 30. FIG. In FIG. 5, the upper end of the hollow portion 36 is indicated by a portion with an X attached to a circle.
 なお、上部絶縁板40は、例えばシリカ、クレイ、マイカなど繊維以外の補強材、またフェノール樹脂以外の耐熱性の高い樹脂(例えば、エポキシ樹脂、ポリイミド樹脂等)を含有していてもよい。上部絶縁板40に含まれる繊維としては、ガラス繊維以外に、ボロン繊維、アラミド繊維等が用いられてもよい。 The upper insulating plate 40 may contain, for example, a reinforcing material other than fiber such as silica, clay, mica, or a resin having high heat resistance other than phenol resin (for example, epoxy resin, polyimide resin, etc.). As fibers contained in the upper insulating plate 40, boron fibers, aramid fibers, or the like may be used in addition to glass fibers.
 また、下部絶縁板41は、上部絶縁板40を形成する材料と同様の材料により、一部または複数位置に開口を有する円板状に形成される。例えば図1に示すように下部絶縁板41は、中空部分36の下端との対向位置を含む中心部に下部開口41aを有する。 Further, the lower insulating plate 41 is formed in a disk shape having openings at a part or a plurality of positions by the same material as the material forming the upper insulating plate 40. For example, as shown in FIG. 1, the lower insulating plate 41 has a lower opening 41 a in the center including the position facing the lower end of the hollow portion 36.
 上部絶縁板40の上面の外形の面積全体に対し、各開口部40a、40bの上端開口面積の総和が占める割合である開口率は、20%以上50%以下が好ましい。開口率が上記の範囲にある場合、電解液の注液性が損なわれず、かつ上部絶縁板40が十分な強度を有する。 The opening ratio, which is the ratio of the sum of the upper end opening areas of the openings 40a and 40b to the entire outer area of the upper surface of the upper insulating plate 40, is preferably 20% or more and 50% or less. When the aperture ratio is in the above range, the liquid injection property of the electrolytic solution is not impaired, and the upper insulating plate 40 has sufficient strength.
 上記の二次電池10によれば、上記のように内部短絡等による発熱で内圧が上昇した場合に封口体20を通じてガスが外部へ排出される。そして、封口体20側からガスが排出される前後で、または同時に、ケース本体12の底部12bの弁部12dが開口して、底部12b側からもガスが排出される。 According to the secondary battery 10 described above, when the internal pressure rises due to heat generation due to an internal short circuit or the like as described above, the gas is discharged to the outside through the sealing body 20. Then, before or after the gas is discharged from the sealing body 20 side, or at the same time, the valve portion 12d of the bottom portion 12b of the case body 12 is opened, and the gas is discharged also from the bottom portion 12b side.
 上記のガス排気は、電池の熱暴走時に発生して、封口体20側からの排気は電極体30、上部絶縁板40の開口部40a、40b、底板開口22a、下弁体26及び上弁体24のガス通路、及びキャップ開口21bを通じて行われる。このとき、上弁体24のガス通路の下側に配置される上部絶縁板40は、封口体20から外部への排気を抑制する役割を担っている。 The gas exhaust is generated during the thermal runaway of the battery, and the exhaust from the sealing body 20 side is the electrode body 30, the openings 40a and 40b of the upper insulating plate 40, the bottom plate opening 22a, the lower valve body 26, and the upper valve body. 24 gas passages and the cap opening 21b. At this time, the upper insulating plate 40 arranged below the gas passage of the upper valve body 24 plays a role of suppressing exhaust from the sealing body 20 to the outside.
 これによって、電池の上部からと底部からとの排気のバランスが改善するので、電池温度の上昇を抑制できる。特に、二次電池10のエネルギー密度が高い場合、例えば、体積エネルギー密度が700Wh/L以上の場合には、温度上昇による内圧が高くなりやすい。一方、特許文献2に記載された構成のように中空部分の上端が上部絶縁板に覆われない場合には、封口体20側からの排気量が大きくなり、主要な排気経路である底部12bからの排気を阻害する場合がある。 This improves the balance of exhaust from the top and bottom of the battery, so that the rise in battery temperature can be suppressed. In particular, when the energy density of the secondary battery 10 is high, for example, when the volume energy density is 700 Wh / L or more, the internal pressure due to temperature rise tends to increase. On the other hand, when the upper end of the hollow portion is not covered with the upper insulating plate as in the configuration described in Patent Document 2, the amount of exhaust from the sealing body 20 increases, and the bottom 12b, which is the main exhaust path, increases. May interfere with exhaust.
 実施形態では、上部絶縁板40が電極体30の中空部分36の上端を覆うことで、封口体20からの排気を抑制し、上部絶縁板40で中空部分36の圧力が高められる。これによって、より積極的にケース本体12の底部12bを破断させることができ、ガス排気口が形成されやすい。このため、ガス排気口からのガス排気量が増加する。ガス排気が封口体20側と底部12b側とから行われる場合、封口体20側の流路抵抗が底部12b側の流路抵抗より大きくなるので、底部12bからの排気量が高い。これによって、封口体20側と底部12b側とからの排気のバランスを改善して、電池全体での温度の上昇を抑えることができる。このため、電池の熱暴走時の温度を低減することができるので、モジュールとして電池を多数並べて使用する場合に複数の電池で温度上昇が伝達される可能性を低くできる。 In the embodiment, the upper insulating plate 40 covers the upper end of the hollow portion 36 of the electrode body 30, thereby suppressing the exhaust from the sealing body 20, and the pressure of the hollow portion 36 is increased by the upper insulating plate 40. As a result, the bottom 12b of the case body 12 can be more positively broken, and a gas exhaust port is easily formed. For this reason, the amount of gas exhaust from the gas exhaust port increases. When the gas exhaust is performed from the sealing body 20 side and the bottom 12b side, the flow resistance on the sealing body 20 side is larger than the flow resistance on the bottom 12b side, so the amount of exhaust from the bottom 12b is high. Thereby, the balance of exhaust from the sealing body 20 side and the bottom portion 12b side can be improved, and an increase in temperature in the entire battery can be suppressed. For this reason, since the temperature at the time of a thermal runaway of a battery can be reduced, when using many batteries side by side as a module, possibility that a temperature rise will be transmitted with a plurality of batteries can be lowered.
 図6は、実施形態の別例の二次電池10の断面図である。図7は、二次電池10を構成する封口体側底板22を下側から見た斜視図である。本例では、封口体側底板22において、下弁体26の下面と接触する位置の周方向複数位置(図示の例では3つの位置)に底板開口22aが形成されている。 FIG. 6 is a cross-sectional view of a secondary battery 10 according to another example of the embodiment. FIG. 7 is a perspective view of the sealing body side bottom plate 22 constituting the secondary battery 10 as viewed from below. In this example, the bottom plate opening 22a is formed in the sealing body side bottom plate 22 at a plurality of circumferential positions (three positions in the illustrated example) in contact with the lower surface of the lower valve body 26.
このような構成では、電極体30からの温度上昇したガスが上部絶縁板40の開口部40a、40bから底板開口22aに送られる。そして封口体側底板22のフランジ22dと下弁体26の周縁部との隙間を通じて下弁体26と封口体側底板22との中央部間の広い空間S2に流れる。そしてこの空間S2内での圧力上昇によって各弁体24,26が破断しガス通路が形成されて内部のガスが排出される。 In such a configuration, the gas whose temperature has increased from the electrode body 30 is sent from the openings 40a and 40b of the upper insulating plate 40 to the bottom plate opening 22a. Then, the gas flows into a wide space S <b> 2 between the center portion of the lower valve body 26 and the sealing body side bottom plate 22 through a gap between the flange 22 d of the sealing body side bottom plate 22 and the peripheral portion of the lower valve body 26. The valve bodies 24 and 26 are broken by the pressure increase in the space S2, a gas passage is formed, and the internal gas is discharged.
 上記構成によれば、封口体20からの排気量を、より抑制できる。これによって、電池の熱暴走時にケース本体12の底部12bにガス排出口が形成されやすくなる。このため、電池の温度上昇をより効果的に抑制できる。 According to the above configuration, the exhaust amount from the sealing body 20 can be further suppressed. Accordingly, a gas discharge port is easily formed in the bottom portion 12b of the case body 12 during the thermal runaway of the battery. For this reason, the temperature rise of a battery can be suppressed more effectively.
 また、上記の構成において、封口体20から排気される場合に、封口体側排気経路の経路断面積において複数の底板開口22aの開口面積の総和が最も小さい面積となりやすい。このため、複数の底板開口22aの開口面積が封口体20からの排気量に大きく影響する。複数の底板開口22aの開口面積の総和は、例えば15mm2以下であり、電池全体としての排気性能を向上させて電池温度の上昇を抑制する面から好ましくは10mm2以下、より好ましくは5mm2以下、特に好ましくは0.5mm2~2mm2である。 In the above configuration, when exhausted from the sealing body 20, the sum of the opening areas of the plurality of bottom plate openings 22 a tends to be the smallest in the cross-sectional area of the sealing body-side exhaust path. For this reason, the opening area of the plurality of bottom plate openings 22 a greatly affects the exhaust amount from the sealing body 20. The total opening area of the plurality of bottom plate openings 22a is, for example, 15 mm 2 or less, and is preferably 10 mm 2 or less, more preferably 5 mm 2 or less from the viewpoint of improving the exhaust performance of the battery as a whole and suppressing an increase in battery temperature. Particularly preferably, the thickness is 0.5 mm 2 to 2 mm 2 .
 [実験例]
  以下、実験例により本開示をさらに説明するが、本開示はこれらの実験例に限定されるものではない。
[Experimental example]
Hereinafter, the present disclosure will be further described with experimental examples, but the present disclosure is not limited to these experimental examples.
 <実験例1>
 [正極の作製]
 正極活物質としてLiNi0.91Co0.06Al0.032で表されるリチウムニッケルコバルトアルミニウム複合酸化物を100質量部と、導電剤としてのアセチレンブラック(AB)を1質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)を1質量部とを混合し、さらに、N-メチル-2-ピロリドン(NMP)を適量加えた後、正極合材スラリーを調製した。次に、正極合材スラリーを、厚みが13μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥させた。これを所定の電極サイズに切り取り、ローラを用いて正極合材密度が3.6g/ccとなるように圧延して、正極集電体の両面に正極合材層が形成された正極板31を作製した。
<Experimental example 1>
[Production of positive electrode]
100 parts by mass of lithium nickel cobalt aluminum composite oxide represented by LiNi 0.91 Co 0.06 Al 0.03 O 2 as a positive electrode active material, 1 part by mass of acetylene black (AB) as a conductive agent, and polyfluoride as a binder. After mixing 1 part by mass of vinylidene chloride (PVdF) and adding an appropriate amount of N-methyl-2-pyrrolidone (NMP), a positive electrode mixture slurry was prepared. Next, the positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 13 μm and dried. This is cut into a predetermined electrode size and rolled using a roller so that the positive electrode mixture density is 3.6 g / cc, and a positive electrode plate 31 having a positive electrode mixture layer formed on both sides of the positive electrode current collector is obtained. Produced.
 [負極の作製]
 負極活物質として黒鉛粉末を93質量部と、酸化ケイ素SiOを7質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)を1質量部と、結着剤としてのスチレン-ブタジエンゴム(SBR)を1質量部とを混合し、さらに水を適量加えた後、負極合材スラリーを調製した。次に、負極合材スラリーを、厚みが6μmの銅箔からなる負極集電体の両面に塗布し、乾燥させた。これを所定の電極サイズに切り取り、ローラを用いて合材密度が1.65g/ccとなるように圧延して、負極集電体の両面に負極合材層が形成された負極を作製した。
[Production of negative electrode]
93 parts by weight of graphite powder as a negative electrode active material, 7 parts by weight of silicon oxide SiO, 1 part by weight of carboxymethyl cellulose (CMC) as a thickener, and styrene-butadiene rubber (SBR) as a binder After mixing 1 part by mass and adding an appropriate amount of water, a negative electrode mixture slurry was prepared. Next, the negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 6 μm and dried. This was cut into a predetermined electrode size and rolled using a roller so that the composite material density was 1.65 g / cc to produce a negative electrode in which a negative electrode composite layer was formed on both surfaces of the negative electrode current collector.
 [非水電解液の調製]
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、メチルエチルカーボネート(MEC)とを、20:75:5の体積比で混合した。さらに、LiPF6を混合溶媒に対して1.4mol/Lの濃度になるように溶解させて、非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
Ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 20: 75: 5. Furthermore, LiPF 6 was dissolved to a concentration of 1.4 mol / L with respect to the mixed solvent to prepare a nonaqueous electrolytic solution.
 [電池の作製]
 正極板31にアルミニウム製の正極リード34を取り付け、負極板32にニッケル製の負極リード35を取り付けた。そして、セパレータ33を介して正極板31及び負極板32を渦巻き状に巻回することにより巻回型の電極体30を作製した。セパレータ33には、ポリエチレン製の微多孔膜の片面にポリアミドとアルミナのフィラーを分散させた耐熱層をコートしたものを用いた。電極体30を、外径18.2mm、高さ65mmのケース本体12に収容し、上記非水電解液を注入した。ケース本体12の底部12bには予め外側から環状(真円形状)の刻印部14を形成することによって薄肉部13を形成した。また、電極体30の上下には上部絶縁板40及び下部絶縁板41を配置した。そして非水電解液の注入後、ガスケット42及び封口体20によりケース本体12の開口部を封止して、18650型で、体積エネルギー密度が739Wh/Lの二次電池10を作製した。
[Production of battery]
A positive electrode lead 34 made of aluminum was attached to the positive electrode plate 31, and a negative electrode lead 35 made of nickel was attached to the negative electrode plate 32. Then, the positive electrode plate 31 and the negative electrode plate 32 were spirally wound through the separator 33 to produce a wound electrode body 30. As the separator 33, a polyethylene microporous membrane coated with a heat-resistant layer in which polyamide and alumina fillers are dispersed is used. The electrode body 30 was accommodated in the case body 12 having an outer diameter of 18.2 mm and a height of 65 mm, and the non-aqueous electrolyte was injected. The thin part 13 was formed in the bottom part 12b of the case body 12 by forming an annular (perfectly circular) marking part 14 from the outside in advance. In addition, an upper insulating plate 40 and a lower insulating plate 41 are disposed above and below the electrode body 30. And after injection | pouring of nonaqueous electrolyte, the opening part of the case main body 12 was sealed with the gasket 42 and the sealing body 20, and the secondary battery 10 with a volume energy density of 739 Wh / L was produced by 18650 type | mold.
 封口体20は、図1、図6で示した構成を有するもので、封口体側底板22において下弁体26と接する周縁部に3つの底板開口22aが形成される。上部絶縁板40には図8に示すように、複数の開口部40a、40bが設けられている。図8の絶縁板には、図5の例とは異なり、電極体30の中空部分36の上端である、図8で丸の内側にXを付した部分を覆う張り出し部は形成されない。これによって、図8の例では、中空部分36の上端は第1開口部40aに面しており、絶縁板40では覆われない。 The sealing body 20 has the structure shown in FIG. 1 and FIG. 6, and three bottom plate openings 22 a are formed in the peripheral edge portion in contact with the lower valve body 26 in the sealing body side bottom plate 22. As shown in FIG. 8, the upper insulating plate 40 is provided with a plurality of openings 40a and 40b. Unlike the example of FIG. 5, the insulating plate of FIG. 8 is not formed with an overhanging portion that covers the portion of the circular body in FIG. 8 that is the upper end of the hollow portion 36 of the electrode body 30. Thus, in the example of FIG. 8, the upper end of the hollow portion 36 faces the first opening 40 a and is not covered with the insulating plate 40.
 <実験例2>
 図6、図7に示した例と同様に、電極体30の中空部分36の上端を上部絶縁板40で覆っており、それ以外は、実験例1と同様の方法で電池を作製した。
<Experimental example 2>
Similar to the example shown in FIGS. 6 and 7, the upper end of the hollow portion 36 of the electrode body 30 was covered with the upper insulating plate 40, and a battery was fabricated in the same manner as in Experimental Example 1 except that.
 <実験例3>
 図1、図2、図4、図5に示した例と同様に、封口体側底板22において、底板開口22aを下弁体26に接しない円板部22cに形成し、それ以外は、実験例2と同様の方法で電池を作製した。
<Experimental example 3>
1, 2, 4, and 5, in the sealing body side bottom plate 22, the bottom plate opening 22 a is formed in the disc portion 22 c that is not in contact with the lower valve body 26, and the other examples are experimental examples. A battery was produced in the same manner as in 2.
 実験例1~3の各電池について、以下の方法で加熱発火試験における発火後電池温度及び底部刻印の作動性について評価した。各電池の評価結果を表1に示す。 For each battery of Experimental Examples 1 to 3, the battery temperature after firing and the operability of the bottom marking were evaluated in the heating and firing test by the following method. The evaluation results for each battery are shown in Table 1.
  [加熱発火試験]
 実験例1~3の各電池について、下記の手順で評価を行った。
(1)25℃の環境下で、0.3C(1050mA)の定電流で電池電圧が4.2Vになるまで充電を行い、その後、定電圧で電流値が0.02C(70mA)になるまで充電を引き続き行った。
(2)(1)で充電した電池側面に熱伝対を溶接し、700℃に加熱した直径50mmの管状炉に電池を投入した。なお、電池を管状炉に投入する際に、電池が直接炉に接触しないようにし、かつ高温状態の管状炉の中心部分まで電池を投入するために治具を用いて実験することが望ましい。
(3)電池加熱時の電池側面の温度を測定し、加熱により電池が熱暴走するまで加熱を行う。電池発火後、電池を管状炉から取り出して試験後の電池の外観を観察した。
[Heating ignition test]
The batteries of Experimental Examples 1 to 3 were evaluated according to the following procedure.
(1) Under an environment of 25 ° C., the battery is charged with a constant current of 0.3 C (1050 mA) until the battery voltage becomes 4.2 V, and then the current value becomes 0.02 C (70 mA) with a constant voltage. Continued charging.
(2) A thermocouple was welded to the side of the battery charged in (1), and the battery was put into a tubular furnace having a diameter of 50 mm heated to 700 ° C. In addition, when putting a battery into a tubular furnace, it is desirable to perform an experiment using a jig so that the battery does not directly contact the furnace, and the battery is introduced to the center of the tubular furnace in a high temperature state.
(3) The temperature of the battery side surface during battery heating is measured, and heating is performed until the battery runs out of heat due to heating. After battery ignition, the battery was removed from the tubular furnace and the appearance of the battery after the test was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実験例1と実験例2との各電池について加熱発火試験を行った際の電池最高温度について評価した結果を表1に示す。電池最高温度は、実験例1,2のそれぞれで2つの試験を行い、各試験での最高温度の平均値を表1に示している。 Table 1 shows the results of evaluating the maximum battery temperature when the heating and ignition test was performed for the batteries of Experimental Example 1 and Experimental Example 2. For the battery maximum temperature, two tests were conducted in each of Experimental Examples 1 and 2, and the average value of the maximum temperatures in each test is shown in Table 1.
 表1より、電極体30の中空部分36の上端を上部絶縁板40で覆った場合、覆っていない実験例1と比較して約70℃程度、最高温度が低くなった。このことから、実験例1の上部絶縁板40の形状では、ガスの排出経路である中空部分36が封口体側底板22の直下に位置することで、封口体20からの排気量が増加したと考えられる。そして、この結果、電池上部からの排気と底部12bからの排気とのバランスが悪化していると考えられる。 From Table 1, when the upper end of the hollow portion 36 of the electrode body 30 was covered with the upper insulating plate 40, the maximum temperature was about 70 ° C. lower than that of the experimental example 1 that was not covered. From this, in the shape of the upper insulating plate 40 of Experimental Example 1, it is considered that the exhaust amount from the sealing body 20 is increased because the hollow portion 36 that is a gas discharge path is located directly below the sealing body-side bottom plate 22. It is done. As a result, it is considered that the balance between the exhaust from the upper part of the battery and the exhaust from the bottom 12b is deteriorated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、実験例2と実験例3との各電池の加熱発火試験における底部12bの作動率を求めて比較した。この作動率の比較では、実験例2及び実験例3のそれぞれで、5つの試験を行い、底部12bが薄肉部13で破断された割合を刻印作動率として求めて比較した。 Also, the operating rate of the bottom 12b in the heating and ignition test of each battery in Experimental Example 2 and Experimental Example 3 was obtained and compared. In the comparison of the operating rates, five tests were performed in each of Experimental Example 2 and Experimental Example 3, and the ratio at which the bottom portion 12b was broken at the thin-walled portion 13 was obtained and compared as the stamping operating rate.
 表2より、底板開口22aが下弁体26に接して塞がれている実験例2では、底部12bが薄肉部13で確実に破断してガス排気口が形成された。一方、底板開口22aが円板部22cに形成されて下弁体26の周縁部で塞がれない実験例3では、作動率が60%と低くなった。このように実験例2で作動率が高くなった理由は、上部絶縁板40が電極体30の中空部分を覆っていることに加えて、底板開口22aが下弁体26によって塞がれることにあることが考えられる。これにより実験例2では、電池発火時における封口体20からの排気が著しく減少し、ガス圧力が底部12bに速やかに加わっていると考えられる。 From Table 2, in Experimental Example 2 in which the bottom plate opening 22a is closed in contact with the lower valve body 26, the bottom 12b is reliably broken at the thin portion 13 to form a gas exhaust port. On the other hand, in the experimental example 3 in which the bottom plate opening 22a is formed in the disc portion 22c and is not blocked by the peripheral portion of the lower valve body 26, the operating rate is as low as 60%. As described above, the reason why the operating rate is high in Experimental Example 2 is that the upper insulating plate 40 covers the hollow portion of the electrode body 30 and the bottom plate opening 22a is blocked by the lower valve body 26. It is possible that there is. Thereby, in Experimental Example 2, it is considered that the exhaust from the sealing body 20 at the time of battery ignition is remarkably reduced, and the gas pressure is rapidly applied to the bottom 12b.
 なお、実施形態において、上部絶縁板40の形状は図5に示した形状に限定するものではなく種々の形状を採用できる。図9から図11は、実施形態の別例の二次電池10を構成する上部絶縁板40を上方から見た図である。図9の例では、上部絶縁板40が円形外周部40dと略三角形状の内側部分40eとを含み、円形外周部40dの内周面に内側部分40eの頂部が結合されている。そして円形外周部40dと内側部分40eとの間の3個所位置に絶縁板開口40fが形成される。 In the embodiment, the shape of the upper insulating plate 40 is not limited to the shape shown in FIG. 5, and various shapes can be adopted. 9 to 11 are views of an upper insulating plate 40 constituting a secondary battery 10 of another example of the embodiment as viewed from above. In the example of FIG. 9, the upper insulating plate 40 includes a circular outer peripheral portion 40d and a substantially triangular inner portion 40e, and the top of the inner portion 40e is coupled to the inner peripheral surface of the circular outer peripheral portion 40d. Insulating plate openings 40f are formed at three positions between the circular outer peripheral portion 40d and the inner portion 40e.
 図10の例では、上部絶縁板40が円形外周部40dと円板状の内側部分40gとを含み、円形外周部40dに内側部分40gが放射状の脚部40hで連結される。そして円形外周部40dと内側部分40gとの間の3個所位置に扇状(円弧状)の開口部40iが形成される。 In the example of FIG. 10, the upper insulating plate 40 includes a circular outer peripheral portion 40d and a disc-shaped inner portion 40g, and the inner portion 40g is connected to the circular outer peripheral portion 40d by radial legs 40h. Then, fan-shaped (arc-shaped) openings 40i are formed at three positions between the circular outer peripheral portion 40d and the inner portion 40g.
 図11の例では、上部絶縁板40の周方向に等間隔で4個所位置に半円状の開口部40jが形成されている。そして4つの開口部40jの内側に略正方形の内側部分40kが形成される。図9から図11のいずれの例の場合も内側部分40e、40g、40kが電極体30の中空部分36の上端(丸にXを付した部分)を覆っている。なお、上記の各例では上部絶縁板40が中空部分36の上端の全部を覆う場合を説明したが、上部絶縁板により中空部分36の一部のみを覆う構成としてもよい。ただし、ケース本体12の底部12bからの排気性を高くして電池温度の上昇を抑制する面からは中空部分36の上端の全部を上部絶縁板40により覆うことが好ましい。 In the example of FIG. 11, semicircular openings 40j are formed at four positions at equal intervals in the circumferential direction of the upper insulating plate 40. A substantially square inner portion 40k is formed inside the four openings 40j. 9 to 11, the inner portions 40e, 40g, and 40k cover the upper end of the hollow portion 36 of the electrode body 30 (the portion marked with a circle X). In each of the above examples, the case where the upper insulating plate 40 covers the entire upper end of the hollow portion 36 has been described. However, only a part of the hollow portion 36 may be covered by the upper insulating plate. However, it is preferable to cover the entire upper end of the hollow portion 36 with the upper insulating plate 40 in order to enhance the exhaustability from the bottom 12b of the case body 12 and suppress the rise in battery temperature.
 10 円筒形非水電解質二次電池(二次電池)、11 電池ケース、12 ケース本体、12a 筒部、12b 底部、12c 本体部、12d 弁部、13 薄肉部、14 刻印部、15 凸部、16 連結部、20 封口体、21 キャップ、21a フランジ、21b キャップ開口、22 封口体側底板、22a 底板開口、22b 筒部、22c 円板部、22d フランジ、24 上弁体、25 絶縁部材、26 下弁体、26a
 凸状部、30 電極体、31 正極板、32 負極板、33 セパレータ、34 正極リード、35 負極リード、36 中空部分、40 上部絶縁板、40a 第1開口部、40b 第2開口部、40c 張り出し部、40d 円形外周部、40e 内側部分、40f 開口部、40g 内側部分、40h 脚部、40i,40j 開口部、40k 内側部分、41 下部絶縁板、41a 下部開口、42 ガスケット。
DESCRIPTION OF SYMBOLS 10 Cylindrical nonaqueous electrolyte secondary battery (secondary battery), 11 Battery case, 12 Case main body, 12a Cylinder part, 12b Bottom part, 12c Main body part, 12d Valve part, 13 Thin part, 14 Marking part, 15 Convex part, 16 connection part, 20 sealing body, 21 cap, 21a flange, 21b cap opening, 22 sealing body side bottom plate, 22a bottom plate opening, 22b cylinder part, 22c disc part, 22d flange, 24 upper valve body, 25 insulating member, 26 lower Valve body, 26a
Convex part, 30 electrode body, 31 positive electrode plate, 32 negative electrode plate, 33 separator, 34 positive electrode lead, 35 negative electrode lead, 36 hollow part, 40 upper insulating plate, 40a first opening part, 40b second opening part, 40c Part, 40d circular outer peripheral part, 40e inner part, 40f opening part, 40g inner part, 40h leg part, 40i, 40j opening part, 40k inner part, 41 lower insulating plate, 41a lower opening part, 42 gasket.

Claims (5)

  1.  一端開口を有し電極体を収容する有底筒状のケース本体と、
     弁体を有し前記ケース本体の一端開口を封止する封口体と、
     前記電極体と前記封口体との間に配置される絶縁板と、を備え、
     前記電極体は、正極板及び負極板がセパレータを介して巻回して形成された巻回型構造を有し、
     前記ケース本体の他端の底部は、弁部と、弁部の周囲を連続的または不連続的に囲む薄肉部とを有し、
     前記絶縁板は開口部を有しており、前記電極体の巻回方向内端に形成される中空部分の一端の少なくとも一部を覆っている、円筒形非水電解質二次電池。
    A bottomed cylindrical case body having an opening at one end and accommodating the electrode body;
    A sealing body having a valve body and sealing one end opening of the case body;
    An insulating plate disposed between the electrode body and the sealing body,
    The electrode body has a wound type structure formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween,
    The bottom part of the other end of the case body has a valve part and a thin part surrounding the valve part continuously or discontinuously,
    The said insulating plate has an opening part, The cylindrical non-aqueous electrolyte secondary battery which covers at least one part of the end of the hollow part formed in the winding direction inner end of the said electrode body.
  2.  前記封口体は、底板開口を有し前記絶縁板の上側に対向配置される封口体側底板を含む、請求項1に記載の円筒形非水電解質二次電池。 The cylindrical non-aqueous electrolyte secondary battery according to claim 1, wherein the sealing body includes a sealing body-side bottom plate that has a bottom plate opening and is opposed to the upper side of the insulating plate.
  3.  前記底板開口は、前記封口体側底板における、前記弁体の下面と接触する位置に形成される、請求項2に記載の円筒形非水電解質二次電池。 The cylindrical non-aqueous electrolyte secondary battery according to claim 2, wherein the bottom plate opening is formed at a position in the sealing body side bottom plate in contact with the lower surface of the valve body.
  4.  前記負極板は負極活物質を有し、
     前記負極活物質は、炭素材料とケイ素またはケイ素化合物を含有し、
     体積エネルギー密度700Wh/L以上である、請求項1から請求項3のいずれか1に記載の円筒形非水電解質二次電池。
    The negative electrode plate has a negative electrode active material,
    The negative electrode active material contains a carbon material and silicon or a silicon compound,
    The cylindrical nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the volume energy density is 700 Wh / L or more.
  5.  前記絶縁板の上面の外形の面積全体に対し前記絶縁板の前記開口部の上端開口面積の総和が占める割合は、20%から50%である、請求項1から請求項4のいずれか1に記載の円筒形非水電解質二次電池。 The ratio of the total of the upper end opening area of the opening of the insulating plate to the entire outer area of the upper surface of the insulating plate is 20% to 50%, according to any one of claims 1 to 4. The cylindrical non-aqueous electrolyte secondary battery described.
PCT/JP2016/000213 2015-01-30 2016-01-18 Cylindrical nonaqueous electrolyte secondary battery WO2016121319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017807 2015-01-30
JP2015017807A JP2018049680A (en) 2015-01-30 2015-01-30 Cylindrical nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2016121319A1 true WO2016121319A1 (en) 2016-08-04

Family

ID=56542944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000213 WO2016121319A1 (en) 2015-01-30 2016-01-18 Cylindrical nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2018049680A (en)
WO (1) WO2016121319A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054312A1 (en) * 2017-09-15 2019-03-21 三洋電機株式会社 Cylindrical nonaqueous electrolyte secondary battery
CN110226248A (en) * 2017-03-27 2019-09-10 松下电器产业株式会社 Secondary cell insulation board and the secondary cell for having the secondary cell insulation board
WO2022090776A1 (en) * 2020-10-30 2022-05-05 Vidyasirimedhi Institute Of Science And Technology (Vistec) A lithium-ion battery and method for preparing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568569B1 (en) * 2018-05-23 2023-08-21 주식회사 엘지에너지솔루션 Can-Type Battery Having Center of Mass Located at Lower Part
US10804515B2 (en) * 2018-08-08 2020-10-13 Duracell U.S. Operations, Inc. Batteries having vents
JP7471177B2 (en) 2020-08-25 2024-04-19 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery
WO2023145680A1 (en) * 2022-01-28 2023-08-03 パナソニックエナジー株式会社 Battery and current collector
WO2024057933A1 (en) * 2022-09-12 2024-03-21 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228019A (en) * 2010-04-15 2011-11-10 Skk Corp Battery can, method for producing the same, and nonaqueous electrolytic solution secondary battery
WO2013094207A1 (en) * 2011-12-22 2013-06-27 パナソニック株式会社 Sealed battery
WO2013099295A1 (en) * 2011-12-28 2013-07-04 パナソニック株式会社 Cylindrical lithium-ion cell
WO2015079672A1 (en) * 2013-11-29 2015-06-04 三洋電機株式会社 Cylindrical battery
JP2015156374A (en) * 2014-02-20 2015-08-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cap assembly and secondary battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228019A (en) * 2010-04-15 2011-11-10 Skk Corp Battery can, method for producing the same, and nonaqueous electrolytic solution secondary battery
WO2013094207A1 (en) * 2011-12-22 2013-06-27 パナソニック株式会社 Sealed battery
WO2013099295A1 (en) * 2011-12-28 2013-07-04 パナソニック株式会社 Cylindrical lithium-ion cell
WO2015079672A1 (en) * 2013-11-29 2015-06-04 三洋電機株式会社 Cylindrical battery
JP2015156374A (en) * 2014-02-20 2015-08-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cap assembly and secondary battery including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226248A (en) * 2017-03-27 2019-09-10 松下电器产业株式会社 Secondary cell insulation board and the secondary cell for having the secondary cell insulation board
WO2019054312A1 (en) * 2017-09-15 2019-03-21 三洋電機株式会社 Cylindrical nonaqueous electrolyte secondary battery
CN111095608A (en) * 2017-09-15 2020-05-01 三洋电机株式会社 Cylindrical nonaqueous electrolyte secondary battery
JPWO2019054312A1 (en) * 2017-09-15 2020-10-15 三洋電機株式会社 Cylindrical non-aqueous electrolyte secondary battery
JP7171585B2 (en) 2017-09-15 2022-11-15 三洋電機株式会社 Cylindrical non-aqueous electrolyte secondary battery
WO2022090776A1 (en) * 2020-10-30 2022-05-05 Vidyasirimedhi Institute Of Science And Technology (Vistec) A lithium-ion battery and method for preparing the same

Also Published As

Publication number Publication date
JP2018049680A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2016121319A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP6538650B2 (en) Cylindrical sealed battery
JP6490053B2 (en) Cylindrical sealed battery and battery pack
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
JP6250567B2 (en) Sealed battery
KR101212829B1 (en) Battery
JP4915390B2 (en) Non-aqueous electrolyte battery
WO2016084358A1 (en) Cylindrical nonaqueous electrolyte secondary battery
US9761853B2 (en) Non-aqueous electrolyte secondary battery
JP5420888B2 (en) battery
WO2016103656A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP2010033949A (en) Battery
US20110151297A1 (en) Battery and battery pack
WO2016103667A1 (en) Cylindrical battery
JP2008021431A (en) Non-aqueous electrolyte secondary battery
JP2013073873A (en) Nonaqueous electrolyte secondary battery
CN108352479A (en) Non-aqueous electrolyte secondary battery
WO2019146413A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2021099948A (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2020017237A1 (en) Cylindrical battery and battery module
WO2022181338A1 (en) Cylindrical battery
JP2009295554A (en) Battery
JP2003282144A (en) Nonaqueous electrolyte secondary battery
WO2020085002A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
KR20230070878A (en) Cap assmbly for cylindrical secondary battery and cylindrical secondary battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16742924

Country of ref document: EP

Kind code of ref document: A1