WO2016121200A1 - Device - Google Patents

Device Download PDF

Info

Publication number
WO2016121200A1
WO2016121200A1 PCT/JP2015/082312 JP2015082312W WO2016121200A1 WO 2016121200 A1 WO2016121200 A1 WO 2016121200A1 JP 2015082312 W JP2015082312 W JP 2015082312W WO 2016121200 A1 WO2016121200 A1 WO 2016121200A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
reference signal
terminal device
precoding matrices
interference
Prior art date
Application number
PCT/JP2015/082312
Other languages
French (fr)
Japanese (ja)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016121200A1 publication Critical patent/WO2016121200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to an apparatus and a method.
  • the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements).
  • a technique is a form of a technique called large-scale MIMO or massive MIMO.
  • the half width of the beam becomes narrow. That is, a sharp beam is formed.
  • by arranging the multiple antenna elements on a plane it is possible to form a beam in a desired three-dimensional direction.
  • Patent Documents 1 to 3 disclose techniques applied when a directional beam in a three-dimensional direction is used.
  • CSI-RS is transmitted without beamforming.
  • CSI-RS is not transmitted by a directional beam but transmitted by a non-directional radio wave.
  • the amount of interference calculated from CSI-RS transmitted by an omnidirectional radio wave and directivity The actual amount of interference of the beam can deviate. As a result, even if a large directional beam interference actually occurs, the occurrence of the interference may be missed.
  • an acquisition unit that acquires a channel estimated from a reference signal for channel quality measurement, and a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the channel and the plurality of precodings
  • an apparatus comprising: a control unit that calculates an interference amount of each of the plurality of directional beams based on a matrix.
  • an apparatus including an acquisition unit that acquires information indicating a configuration of a reference signal for channel quality measurement, and a control unit that notifies the terminal device of the configuration.
  • the acquisition unit acquires a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices.
  • the control unit notifies the terminal device of the plurality of precoding matrices in association with the configuration.
  • an acquisition unit that acquires power increase information related to an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station, and the reference signal using the power increase information
  • a control unit that performs control for correcting the amount of interference calculated from the above.
  • the present disclosure it is possible to know the state of interference of a directional beam more appropriately.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure.
  • FIG. An example of the configuration of the base station according to the embodiment will be described. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. It is a sequence diagram which shows an example of the schematic flow of the process which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the 1st example of the some precoding matrix which concerns on the modification of 1st Embodiment. It is explanatory drawing for demonstrating the 2nd example of the some precoding matrix which concerns on the modification of 1st Embodiment.
  • Beam forming (a) Necessity of large-scale MIMO
  • 3GPP is examining various technologies for improving the capacity of a cellular system in order to accommodate explosively increasing traffic. It is said that a capacity about 1000 times the current capacity will be required in the future.
  • technologies such as MU-MIMO and CoMP, the capacity of the cellular system is considered to increase only about several times. Therefore, an innovative method is required.
  • 8-layer MIMO can be realized in the case of SU-MIMO (Single-User Multi-Input Multiple-Input Multiple-Output).
  • 8-layer MIMO is a technique for spatially multiplexing eight independent streams.
  • two layers of MU-MIMO can be realized for four users.
  • UE User Equipment
  • the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements).
  • a technique is one form of a technique called large-scale MIMO or massive MIMO.
  • the half width of the beam becomes narrow. That is, a sharp beam is formed.
  • by arranging the multiple antenna elements on a plane it is possible to form a beam in a desired three-dimensional direction. For example, it has been proposed to transmit a signal to a terminal device existing at the position by forming a beam directed to a position higher than the base station (for example, an upper floor of a high-rise building).
  • the typical beam forming In typical beam forming, it is possible to change the beam direction in the horizontal direction. Therefore, it can be said that the typical beam forming is two-dimensional beam forming.
  • the beam direction can be changed in the vertical direction in addition to the horizontal direction. Therefore, it can be said that large-scale MIMO beamforming is three-dimensional beamforming.
  • MU-MIMO since the number of antennas increases, the number of users in MU-MIMO can be increased.
  • Such a technique is another form of a technique called large scale MIMO or massive MIMO.
  • the number of antennas of the UE is two, the number of spatially independent streams for one UE is two, and therefore, MU-MIMO rather than increasing the number of streams for one UE. It is more reasonable to increase the number of users.
  • Weight set A weight set for beam forming (that is, a set of weight coefficients for a plurality of antenna elements) is expressed as a complex number.
  • a weight set for beam forming of large scale MIMO will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram for describing a weight set for large-scale MIMO beamforming.
  • antenna elements arranged in a lattice shape are shown. Also shown are two axes x, y orthogonal to the plane on which the antenna element is arranged, and one axis z orthogonal to the plane.
  • the direction of the beam to be formed is represented by, for example, an angle phi (Greek letter) and an angle theta (Greek letter).
  • the angle phi (Greek letter) is an angle formed between the x-axis component and the xy plane component in the beam direction.
  • the angle theta (Greek letter) is an angle formed by the beam direction and the z axis.
  • the weighting factor V m, n of the antenna element arranged m-th in the x-axis direction and n-th arranged in the y-axis direction can be expressed as follows.
  • f is the frequency and c is the speed of light.
  • J is an imaginary unit in a complex number.
  • D x is the distance between the antenna elements in the x-axis direction, and dy is the distance between the antenna elements in the y-axis direction.
  • the coordinates of the antenna element are expressed as follows.
  • a weight set for typical beam forming includes a weight set for obtaining directivity in the horizontal direction and a weight set for phase adjustment of dual layer MIMO (that is, 2 corresponding to different polarizations). And a weight set for phase adjustment between two antenna sub-arrays).
  • the large-scale MIMO beamforming (three-dimensional beamforming) weight set includes a first weight set for obtaining directivity in the horizontal direction and a second weight set for obtaining directivity in the vertical direction. And a third weight set for phase adjustment of dual layer MIMO.
  • FIG. 2 is an explanatory diagram for explaining an example of a case where large-scale MIMO beamforming is performed.
  • a base station 71 and a high-rise building 73 are shown.
  • the base station 71 forms a directional beam 79 to the high-rise building 73 in addition to the directional beams 75 and 77 to the ground.
  • the measurement includes measurement for selecting a cell and measurement for feeding back CQI (Channel Quality Indicator) and the like after connection. The latter measurement is required to be performed in a shorter time.
  • CQI Channel Quality Indicator
  • the measurement of the amount of interference from neighboring cells is also considered to be a kind of CQI measurement.
  • CQI measurement CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CSI-RS is transmitted without beamforming, similar to CRS. That is, the CSI-RS is transmitted without being multiplied by a weight set for beamforming, as in the case of CRS.
  • a weight set for beamforming as in the case of CRS.
  • FIG. 3 is an explanatory diagram for explaining the relationship between weighting coefficient multiplication and reference signal insertion.
  • the transmission signal 82 corresponding to each antenna element 81 is complex-multiplied by a weight coefficient 83 in a multiplier 84. Then, a transmission signal 82 obtained by complex multiplication of the weighting coefficient 83 is transmitted from the antenna element 81.
  • the DR-MS 85 is inserted before the multiplier 84, and the multiplier 84 multiplies the weight coefficient 83 by a complex multiplication. Then, the DR-MS 85 obtained by complex multiplication of the weight coefficient 83 is transmitted from the antenna element 81.
  • the CSI-RS 86 (and CRS) is inserted after the multiplier 84. The CSI-RS 86 (and CRS) is transmitted from the antenna element 81 without being multiplied by the weighting coefficient 83.
  • CSI-RS is transmitted without beamforming
  • pure channel H or channel response H that is not affected by beamforming is used.
  • This channel H is used to feed back RI (Rank Indicator), PMI (Precoding Matrix Indicator), and CQI (Channel Quality Indicator). Note that only CQI is fed back depending on the transmission mode. Also, the amount of interference can be fed back.
  • the transmission frequency of CRS is higher than the transmission frequency of CSI-RS. That is, the CSI-RS cycle is longer than the CRS cycle.
  • a first approach for transmitting CSI-RS without beamforming and a second approach for transmitting CSI-RS with beamforming ie, transmitting CSI-RS with a directional beam
  • the first approach is a conventional approach
  • the second approach is a new approach.
  • FIG. 4 the relationship between weight coefficient multiplication and reference signal insertion in the new approach (second approach) will be described.
  • FIG. 4 is an explanatory diagram for explaining the relationship between weighting factor multiplication and reference signal insertion in a new approach.
  • transmission signal 92 corresponding to each antenna element 91 is complex-multiplied by weighting factor 93 in multiplier 94.
  • a transmission signal 92 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • the DR-MS 95 is inserted in front of the multiplier 94, and the multiplier 94 multiplies the weight coefficient 93 in a complex manner.
  • the DR-MS 95 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • CSI-RS 96 is inserted before multiplier 94, and weighting factor 93 is complex-multiplied by multiplier 94. Then, CSI-RS 96 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91.
  • the CRS 97 (and normal CSI-RS) is inserted after the multiplier 94. The CRS 97 (and normal CSI-RS) is transmitted from the antenna element 91 without being multiplied by the weight coefficient 93.
  • FIG. 5 is an explanatory diagram for explaining an example of an environment where a directional beam is not reflected.
  • the eNB 11 and the UEs 21, 23, and 25 are shown.
  • the eNB 11 forms a directional beam 31 directed to the UE 21, a directional beam 33 directed to the UE 23, and a directional beam 35 directed to the UE 25.
  • the directional beams 31, 33 and 35 are not reflected, and no interference occurs between the directional beams 31, 33 and 35.
  • FIG. 6 is an explanatory diagram for explaining an example of an environment in which a directional beam is reflected.
  • the eNB 11 and the UEs 21, 23, and 25 are shown.
  • obstacles 41 and 43 are shown.
  • the obstacles 41 and 43 are buildings.
  • the eNB 11 forms a directional beam 31 directed to the UE 21, a directional beam 33 directed to the UE 23, and a directional beam 35 directed to the UE 25.
  • the directional beam 35 is reflected by the obstacles 41 and 43 and reaches the UE 23. For this reason, interference occurs between the directional beam 33 and the directional beam 35.
  • FIG. 7 is an explanatory diagram for explaining an example of interference between directional beams of different cells.
  • eNBs 11 and 13 and UEs 21, 23, and 25 are shown.
  • the eNB 11 forms a directional beam 31 directed to the UE 21, a directional beam 33 directed to the UE 23, and a directional beam 35 directed to the UE 25.
  • the eNB 13 forms a directional beam 37, and the directional beam 37 reaches the UE 25. Therefore, interference occurs between the directional beam 35 formed by the eNB 11 and the directional beam 37 formed by the eNB 13.
  • Interference may occur between two directional beams, or interference may occur between three or more directional beams.
  • the number of directional beams in which interference occurs depends on the UE. For example, referring again to FIG. 6, interference is not generated in each of the UEs 21 and 25, but interference is generated between the three directional beams in the UE 23. That is, the state of interference differs depending on the location.
  • a single operating band has a high frequency band (component carrier) and a low frequency band (component carrier), but the interference situation is generally the same in each frequency band. I can say that.
  • the eNB In order to suppress such interference, it is important that the eNB first grasps the state of directional beam interference. Since the eNB cannot know the situation of such directional beam interference itself, it is conceivable that the UE reports the situation of directional beam interference to the eNB. For example, it is conceivable to calculate the interference amount of a directional beam other than the desired directional beam from the CSI-RS. It is also conceivable to use a CSI feedback procedure.
  • RRM Radio Resource Management
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RI, CQI, PMI, etc. included in CSI It is a measurement to determine.
  • the former is mainly performed for cell selection and is performed by both the RRC idle mode UE and the RRC connected mode UE.
  • the latter is performed in order to know the interference situation and is performed by the UE in the RRC connection mode.
  • CSI-RS CSI-RS is defined in Release 10.
  • a normal CSI-RS is also called a non zero power CSI-RS. Since the purpose of CSI-RS is to acquire a raw channel, CSI-RS is transmitted without beamforming.
  • Zero power CSI-RS is also specified.
  • Zero power CSI-RS is defined to facilitate observation of relatively weak signals from other eNBs.
  • the radio resource (resource element) for zero power CSI-RS since the eNB does not transmit a signal, the UE can receive signals from other eNBs using the radio resource.
  • the CSI-RS cycle is variable between 5 ms and 80 ms.
  • 40 radio resources are prepared in one subframe as candidates for radio resources for transmitting CSI-RS.
  • CSI-RS only one CSI-RS is configured in one cell.
  • a plurality of zero power CSI-RSs can be set in one cell. Therefore, if the serving eNB of the UE sets the zero power CSI-RS in accordance with the setting of the CSI-RS of the neighboring eNB, the UE is not affected by the signal of the serving eNB, and the neighboring eNB Measurements of CSI-RS can be performed.
  • the CSI-RS configuration is specific to a cell.
  • the configuration can be communicated to the UE by higher layer signaling.
  • FIG. 8 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure.
  • the system 1 includes a base station 100, a terminal device 200, and a peripheral base station 300.
  • the system 1 is, for example, a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
  • the base station 100 performs wireless communication with the terminal device 200.
  • the base station 100 performs wireless communication with the terminal device 200 located in the cell 101 of the base station 100.
  • the base station 100 performs beam forming.
  • the beam forming is large-scale MIMO beam forming.
  • the beam forming may also be referred to as massive MIMO beam forming, free dimension MIMO beam forming, or three-dimensional beam forming.
  • the base station 100 includes a directional antenna that can be used for large-scale MIMO, and performs large-scale MIMO beamforming by multiplying a transmission signal by a weight set for the directional antenna. .
  • the base station 100 transmits a reference signal for channel quality measurement without beamforming. That is, the base station 100 transmits the reference signal without multiplying the reference signal by the weight set.
  • the reference signal is CSI-RS.
  • the terminal device 200 performs wireless communication with the base station. For example, when the terminal device 200 is located in the cell 101 of the base station 100, the terminal device 200 performs wireless communication with the base station 100. For example, when the base station 200 is located in the cell 301 of the peripheral base station 300, the base station 200 performs wireless communication with the peripheral base station 300.
  • the terminal device 200 is connected to the base station 100. That is, the base station 100 is a serving base station for the terminal device 200, and the cell 101 is a serving cell for the terminal device 200.
  • a neighbor base station 300 is a neighbor base station of the base station 100.
  • the peripheral base station 300 has the same configuration as the base station 100 and performs the same operation as the base station 100.
  • FIG. 8 shows only one peripheral base station 300, but the system 1 may include a plurality of peripheral base stations 300.
  • both the base station 100 and the peripheral base station 300 may be macro cell base stations. Alternatively, both the base station 100 and the peripheral base station 300 may be small cell base stations. Alternatively, one of the base station 100 and the neighboring base station 300 may be a macro cell base station, and the other of the base station 100 and the neighboring base station 300 may be a small cell base station.
  • FIG. 9 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 radiates the signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the antenna unit 110 includes a directional antenna.
  • the directional antenna is a directional antenna that can be used for large scale MIMO.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations (for example, neighboring base stations 300) and core network nodes.
  • the storage unit 140 stores a program and data for the operation of the base station 100.
  • the processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes an information acquisition unit 151 and a control unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • FIG. 10 is a block diagram illustrating an example of a configuration of the terminal device 200 according to the embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station 100 and transmits an uplink signal to the base station 100.
  • the storage unit 230 stores a program and data for the operation of the terminal device 200.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes an information acquisition unit 241 and a control unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • CSI-RS is transmitted without beamforming.
  • CSI-RS is not transmitted by a directional beam but transmitted by a non-directional radio wave.
  • the amount of interference calculated from CSI-RS transmitted by an omnidirectional radio wave and directivity The actual amount of interference of the beam can deviate. As a result, even if a large directional beam interference actually occurs, the occurrence of the interference may be missed.
  • the terminal device 200 acquires a channel estimated from a channel quality measurement reference signal and a plurality of precoding matrices respectively corresponding to a plurality of directional beams. . Then, the terminal device 200 (the control unit 243) calculates the interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
  • Reference signal (a)
  • the reference signal is a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the reference signal is a signal transmitted by the peripheral base station 300.
  • the peripheral base station 300 is a peripheral base station of the serving base station of the terminal device 200 (that is, the base station 100).
  • the base station 100 (information acquisition unit 151) acquires information indicating the configuration of the reference signal. Then, the base station 100 (control unit 153) notifies the terminal device 200 of the configuration.
  • the configuration includes at least one of a radio resource used for transmitting the reference signal and a sequence of the reference signal.
  • the configuration includes both the radio resource and the sequence.
  • the radio resource is one or more resource elements.
  • the above reference signal transmitted by the peripheral base station 300 and another reference signal for channel quality measurement transmitted by another peripheral base station 300 are in the same radio resource. Even if transmitted, the terminal device 200 can detect the reference signal by performing reception processing based on the sequence using a correlator. That is, code division is possible. For example, different sequences are used between base stations.
  • the peripheral base station 300 notifies the base station 100 of the configuration (of the reference signal transmitted by the peripheral base station 300).
  • the peripheral base station 300 transmits information indicating the configuration via an interface (for example, an X2 interface) between the peripheral base station 300 and the base station 100.
  • (C-3) Notification method-Zero power CSI-RS For example, the base station 100 notifies the terminal device 200 of the configuration as a configuration of zero power CSI-RS.
  • the base station 100 (the control unit 153) notifies the terminal device 200 of the configuration by individual signaling to the terminal device 200. That is, the base station 100 (control unit 153) generates a signaling message (for example, an RRC message) including information indicating the configuration. Then, the base station 100 transmits the signaling message to the terminal device 200.
  • a signaling message for example, an RRC message
  • the base station 100 may notify the terminal device 200 of the configuration in the system information. That is, the base station 100 (control unit 153) may generate system information (for example, SIB (System Information Block)) including information indicating the configuration. Then, the base station 100 may transmit the system information.
  • SIB System Information Block
  • the base station 100 (control unit 153) notifies the terminal device 200 of the neighboring base station 300 that transmits the reference signal in association with the configuration.
  • the base station 100 (the control unit 153) generates a message including information indicating the configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300. . Then, the base station 100 (the control unit 153) transmits the message to the terminal device 200.
  • the configuration and identification information for example, a cell ID
  • the base station 100 may generate system information (for example, SIB) including information indicating the configuration and identification information for identifying the neighboring base station 300. Then, the base station 100 (the control unit 153) may transmit the system information.
  • SIB system information
  • the channel is a channel estimated by the terminal device 200. That is, the terminal device 200 estimates the channel from the reference signal. For example, channel H is estimated.
  • the channel estimated by the terminal device 200 is stored in the storage unit 230. Thereafter, the terminal device 200 (information acquisition unit 241) acquires the channel from the storage unit 230.
  • the above channel is, in other words, a channel matrix or a channel response.
  • the terminal device 200 determines each of the plurality of directional beams based on the channel and the plurality of precoding matrices. The amount of interference is calculated.
  • the terminal device 200 multiplies the channel H by the precoding matrix PM (i) (from the right side), and uses the norm of the result of this multiplication as the interference of the directional beam i of the neighboring base station 300. Calculate as a quantity. That is, the terminal device 200 calculates the interference amount I (i) of the directional beam i of the neighboring base station 300 as follows.
  • the terminal device 200 can calculate the interference amount not only for one peripheral base station 300 but also for other peripheral base stations 300 (not shown in FIG. 8).
  • the amount of interference is calculated as described above. Thereby, for example, it becomes possible to know the state of directional beam interference more appropriately. More specifically, for example, even if a channel quality measurement reference signal is not transmitted by a directional beam, the amount of interference of the directional beam can be virtually known. Further, since the reference signal is not transmitted by the directional beam, an increase in transmission load for the peripheral base station 300 and a measurement load for the terminal device 200 can be suppressed. Also, backward compatibility can be ensured.
  • the plurality of precoding matrices are, for example, all the precoding matrices (defined in the standard). Further, the plurality of precoding matrices are stored in advance in the storage unit 230, and the terminal device 200 (information acquisition unit 241) acquires the plurality of precoding matrices from the storage unit 230.
  • the terminal device 200 reports information related to directional beam interference (hereinafter, “interference-related information”) to the base station 100.
  • interference-related information information related to directional beam interference
  • the terminal device 200 reports information indicating the amount of interference of the directional beam to the base station 100 as the interference related information.
  • the terminal device 200 (the control unit 243), as the interference-related information, identification information (for example, PMI) for identifying the directional beam and / or identification information for identifying the neighboring base station 300 (Eg, cell ID) is also reported to the base station 100.
  • the terminal device 200 may report information indicating the amount of interference of each of the plurality of directional beams to the base station 100, or one of the plurality of directional beams that is part of the plurality of directional beams. Information indicating the amount of interference of each of the above directional beams may be reported to the base station 100.
  • the one or more directional beams may be directional beams having an interference amount larger than a threshold value.
  • the base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300. Further, for example, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information.
  • FIG. 11 is a sequence diagram illustrating an example of a schematic flow of processing according to the first embodiment.
  • the neighboring base station 300 notifies the base station 100 of the configuration of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (hereinafter referred to as “RS configuration”) (S401).
  • RS configuration the configuration of the reference signal for channel quality measurement transmitted by the neighboring base station 300
  • the base station 100 notifies the terminal device 200 of the RS configuration (S403).
  • the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S405).
  • the base station 100 transmits a message including information indicating the RS configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300 to the terminal device 200 (S403, S405). .
  • the peripheral base station 300 transmits a reference signal for channel quality measurement (S407).
  • the terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S409). Thereafter, the terminal device 200 acquires the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams, and based on the channel and the plurality of precoding matrices, the terminal apparatus 200 Each interference amount is calculated (S411). And the terminal device 200 reports the interference relevant information regarding the interference of a directional beam to the base station 100 (S413).
  • the base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300 (S415). Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S417).
  • the plurality of precoding matrices are all precoding matrices (defined in the standard). However, if the interference amount of all directional beams is calculated based on all the precoding matrices, for example, the load for calculating the interference amount increases.
  • the plurality of precoding matrices are a part of all defined precoding matrices.
  • (A) Route of precoding matrix acquisition by base station 100 (a-1) First example, the neighboring base station 300 notifies the base station 100 of the plurality of precoding matrices. For example, the neighboring base station 300 notifies the base station 100 of the plurality of precoding matrices in association with the configuration of the reference signal.
  • the neighboring base station 300 generates a message including information indicating the configuration and information indicating the plurality of precoding matrices (for example, a plurality of PMIs). Then, the peripheral base station 300 transmits the message to the base station 100 via an interface (for example, an X2 interface) between the peripheral base station 300 and the base station 100.
  • an interface for example, an X2 interface
  • the plurality of precoding matrices notified from the neighboring base station 300 to the base station 100 are stored in the storage unit 140. Thereafter, the base station 100 (information acquisition unit 151) acquires the plurality of precoding matrices from the storage unit 140.
  • the plurality of precoding matrices may be stored in advance in the base station 100 (storage unit 140).
  • the operator may store the plurality of precoding matrices in the base station 100 (storage unit 140).
  • the base station 100 (information acquisition unit 151) may acquire the plurality of precoding matrices from the storage unit 140.
  • the base station 100 (information acquisition unit 151) acquires the plurality of precoding matrices. Then, the base station 100 (the control unit 153) notifies the terminal device 200 of the plurality of precoding matrices in association with the configuration (of the reference signal).
  • the base station 100 (the control unit 153), information indicating the configuration, identification information (for example, cell ID) for identifying the neighboring base station 300, and information indicating the plurality of precoding matrices (for example, , A plurality of PMI). Then, the base station 100 (the control unit 153) transmits the message to the terminal device 200.
  • identification information for example, cell ID
  • precoding matrices for example, , A plurality of PMI
  • the base station 100 (control unit 153) includes system information (information indicating the configuration, identification information for identifying the neighboring base station 300, and information indicating the plurality of precoding matrices). For example, SIB) may be generated. Then, the base station 100 (the control unit 153) may transmit the system information.
  • system information information indicating the configuration, identification information for identifying the neighboring base station 300, and information indicating the plurality of precoding matrices. For example, SIB
  • SIB system information
  • the base station 100 may transmit the system information.
  • the multiple precoding matrices are unique to the base station 100. That is, the plurality of precoding matrices are applied to all the terminal devices 200 connected to the base station 100.
  • the plurality of precoding matrices may be unique to the terminal device 200. That is, the plurality of precoding matrices may be applied to individual terminal apparatuses 200.
  • the plurality of directional beams are directional beams with limited directivity in one of the horizontal direction and the vertical direction. That is, the plurality of precoding matrices are precoding matrices corresponding to a plurality of directional beams whose directivities in one of the horizontal direction and the vertical direction are limited.
  • the plurality of precoding matrices are precoding matrices corresponding to a plurality of directional beams whose directivities in one of the horizontal direction and the vertical direction are limited.
  • FIG. 12 is an explanatory diagram for describing a first example of a plurality of precoding matrices according to a modification of the first embodiment.
  • a terminal device 200 and a peripheral base station 300 are shown.
  • high-rise buildings 45 and 47 are also shown.
  • the directional beam reaches the terminal device 200 located in the high-rise building 47 and causes interference.
  • the directional beam 51 is reflected by the high-rise building 45 and reaches the terminal device 200 located in the high-rise building 47.
  • the directional beam 52 directly reaches the terminal device 200 located in the high-rise building 47.
  • the peripheral base station 300 forms a directional beam having a low angle (for example, the directional beam 53) in the vertical direction, the directional beam is reflected on the ground and is reflected on the high-rise building 47. It may reach the terminal device 200 that is located and cause interference.
  • the peripheral base station 300 forms a directional beam having a neutral angle in the vertical direction (for example, the directional beam 54), the directional beam may not be reflected (or reflected). ), The terminal device 200 located in the high-rise building 47 is not reached. That is, the directional beam does not cause interference.
  • the base station 100 notifies the terminal device 200 of a plurality of precoding matrices corresponding to a plurality of directional beams whose directivities in the vertical direction are limited to high angles and low angles. Then, the terminal device 200 calculates the interference amounts of the plurality of directional beams based on the plurality of precoding matrices.
  • FIG. 13 is an explanatory diagram for describing a second example of a plurality of precoding matrices according to a modification of the first embodiment.
  • a base station 100, a terminal device 200, and a peripheral base station 300 are shown.
  • the base station 100 and the terminal device 200 are located on the south side of the peripheral base station 300. Therefore, when the peripheral base station 300 forms a directional beam in the south direction in the horizontal direction (for example, the directional beams 56, 57, 58, 59), the directional beam reaches the terminal device 200. obtain.
  • the base station 100 notifies the terminal device 200 of a plurality of precoding matrices corresponding to a plurality of directional beams whose directivity in the horizontal direction is limited to the south direction. Then, the terminal device 200 calculates the interference amounts of the plurality of directional beams based on the plurality of precoding matrices.
  • the plurality of precoding matrices are a part of all defined precoding matrices. Therefore, for example, it becomes possible to further reduce the load for calculating the interference amount of the directional beam.
  • FIG. 14 is a sequence diagram illustrating an example of a schematic flow of a process according to a modification of the first embodiment.
  • the neighboring base station 300 notifies the base station 100 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (S431). In addition, the neighboring base station 300 notifies the base station 100 of a plurality of precoding matrices (PMs) respectively corresponding to the plurality of directional beams in association with the RS configuration (S433).
  • the plurality of precoding matrices are a part of all defined precoding matrices.
  • the neighboring base station 300 transmits a message including information indicating the RS configuration and information indicating the plurality of precoding matrices (for example, a plurality of PMIs) to the base station 100 (S431, S433). .
  • the base station 100 notifies the terminal device 200 of the RS configuration (S435). Also, the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S437). In addition, the base station 100 notifies the terminal device 200 of the plurality of precoding matrices in association with the RS configuration (S439).
  • the base station 100 includes information indicating the RS configuration, identification information for identifying the neighboring base station 300 (for example, a cell ID), and information indicating the plurality of precoding matrices (for example, a plurality of PMIs). ) Is transmitted to the terminal device 200 (S435, S437, S439).
  • the peripheral base station 300 transmits a reference signal for channel quality measurement (S441).
  • the terminal apparatus 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S443). Thereafter, the terminal device 200 acquires the channel and the plurality of precoding matrices, and calculates the amount of interference of each of the plurality of directional beams based on the channel and the plurality of precoding matrices (S445). . And the terminal device 200 reports the interference relevant information regarding the interference of a directional beam to the base station 100 (S447).
  • the base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300 (S449). Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S451).
  • the base station 100 acquires a channel estimated from a channel quality measurement reference signal and a plurality of precoding matrices respectively corresponding to a plurality of directional beams. . Then, base station 100 (control unit 153) calculates the amount of interference of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
  • the channel is a channel estimated by the terminal device 200. That is, the terminal device 200 estimates the channel from the reference signal. For example, channel H is estimated.
  • the terminal device 200 reports the channel to the base station 100. Then, the channel is stored in the base station 100 (for example, the storage unit 140).
  • the above channel is, in other words, a channel matrix or a channel response.
  • the base station 100 determines each of the plurality of directional beams based on the channel and the plurality of precoding matrices. The amount of interference is calculated.
  • the description of the calculation of the interference amount is the same as that in the first embodiment except for the difference between the subjects (in the first embodiment, the subject is the terminal device 200 and in the second embodiment, the subject is the base station 100). There is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
  • the base station 100 transmits interference-related information (information on directional beam interference) to the neighboring base stations 300. Further, for example, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information.
  • FIG. 15 is a sequence diagram illustrating an example of a schematic flow of processing according to the second embodiment.
  • steps S461 to S467 and S475 to S477 in the example of FIG. 15 is not particularly different from the description of steps S401 to S407 and S415 to S417 in FIG. Therefore, the description which overlaps here is abbreviate
  • the terminal device 200 estimates the channel from the channel quality measurement reference signal transmitted by the neighboring base station 300 (S469). Then, the terminal device 200 reports the channel to the base station 100 (S471).
  • the base station 100 acquires the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams, and based on the channel and the plurality of precoding matrices, each of the plurality of directional beams The amount of interference is calculated (S473).
  • the plurality of precoding matrices are a part of all defined precoding matrices.
  • the plurality of precoding matrices are a part of all defined precoding matrices. Therefore, for example, it becomes possible to further reduce the load for calculating the interference amount of the directional beam.
  • FIG. 16 is a sequence diagram illustrating an example of a schematic process flow according to the first modification of the second embodiment.
  • steps S505 to S513 and S517 to S519 in the example of FIG. 16 are not particularly different from the descriptions of steps S463 to S471 and S475 to S477 in FIG. Therefore, duplicate description is omitted here, and only steps S501 to S503 and S515 will be described.
  • the peripheral base station 300 notifies the base station 100 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the peripheral base station 300 (S501).
  • the neighboring base station 300 notifies the base station 100 of a plurality of precoding matrices (PMs) respectively corresponding to the plurality of directional beams in association with the RS configuration (S503).
  • the neighboring base station 300 transmits a message including information indicating the RS configuration and information indicating the plurality of precoding matrices (for example, a plurality of PMIs) to the base station 100 (S501, S503). .
  • the base station 100 acquires a channel estimated by the terminal device 200 from the reference signal for channel quality measurement transmitted by the neighboring base station 300 and the plurality of precoding matrices. Then, the base station 100 calculates an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices (S515).
  • the base station 100 but the neighboring base station 300 acquires the channel and the plurality of precoding matrices, and based on the channel and the plurality of precoding matrices.
  • the interference amount of each of the plurality of directional beams may be calculated.
  • the base station 100 may notify the neighboring base station 300 of the channel reported by the terminal device 200.
  • the peripheral base station transmits a data signal using a directional beam (for example, a large-scale MIMO directional beam)
  • a directional beam for example, a large-scale MIMO directional beam
  • the peripheral base station is far away from the terminal device (and the serving base station). Even so, the reception power of the data signal in the terminal device may increase. That is, large interference may occur in the terminal device.
  • CSI-RS is normally transmitted without beamforming
  • CSI-RS transmitted by the neighboring base station if the neighboring base station is far away from the terminal device (and serving base station).
  • the received power in the terminal device can be very small.
  • the terminal device may not be able to detect the CSI-RS and may not calculate the amount of interference.
  • the occurrence of the interference may be missed.
  • the base station 100 acquires power increase information related to an increase in transmission power of a channel quality measurement reference signal transmitted by the neighboring base station 300. Then, the base station 100 (the control unit 153) uses the power increase information to perform control for correcting the interference amount calculated from the reference signal.
  • the terminal device 200 calculates the interference amount from the reference signal transmitted by the neighboring base station 300.
  • the terminal device 200 estimates a channel from the reference signal, and a plurality of channels respectively corresponding to the channel and a plurality of directional beams.
  • the amount of interference of each of the plurality of directional beams is calculated based on the precoding matrix.
  • the base station 100 may calculate the interference amount. More specifically, for example, the terminal device 200 reports the channel estimated from the reference signal to the base station 100, and the base station 100 determines the plurality of directivities based on the channel and the plurality of directional beams. The amount of interference of each beam may be calculated.
  • Power increase information For example, the peripheral base station 300 increases the transmission power of the reference signal. That is, for example, the peripheral base station 300 transmits the reference signal using a directional beam with higher power.
  • a Power increase information
  • the peripheral base station 300 increases the transmission power of the reference signal. That is, for example, the peripheral base station 300 transmits the reference signal using a directional beam with higher power.
  • FIG. 17 is an explanatory diagram for explaining an example of an increase in transmission power of a reference signal for channel quality measurement.
  • the neighboring base station 300 transmits CSI-RS with normal transmission power in the radio resource 61 (two resource elements) for channel quality measurement in the cell 301 of the neighboring base station 300.
  • the neighboring base station 300 has a transmission power that is larger by 5 dB than the normal transmission power in the radio resource 62 (two resource elements) in order to measure interference in a neighboring cell (a relatively nearby neighboring cell) of the cell 301.
  • the neighboring base station 300 transmits 10 dB larger than normal transmission power in the radio resource 63 (two resource elements) in order to measure interference in a neighboring cell (a relatively far neighboring cell) of the cell 301.
  • the neighboring base station 300 transmits the reference signal with the first transmission power (for example, normal transmission power) in the first radio resource (for example, the radio resource 61), and the second radio resource
  • the reference signal is transmitted with a second transmission power larger than the first transmission power in the resource (for example, the radio resource 62).
  • the neighboring base station 300 transmits the reference signal with a third transmission power larger than the second transmission power in a third radio resource (for example, the radio resource 63).
  • the base station 100 (the control unit 153) can also transmit a channel measurement reference signal, similarly to the neighboring base station 300.
  • the neighboring base station 300 responds to a request from the base station 100 (for example, a request for configuration of a reference signal for measuring channel quality or a request for transmitting a reference signal for measuring channel quality with a large transmission power). In response, the transmission power of the reference signal is increased.
  • the power increase information indicates an increase in the transmission power of the reference signal.
  • the power increase information for the CSI-RS transmitted in the radio resource 62 indicates 5 dB
  • the power increase information for the CSI-RS transmitted in the radio resource 63 indicates 10 dB.
  • the power increase information may be information (for example, a flag or an index) indicating that there is an increase in the transmission power of the reference signal.
  • the increase amount of the transmission power of the reference signal for channel quality measurement may be one fixed amount (for example, 5 dB).
  • the power increase information is information provided by the peripheral base station 300. That is, the neighboring base station 300 provides the power increase information to the base station 100.
  • the configuration of the reference signal includes an increase amount of transmission power of the reference signal (or presence / absence of increase of transmission power of the reference signal).
  • the neighboring base station 300 provides the power increase information to the base station 100 by notifying the base station 100 of the configuration.
  • the configuration does not include the increase amount of the transmission power (and the presence or absence of the increase of the transmission power), and the neighboring base station 300 uses the power increase information independent of the information indicating the configuration.
  • the base station 100 may be notified.
  • the neighboring base station 300 may transmit a message including the information indicating the configuration and the power increase information to the base station 100.
  • the configuration of the reference signal includes the amount of increase in the transmission power of the reference signal (or the presence or absence of increase in the transmission power of the reference signal).
  • the base station 100 notifies the terminal device 200 of the power increase information by notifying the terminal device 200 of the configuration.
  • the configuration does not include the increase amount of the transmission power (and the presence or absence of the increase of the transmission power), and the base station 100 transmits the power increase information independent of the information indicating the configuration to the terminal device 200. You may be notified.
  • the base station 100 may transmit a message (or system information) including the information indicating the configuration and the power increase information to the terminal device 200.
  • Terminal device 200 For example, the terminal device 200 (information acquisition unit 241) acquires the power increase information. Then, the terminal device 200 (information acquisition unit 241) corrects the interference amount calculated from the reference signal based on the power increase information. More specifically, for example, the terminal device 200 subtracts an increase in transmission power (for example, 5 dB or 10 dB) from the amount of interference.
  • an increase in transmission power for example, 5 dB or 10 dB
  • the control may be to correct an interference amount calculated from the reference signal based on the power increase information. That is, the base station 100 (control unit 153) may correct the amount of interference calculated from the reference signal based on the power increase information. More specifically, the base station 100 may subtract an increase in transmission power (for example, 5 dB or 10 dB) from the amount of interference.
  • Terminal device 200 may calculate the interference amount from the reference signal and report the interference amount to the base station 100.
  • the terminal device 200 may estimate a channel from the reference signal and report the channel to the base station 100. Then, the base station 100 may calculate the interference amount based on the channel (and a plurality of precoding matrices respectively corresponding to a plurality of directional beams).
  • the terminal device 200 may also report identification information (for example, a cell ID) for identifying the neighboring base station 300 to the base station 100. Good.
  • identification information for example, a cell ID
  • the transmission power of the reference signal is increased. Further, the interference amount calculated from the reference signal is corrected based on the power related information. Thereby, for example, it becomes possible to know the state of directional beam interference more appropriately. More specifically, for example, since the transmission power of the reference signal is increased, even if the neighboring base station 300 is far away from the terminal device 200 (and the base station 100), it is transmitted by the neighboring base station 300. The received power of the reference signal in the terminal device 200 increases to some extent. Therefore, the terminal device 200 can detect the reference signal. Further, since the interference amount is corrected, an appropriate interference amount can be obtained.
  • FIG. 18 is a sequence diagram illustrating a first example of a schematic flow of a process according to the third embodiment.
  • the base station 100 makes a request to the neighboring base station 300 (for example, a request for configuration of a reference signal for channel quality measurement or a request for transmission of a reference signal for channel quality measurement with a large transmission power) ( S531).
  • the neighboring base station 300 notifies the base station 100 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (S533).
  • the RS configuration includes the amount of increase in the transmission power of the reference signal (or the presence or absence of the increase in the transmission power). Therefore, the neighboring base station 300 provides the base station 100 with power increase information (for example, information indicating the increase amount of the transmission power) related to an increase in the transmission power of the reference signal by the notification of the RS configuration.
  • the base station 100 notifies the terminal device 200 of the RS configuration (S535).
  • the base station 100 notifies the terminal device 200 of the power increase information by the notification of the RS configuration.
  • the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S537).
  • the base station 100 transmits a message including information indicating the RS configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300 to the terminal device 200 (S535, S537). .
  • the peripheral base station 300 transmits a reference signal for channel quality measurement (S539).
  • the terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S541). Thereafter, the terminal device 200 calculates an interference amount based on the channel (S543), and corrects the interference amount based on the power increase information (for example, information indicating the increase amount of the transmission power) (S545). . For example, the terminal device 200 calculates the amount of interference of each of the plurality of directional beams based on the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams, and includes the power increase information. Based on this, the interference amount is corrected.
  • the power increase information for example, information indicating the increase amount of the transmission power
  • the terminal device 200 reports interference-related information related to interference to the base station 100 (S547).
  • the interference related information includes information indicating the amount of interference calculated and corrected by the terminal device 200. Further, for example, the interference related information includes the identification information (for example, cell ID) for identifying the neighboring base station 300 that has transmitted the reference signal.
  • the base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300 (S549). Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S551).
  • FIG. 19 is a sequence diagram illustrating a second example of a schematic flow of processing according to the third embodiment.
  • steps S561 to S563 in the example of FIG. 19 is not particularly different from the description of steps S531 to S533 in FIG. Therefore, the description which overlaps here is abbreviate
  • the base station 100 notifies the terminal device 200 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (S565).
  • the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S567).
  • the base station 100 transmits a message including information indicating the RS configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300 to the terminal device 200 (S565, S567).
  • the RS configuration notified from the base station 100 to the terminal device 200 may not include the amount of increase in the transmission power of the reference signal (or the presence or absence of the increase in the transmission power).
  • the peripheral base station 300 transmits a reference signal for channel quality measurement (S539).
  • the terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S571). Thereafter, the terminal device 200 calculates an interference amount based on the channel (S573). For example, the terminal device 200 calculates the amount of interference of each of the plurality of directional beams based on the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams.
  • the terminal device 200 reports interference-related information regarding interference to the base station 100 (S575).
  • the interference related information includes information indicating the amount of interference calculated by the terminal device 200. Further, for example, the interference related information includes the identification information (for example, cell ID) for identifying the neighboring base station 300 that has transmitted the reference signal.
  • the base station 300 corrects the interference amount calculated by the terminal device 200 based on power increase information (for example, information indicating the increase amount of the transmission power) related to an increase in the transmission power of the reference signal (S577). .
  • power increase information for example, information indicating the increase amount of the transmission power
  • the base station 100 transmits interference related information regarding interference to the neighboring base station 300 (S579).
  • the interference related information includes information indicating the interference amount corrected by the base station 100.
  • the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S581).
  • FIG. 20 is a sequence diagram illustrating a third example of a schematic flow of processing according to the third embodiment.
  • steps S601 to S607 and S619 to S621 in the example of FIG. 20 is not particularly different from the description of steps S561 to S567 and S579 to S581 of FIG. Therefore, the description which overlaps here is abbreviate
  • the peripheral base station 300 transmits a reference signal for channel quality measurement (S609).
  • the terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S611). Then, the terminal device 200 reports the channel to the base station 100 (S613). For example, the terminal device 200 reports the identification information for identifying the neighboring base station 300 that has transmitted the reference signal in association with the channel to the base station 100.
  • the base station 100 calculates an interference amount based on the channel (S615), and the interference amount based on power increase information (for example, information indicating the increase amount of the transmission power) related to an increase in the transmission power of the reference signal. Is corrected (S617).
  • power increase information for example, information indicating the increase amount of the transmission power
  • the base station 100 (the control unit 153) includes a first radio resource in which two or more neighboring base stations 300 transmit reference signals for channel quality measurement, and two The terminal apparatus 200 is notified of the second radio resource in which the reference signal for channel quality measurement is transmitted by the other peripheral base station 300 described above.
  • the receiving power of the reference signal transmitted in the first radio resource in the terminal device 200 is transmitted in the second radio resource.
  • the received power of the reference signal in the terminal device 200 is larger. That is, reference signals that bring about the same received power are transmitted using the same radio resource.
  • FIG. 21 is an explanatory diagram for explaining an example of a relationship between a radio resource to which CSI-RS is transmitted and received power of the CSI-RS.
  • the base station 100 transmits CSI-RS in the radio resource 65 (two resource elements).
  • two or more neighboring base stations 300 transmit CSI-RS in the radio resource 66 (two resource elements), and two or more other neighboring base stations 300 send radio resources 67 (two resource elements).
  • CSI-RS is transmitted.
  • the reception power of the CSI-RS transmitted in the radio resource 66 is larger than the reception power of the CSI-RS transmitted in the radio resource 67.
  • the two or more neighboring base stations 300 that transmit the CSI-RS with high received power transmit the CSI-RS in the radio resource 66 and transmit the CSI-RS with low received power.
  • the other neighboring base stations 300 transmit the CSI-RS in the radio resource 67.
  • the peripheral base station 300 may increase the transmission power of the reference signal for channel quality measurement, which allows flexible control of which peripheral base station 300 uses which radio resource. It may be possible to decide on.
  • the configuration of the reference signal transmitted by the two or more neighboring base stations 300 includes the first radio resource. Therefore, the base station 100 (control unit 153) notifies the terminal device 200 of the first radio resource by notifying the terminal device 200 of the configuration.
  • the configuration of the reference signal transmitted by the two or more other neighboring base stations 300 includes the second radio resource. Therefore, the base station 100 (the control unit 153) notifies the terminal device 200 of the second radio resource by notifying the terminal device 200 of the configuration.
  • the third embodiment has been described above. Note that the third embodiment may be combined with the first embodiment or the second embodiment. Specifically, the base station 100 (the information acquisition unit 151 and the control unit 153) according to the first embodiment or the second embodiment is the base station 100 (the information acquisition unit 151 and the control unit according to the third embodiment). The operation of the unit 153) may be performed similarly. Further, the terminal device 200 (information acquisition unit 241 and control unit 243) according to the first embodiment or the second embodiment is the same as the terminal device 200 (information acquisition unit 241 and control unit 243) according to the third embodiment. These operations may be performed in the same manner.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 15 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 15, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 15 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 15, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 15, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 15 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in the controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good.
  • the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • FIG. 16 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 16, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 16 shows an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 15 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 16 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 16, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 16 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a part of the wireless communication interface 855 (for example, the BB processor 856) or / and a module including the controller 851, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good.
  • the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 execute the program. Also good.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • FIG. 17 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
  • FIG. 17 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 17 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 17 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the information acquisition unit 241 and the control unit in the module. 243 may be implemented.
  • the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is installed.
  • the program may be executed.
  • the smartphone 900 or the module may be provided as an apparatus including the information acquisition unit 241 and the control unit 243, or a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • FIG. 18 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 18 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 18 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 18 through a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 933.
  • the processor 921 may be implemented in the processor 921.
  • the car navigation device 920 includes a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and / or the processor 921, and the information acquisition unit 241 and the control unit 243 are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243).
  • the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 executes the program. May be executed.
  • the car navigation device 920 or the module may be provided as a device including the information acquisition unit 241 and the control unit 243, and a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241 and the control unit 243.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the terminal device 200 includes a plurality of precoding matrices respectively corresponding to a channel estimated from a channel quality measurement reference signal and a plurality of directional beams. And an information acquisition unit 241 that acquires the interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
  • the base station 100 includes a plurality of precoding matrices each corresponding to a channel estimated from a channel quality measurement reference signal and a plurality of directional beams. And a control unit 153 that calculates the amount of interference of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
  • the base station 100 obtains power increase information related to an increase in transmission power of a channel quality measurement reference signal transmitted by the neighboring base station 300.
  • An acquisition unit 151 and a control unit 153 that performs control for correcting an interference amount calculated from the reference signal using the power increase information.
  • the communication system may be a system that complies with other communication standards.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a processor for example, a CPU, a DSP, or the like included in a device of the present specification (for example, a base station, a base station device, a module for a base station device, or a terminal device or a module for a terminal device) is provided. It is also possible to create a computer program (in other words, a computer program for causing the processor to execute the operation of the component of the device) to function as a component of the device (for example, an information acquisition unit and a control unit). . Moreover, a recording medium on which the computer program is recorded may be provided.
  • An apparatus for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a device including a memory for storing the computer program and one or more processors capable of executing the computer program
  • a module for a terminal device may also be provided.
  • a method including the operation of the components of the device for example, an information acquisition unit and a communication control unit is also included in the technology according to the present disclosure.
  • An acquisition unit that acquires a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams;
  • a control unit that calculates an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
  • a device comprising: (2) The channel is a channel estimated by a terminal device, The reference signal is a signal transmitted by a peripheral base station of a serving base station of the terminal device, The apparatus according to (1) above. (3) The device according to (2), wherein the device is the terminal device or a module for the terminal device.
  • the apparatus is the serving base station, a base station apparatus for the serving base station, or a module for the base station apparatus.
  • the plurality of precoding matrices are a part of all defined precoding matrices.
  • the plurality of precoding matrices are precoding matrices that the neighboring base station notifies to the serving base station.
  • the plurality of directional beams are directional beams in which directivity in one of a horizontal direction and a vertical direction is limited.
  • the apparatus according to any one of (1) to (7), wherein the reference signal is a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • CSI-RS channel state information reference signal
  • the control unit notifies the terminal device of a neighboring base station that transmits the reference signal in association with the configuration.
  • the terminal device is a terminal device that calculates the amount of interference of each of the plurality of directional beams based on a channel estimated from the reference signal and the plurality of precoding matrices, (9) to (11) The apparatus of any one of these.
  • the device is a terminal device or a module for the terminal device,
  • the power increase information is information notified to the terminal device by the serving base station of the terminal device.
  • the apparatus according to any one of (13) to (17), wherein the power increase information is information provided by the neighboring base station.
  • the apparatus according to any one of (13) to (18), wherein the power increase information indicates an increase amount of transmission power of the reference signal.
  • the control unit includes a first radio resource in which a reference signal for channel quality measurement is transmitted by two or more neighboring base stations, and a reference signal for channel quality measurement by two or more other neighboring base stations.
  • the received power of the reference signal transmitted in the first radio resource in the terminal device is larger than the received power of the reference signal transmitted in the second radio resource in the terminal device.
  • the apparatus according to any one of (13) to (19). (21) Depending on the processor Obtaining a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams; Calculating an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices; Including methods.
  • (22) Obtaining a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams; Calculating an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices; A program that causes a processor to execute.
  • (23) Obtaining a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams; Calculating an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
  • a readable recording medium on which a program for causing a processor to execute is recorded.

Abstract

[Problem] To make it possible to more appropriately ascertain the state of interference of directional beams. [Solution] Provided is a device comprising: an acquisition unit that acquires a channel that is inferred from a reference signal for measuring channel quality, and a plurality of precoding matrices corresponding to each of a plurality of directional beams; and a control unit that calculates the interference for each of the abovementioned plurality of directional beams, on the basis of the abovementioned channels and the abovementioned plurality of precoding matrices.

Description

装置apparatus
 本開示は、装置及び方法に関する。 The present disclosure relates to an apparatus and a method.
 現在、3GPP(Third Generation Partnership Project)では、爆発的に増加するトラフィックを収容するために、セルラーシステムの容量を向上するための様々な技術が検討されている。将来、現在の1000倍程度の容量が必要とも言われている。MU-MIMO(Multi-User Multiple-Input Multiple-Output)及びCoMP(Coordinated Multipoint)などの技術では、セルラーシステムの容量は数倍程度しか増加しないと考えられる。そのため、画期的な手法が求められている。 Currently, in 3GPP (Third Generation Partnership Project), various technologies for improving the capacity of cellular systems are being studied in order to accommodate explosively increasing traffic. It is said that a capacity about 1000 times the current capacity will be required in the future. With technologies such as MU-MIMO (Multi-User Multiple-Input Multiple-Output) and CoMP (Coordinated Multipoint), the capacity of the cellular system is considered to increase only several times. Therefore, an innovative method is required.
 例えば、セルラーシステムの容量を大幅に増加させるための手法として、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用して基地局がビームフォーミングを行うことが考えられる。このような技術は、ラージスケール(Large-Scale)MIMO、又はマッシブ(Massive)MIMOと呼ばれる技術の一形態である。このようなビームフォーミングによれば、ビームの半値幅は狭くなる。即ち、鋭いビームが形成される。また、上記多数のアンテナ素子を平面上に配置することにより、所望の3次元方向へのビームを形成することも可能になる。 For example, as a method for significantly increasing the capacity of the cellular system, it is conceivable that the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements). . Such a technique is a form of a technique called large-scale MIMO or massive MIMO. According to such beam forming, the half width of the beam becomes narrow. That is, a sharp beam is formed. Further, by arranging the multiple antenna elements on a plane, it is possible to form a beam in a desired three-dimensional direction.
 例えば、特許文献1~3には、3次元方向への指向性ビームが使用される場合に適用される技術が開示されている。 For example, Patent Documents 1 to 3 disclose techniques applied when a directional beam in a three-dimensional direction is used.
特開2014-204305号公報JP 2014-204305 A 特開2014-53811号公報JP 2014-53811 A 特開2014-64294号公報JP 2014-64294 A
 通常、CSI-RSは、ビームフォーミングなしで送信される。例えば、CSI-RSは、指向性ビームにより送信されず、無指向性の電波により送信される。しかし、例えば、ラージスケールMIMOのビームフォーミングが行われ、鋭い指向性ビームによりデータ信号が送信される場合には、無指向性の電波により送信されるCSI-RSから算出される干渉量と、指向性ビームの実際の干渉量とが乖離し得る。その結果、実際には指向性ビームの大きな干渉が発生していたとしても、当該干渉の発生が見逃されてしまう可能性がある。 Usually, CSI-RS is transmitted without beamforming. For example, CSI-RS is not transmitted by a directional beam but transmitted by a non-directional radio wave. However, for example, when large-scale MIMO beamforming is performed and a data signal is transmitted by a sharp directional beam, the amount of interference calculated from CSI-RS transmitted by an omnidirectional radio wave and directivity The actual amount of interference of the beam can deviate. As a result, even if a large directional beam interference actually occurs, the occurrence of the interference may be missed.
 そこで、指向性ビームの干渉の状況をより適切に知ることを可能にする仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism that makes it possible to know the state of directional beam interference more appropriately.
 本開示によれば、チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する取得部と、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する制御部と、を備える装置が提供される。 According to the present disclosure, an acquisition unit that acquires a channel estimated from a reference signal for channel quality measurement, and a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the channel and the plurality of precodings There is provided an apparatus comprising: a control unit that calculates an interference amount of each of the plurality of directional beams based on a matrix.
 また、本開示によれば、チャネル品質測定用のリファレンス信号のコンフィギュレーションを示す情報を取得する取得部と、上記コンフィギュレーションを端末装置に通知する制御部と、を備える装置が提供される。上記取得部は、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスであって、定義されている全てのプリコーディングマトリクスのうちの一部である上記複数のプリコーディングマトリクスを示す情報を取得し、上記制御部は、上記コンフィギュレーションと関連付けて、上記複数のプリコーディングマトリクスを上記端末装置に通知する。 Also, according to the present disclosure, there is provided an apparatus including an acquisition unit that acquires information indicating a configuration of a reference signal for channel quality measurement, and a control unit that notifies the terminal device of the configuration. The acquisition unit acquires a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices. Then, the control unit notifies the terminal device of the plurality of precoding matrices in association with the configuration.
 また、本開示によれば、周辺基地局により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得する取得部と、上記電力増加情報を使用して、上記リファレンス信号から算出される干渉量の補正のための制御を行う制御部と、を備える装置が提供される。 Further, according to the present disclosure, an acquisition unit that acquires power increase information related to an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station, and the reference signal using the power increase information And a control unit that performs control for correcting the amount of interference calculated from the above.
 以上説明したように本開示によれば、指向性ビームの干渉の状況をより適切に知ることが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。 As described above, according to the present disclosure, it is possible to know the state of interference of a directional beam more appropriately. The above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
ラージスケールMIMOのビームフォーミング用の重みセットを説明するための説明図である。It is explanatory drawing for demonstrating the weight set for the beam forming of large scale MIMO. ラージスケールMIMOのビームフォーミングが行われるケースの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the case where the beam forming of large scale MIMO is performed. 重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between multiplication of a weight coefficient and insertion of a reference signal. 新たなアプローチにおける重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the multiplication of the weighting coefficient in a new approach, and insertion of a reference signal. 指向性ビームが反射しない環境の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the environment where a directional beam does not reflect. 指向性ビームが反射する環境の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the environment where a directional beam reflects. 異なるセルの指向性ビーム間での干渉の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the interference between the directional beams of a different cell. 本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure. FIG. 同実施形態に係る基地局の構成の一例を説明する。An example of the configuration of the base station according to the embodiment will be described. 同実施形態に係る端末装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. 第1の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the schematic flow of the process which concerns on 1st Embodiment. 第1の実施形態の変形例に係る複数のプリコーディングマトリクスの第1の例を説明するための説明図である。It is explanatory drawing for demonstrating the 1st example of the some precoding matrix which concerns on the modification of 1st Embodiment. 第1の実施形態の変形例に係る複数のプリコーディングマトリクスの第2の例を説明するための説明図である。It is explanatory drawing for demonstrating the 2nd example of the some precoding matrix which concerns on the modification of 1st Embodiment. 第1の実施形態の変形例に係る処理の概略的な流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the schematic flow of the process which concerns on the modification of 1st Embodiment. 第2の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the schematic flow of the process which concerns on 2nd Embodiment. 第2の実施形態の第1の変形例に係る処理の概略的な流れの一例を示すシーケンス図である。It is a sequence diagram which shows an example of the schematic flow of the process which concerns on the 1st modification of 2nd Embodiment. チャネル品質測定用のリファレンス信号の送信電力の増加の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the increase in the transmission power of the reference signal for channel quality measurement. 第3の実施形態に係る処理の概略的な流れの第1の例を示すシーケンス図である。It is a sequence diagram which shows the 1st example of the schematic flow of the process which concerns on 3rd Embodiment. 第3の実施形態に係る処理の概略的な流れの第2の例を示すシーケンス図である。It is a sequence diagram which shows the 2nd example of the schematic flow of the process which concerns on 3rd Embodiment. 第3の実施形態に係る処理の概略的な流れの第3の例を示すシーケンス図である。It is a sequence diagram which shows the 3rd example of the schematic flow of the process which concerns on 3rd Embodiment. CSI-RSが送信される無線リソースと当該CSI-RSの受信電力との関係の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the relationship between the radio | wireless resource by which CSI-RS is transmitted, and the reception power of the said CSI-RS. eNBの概略的な構成の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of schematic structure of eNB. eNBの概略的な構成の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of schematic structure of eNB. スマートフォンの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a smart phone. カーナビゲーション装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.はじめに
  1.1.関連技術
  1.2.本実施形態に関連する考察
 2.システムの概略的な構成
 3.各装置の構成
  3.1.基地局の構成
  3.2.端末装置の構成
 4.第1の実施形態
  4.1.技術的課題
  4.2.技術的特徴
  4.3.処理の流れ
  4.4.変形例
 5.第2の実施形態
  5.1.技術的課題
  5.2.技術的特徴
  5.3.処理の流れ
  5.4.第1の変形例
  5.5.第2の変形例
 6.第3の実施形態
  6.1.技術的課題
  6.2.技術的特徴
  6.3.処理の流れ
  6.4.変形例
 7.応用例
  7.1.基地局に関する応用例
  7.2.端末装置に関する応用例
 8.まとめ
The description will be made in the following order.
1. 1. Introduction 1.1. Related technology 1.2. 1. Considerations related to this embodiment 2. Schematic configuration of system Configuration of each device 3.1. Configuration of base station 3.2. 3. Configuration of terminal device First embodiment 4.1. Technical issues 4.2. Technical features 4.3. Flow of processing 4.4. Modification 5 Second Embodiment 5.1. Technical issues 5.2. Technical features 5.3. Flow of processing 5.4. First modified example 5.5. Second modified example 6. Third Embodiment 6.1. Technical issues 6.2. Technical features 6.3. Flow of processing 6.4. Modification 7 Application example 7.1. Application examples related to base stations 7.2. 7. Application examples related to terminal devices Summary
 <<1.はじめに>>
 まず、図1~図7を参照して、本開示の実施形態に関連する技術、及び、本実施形態に関連する考察を説明する。
<< 1. Introduction >>
First, with reference to FIG. 1 to FIG. 7, a technique related to the embodiment of the present disclosure and considerations related to the embodiment will be described.
 <1.1.関連技術>
 図1~図4を参照して、本開示の実施形態に関連する技術として、ビームフォーミング及び測定(measurement)を説明する。
<1.1. Related Technology>
With reference to FIGS. 1 to 4, beam forming and measurement will be described as techniques related to the embodiment of the present disclosure.
 (1)ビームフォーミング
 (a)ラージスケールMIMOの必要性
 現在、3GPPでは、爆発的に増加するトラフィックを収容するために、セルラーシステムの容量を向上するための様々な技術が検討されている。将来、現在の1000倍程度の容量が必要とも言われている。MU-MIMO及びCoMPなどの技術では、セルラーシステムの容量は数倍程度しか増加しないと考えられる。そのため、画期的な手法が求められている。
(1) Beam forming (a) Necessity of large-scale MIMO Currently, 3GPP is examining various technologies for improving the capacity of a cellular system in order to accommodate explosively increasing traffic. It is said that a capacity about 1000 times the current capacity will be required in the future. In technologies such as MU-MIMO and CoMP, the capacity of the cellular system is considered to increase only about several times. Therefore, an innovative method is required.
 3GPPのリリース10では、eNodeBが8本のアンテナを搭載することが規格化されている。よって、当該アンテナによれば、SU-MIMO(Single-User Multi-Input Multiple-Input Multiple-Output)の場合に8レイヤのMIMOを実現することができる。8レイヤのMIMOとは、独立な8つのストリームを空間的に多重する技術である。また、4ユーザに2レイヤのMU-MIMOを実現することもできる。 In Release 10 of 3GPP, it is standardized that eNodeB is equipped with 8 antennas. Therefore, according to the antenna, 8-layer MIMO can be realized in the case of SU-MIMO (Single-User Multi-Input Multiple-Input Multiple-Output). 8-layer MIMO is a technique for spatially multiplexing eight independent streams. In addition, two layers of MU-MIMO can be realized for four users.
 UE(User Equipment)ではアンテナの配置のためのスペースが小さいこと、及びUEの処理能力には限界があることに起因して、UEのアンテナのアンテナ素子を増やすことは難しい。しかし、近年のアンテナ実装技術の進歩により、100個程度のアンテナ素子を含む指向性アンテナをeNodeBに配置することは不可能ではなくなってきている。 In UE (User Equipment), it is difficult to increase the antenna elements of the UE antenna due to the small space for antenna arrangement and the limited processing capability of the UE. However, with recent advances in antenna mounting technology, it has become impossible to arrange a directional antenna including about 100 antenna elements in an eNodeB.
 例えば、セルラーシステムの容量を大幅に増加させるための手法として、多数のアンテナ素子(例えば、100個程度のアンテナ素子)を含む指向性アンテナを使用して基地局がビームフォーミングを行うことが考えられる。このような技術は、ラージスケール(Large-Scale)MIMO又はマッシブ(Massive)MIMOと呼ばれる技術の一形態である。このようなビームフォーミングによれば、ビームの半値幅は狭くなる。即ち、鋭いビームが形成される。また、上記多数のアンテナ素子を平面上に配置することにより、所望の3次元方向へのビームを形成することも可能になる。例えば、基地局よりも高い位置(例えば、高層ビルの上層階)に向けたビームを形成することにより、当該位置に存在する端末装置への信号を送信することが、提案されている。 For example, as a method for significantly increasing the capacity of the cellular system, it is conceivable that the base station performs beam forming using a directional antenna including a large number of antenna elements (for example, about 100 antenna elements). . Such a technique is one form of a technique called large-scale MIMO or massive MIMO. According to such beam forming, the half width of the beam becomes narrow. That is, a sharp beam is formed. Further, by arranging the multiple antenna elements on a plane, it is possible to form a beam in a desired three-dimensional direction. For example, it has been proposed to transmit a signal to a terminal device existing at the position by forming a beam directed to a position higher than the base station (for example, an upper floor of a high-rise building).
 典型的なビームフォーミングでは、水平方向でビームの方向を変えることが可能である。そのため、当該典型的なビームフォーミングは、2次元ビームフォーミングとも言える。一方、ラージスケールMIMO(又はマッシブMIMO)のビームフォーミングでは、水平方向に加えて垂直方向にもビームの方向を変えることが可能である。そのため、ラージスケールMIMOのビームフォーミングは、3次元ビームフォーミングとも言える。 In typical beam forming, it is possible to change the beam direction in the horizontal direction. Therefore, it can be said that the typical beam forming is two-dimensional beam forming. On the other hand, in large-scale MIMO (or massive MIMO) beamforming, the beam direction can be changed in the vertical direction in addition to the horizontal direction. Therefore, it can be said that large-scale MIMO beamforming is three-dimensional beamforming.
 なお、アンテナ本数が増えるので、MU-MIMOでのユーザ数を増やすことが可能になる。このような技術は、ラージスケールMIMO又はマッシブMIMOと呼ばれる技術の別の形態である。なお、UEのアンテナ数が2本である場合には、1つのUEについての空間的に独立したストリームの数は2本であるので、1つのUEについてのストリーム数を増やすよりも、MU-MIMOのユーザ数を増やす方が合理的である。 Note that since the number of antennas increases, the number of users in MU-MIMO can be increased. Such a technique is another form of a technique called large scale MIMO or massive MIMO. In addition, when the number of antennas of the UE is two, the number of spatially independent streams for one UE is two, and therefore, MU-MIMO rather than increasing the number of streams for one UE. It is more reasonable to increase the number of users.
 (b)重みセット
 ビームフォーミング用の重みセット(即ち、複数のアンテナ素子のための重み係数のセット)は、複素数として表される。以下、図1を参照して、とりわけラージスケールMIMOのビームフォーミング用の重みセットの例を説明する。
(B) Weight set A weight set for beam forming (that is, a set of weight coefficients for a plurality of antenna elements) is expressed as a complex number. Hereinafter, an example of a weight set for beam forming of large scale MIMO will be described with reference to FIG.
 図1は、ラージスケールMIMOのビームフォーミング用の重みセットを説明するための説明図である。図1を参照すると、格子状に配置されたアンテナ素子が示されている。また、アンテナ素子が配置された平面上の直行する2つの軸x、y、及び、当該平面に直行する1つの軸zも示されている。ここで、形成すべきビームの方向は、例えば、角度phi(ギリシャ文字)及び角度theta(ギリシャ文字)で表される。角度phi(ギリシャ文字)は、ビーム方向のうちのxy平面の成分とx軸とのなす角度である。また、角度theta(ギリシャ文字)は、ビーム方向とz軸とのなす角度である。この場合に、例えば、x軸方向においてm番目に配置され、y軸方向においてn番目に配置されるアンテナ素子の重み係数Vm,nは、以下のように表され得る。 FIG. 1 is an explanatory diagram for describing a weight set for large-scale MIMO beamforming. Referring to FIG. 1, antenna elements arranged in a lattice shape are shown. Also shown are two axes x, y orthogonal to the plane on which the antenna element is arranged, and one axis z orthogonal to the plane. Here, the direction of the beam to be formed is represented by, for example, an angle phi (Greek letter) and an angle theta (Greek letter). The angle phi (Greek letter) is an angle formed between the x-axis component and the xy plane component in the beam direction. The angle theta (Greek letter) is an angle formed by the beam direction and the z axis. In this case, for example, the weighting factor V m, n of the antenna element arranged m-th in the x-axis direction and n-th arranged in the y-axis direction can be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 fは周波数であり、cは光速である。また、jは複素数における虚数単位である。また、dは、x軸方向におけるアンテナ素子の間隔であり、dは、y軸方向におけるアンテナ素子間の間隔である。なお、アンテナ素子の座標は、以下のように表される。 f is the frequency and c is the speed of light. J is an imaginary unit in a complex number. D x is the distance between the antenna elements in the x-axis direction, and dy is the distance between the antenna elements in the y-axis direction. The coordinates of the antenna element are expressed as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 典型的なビームフォーミング(2次元ビームフォーミング)用の重みセットは、水平方向における指向性を得るための重みセットと、デュアルレイヤMIMOの位相調整用の重みセット(即ち、異なる偏波に対応する2つのアンテナサブアレイ間の位相調整用の重みセット)とに分解され得る。一方、ラージスケールMIMOのビームフォーミング(3次元ビームフォーミング)用の重みセットは、水平方向における指向性を得るための第1の重みセットと、垂直方向における指向性を得るための第2の重みセットと、デュアルレイヤMIMOの位相調整用の第3の重みセットとに分解され得る。 A weight set for typical beam forming (two-dimensional beam forming) includes a weight set for obtaining directivity in the horizontal direction and a weight set for phase adjustment of dual layer MIMO (that is, 2 corresponding to different polarizations). And a weight set for phase adjustment between two antenna sub-arrays). On the other hand, the large-scale MIMO beamforming (three-dimensional beamforming) weight set includes a first weight set for obtaining directivity in the horizontal direction and a second weight set for obtaining directivity in the vertical direction. And a third weight set for phase adjustment of dual layer MIMO.
 (c)ラージスケールMIMOのビームフォーミングによる環境の変化
 ラージスケールMIMOのビームフォーミングが行われる場合には、利得は10dB以上に達する。上記ビームフォーミングを採用するセルラーシステムでは、従来のセルラーシステムと比べて、電波環境の変化が激しくなり得る。
(C) Change in environment due to large-scale MIMO beamforming When large-scale MIMO beamforming is performed, the gain reaches 10 dB or more. In the cellular system that employs the beam forming, the radio wave environment can change more drastically than the conventional cellular system.
 (d)ラージスケールMIMOのビームフォーミングが行われるケース
 例えば、都市部の基地局が高層ビルに向けたビームを形成することが考えられる。また、郊外であっても、スモールセルの基地局が当該基地局の周辺のエリアに向けたビームを形成することが考えられる。なお、郊外のマクロセルの基地局はラージスケールMIMOのビームフォーミングを行わない可能性が高い。
(D) Case where large-scale MIMO beamforming is performed For example, a base station in an urban area may form a beam toward a high-rise building. Even in the suburbs, it is conceivable that a small cell base station forms a beam toward an area around the base station. It is highly likely that a macrocell base station in the suburbs does not perform large-scale MIMO beamforming.
 図2は、ラージスケールMIMOのビームフォーミングが行われるケースの一例を説明するための説明図である。図2を参照すると、基地局71及び高層ビル73が示されている。例えば、基地局71は、地上への指向性ビーム75、77に加えて、高層ビル73への指向性ビーム79を形成する。 FIG. 2 is an explanatory diagram for explaining an example of a case where large-scale MIMO beamforming is performed. Referring to FIG. 2, a base station 71 and a high-rise building 73 are shown. For example, the base station 71 forms a directional beam 79 to the high-rise building 73 in addition to the directional beams 75 and 77 to the ground.
 (2)測定(measurement)
 測定には、セルを選択するための測定と、接続後にCQI(Channel Quality Indicator)などをフィードバックするための測定とがある。後者の測定は、より短い時間で行われることが求められる。サービングセルの品質の測定のみではなく、周辺セル(neighbor cell)からの干渉量の測定も、このCQI測定の一種であると考えられている。
(2) Measurement
The measurement includes measurement for selecting a cell and measurement for feeding back CQI (Channel Quality Indicator) and the like after connection. The latter measurement is required to be performed in a shorter time. In addition to measuring the quality of the serving cell, the measurement of the amount of interference from neighboring cells is also considered to be a kind of CQI measurement.
 (a)CQI測定
 CQI測定のために、CRS(Cell-specific Reference Signal)が使用され得るが、リリース10以降では、CQI測定のために、主としてCSI-RS(Channel State Information Reference Signal)が使用される。
(A) CQI measurement CRS (Cell-specific Reference Signal) may be used for CQI measurement, but CSI-RS (Channel State Information Reference Signal) is mainly used for CQI measurement after Release 10. The
 CSI-RSは、CRSと同様に、ビームフォーミングなしで送信される。即ち、CSI-RSは、CRSと同様に、ビームフォーミングのための重みセットを乗算されずに、送信される。以下、この点について図3を参照して具体例を説明する。 CSI-RS is transmitted without beamforming, similar to CRS. That is, the CSI-RS is transmitted without being multiplied by a weight set for beamforming, as in the case of CRS. Hereinafter, a specific example of this point will be described with reference to FIG.
 図3は、重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。図3を参照すると、各アンテナ素子81に対応する送信信号82は、乗算器84において重み係数83を複素乗算される。そして、重み係数83を複素乗算された送信信号82が、アンテナ素子81から送信される。また、DR-MS85は、乗算器84の前に挿入され、乗算器84において重み係数83が複素乗算される。そして、重み係数83が複素乗算されたDR-MS85が、アンテナ素子81から送信される。一方、CSI-RS86(及びCRS)は、乗算器84の後に挿入される。そして、CSI-RS86(及びCRS)は、重み係数83を乗算されることなく、アンテナ素子81から送信される。 FIG. 3 is an explanatory diagram for explaining the relationship between weighting coefficient multiplication and reference signal insertion. Referring to FIG. 3, the transmission signal 82 corresponding to each antenna element 81 is complex-multiplied by a weight coefficient 83 in a multiplier 84. Then, a transmission signal 82 obtained by complex multiplication of the weighting coefficient 83 is transmitted from the antenna element 81. Further, the DR-MS 85 is inserted before the multiplier 84, and the multiplier 84 multiplies the weight coefficient 83 by a complex multiplication. Then, the DR-MS 85 obtained by complex multiplication of the weight coefficient 83 is transmitted from the antenna element 81. On the other hand, the CSI-RS 86 (and CRS) is inserted after the multiplier 84. The CSI-RS 86 (and CRS) is transmitted from the antenna element 81 without being multiplied by the weighting coefficient 83.
 上述したように、CSI-RSは、ビームフォーミングなしで送信されるので、CSI-RSについての測定が行われると、ビームフォーミングの影響を受けていない素の(pure)チャネルH(又はチャネルレスポンスH)が推定される。このチャネルHが使用されて、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)及びCQI(Channel Quality Indicator)がフィードバックされる。なお、トランスミッションモードによっては、CQIのみがフィードバックされる。また、干渉量もフィードバックされ得る。 As described above, since CSI-RS is transmitted without beamforming, when measurement is performed on CSI-RS, pure channel H (or channel response H) that is not affected by beamforming is used. ) Is estimated. This channel H is used to feed back RI (Rank Indicator), PMI (Precoding Matrix Indicator), and CQI (Channel Quality Indicator). Note that only CQI is fed back depending on the transmission mode. Also, the amount of interference can be fed back.
 (b)CSI-RS
 リリース12までは、上述したように、CSI-RSは、ビームフォーミングなしで送信されるので、CSI-RSについての測定が行われると、ビームフォーミングの影響を受けていない素のチャネルHが推定される。そのため、CSI-RSは、CRSと同様の働きをしていた。
(B) CSI-RS
Until Release 12, as described above, the CSI-RS is transmitted without beamforming. Therefore, when the measurement for CSI-RS is performed, a raw channel H that is not affected by beamforming is estimated. The For this reason, CSI-RS worked in the same way as CRS.
 CRSは、セル選択及び同期などに使用されるので、CRSの送信頻度は、CSI-RSの送信頻度よりも高い。即ち、CSI-RSの周期は、CRSの周期よりも長い。 Since CRS is used for cell selection and synchronization, the transmission frequency of CRS is higher than the transmission frequency of CSI-RS. That is, the CSI-RS cycle is longer than the CRS cycle.
 ラージスケールMIMOの環境について、ビームフォーミングなしでCSI-RSを送信する第1のアプローチと、ビームフォーミングありでCSI-RSを送信する(即ち、指向性ビームによりCSI-RSを送信する)第2のアプローチとがあり得る。上記第1のアプローチは従来通りのアプローチであり、上記第2のアプローチは新たなアプローチであると言える。以下、図4を参照して、当該新たなアプローチ(第2のアプローチ)における重み係数の乗算とリファレンス信号の挿入との関係を説明する。 For a large scale MIMO environment, a first approach for transmitting CSI-RS without beamforming and a second approach for transmitting CSI-RS with beamforming (ie, transmitting CSI-RS with a directional beam) There can be an approach. It can be said that the first approach is a conventional approach, and the second approach is a new approach. Hereinafter, with reference to FIG. 4, the relationship between weight coefficient multiplication and reference signal insertion in the new approach (second approach) will be described.
 図4は、新たなアプローチにおける重み係数の乗算とリファレンス信号の挿入との関係を説明するための説明図である。図4を参照すると、各アンテナ素子91に対応する送信信号92は、乗算器94において重み係数93を複素乗算される。そして、重み係数93を複素乗算された送信信号92が、アンテナ素子91から送信される。また、DR-MS95は、乗算器94の前に挿入され、乗算器94において重み係数93が複素乗算される。そして、重み係数93が複素乗算されたDR-MS95が、アンテナ素子91から送信される。さらに、CSI-RS96は、乗算器94の前に挿入され、乗算器94において重み係数93が複素乗算される。そして、重み係数93が複素乗算されたCSI-RS96が、アンテナ素子91から送信される。一方、CRS97(及び通常のCSI-RS)は、乗算器94の後に挿入される。そして、CRS97(及び通常のCSI-RS)は、重み係数93を乗算されることなく、アンテナ素子91から送信される。 FIG. 4 is an explanatory diagram for explaining the relationship between weighting factor multiplication and reference signal insertion in a new approach. Referring to FIG. 4, transmission signal 92 corresponding to each antenna element 91 is complex-multiplied by weighting factor 93 in multiplier 94. Then, a transmission signal 92 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91. The DR-MS 95 is inserted in front of the multiplier 94, and the multiplier 94 multiplies the weight coefficient 93 in a complex manner. Then, the DR-MS 95 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91. Further, CSI-RS 96 is inserted before multiplier 94, and weighting factor 93 is complex-multiplied by multiplier 94. Then, CSI-RS 96 obtained by complex multiplication of the weight coefficient 93 is transmitted from the antenna element 91. On the other hand, the CRS 97 (and normal CSI-RS) is inserted after the multiplier 94. The CRS 97 (and normal CSI-RS) is transmitted from the antenna element 91 without being multiplied by the weight coefficient 93.
 <1.2.本開示の実施形態に関連する考察>
 図5~図7を参照して、本開示の実施形態に関連する考察を説明する。
<1.2. Considerations Related to Embodiments of the Present Disclosure>
Considerations associated with embodiments of the present disclosure will be described with reference to FIGS.
 (1)指向性ビームの間での干渉
 (a)セル内での干渉
 eNBが形成する指向性ビームが反射しない環境では、当該eNBが形成する指向性ビームの間で干渉は発生しない。一方、eNBが形成する指向性ビームが反射する環境では、当該eNBが形成する指向性ビームの間で干渉が発生し得る。以下、この点について図5及び図6を参照して具体例を説明する。
(1) Interference between directional beams (a) Interference within a cell In an environment where a directional beam formed by an eNB is not reflected, no interference occurs between directional beams formed by the eNB. On the other hand, in an environment where a directional beam formed by an eNB is reflected, interference may occur between the directional beams formed by the eNB. Hereinafter, a specific example of this point will be described with reference to FIGS. 5 and 6.
 図5は、指向性ビームが反射しない環境の一例を説明するための説明図である。図5を参照すると、eNB11及びUE21、23、25が示されている。例えば、eNB11は、UE21へ向けた指向性ビーム31、UE23へ向けた指向性ビーム33、及びUE25へ向けた指向性ビーム35を形成する。この例では、指向性ビーム31、33、35は反射せず、指向性ビーム31、33、35の間で干渉が発生しない。 FIG. 5 is an explanatory diagram for explaining an example of an environment where a directional beam is not reflected. Referring to FIG. 5, the eNB 11 and the UEs 21, 23, and 25 are shown. For example, the eNB 11 forms a directional beam 31 directed to the UE 21, a directional beam 33 directed to the UE 23, and a directional beam 35 directed to the UE 25. In this example, the directional beams 31, 33 and 35 are not reflected, and no interference occurs between the directional beams 31, 33 and 35.
 図6は、指向性ビームが反射する環境の一例を説明するための説明図である。図6を参照すると、eNB11及びUE21、23、25が示されている。さらに、障害物41、43が示されている。例えば、障害物41、43は、建造物である。例えば、eNB11は、UE21へ向けた指向性ビーム31、UE23へ向けた指向性ビーム33、及びUE25へ向けた指向性ビーム35を形成する。この例では、指向性ビーム35は、障害物41、43で反射し、UE23へ到達する。そのため、指向性ビーム33と指向性ビーム35との間で干渉が発生する。 FIG. 6 is an explanatory diagram for explaining an example of an environment in which a directional beam is reflected. Referring to FIG. 6, the eNB 11 and the UEs 21, 23, and 25 are shown. In addition, obstacles 41 and 43 are shown. For example, the obstacles 41 and 43 are buildings. For example, the eNB 11 forms a directional beam 31 directed to the UE 21, a directional beam 33 directed to the UE 23, and a directional beam 35 directed to the UE 25. In this example, the directional beam 35 is reflected by the obstacles 41 and 43 and reaches the UE 23. For this reason, interference occurs between the directional beam 33 and the directional beam 35.
 (b)セル間での干渉
 セル内の指向性ビームの間での干渉のみではなく、異なるセルの指向性ビーム間での干渉も発生し得る。以下、この点について図7を参照して具体例を説明する。
(B) Interference between cells Not only interference between directional beams in a cell but also interference between directional beams in different cells may occur. Hereinafter, a specific example of this point will be described with reference to FIG.
 図7は、異なるセルの指向性ビーム間での干渉の一例を説明するための説明図である。図7を参照すると、eNB11、13及びUE21、23、25が示されている。例えば、eNB11は、UE21へ向けた指向性ビーム31、UE23へ向けた指向性ビーム33、及びUE25へ向けた指向性ビーム35を形成する。また、eNB13は、指向性ビーム37を形成し、指向性ビーム37は、UE25に到達する。そのため、eNB11により形成される指向性ビーム35と、eNB13により形成される指向性ビーム37との間で、干渉が発生する。 FIG. 7 is an explanatory diagram for explaining an example of interference between directional beams of different cells. Referring to FIG. 7, eNBs 11 and 13 and UEs 21, 23, and 25 are shown. For example, the eNB 11 forms a directional beam 31 directed to the UE 21, a directional beam 33 directed to the UE 23, and a directional beam 35 directed to the UE 25. Further, the eNB 13 forms a directional beam 37, and the directional beam 37 reaches the UE 25. Therefore, interference occurs between the directional beam 35 formed by the eNB 11 and the directional beam 37 formed by the eNB 13.
 (c)受信品質の低下
 上述したように、セル内での指向性ビームの干渉、及び/又はセル間での指向性ビームの干渉が発生すると、UEの受信品質が低下し、その結果、システムスループットが低下し得る。
(C) Deterioration of reception quality As described above, when interference of directional beams within a cell and / or directional beam interference between cells occurs, reception quality of the UE decreases, and as a result, the system Throughput can be reduced.
 2つの指向性ビームの間で干渉が発生することもあれば、3つ以上の指向性ビームの間で干渉が発生することもある。いくつの指向性ビームの間で干渉が発生しているかは、UEによって異なる。例えば、図6を再び参照すると、UE21、25の各々では干渉は発生していないが、UE23では3つの指向性ビームの間で干渉が発生している。即ち、場所によって、干渉の状況が異なる。 Interference may occur between two directional beams, or interference may occur between three or more directional beams. The number of directional beams in which interference occurs depends on the UE. For example, referring again to FIG. 6, interference is not generated in each of the UEs 21 and 25, but interference is generated between the three directional beams in the UE 23. That is, the state of interference differs depending on the location.
 なお、単一のオペレーティングバンド内には、高い周波数の周波数帯域(コンポーネントキャリア)、及び低い周波数の周波数帯域(コンポーネントキャリア)があるが、各周波数帯域内で、干渉の状況は概ね同じであると言える。 A single operating band has a high frequency band (component carrier) and a low frequency band (component carrier), but the interference situation is generally the same in each frequency band. I can say that.
 (2)求められる対応
 所望の指向性ビームのみがUEに到達する場合には、当該UEは良好な受信品質を得ることができる。一方、所望の指向性ビームのみではなく、他の指向性ビームもUEに到達する場合には、当該UEにおける受信品質が悪化し得る。
(2) Required Response When only a desired directional beam reaches the UE, the UE can obtain good reception quality. On the other hand, when not only a desired directional beam but also other directional beams reach the UE, reception quality at the UE may deteriorate.
 このような干渉を抑えるためには、まず、eNBが、指向性ビームの干渉の状況を把握することが重要である。eNBはこのような指向性ビームの干渉の状況を自ら知ることはできないので、UEが指向性ビームの干渉の状況をeNBに報告することが考えられる。例えば、CSI-RSから所望の指向性ビーム以外の指向性ビームの干渉量を算出することが考えられる。また、CSIフィードバックの手続きを利用することが考えられる。 In order to suppress such interference, it is important that the eNB first grasps the state of directional beam interference. Since the eNB cannot know the situation of such directional beam interference itself, it is conceivable that the UE reports the situation of directional beam interference to the eNB. For example, it is conceivable to calculate the interference amount of a directional beam other than the desired directional beam from the CSI-RS. It is also conceivable to use a CSI feedback procedure.
 通常、チャネル品質の測定には、2種類の測定がある。1つは、RSRP(Reference Signal Received Power)及びRSRQ(Reference Signal Received Quality)の測定のようなRRM(Radio Resource Management)測定であり、もう1つは、CSIに含まれるRI、CQI、PMIなどを決定するための測定である。前者は、主にセルの選択のために行われ、RRCアイドルモードのUE及びRRC接続モードのUEの両方により行われる。一方、後者は、干渉状況を知るために行われ、RRC接続モードのUEにより行われる。 Normally, there are two types of channel quality measurement. One is RRM (Radio Resource Management) measurement such as RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) measurement, and the other is RI, CQI, PMI, etc. included in CSI. It is a measurement to determine. The former is mainly performed for cell selection and is performed by both the RRC idle mode UE and the RRC connected mode UE. On the other hand, the latter is performed in order to know the interference situation and is performed by the UE in the RRC connection mode.
 (3)CSI-RS
 CSI-RSは、リリース10で規定されている。通常のCSI-RSは、非ゼロパワー(Non zero power)CSI-RSとも呼ばれる。CSI-RSの目的は、素のチャネルを取得することなので、CSI-RSはビームフォーミングなしで送信される。
(3) CSI-RS
CSI-RS is defined in Release 10. A normal CSI-RS is also called a non zero power CSI-RS. Since the purpose of CSI-RS is to acquire a raw channel, CSI-RS is transmitted without beamforming.
 一方、ゼロパワー(Zero power)CSI-RSも規定されている。ゼロパワーCSI-RSは、他のeNBからの比較的弱い信号を観測しやすくするために規定されている。ゼロパワーCSI-RSのための無線リソース(リソースエレメント)では、eNBは信号を送信しないので、UEは、当該無線リソースで他のeNBからの信号を受信することができる。 On the other hand, Zero power CSI-RS is also specified. Zero power CSI-RS is defined to facilitate observation of relatively weak signals from other eNBs. In the radio resource (resource element) for zero power CSI-RS, since the eNB does not transmit a signal, the UE can receive signals from other eNBs using the radio resource.
 CSI-RSの周期は、5msから80msの間で可変である。また、CSI-RSが送信される無線リソースの候補として、1サブフレーム内に40の無線リソースが用意されている。 The CSI-RS cycle is variable between 5 ms and 80 ms. In addition, 40 radio resources are prepared in one subframe as candidates for radio resources for transmitting CSI-RS.
 従来では、1つのセルに1つのCSI-RSのみが設定(configure)される。一方、1つのセルに複数のゼロパワーCSI-RSが設定可能である。そのため、UEのサービングeNBが、周辺eNBのCSI-RSの設定に合わせて、ゼロパワーCSI-RSを設定すれば、上記UEは、上記サービングeNBの信号からの影響を受けることなく、上記周辺eNBのCSI-RSについての測定を行うことができる。 Conventionally, only one CSI-RS is configured in one cell. On the other hand, a plurality of zero power CSI-RSs can be set in one cell. Therefore, if the serving eNB of the UE sets the zero power CSI-RS in accordance with the setting of the CSI-RS of the neighboring eNB, the UE is not affected by the signal of the serving eNB, and the neighboring eNB Measurements of CSI-RS can be performed.
 なお、CSI-RSのコンフィギュレーション(configuration)は、セルに固有である。当該コンフィギュレーションは、より高いレイヤのシグナリングにより、UEに通知され得る。 Note that the CSI-RS configuration is specific to a cell. The configuration can be communicated to the UE by higher layer signaling.
 <<2.システムの概略的な構成>>
 続いて、図8を参照して、本開示の実施形態に係るシステム1の概略的な構成を説明する。図8は、本開示の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図8を参照すると、システム1は、基地局100、端末装置200及び周辺基地局300を含む。システム1は、例えば、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
<< 2. Schematic configuration of system >>
Next, a schematic configuration of the system 1 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 8 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure. Referring to FIG. 8, the system 1 includes a base station 100, a terminal device 200, and a peripheral base station 300. The system 1 is, for example, a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
 (基地局100)
 基地局100は、端末装置200との無線通信を行う。例えば、基地局100は、基地局100のセル101内に位置する端末装置200との無線通信を行う。
(Base station 100)
The base station 100 performs wireless communication with the terminal device 200. For example, the base station 100 performs wireless communication with the terminal device 200 located in the cell 101 of the base station 100.
 とりわけ本開示の実施形態では、基地局100は、ビームフォーミングを行う。例えば、当該ビームフォーミングは、ラージスケールMIMOのビームフォーミングである。当該ビームフォーミングは、マッシブMIMOのビームフォーミング、フリーディメンジョン(free dimension)MIMOのビームフォーミング、又は3次元ビームフォーミングとも呼ばれ得る。具体的には、例えば、基地局100は、ラージスケールMIMOに使用可能な指向性アンテナを備え、当該指向性アンテナのための重みセットを送信信号に乗算することによりラージスケールMIMOのビームフォーミングを行う。 In particular, in the embodiment of the present disclosure, the base station 100 performs beam forming. For example, the beam forming is large-scale MIMO beam forming. The beam forming may also be referred to as massive MIMO beam forming, free dimension MIMO beam forming, or three-dimensional beam forming. Specifically, for example, the base station 100 includes a directional antenna that can be used for large-scale MIMO, and performs large-scale MIMO beamforming by multiplying a transmission signal by a weight set for the directional antenna. .
 さらに、とりわけ本開示の実施形態では、基地局100は、ビームフォーミングなしでチャネル品質測定用のリファレンス信号を送信する。即ち、基地局100は、当該リファレンス信号に重みセットを乗算せずに、当該リファレンス信号を送信する。例えば、上記リファレンス信号は、CSI-RSである。 Furthermore, particularly in the embodiment of the present disclosure, the base station 100 transmits a reference signal for channel quality measurement without beamforming. That is, the base station 100 transmits the reference signal without multiplying the reference signal by the weight set. For example, the reference signal is CSI-RS.
 (端末装置200)
 端末装置200は、基地局との無線通信を行う。例えば、端末装置200は、基地局100のセル101内に位置する場合に、基地局100との無線通信を行う。例えば、基地局200は、周辺基地局300のセル301内に位置する場合に、周辺基地局300との無線通信を行う。
(Terminal device 200)
The terminal device 200 performs wireless communication with the base station. For example, when the terminal device 200 is located in the cell 101 of the base station 100, the terminal device 200 performs wireless communication with the base station 100. For example, when the base station 200 is located in the cell 301 of the peripheral base station 300, the base station 200 performs wireless communication with the peripheral base station 300.
 例えば、端末装置200は、基地局100に接続されている。即ち、基地局100は、端末装置200のサービング基地局であり、セル101は、端末装置200のサービングセルである。 For example, the terminal device 200 is connected to the base station 100. That is, the base station 100 is a serving base station for the terminal device 200, and the cell 101 is a serving cell for the terminal device 200.
 (周辺基地局300)
 周辺基地局(neighbor base station)300は、基地局100の周辺基地局である。例えば、周辺基地局300は、基地局100と同様の構成を有し、基地局100と同様の動作を行う。
(Nearby base station 300)
A neighbor base station 300 is a neighbor base station of the base station 100. For example, the peripheral base station 300 has the same configuration as the base station 100 and performs the same operation as the base station 100.
 図8には、1つの周辺基地局300のみが示されているが、当然ながら、システム1は、複数の周辺基地局300を含み得る。 FIG. 8 shows only one peripheral base station 300, but the system 1 may include a plurality of peripheral base stations 300.
 なお、基地局100及び周辺基地局300の両方が、マクロセルの基地局であってもよい。あるいは、基地局100及び周辺基地局300の両方が、スモールセルの基地局であってもよい。あるいは、基地局100及び周辺基地局300の一方が、マクロセルの基地局であり、基地局100及び周辺基地局300の他方が、スモールセルの基地局であってもよい。 Note that both the base station 100 and the peripheral base station 300 may be macro cell base stations. Alternatively, both the base station 100 and the peripheral base station 300 may be small cell base stations. Alternatively, one of the base station 100 and the neighboring base station 300 may be a macro cell base station, and the other of the base station 100 and the neighboring base station 300 may be a small cell base station.
 <<3.各装置の構成>>
 続いて、図9及び図10を参照して、基地局100及び端末装置200の構成の例を説明する。
<< 3. Configuration of each device >>
Next, examples of configurations of the base station 100 and the terminal device 200 will be described with reference to FIGS. 9 and 10.
 <3.1.基地局の構成>
 まず、図9を参照して、本開示の実施形態に係る基地局100の構成の一例を説明する。図9は、本開示の実施形態に係る基地局100の構成の一例を示すブロック図である。図9を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
<3.1. Base station configuration>
First, an example of a configuration of the base station 100 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 9 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure. Referring to FIG. 9, the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
 (アンテナ部110)
 アンテナ部110は、無線通信部120により出力された信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
(Antenna unit 110)
The antenna unit 110 radiates the signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
 例えば、アンテナ部110は、指向性アンテナを含む。例えば、当該指向性アンテナは、ラージスケールMIMOに使用可能な指向性アンテナである。 For example, the antenna unit 110 includes a directional antenna. For example, the directional antenna is a directional antenna that can be used for large scale MIMO.
 (無線通信部120)
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置200へのダウンリンク信号を送信し、端末装置200からのアップリンク信号を受信する。
(Wireless communication unit 120)
The wireless communication unit 120 transmits and receives signals. For example, the radio communication unit 120 transmits a downlink signal to the terminal device 200 and receives an uplink signal from the terminal device 200.
 (ネットワーク通信部130)
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局(例えば、周辺基地局300)及びコアネットワークノードを含む。
(Network communication unit 130)
The network communication unit 130 transmits and receives information. For example, the network communication unit 130 transmits information to other nodes and receives information from other nodes. For example, the other nodes include other base stations (for example, neighboring base stations 300) and core network nodes.
 (記憶部140)
 記憶部140は、基地局100の動作のためのプログラム及びデータを記憶する。
(Storage unit 140)
The storage unit 140 stores a program and data for the operation of the base station 100.
 (処理部150)
 処理部150は、基地局100の様々な機能を提供する。処理部150は、情報取得部151及び制御部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
(Processing unit 150)
The processing unit 150 provides various functions of the base station 100. The processing unit 150 includes an information acquisition unit 151 and a control unit 153. The processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
 情報取得部151及び制御部153の具体的な動作は、後に詳細に説明する。 Specific operations of the information acquisition unit 151 and the control unit 153 will be described in detail later.
 <3.2.端末装置の構成>
 次に、図10を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図10は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図10を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
<3.2. Configuration of terminal device>
Next, an example of a configuration of the terminal device 200 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 10 is a block diagram illustrating an example of a configuration of the terminal device 200 according to the embodiment of the present disclosure. Referring to FIG. 10, the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
 (アンテナ部210)
 アンテナ部210は、無線通信部220により出力された信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
(Antenna unit 210)
The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
 (無線通信部220)
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局100からのダウンリンク信号を受信し、基地局100へのアップリンク信号を送信する。
(Wireless communication unit 220)
The wireless communication unit 220 transmits and receives signals. For example, the radio communication unit 220 receives a downlink signal from the base station 100 and transmits an uplink signal to the base station 100.
 (記憶部230)
 記憶部230は、端末装置200の動作のためのプログラム及びデータを記憶する。
(Storage unit 230)
The storage unit 230 stores a program and data for the operation of the terminal device 200.
 (処理部240)
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、情報取得部241及び制御部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
(Processing unit 240)
The processing unit 240 provides various functions of the terminal device 200. The processing unit 240 includes an information acquisition unit 241 and a control unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
 情報取得部241及び制御部243の具体的な動作は、後に詳細に説明する。 Specific operations of the information acquisition unit 241 and the control unit 243 will be described later in detail.
 <<4.第1の実施形態>>
 続いて、図11~図14を参照して、本開示の第1の実施形態を説明する。
<< 4. First Embodiment >>
Subsequently, a first embodiment of the present disclosure will be described with reference to FIGS. 11 to 14.
 <4.1.技術的課題>
 まず、第1の実施形態に係る技術的課題を説明する。
<4.1. Technical issues>
First, a technical problem according to the first embodiment will be described.
 通常、CSI-RSは、ビームフォーミングなしで送信される。例えば、CSI-RSは、指向性ビームにより送信されず、無指向性の電波により送信される。しかし、例えば、ラージスケールMIMOのビームフォーミングが行われ、鋭い指向性ビームによりデータ信号が送信される場合には、無指向性の電波により送信されるCSI-RSから算出される干渉量と、指向性ビームの実際の干渉量とが乖離し得る。その結果、実際には指向性ビームの大きな干渉が発生していたとしても、当該干渉の発生が見逃されてしまう可能性がある。 Usually, CSI-RS is transmitted without beamforming. For example, CSI-RS is not transmitted by a directional beam but transmitted by a non-directional radio wave. However, for example, when large-scale MIMO beamforming is performed and a data signal is transmitted by a sharp directional beam, the amount of interference calculated from CSI-RS transmitted by an omnidirectional radio wave and directivity The actual amount of interference of the beam can deviate. As a result, even if a large directional beam interference actually occurs, the occurrence of the interference may be missed.
 そこで、指向性ビームの干渉の状況をより適切に知ることを可能にする仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism that makes it possible to know the state of directional beam interference more appropriately.
 <4.2.技術的特徴>
 次に、第1の実施形態に係る技術的特徴を説明する。
<4.2. Technical features>
Next, technical features according to the first embodiment will be described.
 第1の実施形態では、端末装置200(情報取得部241)は、チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する。そして、端末装置200(制御部243)は、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する。 In the first embodiment, the terminal device 200 (information acquisition unit 241) acquires a channel estimated from a channel quality measurement reference signal and a plurality of precoding matrices respectively corresponding to a plurality of directional beams. . Then, the terminal device 200 (the control unit 243) calculates the interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
 (1)リファレンス信号
 (a)リファレンス信号の例
 例えば、上記リファレンス信号は、チャネル状態情報リファレンス信号(CSI-RS)である。
(1) Reference signal (a) Example of reference signal For example, the reference signal is a channel state information reference signal (CSI-RS).
 (b)送信の主体
 例えば、上記リファレンス信号は、周辺基地局300により送信される信号である。上述したように、周辺基地局300は、端末装置200のサービング基地局(即ち、基地局100)の周辺基地局である。
(B) Subject of transmission For example, the reference signal is a signal transmitted by the peripheral base station 300. As described above, the peripheral base station 300 is a peripheral base station of the serving base station of the terminal device 200 (that is, the base station 100).
 (c)コンフィギュレーションの通知
 例えば、基地局100(情報取得部151)は、上記リファレンス信号のコンフィギュレーションを示す情報を取得する。そして、基地局100(制御部153)は、上記コンフィギュレーションを端末装置200に通知する。
(C) Notification of Configuration For example, the base station 100 (information acquisition unit 151) acquires information indicating the configuration of the reference signal. Then, the base station 100 (control unit 153) notifies the terminal device 200 of the configuration.
 (c-1)コンフィギュレーションの内容
 例えば、上記コンフィギュレーションは、上記リファレンス信号の送信に使用される無線リソース、及び上記リファレンス信号のシーケンスのうちの、少なくとも一方を含む。例えば、上記コンフィギュレーションは、上記無線リソース及び上記シーケンスの両方を含む。例えば、上記無線リソースは、1つ以上のリソースエレメントである。
(C-1) Contents of Configuration For example, the configuration includes at least one of a radio resource used for transmitting the reference signal and a sequence of the reference signal. For example, the configuration includes both the radio resource and the sequence. For example, the radio resource is one or more resource elements.
 なお、周辺基地局300により送信される上記リファレンス信号と、他の周辺基地局300(図8において図示せず)により送信されるチャネル品質測定用の他のリファレンス信号とが、同一の無線リソースにおいて送信されたとしても、端末装置200は、相関器を使用して上記シーケンスに基づいて受信処理を行うことにより、上記リファレンス信号を検出することができる。即ち、符号分割が可能である。例えば、基地局間で異なるシーケンスが使用される。 Note that the above reference signal transmitted by the peripheral base station 300 and another reference signal for channel quality measurement transmitted by another peripheral base station 300 (not shown in FIG. 8) are in the same radio resource. Even if transmitted, the terminal device 200 can detect the reference signal by performing reception processing based on the sequence using a correlator. That is, code division is possible. For example, different sequences are used between base stations.
 (c-2)周辺基地局300による基地局100への通知
 例えば、周辺基地局300が、(周辺基地局300により送信される上記リファレンス信号の)上記コンフィギュレーションを基地局100に通知する。例えば、周辺基地局300は、周辺基地局300と基地局100との間のインタフェース(例えば、X2インタフェース)を介して、上記コンフィギュレーションを示す情報を送信する。
(C-2) Notification to the base station 100 by the peripheral base station 300 For example, the peripheral base station 300 notifies the base station 100 of the configuration (of the reference signal transmitted by the peripheral base station 300). For example, the peripheral base station 300 transmits information indicating the configuration via an interface (for example, an X2 interface) between the peripheral base station 300 and the base station 100.
 (c-3)通知手法
  -ゼロパワーCSI-RS
 例えば、基地局100は、上記コンフィギュレーションを、ゼロパワーCSI-RSのコンフィギュレーションとして端末装置200に通知する。
(C-3) Notification method-Zero power CSI-RS
For example, the base station 100 notifies the terminal device 200 of the configuration as a configuration of zero power CSI-RS.
  -シグナリング/システム情報
 例えば、基地局100(制御部153)は、端末装置200への個別のシグナリングにより、上記コンフィギュレーションを端末装置200に通知する。即ち、基地局100(制御部153)上記コンフィギュレーションを示す情報を含むシグナリングメッセージ(例えば、RRCメッセージ)を生成する。そして、基地局100は、当該シグナリングメッセージを端末装置200へ送信する。
-Signaling / system information For example, the base station 100 (the control unit 153) notifies the terminal device 200 of the configuration by individual signaling to the terminal device 200. That is, the base station 100 (control unit 153) generates a signaling message (for example, an RRC message) including information indicating the configuration. Then, the base station 100 transmits the signaling message to the terminal device 200.
 あるいは/さらに、基地局100(制御部153)は、システム情報の中で、上記コンフィギュレーションを端末装置200に通知してもよい。即ち、基地局100(制御部153)上記コンフィギュレーションを示す情報を含むシステム情報(例えば、SIB(System Information Block))を生成してもよい。そして、基地局100は、当該システム情報を送信してもよい。 Alternatively or additionally, the base station 100 (control unit 153) may notify the terminal device 200 of the configuration in the system information. That is, the base station 100 (control unit 153) may generate system information (for example, SIB (System Information Block)) including information indicating the configuration. Then, the base station 100 may transmit the system information.
 (c-4)周辺基地局300の通知
 例えば、基地局100(制御部153)は、上記コンフィギュレーションと関連付けて、上記リファレンス信号を送信する周辺基地局300を端末装置200に通知する。
(C-4) Notification of neighboring base station 300 For example, the base station 100 (control unit 153) notifies the terminal device 200 of the neighboring base station 300 that transmits the reference signal in association with the configuration.
 より具体的には、例えば、基地局100(制御部153)は、上記コンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報(例えば、セルID)とを含むメッセージを生成する。そして、基地局100(制御部153)は、当該メッセージを端末装置200へ送信する。 More specifically, for example, the base station 100 (the control unit 153) generates a message including information indicating the configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300. . Then, the base station 100 (the control unit 153) transmits the message to the terminal device 200.
 あるいは/さらに、基地局100(制御部153)は、上記コンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報とを含むシステム情報(例えば、SIB)を生成してもよい。そして、基地局100(制御部153)は、当該システム情報を送信してもよい。 Alternatively or additionally, the base station 100 (the control unit 153) may generate system information (for example, SIB) including information indicating the configuration and identification information for identifying the neighboring base station 300. Then, the base station 100 (the control unit 153) may transmit the system information.
 これにより、例えば、周辺基地局全体からの干渉量(即ち、干渉源全体からの干渉量)ではなく、周辺基地局ごとの干渉量(即ち、干渉源ごとの干渉量)を算出することが可能になる。 As a result, for example, it is possible to calculate the amount of interference for each peripheral base station (that is, the amount of interference for each interference source), not the amount of interference from the entire surrounding base station (that is, the amount of interference from the entire interference source). become.
 (2)チャネル推定
 例えば、上記チャネルは、端末装置200により推定されるチャネルである。即ち、端末装置200は、上記リファレンス信号から上記チャネルを推定する。例えば、チャネルHが推定される。
(2) Channel Estimation For example, the channel is a channel estimated by the terminal device 200. That is, the terminal device 200 estimates the channel from the reference signal. For example, channel H is estimated.
 例えば、端末装置200により推定された上記チャネルは、記憶部230において記憶される。その後、端末装置200(情報取得部241)は、記憶部230から上記チャネルを取得する。 For example, the channel estimated by the terminal device 200 is stored in the storage unit 230. Thereafter, the terminal device 200 (information acquisition unit 241) acquires the channel from the storage unit 230.
 なお、上記チャネルは、換言すると、チャネル行列、又はチャネルレスポンスである。 Note that the above channel is, in other words, a channel matrix or a channel response.
 (3)干渉量の算出
 上述したように、第1の実施形態では、端末装置200(制御部243)は、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する。
(3) Calculation of interference amount As described above, in the first embodiment, the terminal device 200 (control unit 243) determines each of the plurality of directional beams based on the channel and the plurality of precoding matrices. The amount of interference is calculated.
 例えば、端末装置200は、チャネルH及びN個のプリコーディングマトリクスPM(i)(i=0~N-1)に基づいて、N個の指向性ビームの各々の干渉量を算出する。 For example, the terminal device 200 calculates the interference amount of each of the N directional beams based on the channel H and the N precoding matrices PM (i) (i = 0 to N−1).
 より具体的には、例えば、端末装置200は、チャネルHに(右辺から)プリコーディングマトリクスPM(i)を乗算し、この乗算の結果のノルムを、周辺基地局300の指向性ビームiの干渉量として算出する。即ち、端末装置200は、以下のように、周辺基地局300の指向性ビームiの干渉量I(i)を算出する。 More specifically, for example, the terminal device 200 multiplies the channel H by the precoding matrix PM (i) (from the right side), and uses the norm of the result of this multiplication as the interference of the directional beam i of the neighboring base station 300. Calculate as a quantity. That is, the terminal device 200 calculates the interference amount I (i) of the directional beam i of the neighboring base station 300 as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 各プリコーディングマトリクスPM(i)(i=0~N-1)について上述したような算出を行うことにより、周辺基地局300の各ビームi(i=0~N-1)の干渉量が算出される。 By performing the calculation as described above for each precoding matrix PM (i) (i = 0 to N−1), the interference amount of each beam i (i = 0 to N−1) of the neighboring base station 300 is calculated. Is done.
 端末装置200は、1つの周辺基地局300のみではなく、他の周辺基地局300(図8において図示せず)についても同様に、干渉量を算出し得る。 The terminal device 200 can calculate the interference amount not only for one peripheral base station 300 but also for other peripheral base stations 300 (not shown in FIG. 8).
 例えば以上のように、干渉量が算出される。これにより、例えば、指向性ビームの干渉の状況をより適切に知ることが可能になる。より具体的には、例えば、チャネル品質測定用のリファレンス信号が指向性ビームにより送信されなくても、指向性ビームの干渉量を仮想的に知ることができる。また、当該リファレンス信号が指向性ビームにより送信されないので、周辺基地局300にとっての送信の負荷、及び端末装置200にとっての測定の負荷の増加を抑えられ得る。また、後方互換性(backward compatibility)が担保され得る。 For example, the amount of interference is calculated as described above. Thereby, for example, it becomes possible to know the state of directional beam interference more appropriately. More specifically, for example, even if a channel quality measurement reference signal is not transmitted by a directional beam, the amount of interference of the directional beam can be virtually known. Further, since the reference signal is not transmitted by the directional beam, an increase in transmission load for the peripheral base station 300 and a measurement load for the terminal device 200 can be suppressed. Also, backward compatibility can be ensured.
 なお、上記複数のプリコーディングマトリクスは、例えば、(規格で定義されている)全てのプリコーディングマトリクスである。また、上記複数のプリコーディングマトリクスは、記憶部230において予め記憶され、端末装置200(情報取得部241)は、記憶部230から上記複数のプリコーディングマトリクスを取得する。 Note that the plurality of precoding matrices are, for example, all the precoding matrices (defined in the standard). Further, the plurality of precoding matrices are stored in advance in the storage unit 230, and the terminal device 200 (information acquisition unit 241) acquires the plurality of precoding matrices from the storage unit 230.
 (4)基地局100への報告
 例えば、端末装置200(制御部243)は、指向性ビームの干渉に関する情報(以下、「干渉関連情報」)を基地局100に報告する。
(4) Report to Base Station 100 For example, the terminal device 200 (the control unit 243) reports information related to directional beam interference (hereinafter, “interference-related information”) to the base station 100.
 一例として、端末装置200(制御部243)は、上記干渉関連情報として、指向性ビームの干渉量を示す情報を基地局100に報告する。例えば、端末装置200(制御部243)は、上記干渉関連情報として、当該指向性ビームを識別するための識別情報(例えば、PMI)、及び/又は、周辺基地局300を識別するための識別情報(例えば、セルID)も、基地局100に報告する。 As an example, the terminal device 200 (control unit 243) reports information indicating the amount of interference of the directional beam to the base station 100 as the interference related information. For example, the terminal device 200 (the control unit 243), as the interference-related information, identification information (for example, PMI) for identifying the directional beam and / or identification information for identifying the neighboring base station 300 (Eg, cell ID) is also reported to the base station 100.
 端末装置200(制御部243)は、上記複数の指向性ビームの各々の干渉量を示す情報を基地局100に報告してもよく、又は、上記複数の指向性ビームの一部である1つ以上の指向性ビームの各々の干渉量を示す情報を基地局100に報告してもよい。上記1つ以上の指向性ビームは、干渉量が閾値よりも大きい指向性ビームであってもよい。 The terminal device 200 (the control unit 243) may report information indicating the amount of interference of each of the plurality of directional beams to the base station 100, or one of the plurality of directional beams that is part of the plurality of directional beams. Information indicating the amount of interference of each of the above directional beams may be reported to the base station 100. The one or more directional beams may be directional beams having an interference amount larger than a threshold value.
 なお、例えば、基地局100は、端末装置200により報告される上記干渉関連情報を周辺基地局300へ送信する。また、例えば、周辺基地局300は、上記干渉関連情報に基づいて、指向性ビームに関する決定(例えば、指向性ビームの停止など)を行う。 Note that, for example, the base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300. Further, for example, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information.
 <4.3.処理の流れ>
 次に、図11を参照して、第1の実施形態に係る処理の一例を説明する。図11は、第1の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。
<4.3. Flow of processing>
Next, an example of processing according to the first embodiment will be described with reference to FIG. FIG. 11 is a sequence diagram illustrating an example of a schematic flow of processing according to the first embodiment.
 周辺基地局300は、周辺基地局300が送信するチャネル品質測定用のリファレンス信号のコンフィギュレーション(以下、「RSコンフィギュレーション」と呼ぶ)を基地局100に通知する(S401)。 The neighboring base station 300 notifies the base station 100 of the configuration of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (hereinafter referred to as “RS configuration”) (S401).
 基地局100は、上記RSコンフィギュレーションを、端末装置200に通知する(S403)。また、基地局100は、上記RSコンフィギュレーションと関連付けて、周辺基地局300を端末装置200に通知する(S405)。例えば、基地局100は、上記RSコンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報(例えば、セルID)とを含むメッセージを、端末装置200へ送信する(S403、S405)。 The base station 100 notifies the terminal device 200 of the RS configuration (S403). In addition, the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S405). For example, the base station 100 transmits a message including information indicating the RS configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300 to the terminal device 200 (S403, S405). .
 周辺基地局300は、チャネル品質測定用のリファレンス信号を送信する(S407)。 The peripheral base station 300 transmits a reference signal for channel quality measurement (S407).
 端末装置200は、周辺基地局300による送信される上記リファレンス信号からチャネルを推定する(S409)。その後、端末装置200は、上記チャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得し、上記チャネル及び当該複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する(S411)。そして、端末装置200は、指向性ビームの干渉に関する干渉関連情報を基地局100に報告する(S413)。 The terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S409). Thereafter, the terminal device 200 acquires the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams, and based on the channel and the plurality of precoding matrices, the terminal apparatus 200 Each interference amount is calculated (S411). And the terminal device 200 reports the interference relevant information regarding the interference of a directional beam to the base station 100 (S413).
 基地局100は、端末装置200により報告される上記干渉関連情報を周辺基地局300へ送信する(S415)。そして、周辺基地局300は、上記干渉関連情報に基づいて、指向性ビームに関する決定(例えば、指向性ビームの停止など)を行う(S417)。 The base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300 (S415). Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S417).
 <4.4.変形例>
 次に、図12~図14を参照して、第1の実施形態に係る変形例を説明する。
<4.4. Modification>
Next, a modification according to the first embodiment will be described with reference to FIGS.
 (1)技術的課題
 上述したように、例えば、上記複数のプリコーディングマトリクスは、(規格で定義されている)全てのプリコーディングマトリクスである。しかし、全てのプリコーディングマトリクスに基づいて全ての指向性ビームの干渉量が算出されると、例えば、干渉量の算出にかかる負荷が大きくなる。
(1) Technical Problem As described above, for example, the plurality of precoding matrices are all precoding matrices (defined in the standard). However, if the interference amount of all directional beams is calculated based on all the precoding matrices, for example, the load for calculating the interference amount increases.
 そこで、指向性ビームの干渉量の算出の負荷をより小さくすることを可能にする仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism that makes it possible to reduce the load for calculating the interference amount of the directional beam.
 (2)技術的特徴
 第1の実施形態の変形例では、上記複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である。
(2) Technical features In the modification of the first embodiment, the plurality of precoding matrices are a part of all defined precoding matrices.
 (a)基地局100によるプリコーディングマトリクスの取得の経路
 (a-1)第1の例
 例えば、周辺基地局300が、上記複数のプリコーディングマトリクスを基地局100に通知する。例えば、周辺基地局300は、上記リファレンス信号の上記コンフィギュレーションに関連付けて、上記複数のプリコーディングマトリクスを基地局100に通知する。
(A) Route of precoding matrix acquisition by base station 100 (a-1) First example For example, the neighboring base station 300 notifies the base station 100 of the plurality of precoding matrices. For example, the neighboring base station 300 notifies the base station 100 of the plurality of precoding matrices in association with the configuration of the reference signal.
 より具体的には、例えば、周辺基地局300は、上記コンフィギュレーションを示す情報と、上記複数のプリコーディングマトリクスを示す情報(例えば、複数のPMI)とを含むメッセージを生成する。そして、周辺基地局300は、周辺基地局300と基地局100との間のインタフェース(例えば、X2インタフェース)を介して、上記メッセージを基地局100へ送信する。 More specifically, for example, the neighboring base station 300 generates a message including information indicating the configuration and information indicating the plurality of precoding matrices (for example, a plurality of PMIs). Then, the peripheral base station 300 transmits the message to the base station 100 via an interface (for example, an X2 interface) between the peripheral base station 300 and the base station 100.
 なお、例えば、周辺基地局300が基地局100に通知する上記複数のプリコーディングマトリクスは、記憶部140に記憶される。その後、基地局100(情報取得部151)は、記憶部140から上記複数のプリコーディングマトリクスを取得する。 Note that, for example, the plurality of precoding matrices notified from the neighboring base station 300 to the base station 100 are stored in the storage unit 140. Thereafter, the base station 100 (information acquisition unit 151) acquires the plurality of precoding matrices from the storage unit 140.
 (a-2)第2の例
 上記複数のプリコーディングマトリクスが、基地局100(記憶部140)に予め記憶されてもよい。例えば、オペレータが、上記複数のプリコーディングマトリクスを基地局100(記憶部140)に記憶させてもよい。基地局100(情報取得部151)は、記憶部140から上記複数のプリコーディングマトリクスを取得してもよい。
(A-2) Second Example The plurality of precoding matrices may be stored in advance in the base station 100 (storage unit 140). For example, the operator may store the plurality of precoding matrices in the base station 100 (storage unit 140). The base station 100 (information acquisition unit 151) may acquire the plurality of precoding matrices from the storage unit 140.
 (b)基地局による通知
 基地局100(情報取得部151)は、上記複数のプリコーディングマトリクスを取得する。そして、基地局100(制御部153)は、(上記リファレンス信号の)上記コンフィギュレーションと関連付けて、上記複数のプリコーディングマトリクスを端末装置200に通知する。
(B) Notification by base station The base station 100 (information acquisition unit 151) acquires the plurality of precoding matrices. Then, the base station 100 (the control unit 153) notifies the terminal device 200 of the plurality of precoding matrices in association with the configuration (of the reference signal).
 例えば、基地局100(制御部153)は、上記コンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報(例えば、セルID)と、上記複数のプリコーディングマトリクスを示す情報(例えば、複数のPMI)とを含むメッセージを生成する。そして、基地局100(制御部153)は、当該メッセージを端末装置200へ送信する。 For example, the base station 100 (the control unit 153), information indicating the configuration, identification information (for example, cell ID) for identifying the neighboring base station 300, and information indicating the plurality of precoding matrices (for example, , A plurality of PMI). Then, the base station 100 (the control unit 153) transmits the message to the terminal device 200.
 あるいは/さらに、基地局100(制御部153)は、上記コンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報と、上記複数のプリコーディングマトリクスを示す情報とを含むシステム情報(例えば、SIB)を生成してもよい。そして、基地局100(制御部153)は、当該システム情報を送信してもよい。 Alternatively / further, the base station 100 (control unit 153) includes system information (information indicating the configuration, identification information for identifying the neighboring base station 300, and information indicating the plurality of precoding matrices). For example, SIB) may be generated. Then, the base station 100 (the control unit 153) may transmit the system information.
 (c)複数のプリコーディングマトリクス
 (c-1)適用単位
 例えば、上記複数のプリコーディングマトリクスは、基地局100に固有のものである。即ち、上記複数のプリコーディングマトリクスは、基地局100に接続される全ての端末装置200に適用されるものである。
(C) Multiple Precoding Matrix (c-1) Application Unit For example, the multiple precoding matrices are unique to the base station 100. That is, the plurality of precoding matrices are applied to all the terminal devices 200 connected to the base station 100.
 あるいは、上記複数のプリコーディングマトリクスは、端末装置200に固有のものであってもよい。即ち、上記複数のプリコーディングマトリクスは、個別の端末装置200に適用されるものであってもよい。 Alternatively, the plurality of precoding matrices may be unique to the terminal device 200. That is, the plurality of precoding matrices may be applied to individual terminal apparatuses 200.
 (c-2)具体例
 例えば、上記複数の指向性ビームは、水平方向及び垂直方向の一方における指向性が限定されている指向性ビームである。即ち、上記複数のプリコーディングマトリクスは、水平方向及び垂直方向の一方における指向性が限定されている複数の指向性ビームに対応するプリコーディングマトリクスである。以下、この点について図12及び図13を参照して具体例を説明する。
(C-2) Specific Example For example, the plurality of directional beams are directional beams with limited directivity in one of the horizontal direction and the vertical direction. That is, the plurality of precoding matrices are precoding matrices corresponding to a plurality of directional beams whose directivities in one of the horizontal direction and the vertical direction are limited. Hereinafter, a specific example of this point will be described with reference to FIGS.
 図12は、第1の実施形態の変形例に係る複数のプリコーディングマトリクスの第1の例を説明するための説明図である。図12を参照すると、端末装置200及び周辺基地局300が示されている。さらに、高層ビル45、47も示されている。例えば、周辺基地局300が、垂直方向において高角度(high angle)の指向性ビームを形成する場合に、当該指向性ビームは、高層ビル47に位置する端末装置200に到達し、干渉を発生させ得る。例えば、指向性ビーム51は、高層ビル45で反射し、高層ビル47に位置する端末装置200に到達する。指向性ビーム52は、高層ビル47に位置する端末装置200に直接的に到達する。また、周辺基地局300が、垂直方向において低角度(low angle)の指向性ビーム(例えば、指向性ビーム53)を形成する場合に、当該指向性ビームは、地面で反射し、高層ビル47に位置する端末装置200に到達し、干渉を発生させ得る。なお、周辺基地局300が、垂直方向において中角度(neutral angle)の指向性ビーム(例えば、指向性ビーム54)を形成する場合に、当該指向性ビームは、反射せず(又は反射したとしても)、高層ビル47に位置する端末装置200に到達しない。即ち、当該指向性ビームは、干渉を発生させない。このような場合に、例えば、基地局100は、垂直方向における指向性が高角度及び低角度に限定された複数の指向性ビームに対応する複数のプリコーディングマトリクスを、端末装置200に通知する。そして、端末装置200は、当該複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの干渉量を算出する。 FIG. 12 is an explanatory diagram for describing a first example of a plurality of precoding matrices according to a modification of the first embodiment. Referring to FIG. 12, a terminal device 200 and a peripheral base station 300 are shown. In addition, high- rise buildings 45 and 47 are also shown. For example, when the neighboring base station 300 forms a high-angle directional beam in the vertical direction, the directional beam reaches the terminal device 200 located in the high-rise building 47 and causes interference. obtain. For example, the directional beam 51 is reflected by the high-rise building 45 and reaches the terminal device 200 located in the high-rise building 47. The directional beam 52 directly reaches the terminal device 200 located in the high-rise building 47. Further, when the peripheral base station 300 forms a directional beam having a low angle (for example, the directional beam 53) in the vertical direction, the directional beam is reflected on the ground and is reflected on the high-rise building 47. It may reach the terminal device 200 that is located and cause interference. Note that when the peripheral base station 300 forms a directional beam having a neutral angle in the vertical direction (for example, the directional beam 54), the directional beam may not be reflected (or reflected). ), The terminal device 200 located in the high-rise building 47 is not reached. That is, the directional beam does not cause interference. In such a case, for example, the base station 100 notifies the terminal device 200 of a plurality of precoding matrices corresponding to a plurality of directional beams whose directivities in the vertical direction are limited to high angles and low angles. Then, the terminal device 200 calculates the interference amounts of the plurality of directional beams based on the plurality of precoding matrices.
 図13は、第1の実施形態の変形例に係る複数のプリコーディングマトリクスの第2の例を説明するための説明図である。図13を参照すると、基地局100、端末装置200及び周辺基地局300が示されている。この例では、基地局100及び端末装置200は、周辺基地局300の南側に位置する。そのため、周辺基地局300が、水平方向において南方向への指向性ビーム(例えば、指向性ビーム56、57、58、59)を形成する場合に、当該指向性ビームは、端末装置200に到達し得る。このような場合に、例えば、基地局100は、水平方向における指向性が南方向に限定された複数の指向性ビームに対応する複数のプリコーディングマトリクスを、端末装置200に通知する。そして、端末装置200は、当該複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの干渉量を算出する。 FIG. 13 is an explanatory diagram for describing a second example of a plurality of precoding matrices according to a modification of the first embodiment. Referring to FIG. 13, a base station 100, a terminal device 200, and a peripheral base station 300 are shown. In this example, the base station 100 and the terminal device 200 are located on the south side of the peripheral base station 300. Therefore, when the peripheral base station 300 forms a directional beam in the south direction in the horizontal direction (for example, the directional beams 56, 57, 58, 59), the directional beam reaches the terminal device 200. obtain. In such a case, for example, the base station 100 notifies the terminal device 200 of a plurality of precoding matrices corresponding to a plurality of directional beams whose directivity in the horizontal direction is limited to the south direction. Then, the terminal device 200 calculates the interference amounts of the plurality of directional beams based on the plurality of precoding matrices.
 以上のように、第1の実施形態の変形例では、上記複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である。これにより、例えば、指向性ビームの干渉量の算出の負荷をより小さくすることが可能になる。 As described above, in the modification of the first embodiment, the plurality of precoding matrices are a part of all defined precoding matrices. Thereby, for example, it becomes possible to further reduce the load for calculating the interference amount of the directional beam.
 (3)処理の流れ
 図14は、第1の実施形態の変形例に係る処理の概略的な流れの一例を示すシーケンス図である。
(3) Process Flow FIG. 14 is a sequence diagram illustrating an example of a schematic flow of a process according to a modification of the first embodiment.
 周辺基地局300は、周辺基地局300が送信するチャネル品質測定用のリファレンス信号のコンフィギュレーション(即ち、RSコンフィギュレーション)を基地局100に通知する(S431)。また、周辺基地局300は、上記RSコンフィギュレーションに関連付けて、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクス(PM)を基地局100に通知する(S433)。当該複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である。例えば、周辺基地局300は、上記RSコンフィギュレーションを示す情報と、上記複数のプリコーディングマトリクスを示す情報(例えば、複数のPMI)とを含むメッセージを、基地局100へ送信する(S431、S433)。 The neighboring base station 300 notifies the base station 100 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (S431). In addition, the neighboring base station 300 notifies the base station 100 of a plurality of precoding matrices (PMs) respectively corresponding to the plurality of directional beams in association with the RS configuration (S433). The plurality of precoding matrices are a part of all defined precoding matrices. For example, the neighboring base station 300 transmits a message including information indicating the RS configuration and information indicating the plurality of precoding matrices (for example, a plurality of PMIs) to the base station 100 (S431, S433). .
 基地局100は、上記RSコンフィギュレーションを、端末装置200に通知する(S435)。また、基地局100は、上記RSコンフィギュレーションと関連付けて、周辺基地局300を端末装置200に通知する(S437)。また、基地局100は、上記RSコンフィギュレーションと関連付けて、上記複数のプリコーディングマトリクスを端末装置200に通知する(S439)。例えば、基地局100は、上記RSコンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報(例えば、セルID)と、上記複数のプリコーディングマトリクスを示す情報(例えば、複数のPMI)とを含むメッセージを、端末装置200へ送信する(S435、S437、S439)。 The base station 100 notifies the terminal device 200 of the RS configuration (S435). Also, the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S437). In addition, the base station 100 notifies the terminal device 200 of the plurality of precoding matrices in association with the RS configuration (S439). For example, the base station 100 includes information indicating the RS configuration, identification information for identifying the neighboring base station 300 (for example, a cell ID), and information indicating the plurality of precoding matrices (for example, a plurality of PMIs). ) Is transmitted to the terminal device 200 (S435, S437, S439).
 周辺基地局300は、チャネル品質測定用のリファレンス信号を送信する(S441)。 The peripheral base station 300 transmits a reference signal for channel quality measurement (S441).
 端末装置200は、周辺基地局300による送信される上記リファレンス信号からチャネルを推定する(S443)。その後、端末装置200は、上記チャネル及び上記複数のプリコーディングマトリクスを取得し、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する(S445)。そして、端末装置200は、指向性ビームの干渉に関する干渉関連情報を基地局100に報告する(S447)。 The terminal apparatus 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S443). Thereafter, the terminal device 200 acquires the channel and the plurality of precoding matrices, and calculates the amount of interference of each of the plurality of directional beams based on the channel and the plurality of precoding matrices (S445). . And the terminal device 200 reports the interference relevant information regarding the interference of a directional beam to the base station 100 (S447).
 基地局100は、端末装置200により報告される上記干渉関連情報を周辺基地局300へ送信する(S449)。そして、周辺基地局300は、上記干渉関連情報に基づいて、指向性ビームに関する決定(例えば、指向性ビームの停止など)を行う(S451)。 The base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300 (S449). Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S451).
 <<5.第2の実施形態>>
 続いて、図15及び図16を参照して、本開示の第2の実施形態を説明する。
<< 5. Second Embodiment >>
Subsequently, a second embodiment of the present disclosure will be described with reference to FIGS. 15 and 16.
 <5.1.技術的課題>
 第2の実施形態に係る技術的課題は、第1の実施形態に係る技術的課題と同じである。よって、ここでは重複する記載を省略する。
<5.1. Technical issues>
The technical problem according to the second embodiment is the same as the technical problem according to the first embodiment. Therefore, the overlapping description is omitted here.
 <5.2.技術的特徴>
 次に、第2の実施形態に係る技術的特徴を説明する。
<5.2. Technical features>
Next, technical features according to the second embodiment will be described.
 第2の実施形態では、基地局100(情報取得部151)は、チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する。そして、基地局100(制御部153)は、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する。 In the second embodiment, the base station 100 (information acquisition unit 151) acquires a channel estimated from a channel quality measurement reference signal and a plurality of precoding matrices respectively corresponding to a plurality of directional beams. . Then, base station 100 (control unit 153) calculates the amount of interference of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
 (1)リファレンス信号
 リファレンス信号についての説明は、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する記載を省略する。
(1) Reference Signal Regarding the reference signal, there is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
 (2)チャネル推定
 例えば、上記チャネルは、端末装置200により推定されるチャネルである。即ち、端末装置200は、上記リファレンス信号から上記チャネルを推定する。例えば、チャネルHが推定される。
(2) Channel Estimation For example, the channel is a channel estimated by the terminal device 200. That is, the terminal device 200 estimates the channel from the reference signal. For example, channel H is estimated.
 とりわけ第2の実施形態では、例えば、端末装置200は、上記チャネルを基地局100に報告する。そして、当該チャネルは、基地局100(例えば、記憶部140)において記憶される。 Particularly in the second embodiment, for example, the terminal device 200 reports the channel to the base station 100. Then, the channel is stored in the base station 100 (for example, the storage unit 140).
 なお、上記チャネルは、換言すると、チャネル行列、又はチャネルレスポンスである。 Note that the above channel is, in other words, a channel matrix or a channel response.
 (3)干渉量の算出
 上述したように、第2の実施形態では、基地局100(制御部153)は、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する。
(3) Calculation of interference amount As described above, in the second embodiment, the base station 100 (control unit 153) determines each of the plurality of directional beams based on the channel and the plurality of precoding matrices. The amount of interference is calculated.
 干渉量の算出についての説明は、主体の相違(第1の実施形態では主体が端末装置200であり、第2の実施形態では主体が基地局100であること)を除き、第1の実施形態と第2の実施形態との間に特段の差異はない。よって、ここでは重複する記載を省略する。 The description of the calculation of the interference amount is the same as that in the first embodiment except for the difference between the subjects (in the first embodiment, the subject is the terminal device 200 and in the second embodiment, the subject is the base station 100). There is no particular difference between the first embodiment and the second embodiment. Therefore, the overlapping description is omitted here.
 なお、例えば、基地局100は、干渉関連情報(指向性ビームの干渉に関する情報)を周辺基地局300へ送信する。また、例えば、周辺基地局300は、上記干渉関連情報に基づいて、指向性ビームに関する決定(例えば、指向性ビームの停止など)を行う。 Note that, for example, the base station 100 transmits interference-related information (information on directional beam interference) to the neighboring base stations 300. Further, for example, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information.
 <5.3.処理の流れ>
 次に、図15を参照して、第2の実施形態に係る処理の一例を説明する。図15は、第2の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。
<5.3. Flow of processing>
Next, an example of processing according to the second embodiment will be described with reference to FIG. FIG. 15 is a sequence diagram illustrating an example of a schematic flow of processing according to the second embodiment.
 ここで、図15の例におけるステップS461~S467、S475~S477についての説明は、図11におけるステップS401~S407、S415~S417についての説明と特段の差異はない。よって、ここでは重複する記載を省略し、ステップS469~S473のみを説明する。 Here, the description of steps S461 to S467 and S475 to S477 in the example of FIG. 15 is not particularly different from the description of steps S401 to S407 and S415 to S417 in FIG. Therefore, the description which overlaps here is abbreviate | omitted and only step S469-S473 is demonstrated.
 端末装置200は、周辺基地局300による送信されるチャネル品質測定用のリファレンス信号からチャネルを推定する(S469)。そして、端末装置200は、当該チャネルを基地局100に報告する(S471)。 The terminal device 200 estimates the channel from the channel quality measurement reference signal transmitted by the neighboring base station 300 (S469). Then, the terminal device 200 reports the channel to the base station 100 (S471).
 基地局100は、上記チャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得し、上記チャネル及び当該複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する(S473)。 The base station 100 acquires the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams, and based on the channel and the plurality of precoding matrices, each of the plurality of directional beams The amount of interference is calculated (S473).
 <5.4.第1の変形例>
 次に、図16を参照して、第2の実施形態に係る第1の変形例を説明する。
<5.4. First Modification>
Next, a first modification according to the second embodiment will be described with reference to FIG.
 (1)技術的課題
 第2の実施形態の第1の変形例に係る技術的課題は、第1の実施形態の変形例に係る技術的課題と同じである。よって、ここでは重複する記載を省略する。
(1) Technical problem The technical problem which concerns on the 1st modification of 2nd Embodiment is the same as the technical problem which concerns on the modification of 1st Embodiment. Therefore, the overlapping description is omitted here.
 (2)技術的特徴
 第2の実施形態の第1の変形例では、上記複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である。
(2) Technical features In the first modification of the second embodiment, the plurality of precoding matrices are a part of all defined precoding matrices.
 (a)基地局100によるプリコーディングマトリクスの取得の経路
 基地局100によるプリコーディングマトリクスの取得の経路についての説明は、第1の実施形態の変形例と、第2の実施形態の第1の変形例との間に、特段の際はない。よって、ここでは重複する記載を省略する。
(A) Route of acquisition of precoding matrix by base station 100 The description of the route of acquisition of the precoding matrix by the base station 100 will be made for the modification of the first embodiment and the first modification of the second embodiment. There is no special case between the examples. Therefore, the overlapping description is omitted here.
 (b)複数のプリコーディングマトリクス
 上記複数のプリコーディングマトリクスについての説明は、第1の実施形態の変形例と、第2の実施形態の第1の変形例との間に、特段の際はない。よって、ここでは重複する記載を省略する。
(B) A plurality of precoding matrices The description of the plurality of precoding matrices is not particularly special between the modification of the first embodiment and the first modification of the second embodiment. . Therefore, the overlapping description is omitted here.
 以上のように、第2の実施形態の第1の変形例では、上記複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である。これにより、例えば、指向性ビームの干渉量の算出の負荷をより小さくすることが可能になる。 As described above, in the first modification of the second embodiment, the plurality of precoding matrices are a part of all defined precoding matrices. Thereby, for example, it becomes possible to further reduce the load for calculating the interference amount of the directional beam.
 (3)処理の流れ
 図16は、第2の実施形態の第1の変形例に係る処理の概略的な流れの一例を示すシーケンス図である。
(3) Process Flow FIG. 16 is a sequence diagram illustrating an example of a schematic process flow according to the first modification of the second embodiment.
 ここで、図16の例におけるステップS505~S513、S517~S519についての説明は、図15におけるステップS463~S471、S475~S477についての説明と特段の差異はない。よって、ここでは重複する記載を省略し、ステップS501~S503、S515のみを説明する。 Here, the descriptions of steps S505 to S513 and S517 to S519 in the example of FIG. 16 are not particularly different from the descriptions of steps S463 to S471 and S475 to S477 in FIG. Therefore, duplicate description is omitted here, and only steps S501 to S503 and S515 will be described.
 周辺基地局300は、周辺基地局300が送信するチャネル品質測定用のリファレンス信号のコンフィギュレーション(即ち、RSコンフィギュレーション)を基地局100に通知する(S501)。また、周辺基地局300は、上記RSコンフィギュレーションに関連付けて、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクス(PM)を基地局100に通知する(S503)。例えば、周辺基地局300は、上記RSコンフィギュレーションを示す情報と、上記複数のプリコーディングマトリクスを示す情報(例えば、複数のPMI)とを含むメッセージを、基地局100へ送信する(S501、S503)。 The peripheral base station 300 notifies the base station 100 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the peripheral base station 300 (S501). In addition, the neighboring base station 300 notifies the base station 100 of a plurality of precoding matrices (PMs) respectively corresponding to the plurality of directional beams in association with the RS configuration (S503). For example, the neighboring base station 300 transmits a message including information indicating the RS configuration and information indicating the plurality of precoding matrices (for example, a plurality of PMIs) to the base station 100 (S501, S503). .
 基地局100は、周辺基地局300による送信されるチャネル品質測定用のリファレンス信号から端末装置200により推定されたチャネルと、上記複数のプリコーディングマトリクスとを取得する。そして、基地局100は、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する(S515)。 The base station 100 acquires a channel estimated by the terminal device 200 from the reference signal for channel quality measurement transmitted by the neighboring base station 300 and the plurality of precoding matrices. Then, the base station 100 calculates an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices (S515).
 <5.5.第2の変形例>
 次に、第2の実施形態に係る第2の変形例を説明する。
<5.5. Second Modification>
Next, a second modification according to the second embodiment will be described.
 第2の実施形態に係る第2の変形例として、基地局100ではなく、周辺基地局300が、上記チャネル及び上記複数のプリコーディングマトリクスを取得し、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出してもよい。 As a second modification according to the second embodiment, not the base station 100 but the neighboring base station 300 acquires the channel and the plurality of precoding matrices, and based on the channel and the plurality of precoding matrices. Thus, the interference amount of each of the plurality of directional beams may be calculated.
 また、基地局100は、端末装置200により報告される上記チャネルを周辺基地局300に通知してもよい。 Also, the base station 100 may notify the neighboring base station 300 of the channel reported by the terminal device 200.
 <<6.第3の実施形態>>
 続いて、図17~図21を参照して、本開示の第3の実施形態を説明する。
<< 6. Third Embodiment >>
Subsequently, a third embodiment of the present disclosure will be described with reference to FIGS.
 <6.1.技術的課題>
 まず、第3の実施形態に係る技術的課題を説明する。
<6.1. Technical issues>
First, a technical problem according to the third embodiment will be described.
 例えば、周辺基地局が、指向性ビーム(例えば、ラージスケールMIMOの指向性ビーム)によりデータ信号を送信する場合には、上記周辺基地局が端末装置(及びサービング基地局)から遠くは離れていたとしても、上記端末装置における上記データ信号の受信電力は大きくなる可能性がある。即ち、上記端末装置において、大きな干渉が発生する可能性がある。 For example, when the peripheral base station transmits a data signal using a directional beam (for example, a large-scale MIMO directional beam), the peripheral base station is far away from the terminal device (and the serving base station). Even so, the reception power of the data signal in the terminal device may increase. That is, large interference may occur in the terminal device.
 しかし、通常、CSI-RSは、ビームフォーミングなしで送信されるので、上記周辺基地局が端末装置(及びサービング基地局)から遠くは離れていれば、上記周辺基地局により送信されるCSI-RSの上記端末装置における受信電力は非常に小さくなり得る。その結果、上記端末装置は、上記CSI-RSを検出できず、干渉量を算出しない可能性がある。その結果、上記端末装置において、データ信号の指向性ビームの大きな干渉が発生していたとしても、当該干渉の発生が見逃されてしまう可能性がある。 However, since CSI-RS is normally transmitted without beamforming, CSI-RS transmitted by the neighboring base station if the neighboring base station is far away from the terminal device (and serving base station). The received power in the terminal device can be very small. As a result, the terminal device may not be able to detect the CSI-RS and may not calculate the amount of interference. As a result, even if a large interference of the directional beam of the data signal occurs in the terminal device, the occurrence of the interference may be missed.
 そこで、指向性ビームの干渉の状況をより適切に知ることを可能にする仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism that makes it possible to know the state of directional beam interference more appropriately.
 <6.2.技術的特徴>
 次に、図17を参照して、第3の実施形態に係る技術的特徴を説明する。
<6.2. Technical features>
Next, technical features according to the third embodiment will be described with reference to FIG.
 基地局100(情報取得部151)は、周辺基地局300により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得する。そして、基地局100(制御部153)は、上記電力増加情報を使用して、上記リファレンス信号から算出される干渉量の補正のための制御を行う。 The base station 100 (information acquisition unit 151) acquires power increase information related to an increase in transmission power of a channel quality measurement reference signal transmitted by the neighboring base station 300. Then, the base station 100 (the control unit 153) uses the power increase information to perform control for correcting the interference amount calculated from the reference signal.
 (1)リファレンス信号
 上記リファレンス信号についての説明は、第1の実施形態と第3の実施形態との間に特段の差異はない。よって、ここでは重複する記載を省略する。
(1) Reference signal In the description of the reference signal, there is no particular difference between the first embodiment and the third embodiment. Therefore, the overlapping description is omitted here.
 (2)干渉量の算出
 例えば、端末装置200(制御部243)は、周辺基地局300により送信される上記リファレンス信号から、干渉量を算出する。
(2) Calculation of interference amount For example, the terminal device 200 (control unit 243) calculates the interference amount from the reference signal transmitted by the neighboring base station 300.
 より具体的には、例えば、第1の実施形態と同様に、端末装置200(制御部243)は、上記リファレンス信号からチャネルを推定し、当該チャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスに基づいて、当該複数の指向性ビームの各々の干渉量を算出する。 More specifically, for example, as in the first embodiment, the terminal device 200 (the control unit 243) estimates a channel from the reference signal, and a plurality of channels respectively corresponding to the channel and a plurality of directional beams. The amount of interference of each of the plurality of directional beams is calculated based on the precoding matrix.
 なお、端末装置200の代わりに、基地局100(制御部153)が、干渉量を算出してもよい。より具体的には、例えば、端末装置200は、上記リファレンス信号から推定したチャネルを基地局100に報告し、基地局100は、当該チャネル及び上記複数の指向性ビームに基づいて、上記複数の指向性ビームの各々の干渉量を算出してもよい。 In addition, instead of the terminal device 200, the base station 100 (the control unit 153) may calculate the interference amount. More specifically, for example, the terminal device 200 reports the channel estimated from the reference signal to the base station 100, and the base station 100 determines the plurality of directivities based on the channel and the plurality of directional beams. The amount of interference of each beam may be calculated.
 (3)電力増加情報
 (a)電力増加
 例えば、周辺基地局300は、上記リファレンス信号の送信電力を増加させる。即ち、例えば、周辺基地局300は、より高い電力の指向性ビームにより、上記リファレンス信号を送信する。以下、この点について図17を参照して具体例を説明する。
(3) Power increase information (a) Power increase For example, the peripheral base station 300 increases the transmission power of the reference signal. That is, for example, the peripheral base station 300 transmits the reference signal using a directional beam with higher power. Hereinafter, a specific example of this point will be described with reference to FIG.
 図17は、チャネル品質測定用のリファレンス信号の送信電力の増加の一例を説明するための説明図である。図17を参照すると、1サブフレームに含まれる2つのリソースブロックが示されている。この例では、周辺基地局300は、周辺基地局300のセル301内でのチャネル品質測定のために、無線リソース61(2つのリソースエレメント)において、通常の送信電力でCSI-RSを送信する。また、周辺基地局300は、セル301の周辺セル(比較的近い周辺セル)での干渉測定のために、無線リソース62(2つのリソースエレメント)において、通常の送信電力よりも5dBだけ大きい送信電力でCSI-RSを送信する。さらに、周辺基地局300は、セル301の周辺セル(比較的遠い周辺セル)での干渉測定のために、無線リソース63(2つのリソースエレメント)において、通常の送信電力よりも10dBだけ大きい送信電力でCSI-RSを送信する。 FIG. 17 is an explanatory diagram for explaining an example of an increase in transmission power of a reference signal for channel quality measurement. Referring to FIG. 17, two resource blocks included in one subframe are shown. In this example, the neighboring base station 300 transmits CSI-RS with normal transmission power in the radio resource 61 (two resource elements) for channel quality measurement in the cell 301 of the neighboring base station 300. Also, the neighboring base station 300 has a transmission power that is larger by 5 dB than the normal transmission power in the radio resource 62 (two resource elements) in order to measure interference in a neighboring cell (a relatively nearby neighboring cell) of the cell 301. To transmit CSI-RS. Furthermore, the neighboring base station 300 transmits 10 dB larger than normal transmission power in the radio resource 63 (two resource elements) in order to measure interference in a neighboring cell (a relatively far neighboring cell) of the cell 301. To transmit CSI-RS.
 このように、例えば、周辺基地局300は、第1の無線リソース(例えば、無線リソース61)において第1の送信電力(例えば、通常の送信電力)で上記リファレンス信号を送信し、第2の無線リソース(例えば、無線リソース62)において上記第1の送信電力よりも大きい第2の送信電力で上記リファレンス信号を送信する。さらに、周辺基地局300は、第3の無線リソース(例えば、無線リソース63)において上記第2の送信電力よりも大きい第3の送信電力で上記リファレンス信号を送信する。なお、基地局100(制御部153)も、周辺基地局300と同様に、チャネル測定用のリファレンス信号を送信し得る。 Thus, for example, the neighboring base station 300 transmits the reference signal with the first transmission power (for example, normal transmission power) in the first radio resource (for example, the radio resource 61), and the second radio resource The reference signal is transmitted with a second transmission power larger than the first transmission power in the resource (for example, the radio resource 62). Furthermore, the neighboring base station 300 transmits the reference signal with a third transmission power larger than the second transmission power in a third radio resource (for example, the radio resource 63). Note that the base station 100 (the control unit 153) can also transmit a channel measurement reference signal, similarly to the neighboring base station 300.
 例えば、周辺基地局300は、基地局100からの要求(例えば、チャネル品質測定用のリファレンス信号のコンフィギュレーションの要求、又は、大きい送信電力でのチャネル品質測定用のリファレンス信号の送信の要求)に応じて、上記リファレンス信号の送信電力を増加させる。 For example, the neighboring base station 300 responds to a request from the base station 100 (for example, a request for configuration of a reference signal for measuring channel quality or a request for transmitting a reference signal for measuring channel quality with a large transmission power). In response, the transmission power of the reference signal is increased.
 (b)電力増加情報の例
 (b-1)第1の例
 第1の例として、上記電力増加情報は、上記リファレンス信号の送信電力の増加量を示す。
(B) Example of power increase information (b-1) First example As a first example, the power increase information indicates an increase in the transmission power of the reference signal.
 例えば、図17を再び参照すると、無線リソース62において送信されるCSI-RSについての電力増加情報は5dBを示し、無線リソース63において送信されるCSI-RSについての電力増加情報は10dBを示す。 For example, referring again to FIG. 17, the power increase information for the CSI-RS transmitted in the radio resource 62 indicates 5 dB, and the power increase information for the CSI-RS transmitted in the radio resource 63 indicates 10 dB.
 (b-2)第2の例
 第2の例として、上記電力増加情報は、上記リファレンス信号の送信電力の増加があることを示す情報(例えば、フラグ又はインデックスなど)であってもよい。この場合に、チャネル品質測定用のリファレンス信号の送信電力の増加量は、1つの固定的な量(例えば、5dB)であってもよい。
(B-2) Second Example As a second example, the power increase information may be information (for example, a flag or an index) indicating that there is an increase in the transmission power of the reference signal. In this case, the increase amount of the transmission power of the reference signal for channel quality measurement may be one fixed amount (for example, 5 dB).
 (c)周辺基地局による提供
 例えば、上記電力増加情報は、周辺基地局300により提供される情報である。即ち、周辺基地局300は、上記電力増加情報を基地局100に提供する。
(C) Provision by Peripheral Base Station For example, the power increase information is information provided by the peripheral base station 300. That is, the neighboring base station 300 provides the power increase information to the base station 100.
 一例として、上記リファレンス信号のコンフィギュレーションは、上記リファレンス信号の送信電力の増加量(又は上記リファレンス信号の送信電力の増加の有無)を含む。この場合に、周辺基地局300は、上記コンフィギュレーションを基地局100に通知することにより、上記電力増加情報を基地局100に提供する。 As an example, the configuration of the reference signal includes an increase amount of transmission power of the reference signal (or presence / absence of increase of transmission power of the reference signal). In this case, the neighboring base station 300 provides the power increase information to the base station 100 by notifying the base station 100 of the configuration.
 別の例として、上記コンフィギュレーションは、上記送信電力の増加量(及び上記送信電力の増加の有無)を含まず、周辺基地局300は、上記コンフィギュレーションを示す情報から独立した上記電力増加情報を基地局100に通知しもてよい。例えば、周辺基地局300は、上記コンフィギュレーションを示す上記情報及び上記電力増加情報を含むメッセージを基地局100へ送信してもよい。 As another example, the configuration does not include the increase amount of the transmission power (and the presence or absence of the increase of the transmission power), and the neighboring base station 300 uses the power increase information independent of the information indicating the configuration. The base station 100 may be notified. For example, the neighboring base station 300 may transmit a message including the information indicating the configuration and the power increase information to the base station 100.
 (4)制御
 (a)第1の例
 (a-1)基地局100
 第1の例として、上記制御(即ち、上記リファレンス信号から算出される干渉量の補正のための制御)は、上記リファレンス信号から干渉量を算出する端末装置200に上記電力増加情報を通知することである。即ち、基地局100(制御部153)は、上記電力増加情報を端末装置200に通知する。
(4) Control (a) First example (a-1) Base station 100
As a first example, the control (that is, control for correcting the interference amount calculated from the reference signal) notifies the terminal device 200 that calculates the interference amount from the reference signal of the power increase information. It is. That is, the base station 100 (control unit 153) notifies the terminal device 200 of the power increase information.
 上述したように、例えば、上記リファレンス信号のコンフィギュレーションは、上記リファレンス信号の送信電力の増加量(又は上記リファレンス信号の送信電力の増加の有無)を含む。この場合に、基地局100は、上記コンフィギュレーションを端末装置200に通知することにより、上記電力増加情報を端末装置200に通知する。 As described above, for example, the configuration of the reference signal includes the amount of increase in the transmission power of the reference signal (or the presence or absence of increase in the transmission power of the reference signal). In this case, the base station 100 notifies the terminal device 200 of the power increase information by notifying the terminal device 200 of the configuration.
 あるいは、上記コンフィギュレーションは、上記送信電力の増加量(及び上記送信電力の増加の有無)を含まず、基地局100は、上記コンフィギュレーションを示す情報から独立した上記電力増加情報を端末装置200に通知しもてよい。例えば、基地局100は、上記コンフィギュレーションを示す上記情報及び上記電力増加情報を含むメッセージ(又はシステム情報)を端末装置200へ送信してもよい。 Alternatively, the configuration does not include the increase amount of the transmission power (and the presence or absence of the increase of the transmission power), and the base station 100 transmits the power increase information independent of the information indicating the configuration to the terminal device 200. You may be notified. For example, the base station 100 may transmit a message (or system information) including the information indicating the configuration and the power increase information to the terminal device 200.
 (a-2)端末装置200
 例えば、端末装置200(情報取得部241)は、上記電力増加情報を取得する。そして、端末装置200(情報取得部241)は、上記電力増加情報に基づいて、上記リファレンス信号から算出される干渉量を補正する。より具体的には、例えば、端末装置200は、上記干渉量から送信電力の増加量(例えば、5dB又は10dBなど)を差し引く。
(A-2) Terminal device 200
For example, the terminal device 200 (information acquisition unit 241) acquires the power increase information. Then, the terminal device 200 (information acquisition unit 241) corrects the interference amount calculated from the reference signal based on the power increase information. More specifically, for example, the terminal device 200 subtracts an increase in transmission power (for example, 5 dB or 10 dB) from the amount of interference.
 (b)第2の例
 (b-1)基地局100
 第2の例として、上記制御は、上記電力増加情報に基づいて、上記リファレンス信号から算出される干渉量を補正することであってもよい。即ち、基地局100(制御部153)は、上記電力増加情報に基づいて、上記リファレンス信号から算出される干渉量を補正してもよい。より具体的には、基地局100は、上記干渉量から送信電力の増加量(例えば、5dB又は10dBなど)を差し引いてもよい。
(B) Second example (b-1) Base station 100
As a second example, the control may be to correct an interference amount calculated from the reference signal based on the power increase information. That is, the base station 100 (control unit 153) may correct the amount of interference calculated from the reference signal based on the power increase information. More specifically, the base station 100 may subtract an increase in transmission power (for example, 5 dB or 10 dB) from the amount of interference.
 (b-2)端末装置200
 端末装置200は、上記リファレンス信号から上記干渉量を算出し、当該干渉量を基地局100に報告してもよい。
(B-2) Terminal device 200
The terminal device 200 may calculate the interference amount from the reference signal and report the interference amount to the base station 100.
 あるいは、端末装置200は、上記リファレンス信号からチャネルを推定し、当該チャネルを基地局100に報告してもよい。そして、基地局100は、当該チャネル(及び、複数の指向性ビームにそれぞれ対応する複数のプリコーディング行列)に基づいて、干渉量を算出してもよい。 Alternatively, the terminal device 200 may estimate a channel from the reference signal and report the channel to the base station 100. Then, the base station 100 may calculate the interference amount based on the channel (and a plurality of precoding matrices respectively corresponding to a plurality of directional beams).
 なお、端末装置200は、上記干渉量又は上記チャネルを基地局100に報告する際に、周辺基地局300を識別するための識別情報(例えば、セルID)も、基地局100に報告してもよい。 Note that when the terminal device 200 reports the interference amount or the channel to the base station 100, the terminal device 200 may also report identification information (for example, a cell ID) for identifying the neighboring base station 300 to the base station 100. Good.
 以上のように、第3の実施形態では、上記リファレンス信号の送信電力が増加される。また、上記電力関連情報に基づいて、上記リファレンス信号から算出される干渉量が補正される。これにより、例えば、指向性ビームの干渉の状況をより適切に知ることが可能になる。より具体的には、例えば、上記リファレンス信号の送信電力が増加されるので、周辺基地局300が端末装置200(及び基地局100)から遠くは離れていたとしても、周辺基地局300により送信される上記リファレンス信号の端末装置200における受信電力はある程度大きくなる。よって、端末装置200は、上記リファレンス信号を検出することができる。また、干渉量が補正されるので、適切な干渉量が得られる。 As described above, in the third embodiment, the transmission power of the reference signal is increased. Further, the interference amount calculated from the reference signal is corrected based on the power related information. Thereby, for example, it becomes possible to know the state of directional beam interference more appropriately. More specifically, for example, since the transmission power of the reference signal is increased, even if the neighboring base station 300 is far away from the terminal device 200 (and the base station 100), it is transmitted by the neighboring base station 300. The received power of the reference signal in the terminal device 200 increases to some extent. Therefore, the terminal device 200 can detect the reference signal. Further, since the interference amount is corrected, an appropriate interference amount can be obtained.
 <6.3.処理の流れ>
 次に、図18~図20を参照して、第3の実施形態に係る処理の例を説明する。
<6.3. Flow of processing>
Next, an example of processing according to the third embodiment will be described with reference to FIGS.
 (1)第1の例
 図18は、第3の実施形態に係る処理の概略的な流れの第1の例を示すシーケンス図である。
(1) First Example FIG. 18 is a sequence diagram illustrating a first example of a schematic flow of a process according to the third embodiment.
 基地局100は、周辺基地局300への要求(例えば、チャネル品質測定用のリファレンス信号のコンフィギュレーションの要求、又は、大きい送信電力でのチャネル品質測定用のリファレンス信号の送信の要求)を行う(S531)。 The base station 100 makes a request to the neighboring base station 300 (for example, a request for configuration of a reference signal for channel quality measurement or a request for transmission of a reference signal for channel quality measurement with a large transmission power) ( S531).
 周辺基地局300は、周辺基地局300が送信するチャネル品質測定用のリファレンス信号のコンフィギュレーション(即ち、RSコンフィギュレーション)を基地局100に通知する(S533)。例えば、当該RSコンフィギュレーションは、上記リファレンス信号の送信電力の増加量(又は当該送信電力の増加の有無)を含む。そのため、周辺基地局300は、上記RSコンフィギュレーションの通知により、上記リファレンス信号の送信電力の増加に関する電力増加情報(例えば、上記送信電力の増加量を示す情報)を基地局100に提供する。 The neighboring base station 300 notifies the base station 100 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (S533). For example, the RS configuration includes the amount of increase in the transmission power of the reference signal (or the presence or absence of the increase in the transmission power). Therefore, the neighboring base station 300 provides the base station 100 with power increase information (for example, information indicating the increase amount of the transmission power) related to an increase in the transmission power of the reference signal by the notification of the RS configuration.
 基地局100は、上記RSコンフィギュレーションを、端末装置200に通知する(S535)。基地局100は、上記RSコンフィギュレーションの通知により、上記電力増加情報を端末装置200に通知する。また、基地局100は、上記RSコンフィギュレーションと関連付けて、周辺基地局300を端末装置200に通知する(S537)。例えば、基地局100は、上記RSコンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報(例えば、セルID)とを含むメッセージを、端末装置200へ送信する(S535、S537)。 The base station 100 notifies the terminal device 200 of the RS configuration (S535). The base station 100 notifies the terminal device 200 of the power increase information by the notification of the RS configuration. Further, the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S537). For example, the base station 100 transmits a message including information indicating the RS configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300 to the terminal device 200 (S535, S537). .
 周辺基地局300は、チャネル品質測定用のリファレンス信号を送信する(S539)。 The peripheral base station 300 transmits a reference signal for channel quality measurement (S539).
 端末装置200は、周辺基地局300による送信される上記リファレンス信号からチャネルを推定する(S541)。その後、端末装置200は、当該チャネルに基づいて干渉量を算出し(S543)、上記電力増加情報(例えば、上記送信電力の増加量を示す情報)に基づいて上記干渉量を補正する(S545)。例えば、端末装置200は、上記チャネル、及び、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出し、上記電力増加情報に基づいて、当該干渉量を補正する。 The terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S541). Thereafter, the terminal device 200 calculates an interference amount based on the channel (S543), and corrects the interference amount based on the power increase information (for example, information indicating the increase amount of the transmission power) (S545). . For example, the terminal device 200 calculates the amount of interference of each of the plurality of directional beams based on the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams, and includes the power increase information. Based on this, the interference amount is corrected.
 端末装置200は、干渉に関する干渉関連情報を基地局100に報告する(S547)。当該干渉関連情報は、端末装置200により算出され補正された上記干渉量を示す情報を含む。また、例えば、上記干渉関連情報は、上記リファレンス信号を送信した周辺基地局300を識別するための上記識別情報(例えば、セルID)を含む。 The terminal device 200 reports interference-related information related to interference to the base station 100 (S547). The interference related information includes information indicating the amount of interference calculated and corrected by the terminal device 200. Further, for example, the interference related information includes the identification information (for example, cell ID) for identifying the neighboring base station 300 that has transmitted the reference signal.
 基地局100は、端末装置200により報告される上記干渉関連情報を周辺基地局300へ送信する(S549)。そして、周辺基地局300は、上記干渉関連情報に基づいて、指向性ビームに関する決定(例えば、指向性ビームの停止など)を行う(S551)。 The base station 100 transmits the interference-related information reported by the terminal device 200 to the neighboring base station 300 (S549). Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S551).
 (2)第2の例
 図19は、第3の実施形態に係る処理の概略的な流れの第2の例を示すシーケンス図である。
(2) Second Example FIG. 19 is a sequence diagram illustrating a second example of a schematic flow of processing according to the third embodiment.
 ここで、図19の例におけるステップS561~S563についての説明は、図18におけるステップS531~S533についての説明と特段の差異はない。よって、ここでは重複する記載を省略し、ステップS565~S575のみを説明する。 Here, the description of steps S561 to S563 in the example of FIG. 19 is not particularly different from the description of steps S531 to S533 in FIG. Therefore, the description which overlaps here is abbreviate | omitted and only step S565-S575 is demonstrated.
 基地局100は、周辺基地局300が送信するチャネル品質測定用のリファレンス信号のコンフィギュレーション(即ち、RSコンフィギュレーション)を、端末装置200に通知する(S565)。また、基地局100は、上記RSコンフィギュレーションと関連付けて、周辺基地局300を端末装置200に通知する(S567)。例えば、基地局100は、上記RSコンフィギュレーションを示す情報と、周辺基地局300を識別するための識別情報(例えば、セルID)とを含むメッセージを、端末装置200へ送信する(S565、S567)。なお、基地局100が端末装置200に通知する上記RSコンフィギュレーションは、上記リファレンス信号の送信電力の増加量(又は当該送信電力の増加の有無)を含まなくてもよい。 The base station 100 notifies the terminal device 200 of the configuration (that is, RS configuration) of the reference signal for channel quality measurement transmitted by the neighboring base station 300 (S565). In addition, the base station 100 notifies the terminal device 200 of the neighboring base station 300 in association with the RS configuration (S567). For example, the base station 100 transmits a message including information indicating the RS configuration and identification information (for example, a cell ID) for identifying the neighboring base station 300 to the terminal device 200 (S565, S567). . Note that the RS configuration notified from the base station 100 to the terminal device 200 may not include the amount of increase in the transmission power of the reference signal (or the presence or absence of the increase in the transmission power).
 周辺基地局300は、チャネル品質測定用のリファレンス信号を送信する(S539)。 The peripheral base station 300 transmits a reference signal for channel quality measurement (S539).
 端末装置200は、周辺基地局300による送信される上記リファレンス信号からチャネルを推定する(S571)。その後、端末装置200は、当該チャネルに基づいて干渉量を算出する(S573)。例えば、端末装置200は、上記チャネル、及び、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する。 The terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S571). Thereafter, the terminal device 200 calculates an interference amount based on the channel (S573). For example, the terminal device 200 calculates the amount of interference of each of the plurality of directional beams based on the channel and a plurality of precoding matrices respectively corresponding to the plurality of directional beams.
 端末装置200は、干渉に関する干渉関連情報を基地局100に報告する(S575)。当該干渉関連情報は、端末装置200により算出された上記干渉量を示す情報を含む。また、例えば、上記干渉関連情報は、上記リファレンス信号を送信した周辺基地局300を識別するための上記識別情報(例えば、セルID)を含む。 The terminal device 200 reports interference-related information regarding interference to the base station 100 (S575). The interference related information includes information indicating the amount of interference calculated by the terminal device 200. Further, for example, the interference related information includes the identification information (for example, cell ID) for identifying the neighboring base station 300 that has transmitted the reference signal.
 基地局300は、上記リファレンス信号の送信電力の増加に関する電力増加情報(例えば、上記送信電力の増加量を示す情報)に基づいて、端末装置200により算出された上記干渉量を補正する(S577)。 The base station 300 corrects the interference amount calculated by the terminal device 200 based on power increase information (for example, information indicating the increase amount of the transmission power) related to an increase in the transmission power of the reference signal (S577). .
 基地局100は、干渉に関する干渉関連情報を周辺基地局300へ送信する(S579)。例えば、当該干渉関連情報は、基地局100により補正された上記干渉量を示す情報を含む。そして、周辺基地局300は、上記干渉関連情報に基づいて、指向性ビームに関する決定(例えば、指向性ビームの停止など)を行う(S581)。 The base station 100 transmits interference related information regarding interference to the neighboring base station 300 (S579). For example, the interference related information includes information indicating the interference amount corrected by the base station 100. Then, the neighboring base station 300 makes a decision on the directional beam (for example, stop of the directional beam) based on the interference related information (S581).
 (3)第3の例
 図20は、第3の実施形態に係る処理の概略的な流れの第3の例を示すシーケンス図である。
(3) Third Example FIG. 20 is a sequence diagram illustrating a third example of a schematic flow of processing according to the third embodiment.
 ここで、図20の例におけるステップS601~S607、S619~S621についての説明は、図19におけるステップS561~S567、S579~S581についての説明と特段の差異はない。よって、ここでは重複する記載を省略し、ステップS609~S617のみを説明する。 Here, the description of steps S601 to S607 and S619 to S621 in the example of FIG. 20 is not particularly different from the description of steps S561 to S567 and S579 to S581 of FIG. Therefore, the description which overlaps here is abbreviate | omitted and only step S609-S617 is demonstrated.
 周辺基地局300は、チャネル品質測定用のリファレンス信号を送信する(S609)。 The peripheral base station 300 transmits a reference signal for channel quality measurement (S609).
 端末装置200は、周辺基地局300による送信される上記リファレンス信号からチャネルを推定する(S611)。そして、端末装置200は、当該チャネルを基地局100に報告する(S613)。例えば、端末装置200は、当該チャネルに関連付けて、上記リファレンス信号を送信した周辺基地局300を識別するための識別情報も基地局100に報告する。 The terminal device 200 estimates a channel from the reference signal transmitted by the neighboring base station 300 (S611). Then, the terminal device 200 reports the channel to the base station 100 (S613). For example, the terminal device 200 reports the identification information for identifying the neighboring base station 300 that has transmitted the reference signal in association with the channel to the base station 100.
 基地局100は、上記チャネルに基づいて干渉量を算出し(S615)、上記リファレンス信号の送信電力の増加に関する電力増加情報(例えば、上記送信電力の増加量を示す情報)に基づいて上記干渉量を補正する(S617)。 The base station 100 calculates an interference amount based on the channel (S615), and the interference amount based on power increase information (for example, information indicating the increase amount of the transmission power) related to an increase in the transmission power of the reference signal. Is corrected (S617).
 <6.4.変形例>
 次に、図21を参照して、第3の実施形態に係る変形例を説明する。
<6.4. Modification>
Next, a modification according to the third embodiment will be described with reference to FIG.
 第3の実施形態の変形例では、基地局100(制御部153)は、2つ以上の周辺基地局300によりチャネル品質測定用のリファレンス信号が送信される第1の無線リソース、及び、2つ以上の他の周辺基地局300によりチャネル品質測定用のリファレンス信号が送信される第2の無線リソースを、端末装置200に通知する。 In the modification of the third embodiment, the base station 100 (the control unit 153) includes a first radio resource in which two or more neighboring base stations 300 transmit reference signals for channel quality measurement, and two The terminal apparatus 200 is notified of the second radio resource in which the reference signal for channel quality measurement is transmitted by the other peripheral base station 300 described above.
 (1)リファレンス信号の受信電力
 とりわけ第3の実施形態の変形例では、上記第1の無線リソースにおいて送信される上記リファレンス信号の端末装置200における受信電力は、上記第2の無線リソースにおいて送信される上記リファレンス信号の端末装置200における受信電力よりも大きい。即ち、同じくらいの受信電力をもたらすリファレンス信号が、同じ無線リソースで送信される。以下、この点について図21を参照して具体例を説明する。
(1) Receiving power of reference signal In particular, in the modification of the third embodiment, the receiving power of the reference signal transmitted in the first radio resource in the terminal device 200 is transmitted in the second radio resource. The received power of the reference signal in the terminal device 200 is larger. That is, reference signals that bring about the same received power are transmitted using the same radio resource. Hereinafter, a specific example of this point will be described with reference to FIG.
 図21は、CSI-RSが送信される無線リソースと当該CSI-RSの受信電力との関係の一例を説明するための説明図である。図21を参照すると、1サブフレームに含まれる2つのリソースブロックが示されている。この例では、基地局100は、無線リソース65(2つのリソースエレメント)においてCSI-RSを送信する。また、2つ以上の周辺基地局300が、無線リソース66(2つのリソースエレメント)においてCSI-RSを送信し、2つ以上の他の周辺基地局300が、無線リソース67(2つのリソースエレメント)においてCSI-RSを送信する。とりわけ、サービング基地局が基地局100である端末装置200において、無線リソース66において送信される上記CSI-RSの受信電力は、無線リソース67において送信される上記CSI-RSの受信電力よりも大きい。このように、受信電力が大きいCSI-RSを送信する上記2つ以上の周辺基地局300は、無線リソース66においてCSI-RSを送信し、受信電力が小さいCSI-RSを送信する上記2つ以上の他の周辺基地局300は、無線リソース67においてCSI-RSを送信する。 FIG. 21 is an explanatory diagram for explaining an example of a relationship between a radio resource to which CSI-RS is transmitted and received power of the CSI-RS. Referring to FIG. 21, two resource blocks included in one subframe are shown. In this example, the base station 100 transmits CSI-RS in the radio resource 65 (two resource elements). Also, two or more neighboring base stations 300 transmit CSI-RS in the radio resource 66 (two resource elements), and two or more other neighboring base stations 300 send radio resources 67 (two resource elements). CSI-RS is transmitted. In particular, in the terminal device 200 whose serving base station is the base station 100, the reception power of the CSI-RS transmitted in the radio resource 66 is larger than the reception power of the CSI-RS transmitted in the radio resource 67. As described above, the two or more neighboring base stations 300 that transmit the CSI-RS with high received power transmit the CSI-RS in the radio resource 66 and transmit the CSI-RS with low received power. The other neighboring base stations 300 transmit the CSI-RS in the radio resource 67.
 これにより、例えば、受信電力が大きい他のCSI-RSに起因して、受信電力が小さいCSI-RSが検出されなくなることを、回避することが可能になる。そのため、端末装置200(及び基地局300)から遠く離れた周辺基地局300(即ち、受信電力が小さいCSI-RSを送信する周辺基地局300)についての干渉を知ることが可能になる。 Thereby, for example, it is possible to avoid that CSI-RS with low reception power is not detected due to other CSI-RS with high reception power. Therefore, it becomes possible to know interference with a peripheral base station 300 (that is, a peripheral base station 300 that transmits a CSI-RS with low received power) far from the terminal device 200 (and the base station 300).
 なお、上述したように、例えば、周辺基地局300は、チャネル品質測定用のリファレンス信号の送信電力を増加してもよく、これにより、どの周辺基地局300がどの無線リソースを使用するかを柔軟に決めることが可能になり得る。 Note that, as described above, for example, the peripheral base station 300 may increase the transmission power of the reference signal for channel quality measurement, which allows flexible control of which peripheral base station 300 uses which radio resource. It may be possible to decide on.
 (2)通知手法
 例えば、上記2つ以上の周辺基地局300により送信される上記リファレンス信号のコンフィギュレーションは、上記第1の無線リソースを含む。そのため、基地局100(制御部153)は、当該コンフィギュレーションを端末装置200に通知することにより、上記第1の無線リソースを端末装置200に通知する。
(2) Notification method For example, the configuration of the reference signal transmitted by the two or more neighboring base stations 300 includes the first radio resource. Therefore, the base station 100 (control unit 153) notifies the terminal device 200 of the first radio resource by notifying the terminal device 200 of the configuration.
 同様に、例えば、上記2つ以上の他の周辺基地局300により送信される上記リファレンス信号のコンフィギュレーションは、上記第2の無線リソースを含む。そのため、基地局100(制御部153)は、当該コンフィギュレーションを端末装置200に通知することにより、上記第2の無線リソースを端末装置200に通知する。 Similarly, for example, the configuration of the reference signal transmitted by the two or more other neighboring base stations 300 includes the second radio resource. Therefore, the base station 100 (the control unit 153) notifies the terminal device 200 of the second radio resource by notifying the terminal device 200 of the configuration.
 以上、第3の実施形態を説明した。なお、第3の実施形態は、第1の実施形態又は第2の実施形態と組合せられてもよい。具体的には、第1の実施形態又は第2の実施形態に係る基地局100(情報取得部151及び制御部153)は、第3の実施形態に係る基地局100(情報取得部151及び制御部153)の動作を同様に行ってもよい。また、第1の実施形態又は第2の実施形態に係る端末装置200(情報取得部241及び制御部243)は、第3の実施形態に係る端末装置200(情報取得部241及び制御部243)の動作を同様に行ってもよい。 The third embodiment has been described above. Note that the third embodiment may be combined with the first embodiment or the second embodiment. Specifically, the base station 100 (the information acquisition unit 151 and the control unit 153) according to the first embodiment or the second embodiment is the base station 100 (the information acquisition unit 151 and the control unit according to the third embodiment). The operation of the unit 153) may be performed similarly. Further, the terminal device 200 (information acquisition unit 241 and control unit 243) according to the first embodiment or the second embodiment is the same as the terminal device 200 (information acquisition unit 241 and control unit 243) according to the third embodiment. These operations may be performed in the same manner.
 <<7.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
<< 7. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB. The small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB. Instead, the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station). Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。 Further, for example, the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. The terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
 <7.1.基地局に関する応用例>
 (第1の応用例)
 図15は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
<7.1. Application examples for base stations>
(First application example)
FIG. 15 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図15に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図15にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。 Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820. The eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 15, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Although FIG. 15 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。 The base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。 The controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node. The memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。 The network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. The controller 821 may communicate with the core network node or other eNB via the network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface). The network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。 The wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810. The wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like. The BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). Various signal processing of (Packet Data Convergence Protocol) is executed. The BB processor 826 may have some or all of the logical functions described above instead of the controller 821. The BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good. Further, the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade. On the other hand, the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
 無線通信インタフェース825は、図15に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図15に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図15には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。 The wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 15, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 15, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 15 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
 図15に示したeNB800において、図8を参照して説明した情報取得部151及び制御部153は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び制御部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び制御部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び制御部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、情報取得部151及び制御部153を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 800 illustrated in FIG. 15, the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good. In this case, the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and / or the controller 821 executes the program. Also good. As described above, the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図15に示したeNB800において、図8を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。 Further, in the eNB 800 illustrated in FIG. 15, the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
 (第2の応用例)
 図16は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(Second application example)
FIG. 16 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図16に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図16にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。 Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860. The eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 16, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 16 shows an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図15を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。 The base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857. The controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図15を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図16に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図16には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。 The wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840. The wireless communication interface 855 may typically include a BB processor 856 and the like. The BB processor 856 is the same as the BB processor 826 described with reference to FIG. 15 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857. The wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 16, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 16 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860. The connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。 In addition, the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850. The connection interface 861 may be a communication module for communication on the high-speed line.
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図16に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図16には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。 The wireless communication interface 863 transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 may typically include an RF circuit 864 and the like. The RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 840. The wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 16, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 16 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
 図16に示したeNB830において、図8を参照して説明した情報取得部151及び制御部153は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び制御部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び制御部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び制御部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、情報取得部151及び制御部153を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び制御部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 830 illustrated in FIG. 16, the information acquisition unit 151 and the control unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a part of the wireless communication interface 855 (for example, the BB processor 856) or / and a module including the controller 851, and the information acquisition unit 151 and the control unit 153 are mounted in the module. Also good. In this case, the module stores a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 (in other words, a program for causing the processor to execute operations of the information acquisition unit 151 and the control unit 153). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 151 and the control unit 153 is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 execute the program. Also good. As described above, the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the information acquisition unit 151 and the control unit 153, and a program for causing the processor to function as the information acquisition unit 151 and the control unit 153 is provided. May be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図16に示したeNB830において、例えば、図8を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。 In the eNB 830 illustrated in FIG. 16, for example, the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864). The antenna unit 110 may be mounted on the antenna 840. The network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
 <7.2.端末装置に関する応用例>
 (第1の応用例)
 図17は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
<7.2. Application examples related to terminal devices>
(First application example)
FIG. 17 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied. The smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915. One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。 The processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900. The memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data. The storage 903 can include a storage medium such as a semiconductor memory or a hard disk. The external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。 The camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image. The sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor. The microphone 908 converts sound input to the smartphone 900 into an audio signal. The input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user. The display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900. The speaker 911 converts an audio signal output from the smartphone 900 into audio.
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図17に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図17には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。 The wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like. The BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916. The wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated. The wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. FIG. 17 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914. However, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。 Furthermore, the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method. In that case, a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。 Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図17に示したように複数のアンテナ916を有してもよい。なお、図17にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。 Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912. The smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 17 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。 Furthermore, the smartphone 900 may include an antenna 916 for each wireless communication method. In that case, the antenna switch 915 may be omitted from the configuration of the smartphone 900.
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図17に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。 The bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. . The battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 17 through a power supply line partially shown by a broken line in the drawing. For example, the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
 図17に示したスマートフォン900において、図9を参照して説明した情報取得部241及び制御部243は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて情報取得部241及び制御部243が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部241及び制御部243として機能させるためのプログラム(換言すると、プロセッサに情報取得部241及び制御部243の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、情報取得部241及び制御部243を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 17, the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the information acquisition unit 241 and the control unit in the module. 243 may be implemented. In this case, the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is installed. The program may be executed. As described above, the smartphone 900 or the module may be provided as an apparatus including the information acquisition unit 241 and the control unit 243, or a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 may be provided. Good. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図17に示したスマートフォン900において、例えば、図9を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。 Further, in the smartphone 900 shown in FIG. 17, for example, the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914). The antenna unit 210 may be mounted on the antenna 916.
 (第2の応用例)
 図18は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
(Second application example)
FIG. 18 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied. The car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. The interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。 The processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920. The memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。 The GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites. The sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor. The data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。 The content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928. The input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user. The display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced. The speaker 931 outputs the navigation function or the audio of the content to be played back.
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図18に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図18には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。 The wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like. The BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937. The wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated. The wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 18 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。 Further, the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method. A BB processor 934 and an RF circuit 935 may be included for each communication method.
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。 Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図18に示したように複数のアンテナ937を有してもよい。なお、図18にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。 Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933. The car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 18 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。 Furthermore, the car navigation device 920 may include an antenna 937 for each wireless communication method. In that case, the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図18に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。 The battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 18 through a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
 図18に示したカーナビゲーション装置920において、図9を参照して説明した情報取得部241及び制御部243は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて情報取得部241及び制御部243が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部241及び制御部243として機能させるためのプログラム(換言すると、プロセッサに情報取得部241及び制御部243の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、情報取得部241及び制御部243を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを情報取得部241及び制御部243として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the car navigation device 920 shown in FIG. 18, the information acquisition unit 241 and the control unit 243 described with reference to FIG. 9 may be implemented in the wireless communication interface 933. Alternatively, at least some of these components may be implemented in the processor 921. As an example, the car navigation device 920 includes a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and / or the processor 921, and the information acquisition unit 241 and the control unit 243 are mounted in the module. May be. In this case, the module stores a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 (in other words, a program for causing the processor to execute operations of the information acquisition unit 241 and the control unit 243). The program may be executed. As another example, a program for causing a processor to function as the information acquisition unit 241 and the control unit 243 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 executes the program. May be executed. As described above, the car navigation device 920 or the module may be provided as a device including the information acquisition unit 241 and the control unit 243, and a program for causing the processor to function as the information acquisition unit 241 and the control unit 243 is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図18に示したカーナビゲーション装置920において、例えば、図9を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。 Further, in the car navigation apparatus 920 shown in FIG. 18, for example, the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935). The antenna unit 210 may be mounted on the antenna 937.
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、情報取得部241及び制御部243を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。 Also, the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241 and the control unit 243. The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
 <<8.まとめ>>
 ここまで、図5~図25を参照して、本開示の実施形態に係る各装置及び各処理を説明した。
<< 8. Summary >>
So far, each device and each process according to the embodiment of the present disclosure has been described with reference to FIGS.
 (1)第1の実施形態
 第1の実施形態によれば、端末装置200は、チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する情報取得部241と、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する制御部243と、を備える。
(1) First Embodiment According to the first embodiment, the terminal device 200 includes a plurality of precoding matrices respectively corresponding to a channel estimated from a channel quality measurement reference signal and a plurality of directional beams. And an information acquisition unit 241 that acquires the interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
 (2)第2の実施形態
 第2の実施形態によれば、基地局100は、チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する情報取得部151と、上記チャネル及び上記複数のプリコーディングマトリクスに基づいて、上記複数の指向性ビームの各々の干渉量を算出する制御部153と、を備える。
(2) Second Embodiment According to the second embodiment, the base station 100 includes a plurality of precoding matrices each corresponding to a channel estimated from a channel quality measurement reference signal and a plurality of directional beams. And a control unit 153 that calculates the amount of interference of each of the plurality of directional beams based on the channel and the plurality of precoding matrices.
 (3)第3の実施形態
 第3の実施形態によれば、基地局100は、周辺基地局300により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得する情報取得部151と、上記電力増加情報を使用して、上記リファレンス信号から算出される干渉量の補正のための制御を行う制御部153と、を備える。
(3) Third Embodiment According to the third embodiment, the base station 100 obtains power increase information related to an increase in transmission power of a channel quality measurement reference signal transmitted by the neighboring base station 300. An acquisition unit 151 and a control unit 153 that performs control for correcting an interference amount calculated from the reference signal using the power increase information.
 第1~3の実施形態によれば、例えば、指向性ビームの干渉の状況をより適切に知ることが可能になる。 According to the first to third embodiments, for example, it becomes possible to know the state of directional beam interference more appropriately.
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this indication was described referring an accompanying drawing, it cannot be overemphasized that this indication is not limited to the example concerned. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present disclosure. Understood.
 例えば、システムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、他の通信規格に準拠したシステムであってもよい。 For example, although the example in which the system is a system compliant with LTE, LTE-Advanced, or a communication standard based on these has been described, the present disclosure is not limited to such an example. For example, the communication system may be a system that complies with other communication standards.
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。 In addition, the processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram. For example, the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
 また、本明細書の装置(例えば、基地局、基地局装置若しくは基地局装置のためのモジュール、又は、端末装置若しくは端末装置のためのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の構成要素(例えば、情報取得部及び制御部など)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、基地局、基地局装置若しくは基地局装置のためのモジュール、又は、端末装置若しくは端末装置のためのモジュール)も提供されてもよい。また、上記装置の構成要素(例えば、情報取得部及び通信制御部など)の動作を含む方法も、本開示に係る技術に含まれる。 In addition, a processor (for example, a CPU, a DSP, or the like) included in a device of the present specification (for example, a base station, a base station device, a module for a base station device, or a terminal device or a module for a terminal device) is provided. It is also possible to create a computer program (in other words, a computer program for causing the processor to execute the operation of the component of the device) to function as a component of the device (for example, an information acquisition unit and a control unit). . Moreover, a recording medium on which the computer program is recorded may be provided. An apparatus (for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a device including a memory for storing the computer program and one or more processors capable of executing the computer program) A module for a terminal device may also be provided. In addition, a method including the operation of the components of the device (for example, an information acquisition unit and a communication control unit) is also included in the technology according to the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in the present specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する取得部と、
 前記チャネル及び前記複数のプリコーディングマトリクスに基づいて、前記複数の指向性ビームの各々の干渉量を算出する制御部と、
を備える装置。
(2)
 前記チャネルは、端末装置により推定されるチャネルであり、
 前記リファレンス信号は、前記端末装置のサービング基地局の周辺基地局により送信される信号である、
前記(1)に記載の装置。
(3)
 前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、前記(2)に記載の装置。
(4)
 前記装置は、前記サービング基地局、前記サービング基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(2)に記載の装置。
(5)
 前記複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である、前記(2)~(4)のいずれか1項に記載の装置。
(6)
 前記複数のプリコーディングマトリクスは、前記周辺基地局が前記サービング基地局に通知するプリコーディングマトリクスである、前記(5)に記載の装置。
(7)
 前記複数の指向性ビームは、水平方向及び垂直方向の一方における指向性が限定されている指向性ビームである、前記(5)又は(6)に記載の装置。
(8)
 前記リファレンス信号は、チャネル状態情報リファレンス信号(CSI-RS)である、前記(1)~(7)のいずれか1項に記載の装置。
(9)
 チャネル品質測定用のリファレンス信号のコンフィギュレーションを示す情報を取得する取得部と、
 前記コンフィギュレーションを端末装置に通知する制御部と、
を備え、
 前記取得部は、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスであって、定義されている全てのプリコーディングマトリクスのうちの一部である前記複数のプリコーディングマトリクスを示す情報を取得し、
 前記制御部は、前記コンフィギュレーションと関連付けて、前記複数のプリコーディングマトリクスを前記端末装置に通知する、
装置。
(10)
 前記コンフィギュレーションは、前記リファレンス信号の送信に使用される無線リソース、及び前記リファレンス信号のシーケンスのうちの、少なくとも一方を含む、前記(9)に記載の装置。
(11)
 前記制御部は、前記コンフィギュレーションと関連付けて、前記リファレンス信号を送信する周辺基地局を前記端末装置に通知する、前記(9)又は(10)に記載の装置。
(12)
 前記端末装置は、前記リファレンス信号から推定されるチャネル及び前記複数のプリコーディングマトリクスに基づいて前記複数の指向性ビームの各々の干渉量を算出する端末装置である、前記(9)~(11)のいずれか1項に記載の装置。
(13)
 周辺基地局により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得する取得部と、
 前記電力増加情報を使用して、前記リファレンス信号から算出される干渉量の補正のための制御を行う制御部と、
を備える装置。
(14)
 前記制御は、前記リファレンス信号から干渉量を算出する端末装置に前記電力増加情報を通知することである、前記(13)に記載の装置。
(15)
 前記制御は、前記電力増加情報に基づいて、前記リファレンス信号から算出される干渉量を補正することである、前記(13)に記載の装置。
(16)
 前記装置は、基地局、基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(15)に記載の装置。
(17)
 前記装置は、端末装置、又は端末装置のためのモジュールであり、
 前記電力増加情報は、前記端末装置のサービング基地局が前記端末装置に通知する情報である、
前記(15)に記載の装置。
(18)
 前記電力増加情報は、前記周辺基地局により提供される情報である、前記(13)~(17)のいずれか1項に記載の装置。
(19)
 前記電力増加情報は、前記リファレンス信号の送信電力の増加量を示す、前記(13)~(18)のいずれか1項に記載の装置。
(20)
 前記制御部は、2つ以上の周辺基地局によりチャネル品質測定用のリファレンス信号が送信される第1の無線リソース、及び、2つ以上の他の周辺基地局によりチャネル品質測定用のリファレンス信号が送信される第2の無線リソースを、端末装置に通知し、
 前記第1の無線リソースにおいて送信される前記リファレンス信号の前記端末装置における受信電力は、前記第2の無線リソースにおいて送信される前記リファレンス信号の前記端末装置における受信電力よりも大きい、
前記(13)~(19)のいずれか1項に記載の装置。
(21)
 プロセッサにより、
 チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得することと、
 前記チャネル及び前記複数のプリコーディングマトリクスに基づいて、前記複数の指向性ビームの各々の干渉量を算出することと、
を含む方法。
(22)
 チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得することと、
 前記チャネル及び前記複数のプリコーディングマトリクスに基づいて、前記複数の指向性ビームの各々の干渉量を算出することと、
をプロセッサに実行させるためのプログラム。
(23)
 チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得することと、
 前記チャネル及び前記複数のプリコーディングマトリクスに基づいて、前記複数の指向性ビームの各々の干渉量を算出することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(24)
 プロセッサにより、
 チャネル品質測定用のリファレンス信号のコンフィギュレーションを示す情報を取得することと、
 前記コンフィギュレーションを端末装置に通知することと、
 複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスであって、定義されている全てのプリコーディングマトリクスのうちの一部である前記複数のプリコーディングマトリクスを示す情報を取得することと、
 前記コンフィギュレーションと関連付けて、前記複数のプリコーディングマトリクスを前記端末装置に通知することと、
を含む方法。
(25)
 チャネル品質測定用のリファレンス信号のコンフィギュレーションを示す情報を取得することと、
 前記コンフィギュレーションを端末装置に通知することと、
 複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスであって、定義されている全てのプリコーディングマトリクスのうちの一部である前記複数のプリコーディングマトリクスを示す情報を取得することと、
 前記コンフィギュレーションと関連付けて、前記複数のプリコーディングマトリクスを前記端末装置に通知することと、
をプロセッサに実行させるためのプログラム。
(26)
 チャネル品質測定用のリファレンス信号のコンフィギュレーションを示す情報を取得することと、
 前記コンフィギュレーションを端末装置に通知することと、
 複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスであって、定義されている全てのプリコーディングマトリクスのうちの一部である前記複数のプリコーディングマトリクスを示す情報を取得することと、
 前記コンフィギュレーションと関連付けて、前記複数のプリコーディングマトリクスを前記端末装置に通知することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(27)
 プロセッサにより、
 周辺基地局により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得することと、
 前記電力増加情報を使用して、前記リファレンス信号から算出される干渉量の補正のための制御を行うことと、
を含む方法。
(28)
 周辺基地局により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得することと、
 前記電力増加情報を使用して、前記リファレンス信号から算出される干渉量の補正のための制御を行うことと、
をプロセッサに実行させるためのプログラム。
(29)
 周辺基地局により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得することと、
 前記電力増加情報を使用して、前記リファレンス信号から算出される干渉量の補正のための制御を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
The following configurations also belong to the technical scope of the present disclosure.
(1)
An acquisition unit that acquires a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams;
A control unit that calculates an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
A device comprising:
(2)
The channel is a channel estimated by a terminal device,
The reference signal is a signal transmitted by a peripheral base station of a serving base station of the terminal device,
The apparatus according to (1) above.
(3)
The device according to (2), wherein the device is the terminal device or a module for the terminal device.
(4)
The apparatus according to (2), wherein the apparatus is the serving base station, a base station apparatus for the serving base station, or a module for the base station apparatus.
(5)
The apparatus according to any one of (2) to (4), wherein the plurality of precoding matrices are a part of all defined precoding matrices.
(6)
The apparatus according to (5), wherein the plurality of precoding matrices are precoding matrices that the neighboring base station notifies to the serving base station.
(7)
The apparatus according to (5) or (6), wherein the plurality of directional beams are directional beams in which directivity in one of a horizontal direction and a vertical direction is limited.
(8)
The apparatus according to any one of (1) to (7), wherein the reference signal is a channel state information reference signal (CSI-RS).
(9)
An acquisition unit for acquiring information indicating a configuration of a reference signal for channel quality measurement;
A control unit for notifying the terminal device of the configuration;
With
The acquisition unit acquires a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices. And
The control unit notifies the terminal device of the plurality of precoding matrices in association with the configuration.
apparatus.
(10)
The apparatus according to (9), wherein the configuration includes at least one of a radio resource used for transmission of the reference signal and a sequence of the reference signal.
(11)
The device according to (9) or (10), wherein the control unit notifies the terminal device of a neighboring base station that transmits the reference signal in association with the configuration.
(12)
The terminal device is a terminal device that calculates the amount of interference of each of the plurality of directional beams based on a channel estimated from the reference signal and the plurality of precoding matrices, (9) to (11) The apparatus of any one of these.
(13)
An acquisition unit for acquiring power increase information related to an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station;
A control unit that performs control for correcting an interference amount calculated from the reference signal using the power increase information;
A device comprising:
(14)
The device according to (13), wherein the control is notification of the power increase information to a terminal device that calculates an interference amount from the reference signal.
(15)
The apparatus according to (13), wherein the control is to correct an interference amount calculated from the reference signal based on the power increase information.
(16)
The apparatus according to (15), wherein the apparatus is a base station, a base station apparatus for the base station, or a module for the base station apparatus.
(17)
The device is a terminal device or a module for the terminal device,
The power increase information is information notified to the terminal device by the serving base station of the terminal device.
The device according to (15) above.
(18)
The apparatus according to any one of (13) to (17), wherein the power increase information is information provided by the neighboring base station.
(19)
The apparatus according to any one of (13) to (18), wherein the power increase information indicates an increase amount of transmission power of the reference signal.
(20)
The control unit includes a first radio resource in which a reference signal for channel quality measurement is transmitted by two or more neighboring base stations, and a reference signal for channel quality measurement by two or more other neighboring base stations. Notifying the terminal device of the second radio resource to be transmitted,
The received power of the reference signal transmitted in the first radio resource in the terminal device is larger than the received power of the reference signal transmitted in the second radio resource in the terminal device.
The apparatus according to any one of (13) to (19).
(21)
Depending on the processor
Obtaining a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams;
Calculating an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
Including methods.
(22)
Obtaining a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams;
Calculating an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
A program that causes a processor to execute.
(23)
Obtaining a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams;
Calculating an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
A readable recording medium on which a program for causing a processor to execute is recorded.
(24)
Depending on the processor
Obtaining information indicating the configuration of a reference signal for channel quality measurement;
Notifying the terminal device of the configuration;
Obtaining a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices;
In association with the configuration, notifying the terminal device of the plurality of precoding matrices;
Including methods.
(25)
Obtaining information indicating the configuration of a reference signal for channel quality measurement;
Notifying the terminal device of the configuration;
Obtaining a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices;
In association with the configuration, notifying the terminal device of the plurality of precoding matrices;
A program that causes a processor to execute.
(26)
Obtaining information indicating the configuration of a reference signal for channel quality measurement;
Notifying the terminal device of the configuration;
Obtaining a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices;
In association with the configuration, notifying the terminal device of the plurality of precoding matrices;
A readable recording medium on which a program for causing a processor to execute is recorded.
(27)
Depending on the processor
Obtaining power increase information regarding an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station;
Performing control for correcting the amount of interference calculated from the reference signal using the power increase information;
Including methods.
(28)
Obtaining power increase information regarding an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station;
Performing control for correcting the amount of interference calculated from the reference signal using the power increase information;
A program that causes a processor to execute.
(29)
Obtaining power increase information regarding an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station;
Performing control for correcting the amount of interference calculated from the reference signal using the power increase information;
A readable recording medium on which a program for causing a processor to execute is recorded.
 1    システム
 100  基地局
 101  セル
 151  情報取得部
 153  制御部
 200  端末装置
 241  情報取得部
 243  制御部
DESCRIPTION OF SYMBOLS 1 System 100 Base station 101 Cell 151 Information acquisition part 153 Control part 200 Terminal device 241 Information acquisition part 243 Control part

Claims (20)

  1.  チャネル品質測定用のリファレンス信号から推定されるチャネルと、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスとを取得する取得部と、
     前記チャネル及び前記複数のプリコーディングマトリクスに基づいて、前記複数の指向性ビームの各々の干渉量を算出する制御部と、
    を備える装置。
    An acquisition unit that acquires a channel estimated from a reference signal for channel quality measurement and a plurality of precoding matrices respectively corresponding to a plurality of directional beams;
    A control unit that calculates an interference amount of each of the plurality of directional beams based on the channel and the plurality of precoding matrices;
    A device comprising:
  2.  前記チャネルは、端末装置により推定されるチャネルであり、
     前記リファレンス信号は、前記端末装置のサービング基地局の周辺基地局により送信される信号である、
    請求項1に記載の装置。
    The channel is a channel estimated by a terminal device,
    The reference signal is a signal transmitted by a peripheral base station of a serving base station of the terminal device,
    The apparatus of claim 1.
  3.  前記装置は、前記端末装置、又は前記端末装置のためのモジュールである、請求項2に記載の装置。 The apparatus according to claim 2, wherein the apparatus is the terminal apparatus or a module for the terminal apparatus.
  4.  前記装置は、前記サービング基地局、前記サービング基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項2に記載の装置。 The apparatus according to claim 2, wherein the apparatus is the serving base station, a base station apparatus for the serving base station, or a module for the base station apparatus.
  5.  前記複数のプリコーディングマトリクスは、定義されている全てのプリコーディングマトリクスのうちの一部である、請求項2に記載の装置。 The apparatus according to claim 2, wherein the plurality of precoding matrices are a part of all defined precoding matrices.
  6.  前記複数のプリコーディングマトリクスは、前記周辺基地局が前記サービング基地局に通知するプリコーディングマトリクスである、請求項5に記載の装置。 The apparatus according to claim 5, wherein the plurality of precoding matrices are precoding matrices that the neighboring base station notifies to the serving base station.
  7.  前記複数の指向性ビームは、水平方向及び垂直方向の一方における指向性が限定されている指向性ビームである、請求項5に記載の装置。 The apparatus according to claim 5, wherein the plurality of directional beams are directional beams having limited directivity in one of a horizontal direction and a vertical direction.
  8.  前記リファレンス信号は、チャネル状態情報リファレンス信号(CSI-RS)である、請求項1に記載の装置。 The apparatus according to claim 1, wherein the reference signal is a channel state information reference signal (CSI-RS).
  9.  チャネル品質測定用のリファレンス信号のコンフィギュレーションを示す情報を取得する取得部と、
     前記コンフィギュレーションを端末装置に通知する制御部と、
    を備え、
     前記取得部は、複数の指向性ビームにそれぞれ対応する複数のプリコーディングマトリクスであって、定義されている全てのプリコーディングマトリクスのうちの一部である前記複数のプリコーディングマトリクスを示す情報を取得し、
     前記制御部は、前記コンフィギュレーションと関連付けて、前記複数のプリコーディングマトリクスを前記端末装置に通知する、
    装置。
    An acquisition unit for acquiring information indicating a configuration of a reference signal for channel quality measurement;
    A control unit for notifying the terminal device of the configuration;
    With
    The acquisition unit acquires a plurality of precoding matrices respectively corresponding to a plurality of directional beams, the information indicating the plurality of precoding matrices being a part of all defined precoding matrices. And
    The control unit notifies the terminal device of the plurality of precoding matrices in association with the configuration.
    apparatus.
  10.  前記コンフィギュレーションは、前記リファレンス信号の送信に使用される無線リソース、及び前記リファレンス信号のシーケンスのうちの、少なくとも一方を含む、請求項9に記載の装置。 The apparatus according to claim 9, wherein the configuration includes at least one of a radio resource used for transmission of the reference signal and a sequence of the reference signal.
  11.  前記制御部は、前記コンフィギュレーションと関連付けて、前記リファレンス信号を送信する周辺基地局を前記端末装置に通知する、請求項9に記載の装置。 The device according to claim 9, wherein the control unit notifies the terminal device of a neighboring base station that transmits the reference signal in association with the configuration.
  12.  前記端末装置は、前記リファレンス信号から推定されるチャネル及び前記複数のプリコーディングマトリクスに基づいて前記複数の指向性ビームの各々の干渉量を算出する端末装置である、請求項9に記載の装置。 The apparatus according to claim 9, wherein the terminal apparatus is a terminal apparatus that calculates an interference amount of each of the plurality of directional beams based on a channel estimated from the reference signal and the plurality of precoding matrices.
  13.  周辺基地局により送信されるチャネル品質測定用のリファレンス信号の送信電力の増加に関する電力増加情報を取得する取得部と、
     前記電力増加情報を使用して、前記リファレンス信号から算出される干渉量の補正のための制御を行う制御部と、
    を備える装置。
    An acquisition unit for acquiring power increase information related to an increase in transmission power of a reference signal for channel quality measurement transmitted by a neighboring base station;
    A control unit that performs control for correcting an interference amount calculated from the reference signal using the power increase information;
    A device comprising:
  14.  前記制御は、前記リファレンス信号から干渉量を算出する端末装置に前記電力増加情報を通知することである、請求項13に記載の装置。 The apparatus according to claim 13, wherein the control is to notify the terminal apparatus that calculates an interference amount from the reference signal of the power increase information.
  15.  前記制御は、前記電力増加情報に基づいて、前記リファレンス信号から算出される干渉量を補正することである、請求項13に記載の装置。 The apparatus according to claim 13, wherein the control is to correct an interference amount calculated from the reference signal based on the power increase information.
  16.  前記装置は、基地局、基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項15に記載の装置。 The apparatus according to claim 15, wherein the apparatus is a base station, a base station apparatus for the base station, or a module for the base station apparatus.
  17.  前記装置は、端末装置、又は端末装置のためのモジュールであり、
     前記電力増加情報は、前記端末装置のサービング基地局が前記端末装置に通知する情報である、
    請求項15に記載の装置。
    The device is a terminal device or a module for the terminal device,
    The power increase information is information notified to the terminal device by the serving base station of the terminal device.
    The apparatus according to claim 15.
  18.  前記電力増加情報は、前記周辺基地局により提供される情報である、請求項13に記載の装置。 The apparatus according to claim 13, wherein the power increase information is information provided by the neighboring base station.
  19.  前記電力増加情報は、前記リファレンス信号の送信電力の増加量を示す、請求項13に記載の装置。 The apparatus according to claim 13, wherein the power increase information indicates an increase amount of transmission power of the reference signal.
  20.  前記制御部は、2つ以上の周辺基地局によりチャネル品質測定用のリファレンス信号が送信される第1の無線リソース、及び、2つ以上の他の周辺基地局によりチャネル品質測定用のリファレンス信号が送信される第2の無線リソースを、端末装置に通知し、
     前記第1の無線リソースにおいて送信される前記リファレンス信号の前記端末装置における受信電力は、前記第2の無線リソースにおいて送信される前記リファレンス信号の前記端末装置における受信電力よりも大きい、
    請求項13に記載の装置。
    The control unit includes a first radio resource in which a reference signal for channel quality measurement is transmitted by two or more neighboring base stations, and a reference signal for channel quality measurement by two or more other neighboring base stations. Notifying the terminal device of the second radio resource to be transmitted,
    The received power of the reference signal transmitted in the first radio resource in the terminal device is larger than the received power of the reference signal transmitted in the second radio resource in the terminal device.
    The apparatus of claim 13.
PCT/JP2015/082312 2015-01-29 2015-11-17 Device WO2016121200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-015975 2015-01-29
JP2015015975 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121200A1 true WO2016121200A1 (en) 2016-08-04

Family

ID=56542838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082312 WO2016121200A1 (en) 2015-01-29 2015-11-17 Device

Country Status (1)

Country Link
WO (1) WO2016121200A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315197A1 (en) * 2010-12-14 2013-11-28 Lg Electronics Inc. Method for transmitting and method for receiving a channel state information reference signal in a distributed multi-node system
JP2014053811A (en) * 2012-09-07 2014-03-20 Ntt Docomo Inc Radio communication method, user terminal, radio base station, and radio communication system
JP2014531811A (en) * 2011-09-19 2014-11-27 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for operating a multi-beamforming transceiver in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315197A1 (en) * 2010-12-14 2013-11-28 Lg Electronics Inc. Method for transmitting and method for receiving a channel state information reference signal in a distributed multi-node system
JP2014531811A (en) * 2011-09-19 2014-11-27 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for operating a multi-beamforming transceiver in a wireless communication system
JP2014053811A (en) * 2012-09-07 2014-03-20 Ntt Docomo Inc Radio communication method, user terminal, radio base station, and radio communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RENESAS MOBILE EUROPE LTD.: "Study on remaining open issues for interference measurement resources", 3GPP TSG-RAN WG1#69 R1-122354, 25 May 2012 (2012-05-25) *

Similar Documents

Publication Publication Date Title
JP6680384B2 (en) Communication device, method, and program
US11424894B2 (en) Apparatus and method
WO2015045659A1 (en) Communication control device, communication control method, terminal device, and information processing device
WO2015033661A1 (en) Communication control apparatus, communication control method and terminal apparatus
JP6863275B2 (en) apparatus
WO2015186380A1 (en) Terminal apparatus, base station, and program
US11750259B2 (en) Apparatus and method
JP6468286B2 (en) Apparatus and method
WO2015170651A1 (en) Device
WO2016121252A1 (en) Device and method
WO2015029604A1 (en) Communication control apparatus, communication control method, and terminal apparatus
WO2016121200A1 (en) Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15880092

Country of ref document: EP

Kind code of ref document: A1