WO2016121072A1 - Flying robot device - Google Patents

Flying robot device Download PDF

Info

Publication number
WO2016121072A1
WO2016121072A1 PCT/JP2015/052597 JP2015052597W WO2016121072A1 WO 2016121072 A1 WO2016121072 A1 WO 2016121072A1 JP 2015052597 W JP2015052597 W JP 2015052597W WO 2016121072 A1 WO2016121072 A1 WO 2016121072A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying robot
voltage
power supply
cable
supply device
Prior art date
Application number
PCT/JP2015/052597
Other languages
French (fr)
Japanese (ja)
Inventor
健蔵 野波
藤井 知
ワサンタ サマラサンガ
ティトゥス ヴォイタラ
英臣 荒井
泰之 楠見
Original Assignee
株式会社自律制御システム研究所
株式会社菊池製作所
ソニー・エナジー・デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社自律制御システム研究所, 株式会社菊池製作所, ソニー・エナジー・デバイス株式会社 filed Critical 株式会社自律制御システム研究所
Priority to JP2016571613A priority Critical patent/JP6626009B2/en
Priority to PCT/JP2015/052597 priority patent/WO2016121072A1/en
Publication of WO2016121072A1 publication Critical patent/WO2016121072A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a flying robot apparatus.More specifically, the present invention can continuously fly while feeding power from outside, and can perform unmanned operations such as spraying agrochemicals, aerial photography, and radiation measurement from the air. In addition, the present invention relates to an industrial flying robot apparatus that does not cause a crash even if there is a gust of wind or disconnection of a power supply line.
  • a flying robot for performing a predetermined work in the air forms such as an electric helicopter and an electric airplane are known.
  • both of them are an electric motor and a battery (for example, lithium ion) that drives the electric motor. ⁇ Battery), and is configured to work while flying autonomously within the capacity range of the battery. For this reason, the flight time is generally limited to a short time of about 15 to 30 minutes.
  • the payload of the flying robot increases according to the work, the power consumption required for the flight further increases, so that the flight time is further restricted. For example, if the payload is 15 kg or more, the flight time is 5 minutes or less, and it is practically impossible to use for work.
  • the weight of the battery mounted on the flying robot increases, so that the substantial payload decreases by the increased weight. Therefore, in order to put the unmanned work in the air by this kind of flying robot into practical use, it is necessary to eliminate such a difficulty (trade-off) by some measure.
  • a toy airplane which is disclosed in Patent Document 1 (Japanese Patent Publication No. 11-509758) and can fly by remote control in a closed area such as a room is disclosed.
  • This toy airplane includes a model airplane and a remote control device connected to the model airplane via a flexible cable. Power is supplied to the electric motor on the model airplane from a power source (battery) built in the remote control device via the cable. The cable is connected near the center of gravity of the model airplane at the bottom. This is because the floating weight of the model airplane is as small as 1.5 g / dm 2 or less, and it is not an industrial use but a toy. Also, the power supply is built in the remote control device.
  • model airplane has a fixed elevator, and the raising and lowering of the model airplane is performed by changing the electric energy supplied to the electric motor.
  • the model rudder is driven (ie, altitude adjustment) by changing the direct current (DC) voltage applied to the induction coil (summary, correspondence between claims 1 to 4 and the detailed description of the invention). Location, see Figures 1-4).
  • the remote control helicopter control mechanism is a remote control helicopter control mechanism that is remotely controlled by receiving a signal from a transmitter in a receiver mounted on the aircraft, and is a tension rope attached to the helicopter aircraft A reel A and a reel B that winds up a signal transmission cable connecting the transmitter and the receiver.
  • These reels A and B have a reel B feeding amount and a winding amount larger than that of the reel A.
  • the signal transmission cable is guided by the tension rope so as to be sent out and wound up.
  • the floating body includes a trunk portion, a pair of main wings attached to both sides of the trunk portion, a winding shaft provided between the pair of main wings and extending in a flapping direction of the main wings, and the pair of pairs.
  • a main wing is provided with a pair of yarns each having one end connected to the main wing and the other end connected to the take-up shaft, and a main wing power unit attached to the body and rotating a shaft for taking up the yarn.
  • This floating body performs self-exciting flapping motion, is a toy that floats in a room or outdoors, means an object that floats and swims in the air, and does not include helicopters or airplanes. Further, this floating body flies at a low speed of walking speed (3 m / sec) or less against gravity, and the wing surface load with respect to the entire weight is set to 3 newtons / square meter or less.
  • the main wing power unit preferably includes a DC motor and an AC power supply that supplies AC to the DC motor. In this case, the main wing can be caused to flutter smoothly by supplying an AC signal having a low frequency at which the DC motor operates to the DC motor. (See summary, claims 1 and 8, paragraphs 0001, 0006 to 0007, 0012 to 0014, 0049 to 0050, 0067 to 0071, FIGS. 1 to 5, FIGS. 21 to 22, and FIG. 33).
  • an autonomous control device for a small unmanned helicopter disclosed in Patent Document 4 (Japanese Patent Laid-Open No. 2004-256020).
  • This autonomous control device is a small unmanned helicopter that detects the current position, attitude angle, ground altitude, and nose heading of the small unmanned helicopter, as well as a position or speed target value set from the ground station, and a small unmanned A main calculation unit that calculates the optimum control command value for driving each servo motor that moves the five helms of the helicopter fuselage from the current position and attitude angle of the helicopter, data collection from the sensor, and main calculation unit And a sub-operation unit that converts a calculation result as a numerical value output by the servo motor into a pulse signal that can be received by the servo motor.
  • this autonomous control device it is possible to autonomously control a small unmanned helicopter having a size and weight as large as a radio control helicopter for a hobby toward a set position or speed target value (summary, claim 1, paragraph 005). ⁇ 0061, see FIG.
  • the difficulty of the conventional flying robot mentioned above that is, if you try to increase the payload (weight of the load), the power consumption will increase and the flight time will be more constrained, and conversely if you try to extend the flight time,
  • the difficulty of increasing the weight of the battery to be mounted and further reducing the payload is that the power supply to the electric motor on the flying robot is changed from the power supply on the ground side (like the “toy airplane” of Patent Document 1 described above). It is possible to eliminate the problem by carrying out from the battery) via the flexible cable.
  • the power transmission output is less than 100 W, which is insufficient for industrial use.
  • the total length of the cable is considerably long, such as several meters to several tens of meters, another problem arises when power is supplied to the electric motor on the flying robot through such a long cable.
  • the first problem is that a voltage drop occurs due to power supply of several KW or more via a long cable, so that the voltage applied to the electric motor is considerably lower than the power supply voltage (supply voltage) on the ground side. It is to end up. In addition, the amount of voltage drop changes as the cable length varies. If such an unstable voltage is applied to the electric motor, the flight situation of the flying robot may be greatly affected.
  • the second problem is that it is necessary to adjust the output of the electric motor as the load (load) due to the cable fluctuates. Since part of the cable hangs down from the flying robot during the flight, a part of the weight of the cable (load due to the cable weight) acts on the flying robot. In addition, the load varies with changes in the altitude and horizontal position of the flying robot. Furthermore, when a tensile force acts on the cable due to strong winds or gusts, the load temporarily increases. For this reason, it is necessary to adjust the output of an electric motor in real time with the fluctuation
  • the third problem is that if the cable hanging from the flying robot becomes longer, the cable may become entangled due to a sudden change in altitude or horizontal position of the flying robot or a gust of wind, which may cause problems in the subsequent flight of the flying robot. That is. Therefore, it is necessary to take measures against such cable entanglement.
  • the fourth problem is that the flying robot may crash if the flying robot receives a gust of wind or the power supply cable is disconnected during the flight. Since many of the electric motors that drive the propulsion means (for example, the rotor) of the flying robot are DC brushless motors, a DC-DC converter is often used as a drive power source for the electric motor.
  • the DC-DC converter is a power supply circuit using a switching system in order to reduce the size, and has a negative characteristic. For this reason, it may not be able to cope with sudden load fluctuations, and the output may suddenly become zero.
  • the DC-DC converter may not be able to cope with the load fluctuation, and the output voltage may suddenly become zero. It is. If this happens, the flying robot will crash, so some countermeasure is necessary.
  • Patent Document 1 only discloses a configuration for supplying power to an electric motor on a model airplane via a cable, and the first to fourth problems described above are not recognized. There is no disclosure or suggestion of how to deal with.
  • Patent Document 2 “Remote Control Helicopter Control Mechanism” discloses a proposal of a measure for avoiding the third problem of cable entanglement.
  • the control signal is transmitted by the signal transmission cable connecting the transmitter and the receiver while limiting the flight range of the helicopter by the tension rope, so that the reel A and the reel B are necessary.
  • the configuration and control of the cable entanglement prevention mechanism becomes complicated. There is a difficulty.
  • the first, second, and fourth problems are not recognized, and no countermeasures are disclosed or suggested.
  • the above-mentioned “floating body” of Patent Document 3 includes an example in which a main wing power device including a DC motor and an AC power supply that supplies AC to the DC motor is used.
  • a main wing power device including a DC motor and an AC power supply that supplies AC to the DC motor.
  • the main wing is caused to flutter smoothly.
  • the reason for flapping the main wing is that this floating body is a toy that floats in a room or outdoors by causing a pair of main wings to perform self-exciting flapping motion. Therefore, it is clear that it cannot be used as a measure for avoiding the above first to fourth problems.
  • the first to fourth problems described above are not recognized in the first place.
  • the control device for the small unmanned helicopter of Patent Document 4 realizes autonomous control of the small unmanned helicopter.
  • the above-described first to fourth problems are not recognized, and the countermeasures against them are also described. No disclosure or suggestion.
  • the present invention has been made in consideration of the circumstances as described above, and its main purpose is to stabilize the flight time and payload without being limited due to the capacity of the battery mounted on the flying robot. It is an object to provide an industrial flying robot apparatus capable of continuously flying a flying robot and allowing the flying robot to perform various operations such as spraying of agrochemicals, aerial photography, and radiation measurement from the air. .
  • Another object of the present invention is to provide an industrial flying robot apparatus that does not cause a flying robot to crash even if a sudden load fluctuation occurs due to a gust of wind or the power supply cable is disconnected. It is to provide.
  • Still another object of the present invention is to provide an industrial flying robot apparatus that can suppress voltage drop and load fluctuation caused by a cable connecting a flying robot and a ground-side power supply device with a simple configuration. It is to provide.
  • Still another object of the present invention is that a cable connecting the flying robot and the ground-side power supply device may be entangled due to a sudden change in altitude or horizontal position of the flying robot, wind, or the like, which may hinder flight of the flying robot. It is an object of the present invention to provide an industrial flying robot apparatus that can solve the above problem with a simple configuration.
  • the flying robot apparatus of the present invention A flying robot, A ground side power supply for supplying power to the flying robot via a flexible power transmission cable,
  • the flying robot is Propulsion means, An electric motor for driving the propulsion means;
  • a first control unit that controls an output of the electric motor according to a load of the power transmission cable acting on the flying robot;
  • a high-voltage / low-voltage converter that converts the high voltage supplied from the ground-side power supply device via the power transmission cable into a low voltage and supplies the electric motor;
  • a sub power supply for supplying an auxiliary voltage to the electric motor as required;
  • An auxiliary battery for supplying the auxiliary voltage
  • the ground side power supply is A high-voltage power transmission unit that transmits the high voltage to the high-voltage / low-voltage conversion unit via the power transmission cable;
  • a second control unit that controls a value of the high voltage transmitted by the high-volt
  • the high voltage is supplied from the ground-side power supply device to the flying robot via the flexible power transmission cable. Further, the high voltage value of the high-voltage power transmission unit is controlled by the second control unit of the ground-side power supply device according to the distance between the flying robot and the ground-side power supply device. Furthermore, the output of the electric motor is controlled by the first controller of the flying robot in accordance with the load of the power transmission cable acting on the flying robot. For this reason, the influence by the voltage drop resulting from the power transmission cable and the weight or entanglement of the power transmission cable, which the flying robot receives during flight, is reliably suppressed.
  • the flight robot can be continuously operated stably without being limited in flight time and payload due to the capacity of the battery mounted on the flight robot, and the pesticide is sprayed on the flight robot from the air.
  • Various operations such as aerial photography and radiation measurement can be performed.
  • the output of the electric motor is controlled by the first controller according to the load of the power transmission cable acting on the flying robot, and at the same time, the flying robot and the ground-side power supply are controlled by the second controller.
  • the value of the high voltage transmitted by the high-voltage power transmission unit is controlled according to the distance between the devices. For this reason, the voltage drop resulting from the power transmission cable connecting the flying robot and the ground-side power supply device and the load fluctuation of the flying robot can be suppressed with a simple configuration.
  • the sub power supply device that supplies the auxiliary voltage from the auxiliary battery to the motor is provided.
  • the sub power supply device supplies the auxiliary voltage to the electric motor. For this reason, even if a sudden load fluctuation occurs in the flying robot due to a gust of wind or the power supply cable is disconnected, the flying robot does not fall.
  • the high voltage transmitted by the high-voltage power transmission unit of the ground side power supply device is a DC voltage.
  • a voltage drop generated when the high voltage is transmitted through the power transmission cable is suppressed as compared with the case where the AC voltage is used.
  • the voltage circuit of the DC voltage can be made smaller than the voltage conversion circuit of the AC voltage.
  • the high-voltage / low-voltage converter of the flying robot is a DC-DC converter with variable output.
  • the output of the DC-DC converter is variable, there is an advantage that the circuit configuration on the flying robot is simplified.
  • the high-voltage power transmission unit of the ground side power supply device is an AC-DC converter
  • the high-voltage / low-voltage conversion unit of the flying robot is a DC-DC converter. It is said.
  • the high voltage transmitted by the high-voltage power transmission unit of the ground side power supply device can be generated using a commercial power source.
  • the sub power supply device when a decrease in load capacity of the main power supply device is detected, the sub power supply device is set to the low voltage supplied from the main power supply device.
  • the auxiliary voltage is supplied from the auxiliary battery to the electric motor.
  • the flying robot device when the loss of the output from the main power supply device is detected, the operation of the sub power supply device is stopped and the auxiliary battery is used for the auxiliary power supply. A voltage is directly supplied to the electric motor. In this example, even if the output of the main power supply device is lost due to disconnection of the power transmission cable or the like, there is an advantage that the flying robot can continue to fly without crashing.
  • the auxiliary battery is charged by using the high voltage supplied from the ground-side power supply device via the power transmission cable, thereby causing discharge.
  • the battery pack further includes a charging power supply device that prevents the auxiliary voltage from decreasing.
  • the flying robot apparatus further includes a cable winder that winds up the surplus portion of the power transmission cable on the ground side, and the transmission and winding of the power transmission cable by the cable winder.
  • a cable winder that winds up the surplus portion of the power transmission cable on the ground side, and the transmission and winding of the power transmission cable by the cable winder.
  • a sudden change in altitude or horizontal position of the flying robot, wind, and the like cause the power transmission cable connecting the flying robot and the ground-side power supply device to become entangled, resulting in hindrance to the flight of the flying robot.
  • Fear can be eliminated with a simple configuration.
  • the flying robot detects a position of the flying robot during flight, and an output signal of the position detecting sensor is wirelessly transmitted to the ground.
  • a transmission / reception unit that transmits to the side power supply device, and the second control unit of the ground side power supply device receives the output signal to control the value of the high voltage transmitted by the high-voltage power transmission unit. Configured to do.
  • the position of the flying robot in flight can be detected easily and reliably, and the second control unit can be accurately controlled based on the detection result.
  • the flying robot apparatus further includes a communication cable (used for transmission / reception of control signals and data communication, and configured from, for example, an optical fiber) connected to the flying robot.
  • the communication cable is integrated (built-in or added) or attached to the power transmission cable.
  • the cable winder includes a cable winding motor for feeding and winding the power transmission cable, and the cable winding motor.
  • the sending and winding of the power transmission cable according to is controlled by the second control unit according to the distance between the flying robot and the ground side power supply device.
  • the structure of the cable winder is a little complicated, but the transmission cable winding and winding control according to the distance between the flying robot and the ground-side power supply device is more accurately performed. There is an advantage that.
  • the cable winder includes a biasing member (for example, a spring) that biases the power transmission cable in a winding direction thereof.
  • the cable is sent out by pulling out the power transmission cable against the winding force of the biasing member, and the power transmission cable is wound up by the winding force of the biasing member.
  • a PID control method is used in at least one of the first control unit of the flying robot and the second control unit of the ground-side power supply device. .
  • the first control unit or the second control unit is easily realized.
  • methods other than the PID control method may be used.
  • the flying robot apparatus further includes an entanglement preventing member that is installed on the ground side and prevents the entanglement of the cable.
  • an entanglement preventing member that is installed on the ground side and prevents the entanglement of the cable.
  • the flying robot has a configuration of an electric helicopter.
  • the advantages of the present invention can be fully utilized.
  • the flying robot can be continuously and stably fly without being limited in flight time and payload due to the capacity of the battery mounted on the flying robot.
  • the flying robot can perform various operations such as spraying agricultural chemicals, aerial photography, radiation measurement, etc. from the air.
  • B The flying robot undergoes sudden load fluctuations due to gusts, etc., or the power supply cable is disconnected. The flying robot is not likely to crash.
  • C Voltage drop caused by the cable connecting the flying robot and the ground-side power supply and load fluctuation of the flying robot can be suppressed with a simple configuration.
  • D The effect that it can be immediately put into practical use for industrial use is obtained.
  • a cable winder that winds up excess power cable on the ground side is further provided, and the transmission and winding of the power transmission cable by the cable winder are automatically performed according to the distance between the flying robot and the ground side power supply device.
  • the flying robot and the ground-side power The effect that the cable that connects the devices is entangled and the flying robot may be hindered by a simple configuration can be further obtained.
  • FIG. 1 It is a conceptual diagram which shows the whole structure of the flying robot apparatus which concerns on 1st Embodiment of this invention. It is a perspective view which shows the whole structure of the flying robot currently used for the flying robot apparatus of FIG. It is a functional block diagram which shows the internal structure of the robot side control apparatus and ground side power supply device which are used for the flying robot apparatus of FIG. It is a flowchart which shows the operation
  • FIG. 7 It is a functional block diagram which shows the internal structure of the robot side control apparatus and ground side power supply device which are used for the flying robot apparatus which concerns on 2nd Embodiment of this invention.
  • (A) is a front view which shows the detailed structure of the cable winder used for the flying robot apparatus of FIG. 7,
  • (b) is the side view.
  • FIG. 1 shows the overall configuration of the flying robot apparatus 1 according to the first embodiment of the present invention.
  • the flying robot device 1 includes a flying robot 10, a ground-side power supply device 50 that supplies power to the flying robot 10 via a flexible power transmission cable 30, and the altitude of the flying robot 10.
  • a cable winder 40 that pulls out and winds up the power transmission cable 30 in accordance with a change in position, and a tangle prevention member for preventing the power transmission cable 30 from being tangled during the flight and hindering the flight of the flying robot 10 45.
  • the ground side power supply device 50, the cable winder 40, and the entanglement preventing member 45 are provided on the ground.
  • the flying robot 10 can fly autonomously with electric power supplied from the ground-side power supply device 50 via the power transmission cable 30.
  • the flying robot 10 has a configuration of an electric multi-rotor helicopter having six rotors 13 that are individually driven by an electric motor 14. More specifically, the flying robot 10 is arranged on the substantially cylindrical main body 11 and the substantially cylindrical outer peripheral portion of the main body 11 at equal intervals, and the six robots 10 extending radially from the outer peripheral portion.
  • the arm 12 is provided with a total of six rotors 13 rotatably installed at the distal ends of the arms 12 and a total of six electric motors 14 that individually rotate and drive the rotors 13. All the rotors 13 are directly fixed to the rotating shafts of the corresponding electric motors 14, respectively, and can be driven to rotate by the rotation of the corresponding electric motors 14. All the rotors 13 are arranged in the same plane.
  • the rotor 13 functions as a propulsion unit for the flying robot 10.
  • Equipment necessary for various operations such as agricultural chemical spraying, aerial photography, radiation measurement, etc. (working equipment) is mounted on the main body 11 of the flying robot 10 using appropriate members.
  • the work equipment is sent to a desired position and altitude by flying the flying robot 10, and performs a desired work while hovering at that place or flying at a desired altitude.
  • the electric power required for the flight of the flying robot 10 in other words, the electric power required to rotate the six electric motors 14 that drive all the rotors 13 is not from the battery mounted on the flying robot 10 but on the ground side. It is continuously supplied from the power supply device 50 via the power transmission cable 30. For this reason, mounting of the battery on the flying robot 10 can be omitted.
  • a ground-side power supply device 50 failure, a disconnection of the power transmission cable 30, a failure of equipment on the flying robot 10, or the like.
  • the main body 11 is equipped with an auxiliary battery (described later). This is to prevent an unexpected crash of the flying robot 10.
  • a robot-side control device 20 having an internal configuration as shown in FIG. 3 is mounted inside the main body 11 of the flying robot 10.
  • the robot-side control device 20 is mechanically and electrically connected to the tip of the power transmission cable 30.
  • the base end of the cable 30 is mechanically and electrically connected to the ground side power supply device 50.
  • a portion on the proximal end side of the cable 30 is wound around the drum 42 (see FIG. 6) of the cable winder 40 provided in the vicinity of the ground-side power supply device 50 in the vicinity of the ground-side power supply device 50.
  • the ground side power supply device 50 is connected.
  • the proximal end of the cable 30 is inserted and engaged with the cable insertion ring 45a of the entanglement prevention member 45 slightly before the cable winder 40, and is wound around the drum 42 behind the cable winding ring 45a.
  • the drawing length of the cable 30 from the drum 42 is adjusted by rotating the drum 42 by the cable winding motor 41 according to the distance from the flying robot 10.
  • a robot side autonomous control device (not shown) for controlling the autonomous flight of the flying robot 10 is mounted inside the main body 11.
  • a robot side autonomous control device (not shown) for controlling the autonomous flight of the flying robot 10 is mounted inside the main body 11.
  • a robot side autonomous control apparatus what is indicated by patent documents 4 mentioned above can be used, for example.
  • the robot-side autonomous control device includes (a) a sensor that detects the current position and attitude angle of the flying robot 10 and (b) six motors that drive the six electric motors 14 of the flying robot 10. (C) a current flight state of the flying robot 10 obtained from the sensor, and a target value set by the ground side autonomous control device (described later) using a predetermined autonomous control algorithm A CPU that independently calculates a control command value so that the electric motor 14 has an optimum rotation speed, (d) a wireless modem that communicates with the ground-side autonomous control device, and (e) a manual operation from a manual control transmitter And a manual steering receiver that receives the steering signal.
  • the CPU monitors the sensor information obtained from the sensor by the ground-side autonomous control device or inputs a target value set by the ground-side autonomous control device, in addition to the main computation unit that performs the computation as described above.
  • a sub-operation unit that controls input / output of signals with the wireless modem is also provided.
  • the sensor include a GPS sensor that detects the position of the flying robot 10, a three-axis attitude sensor that detects the attitude of the flying robot 10 in three axes, a ground altimeter that measures the altitude of the flying robot 10, A magnetic azimuth meter that measures the azimuth is used.
  • the configuration and function of the robot-side autonomous control device are not limited to this.
  • the robot-side autonomous control device receives four control command values of power, yaw, roll, and pitch from the ground-side autonomous control device, and individually controls the six motor drivers based on the four control command values.
  • the rotational speed of 14a, 14b, 14c, 14d, 14e, and 14f is controlled. Thereby, the flight state of the flying robot 10 can be arbitrarily controlled as follows.
  • the electric motors 14a, 14c and 14e are rotated clockwise by the respective motor drivers, and the remaining electric motors 14b, 14d and 14f are rotated counterclockwise.
  • the flying robot 10 if the number of rotations of the six electric motors 14a, 14b, 14c, 14d, 14e, and 14f is increased simultaneously, the flying robot 10 will rise in a direction perpendicular to itself, and if it simultaneously decreases, it will be perpendicular to itself. Descend in the direction.
  • the roll angle changes.
  • the pitch angle changes. If a difference is made between the rotational speeds of the electric motors 14a, 14c and 14e and the rotational speeds of the electric motors 14b, 14d and 14f, the yaw angle changes. In this way, an arbitrary flight state can be obtained simply by controlling the rotational speeds of the six electric motors 14a, 14b, 14c, 14d, 14e and 14f.
  • a ground side autonomous control device (not shown) that is paired with the robot side autonomous control device is prepared.
  • the ground side autonomous control device monitors the autonomous control state of the flying robot 10 and inputs a target value.
  • the wireless side modem communicates with the wireless modem of the robot side autonomous control device, and the robot side autonomous control.
  • a manual steering transmitter for transmitting a manual steering signal to a manual steering receiver of the apparatus.
  • the robot-side autonomous control device breaks down due to some trouble and autonomous control is not possible, it is automatically switched to the manual control mode, and thereafter it can be controlled by the manual control transmitter. For this reason, it is possible to prevent the flying robot 10 from falling.
  • the configuration and function of the ground side autonomous control device are not limited to this.
  • the cable winder 40 is provided on the ground side adjacent to the ground-side power supply device 50, and has a function of winding excess of the power transmission cable 30 to prevent the cable 30 from being entangled and a shortage of the cable 30. It has a function of preventing the unnecessary load from acting on the flying robot 10 due to the pulling force of the cable 30.
  • the operation of feeding and winding the cable 30 by the cable winder 40 is controlled by the ground side power supply device 50.
  • the cable winder 40 has a configuration as shown in FIG. 6 and includes a cable winding motor 41, a drum 42 around which the cable 30 is wound, a stand 43 that supports the cable winding motor 41, and a stand 43 is provided with a cable winding motor 41 and a base 44 on which a drum 42 is installed.
  • the drum 42 is fixed to the rotating shaft 41 a of the cable winding motor 41, and rotates with the rotation of the motor 41.
  • the cable 30 is wound around the drum 42 according to the rotational speed by the forward rotation of the motor 41, and is sent out from the drum 42 according to the rotational speed by the reverse rotation of the motor 41.
  • the cable winder 40 is provided with an entanglement preventing member 45 for preventing the cable 30 from being entangled.
  • the entanglement preventing member 45 is made of a rigid material (for example, a bar made of metal or synthetic resin) bent in an L shape, and its base end is fixed to the base 44 of the cable winder 40.
  • a cable insertion ring 45 a is formed at the tip of the entanglement preventing member 45.
  • the cable insertion ring 45a is located higher than the drum 42, and holds the cable 30 in a slidable state. This is because the cable 30 is always wound around the drum 42 or pulled out from the drum 42 in substantially the same state so that the cable 30 is not hindered from being taken up and pulled out. Therefore, the entanglement preventing member 45 can be omitted if other measures do not hinder the winding and drawing work of the cable 30.
  • the portion on the proximal end side of the cable 30 is wound around the drum 42 a plurality of times with a slight slack after passing through the cable insertion ring 45a at the distal end portion of the entanglement preventing member 45.
  • the proximal end of the cable 30 extends to the ground-side power supply device 50 and is mechanically and electrically connected to the ground-side power supply device 50.
  • a portion of the cable 30 on the tip side of the portion wound around the drum 42 extends toward the flying robot 10, and the tip is mechanically and electrically connected to the flying robot 10.
  • the length of the cable 30 drawn from the drum 42 is adjusted according to the distance from the flying robot 10 by rotating the drum 42 by the cable winding motor 41 while the flying robot 10 is flying.
  • the rotation of the cable winding motor 41 is controlled by a ground side power supply device 50 described later.
  • ground side power supply device 50 Next, the ground side power supply device 50 will be described.
  • the ground-side power supply device 50 has a function of generating a direct current (DC) high voltage V H and transmitting power to the flying robot 10 via the power transmission cable 30. Also, depending on the distance between the flying robots 10 and ground-side power supply 50 (i.e., voltage drop), while adjusting the value of the transmission to DC high voltage V H, to adjust the feeding amount and winding amount of the cable 30 It also has a function.
  • DC direct current
  • the ground-side power supply device 50 has a configuration as shown in FIG. 3, and includes an output control unit 51, a control calculation unit 52, a transmission / reception unit 53, a power generation unit 54, a high-voltage power transmission unit 55, and an antenna 56. .
  • the transmission / reception unit 53 receives the position / altitude signal wirelessly transmitted from the transmission / reception unit 25 of the robot-side control device 20 via the antenna 56.
  • the position / altitude signal received in this way is sent to the control calculation unit 52.
  • the control calculation unit 52 performs a predetermined calculation according to the PID control method based on the position / altitude signal, and calculates the current position of the flying robot 10 and the required length of the power transmission cable 30 at the current altitude. Then, the shortage or excess of the length of the cable 30 is calculated from the comparison with the current length of the cable 30. Information on the shortage and excess of the length of the cable 30 calculated in this way is sent to the output control unit 51 by a control signal. Needless to say, the present invention is not limited to the PID control method, and other control methods can be used.
  • Manipulation amount P part (proportional term) + I part (integral term) + D part (differential term)
  • the operation amount is determined.
  • P part (proportional term) flying robot weight change rate (kg / s)? Flying robot ascent / descent time (s)? Transmission cable unit weight (kg / m)?
  • Output coefficient Kp I part (integral term) integral value of weight change speed (kg / s) of flying robot?
  • Output coefficient Ki D part (differential term) differential value of weight change speed (kg / s) of flying robot?
  • Output coefficient Kd P part (proportional term) + I part (integral term) + D part (differential term)
  • the operation amount is determined.
  • P part (proportional term) flying robot weight change rate (kg / s)? Flying robot ascent / descent time (s)? Transmission cable unit weight (kg / m)?
  • Output coefficient Kp I part (integral term) integral value of weight
  • the output control unit 51 receives the shortage / excess information of the length of the power transmission cable 30 based on the control signal sent from the control calculation unit 52, and drives the cable winding electric motor 41 based on the information. 42 is rotated forward (direction in which the cable 30 is pulled out) or backward (direction in which the cable 30 is wound up). In this way, the shortage or surplus of the length of the cable 30 at the current position and the current altitude with respect to the length of the cable 30 at the current position and the previous altitude of the flying robot 10 is adjusted.
  • the power generation unit 54 increases or decreases the value of the AC high voltage V H to be generated based on the shortage / excess information of the length of the cable 30 sent from the output control unit 51. Then, the DC high voltage V H adjusted in this way is supplied to the high-voltage power transmission unit 55. By doing so, it is possible to cope with an increase or decrease in voltage drop caused by a shortage or surplus of the length of the cable 30.
  • the power generation unit 54 a commercial power source that generates a commercial voltage of alternating current (AC) 100V is used in order to simplify the configuration.
  • AC alternating current
  • a known generator that generates AC 100 V (or other voltage) may be used.
  • the high-voltage power transmission unit 55 boosts the original voltage (for example, AC 100 to 200 V) supplied from the power generation unit 54 and converts it to DC to generate a DC high voltage V H (for example, 250 to 1000 V). Then, the DC high voltage V H generated in this way is transmitted to the robot-side control device 20 via the power transmission cable 30.
  • the original voltage for example, AC 100 to 200 V
  • DC high voltage V H for example, 250 to 1000 V
  • the high voltage power transmission unit 55 is an AC-DC converter. Therefore, it is possible to generate a DC high voltage V H of high voltage transmission unit 55 power from the commercial power source.
  • some AC-DC converters can generate a DC voltage exceeding 300 V (for example, 380 V) directly from a commercial power supply voltage (AC 100 to 200 V), and it is preferable to use this.
  • the ground-side power supply device 50 transmits the DC high voltage V H (for example, 250 to 1000 V) generated by the high-voltage power transmission unit 55 from the commercial power supply voltage (AC100 to 200 V) to the robot-side control device 20 via the power transmission cable 30. Therefore, transmission loss can be greatly suppressed as compared to transmitting AC voltage. In particular, by the DC high voltage V H to a value exceeding 300 V, it is possible to minimize the transmission loss. In recent years, DC380V has become a standard for high-voltage power supply for servers, so that a known power supply device used for high-voltage power supply for servers can be used as the high-voltage power transmission unit 55 as it is.
  • the value of the voltage drop due to the cable 30 fluctuates in proportion to this, so that the voltage 30 passes through the cable 30 to the high-voltage / low-voltage converter 21 of the robot controller 20.
  • the voltage value when it reaches also varies according to the length of the cable 30. Therefore, in order to solve this problem, power is transmitted after adjusting the value of the voltage transmitted by the ground side power supply device 50. Thereby, even if the length of the cable 30 fluctuates, the voltage value when reaching the high voltage / low voltage converter 21 is kept constant.
  • the robot-side control device 20 is operated by the DC high voltage V H supplied to the flying robot 10, and individually outputs the six electric motors 14 according to the load of the power transmission cable 30 acting on the flying robot 10. It has a function to control (suppress) the influence of the load of the cable 30 on the flight.
  • the robot-side control device 20 has a configuration as shown in FIG. 3, and includes a high-voltage / low-voltage conversion unit 21, an output control unit 22, a control calculation unit 23, a position detection unit 24, a transmission / reception unit 25, and an antenna 26. I have.
  • the high-voltage / low-voltage conversion unit 21 is mechanically and electrically connected to the ground-side power supply device 50 via the power transmission cable 30, and is supplied with a DC high voltage V H (high-voltage / low-voltage conversion) supplied from the ground-side power supply device 50.
  • the input voltage of the unit 21 is converted into a DC low voltage V L (eg, DC 40 to 70 V), for example, from DC 250 to 300 V.
  • the DC low voltage V L generated in this way is supplied to the output control unit 22, the control calculation unit 23, the position detection unit 24, the transmission / reception unit 25, and the antenna 26, and is used as a drive voltage for these circuits.
  • the high-voltage / low-voltage converter 21 itself operates using the DC low voltage VL thus generated as a driving voltage.
  • the robot-side autonomous control apparatus operates with the supply of the DC low voltage VL as a driving voltage. Therefore, even if the battery is not mounted on the flying robot 10, the flying robot 10 can continuously fly.
  • the high voltage / low voltage converter 21 is preferably composed of a DC-DC converter whose output is variable voltage control.
  • the rotor driving motor 14 is a DC motor
  • the DC low voltage VL output from the DC-DC converter can be directly supplied to the rotor driving motor 14. There is an advantage that the configuration becomes simple.
  • the position detector 24 includes a position / altitude sensor (not shown) mounted on the flying robot 10 and detects the current position and the current altitude of the flying robot 10.
  • a position / altitude sensor for example, a GPS sensor that detects the position of the flying robot 10 and a ground altimeter that measures the altitude of the flying robot 10 mounted on the flying robot 10 for autonomous flight can be used.
  • the position / altitude signal generated by the position detection unit 24 is output to the transmission / reception unit 25 and the control calculation unit 23.
  • the transmission / reception unit 25 wirelessly transmits the position / altitude signal transmitted from the position detection unit 24 to the ground-side power supply device 50 via the antenna 26.
  • the position / altitude signal is used for controlling the cable winding motor 41 of the cable winder 40 in the ground-side power supply device 50, and the power transmission cable 30 corresponding to the current position and the current altitude of the flying robot 10 is used. It is also used to increase or decrease the value of the DC high voltage V H transmitted from the ground side power supply device 50 according to the length.
  • the control calculation unit 23 receives the position / altitude signal sent from the position detection unit 24 according to the same PID control method as the control calculation unit 52 of the ground side power supply device 50, performs a predetermined calculation, and The length of the power transmission cable 30 corresponding to the position and the current altitude is calculated, and the unit weight of the cable 30 is added thereto to calculate the weight of the cable 30. Further, the amount of change (rate of change) of the weight of the cable 30 per unit time is also calculated. The motor control signal calculated in this way is sent to the output control unit 22.
  • the output control unit 22 increases or decreases the driving force of the electric motor 14 for driving the rotor that needs to be corrected based on the control signal sent from the control calculation unit 23.
  • the influence of the weight of the power transmission cable 30 at the current position and current altitude of the flying robot 10 is corrected, and ascending and descending and flying back and forth and left and right are possible as in the case where the cable 30 is not connected. It becomes.
  • the robot-side control device 20 since the robot-side control device 20 immediately detects this and adjusts the driving force of the motor 14 that needs to be corrected, the flying robot 10 can hold a fixed position.
  • the output control unit 22 preferably uses, for example, pulse width modulation (PWM) or variable voltage control. This is because the rotor driving electric motor 14 is a DC motor. Here, a PWM control circuit is used. However, the present invention is not limited to these.
  • PWM pulse width modulation
  • variable voltage control variable voltage control
  • the DC high voltage V H is set to 300 V
  • the wire of the wire standard AWG 16 is used as the cable 30, and the transmission distance
  • the DC current flowing through the cable 30 is 20 A
  • the voltage drop due to power transmission can be 10V. That is, the value of the DC high voltage V H (the voltage value at the power receiving end) received by the high voltage / low voltage converter 21 of the robot-side controller 20 is maintained at 290V. If even a little more voltage drop due to power transmission can be tolerated, an electric wire thinner than the electric wire of the electric wire standard AWG 16 can be used as the cable 30. Therefore, there is an advantage that the cost and unit weight of the cable 30 can be further reduced.
  • the output voltage of the high-voltage / low-voltage converter 21 is controlled so as to compensate for the voltage drop due to power transmission through the power transmission cable 30, that is, the output current of the high-voltage / low-voltage converter 21 (DC current flowing through the cable 30).
  • the voltage drop value represented by the product of the electrical resistance value per unit length of the cable 30 is calculated, and is always added to the input voltage (DC high voltage V H ) of the high voltage / low voltage converter 21. For example, the voltage drop due to power transmission is compensated and the influence of the voltage drop can be eliminated. In this way, the input voltage (DC high voltage V H ) can always be kept substantially constant.
  • This auxiliary power supply device prevents the flying robot 10 from crashing even if a sudden load fluctuation (overload) occurs in the flying robot 10 due to a gust or the like, or the power transmission cable 30 is disconnected. Is mounted for.
  • each of the six rotor driving electric motors 14 includes a main DC-DC converter (main power supply device) 61, a current measurement sensor 62, a PWM control circuit 63, and a sub DC-DC converter. (Sub-power supply device) 64, first, second and third auxiliary batteries 66 a, 66 b and 66 c, and a charging DC-DC converter (charging power supply device) 67.
  • the main DC-DC converter 61 receives the supply of the high voltage DC voltage V H via the power transmission cable 30, generates a predetermined low voltage DC voltage V L , and supplies it to the PWM control circuit 63.
  • the main DC-DC converter 61 functions as the high-voltage / low-voltage converter 21 of the robot-side control device 20.
  • the current measurement sensor 62 measures the current (motor drive current) flowing from the main DC-DC converter 61 to the PWM control circuit 63 and sends the measured current value to the sub DC-DC converter 64.
  • the PWM control circuit 63 controls the driving force (rotation) of the electric motor 14 in accordance with the control signal based on the low voltage DC voltage VL supplied from the main DC-DC converter 61.
  • the sub DC-DC converter 64 is connected in parallel to the first to third auxiliary batteries 66a, 66b, and 66c, and a predetermined auxiliary voltage based on the battery voltage V B supplied from these auxiliary batteries 66a, 66b, and 66c.
  • a voltage V A is generated and supplied to the bias point of the PWM control circuit 63.
  • Charging DC-DC converter 67 is supplied with the high voltage DC voltage V H via the transmission cable 30, the first to third auxiliary battery 66a, 66b, and always charged to 66c, the battery voltage V B given Keep the value. This is to prevent the battery voltage V B output from the first to third auxiliary batteries 66a, 66b, 66c from being reduced by natural discharge.
  • Controller for the main DC-DC converter 68 is supplied with the high voltage DC voltage V H via the transmission cable 30, it generates a predetermined low DC voltage is supplied to the controller 72 through the diode 69.
  • the controller 72 is driven by this low voltage DC voltage.
  • the control device sub DC-DC converter 70 is connected in parallel to the first to third auxiliary batteries 66a, 66b, 66c, and based on the battery voltage V B supplied from these auxiliary batteries 66a, 66b, 66c.
  • a predetermined low-voltage DC voltage is generated and supplied to the bias point of the control device 72 via the diode 71. This is to cope with a decrease or disappearance of the low-voltage DC voltage supplied by the main DC-DC converter 68 for the control device.
  • the control device 72 operates the main DC-DC converter 61, the current measurement sensor 62, the PWM control circuit 63, and the sub DC-DC converter 64 provided for each of the six rotor driving electric motors 14, and a MOSFET 83 to be described later. , 84 and bypass switches 64a, 64b, 64c are controlled.
  • a set of six main DC-DC converters 61, a current measurement sensor 62, a PWM control circuit 63, and a sub DC-DC converter 64 constitutes a motor drive unit 65.
  • the control device 72 operates in accordance with a control signal transmitted from a control PC (personal computer) 90 provided on the ground side by wire or wirelessly.
  • FIG. 10 shows a circuit (battery voltage drop prevention circuit) that prevents a drop in the battery voltage V B output from the first auxiliary battery 66a due to natural discharge. Since the second and third auxiliary batteries 66b and 66c have the same circuit configuration, only the first auxiliary battery 66a will be described here.
  • the charging DC-DC converter 67 is connected to the positive electrode of the cell group 66aa of the first auxiliary battery 66a via the diode 86a and the fuse 87, and is connected to the negative electrode of the cell group 66aa via the charging FET 83 and the current detection resistor 85. It is connected to the.
  • the sub DC-DC converter 64 is connected to the positive electrode of the cell group 66aa of the first auxiliary battery 66a via the fuse 87, and is connected to the negative electrode of the cell group 66aa via the discharge FET 84 and the current detection resistor 85. Yes.
  • Switching operations (ON / OFF) of the power MOSFETs 83 and 84 are performed by a front-end IC (integrated circuit) 82 based on a control signal from a battery control microcomputer (microcomputer) 81.
  • the battery control microcomputer 81 and the front end IC 82 are provided inside the control device 72.
  • the battery control microcomputer 81 When charging the first auxiliary battery 66a, the battery control microcomputer 81 turns on the charging FET 83 and turns off the discharging FET 84. For this reason, the charging DC-DC converter 67 generates a predetermined DC voltage based on the high-voltage DC voltage V H sent via the power transmission cable 30, and the cell via the diode 86 a, the fuse 87 and the charging FET 83. Supply to group 66aa. Since the cell group 66aa is always charged in this way, the battery voltage V B output from the first auxiliary battery 66a is maintained at a predetermined value even if there is a natural discharge.
  • the battery control microcomputer 81 When discharging the first auxiliary battery 66a, the battery control microcomputer 81 turns off the charging FET 83 and turns on the discharging FET 84. Therefore, the battery voltage V B output from the first auxiliary battery 66a (cell group 66aa) is supplied to the sub DC-DC converter 64 via the fuse 87 and the discharge FET 84.
  • the sub DC-DC converter 64 generates a predetermined auxiliary voltage V A based on the battery voltage V B thus supplied, and supplies it to the bias point of the PWM control circuit 63.
  • the auxiliary voltage V A thus output is also supplied to the control device sub DC-DC converter 70.
  • FIG. 11 is a conceptual diagram showing the operation of supplying the battery voltage V B to each sub DC-DC converter 64 from the first to third auxiliary batteries 66a, 66b, 66c.
  • FIG. 11 only three sets of the main DC-DC converter 61, the current measurement sensor 62, and the sub DC-DC converter 64 are shown, but this is omitted for the sake of simplicity. Needless to say, the remaining three sets have the same circuit configuration.
  • the main DC-DC converter 61, the current measurement sensor 62, and the sub DC-DC converter 64 are actually provided in six sets, but since all of them have the same circuit configuration and the same operation, one set is used here. Only the circuit configuration and operation will be described.
  • a bypass switch 64 a is provided between the input terminal and the output terminal of the sub DC-DC converter 64. This bypasses the sub DC-DC converter 64 as required, and directly outputs the battery voltage V B , which is the output voltage of the first to third auxiliary batteries 66a, 66b, 66c, with the load, that is, the PWM control circuit 63. This is to supply to the motor 14.
  • the bypass switch 64a is controlled by the control device 72.
  • the control device 72 constantly monitors the motor drive current (current supplied to the PWM control circuit 63) by each current measuring sensor 62, and the motor drive current is near the load capacity limit of the main DC-DC converter 61.
  • the sub DC-DC converter 64 is operated to load the battery voltage V B from the first to third auxiliary batteries 66a, 66b and 66c (PWM control circuit 63 and motor 14). ).
  • the battery voltage V B is added to the low voltage DC voltage VL supplied from the main DC-DC converter 61 to the load, so that it is possible to cope with a sudden increase in the load of the motor 14 due to gusts or the like. It becomes. That is, even when the load of the motor 14 suddenly increases suddenly, the battery voltage V B is additionally supplied, so that the situation where the output of the main DC-DC converter 61 suddenly becomes zero and falls is ensured. It can be prevented.
  • the control device 72 turns on all the bypass switches 64a and simultaneously stops the operations of all the sub DC-DC converters 64.
  • the battery voltage V B output from the first to third auxiliary batteries 66a, 66b, 66c is supplied directly to the load, that is, the PWM control circuit 63 and the motor 14.
  • the reason for stopping the passage of the sub DC-DC converter 64 and supplying the battery voltage V B directly to the PWM control circuit 63 and the motor 14 is to use the battery voltage V B more efficiently.
  • the value of the battery voltage V B is preferably set equal to the value of the low-voltage DC voltage VL supplied from the main DC-DC converter 61.
  • Flying robot device 1 (working equipment necessary for work mounting already) case of taking off from the ground, first, to start transmission of a predetermined DC high voltage V H to the flying robots 10 from the ground side power device 50. Next, a desired position and a desired height are specified from a manual control device (not shown), an aerial location where a desired work is to be performed is specified, and the data is sent to the autonomous control device of the flying robot 10. Send. Then, after setting the flying robot 10 to the autonomous flight mode, the rotor driving motor 14 is driven to take off the flying robot 10. Then, the flying robot 10 flies independently to fly to a predetermined location and hover at that position. Thereafter, a desired operation is started while continuing hovering.
  • the power transmission cable 30 is gradually sent out from the cable winder 4 according to the flight of the flying robot 10, and the ground-side power supply device according to the delivery amount of the cable 30 the value of the DC high voltage V H to be transmitted from the power 50 is caused to increase.
  • the position detection unit 24 Even if the position and altitude of the flying robot 30 fluctuate during work, the fluctuation is immediately detected by the position detection unit 24, and the necessary driving force of the rotor driving motor 14 is adjusted and the length of the cable 30 is also adjusted. Is done.
  • the manual control device is operated again, and the flying robot 10 is landed at the place where the flight robot 10 departed by following the reverse process of takeoff. In this way, the high altitude work using the flying robot 10 is completed.
  • the robot-side control apparatus 20 operates as shown in FIG. 4 while the flying robot 10 is hovering. That is, when the airframe that has been hovering at a certain position, that is, the flying robot apparatus 10 moves up or down toward a predetermined position to be hovered next (step S1), the control calculation unit 23 senses it and immediately performs the PDI control method. The output of the rotor driving motor 14 is calculated according to (Step S2). Then, the number of rotations of the rotor driving motor 14 of the flying robot 10 is increased or decreased according to the output (step S3). Thereafter, referring to the output of the position sensor (step S5), it is determined whether or not the designated height has been reached (step S4).
  • step S6 If the specified height has not yet been reached, the process returns to step S2, and steps S2 to S4 are repeated.
  • the rotational speed of the rotor driving motor 14 is maintained, and the process of FIG. 4 is terminated (step S6).
  • the ground-side power supply device 50 operates as shown in FIG. That is, when the fuselage, that is, the flying robot apparatus 10 rises or descends from a predetermined position to be hovered next (step S11), the control calculation unit 52 immediately detects it and outputs the output of the rotor driving motor 14 according to the PDI control method. Calculation is performed (step S12). The steps so far are the same as steps S1 and S2 in FIG. And according to the output, the rotation angle (phase) of the cable winding motor 41 of the cable winder 40 is increased or decreased (step S13). Thereafter, referring to the output of the position sensor (step S15), it is determined whether or not the designated height has been reached (step S14).
  • step S16 If the specified height has not yet been reached, the process returns to step S12 and steps S12 to S14 are repeated.
  • the rotation angle (phase) of the cable winding motor 41 is maintained, and the process of FIG. 5 is terminated (step S16).
  • the DC high voltage V H is supplied from the ground-side power supply device 50 to the flying robot 10 via the flexible power transmission cable 30. Further, the control calculation unit 52 (second control unit) of the ground-side power supply device 50 determines the value of the DC high voltage V H by the high-voltage power transmission unit 55 according to the distance between the flying robot 10 and the ground-side power supply device 50. The feeding amount and winding amount of the cable 30 by the cable winder 40 are controlled. Further, the output of the electric motor 14 is controlled by the control calculation unit 52 (first control unit) of the flying robot 10 according to the load of the cable 30 acting on the flying robot 10.
  • the flying robot 10 can be continuously and stably fly without being limited in flight time and payload due to the capacity of the battery mounted on the flying robot 10, and agricultural chemicals are sprayed on the flying robot 10 from the air.
  • Various operations such as aerial photography and radiation measurement can be performed.
  • the output of the electric motor 14 is controlled by the control calculation unit 52 (first control unit) of the flying robot 10 according to the load of the power transmission cable 30 acting on the flying robot 10.
  • the control calculation unit 52 second control unit
  • the feeding amount and winding amount of the cable 30 are controlled. For this reason, the voltage drop resulting from the cable 30 connecting the flying robot 10 and the ground-side power supply device 50 and the load fluctuation of the flying robot 10 can be suppressed with a simple configuration.
  • a sub DC-DC converter (sub power supply device) 64 for supplying the auxiliary voltage V A from the motor 66c to the motor 14 is provided, and if the output of the main DC-DC converter 61 decreases or disappears for some reason, the sub DC-DC The converter 64 supplies the auxiliary voltage V A to the electric motor 14. For this reason, even if a sudden load fluctuation occurs in the flying robot 10 due to a gust or the like, or the power transmission cable 30 is disconnected, the flying robot 10 does not fall.
  • control calculation unit 52 (second control unit) of the ground-side power supply device 50 causes the cable winding machine 40 to send out the transmission cable 30 according to the distance between the flying robot 10 and the ground-side power supply device 50 and Since the winding amount is controlled, the cable 30 connecting the flying robot 10 and the ground-side power supply device 50 is entangled due to a sudden change in the altitude or horizontal position of the flying robot 10 or wind, and the flight of the flying robot 10 The possibility of causing troubles can be eliminated with a simple configuration.
  • the flying robot apparatus 1 can be put into practical use at an early stage. is there. Then, by continuously supplying power to the flying robot 10 via the power transmission cable 30, for example, continuous flight over one hour or more can be realized while increasing the payload by 20 kg or more. High-definition cameras and ultrasonic diagnostic devices can be mounted on the flying robot 10 to perform early operations that are highly necessary, such as inspecting tunnels and bridges and spraying agricultural chemicals on pine trees and other high trees.
  • the flying robot apparatus 1 As described above, according to the present invention, it is possible to realize the flying robot apparatus 1 that can be immediately put into practical use for industrial use.
  • the flying robot apparatus 1a includes a robot-side control apparatus 20 and a ground-side power supply apparatus 50a as shown in FIG. 7, and a cable winder 40a as shown in FIG.
  • the cable winder 40a omits the cable winding motor 41 from the cable winder 40 used in the above-described flying robot apparatus 1 of the first embodiment, and instead winds it. It has a configuration in which a spring 46 is provided. One end of the take-up spring 46 is connected to the drum 42 and the other end is fixed to the stand 43, and always urges the drum 42 in the direction of taking up the power transmission cable 30. Therefore, the transmission of the power transmission cable 30 is performed by pulling out the power transmission cable 30 against the winding force of the winding spring 46, and the winding of the power transmission cable 30 is performed by the winding force of the winding spring 46. Is called. Other configurations and functions are the same as those of the cable winder 40.
  • the ground-side power supply device 50 a sends out and winds up the power transmission cable 30 from the output control unit 51 of the ground-side power supply device 50 used in the flying robot device 1 of the first embodiment described above. This corresponds to the control function except for the control function of the cable winding motor 41. Other configurations and functions are the same as those of the ground-side power supply device 50.
  • an optical fiber 31 as a communication cable is bridged between the flying robot 10 and the ground-side power supply device 50a.
  • the optical fiber 31 is used for transmission / reception of control signals and data communication between the flying robot 10 (robot-side control device 20) and the ground-side power supply device 50a. Since the optical fiber 31 is integrated (built in or added) to the power transmission cable 30, there is no problem in the flight of the flying robot 10.
  • the flying robot device 1a of the second embodiment has the same configuration and functions as the flying robot device 1 according to the first embodiment described above except for the points described above. The description is omitted.
  • the flying robot apparatus 1a according to the second embodiment of the present invention can obtain the same effect as the flying robot apparatus 1 according to the first embodiment described above.
  • the control of the feeding and winding of the electric cable 30 (and the optical fiber 31) according to the distance between the flying robot 10 and the ground-side power supply apparatus 50a is performed.
  • auxiliary batteries are installed in the flying robot.
  • the present invention is not limited to this, and the number of auxiliary batteries can be any number as necessary. It goes without saying that it can be set to.
  • the present invention is not limited to this.
  • the present invention can be applied to any use other than a helicopter, for example, an electric airplane.
  • the present invention is applied to a field where continuous power supply to the flying robot is required, more specifically, to a field where it is necessary to increase the payload at the same time while ensuring the flight time of the flying robot according to the work. Is possible.

Abstract

Provided is a flying robot device that enables stable continuous flight of a flying robot, that is capable of performing work such as the dispersing of agricultural chemicals from the sky and aerial photography, and in which sudden load variation or the cutting of a power supply cable does not cause a flying robot to crash. The flying robot device 1 is provided with a flying robot 10 and a ground-side power supply device 50 that supplies power to the flying robot 10 via a power transmission cable 30. A robot-side control device 20 converts high voltage VH supplied from the ground-side power supply device 50 via the cable 30 into low voltage VL, supplies the result to a motor 14, and controls the output of the motor 14 in accordance with the acting load of the cable 30. The ground-side power supply device 50 controls the high voltage VH in accordance with the distance between the flying robot 10 and the ground-side power supply device 50. Battery voltage VB from auxiliary batteries 66a to 66c on the flying robot 10 is supplied to the motor 14 as necessary in response to a decrease or loss of drive current for the motor 14.

Description

飛行ロボット装置Flying robot
 本発明は、飛行ロボット装置に関し、さらに言えば、外部から有線で給電しながら連続飛行することができると共に、空中から農薬散布、空撮、放射線計測等の種々の作業を無人で行うことができ、しかも、突風や給電線の断線があっても墜落する恐れがない、産業用の飛行ロボット装置に関する。 The present invention relates to a flying robot apparatus.More specifically, the present invention can continuously fly while feeding power from outside, and can perform unmanned operations such as spraying agrochemicals, aerial photography, and radiation measurement from the air. In addition, the present invention relates to an industrial flying robot apparatus that does not cause a crash even if there is a gust of wind or disconnection of a power supply line.
 空中で所定の作業を行うための飛行ロボットとしては、従来、電動ヘリコプタや電動飛行機のような形態が知られているが、これらはいずれも、電動モータと、それを駆動するバッテリー(例えばリチウムイオン・バッテリー)とを搭載していて、そのバッテリーの容量範囲内で自律飛行しながら作業をするように構成されている。このため、飛行時間は15~30分程度の短時間に限られるのが一般的である。 Conventionally, as a flying robot for performing a predetermined work in the air, forms such as an electric helicopter and an electric airplane are known. However, both of them are an electric motor and a battery (for example, lithium ion) that drives the electric motor.・ Battery), and is configured to work while flying autonomously within the capacity range of the battery. For this reason, the flight time is generally limited to a short time of about 15 to 30 minutes.
 そのうえに、作業に応じて飛行ロボットのペイロード(積載物の重量)が増加すると、さらに飛行に必要な電力消費量が増加するため、飛行時間がいっそう制約されることになる。例えば、ペイロードが15kg以上になると、飛行時間が5分以下になってしまい、事実上、作業に使用できなくなる。他方、同じペイロードを搭載しながら飛行時間を延ばそうとすると、飛行ロボットに搭載するバッテリーの重量が増加するため、その増加した重量分だけ実質的なペイロードが減少してしまう。そこで、この種飛行ロボットによる空中での無人作業を実用化するためには、何らかの方策によって、このような難点(トレードオフ)を解消することが必要である。 Furthermore, if the payload of the flying robot (the weight of the load) increases according to the work, the power consumption required for the flight further increases, so that the flight time is further restricted. For example, if the payload is 15 kg or more, the flight time is 5 minutes or less, and it is practically impossible to use for work. On the other hand, if an attempt is made to extend the flight time while mounting the same payload, the weight of the battery mounted on the flying robot increases, so that the substantial payload decreases by the increased weight. Therefore, in order to put the unmanned work in the air by this kind of flying robot into practical use, it is necessary to eliminate such a difficulty (trade-off) by some measure.
 本発明に関連する従来技術としては、例えば、特許文献1(特表平11-509758号公報)に開示された、室内等の閉塞領域内で遠隔操作により飛行可能な玩具飛行機が開示されている。この玩具飛行機は、模型飛行機と、当該模型飛行機に可撓性ケーブルを介して接続された遠隔制御装置とを備えている。前記模型飛行機上の電気モータへの電力供給は、前記遠隔制御装置に内蔵された電源(バッテリー)から前記ケーブルを介して
行われる。前記ケーブルは、前記模型飛行機の下部においてその重心近傍に接続されている。前記模型飛行機の浮遊重量は1.5g/dm2以下と非常に小さく、産業用途ではなく、玩具であるからであり、また、前記電源が前記遠隔制御装置に内蔵されており、前記模型飛行機に搭載されていないからである。さらに、前記模型飛行機は固定昇降舵を有していて、その上昇及び下降は前記電気モータへ供給される電気エネルギーを変化させることによって行われる。前記模型飛行機の方向舵の駆動(すなわち高度の調整)は、インダクションコイルに印加される直流(DC)電圧を変化させることによって駆動される(要約、請求項1~4と発明の詳細な説明の対応箇所、図1~4を参照)。
As a prior art related to the present invention, for example, a toy airplane which is disclosed in Patent Document 1 (Japanese Patent Publication No. 11-509758) and can fly by remote control in a closed area such as a room is disclosed. . This toy airplane includes a model airplane and a remote control device connected to the model airplane via a flexible cable. Power is supplied to the electric motor on the model airplane from a power source (battery) built in the remote control device via the cable. The cable is connected near the center of gravity of the model airplane at the bottom. This is because the floating weight of the model airplane is as small as 1.5 g / dm 2 or less, and it is not an industrial use but a toy. Also, the power supply is built in the remote control device. It is because it is not installed. Further, the model airplane has a fixed elevator, and the raising and lowering of the model airplane is performed by changing the electric energy supplied to the electric motor. The model rudder is driven (ie, altitude adjustment) by changing the direct current (DC) voltage applied to the induction coil (summary, correspondence between claims 1 to 4 and the detailed description of the invention). Location, see Figures 1-4).
 本発明に関連する他の従来技術としては、特許文献2(特開平2-299998号公報)に開示された遠隔操縦式ヘリコプタの操縦機構がある。この遠隔操縦式ヘリコプタの操縦機構は、発信器からの信号を機体に装備された受信器に受けて遠隔操縦される遠隔操縦式ヘリコプタの操縦機構であって、ヘリコプタの機体に取り付けられたテンションロープを巻き取るリールAと、前記発信器と前記受信器を結ぶ信号伝達ケーブルを巻き取るリールBとを備え、これら両リールA、BをリールBの送り出し量及び巻き取り量がリールAのそれよりも常に大きくなるように相連動せしめるとともに、前記信号伝達ケーブルは前記テンションロープにガイドされてその送り出し及び巻き取りがなされるように構成されている。この操縦機構によれば、ヘリコプタのペイロードの低下を最小限に抑えて有線コントロールを可能とし、当該ヘリコプタの操縦操作の容易化及び現実化を図ることができる(特許請求の範囲と発明の詳細な説明の対応箇所、第1図~第3図を参照)。 As another conventional technique related to the present invention, there is a remote control helicopter control mechanism disclosed in Patent Document 2 (Japanese Patent Laid-Open No. Hei 2-299998). The remote control helicopter control mechanism is a remote control helicopter control mechanism that is remotely controlled by receiving a signal from a transmitter in a receiver mounted on the aircraft, and is a tension rope attached to the helicopter aircraft A reel A and a reel B that winds up a signal transmission cable connecting the transmitter and the receiver. These reels A and B have a reel B feeding amount and a winding amount larger than that of the reel A. The signal transmission cable is guided by the tension rope so as to be sent out and wound up. According to this steering mechanism, it is possible to perform wired control while minimizing the drop in the payload of the helicopter, thereby facilitating and realizing the steering operation of the helicopter (claims and details of the invention). Corresponding part of the description, see FIGS. 1 to 3).
 本発明に関連するさらに他の従来技術としては、特許文献3(特開2009-178592号公報)に開示された浮遊体がある。この浮遊体は、胴部と、前記胴部の両側に取り付けられた一対の主翼と、前記一対の主翼の間に設けられ、それら主翼の羽ばたく方向に延在する巻き取り軸と、前記一対の主翼と一端がそれぞれ接続され、他端が前記巻き取り軸にそれぞれ接続された一対の糸と、前記胴部に取り付けられ、前記糸を巻き取る軸を回転させる主翼動力装置とを備えている。この浮遊体は、自励的な羽ばたき運動をするものであり、部屋の中や屋外にて浮遊させる玩具であり、空中に浮かび泳ぐ物体を意味しており、ヘリコプタや飛行機は含まない。また、この浮遊体は、重力に逆らって歩行速度(3m/秒)以下の低速度で飛び、全体の重量に対する翼面荷重が3ニュートン/平方メートル以下とされている。前記主翼動力装置は、好ましくは、直流モータと、当該直流モータに交流を供給する交流電源とを備える。この場合、直流モータが動作する周波数の低い交流信号を前記直流モータに供給することにより、主翼をなめらかに羽ばたかせることが可能となる。(要約、請求項1、8、段落0001、0006~0007、0012~0014、0049~0050、0067~0071、図1~5、図21~22、図33を参照)。 As yet another conventional technique related to the present invention, there is a floating body disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2009-178592). The floating body includes a trunk portion, a pair of main wings attached to both sides of the trunk portion, a winding shaft provided between the pair of main wings and extending in a flapping direction of the main wings, and the pair of pairs. A main wing is provided with a pair of yarns each having one end connected to the main wing and the other end connected to the take-up shaft, and a main wing power unit attached to the body and rotating a shaft for taking up the yarn. This floating body performs self-exciting flapping motion, is a toy that floats in a room or outdoors, means an object that floats and swims in the air, and does not include helicopters or airplanes. Further, this floating body flies at a low speed of walking speed (3 m / sec) or less against gravity, and the wing surface load with respect to the entire weight is set to 3 newtons / square meter or less. The main wing power unit preferably includes a DC motor and an AC power supply that supplies AC to the DC motor. In this case, the main wing can be caused to flutter smoothly by supplying an AC signal having a low frequency at which the DC motor operates to the DC motor. (See summary, claims 1 and 8, paragraphs 0001, 0006 to 0007, 0012 to 0014, 0049 to 0050, 0067 to 0071, FIGS. 1 to 5, FIGS. 21 to 22, and FIG. 33).
 本発明に関連するさらに他の従来技術としては、特許文献4(特開2004-256020号公報)に開示された小型無人ヘリコプタの自律制御装置がある。この自律制御装置は、小型無人ヘリコプタの現在位置、姿勢角、対地高度、及び機首絶対方位を検知するセンサと、地上局から設定される位置または速度の目標値とセンサで検知される小型無人ヘリコプタの現在位置及び姿勢角とからヘリコプタ機体の5つの舵を動かす夫々のサーボモータを駆動させるための最適な制御指令値を演算する主演算部と、センサからのデータの収集や、主演算部が出力する数値としての演算結果からサーボモータが受け付けることのできるパルス信号への変換を行う副演算部とを備えている。この自律制御装置によれば、設定する位置や速度の目標値に向けてホビー用のラジコンヘリコプタほどの大きさ及び重量の小型無人ヘリコプタを自律制御させることができる(要約、請求項1、段落005~0061、図1を参照)。 As yet another conventional technique related to the present invention, there is an autonomous control device for a small unmanned helicopter disclosed in Patent Document 4 (Japanese Patent Laid-Open No. 2004-256020). This autonomous control device is a small unmanned helicopter that detects the current position, attitude angle, ground altitude, and nose heading of the small unmanned helicopter, as well as a position or speed target value set from the ground station, and a small unmanned A main calculation unit that calculates the optimum control command value for driving each servo motor that moves the five helms of the helicopter fuselage from the current position and attitude angle of the helicopter, data collection from the sensor, and main calculation unit And a sub-operation unit that converts a calculation result as a numerical value output by the servo motor into a pulse signal that can be received by the servo motor. According to this autonomous control device, it is possible to autonomously control a small unmanned helicopter having a size and weight as large as a radio control helicopter for a hobby toward a set position or speed target value (summary, claim 1, paragraph 005). ~ 0061, see FIG.
特表平11-509758号公報Japanese National Patent Publication No. 11-509758 特開平2-299998号公報JP-A-2-299998 特開2009-178592号公報JP 2009-178592 A 特開2004-256020号公報JP 2004-256020 A
 上述した従来の飛行ロボットが持つ難点、すなわち、ペイロード(積載物の重量)を増加させようとすると、電力消費量が増加して飛行時間がいっそう制約され、逆に、飛行時間を延ばそうとすると、搭載するバッテリーの重量が増加してペイロードがさらに減少する、という難点は、上述した特許文献1の「玩具飛行機」のように、飛行ロボット上の電動モータへの電力供給を、地上側の電源(バッテリー)から可撓性ケーブルを介して行うと、解消することが可能である。しかし、この場合、送電出力が100Wにも満たず、産業用途としては不十分である。また、ケーブルの全長が数m~数十mとかなり長くなるから、このような長尺のケーブルを介して飛行ロボット上の電動モータに電力供給する構成にすると、別の問題が生じる。 The difficulty of the conventional flying robot mentioned above, that is, if you try to increase the payload (weight of the load), the power consumption will increase and the flight time will be more constrained, and conversely if you try to extend the flight time, The difficulty of increasing the weight of the battery to be mounted and further reducing the payload is that the power supply to the electric motor on the flying robot is changed from the power supply on the ground side (like the “toy airplane” of Patent Document 1 described above). It is possible to eliminate the problem by carrying out from the battery) via the flexible cable. However, in this case, the power transmission output is less than 100 W, which is insufficient for industrial use. In addition, since the total length of the cable is considerably long, such as several meters to several tens of meters, another problem arises when power is supplied to the electric motor on the flying robot through such a long cable.
 第一の問題は、長尺のケーブルを介して数KW以上の電力供給をすることによって電圧降下が生じるため、電動モータへの印加電圧が地上側の電源電圧(供給電圧)よりもかなり低下してしまうことである。しかも、その電圧降下量は、ケーブルの長さの変動に伴って変化する。このように不安定な電圧を電動モータに印加すると、飛行ロボットの飛行状況に大きな影響を与える恐れがある。 The first problem is that a voltage drop occurs due to power supply of several KW or more via a long cable, so that the voltage applied to the electric motor is considerably lower than the power supply voltage (supply voltage) on the ground side. It is to end up. In addition, the amount of voltage drop changes as the cable length varies. If such an unstable voltage is applied to the electric motor, the flight situation of the flying robot may be greatly affected.
 第二の問題は、ケーブルによる負荷(荷重)の変動に伴って電動モータの出力を調整する必要があることである。飛行中には、ケーブルの一部が飛行ロボットから垂れ下がる形になるため、ケーブルの重量の一部(ケーブル重量による負荷)が飛行ロボットに作用する。しかも、その負荷は、飛行ロボットの高度や水平位置の変化に伴って変動する。さらに、強風や突風などに起因してケーブルに引っ張り力が作用すると、その負荷が一時的に増加する。このため、ケーブル重量による負荷の変動に伴って電動モータの出力をリアルタイムに調整する必要がある。 The second problem is that it is necessary to adjust the output of the electric motor as the load (load) due to the cable fluctuates. Since part of the cable hangs down from the flying robot during the flight, a part of the weight of the cable (load due to the cable weight) acts on the flying robot. In addition, the load varies with changes in the altitude and horizontal position of the flying robot. Furthermore, when a tensile force acts on the cable due to strong winds or gusts, the load temporarily increases. For this reason, it is necessary to adjust the output of an electric motor in real time with the fluctuation | variation of the load by a cable weight.
 第三の問題は、飛行ロボットから垂れ下がったケーブルが長くなると、飛行ロボットの高度または水平位置の急激な変化や突風などによって、ケーブルが絡みついてしまい、その後の飛行ロボットの飛行に支障が生じる恐れがあることである。したがって、このようなケーブルの絡みつきについても対策が必要になる。 The third problem is that if the cable hanging from the flying robot becomes longer, the cable may become entangled due to a sudden change in altitude or horizontal position of the flying robot or a gust of wind, which may cause problems in the subsequent flight of the flying robot. That is. Therefore, it is necessary to take measures against such cable entanglement.
 第四の問題は、飛行中に飛行ロボットが突風を受けたり、給電ケーブルが断線したりすると、飛行ロボットが墜落する恐れがあることである。飛行ロボットの推進手段(例えばロータ)を駆動する電動モータの多くは、DCブラシレスモータであるため、電動モータの駆動電源としてDC-DCコンバータが使用されることが多い。DC-DCコンバータは、小型化するためにスイッチング方式を使った電源回路になっており、負特性を持っている。このため、急激な負荷変動に対応できず、出力がいきなりゼロになってしまうことがある。例えば、飛行中に突風を受けて電動モータへの出力を急激に増加する必要が生じた場合、DC-DCコンバータがその負荷変動に対応できず、いきなり出力電圧がゼロになってしまうことがあるのである。そうなると飛行ロボットは墜落してしまうから、何らかの対策が必要である。 The fourth problem is that the flying robot may crash if the flying robot receives a gust of wind or the power supply cable is disconnected during the flight. Since many of the electric motors that drive the propulsion means (for example, the rotor) of the flying robot are DC brushless motors, a DC-DC converter is often used as a drive power source for the electric motor. The DC-DC converter is a power supply circuit using a switching system in order to reduce the size, and has a negative characteristic. For this reason, it may not be able to cope with sudden load fluctuations, and the output may suddenly become zero. For example, if the output to the electric motor needs to increase rapidly due to a gust of wind during flight, the DC-DC converter may not be able to cope with the load fluctuation, and the output voltage may suddenly become zero. It is. If this happens, the flying robot will crash, so some countermeasure is necessary.
 また、飛行ロボットへ給電するケーブルが何らかの原因で断線した場合も、やはり飛行ロボットが墜落してしまうから、これについても何らかの対策が必要である。 Also, if the cable for supplying power to the flying robot is disconnected for some reason, the flying robot will crash, and some countermeasures are necessary for this.
 しかし、上述した特許文献1には、ケーブルを介して模型飛行機上の電動モータに電力供給する構成が開示されているだけであり、上述した第一~第四の問題は認識されていないし、それらに対する対処法についてもなんら開示・示唆されていない。 However, the above-mentioned Patent Document 1 only discloses a configuration for supplying power to an electric motor on a model airplane via a cable, and the first to fourth problems described above are not recognized. There is no disclosure or suggestion of how to deal with.
 上述した特許文献2の「遠隔操縦式ヘリコプタの操縦機構」には、ケーブルの絡みつきという上記第三の問題を回避する方策の一案が開示されている。しかし、この操縦機構では、テンションロープでヘリコプタの飛行範囲を制限しながら、発信器と受信器を結ぶ信号伝達ケーブルで制御信号を伝達するようにしているため、リールA及びリールBが必要になると共に、リールAによるテンションロープの送り出しと巻き取りに応じて、リールBによる信号伝達ケーブルの送り出し及び巻き取りを制御する必要があるため、ケーブル絡みつき防止機構の構成及び制御が複雑になってしまう、という難点がある。なお、特許文献2では、上記第一、第二及び第四の問題については認識されていないし、それらに対する対処法についてもなんら開示・示唆されていない。 [Patent Document 2] “Remote Control Helicopter Control Mechanism” discloses a proposal of a measure for avoiding the third problem of cable entanglement. However, in this steering mechanism, the control signal is transmitted by the signal transmission cable connecting the transmitter and the receiver while limiting the flight range of the helicopter by the tension rope, so that the reel A and the reel B are necessary. At the same time, since it is necessary to control the sending and winding of the signal transmission cable by the reel B according to the feeding and winding of the tension rope by the reel A, the configuration and control of the cable entanglement prevention mechanism becomes complicated. There is a difficulty. In Patent Document 2, the first, second, and fourth problems are not recognized, and no countermeasures are disclosed or suggested.
 上述した特許文献3の「浮遊体」には、直流モータと、当該直流モータに交流を供給する交流電源とを備えた主翼動力装置が使用した例が含まれており、これは、直流モータが動作する周波数の低い交流信号を前記直流モータに供給することによって、主翼をなめらかに羽ばたかせるようにするものである。主翼の羽ばたきが必要なのは、この浮遊体が、一対の主翼に自励的な羽ばたき運動をさせることによって、部屋の中や屋外にて浮遊させる玩具であるからである。したがって、上述した第一~第四の問題を回避する方策には使えないことが明らかである。なお、特許文献3では、そもそも、上述した第一~第四の問題は認識されていない。 The above-mentioned “floating body” of Patent Document 3 includes an example in which a main wing power device including a DC motor and an AC power supply that supplies AC to the DC motor is used. By supplying an AC signal having a low operating frequency to the DC motor, the main wing is caused to flutter smoothly. The reason for flapping the main wing is that this floating body is a toy that floats in a room or outdoors by causing a pair of main wings to perform self-exciting flapping motion. Therefore, it is clear that it cannot be used as a measure for avoiding the above first to fourth problems. In Patent Document 3, the first to fourth problems described above are not recognized in the first place.
 上記特許文献4の小型無人ヘリコプタの制御装置は、小型無人ヘリコプタの自律制御を実現しているが、それに止まり、上述した第一~第四の問題は認識されていないし、それらに対する対処法についてもなんら開示・示唆されていない。 The control device for the small unmanned helicopter of Patent Document 4 realizes autonomous control of the small unmanned helicopter. However, the above-described first to fourth problems are not recognized, and the countermeasures against them are also described. No disclosure or suggestion.
 本発明は、以上述べたような事情を考慮してなされたものであり、その主たる目的は、飛行ロボットに搭載されるバッテリーの容量に起因して飛行時間やペイロードが制限されることなく、安定して飛行ロボットを連続飛行させることができると共に、飛行ロボットに空中から農薬散布、空撮、放射線計測等の種々の作業を行わせることができる、産業用の飛行ロボット装置を提供することにある。 The present invention has been made in consideration of the circumstances as described above, and its main purpose is to stabilize the flight time and payload without being limited due to the capacity of the battery mounted on the flying robot. It is an object to provide an industrial flying robot apparatus capable of continuously flying a flying robot and allowing the flying robot to perform various operations such as spraying of agrochemicals, aerial photography, and radiation measurement from the air. .
 本発明の他の目的は、突風等を受けて飛行ロボットに急激な負荷変動が生じたり、給電ケーブルが断線したりしても、飛行ロボットが墜落する恐れがない、産業用の飛行ロボット装置を提供することにある。 Another object of the present invention is to provide an industrial flying robot apparatus that does not cause a flying robot to crash even if a sudden load fluctuation occurs due to a gust of wind or the power supply cable is disconnected. It is to provide.
 本発明のさらに他の目的は、飛行ロボットと地上側電源装置を接続するケーブルに起因する電圧降下や飛行ロボットの荷重変動を、簡単な構成で抑制することができる、産業用の飛行ロボット装置を提供することにある。 Still another object of the present invention is to provide an industrial flying robot apparatus that can suppress voltage drop and load fluctuation caused by a cable connecting a flying robot and a ground-side power supply device with a simple configuration. It is to provide.
 本発明のさらに他の目的は、飛行ロボットの高度または水平位置の急激な変化や風などによって、飛行ロボットと地上側電源装置を接続するケーブルが絡みついてしまい、飛行ロボットの飛行に支障が生じる恐れを、簡単な構成で解消することができる、産業用の飛行ロボット装置を提供することにある。 Still another object of the present invention is that a cable connecting the flying robot and the ground-side power supply device may be entangled due to a sudden change in altitude or horizontal position of the flying robot, wind, or the like, which may hinder flight of the flying robot. It is an object of the present invention to provide an industrial flying robot apparatus that can solve the above problem with a simple configuration.
 ここに明記しない本発明のさらに他の目的は、以下の説明及び添付図面から明らかである。 Further objects of the present invention that are not specified here will be apparent from the following description and the accompanying drawings.
 (1) 本発明の飛行ロボット装置は、
 飛行ロボットと、
 前記飛行ロボットに可撓性送電ケーブルを介して電力を供給する地上側電源装置とを備え、
 前記飛行ロボットは、
 推進手段と、
 前記推進手段を駆動する電動モータと、
 前記飛行ロボットに作用する前記送電ケーブルの荷重に応じて前記電動モータの出力を制御する第1制御部と、
 前記地上側電源装置から前記送電ケーブルを介して供給される高電圧を低電圧に変換して前記電動モータに供給する高圧/低圧変換部と、
 前記高圧/低圧変換部で生成された前記低電圧を前記電動モータに供給するメイン電源装置と、
 必要に応じて前記電動モータに補助電圧を供給するサブ電源装置と、
 前記補助電圧を供給する補助バッテリーとを備えており、
 前記地上側電源装置は、
 前記送電ケーブルを介して前記高電圧を前記高圧/低圧変換部に送電する高圧送電部と、
 前記飛行ロボットと前記地上側電源装置の間の距離に応じて、前記高圧送電部が送電する前記高電圧の値を制御する第2制御部とを備えており、
 前記サブ電源装置は、前記メイン電源装置の出力が低下または消失すると、前記補助バッテリーから前記補助電圧を前記電動モータに供給する
ことを特徴とするものである。
(1) The flying robot apparatus of the present invention
A flying robot,
A ground side power supply for supplying power to the flying robot via a flexible power transmission cable,
The flying robot is
Propulsion means,
An electric motor for driving the propulsion means;
A first control unit that controls an output of the electric motor according to a load of the power transmission cable acting on the flying robot;
A high-voltage / low-voltage converter that converts the high voltage supplied from the ground-side power supply device via the power transmission cable into a low voltage and supplies the electric motor;
A main power supply for supplying the low voltage generated by the high-voltage / low-voltage converter to the electric motor;
A sub power supply for supplying an auxiliary voltage to the electric motor as required;
An auxiliary battery for supplying the auxiliary voltage,
The ground side power supply is
A high-voltage power transmission unit that transmits the high voltage to the high-voltage / low-voltage conversion unit via the power transmission cable;
A second control unit that controls a value of the high voltage transmitted by the high-voltage power transmission unit according to a distance between the flying robot and the ground-side power supply device;
The sub power supply device supplies the auxiliary voltage from the auxiliary battery to the electric motor when the output of the main power supply device decreases or disappears.
 本発明の飛行ロボット装置では、上述したように、前記地上側電源装置から前記飛行ロボットに前記可撓性送電ケーブルを介して前記高電圧が供給される。また、前記地上側電源装置の前記第2制御部によって、前記飛行ロボットと前記地上側電源装置の間の距離に応じて、前記高圧送電部による前記高電圧の値が制御される。さらに、前記飛行ロボットの前記第1制御部により、前記飛行ロボットに作用する前記送電ケーブルの荷重に応じて前記電動モータの出力が制御される。このため、飛行中に前記飛行ロボットが受ける、前記送電ケーブルに起因する電圧降下や前記送電ケーブルの重量や絡みつきによる影響が、確実に抑制される。よって、前記飛行ロボットに搭載されるバッテリーの容量に起因して飛行時間やペイロードが制限されることなく、安定して前記飛行ロボットを連続飛行させることができると共に、前記飛行ロボットに空中から農薬散布、空撮、放射線計測等の種々の作業を行わせることができる。 In the flying robot device of the present invention, as described above, the high voltage is supplied from the ground-side power supply device to the flying robot via the flexible power transmission cable. Further, the high voltage value of the high-voltage power transmission unit is controlled by the second control unit of the ground-side power supply device according to the distance between the flying robot and the ground-side power supply device. Furthermore, the output of the electric motor is controlled by the first controller of the flying robot in accordance with the load of the power transmission cable acting on the flying robot. For this reason, the influence by the voltage drop resulting from the power transmission cable and the weight or entanglement of the power transmission cable, which the flying robot receives during flight, is reliably suppressed. Therefore, the flight robot can be continuously operated stably without being limited in flight time and payload due to the capacity of the battery mounted on the flight robot, and the pesticide is sprayed on the flight robot from the air. Various operations such as aerial photography and radiation measurement can be performed.
 また、前記第1制御部により、前記飛行ロボットに作用する前記送電ケーブルの荷重に応じて前記電動モータの出力が制御され、それと同時に、前記第2制御部により、前記飛行ロボットと前記地上側電源装置の間の距離に応じて、前記高圧送電部が送電する前記高電圧の値が制御される。このため、前記飛行ロボットと前記地上側電源装置を接続する前記送電ケーブルに起因する電圧降下や前記飛行ロボットの荷重変動を、簡単な構成で抑制することができる。 The output of the electric motor is controlled by the first controller according to the load of the power transmission cable acting on the flying robot, and at the same time, the flying robot and the ground-side power supply are controlled by the second controller. The value of the high voltage transmitted by the high-voltage power transmission unit is controlled according to the distance between the devices. For this reason, the voltage drop resulting from the power transmission cable connecting the flying robot and the ground-side power supply device and the load fluctuation of the flying robot can be suppressed with a simple configuration.
 さらに、前記高圧/低圧変換部で生成された前記低電圧を前記電動モータに供給する前記メイン電源装置に加えて、前記補助バッテリーから前記補助電圧を前記モータに供給する前記サブ電源装置が設けられており、何らかの原因で前記メイン電源装置の出力が低下または消失すると、前記サブ電源装置が前記補助電圧を前記電動モータに供給する。このため、突風等を受けて前記飛行ロボットに急激な負荷変動が生じたり、前記給電ケーブルが断線したりしても、前記飛行ロボットが墜落する恐れがない。 Furthermore, in addition to the main power supply device that supplies the low voltage generated by the high-voltage / low-voltage conversion unit to the electric motor, the sub power supply device that supplies the auxiliary voltage from the auxiliary battery to the motor is provided. When the output of the main power supply device decreases or disappears for some reason, the sub power supply device supplies the auxiliary voltage to the electric motor. For this reason, even if a sudden load fluctuation occurs in the flying robot due to a gust of wind or the power supply cable is disconnected, the flying robot does not fall.
 以上述べたように、本発明によれば、産業用としてただちに実用に供することができる飛行ロボット装置を実現することが可能となる。 As described above, according to the present invention, it is possible to realize a flying robot apparatus that can be immediately put into practical use for industrial use.
 (2) 本発明の飛行ロボット装置の好ましい例では、前記地上側電源装置の前記高圧送電部が送電する前記高電圧が、直流電圧とされる。この例では、前記送電ケーブルを介して前記高電圧が送電される際に生じる電圧降下が、交流電圧とした場合よりも抑制されるという利点がある。また、交流電圧の電圧変換回路より直流電圧の電圧回路の方が小さくできる利点もある。 (2) In a preferred example of the flying robot device of the present invention, the high voltage transmitted by the high-voltage power transmission unit of the ground side power supply device is a DC voltage. In this example, there is an advantage that a voltage drop generated when the high voltage is transmitted through the power transmission cable is suppressed as compared with the case where the AC voltage is used. Further, there is an advantage that the voltage circuit of the DC voltage can be made smaller than the voltage conversion circuit of the AC voltage.
 (3) 本発明の飛行ロボット装置の他の好ましい例では、前記飛行ロボットの前記高圧/低圧変換部が出力可変のDC-DCコンバータとされる。この例では、DC-DCコンバータの出力が可変であるため、前記飛行ロボット上の回路構成が簡単になるという利点が得られる。 (3) In another preferred example of the flying robot device of the present invention, the high-voltage / low-voltage converter of the flying robot is a DC-DC converter with variable output. In this example, since the output of the DC-DC converter is variable, there is an advantage that the circuit configuration on the flying robot is simplified.
 (4) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記地上側電源装置の前記高圧送電部がAC-DCコンバータとされ、前記飛行ロボットの前記高圧/低圧変換部がDC-DCコンバータとされる。この例では、前記地上側電源装置の前記高圧送電部が送電する前記高電圧を、商用電源を用いて生成することができるという利点が得られる。 (4) In still another preferred example of the flying robot device of the present invention, the high-voltage power transmission unit of the ground side power supply device is an AC-DC converter, and the high-voltage / low-voltage conversion unit of the flying robot is a DC-DC converter. It is said. In this example, there is an advantage that the high voltage transmitted by the high-voltage power transmission unit of the ground side power supply device can be generated using a commercial power source.
 (5) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記メイン電源装置の負荷容量の低下が検出されると、前記サブ電源装置が、前記メイン電源装置から供給される前記低電圧に加えて、前記補助バッテリーから前記補助電圧を前記電動モータに供給するように構成される。この例では、前記メイン電源装置の負荷容量の低下による前記飛行ロボットの飛行への影響を最小限にすることができるという利点が得られる。 (5) In still another preferred example of the flying robot device according to the present invention, when a decrease in load capacity of the main power supply device is detected, the sub power supply device is set to the low voltage supplied from the main power supply device. In addition, the auxiliary voltage is supplied from the auxiliary battery to the electric motor. In this example, there is an advantage that the influence on the flight of the flying robot due to the decrease in the load capacity of the main power supply device can be minimized.
 (6) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記メイン電源装置からの出力の喪失が検出されると、前記サブ電源装置の動作が停止されると共に、前記補助バッテリーから前記補助電圧を前記電動モータに直接供給するように構成される。この例では、前記送電ケーブルの断線等によって前記メイン電源装置の出力が喪失しても、前記飛行ロボットが墜落することなく飛行を継続できるという利点が得られる。 (6) In still another preferred example of the flying robot device according to the present invention, when the loss of the output from the main power supply device is detected, the operation of the sub power supply device is stopped and the auxiliary battery is used for the auxiliary power supply. A voltage is directly supplied to the electric motor. In this example, even if the output of the main power supply device is lost due to disconnection of the power transmission cable or the like, there is an advantage that the flying robot can continue to fly without crashing.
 (7) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記地上側電源装置から前記送電ケーブルを介して供給される前記高電圧を用いて、前記補助バッテリーを充電することで、放電による前記補助電圧の低下を防止する充電用電源装置をさらに備える。この例では、前記補助バッテリーが時間と共に自然放電して、所望の前記補助電圧供給できないという事態を防止することができるという利点が得られる。 (7) In still another preferable example of the flying robot device of the present invention, the auxiliary battery is charged by using the high voltage supplied from the ground-side power supply device via the power transmission cable, thereby causing discharge. The battery pack further includes a charging power supply device that prevents the auxiliary voltage from decreasing. In this example, there is an advantage that it is possible to prevent a situation in which the desired auxiliary voltage cannot be supplied due to spontaneous discharge of the auxiliary battery over time.
 (8) 本発明の飛行ロボット装置のさらに他の好ましい例では、地上側で前記送電ケーブルの余剰分を巻き取るケーブル巻取機をさらに備え、前記ケーブル巻取機による前記送電ケーブルの送り出し及び巻き取りが、前記飛行ロボットと前記地上側電源装置の間の距離に応じて自動的に調整されるように構成される。この例では、前記飛行ロボットの高度または水平位置の急激な変化や風などによって、前記飛行ロボットと前記地上側電源装置を接続する前記送電ケーブルが絡みついてしまい、前記飛行ロボットの飛行に支障が生じる恐れを、簡単な構成で解消することができる。 (8) In still another preferred example of the flying robot device of the present invention, the flying robot apparatus further includes a cable winder that winds up the surplus portion of the power transmission cable on the ground side, and the transmission and winding of the power transmission cable by the cable winder. Is configured to be automatically adjusted according to the distance between the flying robot and the ground-side power supply. In this example, a sudden change in altitude or horizontal position of the flying robot, wind, and the like cause the power transmission cable connecting the flying robot and the ground-side power supply device to become entangled, resulting in hindrance to the flight of the flying robot. Fear can be eliminated with a simple configuration.
 (9) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記飛行ロボットが、飛行中の前記飛行ロボットの位置を検出する位置検出センサと、前記位置検出センサの出力信号を無線で前記地上側電源装置に送信する送受信部とを備えており、前記地上側電源装置の前記第2制御部は、前記高圧送電部が送電する前記高電圧の値の制御を、前記出力信号を受信して行うように構成される。この例では、飛行中の前記飛行ロボットの位置を簡単かつ確実に検出することができると共に、その検出結果に基づいて前記第2制御部を的確に制御することができるという利点がある。 (9) In still another preferable example of the flying robot apparatus of the present invention, the flying robot detects a position of the flying robot during flight, and an output signal of the position detecting sensor is wirelessly transmitted to the ground. A transmission / reception unit that transmits to the side power supply device, and the second control unit of the ground side power supply device receives the output signal to control the value of the high voltage transmitted by the high-voltage power transmission unit. Configured to do. In this example, there is an advantage that the position of the flying robot in flight can be detected easily and reliably, and the second control unit can be accurately controlled based on the detection result.
 (10) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記飛行ロボットに接続された通信ケーブル(制御信号の送受信やデータ通信に使用され、例えば光ファイバから構成される)をさらに備えており、前記通信ケーブルは前記送電ケーブルに一体化(内蔵または付加)または付属される。この例では、前記通信ケーブルの設置による悪影響を排除しながら、飛行中の前記飛行ロボットとの通信が確実に行うことができるという利点がある。 (10) In still another preferable example of the flying robot apparatus of the present invention, the flying robot apparatus further includes a communication cable (used for transmission / reception of control signals and data communication, and configured from, for example, an optical fiber) connected to the flying robot. The communication cable is integrated (built-in or added) or attached to the power transmission cable. In this example, there is an advantage that communication with the flying robot in flight can be reliably performed while eliminating the adverse effects due to the installation of the communication cable.
 (11) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記ケーブル巻取機が、前記送電ケーブルの送り出し及び巻き取りを行うケーブル巻取用モータを備えており、前記ケーブル巻取用モータによる前記送電ケーブルの送り出し及び巻き取りは、前記飛行ロボットと前記地上側電源装置の間の距離に応じて、前記第2制御部によって制御される。この例では、前記ケーブル巻取機の構造が少し複雑になるが、前記飛行ロボットと前記地上側電源装置の間の距離に応じた前記送電ケーブルの送り出し及び巻き取りの制御が、より正確に行われるという利点がある。 (11) In still another preferred example of the flying robot apparatus according to the present invention, the cable winder includes a cable winding motor for feeding and winding the power transmission cable, and the cable winding motor. The sending and winding of the power transmission cable according to is controlled by the second control unit according to the distance between the flying robot and the ground side power supply device. In this example, the structure of the cable winder is a little complicated, but the transmission cable winding and winding control according to the distance between the flying robot and the ground-side power supply device is more accurately performed. There is an advantage that.
 (12) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記ケーブル巻取機が、前記送電ケーブルをその巻き取り方向に付勢する付勢部材(例えばバネ)を備えており、前記送電ケーブルの送り出しは、前記付勢部材の巻き取り力に抗して前記送電ケーブルを引き出すことによって行われ、前記送電ケーブルの巻き取りは、前記付勢部材の巻き取り力によって行われるように構成される。この例では、前記飛行ロボットと前記地上側電源装置の間の距離に応じた前記送電ケーブルの送り出し及び巻き取りの制御が、簡単な構成で実現されるという利点がある。 (12) In still another preferred example of the flying robot apparatus according to the present invention, the cable winder includes a biasing member (for example, a spring) that biases the power transmission cable in a winding direction thereof. The cable is sent out by pulling out the power transmission cable against the winding force of the biasing member, and the power transmission cable is wound up by the winding force of the biasing member. The In this example, there is an advantage that the transmission and winding control of the power transmission cable according to the distance between the flying robot and the ground side power supply device can be realized with a simple configuration.
 (13) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記飛行ロボットの前記第1制御部と前記地上側電源装置の前記第2制御部の少なくとも一方で、PID制御方式が使用される。この例では、前記第1制御部または前記第2制御部の実現が容易であるという利点がある。しかし、PID制御方式以外の方式を用いてもよいことは言うまでもない。 (13) In still another preferred example of the flying robot device of the present invention, a PID control method is used in at least one of the first control unit of the flying robot and the second control unit of the ground-side power supply device. . In this example, there is an advantage that the first control unit or the second control unit is easily realized. However, it goes without saying that methods other than the PID control method may be used.
 (14) 本発明の飛行ロボット装置のさらに他の好ましい例では、地上側に設置された、前記ケーブルの絡みつきを防止する絡みつき防止部材をさらに備える。この例では、簡単な構成で前記ケーブルの絡みつき防止をいっそう容易に行えるという利点がある。 (14) In yet another preferred example of the flying robot apparatus of the present invention, the flying robot apparatus further includes an entanglement preventing member that is installed on the ground side and prevents the entanglement of the cable. In this example, there is an advantage that the cable can be more easily prevented from being entangled with a simple configuration.
 (15) 本発明の飛行ロボット装置のさらに他の好ましい例では、前記飛行ロボットが、電動ヘリコプタの構成を持つ。この例では、本発明の利点を最大限に活かせるという利点がある。 (15) In still another preferred example of the flying robot device of the present invention, the flying robot has a configuration of an electric helicopter. In this example, there is an advantage that the advantages of the present invention can be fully utilized.
 本発明の飛行ロボット装置によれば、(a)飛行ロボットに搭載されるバッテリーの容量に起因して飛行時間やペイロードが制限されることなく、安定して飛行ロボットを連続飛行させることができると共に、飛行ロボットに空中から農薬散布、空撮、放射線計測等の種々の作業を行わせることができる、(b)突風等を受けて飛行ロボットに急激な負荷変動が生じたり、給電ケーブルが断線したりしても、飛行ロボットが墜落する恐れがない、(c)飛行ロボットと地上側電源装置を接続するケーブルに起因する電圧降下や飛行ロボットの荷重変動を、簡単な構成で抑制することができる、(d)産業用としてただちに実用に供することができる、という効果が得られる。 According to the flying robot device of the present invention, (a) the flying robot can be continuously and stably fly without being limited in flight time and payload due to the capacity of the battery mounted on the flying robot. The flying robot can perform various operations such as spraying agricultural chemicals, aerial photography, radiation measurement, etc. from the air. (B) The flying robot undergoes sudden load fluctuations due to gusts, etc., or the power supply cable is disconnected. The flying robot is not likely to crash. (C) Voltage drop caused by the cable connecting the flying robot and the ground-side power supply and load fluctuation of the flying robot can be suppressed with a simple configuration. (D) The effect that it can be immediately put into practical use for industrial use is obtained.
 また、地上側で送電ケーブルの余剰分を巻き取るケーブル巻取機をさらに備え、ケーブル巻取機による送電ケーブルの送り出し及び巻き取りが、飛行ロボットと地上側電源装置の間の距離に応じて自動的に調整されるようにした場合は、上記(a)~(d)の効果に加えて、(e)飛行ロボットの高度または水平位置の急激な変化や風などによって、飛行ロボットと地上側電源装置を接続するケーブルが絡みついてしまい、飛行ロボットの飛行に支障が生じる恐れを、簡単な構成で解消することができる、という効果がさらに得られる。 In addition, a cable winder that winds up excess power cable on the ground side is further provided, and the transmission and winding of the power transmission cable by the cable winder are automatically performed according to the distance between the flying robot and the ground side power supply device. (E) In addition to the effects (a) to (d) above, (e) the flying robot and the ground-side power The effect that the cable that connects the devices is entangled and the flying robot may be hindered by a simple configuration can be further obtained.
本発明の第1実施形態に係る飛行ロボット装置の全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the flying robot apparatus which concerns on 1st Embodiment of this invention. 図1の飛行ロボット装置に使用されている飛行ロボットの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the flying robot currently used for the flying robot apparatus of FIG. 図1の飛行ロボット装置に使用されているロボット側制御装置と地上側電源装置の内部構成を示す機能ブロック図である。It is a functional block diagram which shows the internal structure of the robot side control apparatus and ground side power supply device which are used for the flying robot apparatus of FIG. 図1の飛行ロボット装置に使用されているロボット側制御装置の飛行中の動作を示すフローチャートである。It is a flowchart which shows the operation | movement in flight of the robot side control apparatus used for the flying robot apparatus of FIG. 図1の飛行ロボット装置に使用されている地上側電源装置の飛行中の動作を示すフローチャートである。It is a flowchart which shows the operation | movement in flight of the ground side power supply device used for the flying robot apparatus of FIG. (a)は図1の飛行ロボット装置に使用されているケーブル巻取機の詳細構成を示す正面図、(b)はその側面図である。(A) is a front view which shows the detailed structure of the cable winder used for the flying robot apparatus of FIG. 1, (b) is the side view. 本発明の第2実施形態に係る飛行ロボット装置に使用されているロボット側制御装置と地上側電源装置の内部構成を示す機能ブロック図である。It is a functional block diagram which shows the internal structure of the robot side control apparatus and ground side power supply device which are used for the flying robot apparatus which concerns on 2nd Embodiment of this invention. (a)は図7の飛行ロボット装置に使用されているケーブル巻取機の詳細構成を示す正面図、(b)はその側面図である。(A) is a front view which shows the detailed structure of the cable winder used for the flying robot apparatus of FIG. 7, (b) is the side view. 本発明の第1及び第2実施形態に係る飛行ロボット装置に使用されている補助電源装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the auxiliary power supply device used for the flying robot apparatus which concerns on 1st and 2nd embodiment of this invention. 本発明の第1及び第2実施形態に係る飛行ロボット装置に使用されているバッテリー電圧低下防止回路を示す概念図である。It is a conceptual diagram which shows the battery voltage fall prevention circuit used for the flying robot apparatus which concerns on 1st and 2nd embodiment of this invention. 本発明の第1及び第2実施形態に係る飛行ロボット装置に使用されている補助電源装置の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the auxiliary power supply device used for the flying robot apparatus which concerns on 1st and 2nd embodiment of this invention.
 以下、添付図面を参照しながら、本発明の好適な実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
 (第1実施形態)
 本発明の第1実施形態に係る飛行ロボット装置1の全体構成を図1に示す。同図より明らかなように、飛行ロボット装置1は、飛行ロボット10と、飛行ロボット10に可撓性の送電ケーブル30を介して電力を供給する地上側電源装置50と、飛行ロボット10の高度や位置の変化に応じて送電ケーブル30の引き出し及び巻き取りを行うケーブル巻取機40と、飛行中に送電ケーブル30が絡みついて飛行ロボット10の飛行に支障が生じるのを防止するための絡みつき防止部材45とを備えている。地上側電源装置50とケーブル巻取機40と絡みつき防止部材45は、地上に設けられている。飛行ロボット10は、送電ケーブル30を介して地上側電源装置50から供給される電力により自律飛行可能である。
(First embodiment)
FIG. 1 shows the overall configuration of the flying robot apparatus 1 according to the first embodiment of the present invention. As can be seen from the figure, the flying robot device 1 includes a flying robot 10, a ground-side power supply device 50 that supplies power to the flying robot 10 via a flexible power transmission cable 30, and the altitude of the flying robot 10. A cable winder 40 that pulls out and winds up the power transmission cable 30 in accordance with a change in position, and a tangle prevention member for preventing the power transmission cable 30 from being tangled during the flight and hindering the flight of the flying robot 10 45. The ground side power supply device 50, the cable winder 40, and the entanglement preventing member 45 are provided on the ground. The flying robot 10 can fly autonomously with electric power supplied from the ground-side power supply device 50 via the power transmission cable 30.
 飛行ロボット10は、図2に詳細に示すように、電動モータ14で個別に駆動される6個のロータ13を持つ電動マルチロータ型ヘリコプタの構成を持っている。より詳細に言うと、飛行ロボット10は、略円筒形の本体11と、本体11の略円筒形の外周部に等間隔で配設されると共に、その外周部から放射状に延在する6本のアーム12と、それらアーム12の先端部にそれぞれ回転可能に設置された計6個のロータ13と、それらロータ13を個別に回転駆動する計6個の電動モータ14とを備えている。全ロータ13は、対応する電動モータ14の回転軸にそれぞれ直接固定されており、対応する電動モータ14の回転によって回転駆動せしめられるようになっている。全ロータ13は、同一面内に配置されている。ここでは、ロータ13が、飛行ロボット10の推進手段として機能する。 As shown in detail in FIG. 2, the flying robot 10 has a configuration of an electric multi-rotor helicopter having six rotors 13 that are individually driven by an electric motor 14. More specifically, the flying robot 10 is arranged on the substantially cylindrical main body 11 and the substantially cylindrical outer peripheral portion of the main body 11 at equal intervals, and the six robots 10 extending radially from the outer peripheral portion. The arm 12 is provided with a total of six rotors 13 rotatably installed at the distal ends of the arms 12 and a total of six electric motors 14 that individually rotate and drive the rotors 13. All the rotors 13 are directly fixed to the rotating shafts of the corresponding electric motors 14, respectively, and can be driven to rotate by the rotation of the corresponding electric motors 14. All the rotors 13 are arranged in the same plane. Here, the rotor 13 functions as a propulsion unit for the flying robot 10.
 本明細書では、6個のアーム12を区別するときは、図2に示すように、符合12a、12b、12c、12d、12e及び12fを使用する。同様に、6個のロータ13を区別するときは、符合13a、13b、13c、13d、13e及び13fを使用し、6個の電動モータ14を区別するときは、符合14a、14b、14c、14d、14e及び14fを使用する。 In this specification, when distinguishing the six arms 12, as shown in FIG. 2, reference numerals 12a, 12b, 12c, 12d, 12e and 12f are used. Similarly, when distinguishing the six rotors 13, the signs 13a, 13b, 13c, 13d, 13e and 13f are used. When distinguishing the six electric motors 14, the signs 14a, 14b, 14c and 14d are used. 14e and 14f are used.
 農薬散布、空撮、放射線計測等の種々の作業に必要な機材(作業用機材)は、適切な部材を使用して飛行ロボット10の本体11に搭載される。作業用機材は、飛行ロボット10を飛行させることによって所望の位置及び高度まで送られ、その場所でホバリングしながら、あるいは、所望の高度で飛行しながら、所望の作業を行うことになる。 Equipment necessary for various operations such as agricultural chemical spraying, aerial photography, radiation measurement, etc. (working equipment) is mounted on the main body 11 of the flying robot 10 using appropriate members. The work equipment is sent to a desired position and altitude by flying the flying robot 10, and performs a desired work while hovering at that place or flying at a desired altitude.
 飛行ロボット10の飛行に必要な電力、換言すれば、全ロータ13を駆動する6個の電動モータ14を回転させるのに必要な電力は、飛行ロボット10に搭載されたバッテリーからではなく、地上側電源装置50から送電ケーブル30を介して連続的に供給される。このため、飛行ロボット10へのバッテリーの搭載を省略することができる。ただし、突風等による飛行ロボット10の負荷の急増や、地上側電源装置50の故障、送電ケーブル30の切断、飛行ロボット10上の機器の故障等による電力供給の急減または消失といった非常事態に備えて、本体11には補助バッテリー(後述する)が搭載されている。飛行ロボット10の思わぬ墜落事故を防止するためである。 The electric power required for the flight of the flying robot 10, in other words, the electric power required to rotate the six electric motors 14 that drive all the rotors 13 is not from the battery mounted on the flying robot 10 but on the ground side. It is continuously supplied from the power supply device 50 via the power transmission cable 30. For this reason, mounting of the battery on the flying robot 10 can be omitted. However, in preparation for an emergency situation such as a sudden increase in the load of the flying robot 10 due to a gust of wind, a ground-side power supply device 50 failure, a disconnection of the power transmission cable 30, a failure of equipment on the flying robot 10, or the like. The main body 11 is equipped with an auxiliary battery (described later). This is to prevent an unexpected crash of the flying robot 10.
 飛行ロボット10の本体11の内部には、図3に示すような内部構成を持つロボット側制御装置20が搭載されている。ロボット側制御装置20には、送電ケーブル30の先端が機械的及び電気的に接続されている。ケーブル30の基端は、地上側電源装置50に機械的及び電気的に接続されている。ケーブル30の基端側の部分は、地上側電源装置50の近傍で、地上側電源装置50の近傍に設けられたケーブル巻取機40のドラム42(図6参照)に複数回巻き付けられてから、地上側電源装置50に接続されている。また、ケーブル30の基端は、ケーブル巻取機40の少し手前において、絡みつき防止部材45のケーブル挿入リング45aに挿入・係合されていて、その後方でドラム42に巻き付けられている。ドラム42からのケーブル30の引き出し長さは、飛行ロボット10との距離に応じて、ケーブル巻取用モータ41によってドラム42を回転駆動することによって調整される。 A robot-side control device 20 having an internal configuration as shown in FIG. 3 is mounted inside the main body 11 of the flying robot 10. The robot-side control device 20 is mechanically and electrically connected to the tip of the power transmission cable 30. The base end of the cable 30 is mechanically and electrically connected to the ground side power supply device 50. A portion on the proximal end side of the cable 30 is wound around the drum 42 (see FIG. 6) of the cable winder 40 provided in the vicinity of the ground-side power supply device 50 in the vicinity of the ground-side power supply device 50. The ground side power supply device 50 is connected. The proximal end of the cable 30 is inserted and engaged with the cable insertion ring 45a of the entanglement prevention member 45 slightly before the cable winder 40, and is wound around the drum 42 behind the cable winding ring 45a. The drawing length of the cable 30 from the drum 42 is adjusted by rotating the drum 42 by the cable winding motor 41 according to the distance from the flying robot 10.
 本体11の内部には、飛行ロボット10の自律飛行を制御するロボット側自律制御装置(図示せず)が搭載されている。ロボット側自律制御装置としては、例えば、上述した特許文献4に開示されているものを使用することができる。 Inside the main body 11, a robot side autonomous control device (not shown) for controlling the autonomous flight of the flying robot 10 is mounted. As a robot side autonomous control apparatus, what is indicated by patent documents 4 mentioned above can be used, for example.
 具体的に言えば、ロボット側自律制御装置は、(イ)飛行ロボット10の現在位置及び姿勢角を検知するセンサと、(ロ)飛行ロボット10の6個の電動モータ14をそれぞれ駆動する6個のモータドライバと、(ハ)前記センサから得られる飛行ロボット10の現在の飛行状態と、地上側自律制御装置(後述)から設定される目標値とから、所定の自律制御アルゴリズムを用いて個々の電動モータ14が最適な回転数となるように制御指令値を独立に演算するCPUと、(ニ)地上側自律制御装置との通信を行う無線モデムと、(ホ)手動操縦送信機からの手動操縦信号を受信する手動操縦受信機とを備えて構成される。前記CPUは、上記のような演算を行う主演算部の他に、前記センサから得られるセンサ情報を地上側自律制御装置で監視したり、地上側自律制御装置で設定される目標値を入力したりするために、前記無線モデムとの間で信号を入出力制御させる副演算部も備えている。前記センサとしては、飛行ロボット10の位置を検知するGPSセンサや、飛行ロボット10の姿勢を3軸で検知する3軸姿勢センサ、飛行ロボット10の高度を計測する対地高度計、そして、飛行ロボット10の方位を計測する磁気方位計が用いられる。しかし、ロボット側自律制御装置の構成及び機能は、これに限定されるものではない。 More specifically, the robot-side autonomous control device includes (a) a sensor that detects the current position and attitude angle of the flying robot 10 and (b) six motors that drive the six electric motors 14 of the flying robot 10. (C) a current flight state of the flying robot 10 obtained from the sensor, and a target value set by the ground side autonomous control device (described later) using a predetermined autonomous control algorithm A CPU that independently calculates a control command value so that the electric motor 14 has an optimum rotation speed, (d) a wireless modem that communicates with the ground-side autonomous control device, and (e) a manual operation from a manual control transmitter And a manual steering receiver that receives the steering signal. The CPU monitors the sensor information obtained from the sensor by the ground-side autonomous control device or inputs a target value set by the ground-side autonomous control device, in addition to the main computation unit that performs the computation as described above. For this purpose, a sub-operation unit that controls input / output of signals with the wireless modem is also provided. Examples of the sensor include a GPS sensor that detects the position of the flying robot 10, a three-axis attitude sensor that detects the attitude of the flying robot 10 in three axes, a ground altimeter that measures the altitude of the flying robot 10, A magnetic azimuth meter that measures the azimuth is used. However, the configuration and function of the robot-side autonomous control device are not limited to this.
 ロボット側自律制御装置は、パワー、ヨー、ロール、ピッチという4つの操縦指令値を地上側自律制御装置から受け取り、それに基づいて6個のモータドライバを個別に制御することで、6個の電動モータ14a、14b、14c、14d、14e及び14fの回転数を制御する。これによって、次のようにして、飛行ロボット10の飛行状態を任意に制御することができる。 The robot-side autonomous control device receives four control command values of power, yaw, roll, and pitch from the ground-side autonomous control device, and individually controls the six motor drivers based on the four control command values. The rotational speed of 14a, 14b, 14c, 14d, 14e, and 14f is controlled. Thereby, the flight state of the flying robot 10 can be arbitrarily controlled as follows.
 すなわち、各々のモータドライバにより、電動モータ14a、14c及び14eは時計回りに回転せしめられ、残りの電動モータ14b、14d及び14fは反時計回りに回転せしめられる。パワーについては、6個の電動モータ14a、14b、14c、14d、14e及び14fの回転数を同時に増加すれば、飛行ロボット10は自身に垂直な方向に上昇し、同時に減少すれば自身に垂直な方向に下降する。電動モータ14bと14cの回転数と電動モータ14eと14fの回転数に差を付けると、ロール角が変わる。回転方向を同じにして、電動モータ14a、14b及び14fの回転数と電動モータ14c、14d及び14eの回転数に差を付けると、ピッチ角が変わる。電動モータ14a、14c及び14eの回転数と、電動モータ14b、14d及び14fの回転数に差を付けると、ヨー角が変わる。このようにして、6個の電動モータ14a、14b、14c、14d、14e及び14fの回転数を制御するだけで、任意の飛行状態を得ることができる。 That is, the electric motors 14a, 14c and 14e are rotated clockwise by the respective motor drivers, and the remaining electric motors 14b, 14d and 14f are rotated counterclockwise. Regarding the power, if the number of rotations of the six electric motors 14a, 14b, 14c, 14d, 14e, and 14f is increased simultaneously, the flying robot 10 will rise in a direction perpendicular to itself, and if it simultaneously decreases, it will be perpendicular to itself. Descend in the direction. When a difference is made between the rotational speeds of the electric motors 14b and 14c and the rotational speeds of the electric motors 14e and 14f, the roll angle changes. If the rotational directions are the same and the rotational speeds of the electric motors 14a, 14b and 14f are different from the rotational speeds of the electric motors 14c, 14d and 14e, the pitch angle changes. If a difference is made between the rotational speeds of the electric motors 14a, 14c and 14e and the rotational speeds of the electric motors 14b, 14d and 14f, the yaw angle changes. In this way, an arbitrary flight state can be obtained simply by controlling the rotational speeds of the six electric motors 14a, 14b, 14c, 14d, 14e and 14f.
 地上側には、ロボット側自律制御装置と対になる地上側自律制御装置(図示せず)が用意されている。地上側自律制御装置は、飛行ロボット10の自律制御の状態の監視や目標値の入力等を行うものであり、ロボット側自律制御装置の無線モデムとの通信を行う無線モデムと、ロボット側自律制御装置の手動操縦受信機に手動操縦信号を送信する手動操縦送信機とを備えている。何らかのトラブルにより、ロボット側自律制御装置が故障して自律制御ができなくなった場合には、自動的に手動操縦モードに切り替えられ、その後は手動操縦送信機で操縦できるようになっている。このため、飛行ロボット10の墜落を未然に防ぐことができる。ただし、地上側自律制御装置の構成及び機能も、これに限定されるものではない。 On the ground side, a ground side autonomous control device (not shown) that is paired with the robot side autonomous control device is prepared. The ground side autonomous control device monitors the autonomous control state of the flying robot 10 and inputs a target value. The wireless side modem communicates with the wireless modem of the robot side autonomous control device, and the robot side autonomous control. A manual steering transmitter for transmitting a manual steering signal to a manual steering receiver of the apparatus. When the robot-side autonomous control device breaks down due to some trouble and autonomous control is not possible, it is automatically switched to the manual control mode, and thereafter it can be controlled by the manual control transmitter. For this reason, it is possible to prevent the flying robot 10 from falling. However, the configuration and function of the ground side autonomous control device are not limited to this.
 次に、ケーブル巻取機40について説明する。 Next, the cable winder 40 will be described.
 ケーブル巻取機40は、地上側電源装置50に隣接して地上側に設けられており、送電ケーブル30の余剰分を巻き取ってケーブル30の絡みつきを防止する機能と、ケーブル30の不足分を送り出して、ケーブル30の引っ張り力によって飛行ロボット10に無用な荷重が作用するのを防止する機能を持つ。ケーブル巻取機40によるケーブル30の送り出し・巻き取り動作は、地上側電源装置50によって制御されるようになっている。 The cable winder 40 is provided on the ground side adjacent to the ground-side power supply device 50, and has a function of winding excess of the power transmission cable 30 to prevent the cable 30 from being entangled and a shortage of the cable 30. It has a function of preventing the unnecessary load from acting on the flying robot 10 due to the pulling force of the cable 30. The operation of feeding and winding the cable 30 by the cable winder 40 is controlled by the ground side power supply device 50.
 ケーブル巻取機40は、図6に示すような構成を有しておりケーブル巻取用モータ41と、ケーブル30が巻き付けられるドラム42と、ケーブル巻取用モータ41を支持するスタンド43と、スタンド43を用いてケーブル巻取用モータ41及びドラム42が設置されるベース44とを備えている。ドラム42は、ケーブル巻取用モータ41の回転軸41aに固定されており、モータ41の回転に伴って回転する。ケーブル30は、モータ41の正回転により回転数に応じてドラム42に巻き取られ、モータ41の逆回転により回転数に応じてドラム42から送り出される。 The cable winder 40 has a configuration as shown in FIG. 6 and includes a cable winding motor 41, a drum 42 around which the cable 30 is wound, a stand 43 that supports the cable winding motor 41, and a stand 43 is provided with a cable winding motor 41 and a base 44 on which a drum 42 is installed. The drum 42 is fixed to the rotating shaft 41 a of the cable winding motor 41, and rotates with the rotation of the motor 41. The cable 30 is wound around the drum 42 according to the rotational speed by the forward rotation of the motor 41, and is sent out from the drum 42 according to the rotational speed by the reverse rotation of the motor 41.
 ケーブル巻取機40には、ケーブル30の絡みつきを防止するための絡みつき防止部材45が設けられている。絡みつき防止部材45は、L字形に屈曲形成された剛性材(例えば金属製または合成樹脂製の棒材)からなり、その基端部がケーブル巻取機40のベース44に固定されている。絡みつき防止部材45の先端部には、ケーブル挿入リング45aが形成されている。ケーブル挿入リング45aは、ドラム42より高い位置にあり、ケーブル30をスライド可能な状態で保持するようになっている。これは、ケーブル30が常に、ほぼ同じ状態でドラム42に巻き取られ、あるいはドラム42から引き出されるようにして、ケーブル30の巻取・引出作業に支障が生じないようにするためである。したがって、他の方策によってケーブル30の巻取・引出作業に支障が生じないようになっているのであれば、絡みつき防止部材45は省略することが可能である。 The cable winder 40 is provided with an entanglement preventing member 45 for preventing the cable 30 from being entangled. The entanglement preventing member 45 is made of a rigid material (for example, a bar made of metal or synthetic resin) bent in an L shape, and its base end is fixed to the base 44 of the cable winder 40. A cable insertion ring 45 a is formed at the tip of the entanglement preventing member 45. The cable insertion ring 45a is located higher than the drum 42, and holds the cable 30 in a slidable state. This is because the cable 30 is always wound around the drum 42 or pulled out from the drum 42 in substantially the same state so that the cable 30 is not hindered from being taken up and pulled out. Therefore, the entanglement preventing member 45 can be omitted if other measures do not hinder the winding and drawing work of the cable 30.
 ケーブル30の基端側の部分は、絡みつき防止部材45の先端部のケーブル挿入リング45aを通過してから、少し弛みを持たせた状態で、ドラム42に複数回巻き付けられている。ケーブル30の基端は、地上側電源装置50まで延在されていて、地上側電源装置50に機械的及び電気的に接続されている。ケーブル30のドラム42に巻き付けられた部分より先端側の部分は、飛行ロボット10に向かって延在しており、その先端は飛行ロボット10に機械的及び電気的に接続されている。ドラム42からのケーブル30の引き出し長さは、飛行ロボット10の飛行中は、ケーブル巻取用モータ41によってドラム42を回転駆動することにより、飛行ロボット10との距離に応じて調整される。ケーブル巻取用モータ41の回転は、後述する地上側電源装置50によって制御される。 The portion on the proximal end side of the cable 30 is wound around the drum 42 a plurality of times with a slight slack after passing through the cable insertion ring 45a at the distal end portion of the entanglement preventing member 45. The proximal end of the cable 30 extends to the ground-side power supply device 50 and is mechanically and electrically connected to the ground-side power supply device 50. A portion of the cable 30 on the tip side of the portion wound around the drum 42 extends toward the flying robot 10, and the tip is mechanically and electrically connected to the flying robot 10. The length of the cable 30 drawn from the drum 42 is adjusted according to the distance from the flying robot 10 by rotating the drum 42 by the cable winding motor 41 while the flying robot 10 is flying. The rotation of the cable winding motor 41 is controlled by a ground side power supply device 50 described later.
 次に、地上側電源装置50について説明する。 Next, the ground side power supply device 50 will be described.
 地上側電源装置50は、直流(DC)の高電圧Vを生成し、送電ケーブル30を介して飛行ロボット10に送電する機能を持つ。また、飛行ロボット10と地上側電源装置50の間の距離(すなわち電圧降下)に応じて、送電するDC高電圧Vの値を調整すると共に、ケーブル30の送り出し量及び巻き取り量を調整する機能をも持っている。 The ground-side power supply device 50 has a function of generating a direct current (DC) high voltage V H and transmitting power to the flying robot 10 via the power transmission cable 30. Also, depending on the distance between the flying robots 10 and ground-side power supply 50 (i.e., voltage drop), while adjusting the value of the transmission to DC high voltage V H, to adjust the feeding amount and winding amount of the cable 30 It also has a function.
 地上側電源装置50は、図3に示すような構成を有しており、出力制御部51、制御演算部52、送受信部53、発電部54、高圧送電部55、そしてアンテナ56を備えている。 The ground-side power supply device 50 has a configuration as shown in FIG. 3, and includes an output control unit 51, a control calculation unit 52, a transmission / reception unit 53, a power generation unit 54, a high-voltage power transmission unit 55, and an antenna 56. .
 送受信部53は、ロボット側制御装置20の送受信部25から無線送信されてくる位置・高度信号を、アンテナ56を介して受信する。こうして受信した位置・高度信号は、制御演算部52に送られる。 The transmission / reception unit 53 receives the position / altitude signal wirelessly transmitted from the transmission / reception unit 25 of the robot-side control device 20 via the antenna 56. The position / altitude signal received in this way is sent to the control calculation unit 52.
 制御演算部52は、位置・高度信号に基づいて、PID制御方式に従って所定の演算を行い、飛行ロボット10の現在位置及び現在高度における送電ケーブル30の必要長さを算出する。そして、ケーブル30の現在長さとの比較から、ケーブル30の長さの不足分または過剰分を算出する。こうして算出されたケーブル30の長さの不足・過剰分情報は、制御信号によって出力制御部51に送られる。なお、本発明は、PID制御方式に限定されず、他の制御方式も使用可能であることは言うまでもない。 The control calculation unit 52 performs a predetermined calculation according to the PID control method based on the position / altitude signal, and calculates the current position of the flying robot 10 and the required length of the power transmission cable 30 at the current altitude. Then, the shortage or excess of the length of the cable 30 is calculated from the comparison with the current length of the cable 30. Information on the shortage and excess of the length of the cable 30 calculated in this way is sent to the output control unit 51 by a control signal. Needless to say, the present invention is not limited to the PID control method, and other control methods can be used.
 PID制御方式とは、
 操作量=P部分(比例項)+I部分(積分項)+D部分(微分項)
として、操作量を決定する方式である。ここでは、
 P部分(比例項)=飛行ロボットの重量変化速度(kg/s)?飛行ロボットの上昇・下降時間(s)?送電ケーブル単位重量(kg/m)?出力係数Kp
 I部分(積分項)=飛行ロボットの重量変化速度(kg/s)の積分値?出力係数Ki
 D部分(微分項)=飛行ロボットの重量変化速度(kg/s)の微分値?出力係数Kd
とする。
What is PID control system?
Manipulation amount = P part (proportional term) + I part (integral term) + D part (differential term)
In this method, the operation amount is determined. here,
P part (proportional term) = flying robot weight change rate (kg / s)? Flying robot ascent / descent time (s)? Transmission cable unit weight (kg / m)? Output coefficient Kp
I part (integral term) = integral value of weight change speed (kg / s) of flying robot? Output coefficient Ki
D part (differential term) = differential value of weight change speed (kg / s) of flying robot? Output coefficient Kd
And
 出力制御部51は、制御演算部52から送られてくる制御信号によって、送電ケーブル30の長さの不足・過剰分情報を受け取り、それに基づいて、ケーブル巻取用電動モータ41を駆動し、ドラム42を前方(ケーブル30を引き出す方向)または後方(ケーブル30を巻き取る方向)に回転させる。こうすることで、飛行ロボット10の現在位置及び直前高度におけるケーブル30の長さに対する現在位置及び現在高度におけるケーブル30の長さの不足分または余剰分を調整する。 The output control unit 51 receives the shortage / excess information of the length of the power transmission cable 30 based on the control signal sent from the control calculation unit 52, and drives the cable winding electric motor 41 based on the information. 42 is rotated forward (direction in which the cable 30 is pulled out) or backward (direction in which the cable 30 is wound up). In this way, the shortage or surplus of the length of the cable 30 at the current position and the current altitude with respect to the length of the cable 30 at the current position and the previous altitude of the flying robot 10 is adjusted.
 発電部54は、出力制御部51から送られてくるケーブル30の長さの不足・過剰分情報に基づいて、発電するAC高電圧Vの値を増加または減少させる。そして、こうして調整したDC高電圧Vを高圧送電部55に供給する。こうすることで、ケーブル30の長さの不足分または余剰分に起因する電圧降下の増減に対処する。 The power generation unit 54 increases or decreases the value of the AC high voltage V H to be generated based on the shortage / excess information of the length of the cable 30 sent from the output control unit 51. Then, the DC high voltage V H adjusted in this way is supplied to the high-voltage power transmission unit 55. By doing so, it is possible to cope with an increase or decrease in voltage drop caused by a shortage or surplus of the length of the cable 30.
 発電部54としては、ここでは、構成を簡単にするために、交流(AC)100Vの商用電圧を生成する商用電源が使用されている。しかし、商用電源が使えない場所もあることを考慮して、AC100V(あるいはそれ以外の電圧)を発生する公知の発電機を使用してもよい。 Here, as the power generation unit 54, a commercial power source that generates a commercial voltage of alternating current (AC) 100V is used in order to simplify the configuration. However, in consideration of the fact that there are places where commercial power cannot be used, a known generator that generates AC 100 V (or other voltage) may be used.
 高圧送電部55は、発電部54から供給される元電圧(例えばAC100?200V)を昇圧すると共にDCに変換して、DC高電圧V(例えば250~1000V)を生成する。そして、こうして生成したDC高電圧Vを、送電ケーブル30を介してロボット側制御装置20に送電する。 The high-voltage power transmission unit 55 boosts the original voltage (for example, AC 100 to 200 V) supplied from the power generation unit 54 and converts it to DC to generate a DC high voltage V H (for example, 250 to 1000 V). Then, the DC high voltage V H generated in this way is transmitted to the robot-side control device 20 via the power transmission cable 30.
 高圧送電部55は、ここでは、AC-DCコンバータとされている。このため、高圧送電部55が送電するDC高電圧Vを商用電源から生成することができる。現在では、AC-DCコンバータには、商用電源電圧(AC100?200V)から直接、300Vを越えるDC電圧(例えば380V)を生成することができるものがあるから、これを使用するのが好ましい。 Here, the high voltage power transmission unit 55 is an AC-DC converter. Therefore, it is possible to generate a DC high voltage V H of high voltage transmission unit 55 power from the commercial power source. At present, some AC-DC converters can generate a DC voltage exceeding 300 V (for example, 380 V) directly from a commercial power supply voltage (AC 100 to 200 V), and it is preferable to use this.
 地上側電源装置50では、商用電源電圧(AC100?200V)から高圧送電部55で生成したDC高電圧V(例えば250~1000V)を、送電ケーブル30を介してロボット側制御装置20に送電するので、AC電圧を送電するのに比べて、送電ロスを大幅に抑制することができる。特に、DC高電圧Vを300Vを越える値にすることで、送電ロスを最小限にすることが可能である。近年、サーバー用の高電圧給電としてDC380Vが標準になってきているので、サーバー用高電圧給電に使用する公知の電源装置をそのまま、高圧送電部55として使用することも可能である。 The ground-side power supply device 50 transmits the DC high voltage V H (for example, 250 to 1000 V) generated by the high-voltage power transmission unit 55 from the commercial power supply voltage (AC100 to 200 V) to the robot-side control device 20 via the power transmission cable 30. Therefore, transmission loss can be greatly suppressed as compared to transmitting AC voltage. In particular, by the DC high voltage V H to a value exceeding 300 V, it is possible to minimize the transmission loss. In recent years, DC380V has become a standard for high-voltage power supply for servers, so that a known power supply device used for high-voltage power supply for servers can be used as the high-voltage power transmission unit 55 as it is.
 飛行ロボット10の移動によって送電ケーブル30の長さが変化すると、それに比例してケーブル30による電圧降下の値が変動するので、ケーブル30を通ってロボット側制御装置20の高圧/低圧変換部21に到達したときの電圧値(高圧/低圧変換部21の入力電圧値)も、ケーブル30の長さに応じて変動する。そこで、これを解消するために、地上側電源装置50において送電する電圧の値を調整してから送電するようにしたものである。これにより、ケーブル30の長さが変動しても、高圧/低圧変換部21に到達したときの電圧値は一定に保持される。 When the length of the power transmission cable 30 changes due to the movement of the flying robot 10, the value of the voltage drop due to the cable 30 fluctuates in proportion to this, so that the voltage 30 passes through the cable 30 to the high-voltage / low-voltage converter 21 of the robot controller 20. The voltage value when it reaches (the input voltage value of the high-voltage / low-voltage converter 21) also varies according to the length of the cable 30. Therefore, in order to solve this problem, power is transmitted after adjusting the value of the voltage transmitted by the ground side power supply device 50. Thereby, even if the length of the cable 30 fluctuates, the voltage value when reaching the high voltage / low voltage converter 21 is kept constant.
 次に、飛行ロボット10に搭載されているロボット側制御装置20について説明する。 Next, the robot-side control device 20 mounted on the flying robot 10 will be described.
 ロボット側制御装置20は、飛行ロボット10へ供給されたDC高電圧Vによって動作するもので、飛行ロボット10に作用する送電ケーブル30の荷重に応じて6個の電動モータ14の出力を個別に制御して、ケーブル30の荷重が飛行に与える影響を抑制(解消)する機能を持つ。 The robot-side control device 20 is operated by the DC high voltage V H supplied to the flying robot 10, and individually outputs the six electric motors 14 according to the load of the power transmission cable 30 acting on the flying robot 10. It has a function to control (suppress) the influence of the load of the cable 30 on the flight.
 ロボット側制御装置20は、図3に示すような構成を有しており、高圧/低圧変換部21、出力制御部22、制御演算部23、位置検出部24、送受信部25、そしてアンテナ26を備えている。 The robot-side control device 20 has a configuration as shown in FIG. 3, and includes a high-voltage / low-voltage conversion unit 21, an output control unit 22, a control calculation unit 23, a position detection unit 24, a transmission / reception unit 25, and an antenna 26. I have.
 高圧/低圧変換部21は、送電ケーブル30を介して地上側電源装置50に機械的・電気的に接続されており、地上側電源装置50から供給されるDC高電圧V(高圧/低圧変換部21の入力電圧で、例えばDC250~300V)をDC低電圧V(例えばDC40~70V)に変換する。こうして生成されたDC低電圧Vは、出力制御部22、制御演算部23、位置検出部24、送受信部25及びアンテナ26に供給され、これらの回路の駆動電圧として使用される。高圧/低圧変換部21自体も、こうして生成されたDC低電圧Vを駆動電圧として動作する。同様に、ロボット側自律制御装置も、DC低電圧Vの供給を受けてそれを駆動電圧として動作する。したがって、飛行ロボット10へのバッテリーの搭載がなくても、飛行ロボット10は連続飛行が可能である。 The high-voltage / low-voltage conversion unit 21 is mechanically and electrically connected to the ground-side power supply device 50 via the power transmission cable 30, and is supplied with a DC high voltage V H (high-voltage / low-voltage conversion) supplied from the ground-side power supply device 50. The input voltage of the unit 21 is converted into a DC low voltage V L (eg, DC 40 to 70 V), for example, from DC 250 to 300 V. The DC low voltage V L generated in this way is supplied to the output control unit 22, the control calculation unit 23, the position detection unit 24, the transmission / reception unit 25, and the antenna 26, and is used as a drive voltage for these circuits. The high-voltage / low-voltage converter 21 itself operates using the DC low voltage VL thus generated as a driving voltage. Similarly, the robot-side autonomous control apparatus operates with the supply of the DC low voltage VL as a driving voltage. Therefore, even if the battery is not mounted on the flying robot 10, the flying robot 10 can continuously fly.
 高圧/低圧変換部21としては、出力が可変電圧制御であるDC-DCコンバータから構成するのが好ましい。この場合、ロータ駆動用モータ14がDCモータであるため、DC-DCコンバータから出力されるDC低電圧Vを直接、ロータ駆動用モータ14に供給することが可能となり、飛行ロボット10上の回路構成が簡単になるという利点がある。 The high voltage / low voltage converter 21 is preferably composed of a DC-DC converter whose output is variable voltage control. In this case, since the rotor driving motor 14 is a DC motor, the DC low voltage VL output from the DC-DC converter can be directly supplied to the rotor driving motor 14. There is an advantage that the configuration becomes simple.
 位置検出部24は、飛行ロボット10に搭載された位置・高度センサ(図示せず)から構成され、飛行ロボット10の現在位置及び現在高度を検出する。この位置・高度センサとしては、例えば、自律飛行のために飛行ロボット10に搭載されている、飛行ロボット10の位置を検知するGPSセンサと飛行ロボット10の高度を計測する対地高度計が使用可能である。位置検出部24によって生成された位置・高度信号は、送受信部25と制御演算部23に出力される。 The position detector 24 includes a position / altitude sensor (not shown) mounted on the flying robot 10 and detects the current position and the current altitude of the flying robot 10. As this position / altitude sensor, for example, a GPS sensor that detects the position of the flying robot 10 and a ground altimeter that measures the altitude of the flying robot 10 mounted on the flying robot 10 for autonomous flight can be used. . The position / altitude signal generated by the position detection unit 24 is output to the transmission / reception unit 25 and the control calculation unit 23.
 送受信部25は、位置検出部24から送られてくる位置・高度信号を、アンテナ26を介して地上側電源装置50に向けて無線送信する。この位置・高度信号は、地上側電源装置50において、ケーブル巻取機40のケーブル巻取用モータ41の制御に使用されると共に、飛行ロボット10の現在位置及び現在高度に対応する送電ケーブル30の長さに応じて、地上側電源装置50から送電されるDC高電圧Vの値を増加または減少させるのにも使用される。 The transmission / reception unit 25 wirelessly transmits the position / altitude signal transmitted from the position detection unit 24 to the ground-side power supply device 50 via the antenna 26. The position / altitude signal is used for controlling the cable winding motor 41 of the cable winder 40 in the ground-side power supply device 50, and the power transmission cable 30 corresponding to the current position and the current altitude of the flying robot 10 is used. It is also used to increase or decrease the value of the DC high voltage V H transmitted from the ground side power supply device 50 according to the length.
 制御演算部23は、地上側電源装置50の制御演算部52と同じPID制御方式に従って、位置検出部24から送られてくる位置・高度信号を受けて所定の演算を行い、飛行ロボット10の現在位置及び現在高度に対応する送電ケーブル30の長さを算出し、それにケーブル30の単位重量を積算してケーブル30の重量を算出する。また、単位時間当たりのケーブル30の重量の変化量(変化率)も算出する。こうして算出されたモータ制御信号は、出力制御部22に送られる。 The control calculation unit 23 receives the position / altitude signal sent from the position detection unit 24 according to the same PID control method as the control calculation unit 52 of the ground side power supply device 50, performs a predetermined calculation, and The length of the power transmission cable 30 corresponding to the position and the current altitude is calculated, and the unit weight of the cable 30 is added thereto to calculate the weight of the cable 30. Further, the amount of change (rate of change) of the weight of the cable 30 per unit time is also calculated. The motor control signal calculated in this way is sent to the output control unit 22.
 出力制御部22は、制御演算部23から送られてくる制御信号に基づいて、補正が必要なロータ駆動用電動モータ14の駆動力を増加または減少させる。こうすることで、飛行ロボット10の現在位置及び現在高度における送電ケーブル30の重量による影響を補正し、ケーブル30が接続されていない場合と同様に、上昇及び下降と前後及び左右への飛行が可能となる。例えば、定位置でホバリングしながら作業を行う場合、飛行ロボット10の上昇や風による引っ張り力の印加に起因して、ケーブル30によって引っ張られ、所定位置からずれてしまうことがある。しかし、本実施形態では、ロボット側制御装置20が直ちにこれを検知して補正が必要なモータ14の駆動力を調整するので、飛行ロボット10は定位置を保持することが可能である。 The output control unit 22 increases or decreases the driving force of the electric motor 14 for driving the rotor that needs to be corrected based on the control signal sent from the control calculation unit 23. By doing this, the influence of the weight of the power transmission cable 30 at the current position and current altitude of the flying robot 10 is corrected, and ascending and descending and flying back and forth and left and right are possible as in the case where the cable 30 is not connected. It becomes. For example, when the work is performed while hovering at a fixed position, it may be pulled by the cable 30 and deviated from a predetermined position due to the rising of the flying robot 10 or the application of a pulling force by wind. However, in this embodiment, since the robot-side control device 20 immediately detects this and adjusts the driving force of the motor 14 that needs to be corrected, the flying robot 10 can hold a fixed position.
 出力制御部22は、例えば、パルス幅変調(Pulse Width Modulation、PWM)や可変電圧制御を使用するのが好ましい。これは、ロータ駆動用電動モータ14はDCモータだからである。ここでは、PWM制御回路が使用されている。しかし、本発明はこれらに限定されるわけではない。 The output control unit 22 preferably uses, for example, pulse width modulation (PWM) or variable voltage control. This is because the rotor driving electric motor 14 is a DC motor. Here, a PWM control circuit is used. However, the present invention is not limited to these.
 ペイロードが20kgで、計6個の電動モータ14が必要とする最大ピーク電力が6kWと仮定すると、DC高電圧Vを300Vに設定し、電線規格AWG16の電線をケーブル30として用い、送電距離すなわち送電ケーブル30の全長を50mとすると、ケーブル30を流れるDC電流(高圧/低圧変換部21の出力電流)は20Aとなるから、送電による電圧降下は10Vで済むことになる。つまり、ロボット側制御装置20の高圧/低圧変換部21が受け取るDC高電圧Vの値(受電端での電圧値)は、290Vに保たれるのである。送電による電圧降下がもう少し多くても許容できる場合は、電線規格AWG16の電線よりも細い電線をケーブル30として用いることができるので、ケーブル30のコストと単位重量をいっそう減らせる利点がある。 Assuming that the payload is 20 kg and the maximum peak power required by a total of six electric motors 14 is 6 kW, the DC high voltage V H is set to 300 V, the wire of the wire standard AWG 16 is used as the cable 30, and the transmission distance, If the total length of the power transmission cable 30 is 50 m, the DC current flowing through the cable 30 (the output current of the high-voltage / low-voltage conversion unit 21) is 20 A, so that the voltage drop due to power transmission can be 10V. That is, the value of the DC high voltage V H (the voltage value at the power receiving end) received by the high voltage / low voltage converter 21 of the robot-side controller 20 is maintained at 290V. If even a little more voltage drop due to power transmission can be tolerated, an electric wire thinner than the electric wire of the electric wire standard AWG 16 can be used as the cable 30. Therefore, there is an advantage that the cost and unit weight of the cable 30 can be further reduced.
 また、送電ケーブル30を介する送電による電圧降下を補償するように、高圧/低圧変換部21の出力電圧を制御すれば、すなわち、高圧/低圧変換部21の出力電流(ケーブル30を流れるDC電流)とケーブル30の単位長さ当たりの電気抵抗値の積で表される電圧降下値を算出して、常時、高圧/低圧変換部21の入力電圧(DC高電圧V)に加算するようにすれば、送電による電圧降下は補償され、電圧降下による影響をなくすことができる。こうして、入力電圧(DC高電圧V)を常時、ほぼ一定に維持することが可能となる。 Further, if the output voltage of the high-voltage / low-voltage converter 21 is controlled so as to compensate for the voltage drop due to power transmission through the power transmission cable 30, that is, the output current of the high-voltage / low-voltage converter 21 (DC current flowing through the cable 30). The voltage drop value represented by the product of the electrical resistance value per unit length of the cable 30 is calculated, and is always added to the input voltage (DC high voltage V H ) of the high voltage / low voltage converter 21. For example, the voltage drop due to power transmission is compensated and the influence of the voltage drop can be eliminated. In this way, the input voltage (DC high voltage V H ) can always be kept substantially constant.
 次に、図9~図11を参照しながら、飛行ロボット10に搭載されている補助電源装置について説明する。この補助電源装置は、突風等を受けて飛行ロボット10に急激な負荷変動(過負荷)が生じたり、送電ケーブル30が断線したりしても、飛行ロボット10が墜落する恐れがないようにするために搭載されている。 Next, the auxiliary power supply device mounted on the flying robot 10 will be described with reference to FIGS. This auxiliary power supply device prevents the flying robot 10 from crashing even if a sudden load fluctuation (overload) occurs in the flying robot 10 due to a gust or the like, or the power transmission cable 30 is disconnected. Is mounted for.
 図9に示すように、6個のロータ駆動用電動モータ14のそれぞれは、メインDC-DCコンバータ(メイン電源装置)61と、電流測定センサ62と、PWM制御回路63と、サブDC-DCコンバータ(サブ電源装置)64と、第1、第2及び第3補助バッテリー66a、66b、66cと、充電用DC-DCコンバータ(充電用電源装置)67とを備えている。 As shown in FIG. 9, each of the six rotor driving electric motors 14 includes a main DC-DC converter (main power supply device) 61, a current measurement sensor 62, a PWM control circuit 63, and a sub DC-DC converter. (Sub-power supply device) 64, first, second and third auxiliary batteries 66 a, 66 b and 66 c, and a charging DC-DC converter (charging power supply device) 67.
 メインDC-DCコンバータ61は、送電ケーブル30を介して高圧DC電圧Vの供給を受けて、所定の低圧DC電圧Vを生成し、PWM制御回路63に供給する。メインDC-DCコンバータ61は、ロボット側制御装置20の高圧/低圧変換部21として機能する。 The main DC-DC converter 61 receives the supply of the high voltage DC voltage V H via the power transmission cable 30, generates a predetermined low voltage DC voltage V L , and supplies it to the PWM control circuit 63. The main DC-DC converter 61 functions as the high-voltage / low-voltage converter 21 of the robot-side control device 20.
 電流測定センサ62は、メインDC-DCコンバータ61からPWM制御回路63に流れる電流(モータ駆動電流)を測定し、測定した電流値をサブDC-DCコンバータ64に送る。 The current measurement sensor 62 measures the current (motor drive current) flowing from the main DC-DC converter 61 to the PWM control circuit 63 and sends the measured current value to the sub DC-DC converter 64.
 PWM制御回路63は、メインDC-DCコンバータ61から供給される低圧DC電圧Vに基づき、制御信号に応じて電動モータ14の駆動力(回転)を制御する。 The PWM control circuit 63 controls the driving force (rotation) of the electric motor 14 in accordance with the control signal based on the low voltage DC voltage VL supplied from the main DC-DC converter 61.
 サブDC-DCコンバータ64は、第1~第3補助バッテリー66a、66b、66cに並列接続されており、これらの補助バッテリー66a、66b、66cから供給されるバッテリー電圧VBに基づいて所定の補助電圧VAを生成し、PWM制御回路63のバイアスポイントに供給する。 The sub DC-DC converter 64 is connected in parallel to the first to third auxiliary batteries 66a, 66b, and 66c, and a predetermined auxiliary voltage based on the battery voltage V B supplied from these auxiliary batteries 66a, 66b, and 66c. A voltage V A is generated and supplied to the bias point of the PWM control circuit 63.
 充電用DC-DCコンバータ67は、送電ケーブル30を介して高圧DC電圧Vの供給を受けて、第1~第3補助バッテリー66a、66b、66cを常時充電し、バッテリー電圧VBを所定の値に維持する。これは、自然放電によって、第1~第3補助バッテリー66a、66b、66cから出力されるバッテリー電圧VBが低下するのを防止するためである。 Charging DC-DC converter 67 is supplied with the high voltage DC voltage V H via the transmission cable 30, the first to third auxiliary battery 66a, 66b, and always charged to 66c, the battery voltage V B given Keep the value. This is to prevent the battery voltage V B output from the first to third auxiliary batteries 66a, 66b, 66c from being reduced by natural discharge.
 制御装置用メインDC-DCコンバータ68は、送電ケーブル30を介して高圧DC電圧Vの供給を受けて、所定の低圧DC電圧を生成し、ダイオード69を介して制御装置72に供給する。制御装置72はこの低圧DC電圧によって駆動される。 Controller for the main DC-DC converter 68 is supplied with the high voltage DC voltage V H via the transmission cable 30, it generates a predetermined low DC voltage is supplied to the controller 72 through the diode 69. The controller 72 is driven by this low voltage DC voltage.
 制御装置用サブDC-DCコンバータ70は、第1~第3補助バッテリー66a、66b、66cに並列接続されており、これらの補助バッテリー66a、66b、66cから供給されるバッテリー電圧VBに基づいて所定の低圧DC電圧を生成し、ダイオード71を介して制御装置72のバイアスポイントに供給する。制御装置用メインDC-DCコンバータ68が供給する低圧DC電圧の低下または消失に対応するためである。 The control device sub DC-DC converter 70 is connected in parallel to the first to third auxiliary batteries 66a, 66b, 66c, and based on the battery voltage V B supplied from these auxiliary batteries 66a, 66b, 66c. A predetermined low-voltage DC voltage is generated and supplied to the bias point of the control device 72 via the diode 71. This is to cope with a decrease or disappearance of the low-voltage DC voltage supplied by the main DC-DC converter 68 for the control device.
 制御装置72は、6個のロータ駆動用電動モータ14のそれぞれについて設けられたメインDC-DCコンバータ61、電流測定センサ62、PWM制御回路63、サブDC-DCコンバータ64の動作と、後述するMOSFET83、84やバイパススイッチ64a、64b、64cの動作を制御する。ここでは、6組のメインDC-DCコンバータ61、電流測定センサ62、PWM制御回路63、サブDC-DCコンバータ64のセットをモータ駆動ユニット65を構成している。制御装置72は、地上側に設けられている制御用PC(パーソナルコンピュータ)90から有線または無線で送られる制御信号によって動作する。 The control device 72 operates the main DC-DC converter 61, the current measurement sensor 62, the PWM control circuit 63, and the sub DC-DC converter 64 provided for each of the six rotor driving electric motors 14, and a MOSFET 83 to be described later. , 84 and bypass switches 64a, 64b, 64c are controlled. Here, a set of six main DC-DC converters 61, a current measurement sensor 62, a PWM control circuit 63, and a sub DC-DC converter 64 constitutes a motor drive unit 65. The control device 72 operates in accordance with a control signal transmitted from a control PC (personal computer) 90 provided on the ground side by wire or wirelessly.
 図10は、自然放電による第1補助バッテリー66aから出力されるバッテリー電圧VBの低下を防止する回路(バッテリー電圧低下防止回路)を示す。第2及び第3補助バッテリー66b、66cについても、同様の回路構成であるから、ここでは第1補助バッテリー66aについてのみ説明する。 FIG. 10 shows a circuit (battery voltage drop prevention circuit) that prevents a drop in the battery voltage V B output from the first auxiliary battery 66a due to natural discharge. Since the second and third auxiliary batteries 66b and 66c have the same circuit configuration, only the first auxiliary battery 66a will be described here.
 充電用DC-DCコンバータ67は、ダイオード86aとヒューズ87を介して、第1補助バッテリー66aのセル群66aaの正極に接続され、充電用FET83と電流検出用抵抗85を介してセル群66aaの負極に接続されている。サブDC-DCコンバータ64は、ヒューズ87を介して、第1補助バッテリー66aのセル群66aaの正極に接続され、放電用FET84と電流検出用抵抗85を介してセル群66aaの負極に接続されている。電力用MOSFET83、84のスイッチング動作(ON・OFF)は、バッテリー制御マイコン(マイクロコンピュータ)81からの制御信号に基づき、フロントエンドIC(集積回路)82によって行われる。バッテリー制御マイコン81とフロントエンドIC82は、制御装置72の内部に設けられている。 The charging DC-DC converter 67 is connected to the positive electrode of the cell group 66aa of the first auxiliary battery 66a via the diode 86a and the fuse 87, and is connected to the negative electrode of the cell group 66aa via the charging FET 83 and the current detection resistor 85. It is connected to the. The sub DC-DC converter 64 is connected to the positive electrode of the cell group 66aa of the first auxiliary battery 66a via the fuse 87, and is connected to the negative electrode of the cell group 66aa via the discharge FET 84 and the current detection resistor 85. Yes. Switching operations (ON / OFF) of the power MOSFETs 83 and 84 are performed by a front-end IC (integrated circuit) 82 based on a control signal from a battery control microcomputer (microcomputer) 81. The battery control microcomputer 81 and the front end IC 82 are provided inside the control device 72.
 第1補助バッテリー66aの充電時には、バッテリー制御マイコン81によって充電用FET83がONとされ、放電用FET84がOFFとされる。このため、充電用DC-DCコンバータ67は、送電ケーブル30を介して送られる高圧DC電圧Vに基づいて所定のDC電圧を生成し、ダイオード86aとヒューズ87と充電用FET83を介して、セル群66aaに供給する。セル群66aaはこうして常に充電されるので、自然放電があっても、第1補助バッテリー66aから出力されるバッテリー電圧VBは所定の値に維持される。 When charging the first auxiliary battery 66a, the battery control microcomputer 81 turns on the charging FET 83 and turns off the discharging FET 84. For this reason, the charging DC-DC converter 67 generates a predetermined DC voltage based on the high-voltage DC voltage V H sent via the power transmission cable 30, and the cell via the diode 86 a, the fuse 87 and the charging FET 83. Supply to group 66aa. Since the cell group 66aa is always charged in this way, the battery voltage V B output from the first auxiliary battery 66a is maintained at a predetermined value even if there is a natural discharge.
 第1補助バッテリー66aの放電時には、バッテリー制御マイコン81によって充電用FET83がOFFとされ、放電用FET84がONとされる。このため、第1補助バッテリー66a(セル群66aa)から出力されるバッテリー電圧VBは、ヒューズ87と放電用FET84を介して、サブDC-DCコンバータ64に供給される。サブDC-DCコンバータ64は、こうして供給されるバッテリー電圧VBに基づいて所定の補助電圧VAを生成し、PWM制御回路63のバイアスポイントに供給する。こうして出力される補助電圧VAは、制御装置用サブDC-DCコンバータ70にも供給される。 When discharging the first auxiliary battery 66a, the battery control microcomputer 81 turns off the charging FET 83 and turns on the discharging FET 84. Therefore, the battery voltage V B output from the first auxiliary battery 66a (cell group 66aa) is supplied to the sub DC-DC converter 64 via the fuse 87 and the discharge FET 84. The sub DC-DC converter 64 generates a predetermined auxiliary voltage V A based on the battery voltage V B thus supplied, and supplies it to the bias point of the PWM control circuit 63. The auxiliary voltage V A thus output is also supplied to the control device sub DC-DC converter 70.
 図11は、第1~第3補助バッテリー66a、66b、66cから、バッテリー電圧VBを各サブDC-DCコンバータ64に供給する動作を示す概念図である。図11では、メインDC-DCコンバータ61と電流測定センサ62とサブDC-DCコンバータ64を3組だけ記載しているが、これは図示を簡略化するために省略したためである。残りの3組も同じ回路構成であることは言うまでもない。 FIG. 11 is a conceptual diagram showing the operation of supplying the battery voltage V B to each sub DC-DC converter 64 from the first to third auxiliary batteries 66a, 66b, 66c. In FIG. 11, only three sets of the main DC-DC converter 61, the current measurement sensor 62, and the sub DC-DC converter 64 are shown, but this is omitted for the sake of simplicity. Needless to say, the remaining three sets have the same circuit configuration.
 メインDC-DCコンバータ61と電流測定センサ62とサブDC-DCコンバータ64は、実際には6組設けられているが、それらはいずれも同じ回路構成と同じ動作を持つから、ここでは1組の回路構成と動作についてのみ説明する。 The main DC-DC converter 61, the current measurement sensor 62, and the sub DC-DC converter 64 are actually provided in six sets, but since all of them have the same circuit configuration and the same operation, one set is used here. Only the circuit configuration and operation will be described.
 サブDC-DCコンバータ64の入力端子と出力端子の間には、バイパススイッチ64aが設けられている。これは、必要に応じて、サブDC-DCコンバータ64をバイパスして、第1~第3補助バッテリー66a、66b、66cの出力電圧であるバッテリー電圧VBを直接、負荷すなわちPWM制御回路63とモータ14に供給するためである。バイパススイッチ64aは、制御装置72によって制御される。 A bypass switch 64 a is provided between the input terminal and the output terminal of the sub DC-DC converter 64. This bypasses the sub DC-DC converter 64 as required, and directly outputs the battery voltage V B , which is the output voltage of the first to third auxiliary batteries 66a, 66b, 66c, with the load, that is, the PWM control circuit 63. This is to supply to the motor 14. The bypass switch 64a is controlled by the control device 72.
 制御装置72は、各々の電流測定センサ62によってモータ駆動電流(PWM制御回路63に供給される電流)を常時監視しており、そのモータ駆動電流がメインDC-DCコンバータ61の負荷容量の限界付近の所定値(90~95%)に達すると、サブDC-DCコンバータ64を動作させ、第1~第3補助バッテリー66a、66b、66cからバッテリー電圧VBを負荷(PWM制御回路63とモータ14)に供給する。その結果、メインDC-DCコンバータ61から負荷に供給される低圧DC電圧Vにバッテリー電圧VBが加算されるので、突風等によってモータ14の負荷が急激に増加した場合にも、対応が可能となる。つまり、モータ14の負荷が突発的に急増した場合でも、バッテリー電圧VBが加算的に供給されているので、メインDC-DCコンバータ61の出力がいきなりゼロになって墜落するといった事態を確実に防止できるのである。 The control device 72 constantly monitors the motor drive current (current supplied to the PWM control circuit 63) by each current measuring sensor 62, and the motor drive current is near the load capacity limit of the main DC-DC converter 61. When the predetermined value (90 to 95%) is reached, the sub DC-DC converter 64 is operated to load the battery voltage V B from the first to third auxiliary batteries 66a, 66b and 66c (PWM control circuit 63 and motor 14). ). As a result, the battery voltage V B is added to the low voltage DC voltage VL supplied from the main DC-DC converter 61 to the load, so that it is possible to cope with a sudden increase in the load of the motor 14 due to gusts or the like. It becomes. That is, even when the load of the motor 14 suddenly increases suddenly, the battery voltage V B is additionally supplied, so that the situation where the output of the main DC-DC converter 61 suddenly becomes zero and falls is ensured. It can be prevented.
 また、送電ケーブル30の断線、メインDC-DCコンバータ61の故障等によって、メインDC-DCコンバータ61の出力が突然にゼロになった場合、つまり、メインDC-DCコンバータ61の動作が突然に停止してしまった場合は、制御装置72は、すべてのバイパススイッチ64aをONにすると同時に、すべてのサブDC-DCコンバータ64の動作を停止させる。これにより、第1~第3補助バッテリー66a、66b、66cから出力されるバッテリー電圧VBが直接、負荷すなわちPWM制御回路63とモータ14に供給されるようになる。サブDC-DCコンバータ64の経由を停止して、バッテリー電圧VBを直接、PWM制御回路63とモータ14に供給するのは、バッテリー電圧VBをより効率的に利用するためである。その結果、PWM制御回路63とモータ14への電力供給が中断されなくなり、飛行ロボット10は墜落することなく飛行を継続することが可能である。このためには、バッテリー電圧VBの値、メインDC-DCコンバータ61から供給される低圧DC電圧Vの値に等しくしておくのが好ましい。 Further, when the output of the main DC-DC converter 61 suddenly becomes zero due to disconnection of the power transmission cable 30 or failure of the main DC-DC converter 61, that is, the operation of the main DC-DC converter 61 suddenly stops. In the case where it has occurred, the control device 72 turns on all the bypass switches 64a and simultaneously stops the operations of all the sub DC-DC converters 64. As a result, the battery voltage V B output from the first to third auxiliary batteries 66a, 66b, 66c is supplied directly to the load, that is, the PWM control circuit 63 and the motor 14. The reason for stopping the passage of the sub DC-DC converter 64 and supplying the battery voltage V B directly to the PWM control circuit 63 and the motor 14 is to use the battery voltage V B more efficiently. As a result, power supply to the PWM control circuit 63 and the motor 14 is not interrupted, and the flying robot 10 can continue flying without crashing. For this purpose, the value of the battery voltage V B is preferably set equal to the value of the low-voltage DC voltage VL supplied from the main DC-DC converter 61.
 次に、以上の構成を持つ、本発明の第1実施形態に係る飛行ロボット装置1の動作を説明する。 Next, the operation of the flying robot apparatus 1 according to the first embodiment of the present invention having the above configuration will be described.
 飛行ロボット装置1(作業に必要な作業用機材は搭載済み)を地上から離陸させる場合は、まず、地上側電源装置50から飛行ロボット10に所定のDC高電圧Vの送電を開始する。次に、手動操縦装置(図示せず)から所望の位置及び所望の高さを指定して、所望の作業をしたい空中の箇所を特定してから、そのデータを飛行ロボット10の自律制御装置に送信する。そして、飛行ロボット10を自律飛行モードに設定してからロータ駆動用モータ14を駆動し、飛行ロボット10を離陸させる。すると、飛行ロボット10は自立飛行して所定箇所まで飛行し、その位置でホバリングする。その後、ホバリングを継続しながら、所望の作業を開始させる。 Flying robot device 1 (working equipment necessary for work mounting already) case of taking off from the ground, first, to start transmission of a predetermined DC high voltage V H to the flying robots 10 from the ground side power device 50. Next, a desired position and a desired height are specified from a manual control device (not shown), an aerial location where a desired work is to be performed is specified, and the data is sent to the autonomous control device of the flying robot 10. Send. Then, after setting the flying robot 10 to the autonomous flight mode, the rotor driving motor 14 is driven to take off the flying robot 10. Then, the flying robot 10 flies independently to fly to a predetermined location and hover at that position. Thereafter, a desired operation is started while continuing hovering.
 離陸してから所定箇所まで飛行する間、飛行ロボット10の飛行に応じて、ケーブル巻取機4から送電ケーブル30が徐々に送り出され、また、ケーブル30の送り出し量に応じて、地上側電源装置50から送電されるDC高電圧Vの値が増加せしめられる。作業中に飛行ロボット30の位置や高度が変動しても、その変動は位置検出部24によって直ちに検出され、必要なロータ駆動用モータ14の駆動力が調整されると共に、ケーブル30の長さも調整される。所望の作業が終了すると、手動操縦装置を再び操作し、離陸時とは逆の行程をたどって飛行ロボット10を出発した場所に着陸させる。こうして、飛行ロボット10を使用した高所作業が終了する。 While taking off from the take-off to a predetermined location, the power transmission cable 30 is gradually sent out from the cable winder 4 according to the flight of the flying robot 10, and the ground-side power supply device according to the delivery amount of the cable 30 the value of the DC high voltage V H to be transmitted from the power 50 is caused to increase. Even if the position and altitude of the flying robot 30 fluctuate during work, the fluctuation is immediately detected by the position detection unit 24, and the necessary driving force of the rotor driving motor 14 is adjusted and the length of the cable 30 is also adjusted. Is done. When the desired work is completed, the manual control device is operated again, and the flying robot 10 is landed at the place where the flight robot 10 departed by following the reverse process of takeoff. In this way, the high altitude work using the flying robot 10 is completed.
 飛行ロボット装置10では、飛行ロボット10のホバリング中には、ロボット側制御装置20は図4に示すように動作をする。すなわち、ある位置でホバリングしていた機体すなわち飛行ロボット装置10が次にホバリングすべき所定位置に向かって上昇または下降すると(ステップS1)、制御演算部23はそれを感知して直ちに、PDI制御方式に従ってロータ駆動用モータ14の出力を演算する(ステップS2)。そして、その出力に応じて、飛行ロボット10のロータ駆動用モータ14の回転数を増加または減少させる(ステップS3)。その後、位置センサの出力を参照しながら(ステップS5)、指定した高さに到達したか否かを判断する(ステップS4)。未だ指定した高さに到達していない場合は、ステップS2に戻り、ステップS2~S4を繰り返す。指定した高さに到達した場合は、ロータ駆動用モータ14の回転数を維持して、図4の処理を終了する(ステップS6)。 In the flying robot apparatus 10, the robot-side control apparatus 20 operates as shown in FIG. 4 while the flying robot 10 is hovering. That is, when the airframe that has been hovering at a certain position, that is, the flying robot apparatus 10 moves up or down toward a predetermined position to be hovered next (step S1), the control calculation unit 23 senses it and immediately performs the PDI control method. The output of the rotor driving motor 14 is calculated according to (Step S2). Then, the number of rotations of the rotor driving motor 14 of the flying robot 10 is increased or decreased according to the output (step S3). Thereafter, referring to the output of the position sensor (step S5), it is determined whether or not the designated height has been reached (step S4). If the specified height has not yet been reached, the process returns to step S2, and steps S2 to S4 are repeated. When the designated height is reached, the rotational speed of the rotor driving motor 14 is maintained, and the process of FIG. 4 is terminated (step S6).
 その間に、地上側電源装置50は、図5に示すように動作をする。すなわち、機体すなわち飛行ロボット装置10が次にホバリングすべき所定位置から上昇または下降すると(ステップS11)、制御演算部52はそれを感知して直ちに、PDI制御方式に従ってロータ駆動用モータ14の出力を演算する(ステップS12)。ここまでは、図4のステップS1~S2と同じである。そして、その出力に応じて、ケーブル巻取機40のケーブル巻取用モータ41の回転角度(位相)を増加または減少させる(ステップS13)。その後、位置センサの出力を参照しながら(ステップS15)、指定した高さに到達したか否かを判断する(ステップS14)。未だ指定した高さに到達していない場合は、ステップS12に戻り、ステップS12~S14を繰り返す。指定した高さに到達した場合は、ケーブル巻取用モータ41の回転角度(位相)を維持して、図5の処理を終了する(ステップS16)。 In the meantime, the ground-side power supply device 50 operates as shown in FIG. That is, when the fuselage, that is, the flying robot apparatus 10 rises or descends from a predetermined position to be hovered next (step S11), the control calculation unit 52 immediately detects it and outputs the output of the rotor driving motor 14 according to the PDI control method. Calculation is performed (step S12). The steps so far are the same as steps S1 and S2 in FIG. And according to the output, the rotation angle (phase) of the cable winding motor 41 of the cable winder 40 is increased or decreased (step S13). Thereafter, referring to the output of the position sensor (step S15), it is determined whether or not the designated height has been reached (step S14). If the specified height has not yet been reached, the process returns to step S12 and steps S12 to S14 are repeated. When the designated height is reached, the rotation angle (phase) of the cable winding motor 41 is maintained, and the process of FIG. 5 is terminated (step S16).
 以上述べたように、本発明の第1実施形態に係る飛行ロボット装置1では、地上側電源装置50から飛行ロボット10に可撓性送電ケーブル30を介してDC高電圧Vが供給される。また、地上側電源装置50の制御演算部52(第2制御部)によって、飛行ロボット10と地上側電源装置50の間の距離に応じて、高圧送電部55によるDC高電圧Vの値とケーブル巻取機40によるケーブル30の送り出し量及び巻き取り量が制御される。さらに、飛行ロボット10の制御演算部52(第1制御部)により、飛行ロボット10に作用するケーブル30の荷重に応じて電動モータ14の出力が制御される。このため、飛行中に飛行ロボット10が受ける、ケーブル30に起因する電圧降下やケーブル30の重量や絡みつきによる影響が、確実に抑制される。よって、飛行ロボット10に搭載されるバッテリーの容量に起因して飛行時間やペイロードが制限されることなく、安定して飛行ロボット10を連続飛行させることができると共に、飛行ロボット10に空中から農薬散布、空撮、放射線計測等の種々の作業を行わせることができる。 As described above, in the flying robot device 1 according to the first embodiment of the present invention, the DC high voltage V H is supplied from the ground-side power supply device 50 to the flying robot 10 via the flexible power transmission cable 30. Further, the control calculation unit 52 (second control unit) of the ground-side power supply device 50 determines the value of the DC high voltage V H by the high-voltage power transmission unit 55 according to the distance between the flying robot 10 and the ground-side power supply device 50. The feeding amount and winding amount of the cable 30 by the cable winder 40 are controlled. Further, the output of the electric motor 14 is controlled by the control calculation unit 52 (first control unit) of the flying robot 10 according to the load of the cable 30 acting on the flying robot 10. For this reason, the influence by the voltage drop resulting from the cable 30 and the weight or entanglement of the cable 30 which the flying robot 10 receives during the flight is reliably suppressed. Therefore, the flying robot 10 can be continuously and stably fly without being limited in flight time and payload due to the capacity of the battery mounted on the flying robot 10, and agricultural chemicals are sprayed on the flying robot 10 from the air. Various operations such as aerial photography and radiation measurement can be performed.
 また、飛行ロボット10の制御演算部52(第1制御部)により、飛行ロボット10に作用する送電ケーブル30の荷重に応じて電動モータ14の出力が制御され、それと同時に、地上側電源装置50の制御演算部52(第2制御部)により、飛行ロボット10と地上側電源装置50の間の距離に応じて、高圧送電部55が送電するDC高電圧Vの値とケーブル巻取機40によるケーブル30の送り出し量及び巻き取り量が制御される。このため、飛行ロボット10と地上側電源装置50を接続するケーブル30に起因する電圧降下や飛行ロボット10の荷重変動を、簡単な構成で抑制することができる。 In addition, the output of the electric motor 14 is controlled by the control calculation unit 52 (first control unit) of the flying robot 10 according to the load of the power transmission cable 30 acting on the flying robot 10. Depending on the distance between the flying robot 10 and the ground side power supply device 50 by the control calculation unit 52 (second control unit), the value of the DC high voltage V H transmitted by the high voltage power transmission unit 55 and the cable winder 40 The feeding amount and winding amount of the cable 30 are controlled. For this reason, the voltage drop resulting from the cable 30 connecting the flying robot 10 and the ground-side power supply device 50 and the load fluctuation of the flying robot 10 can be suppressed with a simple configuration.
 さらに、高圧/低圧変換部21で生成されたDC低電圧Vを電動モータ14に供給するメインDC-DCコンバータ(メイン電源装置)61に加えて、第1~第3補助バッテリー66、66b、66cから補助電圧VAをモータ14に供給するサブDC-DCコンバータ(サブ電源装置)64が設けられており、何らかの原因でメインDC-DCコンバータ61の出力が低下または消失すると、サブDC-DCコンバータ64が補助電圧VAを電動モータ14に供給する。このため、突風等を受けて飛行ロボット10に急激な負荷変動が生じたり、送電ケーブル30が断線したりしても、飛行ロボット10が墜落する恐れがない。 Further, in addition to the main DC-DC converter (main power supply device) 61 that supplies the DC low voltage VL generated by the high-voltage / low-voltage converter 21 to the electric motor 14, the first to third auxiliary batteries 66, 66b, A sub DC-DC converter (sub power supply device) 64 for supplying the auxiliary voltage V A from the motor 66c to the motor 14 is provided, and if the output of the main DC-DC converter 61 decreases or disappears for some reason, the sub DC-DC The converter 64 supplies the auxiliary voltage V A to the electric motor 14. For this reason, even if a sudden load fluctuation occurs in the flying robot 10 due to a gust or the like, or the power transmission cable 30 is disconnected, the flying robot 10 does not fall.
 さらに、地上側電源装置50の制御演算部52(第2制御部)により、飛行ロボット10と地上側電源装置50の間の距離に応じて、ケーブル巻取機40による送電ケーブル30の送り出し量及び巻き取り量が制御されるので、飛行ロボット10の高度または水平位置の急激な変化や風などによって、飛行ロボット10と地上側電源装置50を接続するケーブル30が絡みついてしまい、飛行ロボット10の飛行に支障が生じる恐れを、簡単な構成で解消することができる。 Further, the control calculation unit 52 (second control unit) of the ground-side power supply device 50 causes the cable winding machine 40 to send out the transmission cable 30 according to the distance between the flying robot 10 and the ground-side power supply device 50 and Since the winding amount is controlled, the cable 30 connecting the flying robot 10 and the ground-side power supply device 50 is entangled due to a sudden change in the altitude or horizontal position of the flying robot 10 or wind, and the flight of the flying robot 10 The possibility of causing troubles can be eliminated with a simple configuration.
 さらに言えば、本第1実施形態に係る飛行ロボット装置1に使用されている要素技術は、いずれも、個々に見れば既知であるから、飛行ロボット装置1を早期に実用化することが可能である。そうすると、送電ケーブル30を介して飛行ロボット10に電力を連続供給することで、例えば、ペイロードを20kg以上増加させながら、1時間あるいはそれ以上の長時間に及ぶ連続飛行を実現することができるため、ハイビジョンカメラや超音波診断装置を飛行ロボット10に搭載して、トンネルや橋梁の点検、松等の高木への農薬散布をする、といった必要性の高い作業を早期に実践することが可能になる。 Furthermore, since all of the elemental technologies used in the flying robot apparatus 1 according to the first embodiment are known individually, the flying robot apparatus 1 can be put into practical use at an early stage. is there. Then, by continuously supplying power to the flying robot 10 via the power transmission cable 30, for example, continuous flight over one hour or more can be realized while increasing the payload by 20 kg or more. High-definition cameras and ultrasonic diagnostic devices can be mounted on the flying robot 10 to perform early operations that are highly necessary, such as inspecting tunnels and bridges and spraying agricultural chemicals on pine trees and other high trees.
 以上述べたように、本発明によれば、産業用としてただちに実用に供することができる飛行ロボット装置1を実現することが可能となる。 As described above, according to the present invention, it is possible to realize the flying robot apparatus 1 that can be immediately put into practical use for industrial use.
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。第2実施形態に係る飛行ロボット装置1aは、図7に示すようなロボット側制御装置20及び地上側電源装置50aと、図8に示すようなケーブル巻取機40aとを備えている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The flying robot apparatus 1a according to the second embodiment includes a robot-side control apparatus 20 and a ground-side power supply apparatus 50a as shown in FIG. 7, and a cable winder 40a as shown in FIG.
 ケーブル巻取機40aは、図8に示すように、上述した第1実施形態の飛行ロボット装置1に使用されているケーブル巻取機40から、ケーブル巻取用モータ41を省略し、代わりに巻取バネ46を設けた構成を持っている。巻取バネ46は、一端がドラム42に接続され、他端がスタンド43に固定されていて、ドラム42を常に送電ケーブル30を巻き取る方向に付勢している。このため、送電ケーブル30の送り出しは、巻取バネ46の巻き取り力に抗して送電ケーブル30を引き出すことによって行われ、送電ケーブル30の巻き取りは、巻取バネ46の巻き取り力によって行われる。それ以外の構成と機能はケーブル巻取機40と同じである。 As shown in FIG. 8, the cable winder 40a omits the cable winding motor 41 from the cable winder 40 used in the above-described flying robot apparatus 1 of the first embodiment, and instead winds it. It has a configuration in which a spring 46 is provided. One end of the take-up spring 46 is connected to the drum 42 and the other end is fixed to the stand 43, and always urges the drum 42 in the direction of taking up the power transmission cable 30. Therefore, the transmission of the power transmission cable 30 is performed by pulling out the power transmission cable 30 against the winding force of the winding spring 46, and the winding of the power transmission cable 30 is performed by the winding force of the winding spring 46. Is called. Other configurations and functions are the same as those of the cable winder 40.
 地上側電源装置50aは、図7に示すように、上述した第1実施形態の飛行ロボット装置1に使用されている地上側電源装置50の出力制御部51から、送電ケーブル30の送り出し及び巻き取りのためのケーブル巻取用モータ41の制御機能を除いたものに相当する。それ以外の構成と機能は、地上側電源装置50と同じである。 As shown in FIG. 7, the ground-side power supply device 50 a sends out and winds up the power transmission cable 30 from the output control unit 51 of the ground-side power supply device 50 used in the flying robot device 1 of the first embodiment described above. This corresponds to the control function except for the control function of the cable winding motor 41. Other configurations and functions are the same as those of the ground-side power supply device 50.
 本第2実施形態では、飛行ロボット10と地上側電源装置50aの間に、通信用ケーブルとしての光ファイバ31が架け渡されている。光ファイバ31は、飛行ロボット10(ロボット側制御装置20)と地上側電源装置50aの間で制御信号の送受信やデータ通信を行うために使用される。光ファイバ31は、送電ケーブル30に一体化(内蔵または付加)されているので、飛行ロボット10の飛行にはなんら支障は生じない。 In the second embodiment, an optical fiber 31 as a communication cable is bridged between the flying robot 10 and the ground-side power supply device 50a. The optical fiber 31 is used for transmission / reception of control signals and data communication between the flying robot 10 (robot-side control device 20) and the ground-side power supply device 50a. Since the optical fiber 31 is integrated (built in or added) to the power transmission cable 30, there is no problem in the flight of the flying robot 10.
 本第2実施形態の飛行ロボット装置1aは、以上述べた点以外は、上述した第1実施形態に係る飛行ロボット装置1と同じ構成と機能を持つから、同一要素には同一符合を付してその説明を省略する。 The flying robot device 1a of the second embodiment has the same configuration and functions as the flying robot device 1 according to the first embodiment described above except for the points described above. The description is omitted.
 本発明の第2実施形態に係る飛行ロボット装置1aでは、上述した第1実施形態に係る飛行ロボット装置1と同じ効果が得られることは明らかである。また、飛行ロボット10と地上側電源装置50aの間の距離に応じた電ケーブル30(と光ファイバ31)の送り出し及び巻き取りの制御が、上述した第1実施形態に係る飛行ロボット装置1の場合よりも簡単な構成で実現される、という効果もある。 It is clear that the flying robot apparatus 1a according to the second embodiment of the present invention can obtain the same effect as the flying robot apparatus 1 according to the first embodiment described above. In the case of the flying robot apparatus 1 according to the first embodiment described above, the control of the feeding and winding of the electric cable 30 (and the optical fiber 31) according to the distance between the flying robot 10 and the ground-side power supply apparatus 50a is performed. There is also an effect that it is realized with a simpler configuration.
 なお、上述した第1及び第2実施形態では、飛行ロボットに3個の補助バッテリーが設置されているが、本発明はこれには限定されず、補助バッテリーの数は必要に応じて任意の数に設定できることは言うまでもない。 In the first and second embodiments described above, three auxiliary batteries are installed in the flying robot. However, the present invention is not limited to this, and the number of auxiliary batteries can be any number as necessary. It goes without saying that it can be set to.
 (変形例)
 上述した第1及び第2実施形態は、本発明を具体化した例を示すものである。したがって、本発明はこの実施形態に限定されるものではなく、本発明の趣旨を外れることなく種々の変形が可能であることは言うまでもない。
(Modification)
The first and second embodiments described above show examples embodying the present invention. Therefore, the present invention is not limited to this embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
 例えば、上述した実施形態では、本発明を電動マルチロータ型ヘリコプタに適用した例を示しているが、本発明はこれに限定されない。ヘリコプタ以外の任意の用途、例えば電動飛行機にも適用可能である。 For example, in the above-described embodiment, an example in which the present invention is applied to an electric multirotor helicopter is shown, but the present invention is not limited to this. The present invention can be applied to any use other than a helicopter, for example, an electric airplane.
 本発明は、飛行ロボットへの継続的な電力供給が必要な分野、より具体的には、作業に応じて、飛行ロボットの飛行時間を確保しながら同時にペイロードを増加することが必要な分野に適用可能である。 The present invention is applied to a field where continuous power supply to the flying robot is required, more specifically, to a field where it is necessary to increase the payload at the same time while ensuring the flight time of the flying robot according to the work. Is possible.
1、1a  飛行ロボット装置
10  飛行ロボット
11  本体
12  アーム
13  ロータ
14、14a、14b、14c、14d、14e、14f  ロータ駆動用電動モータ
20  ロボット側制御装置
21  低圧変換部
22  出力制御部
23  制御演算部
24  位置検出部
25  送受信部
26  アンテナ
30  送電ケーブル
31  光ファイバ
40、40a  ケーブル巻取機
41  ケーブル巻取用モータ
41a  回転軸
42  ドラム
43  スタンド
44  ベース
45  防止部材
45a  ケーブル挿入リング
46  巻取バネ
50  地上側電源装置
51、51a  出力制御部
52  制御演算部
53  送受信部
54  発電部  
55  高圧送電部
56  アンテナ
61  メインDC-DCコンバータ(メイン電源装置)
62  電流測定センサ
63  PWM制御回路
64  サブDC-DCコンバータ(サブ電源装置)
64a  バイパススイッチ
65  モータ駆動ユニット
66a、66b、66c  第1、第2、第3補助バッテリー  
66aa、66Bb、66Cc  セル
67  充電用DC-DCコンバータ(充電用電源装置)
68  制御装置用メインDC-DCコンバータ
69、71  ダイオード
70  制御装置用サブDC-DCコンバータ
72  制御装置
81  バッテリー制御マイコン
82  フロントエンドIC
83  充電用FET
84  放電用FET
85  電流検出用抵抗
86a、86B、86C  ダイオード
87  ヒューズ
90  制御用PC
DESCRIPTION OF SYMBOLS 1, 1a Flying robot apparatus 10 Flying robot 11 Main body 12 Arm 13 Rotor 14, 14a, 14b, 14c, 14d, 14e, 14f Rotor drive electric motor 20 Robot side control device 21 Low voltage conversion unit 22 Output control unit 23 Control calculation unit 24 Position detection unit 25 Transmission / reception unit 26 Antenna 30 Power transmission cable 31 Optical fiber 40, 40a Cable winder 41 Cable winding motor 41a Rotating shaft 42 Drum 43 Stand 44 Base 45 Prevention member 45a Cable insertion ring 46 Winding spring 50 Ground Side power supply device 51, 51a Output control unit 52 Control calculation unit 53 Transmission / reception unit 54 Power generation unit
55 High Voltage Power Transmission Unit 56 Antenna 61 Main DC-DC Converter (Main Power Supply)
62 Current Measurement Sensor 63 PWM Control Circuit 64 Sub DC-DC Converter (Sub Power Supply Device)
64a Bypass switch 65 Motor drive units 66a, 66b, 66c First, second and third auxiliary batteries
66aa, 66Bb, 66Cc Cell 67 DC-DC converter for charging (charging power supply device)
68 Main DC-DC converter 69 for control device, 71 Diode 70 Sub DC-DC converter 72 for control device 72 Control device 81 Battery control microcomputer 82 Front-end IC
83 Charging FET
84 FET for discharge
85 Current detection resistors 86a, 86B, 86C Diode 87 Fuse 90 Control PC

Claims (15)

  1.  飛行ロボットと、
     前記飛行ロボットに可撓性送電ケーブルを介して電力を供給する地上側電源装置とを備え、
     前記飛行ロボットは、
     推進手段と、
     前記推進手段を駆動する電動モータと、
     前記飛行ロボットに作用する前記送電ケーブルの荷重に応じて前記電動モータの出力を制御する第1制御部と、
     前記地上側電源装置から前記送電ケーブルを介して供給される高電圧を低電圧に変換して前記電動モータに供給する高圧/低圧変換部と、
     前記高圧/低圧変換部で生成された前記低電圧を前記電動モータに供給するメイン電源装置と、
     必要に応じて前記電動モータに補助電圧を供給するサブ電源装置と、
     前記補助電圧を供給する補助バッテリーとを備えており、
     前記地上側電源装置は、
     前記送電ケーブルを介して前記高電圧を前記高圧/低圧変換部に送電する高圧送電部と、
     前記飛行ロボットと前記地上側電源装置の間の距離に応じて、前記高圧送電部が送電する前記高電圧の値を制御する第2制御部とを備えており、
     前記サブ電源装置は、前記メイン電源装置の出力が低下または消失すると、前記補助バッテリーから前記補助電圧を前記電動モータに供給する
    ことを特徴とする飛行ロボット装置。
    A flying robot,
    A ground side power supply for supplying power to the flying robot via a flexible power transmission cable,
    The flying robot is
    Propulsion means,
    An electric motor for driving the propulsion means;
    A first control unit that controls an output of the electric motor according to a load of the power transmission cable acting on the flying robot;
    A high-voltage / low-voltage converter that converts the high voltage supplied from the ground-side power supply device via the power transmission cable into a low voltage and supplies the electric motor;
    A main power supply for supplying the low voltage generated by the high-voltage / low-voltage converter to the electric motor;
    A sub power supply for supplying an auxiliary voltage to the electric motor as required;
    An auxiliary battery for supplying the auxiliary voltage,
    The ground side power supply is
    A high-voltage power transmission unit that transmits the high voltage to the high-voltage / low-voltage conversion unit via the power transmission cable;
    A second control unit that controls a value of the high voltage transmitted by the high-voltage power transmission unit according to a distance between the flying robot and the ground-side power supply device;
    The sub-power supply device supplies the auxiliary voltage from the auxiliary battery to the electric motor when the output of the main power supply device decreases or disappears.
  2.  前記地上側電源装置の前記高圧送電部が送電する前記高電圧が、直流電圧とされている請求項1に記載の飛行ロボット装置。 The flying robot device according to claim 1, wherein the high voltage transmitted by the high-voltage power transmission unit of the ground-side power supply device is a DC voltage.
  3.  前記飛行ロボットの前記高圧/低圧変換部が出力可変のDC-DCコンバータとされている請求項1または2に記載の飛行ロボット装置。 3. The flying robot apparatus according to claim 1, wherein the high-voltage / low-voltage converter of the flying robot is a variable output DC-DC converter.
  4.  前記地上側電源装置の前記高圧送電部がAC-DCコンバータとされ、前記飛行ロボットの前記高圧/低圧変換部がDC-DCコンバータとされている請求項1または2に記載の飛行ロボット装置。 3. The flying robot apparatus according to claim 1, wherein the high-voltage power transmission unit of the ground side power supply device is an AC-DC converter, and the high-voltage / low-voltage conversion unit of the flying robot is a DC-DC converter.
  5.  前記メイン電源装置の負荷容量の低下が検出されると、前記サブ電源装置が、前記メイン電源装置から供給される前記低電圧に加えて、前記補助バッテリーから前記補助電圧を前記電動モータに供給するように構成されている請求項1~4のいずれかに記載の飛行ロボット装置。 When a decrease in load capacity of the main power supply device is detected, the sub power supply device supplies the auxiliary voltage from the auxiliary battery to the electric motor in addition to the low voltage supplied from the main power supply device. The flying robot apparatus according to claim 1, wherein the flying robot apparatus is configured as described above.
  6.  前記メイン電源装置からの出力の喪失が検出されると、前記サブ電源装置の動作が停止されると共に、前記補助バッテリーから前記補助電圧を前記電動モータに直接供給するように構成されている請求項1~5のいずれかに記載の飛行ロボット装置。 The configuration is such that when the loss of the output from the main power supply device is detected, the operation of the sub power supply device is stopped and the auxiliary voltage is directly supplied from the auxiliary battery to the electric motor. The flying robot apparatus according to any one of 1 to 5.
  7.  前記地上側電源装置から前記送電ケーブルを介して供給される前記高電圧を用いて、前記補助バッテリーを充電することで、放電による前記補助電圧の低下を防止する充電用電源装置をさらに備えている請求項1~6のいずれかに記載の飛行ロボット装置。 The battery pack further includes a charging power supply device that prevents the auxiliary voltage from being reduced by discharging by charging the auxiliary battery using the high voltage supplied from the ground-side power supply device via the power transmission cable. The flying robot apparatus according to any one of claims 1 to 6.
  8.  地上側で前記送電ケーブルの余剰分を巻き取るケーブル巻取機をさらに備えており、
     前記ケーブル巻取機による前記送電ケーブルの送り出し及び巻き取りが、前記飛行ロボットと前記地上側電源装置の間の距離に応じて自動的に調整されるように構成されている請求項1~7のいずれかに記載の飛行ロボット装置。
    It further comprises a cable winder that winds up the excess power cable on the ground side,
    The feeding and winding of the power transmission cable by the cable winder are configured to be automatically adjusted according to the distance between the flying robot and the ground-side power supply device. The flying robot apparatus according to any one of the above.
  9.  前記飛行ロボットが、飛行中の前記飛行ロボットの位置を検出する位置検出センサと、前記位置検出センサの出力信号を無線で前記地上側電源装置に送信する送受信部とを備えており、
     前記地上側電源装置の前記第2制御部は、前記高圧送電部が送電する前記高電圧の値の制御を、前記出力信号を受信して行うように構成されている請求項1~8のいずれかに記載の飛行ロボット装置。
    The flying robot includes a position detection sensor that detects a position of the flying robot in flight, and a transmission / reception unit that wirelessly transmits an output signal of the position detection sensor to the ground-side power supply device,
    The first control unit of the ground-side power supply device is configured to receive the output signal and control the value of the high voltage transmitted by the high-voltage power transmission unit. Crab flying robot device.
  10.  前記飛行ロボットに接続された通信ケーブルをさらに備えており、前記通信ケーブルは前記送電ケーブルに一体化または付属されている請求項1~9のいずれかに記載の飛行ロボット装置。 10. The flying robot apparatus according to claim 1, further comprising a communication cable connected to the flying robot, wherein the communication cable is integrated with or attached to the power transmission cable.
  11.  前記ケーブル巻取機が、前記送電ケーブルの送り出し及び巻き取りを行うケーブル巻取用モータを備えており、
     前記ケーブル巻取用モータによる前記送電ケーブルの送り出し及び巻き取りは、前記飛行ロボットと前記地上側電源装置の間の距離に応じて、前記第2制御部によって制御される請求項8に記載の飛行ロボット装置。
    The cable winder includes a cable winding motor for feeding and winding the power transmission cable;
    9. The flight according to claim 8, wherein sending and winding of the power transmission cable by the cable winding motor is controlled by the second control unit in accordance with a distance between the flying robot and the ground-side power supply device. Robot device.
  12.  前記ケーブル巻取機が、前記送電ケーブルをその巻き取り方向に付勢する付勢部材を備えており、
     前記送電ケーブルの送り出しは、前記付勢部材の巻き取り力に抗して前記送電ケーブルを引き出すことによって行われ、前記送電ケーブルの巻き取りは、前記付勢部材の巻き取り力によって行われるように構成されている請求項8に記載の飛行ロボット装置。
    The cable winder includes a biasing member that biases the power transmission cable in the winding direction;
    The sending of the power transmission cable is performed by pulling out the power transmission cable against the winding force of the biasing member, and the winding of the power transmission cable is performed by the winding force of the biasing member. The flying robot apparatus according to claim 8, which is configured.
  13.  前記飛行ロボットの前記第1制御部と前記地上側電源装置の前記第2制御部の少なくとも一方で、PID制御方式が使用されている請求項1~12のいずれかに記載の飛行ロボット装置。 The flying robot device according to any one of claims 1 to 12, wherein a PID control system is used in at least one of the first control unit of the flying robot and the second control unit of the ground-side power supply device.
  14.  地上側に設置された、前記ケーブルの絡みつきを防止する絡みつき防止部材をさらに備えている請求項1~13のいずれかに記載の飛行ロボット装置。 The flying robot device according to any one of claims 1 to 13, further comprising an entanglement preventing member installed on the ground side for preventing the entanglement of the cable.
  15.  前記飛行ロボットが、電動ヘリコプタの構成を持っている請求項1~14のいずれかに記載の飛行ロボット装置。 15. The flying robot apparatus according to claim 1, wherein the flying robot has a configuration of an electric helicopter.
PCT/JP2015/052597 2015-01-29 2015-01-29 Flying robot device WO2016121072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016571613A JP6626009B2 (en) 2015-01-29 2015-01-29 Flying robot equipment
PCT/JP2015/052597 WO2016121072A1 (en) 2015-01-29 2015-01-29 Flying robot device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052597 WO2016121072A1 (en) 2015-01-29 2015-01-29 Flying robot device

Publications (1)

Publication Number Publication Date
WO2016121072A1 true WO2016121072A1 (en) 2016-08-04

Family

ID=56542723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052597 WO2016121072A1 (en) 2015-01-29 2015-01-29 Flying robot device

Country Status (2)

Country Link
JP (1) JP6626009B2 (en)
WO (1) WO2016121072A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107826266A (en) * 2017-11-08 2018-03-23 珠海市双捷科技有限公司 It is tethered at ground handling station and is tethered at UAS
JP2018070013A (en) * 2016-10-31 2018-05-10 キヤノンマーケティングジャパン株式会社 Unmanned aircraft controlling system, controlling method and program thereof
JP2018095105A (en) * 2016-12-14 2018-06-21 大日本コンサルタント株式会社 Safety device of flying object
JP2018154307A (en) * 2017-03-21 2018-10-04 株式会社Ihi Flight body
WO2018208629A1 (en) * 2017-05-06 2018-11-15 Karman, Inc. Transportation system
DE102018101556A1 (en) * 2017-11-28 2019-05-29 Riedel Communications International GmbH Aircraft, lightning protection system and method of providing lightning protection
DE102018107586A1 (en) * 2018-03-29 2019-10-02 Riedel Communications International GmbH aircraft
JP2019170014A (en) * 2018-03-22 2019-10-03 株式会社Soken Power source device and flying apparatus using the same
JP2020029182A (en) * 2018-08-23 2020-02-27 本田技研工業株式会社 robot
CN111017246A (en) * 2019-11-21 2020-04-17 东南大学 Airborne multi-motor series power supply circuit of tethered unmanned aerial vehicle
JPWO2019189929A1 (en) * 2018-03-30 2020-07-30 株式会社ナイルワークス Unmanned multi-copter for drug spraying, and control method and control program therefor
GB2583973A (en) * 2019-05-17 2020-11-18 Uavtek Ltd Tethers
IT201900009534A1 (en) * 2019-06-19 2020-12-19 E Novia S P A Drone and its attitude control method
IT201900009522A1 (en) * 2019-06-19 2020-12-19 E Novia S P A Drone and its attitude control method
CN113532202A (en) * 2020-04-15 2021-10-22 海鹰航空通用装备有限责任公司 Target drone electrical system and target drone with same
WO2024080006A1 (en) * 2022-10-13 2024-04-18 ソフトバンク株式会社 System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176874B2 (en) * 2018-07-18 2022-11-22 株式会社フジタ Mobile flying device for monitoring working machines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103644A2 (en) * 2006-02-24 2007-09-13 Samuel Johnson Aerial robot
WO2013052178A2 (en) * 2011-06-09 2013-04-11 Lasermotive, Inc. An aerial platform system, and related methods
US20130233964A1 (en) * 2012-03-07 2013-09-12 Aurora Flight Sciences Corporation Tethered aerial system for data gathering
JP2014169038A (en) * 2013-03-04 2014-09-18 Osaka City Univ Flying body system and flying body control method
WO2014203593A1 (en) * 2013-06-21 2014-12-24 株式会社エルム Control system for remote-control unmanned flight vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103644A2 (en) * 2006-02-24 2007-09-13 Samuel Johnson Aerial robot
WO2013052178A2 (en) * 2011-06-09 2013-04-11 Lasermotive, Inc. An aerial platform system, and related methods
US20130233964A1 (en) * 2012-03-07 2013-09-12 Aurora Flight Sciences Corporation Tethered aerial system for data gathering
JP2014169038A (en) * 2013-03-04 2014-09-18 Osaka City Univ Flying body system and flying body control method
WO2014203593A1 (en) * 2013-06-21 2014-12-24 株式会社エルム Control system for remote-control unmanned flight vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070013A (en) * 2016-10-31 2018-05-10 キヤノンマーケティングジャパン株式会社 Unmanned aircraft controlling system, controlling method and program thereof
JP2018095105A (en) * 2016-12-14 2018-06-21 大日本コンサルタント株式会社 Safety device of flying object
JP2018154307A (en) * 2017-03-21 2018-10-04 株式会社Ihi Flight body
WO2018208629A1 (en) * 2017-05-06 2018-11-15 Karman, Inc. Transportation system
CN107826266A (en) * 2017-11-08 2018-03-23 珠海市双捷科技有限公司 It is tethered at ground handling station and is tethered at UAS
WO2019090865A1 (en) * 2017-11-08 2019-05-16 珠海市双捷科技有限公司 Tethered ground station and tethered drone system
DE102018101556A1 (en) * 2017-11-28 2019-05-29 Riedel Communications International GmbH Aircraft, lightning protection system and method of providing lightning protection
JP2019170014A (en) * 2018-03-22 2019-10-03 株式会社Soken Power source device and flying apparatus using the same
DE102018107586A1 (en) * 2018-03-29 2019-10-02 Riedel Communications International GmbH aircraft
JPWO2019189929A1 (en) * 2018-03-30 2020-07-30 株式会社ナイルワークス Unmanned multi-copter for drug spraying, and control method and control program therefor
JP2020029182A (en) * 2018-08-23 2020-02-27 本田技研工業株式会社 robot
GB2583973B (en) * 2019-05-17 2023-02-22 Uavtek Ltd Tethers
GB2583973A (en) * 2019-05-17 2020-11-18 Uavtek Ltd Tethers
WO2020254980A1 (en) * 2019-06-19 2020-12-24 E-Novia S.P.A. Drone and method for controlling the attitude thereof
IT201900009522A1 (en) * 2019-06-19 2020-12-19 E Novia S P A Drone and its attitude control method
IT201900009534A1 (en) * 2019-06-19 2020-12-19 E Novia S P A Drone and its attitude control method
WO2020254973A1 (en) * 2019-06-19 2020-12-24 E-Novia S.P.A. Drone and method for controlling the attitude thereof
US20220236745A1 (en) * 2019-06-19 2022-07-28 E-Novia S.P.A. Drone and method for controlling the attitude thereof
US20220258861A1 (en) * 2019-06-19 2022-08-18 E-Novia S.P.A. Drone and method for controlling the attitude thereof
CN111017246A (en) * 2019-11-21 2020-04-17 东南大学 Airborne multi-motor series power supply circuit of tethered unmanned aerial vehicle
CN113532202A (en) * 2020-04-15 2021-10-22 海鹰航空通用装备有限责任公司 Target drone electrical system and target drone with same
CN113532202B (en) * 2020-04-15 2023-09-12 海鹰航空通用装备有限责任公司 Target drone electrical system and target drone with same
WO2024080006A1 (en) * 2022-10-13 2024-04-18 ソフトバンク株式会社 System

Also Published As

Publication number Publication date
JPWO2016121072A1 (en) 2017-12-21
JP6626009B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2016121072A1 (en) Flying robot device
WO2016121008A1 (en) Flying robot device
US11040773B2 (en) Aerial spraying apparatus, unmanned aerial vehicle system, and unmanned aerial vehicle
CN110621250B (en) Electrical system for unmanned aerial vehicle
EP2631468B1 (en) System and method for airborne wind energy production
CN111572356B (en) Method and system for recovering motor power of movable object
WO2017078118A1 (en) Transportation device
CN107512391B (en) Rotor unmanned aerial vehicle based on mooring cable power supply
RU2441809C2 (en) Method of control unmanned aircraft and unmanned aircraft complex
US10246188B2 (en) Apparatus for controlling still position in air
EP2698312B1 (en) Energy extraction using a kite
JP2015217901A (en) Multicopter
JP2016074257A (en) Flight body system and composite cable used for the flight body system
US20220258861A1 (en) Drone and method for controlling the attitude thereof
CN109795710B (en) Full-automatic pay-off and take-up system synchronously controlled by tethered unmanned aerial vehicle
CN110920898B (en) Pod for aircraft rescue and control method
NL2009528C2 (en) Airborne wind energy system.
KR102077470B1 (en) Hybrid Dron and It's control methods
KR20230100064A (en) Drone Power Supply
CN110920897B (en) Aircraft rescue nacelle and control method
KR20240011797A (en) Long line loiter apparatus, system and method
JP7061358B2 (en) Aircraft system
CN105217053B (en) Parallel speed regulation method for asynchronous motor multi-shaft aircraft with transformer and product
US20220236745A1 (en) Drone and method for controlling the attitude thereof
KR102478413B1 (en) Wired Drone for Disaster Command Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879969

Country of ref document: EP

Kind code of ref document: A1