WO2016121016A1 - Solar light collecting device, controlling device for same, and solar light reflector control method - Google Patents

Solar light collecting device, controlling device for same, and solar light reflector control method Download PDF

Info

Publication number
WO2016121016A1
WO2016121016A1 PCT/JP2015/052259 JP2015052259W WO2016121016A1 WO 2016121016 A1 WO2016121016 A1 WO 2016121016A1 JP 2015052259 W JP2015052259 W JP 2015052259W WO 2016121016 A1 WO2016121016 A1 WO 2016121016A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
solar
light
reflection characteristics
reflected light
Prior art date
Application number
PCT/JP2015/052259
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 進
成弥 田中
有馬 純太郎
渡邉 哲也
野口 稔
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to PCT/JP2015/052259 priority Critical patent/WO2016121016A1/en
Publication of WO2016121016A1 publication Critical patent/WO2016121016A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a solar light collecting device that collects sunlight on a light receiver by a heliostat and uses energy generated by the reflected light.
  • a heliostat is a device that reflects sunlight.
  • a large number of heliostats provided in the solar light collecting device are controlled so as to collect reflected light on a light receiver in accordance with the orbit of the sun.
  • about 100 to 10,000 heliostats are provided in the solar concentrator.
  • not all of these heliostats are used, but light is received depending on the position of the sun that changes from moment to moment, process requirements, etc. Only the heliostat necessary to obtain an appropriate heat input below the heat resistance temperature of the vessel is used.
  • Patent Document 1 a selection pattern that is a combination of ON / OFF of a plurality of heliostats is obtained based on weather information, and a plurality of heliostats are determined according to the obtained selection pattern. ON / OFF control is performed.
  • the inventor of the present application diligently studied the continuous control of the heliostat in the solar light collecting device, and as a result, the following knowledge was obtained.
  • An object of the present invention relates to grasping the sunlight reflection characteristics of a heliostat due to dirt, scratches or distortion of a mirror over time.
  • the present invention relates to irradiating a measurement mechanism with reflected light from a part of a plurality of heliostats and measuring sunlight reflection characteristics of the heliostat.
  • FIG. 10 is a diagram illustrating a method for obtaining an integrated light distribution according to the third embodiment.
  • the flowchart figure which shows the maintenance determination method of the reflective mirror of a heliostat concerning Example 4.
  • FIG. 10 is a schematic view of vibration of the reflecting mirror caused by wind according to the seventh embodiment.
  • FIG. 10 is another configuration diagram of a lift generating member for a plurality of reflecting mirrors according to Example 7; The block diagram of the reflective mirror which has a curvature concerning Example 7. FIG. The block diagram of the reflective mirror which has a convex part on the reflective mirror surface concerning Example 7. FIG. The block diagram of the reflective mirror concerning Example 7 which bent the edge part.
  • a light receiver that receives the irradiated light, a plurality of heliostats that reflect sunlight and irradiate the light receiver with the reflected light, and a plurality of heliostats are controlled to reflect from the heliostat.
  • a sunlight collecting apparatus comprising: a control device that controls light; and a measurement mechanism that is irradiated with reflected light from a part of the plurality of heliostats and that measures the sunlight reflection characteristics of the heliostat based on the reflected light.
  • An optical device is disclosed.
  • control of the reflected light from the heliostat by the control device is performed based on the sunlight reflection characteristics of the heliostat or the heat distribution of the light receiver obtained from the sunlight reflection characteristics.
  • control device controls the heliostat so that the heat distribution on the light receiver is equal to or lower than the heat resistant temperature of the light receiver.
  • the measurement mechanism includes a reflected light receiver that receives the reflected light from the heliostat and a light amount acquisition unit that acquires a light amount distribution of the reflected light receiver.
  • the measurement of the sunlight reflection characteristic of the heliostat by the measurement mechanism is performed when the state of the heliostat satisfies a predetermined condition.
  • the measurement of the solar reflection characteristics of the heliostat by the measurement mechanism is based on the fact that at least one of the operating time of the solar concentrator and the integrated value of the received light amount or the calorific value of the light receiver satisfies a predetermined condition. Disclose what happens when you meet.
  • the solar light collecting device includes a storage unit that stores the measurement result of the solar reflection characteristic of the heliostat, and the solar reflection characteristic of each heliostat is measured at a certain period by the measurement mechanism. It is disclosed that the control unit determines the maintenance time of each heliostat by comparatively analyzing the sunlight reflection characteristics for a plurality of periods stored in the storage unit.
  • control unit analyzes the solar reflection characteristics for a plurality of periods, analyzes at least one of dirt, scratches, and distortion of each heliostat, and determines the maintenance time of each heliostat. Disclose judgment.
  • the solar light collecting control device for controlling the heliostat in the solar light collecting device for collecting the reflected light from the plurality of heliostats on the light receiver, the reflection irradiated from the heliostat
  • a measurement mechanism that measures the sunlight reflection characteristics of the heliostat based on light
  • a storage unit that stores the sunlight reflection characteristics measured by the measurement mechanism
  • control of the heliostat calculates the heat amount distribution of the light receiver from the solar reflection characteristics of the heliostat stored in the storage unit, and the heat amount distribution of the light receiver is equal to or lower than the heat resistant temperature of the light receiver. It is disclosed that this is done.
  • the measurement unit includes a reflected light receiver that receives the reflected light from the heliostat and a light amount acquisition unit that acquires a light amount distribution of the reflected light receiver.
  • each heliostat is measured by measuring the solar light reflection characteristics of each heliostat at regular intervals by the measurement mechanism, and comparing and analyzing the solar light reflection characteristics for a plurality of periods stored in the storage unit. Disclosure of judging the maintenance time of
  • the solar reflector is controlled so that the heat distribution of the light receiver is equal to or lower than the heat resistant temperature of the light receiver.
  • the solar reflection characteristics of the solar reflector are measured at regular intervals, and the maintenance time of the solar reflector is determined from the change in the measurement result of the solar reflection characteristics.
  • a light receiving device that receives the irradiated light, a plurality of heliostats that reflect sunlight and irradiates the reflected light to the light receiving device, and a plurality of heliostats by controlling the plurality of heliostats.
  • a solar condensing device that includes a control device that controls the reflected light and a wind speed sensor that can detect the wind speed, and uses at least a part of a plurality of heliostats for wind protection when the wind speed is constant. To do.
  • the heliostat used for wind protection is controlled so that the reflecting mirror is at a predetermined angle with respect to the wind direction.
  • a light receiving device that receives the irradiated light, a plurality of heliostats that reflect sunlight and irradiates the reflected light to the light receiving device, and a plurality of heliostats by controlling the plurality of heliostats.
  • a control device that controls the reflected light and a wind speed sensor that can detect the wind speed. When the wind speed is constant, at least a part of the multiple heliostats is used to avoid damage to the heliostat due to wind.
  • the sunlight condensing device which is set as the standby mode is disclosed.
  • the heliostat in the standby mode is controlled so that the reflecting mirror is in a substantially horizontal position.
  • a heliostat including a reflecting mirror that reflects sunlight, a support leg that supports the reflecting mirror, and a lift generating member that suppresses vibration of the reflecting mirror is disclosed.
  • the lift generating member is provided on at least a part of the outer peripheral portion of the reflecting mirror.
  • FIG. 1 is a schematic configuration diagram of a solar light collecting apparatus according to the present embodiment.
  • solar thermal power generation is performed using the energy of the collected reflected light.
  • this energy may be used for steam generation or as a heating source in a chemical plant.
  • the solar light collecting apparatus includes a tower portion irradiated with reflected light, a light collecting portion that reflects sunlight to the tower portion, and a power generation portion that generates electric power using the energy of the reflected light.
  • the tower section has the tower 102 as a base, and a light receiver 101 to which the reflected sunlight is irradiated is fixed on the tower section.
  • a screen 110 for measuring sunlight reflection characteristics of each heliostat is provided in the middle of the tower 102.
  • a camera 111 that acquires light quantity distribution information on the screen 110 is disposed at a position opposite to the screen 110.
  • the light collecting unit detects a plurality of heliostats 103 (for example, 100 to 10000) that reflect sunlight and collects the light in a light receiver, and a light amount directly irradiated from the sun (hereinafter referred to as direct solar radiation amount). And a heliostat control device 105 for individually controlling the heliostat.
  • a plurality of heliostats 103 for example, 100 to 10000
  • direct solar radiation amount a light amount directly irradiated from the sun
  • the heliostat 103 includes a reflecting mirror 119 that reflects sunlight, a support leg 121 that supports the reflecting mirror 119, and a reflecting mirror driver 120 that directs the reflecting mirror 119 in a target direction.
  • the heliostat control device 105 includes a CPU unit 106 that is operated by a program, an input unit 107 that receives instructions from an operator, a display unit 108 that displays various types of information, and a recording medium 109 that stores data. I have.
  • the heliostat control device 105 receives a command value for the received light amount of the light receiver 101 and a command value for the power generation amount of the solar thermal power plant from the control device 115 of the power generation unit corresponding to the host device. Further, a direct solar radiation amount signal is received from the direct solar radiation meter 112. Then, based on these signals, the reflecting mirror driver 120 is controlled to control the direction of reflected light from the heliostat 103.
  • the power generation unit is connected to the steam turbine 118 for generating power by supplying water or steam into the power generation unit and the piping 117 for circulation, the steam turbine 118 driven by steam vaporized by the heat of the light receiver 101, and generating power.
  • a generator (not shown) and a cooling facility 113 that cools the steam discharged from the steam turbine 118 and returns it to water.
  • the power generation unit includes a power generation unit control device 115 that controls the power generation unit.
  • heliostats are always used, but necessary heliostats are selected and used in order to obtain an appropriate amount of heat input.
  • use of a heliostat means that the direction of the reflected light from the heliostat is controlled by the heliostat control device 105 so that the reflected light is irradiated to the light receiver 101.
  • One of the heliostats that have not been selected is controlled by the heliostat control device 105 so as to irradiate the screen 110 with reflected light instead of the light receiver 101.
  • the heliostat control device 105 controls the heliostat control device 105 so as to irradiate the screen 110 with reflected light instead of the light receiver 101.
  • reflected light from only one heliostat is irradiated on the screen 110. For this reason, the sunlight reflection characteristic of only one heliostat can be calculated from the distribution of the amount of light on the screen 110.
  • the light quantity distribution generated on the screen 110 by one of the heliostats not selected by the camera 111 facing the screen 110 is acquired as an image.
  • Information on the light amount distribution is transmitted to the CPU 106.
  • the CPU 106 calculates the sunlight reflection characteristic of one of the heliostats 104 from the light quantity distribution information and records it on the recording medium 109.
  • the camera 111 that acquires the light amount distribution on the screen 110 may be a device that acquires the light amount distribution directly such as a camera using a CCD sensor or a CMOS sensor, or a camera that acquires the light amount distribution indirectly such as a thermo camera. It is good.
  • the light amount distribution is acquired by the camera 111.
  • an optical sensor or a thermal sensor arranged in an array on the screen is used. Also good.
  • the solar reflection characteristics are measured for each heliostat, but may be measured for each part of the heliostat (for example, every two or three). By measuring every part of the heliostat, the time required to measure all heliostats can be shortened.
  • the direction of the reflected light is controlled by the heliostat control unit 105 so as to irradiate the screen 110 with the reflected light of another heliostat.
  • the solar reflection characteristics of this heliostat are measured.
  • the sunlight reflection characteristics can be measured for all the heliostats provided.
  • the sunlight reflection characteristic of each heliostat is obtained, but what kind of light collection distribution is taken on the light receiver 101 may be obtained.
  • the present embodiment has the same configuration as the solar light collecting apparatus of the first embodiment, but when acquiring the solar light reflection characteristics of each heliostat, more accurate solar light reflection characteristics can be obtained.
  • the difference is that the measurement is made after correcting the dirt on the screen 110.
  • the difference from the first embodiment will be mainly described.
  • FIG. 2 is a measurement flowchart of the sunlight concentration distribution of each heliostat. A method for acquiring and storing the solar reflection characteristics of each heliostat in advance in this embodiment will be described with reference to the flowchart of FIG.
  • the heliostat control device 105 is executed every certain period (for example, about every week) by the heliostat control device 105. By executing for every certain period, the solar reflection characteristic of the latest heliostat is obtained, and the heliostat can be controlled based on this.
  • the heliostat control device 105 selects the heliostat 104 for measuring the solar reflection characteristic this time from the heliostats for which the measurement of the solar reflection characteristic has not been completed, and sets the direction of the reflected light from the heliostat 104.
  • the screen 110 is controlled to be irradiated (step s200).
  • the light quantity distribution on the screen 110 is measured by the camera 111 (step s201).
  • the CPU 106 calculates the sunlight reflection characteristics (step s205). By this correction, an accurate value of sunlight reflection characteristics can be obtained.
  • the obtained sunlight reflection characteristics are stored in the recording medium 109 as a database (step s206).
  • the heliostat control unit 105 controls the direction of the reflected light so as to irradiate the screen 110 with the reflected light from only one of the heliostats 104. Measure the light distribution.
  • the camera 111 simultaneously collects information on the shutter speed and signal gain so that the brightness can be compared.
  • the screen dirt correction step s202 the light collection distribution on the screen 110 in a state where no reflected light is irradiated from the heliostat measured in advance by the heliostat control unit 105 and the collection acquired in the irradiation light measurement step s201. Compare the light distribution.
  • the heliostat control unit 105 calculates information such as screen stains and luminance distribution error components of the camera 111 from the comparison result.
  • the heliostat control unit 105 removes the background information such as the screen dirt and the luminance distribution error component of the camera 111 and extracts the light amount distribution information obtained from the camera 111 so that the true light amount distribution information can be extracted. to correct.
  • the heliostat control unit 105 uses the information of the direct solar radiation meter 112 at the time of measurement to eliminate changes in the light amount distribution information due to external factors such as weather and solar altitude.
  • the heliostat control unit 105 calculates the current direct solar radiation amount from the measurement value of the direct solar radiation meter, and corrects the light amount distribution information obtained from the camera 111 based on the direct solar radiation amount.
  • the heliostat control unit 105 corrects the change in the light amount distribution on the screen 110 due to the sun position.
  • this step will be described in detail with reference to FIG.
  • FIG. 3 is a diagram for explaining a change in the light amount distribution on the screen 110 according to the sun position.
  • the position of the sun varies with the passage of time, for example, from the sun position 301 at the reference time to the sun position 302 at the time of measurement. For this reason, in order to irradiate the screen 110 with the reflected light from one of the heliostats 104, the heliostat control unit 105 changes the direction of the reflected light from the one of the heliostats 104 over time.
  • the heliostat control unit 105 changes the direction of the reflected light from the one of the heliostats 104 over time.
  • the light amount distribution on the screen 110 changes.
  • rotation of the light amount distribution (irradiation shape), lateral magnification change, vertical magnification change, and the like occur.
  • the light quantity distribution on the screen 110 and the sunlight reflection characteristics of one of the heliostats 104 do not simply match.
  • step s204 the light quantity distribution on the screen 110 obtained by the camera 111 is corrected by the heliostat control unit 105 based on the direction of the heliostat.
  • the heliostat control unit 105 corrects the light amount distribution information so as to cancel the rotation of the light amount distribution, the lateral magnification change, and the vertical magnification change described above.
  • the heliostat control unit 105 calculates the sunlight reflection characteristic of one of the heliostats 104 from the information on the light amount distribution corrected in the steps so far.
  • the heliostat control unit 105 stores the sunlight reflection characteristics of the heliostat obtained in step s205 on the recording medium 109 such as a hard disk, and constructs a database.
  • the stored data includes device information such as a heliostat number, measurement date and time, and maintenance information.
  • step s207 the heliostat control unit 105 measures the sunlight reflection characteristics of all the heliostats and determines whether or not they are recorded. If all the heliostats are stored, the measurement is terminated (step s208). If all the heliostats are not stored, the process is restarted from step s200.
  • the sunlight reflection characteristics and the like are calculated after correcting the information of the light quantity distribution obtained by the camera 111, but the sunlight reflection characteristics are calculated from the raw light quantity distribution obtained by the camera 111. Later, the sunlight reflection characteristics may be corrected. Further, the order of each correction is not limited to that shown in FIG. 2 and may be any order.
  • accurate solar reflection characteristics can be measured for each heliostat without the influence of external factors such as screen contamination, sunshine intensity during measurement, and image deformation due to the sun position.
  • This example relates to the direction control of the reflected light from the heliostat based on the sunlight reflection characteristics of each heliostat obtained in Example 1 or 2.
  • the difference from the first and second embodiments will be mainly described.
  • the heliostat control device 105 receives a command related to the amount of light received by the light receiver 101 (or the heat generated by the light receiver 101 or the amount of power generated by the power generation unit) from the control device 115 of the power generation unit corresponding to the host device.
  • the heliostat control device 105 that has received the command uses the sunlight reflection characteristics of each heliostat and performs control to select and use the necessary heliostat to satisfy this command.
  • This control makes it possible to predict thermal unevenness in a two-dimensional surface distribution on the light receiver. Further, by predicting the thermal unevenness, it is possible to predict the occurrence of a point exceeding the heat resistance temperature of the light receiver (hereinafter referred to as a hot spot). Then, by controlling the heliostat so as to avoid the occurrence of hot spots, the light receiver can be used at a temperature lower than the heat resistant temperature.
  • FIG. 4 is a flowchart of selection of a heliostat that irradiates reflected light to the heat receiver and determination of a condensing coordinate correction value.
  • the selection flowchart of the selection of the heliostat which irradiates reflected light to a heat receiver and the condensing coordinate correction value is demonstrated for every step using FIG.
  • the sunlight reflection characteristic of each heliostat shall be recorded on the recording medium 109 before the start of this flowchart.
  • the heliostat control device 105 obtains a command regarding the amount of light received by the light receiver 101 from the control device 115 of the power generation unit corresponding to the host device at the start of this flowchart (step s400).
  • this command may include information on the temperature of the light receiver 101, the steam pressure inside the power generation unit, and the amount of heat to be supplied during the light collection operation.
  • the heliostat control device 105 calculates the amount of heat to be generated on the light receiver and the total amount of reflected light to be collected on the light receiver in order to satisfy the command obtained in step s400. In addition, the heliostat control device 105 calculates a threshold value indicating how much deviation is allowed with respect to the calculated amount of heat and the total amount of reflected light (step s401). Here, the heliostat control device 105 calculates the allowable threshold value for deviation, but the user may directly input the threshold value.
  • the heliostat control device 105 obtains information on the current sunshine intensity from the direct solar radiation meter 112. Then, the heliostat control device 105 calculates the total sum of the areas of the reflecting mirrors necessary for realizing the light condensing so as to satisfy the total amount of the reflected light calculated in step s401 in consideration of the current sunshine intensity. (Step s402).
  • the heliostat control device 105 calculates the number of heliostats satisfying the total amount of the reflector areas calculated in step s402. Then, the heliostat control device 105 determines an initial selection pattern of the heliostat according to the calculated number (step s403).
  • heliostat selection here should not be biased to some heliostats due to problems such as durability and life. Therefore, in this embodiment, a heliostat is selected at random.
  • any selection method may be used as long as the selection of the heliostat is not biased to some heliostats.
  • the heliostat control device 105 reads sunlight reflection characteristic data for each heliostat selected in step s403 from the recording medium 109 (step s404).
  • the heliostat control device 105 calculates the integrated light collection distribution on the light receiver 101 by the reflected light from each heliostat (step s405).
  • the integrated light collection distribution is a distribution of the total sum of reflected light applied to the light receiver. Details of step s405 will be described with reference to FIG.
  • FIG. 5 is a diagram illustrating a method for obtaining the integrated light collection distribution.
  • heliostats 1 to 4 When four heliostats (respectively, heliostats 1 to 4) are selected, a method of calculating the integrated light collection distribution on the light receiver 101 from the sunlight reflection characteristics of each heliostat is shown. .
  • sunlight reflection characteristic information 501 to 504 is a two-dimensional representation of the sunlight reflection characteristic on the light receiver 101 at the reference time for each of the heliostats 1 to 4 read from the database on the recording medium 109. This is expressed by the correlation between the position [nm] and the sunlight reflection intensity [w / m 2 ].
  • steps s505 to s508 are performed, in which the sunlight reflection characteristic of each heliostat is transformed into the sunlight reflection characteristic in consideration of the sun position at the current time and the direction of the reflecting mirror.
  • steps s509 to s512 the sunlight reflection characteristics are modified according to the correction amount of the condensing position correction set in step s412 described later.
  • step s513 an integrated light collection distribution on the light receiver 101 is derived from the sunlight reflection characteristics deformed in steps s505 to s512.
  • the heliostat control device 105 obtains the total amount of heat generated on the light receiver 101 from the integrated light collection distribution calculated in step s405. Then, it is compared with the target total heat amount (or the total amount of reflected light) calculated in step s401, and the light collection state is determined based on whether or not the total heat amount (or the total amount of reflected light) is within the allowable threshold (step s406). ).
  • step s406 When the total heat amount is within the threshold (step s406: Yes), the process proceeds to step s407, and the heliostat control device 105 determines whether there is a hot spot on the light receiver 101 from the integrated light distribution on the light receiver 101. Thus, the light collection state is determined (step s407).
  • the heliostat control device 105 determines the heliostat selection pattern at this time as the final heliostat selection pattern. In addition, when the condensing position correction is performed in step s412 described later, the correction value is determined as the final correction value (step s408).
  • the heliostat control device 105 controls the direction of the reflected light from the heliostat based on the final heliostat selection pattern determined in step s408 and the correction value, and reflects the reflected light to the light receiver 101. , And condensing is started (step s409).
  • step s401 After a certain time has passed (for example, several minutes to several hours), the process returns to step s401.
  • step s406 when it is determined in step s406 that the total heat amount (or the total amount of reflected light) on the light receiver exceeds the allowable threshold calculated in step s401 (step s406: No), the heliostat control unit 105 The total amount of heat (or the total amount of reflected light) on the light receiver is compared with the target total heat amount (or the total amount of reflected light), and the number of heliostats used for condensing is increased or decreased (step s410). Thereafter, the process returns to step s404.
  • step s407 when it is determined that there is a hot spot on the light receiver (step s407: Yes), the heliostat control unit 105 reflects the solar spot in the vicinity of the hot spot position from each heliostat. A heliostat in which the amount of light is concentrated is searched (step s411).
  • the heliostat control unit 105 sets the direction of the reflected light for the heliostat in which the amount of reflected light is concentrated near the position of the hot spot searched in step s411 (the heliostat causing the hot spot). Control to be changed is performed (hereinafter referred to as condensing position correction).
  • the irradiation direction of the reflected light is changed so that the irradiation position of the reflected light from the heliostat moves about half of the size of the hot spot.
  • the changing direction of the irradiation direction is randomly moved (the moving amount and the changing direction at this time are referred to as a correction value for correcting the condensing position) (step s412).
  • the correction value determination method is not limited to the above method, and for example, the correction value may be determined so that the reflected light is concentrated on a portion where the amount of reflected light is not concentrated.
  • the heliostat control device 105 determines whether or not the number of processes in step s412 is within a set threshold (step s413). This is because when a hot spot is generated even if the step s412 is repeated many times, the heliostat used for condensing is changed to avoid the generation of the hot spot. If the determination result in step s413 is within the threshold (step s413: Yes), the process returns to step s404.
  • step s413 if the determination result in step s413 exceeds the threshold value (step s413: No), the selection pattern of the heliostat is switched after resetting the number of processes in step s412 (step s414).
  • the heliostat selection pattern can be switched by any method, but about half of the heliostat in which the amount of reflected light is concentrated in the vicinity of the hot spot is not used for the standby heliostat. By exchanging with the stat, it is possible to reduce the possibility of hot spots occurring at other locations while reducing the amount of heat generated at the positions of the hot spots so far.
  • step s414 the process returns to step s404.
  • the two-dimensional surface distribution thermal unevenness on the light receiver is predicted, and the direction of the reflected light from the heliostat is controlled.
  • the occurrence of hot spots on the light receiver can be avoided.
  • the local thermal damage of the light receiver by a hot spot can be suppressed, and the lifetime improvement of a light receiver can be implement
  • this flowchart periodically for several minutes to several hours, even if a hot spot occurs due to a change in solar reflection characteristics over time, the period during which the hot spot is generated can be shortened. it can.
  • This example relates to the determination of the necessity of maintenance of the reflector of the heliostat based on the sunlight reflection characteristics of each heliostat.
  • the difference from the first to third embodiments will be mainly described.
  • FIG. 6 is a flowchart showing a maintenance determination method for a heliostat reflector. Based on the control shown in this flowchart, it is possible to determine, for each heliostat, whether or not the reflecting mirror is soiled over time or whether or not the reflecting mirror is damaged. In other words, it is possible to determine the time for cleaning the heliostat to remove the dirt from the reflecting mirror and the time for replacement with a reflecting mirror without scratches one by one. Details of each step will be described below.
  • the sunlight reflection characteristics of each heliostat at the start of processing are acquired and stored (step s601).
  • the acquisition and storage method is as described in the second embodiment.
  • the heliostat control unit 105 reads the sunlight reflection characteristic information from the database in the recording medium 109, the sunlight reflection characteristic acquired after the previous cleaning of the reflector, and the current sunlight reflection acquired this time. Compare characteristics. By this comparison, the decrease (deterioration, deterioration) of the sunlight reflection characteristics over time from the previous cleaning of the reflector for the same heliostat is calculated as the characteristic decrease amount 1. (Step s602) Next, the heliostat control unit 105 determines whether or not the amount of decrease in sunlight reflection characteristics calculated in step s602 has reached a threshold (step s603).
  • step s603 When it is determined that the amount of decrease in the sunlight reflection characteristic is within the threshold (that is, almost no decrease in the sunlight reflection characteristic is observed) (step s603: No), the state of the reflector on the heliostat is It is normal. For this reason, the heliostat control unit 105 determines that it is unnecessary to clean or replace the reflecting mirror on the heliostat (that is, without outputting an instruction to clean or replace the reflecting mirror), and the process of FIG. Is finished (step s604).
  • step s603 when it is determined that the amount of decrease in the sunlight reflection characteristic is equal to or greater than the threshold (step s603: Yes), it is recognized that the sunlight reflection characteristic has decreased over time.
  • One of the causes of the deterioration of the sunlight reflection characteristics is that the reflector on the heliostat gets dirty over time.
  • the heliostat control unit 105 outputs an instruction to carry out cleaning of the reflecting mirror on the heliostat in order to remove the dirt (step s605).
  • the reflecting mirror may be cleaned by a person who has seen the cleaning instruction, or a wiper or a nozzle controlled by the heliostat control unit 105 is provided and automatically receives the instruction. You may make it clean by.
  • the light receiving device sunlight reflection characteristics of the heliostat that has performed the cleaning of the reflecting mirror are acquired based on the flowchart described in the second embodiment (step s606). Since it is immediately after cleaning of the reflecting mirror, it is considered that the sunlight reflection characteristics obtained at this time are almost free from the influence of dirt on the reflecting mirror.
  • the heliostat control unit 105 reads information from the database in the recording medium 109, and reflects the sunlight reflection characteristics obtained after the previous reflector replacement and the sunlight reflection after cleaning of the reflector obtained in step s606. Compare characteristics. By this comparison, the decrease in sunlight reflection characteristics over time from the previous replacement of the reflector for the same heliostat is calculated as the characteristic decrease amount 2 (step s607).
  • the heliostat control unit 105 determines whether or not the reduction amount of the sunlight reflection characteristic calculated in step s607 has reached a threshold (step s608). When it is determined that the amount of decrease in the sunlight reflection characteristic calculated in step s607 is equal to or greater than the threshold (step s608: Yes), it is recognized that the sunlight reflection characteristic has not been recovered even by cleaning the reflecting mirror.
  • the heliostat control unit 105 outputs an instruction to replace the reflecting mirror (step s612).
  • the reflector can be replaced by the user who has seen the instruction to replace the reflector, or by providing a reflector transporter controlled by the heliostat control unit 105, etc. You may be made to perform.
  • step s612 the state of the reflecting mirror is normal, and thus the processing of FIG. 6 is terminated.
  • step s608: No when it is determined that the amount of decrease in the sunlight reflection characteristic is within the threshold (step s608: No), it is recognized that the sunlight reflection characteristic has been recovered by cleaning.
  • step s608 No
  • the process proceeds to step s609, and the amount of distortion of the reflector on the heliostat is calculated and determined.
  • the calculation of the amount of distortion of the reflecting mirror is performed by the heliostat control unit 105 reading the information from the database in the recording medium 109, the solar reflection characteristics acquired after the previous mirror adjustment or replacement, and the sun acquired in step s606 this time. This is done by comparing the light reflection characteristics.
  • the amount of distortion of the reflector is calculated based on the amount of change in the center position where the heliostat collects sunlight and the amount of change in the standard deviation of the sunlight reflection characteristics (step s609).
  • the amount of change in the condensing center position is represented by the following formula:
  • the amount of change in the standard deviation of the sunlight reflection characteristic is expressed by the following formula: (standard deviation after cleaning ⁇ standard deviation after surface adjustment of the previous reflector).
  • the heliostat control unit 105 determines whether or not the distortion amount of the reflector calculated in step s609 has reached a threshold value (step s610).
  • step s610 Yes and outputs an instruction to readjust the surface of the reflecting mirror (step s613).
  • step s610 when the amount of distortion of the reflecting mirror calculated in step s608 is within the threshold (step s610: No), the reflecting mirror is in a normal state (dirt can be removed by cleaning, the reflecting mirror is not damaged, and is reflected during cleaning.
  • the heliostat control unit 106 ends the process of FIG. 6 (step s611).
  • FIG. 7 is an explanatory diagram showing changes in sunlight reflection characteristics of each heliostat.
  • state management of the heliostats 1 to 3 is performed. Actually, it is desirable to perform this state management for all the heliostats provided.
  • sunlight reflection characteristic data of each heliostat is stored.
  • the time when the sunlight reflection characteristics are acquired, the maintenance information performed before the acquisition, and the like are associated with the information of each heliostat and stored.
  • Heliostat 1 the change in the solar reflection characteristics over time of the heliostat that has become dirty on the reflector is shown.
  • T01 in the figure indicates the solar reflection characteristics of each heliostat obtained at the time of the previous reflector replacement.
  • T02 in the figure indicates the solar reflection characteristics of each heliostat obtained after a while after the reflector replacement.
  • T03 shows the sunlight reflection characteristics of each heliostat obtained after a while from T02.
  • T05 in the figure indicates the sunlight reflection characteristics of each heliostat obtained after cleaning of the reflector performed at T04.
  • T06 the contents of maintenance work for each heliostat performed by receiving information on the solar reflection characteristics of each heliostat acquired at the time of T05 (replacement of reflectors, The surface adjustment of the reflector for distortion removal is shown.
  • T07 in the figure indicates the solar reflection characteristics of each heliostat obtained after the maintenance work performed at the time of T06.
  • each heliostat decreases with time from T01 to T02 and T03. This is because, as described above, the reflecting mirror becomes dirty and scratched as time passes.
  • the heliostat control unit 105 outputs an instruction to clean the reflecting mirror based on step s603.
  • the decrease in the sunlight reflection characteristics is due to the dirt on the reflector surface.
  • the heliostat 1 can remove the dirt of the reflecting mirror by cleaning the reflecting mirror.
  • the sunlight reflection characteristic is recovered (T05).
  • the sunlight reflection characteristic has been recovered by cleaning, it is determined that the reflector is not scratched (step s608). Furthermore, the sunlight reflection characteristic after cleaning (T06) is almost the same as the sunlight reflection characteristic at time T01. For this reason, it is determined that there is no distortion in the reflecting mirror after cleaning (step s610), and the maintenance work for the heliostat 1 ends.
  • heliostat 2 will be described.
  • the decrease in sunlight reflection characteristics is due to scratches or the like generated on the reflecting mirror.
  • the sunlight reflection characteristic of the heliostat 2 is not recovered by cleaning (T05).
  • the heliostat control unit 105 determines that the reflector on the heliostat 2 has many scratches based on step s608.
  • the heliostat control unit 105 outputs an instruction to replace the reflecting mirror based on step s612.
  • the sunlight reflection characteristics of the heliostat 2 become normal (T07).
  • the heliostat 3 will be described.
  • the decrease in the sunlight reflection characteristics is due to the dirt on the reflecting mirror surface.
  • the sunlight reflection characteristic is recovered by cleaning the reflecting mirror.
  • strain also has generate
  • the heliostat control unit 105 determines that the mirror is distorted based on step s610. Thereafter, the heliostat control unit 105 outputs an instruction to readjust the mirror surface based on step s613 (step s613). By adjusting the surface of the reflecting mirror, the sunlight reflection characteristics become normal (T07).
  • This example relates to the prediction of the maintenance time of the heliostat reflector based on the sunlight reflection characteristics of each heliostat.
  • the difference from the first to fourth embodiments will be mainly described.
  • FIG. 8 is an explanatory diagram showing a method of predicting the cleaning time of the reflecting mirror.
  • the vertical axis of this graph represents the amount of decrease in the solar reflection characteristic during periodic measurement of the solar reflection characteristic (step s602), and the horizontal axis represents time.
  • the time axis starts from the point 711 when the reflector is cleaned. As the current reflector time 712 elapses from the previous reflector cleaning time 711, the amount of decrease in the sunlight reflection characteristics gradually increases. As long as there is no significant change in the installation environment of the heliostat, the amount of decrease in sunlight reflection characteristics will continue to increase.
  • the heliostat control unit 105 draws a prediction straight line 715 of the future solar reflection characteristic based on the actual measurement 714 of the temporal change in the solar reflection characteristic from the previous reflector cleaning time 711 to the current time point 712, The next reflection mirror cleaning time 713 that reaches the sunlight reflection characteristic deterioration threshold value can be predicted.
  • FIG. 9 is an explanatory diagram showing a method of predicting the replacement time of the reflecting mirror.
  • the vertical axis of this graph represents the amount of decrease in the solar reflection characteristics (that is, the amount of scratches generated in the reflection mirror) at the time of measuring the solar reflection characteristics after the cleaning of the reflecting mirror (step s607), and the horizontal axis represents time.
  • the time axis starts from the time when the reflector is replaced 721.
  • the amount of scratches on the reflecting mirror gradually increases as the current reflecting time 722 elapses from the previous reflecting mirror replacement time 721. Unless there is a major change in the installation environment of the heliostat, the amount of scratches will continue to increase.
  • the heliostat control unit 105 draws a prediction straight line 725 for the future solar reflection characteristic based on the actual measurement 724 of the temporal change of the solar reflection characteristic from the previous reflector replacement 721 to the current time point 722, The next reflecting mirror replacement time 723 that reaches the reflecting mirror damage threshold value can be predicted.
  • FIG. 10 is an explanatory diagram showing a method of predicting the adjustment time of the reflecting mirror surface.
  • the vertical axis of this graph is the amount of distortion of the reflecting mirror when measuring the sunlight reflection characteristics after cleaning the reflecting mirror (step s609), and the horizontal axis is time.
  • the time axis starts from the point of time 731 when the reflector is replaced or the surface is readjusted.
  • the reflector is gradually distorted as the current time point 732 elapses from the previous time when the reflector is replaced or the surface is readjusted 731. As long as there is no significant change in the installation environment of the heliostat, the amount of distortion will continue to increase.
  • the heliostat control unit 105 draws a prediction line 735 for the future solar reflection characteristic based on the actual measurement 734 of the temporal change in the solar reflection characteristic from the previous reflector replacement 731 to the current time point 732, The next reflecting mirror replacement time 733 that reaches the reflecting mirror flaw amount threshold value can be predicted.
  • the prediction straight line is drawn.
  • a prediction curve may be drawn.
  • the heliostat that was not selected in step s408 of the third embodiment is not used for light collection until the flowchart of the third embodiment is processed again and selected in step s408. Further, after the maintenance instruction is output in any of steps s605, s612, or s613 in the fourth embodiment, the heliostat is not used for light collection until the maintenance is performed. If a heliostat that is not used for light collection is used for wind protection, it is possible to prevent other heliostats that are collecting light from affecting the wind.
  • the present embodiment relates to a solar light collecting device that uses heliostats for wind protection and reduces the influence of each heliostat on the wind.
  • the difference from the first to fifth embodiments will be mainly described.
  • FIG. 11 is a schematic configuration diagram of a solar light collecting device equipped with a windproof heliostat.
  • a wind direction and wind speed sensor 902 is provided in the vicinity of the heliostat to detect the wind direction and the wind speed.
  • the heliostat control unit 105 confirms that the current wind speed is equal to or lower than the wind resistant speed of the heliostat by the wind direction and wind speed sensor 902.
  • the heliostat control unit 105 uses a heliostat that is installed in the windward direction among heliostats that are not used for light collection as the windproof heliostat 901.
  • the reflecting mirror driver 120 is controlled so that the reflecting mirror has an angle of 45 degrees with respect to the wind.
  • the windproof heliostat 901 the one installed in the windward direction is used.
  • a heliostat installed in the vicinity of the outer periphery may be used, and a fixed interval may be used.
  • a heliostat with a gap may be used.
  • the installation of a windproof heliostat can be optimized by installing a plurality of wind direction and wind speed sensors.
  • the heliostat may be damaged if the condensing operation or windbreak operation continues.
  • the heliostat control unit 105 stops the condensing operation and windbreak operation of all the heliostats in the plant, and the direction of the reflecting mirrors of each heliostat is set so that the inclination of the reflecting mirrors of the heliostat is near the horizontal. To control. This control can prevent the heliostat from being damaged under strong winds. Hereinafter, this control is referred to as “standby mode”.
  • the angle of the reflector of each heliostat in the “standby mode” is most preferably a horizontal position that tends to be parallel to the wind direction. This is because each heliostat (the reflecting mirror) is least affected by the wind if it is parallel to the wind direction. However, if the reflector is kept in a perfectly horizontal position, rain and sand tend to stay on the surface of the reflector, and dirt is likely to accumulate on the reflector.
  • the inclination angle of the reflecting mirror surface in the “standby mode” is determined to be an optimum value based on the assumed wind speed, precipitation, and amount of attached dust in the installation environment.
  • the wind-proof heliostat 901 can reduce the influence of wind on the heliostat 103 during the light collecting operation. In addition, the possibility of damage to the heliostat can be reduced while preventing accumulation of dirt even in strong winds.
  • the solar light collecting apparatus has the “standby mode” for avoiding damage to the heliostat in a strong wind state.
  • the reflector portion vibrates (chatters) under strong winds, and the joint portion between the reflector 119 and the support leg 121 may be fatigued.
  • the mechanism of the vibration generation will be described with reference to FIGS. 12 and 13.
  • FIG. 12 is a diagram showing the support structure of the reflecting mirror.
  • the reflecting mirror 119 and the support leg 121 are coupled via a support portion 951.
  • FIG. 13 is a schematic diagram of the vibration of the reflecting mirror caused by the wind. Since the heliostat is installed outdoors, the wind blown at that position is not always constant, and both the wind direction and the wind speed pulsate. It is assumed that the reflecting mirror 119 is slightly distorted in the direction (downward direction) of FIG. 13A due to wind pulsation (wind direction, wind speed), for example. When the distortion starts, the cross-sectional area on which the wind hits increases, so that it is more strongly affected by the wind. As a result, the strain further increases.
  • the reflecting mirror since the reflecting mirror has elasticity, the reaction force increases as the strain increases and is related to the pulsation of the wind. As shown in FIG. 13B, the direction opposite to FIG. Direction). Even on this side, the state returns to the state of FIG. 13A due to the increase in strain and the pulsation of the wind. By repeating this, the reflecting mirror vibrates. At this time, in the support portion 951 that couples the reflecting mirror 119 and the support leg 121, the direction of stress is reversed according to vibration, and fatigue progresses. Eventually, the reflector will be broken.
  • the present embodiment relates to a solar light collecting device provided with a lift generating member on the reflecting mirror or supporting portion of each heliostat in order to suppress the vibration of the reflecting mirror.
  • a solar light collecting device provided with a lift generating member on the reflecting mirror or supporting portion of each heliostat in order to suppress the vibration of the reflecting mirror.
  • FIG. 14 is a schematic view of the lift generating member of the reflecting mirror.
  • a streamline-shaped lift generating member 952 is provided on the outer periphery of the lower surface of the reflecting mirror 119.
  • the lift generating member 952 When the wind parallel to the plane mirror 119 is received, the lift generating member 952 generates a downward lift. Thereby, when the wind is generated in the “standby mode”, the plane mirror 119 receives the lift force downward by the lift force generation member 952 provided in the heliostat, so that the vibration shown in FIG. 13 can be suppressed. Note that vibration can be suppressed if lift force can be received in a specific direction, not limited to the downward direction.
  • the force received by the reflecting mirror 119 by the wind in the state of FIG. 13B is upward, whereas in the example of FIG. 14, it remains downward due to lift. Therefore, the amplitude of the vibration of the mirror can be suppressed. As a result, the stress at the support portion 951 is reduced, and the period until fatigue failure can be greatly prolonged.
  • T (Vw / V0) ⁇ ( ⁇ L / L0) ⁇ P.
  • T is the lift generated by the lift generating member 952
  • Vw is the wind speed
  • V0 is the average speed of the molecule (about 500 m at room temperature)
  • L0 is the width of the lift generating member 952
  • P is the atmospheric pressure.
  • ⁇ L is the difference between the length of the convex portion and the length of the concave portion of the lift generating member 952.
  • the shape (width, curvature, etc.) of the lift generating member 952 is designed according to the assumed wind force (wind speed) and the spring coefficient of the member.
  • FIG. 15 is a configuration diagram of lift generating members for a plurality of reflecting mirrors. It is an example of a lift generating member in the case of installing a plurality of reflecting mirrors on one gantry.
  • the lift generating member 952 is provided only in the outermost peripheral part when the plurality of reflecting mirrors 119 are regarded as one reflecting mirror. In the portion where the lift generating member 952 is not provided, some vibration is generated in the reflecting mirror 119, but this vibration can be reduced to an extent that does not cause a problem by reducing the gap between the reflecting mirrors 119.
  • FIG. 16 is another configuration diagram of lift generating members for a plurality of reflecting mirrors. It is another example of a lift generating member in the case of installing a plurality of reflecting mirrors on one gantry.
  • a lift generating member 952 is provided on the outer periphery of each of the plurality of reflecting mirrors 119. In the case where the gap between the reflecting mirrors 119 is increased, it is preferable to provide a lift-speaking member on the outer peripheral portion of all the reflecting mirrors.
  • FIG. 17 is a configuration diagram of a reflecting mirror having a curvature.
  • a curvature is given to the apex portion of the rectangular reflecting mirror 119, and the portion with the curvature is used as a lift generating member 952. Also in this case, the effect of the lift generating member 952 is great as in the example of FIG. Furthermore, the curvature portion avoids the generation of wind vortices and the vibration of the reflector is further reduced.
  • FIG. 18 is a configuration diagram of a reflecting mirror having a convex portion on the reflecting mirror surface. This is an example in which a convex portion is formed on the reflecting mirror side. In this case, there is a demerit that the area of the reflecting mirror is reduced, but on the other hand, there is an effect that the dust does not directly hit the surface of the reflecting mirror.
  • FIG. 19 is a configuration diagram of a reflecting mirror whose end is bent. It is an example of the lift generation
  • the lift generating member 952 can be configured by bending the end of the reflecting mirror 119. Since the reflector itself is simply bent, the production cost can be reduced.
  • this invention is not limited to said Example,
  • SYMBOLS 101 Light receiver, 102 ... Tower, 103 ... Heliostat, 104 ... One of heliostats, 105 ... Heliostat control device, 106 ... CPU part, 107 ... Input part, 108 ... Display part, 109 ... Recording medium 110 ... Screen, 111 ... Camera, 112 ... Direct pyranometer, 113 ... Cooling equipment, 114 ... Piping, 115 ... Control device, 117 ... Piping, 118 ... Steam turbine, 119 ... Reflective mirror, 120 ... Reflective mirror driver, DESCRIPTION OF SYMBOLS 121 ... Supporting leg, 301 ... Solar position at reference time, 302 ... Solar position, 304 ... Light quantity distribution, 305 ... Light quantity distribution, 901 ... Windproof heliostat, 902 ... Wind direction and wind speed sensor, 951 ... Supporting part, 952 ... Lifting force Generating member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

The purpose of the present invention is to ascertain solar light reflective properties of a heliostat caused by dirt, scratches, or distortion of a mirror over time. The present invention pertains to measuring solar reflective properties of the heliostat by exposing a measuring mechanism to light reflected from one of a plurality of heliostats. By virtue of the present invention, the solar reflective properties of each of the plurality of heliostats can be ascertained.

Description

太陽光集光装置およびその制御装置ならびに太陽光反射器の制御方法Sunlight concentrator, its control device, and solar reflector control method
 本発明は、ヘリオスタットによって太陽光を受光器に集光し、集光された反射光により生じるエネルギーを利用する太陽光集光装置に関する。 The present invention relates to a solar light collecting device that collects sunlight on a light receiver by a heliostat and uses energy generated by the reflected light.
 ヘリオスタットは、太陽光を反射する装置である。太陽光集光装置に設けられた多数のヘリオスタットは、太陽の軌道に合わせ、反射光を受光器に集光するように制御される。一例として、100から10000台程度のヘリオスタットが太陽光集光装置に設けられるが、これらのヘリオスタット全てを用いるのではなく、時々刻々変化する太陽の位置やプロセスの要求などに応じて、受光器の耐熱温度以下の適切な入熱量を得るために必要なヘリオスタットのみが用いられる。 A heliostat is a device that reflects sunlight. A large number of heliostats provided in the solar light collecting device are controlled so as to collect reflected light on a light receiver in accordance with the orbit of the sun. As an example, about 100 to 10,000 heliostats are provided in the solar concentrator. However, not all of these heliostats are used, but light is received depending on the position of the sun that changes from moment to moment, process requirements, etc. Only the heliostat necessary to obtain an appropriate heat input below the heat resistance temperature of the vessel is used.
 例えば、特開2013-96636号公報(特許文献1)では、気象情報に基づいて、複数のヘリオスタットのON/OFFの組み合わせである選択パターンを求め、得られた選択パターンに従って複数のヘリオスタットをON/OFF制御している。 For example, in Japanese Patent Laid-Open No. 2013-96636 (Patent Document 1), a selection pattern that is a combination of ON / OFF of a plurality of heliostats is obtained based on weather information, and a plurality of heliostats are determined according to the obtained selection pattern. ON / OFF control is performed.
特開2013-96636号公報JP 2013-96636 A
 本願発明者が、太陽光集光装置におけるヘリオスタットの継続的制御について鋭意検討した結果、次の知見を得るに至った。 The inventor of the present application diligently studied the continuous control of the heliostat in the solar light collecting device, and as a result, the following knowledge was obtained.
 特許文献1において、複数のヘリオスタットのON/OFF制御は、理想的な鏡を想定し、受光器に均一の反射光が照射されることを前提としている。しかし実際は、経時的な鏡の汚れ、傷、および歪みなどが生じうる。このため、ヘリオスタット上の鏡が常に理想的な状態とは限らない。つまり、現実においては、各ヘリオスタットの太陽光反射特性、ひいては受光器上の集光分布はそれぞれ異なる。よって、実際には、受光器に照射される反射光の総和の分布(以下、積算集光分布と呼ぶ)に、位置的な集光ムラが発生する可能性があり、ひいては受光器上の熱ムラを引き起こす可能性がある。 In Patent Document 1, ON / OFF control of a plurality of heliostats is based on the assumption that uniform reflected light is irradiated onto a light receiver assuming an ideal mirror. In practice, however, mirror stains, scratches, and distortions over time can occur. For this reason, the mirror on the heliostat is not always ideal. In other words, in reality, the sunlight reflection characteristics of each heliostat, and hence the light collection distribution on the light receiver, are different. Therefore, in actuality, there is a possibility that positional non-uniformity of light collection may occur in the distribution of the total reflected light (hereinafter referred to as an integrated light collection distribution) irradiated to the light receiver, and as a result, the heat on the light receiver. May cause unevenness.
 本発明の目的は、経時的な鏡の汚れ、傷または歪みなどによるヘリオスタットの太陽光反射特性を把握することに関する。
An object of the present invention relates to grasping the sunlight reflection characteristics of a heliostat due to dirt, scratches or distortion of a mirror over time.
 本発明は、複数のヘリオスタットのうちの一部からの反射光を測定機構に照射し、当該ヘリオスタットの太陽光反射特性を測定することに関する。
The present invention relates to irradiating a measurement mechanism with reflected light from a part of a plurality of heliostats and measuring sunlight reflection characteristics of the heliostat.
 本発明によれば、複数のヘリオスタットの太陽光反射特性を各々把握することができる。
According to the present invention, it is possible to grasp the sunlight reflection characteristics of a plurality of heliostats.
実施例1にかかる、太陽光集光装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the sunlight condensing device concerning Example 1. FIG. 実施例2にかかる、各ヘリオスタットの太陽光集光分布の測定フローチャート図。The measurement flowchart figure of the sunlight condensing distribution of each heliostat concerning Example 2. FIG. 実施例2にかかる、太陽の位置による、スクリーン上の光量分布の変化を説明する図。The figure explaining the change of the light quantity distribution on a screen by the position of the sun concerning Example 2. FIG. 実施例3にかかる、受熱器に反射光を照射するヘリオスタットの選択および集光座標補正値の決定フローチャート図。The flowchart of selection of the heliostat which irradiates reflected light to a heat receiver, and the determination of a condensing coordinate correction value concerning Example 3. FIG. 実施例3にかかる、積算集光分布の取得方法図。FIG. 10 is a diagram illustrating a method for obtaining an integrated light distribution according to the third embodiment. 実施例4にかかる、ヘリオスタットの反射鏡の保守判定方法を示すフローチャート図。The flowchart figure which shows the maintenance determination method of the reflective mirror of a heliostat concerning Example 4. FIG. 実施例4にかかる、各ヘリオスタットの太陽光反射特性の変化を示す説明図。Explanatory drawing which shows the change of the sunlight reflective characteristic of each heliostat concerning Example 4. FIG. 実施例5にかかる、反射鏡の清掃時期を予測する方法を示す説明図。Explanatory drawing which shows the method concerning the Example 5 which estimates the cleaning time of a reflective mirror. 実施例5にかかる、反射鏡の交換時期を予測する方法を示す説明図。Explanatory drawing which shows the method concerning the Example 5 which estimates the replacement | exchange time of a reflecting mirror. 実施例5にかかる、反射鏡の面の再調整時期を予測する方法を示す説明図。Explanatory drawing which shows the method concerning Example 5 which estimates the readjustment time of the surface of a reflective mirror. 実施例6にかかる、防風用ヘリオスタットを備えた太陽光集光装置の概略図。The schematic of the sunlight condensing device provided with the heliostat for wind protection concerning Example 6. FIG. 実施例7にかかる、反射鏡の支持構造図。The support structure figure of the reflective mirror concerning Example 7. FIG. 実施例7にかかる、風による反射鏡の振動概略図。FIG. 10 is a schematic view of vibration of the reflecting mirror caused by wind according to the seventh embodiment. 実施例7にかかる、反射鏡の揚力発生部材の概略図。The schematic of the lift generating member of a reflective mirror concerning Example 7. FIG. 実施例7にかかる、複数の反射鏡についての揚力発生部材の構成図。The block diagram of the lift generation member about the some reflective mirror concerning Example 7. FIG. 実施例7にかかる、複数の反射鏡についての揚力発生部材の別の構成図。FIG. 10 is another configuration diagram of a lift generating member for a plurality of reflecting mirrors according to Example 7; 実施例7にかかる、曲率を有する反射鏡の構成図。The block diagram of the reflective mirror which has a curvature concerning Example 7. FIG. 実施例7にかかる、反射鏡表面に凸部を有する反射鏡の構成図。The block diagram of the reflective mirror which has a convex part on the reflective mirror surface concerning Example 7. FIG. 実施例7にかかる、端部を折り曲げた反射鏡の構成図。The block diagram of the reflective mirror concerning Example 7 which bent the edge part.
 実施例では、照射された光を受け取る受光器と、太陽光を反射し、その反射光を受光器に照射する複数のヘリオスタットと、複数のヘリオスタットを制御することにより、ヘリオスタットからの反射光を制御する制御装置と、複数のヘリオスタットのうちの一部からの反射光が照射され、当該反射光に基づき当該ヘリオスタットの太陽光反射特性を測定する測定機構と、を備える太陽光集光装置を開示する。 In an embodiment, a light receiver that receives the irradiated light, a plurality of heliostats that reflect sunlight and irradiate the light receiver with the reflected light, and a plurality of heliostats are controlled to reflect from the heliostat. A sunlight collecting apparatus comprising: a control device that controls light; and a measurement mechanism that is irradiated with reflected light from a part of the plurality of heliostats and that measures the sunlight reflection characteristics of the heliostat based on the reflected light. An optical device is disclosed.
 また、実施例では、制御装置によるヘリオスタットからの反射光の制御は、へリオスタットの太陽光反射特性、または太陽光反射特性から得られる受光器の熱量分布に基づき行われることを開示する。 Also, in the embodiment, it is disclosed that the control of the reflected light from the heliostat by the control device is performed based on the sunlight reflection characteristics of the heliostat or the heat distribution of the light receiver obtained from the sunlight reflection characteristics.
 また、実施例では、制御装置が、受光器上の熱量分布が受光器の耐熱温度以下となるように、ヘリオスタットを制御することを開示する。 Also, in the embodiment, it is disclosed that the control device controls the heliostat so that the heat distribution on the light receiver is equal to or lower than the heat resistant temperature of the light receiver.
 また、実施例では、測定機構が、へリオスタットからの反射光が照射される反射光受光器と、当該反射光受光器の光量分布を取得する光量取得器を含むことを開示する。 Also, in the embodiment, it is disclosed that the measurement mechanism includes a reflected light receiver that receives the reflected light from the heliostat and a light amount acquisition unit that acquires a light amount distribution of the reflected light receiver.
 また、実施例では、測定機構によるヘリオスタットの太陽光反射特性の測定が、当該ヘリオスタットの状態が所定の条件を満たすと行われることを開示する。 Also, in the embodiment, it is disclosed that the measurement of the sunlight reflection characteristic of the heliostat by the measurement mechanism is performed when the state of the heliostat satisfies a predetermined condition.
 また、実施例では、測定機構によるヘリオスタットの太陽光反射特性の測定が、太陽光集光装置の稼動時間または受光器の受光量もしくは発熱量の積算値の少なくともいずれかが、所定の条件を満たすと行われることを開示する。 Further, in the embodiment, the measurement of the solar reflection characteristics of the heliostat by the measurement mechanism is based on the fact that at least one of the operating time of the solar concentrator and the integrated value of the received light amount or the calorific value of the light receiver satisfies a predetermined condition. Disclose what happens when you meet.
 また、実施例では、太陽光集光装置が、ヘリオスタットの太陽光反射特性の測定結果を記憶する記憶部を備え、測定機構により、一定期間毎に各ヘリオスタットの太陽光反射特性を測定し、制御部が、記憶部に記憶された複数期間分の太陽光反射特性を比較解析することにより、各ヘリオスタットの保守時期を判断することを開示する。 Further, in the embodiment, the solar light collecting device includes a storage unit that stores the measurement result of the solar reflection characteristic of the heliostat, and the solar reflection characteristic of each heliostat is measured at a certain period by the measurement mechanism. It is disclosed that the control unit determines the maintenance time of each heliostat by comparatively analyzing the sunlight reflection characteristics for a plurality of periods stored in the storage unit.
 また、実施例では、制御部が、複数期間分の太陽光反射特性を比較することにより、各ヘリオスタットの汚れ、傷、または歪みの少なくともいずれかを解析して、各ヘリオスタットの保守時期を判断することを開示する。 In the embodiment, the control unit analyzes the solar reflection characteristics for a plurality of periods, analyzes at least one of dirt, scratches, and distortion of each heliostat, and determines the maintenance time of each heliostat. Disclose judgment.
 また、実施例では、複数のヘリオスタットからの反射光を受光器に集光する太陽光集光装置における、ヘリオスタットを制御する太陽光集光制御装置であって、ヘリオスタットから照射された反射光に基づき、当該ヘリオスタットの太陽光反射特性を測定する測定機構と、測定機構により測定された太陽光反射特性を記憶する記憶部を備えるものを開示する。 Further, in the embodiment, the solar light collecting control device for controlling the heliostat in the solar light collecting device for collecting the reflected light from the plurality of heliostats on the light receiver, the reflection irradiated from the heliostat Disclosed is a measurement mechanism that measures the sunlight reflection characteristics of the heliostat based on light, and a storage unit that stores the sunlight reflection characteristics measured by the measurement mechanism.
 また、実施例では、ヘリオスタットの制御が、記憶部に記憶された当該へリオスタットの太陽光反射特性から、受光器の熱量分布を算出し、受光器の熱量分布が受光器の耐熱温度以下となるように行われることを開示する。 In the embodiment, the control of the heliostat calculates the heat amount distribution of the light receiver from the solar reflection characteristics of the heliostat stored in the storage unit, and the heat amount distribution of the light receiver is equal to or lower than the heat resistant temperature of the light receiver. It is disclosed that this is done.
 また、実施例では、測定部が、へリオスタットからの反射光が照射される反射光受光器と、当該反射光受光部の光量分布を取得する光量取得器を含むことを開示する。 In the embodiment, it is disclosed that the measurement unit includes a reflected light receiver that receives the reflected light from the heliostat and a light amount acquisition unit that acquires a light amount distribution of the reflected light receiver.
 また、実施例では、測定機構により、一定期間毎に各ヘリオスタットの太陽光反射特性を測定し、記憶部に記憶された複数期間分の太陽光反射特性を比較解析することにより、各ヘリオスタットの保守時期を判断することを開示する。 In the embodiment, each heliostat is measured by measuring the solar light reflection characteristics of each heliostat at regular intervals by the measurement mechanism, and comparing and analyzing the solar light reflection characteristics for a plurality of periods stored in the storage unit. Disclosure of judging the maintenance time of
 また、実施例では、複数の太陽光反射器のうちの一部からの反射光を、太陽光反射器の太陽光反射特性を測定する測定部に照射するように制御し、当該太陽光反射特性を測定する複数の太陽光反射器の制御方法を開示する。 Moreover, in an Example, it controls so that the reflected light from some solar reflectors may be irradiated to the measurement part which measures the solar reflective property of a solar reflector, and the said solar reflective property Disclosed is a method for controlling a plurality of solar reflectors for measuring the light intensity.
 また、実施例では、受光器の熱量分布が受光器の耐熱温度以下となるように、太陽光反射器を制御することを開示する。 Also, in the embodiment, it is disclosed that the solar reflector is controlled so that the heat distribution of the light receiver is equal to or lower than the heat resistant temperature of the light receiver.
 また、実施例では、一定期間ごとに太陽光反射器の太陽光反射特性を測定し、当該太陽光反射特性の測定結果の変化から、太陽光反射器の保守時期を判断することを開示する。 Also, in the embodiment, it is disclosed that the solar reflection characteristics of the solar reflector are measured at regular intervals, and the maintenance time of the solar reflector is determined from the change in the measurement result of the solar reflection characteristics.
 また、実施例では、照射された光を受け取る受光器と、太陽光を反射し、その反射光を受光器に照射する複数のヘリオスタットと、複数のヘリオスタットを制御することにより、ヘリオスタットからの反射光を制御する制御装置と、風速を検知できる風速センサーとを備え、風速が一定条件となった場合には、複数のヘリオスタットの少なくとも一部を防風に用いる太陽光集光装置を開示する。 Further, in the embodiment, a light receiving device that receives the irradiated light, a plurality of heliostats that reflect sunlight and irradiates the reflected light to the light receiving device, and a plurality of heliostats by controlling the plurality of heliostats. Disclosed is a solar condensing device that includes a control device that controls the reflected light and a wind speed sensor that can detect the wind speed, and uses at least a part of a plurality of heliostats for wind protection when the wind speed is constant. To do.
 また、実施例では、防風に用いられるヘリオスタットは、その反射鏡が風向に対して所定角度となるように制御されることを開示する。 Also, in the embodiment, it is disclosed that the heliostat used for wind protection is controlled so that the reflecting mirror is at a predetermined angle with respect to the wind direction.
 また、実施例では、照射された光を受け取る受光器と、太陽光を反射し、その反射光を受光器に照射する複数のヘリオスタットと、複数のヘリオスタットを制御することにより、ヘリオスタットからの反射光を制御する制御装置と、風速を検知できる風速センサーとを備え、風速が一定条件となった場合には、複数のヘリオスタットの少なくとも一部を、風によるヘリオスタットの破損を避けるための待機モードとする太陽光集光装置を開示する。 Further, in the embodiment, a light receiving device that receives the irradiated light, a plurality of heliostats that reflect sunlight and irradiates the reflected light to the light receiving device, and a plurality of heliostats by controlling the plurality of heliostats. A control device that controls the reflected light and a wind speed sensor that can detect the wind speed. When the wind speed is constant, at least a part of the multiple heliostats is used to avoid damage to the heliostat due to wind. The sunlight condensing device which is set as the standby mode is disclosed.
 また、実施例では、待機モードのヘリオスタットは、その反射鏡が略水平位置となるように制御されること開示する。 Also, in the embodiment, it is disclosed that the heliostat in the standby mode is controlled so that the reflecting mirror is in a substantially horizontal position.
 また、実施例では、太陽光を反射する反射鏡と、当該反射鏡を支持する支持脚と、反射鏡の振動を抑制する揚力発生部材とを備えたヘリオスタットを開示する。 Also, in the embodiments, a heliostat including a reflecting mirror that reflects sunlight, a support leg that supports the reflecting mirror, and a lift generating member that suppresses vibration of the reflecting mirror is disclosed.
 また、実施例では、揚力発生部材は、反射鏡の外周部の少なくとも一部に設けられていることを開示する。 In the embodiment, it is disclosed that the lift generating member is provided on at least a part of the outer peripheral portion of the reflecting mirror.
 以下、上記およびその他の本発明の新規な特徴と効果について図面を参照して説明する。なお、図面は発明の理解のために用いるものであり、権利範囲を限縮するものではない。
The above and other novel features and effects of the present invention will be described below with reference to the drawings. The drawings are used for understanding the invention and do not limit the scope of rights.
 図1は、本実施例にかかる太陽光集光装置の概略構成図である。なお、本実施例では、集光された反射光によるエネルギーを用いて太陽熱発電を行っているが、このエネルギーを蒸気発生に用いてもよいし、化学プラントにおける加熱源などとして用いてもよい。 FIG. 1 is a schematic configuration diagram of a solar light collecting apparatus according to the present embodiment. In this embodiment, solar thermal power generation is performed using the energy of the collected reflected light. However, this energy may be used for steam generation or as a heating source in a chemical plant.
 本実施例の太陽光集光装置では、反射光が照射されるタワー部と、太陽光をタワー部に反射させる集光部と、反射光のエネルギーにより発電する発電部を有する。 The solar light collecting apparatus according to the present embodiment includes a tower portion irradiated with reflected light, a light collecting portion that reflects sunlight to the tower portion, and a power generation portion that generates electric power using the energy of the reflected light.
 タワー部は、タワー102を基部としており、その上部に、太陽光の反射光が照射される受光器101が固定されている。また、タワー102の中部には、各ヘリオスタットの太陽光反射特性を測定するためのスクリーン110が設けられている。そして、スクリーン110に相対した位置に、スクリーン110上の光量分布情報を取得するカメラ111が配置されている。 The tower section has the tower 102 as a base, and a light receiver 101 to which the reflected sunlight is irradiated is fixed on the tower section. In addition, a screen 110 for measuring sunlight reflection characteristics of each heliostat is provided in the middle of the tower 102. A camera 111 that acquires light quantity distribution information on the screen 110 is disposed at a position opposite to the screen 110.
 集光部は、太陽光を反射して受光器に集める複数のヘリオスタット103(一例として、100台から10000台)と、太陽から直接照射される光量(以下、直達日射量と呼ぶ)を検知する直達日射計112と、ヘリオスタットを個別に制御するヘリオスタット制御装置105を備えている。 The light collecting unit detects a plurality of heliostats 103 (for example, 100 to 10000) that reflect sunlight and collects the light in a light receiver, and a light amount directly irradiated from the sun (hereinafter referred to as direct solar radiation amount). And a heliostat control device 105 for individually controlling the heliostat.
 ヘリオスタット103は、太陽光を反射する反射鏡119と、反射鏡119を支持する支持脚121と、反射鏡119を目的の方向に向ける反射鏡駆動機120と、を有している。 The heliostat 103 includes a reflecting mirror 119 that reflects sunlight, a support leg 121 that supports the reflecting mirror 119, and a reflecting mirror driver 120 that directs the reflecting mirror 119 in a target direction.
 また、ヘリオスタット制御装置105は、プログラムにて演算するCPU部106と、オペレータからの指示が入力される入力部107と、各種情報を表示する表示部108と、データ保存を行う記録媒体109を備えている。ヘリオスタット制御装置105は、上位装置にあたる発電部の制御装置115から、受光器101の受光量の指令値や、太陽熱発電プラントの発電量の指令値を受信する。また、直達日射計112から直射日射量の信号などを受信する。そして、これらの信号に基づき反射鏡駆動機120を制御して、ヘリオスタット103からの反射光の方向を制御する。 In addition, the heliostat control device 105 includes a CPU unit 106 that is operated by a program, an input unit 107 that receives instructions from an operator, a display unit 108 that displays various types of information, and a recording medium 109 that stores data. I have. The heliostat control device 105 receives a command value for the received light amount of the light receiver 101 and a command value for the power generation amount of the solar thermal power plant from the control device 115 of the power generation unit corresponding to the host device. Further, a direct solar radiation amount signal is received from the direct solar radiation meter 112. Then, based on these signals, the reflecting mirror driver 120 is controlled to control the direction of reflected light from the heliostat 103.
 発電部は、発電部内に水または蒸気を供給して循環させる配管114および配管117と、受光器101の熱により気化された蒸気によって駆動する蒸気タービン118と、蒸気タービン118に接続され発電を行う発電機(図示せず)と、蒸気タービン118から排出された蒸気を冷却して水に戻す冷却設備113を有する。また、発電部は、発電部の制御を行う発電部の制御装置115を備えている。 The power generation unit is connected to the steam turbine 118 for generating power by supplying water or steam into the power generation unit and the piping 117 for circulation, the steam turbine 118 driven by steam vaporized by the heat of the light receiver 101, and generating power. A generator (not shown) and a cooling facility 113 that cools the steam discharged from the steam turbine 118 and returns it to water. In addition, the power generation unit includes a power generation unit control device 115 that controls the power generation unit.
 発電部による発電中は、常に全てのヘリオスタットを使用するのではなく、適切な入熱量を得るために、必要なヘリオスタットを選択して使用する。なお、ここでいう「ヘリオスタットの使用」とは、ヘリオスタット制御装置105により、受光器101に反射光が照射されるように、ヘリオスタットからの反射光の方向を制御することである。 During power generation by the power generation unit, not all heliostats are always used, but necessary heliostats are selected and used in order to obtain an appropriate amount of heat input. Here, “use of a heliostat” means that the direction of the reflected light from the heliostat is controlled by the heliostat control device 105 so that the reflected light is irradiated to the light receiver 101.
 選択されなかったヘリオスタットのうちの一台104は、ヘリオスタット制御装置105により、受光器101ではなくスクリーン110に反射光を照射するように制御される。この制御により、スクリーン110上には、ヘリオスタット一台のみからの反射光が照射される。このため、スクリーン110上の光量の分布から、ヘリオスタット一台のみの太陽光反射特性が計算できる。 One of the heliostats that have not been selected is controlled by the heliostat control device 105 so as to irradiate the screen 110 with reflected light instead of the light receiver 101. By this control, reflected light from only one heliostat is irradiated on the screen 110. For this reason, the sunlight reflection characteristic of only one heliostat can be calculated from the distribution of the amount of light on the screen 110.
 本実施例では、スクリーン110に相対したカメラ111により、選択されなかったヘリオスタットのうちの一台104がスクリーン110上に生じさせる光量分布を、画像で取得する。光量分布の情報は、CPU106に送信される。CPU106は、光量分布の情報から、ヘリオスタットのうちの一台104の太陽光反射特性を計算し、記録媒体109に記録する。 In this embodiment, the light quantity distribution generated on the screen 110 by one of the heliostats not selected by the camera 111 facing the screen 110 is acquired as an image. Information on the light amount distribution is transmitted to the CPU 106. The CPU 106 calculates the sunlight reflection characteristic of one of the heliostats 104 from the light quantity distribution information and records it on the recording medium 109.
 なお、スクリーン110上の光量分布を取得するカメラ111としては、CCDセンサーやCMOSセンサーを用いたカメラなど直接光量分布を取得するものとしてもよいし、サーモカメラなど間接的に光量分布を取得するものとしてもよい。 The camera 111 that acquires the light amount distribution on the screen 110 may be a device that acquires the light amount distribution directly such as a camera using a CCD sensor or a CMOS sensor, or a camera that acquires the light amount distribution indirectly such as a thermo camera. It is good.
 また、本実施例では、カメラ111により光量分布を取得しているが、スクリーン上の光量分布情報を取得できるのであれば、スクリーン内にアレイ状に並べた、光センサーや熱センサーなどを用いてもよい。 In this embodiment, the light amount distribution is acquired by the camera 111. However, if the light amount distribution information on the screen can be acquired, an optical sensor or a thermal sensor arranged in an array on the screen is used. Also good.
 更に、本実施例においては、ヘリオスタット一台ごとに太陽光反射特性を測定しているが、ヘリオスタットのうちの一部ごと(例えば二台や三台ごと)に測定してもよい。ヘリオスタットのうちの一部ごとに測定することにより、ヘリオスタット全台の測定に要する時間を短縮できる。 Furthermore, in this embodiment, the solar reflection characteristics are measured for each heliostat, but may be measured for each part of the heliostat (for example, every two or three). By measuring every part of the heliostat, the time required to measure all heliostats can be shortened.
 そして、ヘリオスタットのうちの一台104の太陽光反射特性の取得が終了した後に、ヘリオスタット制御部105により、別のヘリオスタットの反射光をスクリーン110に照射するように反射光の向きを制御し、このヘリオスタットについての太陽光反射特性を測定する。この制御を繰り返し行うことにより、備えられたヘリオスタット全台について、太陽光反射特性を測定できる。 Then, after obtaining the sunlight reflection characteristics of one of the heliostats 104, the direction of the reflected light is controlled by the heliostat control unit 105 so as to irradiate the screen 110 with the reflected light of another heliostat. The solar reflection characteristics of this heliostat are measured. By repeating this control, the sunlight reflection characteristics can be measured for all the heliostats provided.
 なお、本実施例では、各ヘリオスタットの太陽光反射特性を求めるものとしているが、受光器101上でどのような集光分布をとるかを求めるものとしてもよい。 In the present embodiment, the sunlight reflection characteristic of each heliostat is obtained, but what kind of light collection distribution is taken on the light receiver 101 may be obtained.
 以上より、本実施例によれば、経時的な鏡の汚れ、傷または歪みなどにより各々異なる、各ヘリオスタットの太陽光反射特性を各々把握することができる。
As described above, according to the present embodiment, it is possible to grasp the sunlight reflection characteristics of the respective heliostats which are different depending on the dirt, scratches or distortion of the mirror over time.
 本実施例は、実施例1の太陽光集光装置と同等の構成を有するが、各ヘリオスタットの太陽光反射特性を取得する際に、より正確な太陽光反射特性を得ることができるように、スクリーン110の汚れなどを補正して測定する点で異なっている。以下、実施例1との相違点を中心に説明する。 The present embodiment has the same configuration as the solar light collecting apparatus of the first embodiment, but when acquiring the solar light reflection characteristics of each heliostat, more accurate solar light reflection characteristics can be obtained. The difference is that the measurement is made after correcting the dirt on the screen 110. Hereinafter, the difference from the first embodiment will be mainly described.
 図2は、各ヘリオスタットの太陽光集光分布の測定フローチャート図である。本実施例における、各ヘリオスタットの太陽光反射特性を事前に習得し保存する手法を、図2のフローチャートを用いて説明する。 FIG. 2 is a measurement flowchart of the sunlight concentration distribution of each heliostat. A method for acquiring and storing the solar reflection characteristics of each heliostat in advance in this embodiment will be described with reference to the flowchart of FIG.
 図2のフローチャートに示された手法は、ヘリオスタット制御装置105により、ある期間ごと(例えば約一週間ごと)に実行される。ある期間ごとに実行されることにより、直近のヘリオスタットの太陽光反射特性を得て、これに基づいたヘリオスタットの制御が可能となる。 2 is executed every certain period (for example, about every week) by the heliostat control device 105. By executing for every certain period, the solar reflection characteristic of the latest heliostat is obtained, and the heliostat can be controlled based on this.
 ただし、定期的な実行には限られず、ランダムな期間ごとの実行でもよいし、受光器の受けた光量、受光器で発生した熱量、または発電機の発電量などの値がある閾値を超えた場合の実行などでもよい。 However, it is not limited to periodic execution, it may be executed at random intervals, or the value of the light received by the receiver, the amount of heat generated by the receiver, or the amount of power generated by the generator exceeds a certain threshold. Execution of the case is also acceptable.
 ヘリオスタット制御装置105は、まだ太陽光反射特性の測定が終了していないヘリオスタットの中から、太陽光反射特性を今回測定するヘリオスタット104を選定し、ヘリオスタット104からの反射光の方向を、スクリーン110に照射するよう制御する(ステップs200)。 The heliostat control device 105 selects the heliostat 104 for measuring the solar reflection characteristic this time from the heliostats for which the measurement of the solar reflection characteristic has not been completed, and sets the direction of the reflected light from the heliostat 104. The screen 110 is controlled to be irradiated (step s200).
 次に、カメラ111により、スクリーン110上の光量分布を測定する(ステップs201)。 Next, the light quantity distribution on the screen 110 is measured by the camera 111 (step s201).
 ここで、スクリーン110上の光量分布は、スクリーン110上の汚れ、測定時の日照強度、および太陽の位置によって異なってくる。そこで、CPU106は、これらを補正(ステップs202、ステップs203、ステップs204)した後に太陽光反射特性を計算する(ステップs205)。この補正により、正確な太陽光反射特性の値を得ることができる。得られた太陽光反射特性は、記録媒体109にデータベースとして保存される(ステップs206)。 Here, the light intensity distribution on the screen 110 varies depending on the dirt on the screen 110, the sunshine intensity at the time of measurement, and the position of the sun. Therefore, after correcting these (step s202, step s203, step s204), the CPU 106 calculates the sunlight reflection characteristics (step s205). By this correction, an accurate value of sunlight reflection characteristics can be obtained. The obtained sunlight reflection characteristics are stored in the recording medium 109 as a database (step s206).
 以下、ステップs201以降の各ステップについて詳細説明する。照射光測定ステップs201では、ヘリオスタット制御部105により、ヘリオスタットのうちの一台104のみからの反射光をスクリーン110に照射するように反射光の向きを制御し、カメラ111にてスクリーン110上の光量分布を測定する。カメラ111は輝度の比較が可能なように、シャッタ速度や信号ゲインの情報なども同時に収集する。 Hereinafter, each step after step s201 will be described in detail. In the irradiation light measurement step s201, the heliostat control unit 105 controls the direction of the reflected light so as to irradiate the screen 110 with the reflected light from only one of the heliostats 104. Measure the light distribution. The camera 111 simultaneously collects information on the shutter speed and signal gain so that the brightness can be compared.
 スクリーンの汚れ補正ステップs202では、ヘリオスタット制御部105により、事前に測定したヘリオスタットから反射光が全く照射されていない状態のスクリーン110上の集光分布と、照射光測定ステップs201で取得した集光分布とを比較する。ヘリオスタット制御部105は、この比較結果から、スクリーンの汚れや、カメラ111の輝度分布誤差成分などの情報を計算する。 In the screen dirt correction step s202, the light collection distribution on the screen 110 in a state where no reflected light is irradiated from the heliostat measured in advance by the heliostat control unit 105 and the collection acquired in the irradiation light measurement step s201. Compare the light distribution. The heliostat control unit 105 calculates information such as screen stains and luminance distribution error components of the camera 111 from the comparison result.
 そして、ヘリオスタット制御部105は、スクリーンの汚れや、カメラ111の輝度分布誤差成分などのバックグラウンド情報を除去し、真の光量分布情報を抽出できるように、カメラ111から得た光量分布情報を補正する。 Then, the heliostat control unit 105 removes the background information such as the screen dirt and the luminance distribution error component of the camera 111 and extracts the light amount distribution information obtained from the camera 111 so that the true light amount distribution information can be extracted. to correct.
 測定時の日照強度補正ステップs203では、ヘリオスタット制御部105により、測定時の直達日射計112の情報を用いて、天候や太陽高度などの外部要因による光量分布情報の変化を排除する。 In the sunshine intensity correction step s203 at the time of measurement, the heliostat control unit 105 uses the information of the direct solar radiation meter 112 at the time of measurement to eliminate changes in the light amount distribution information due to external factors such as weather and solar altitude.
 すなわち、例えば、天候が晴天であればヘリオスタットからの反射光は強くなる一方、天候が曇天であれば反射光は弱くなり、結果として、スクリーン110上の光量分布は、天候や太陽高度などにより左右されてしまう。そこで、ヘリオスタット制御部105は、直達日射計の測定値から、現在の直達日射量を計算し、この直達日射量をもとに、カメラ111から得た光量分布情報を補正する。 That is, for example, when the weather is fine, the reflected light from the heliostat is strong, while when the weather is cloudy, the reflected light is weak. As a result, the light amount distribution on the screen 110 depends on the weather, solar altitude, etc. It will be influenced. Therefore, the heliostat control unit 105 calculates the current direct solar radiation amount from the measurement value of the direct solar radiation meter, and corrects the light amount distribution information obtained from the camera 111 based on the direct solar radiation amount.
 太陽位置による画像変形補正ステップs204では、ヘリオスタット制御部105により、太陽の位置によるスクリーン110上の光量分布の変化を補正する。以下、本ステップを、図3を用いて詳細説明する。 In the image deformation correction step s204 based on the sun position, the heliostat control unit 105 corrects the change in the light amount distribution on the screen 110 due to the sun position. Hereinafter, this step will be described in detail with reference to FIG.
 図3は、太陽位置による、スクリーン110上の光量分布の変化を説明する図である。 FIG. 3 is a diagram for explaining a change in the light amount distribution on the screen 110 according to the sun position.
 太陽の位置は、例えば基準時刻の太陽位置301から、測定時の時刻の太陽位置302のように、時刻経過とともに変動する。このため、ヘリオスタットのうちの一台104からの反射光をスクリーン110に照射するためには、ヘリオスタット制御部105により、ヘリオスタットのうちの一台104からの反射光の向きを、時刻経過に併せて制御しなければならない。 The position of the sun varies with the passage of time, for example, from the sun position 301 at the reference time to the sun position 302 at the time of measurement. For this reason, in order to irradiate the screen 110 with the reflected light from one of the heliostats 104, the heliostat control unit 105 changes the direction of the reflected light from the one of the heliostats 104 over time. Must be controlled in conjunction with
 しかし、ヘリオスタットの向きが変わることにより、スクリーン110上の光量分布が変化してしまう。例えば、基準時刻の太陽位置301からの太陽光をスクリーン110に照射した場合の光量分布304と、測定時の時刻の太陽位置302からの太陽光をスクリーン110に照射した場合の光量分布305との間では、光量分布(照射形状)の回転、横方向の倍率変化、および縦方向の倍率変化などが生じる。このため、スクリーン110上の光量分布と、ヘリオスタットのうちの一台104の太陽光反射特性とは、単純には一致しない。 However, when the direction of the heliostat changes, the light amount distribution on the screen 110 changes. For example, a light amount distribution 304 when the screen 110 is irradiated with sunlight from the sun position 301 at the reference time and a light amount distribution 305 when the screen 110 is irradiated with sunlight from the sun position 302 at the time of measurement. In the meantime, rotation of the light amount distribution (irradiation shape), lateral magnification change, vertical magnification change, and the like occur. For this reason, the light quantity distribution on the screen 110 and the sunlight reflection characteristics of one of the heliostats 104 do not simply match.
 そこで、本ステップs204では、ヘリオスタット制御部105により、カメラ111により得られたスクリーン110上の光量分布を、ヘリオスタットの向きに基づき補正する。 Therefore, in step s204, the light quantity distribution on the screen 110 obtained by the camera 111 is corrected by the heliostat control unit 105 based on the direction of the heliostat.
 すなわち、ヘリオスタット制御部105は、前述した光量分布の回転、横方向の倍率変化、および縦方向の倍率変化を打ち消すように、光量分布情報の補正を行う。 That is, the heliostat control unit 105 corrects the light amount distribution information so as to cancel the rotation of the light amount distribution, the lateral magnification change, and the vertical magnification change described above.
 太陽光反射特性計算ステップs205では、ヘリオスタット制御部105は、これまでのステップにより補正された光量分布の情報から、ヘリオスタットのうちの一台104の太陽光反射特性を計算する。 In the sunlight reflection characteristic calculation step s205, the heliostat control unit 105 calculates the sunlight reflection characteristic of one of the heliostats 104 from the information on the light amount distribution corrected in the steps so far.
 記録媒体保存ステップs206では、ヘリオスタット制御部105は、ステップs205で得たヘリオスタットの太陽光反射特性を、ハードディスクなどの記録媒体109上に保存し、データベースを構築する。保存するデータには、ヘリオスタット番号、測定日時、および保守情報などの装置情報が含まれている。 In recording medium storage step s206, the heliostat control unit 105 stores the sunlight reflection characteristics of the heliostat obtained in step s205 on the recording medium 109 such as a hard disk, and constructs a database. The stored data includes device information such as a heliostat number, measurement date and time, and maintenance information.
 最後に、ステップs207では、ヘリオスタット制御部105により、全てのヘリオスタットについての太陽光反射特性を測定し、記録したかどうかを判定する。全てのヘリオスタットについて記憶していれば、測定を終了し(ステップs208)、全てのヘリオスタットについて記憶していなければ、ステップs200から再開する。 Finally, in step s207, the heliostat control unit 105 measures the sunlight reflection characteristics of all the heliostats and determines whether or not they are recorded. If all the heliostats are stored, the measurement is terminated (step s208). If all the heliostats are not stored, the process is restarted from step s200.
 なお、本実施例では、カメラ111により得た光量分布の情報を補正したのちに太陽光反射特性などを計算しているが、カメラ111により得たそのままの光量分布から太陽光反射特性を計算したのちに、太陽光反射特性を補正してもよい。また、各補正の順番は、図2に記載の通りに限らず、任意の順番で構わない。 In the present embodiment, the sunlight reflection characteristics and the like are calculated after correcting the information of the light quantity distribution obtained by the camera 111, but the sunlight reflection characteristics are calculated from the raw light quantity distribution obtained by the camera 111. Later, the sunlight reflection characteristics may be corrected. Further, the order of each correction is not limited to that shown in FIG. 2 and may be any order.
 本実施例によれば、各ヘリオスタットについて、スクリーンの汚れ、測定時の日照強度、および太陽位置による画像変形などの外部要因による影響を排除した、正確な太陽光反射特性を測定できる。
According to the present embodiment, accurate solar reflection characteristics can be measured for each heliostat without the influence of external factors such as screen contamination, sunshine intensity during measurement, and image deformation due to the sun position.
 本実施例は、実施例1または2で得た各ヘリオスタットの太陽光反射特性に基づいた、ヘリオスタットからの反射光の方向制御に関する。以下、実施例1および2との相違点を中心に説明する。 This example relates to the direction control of the reflected light from the heliostat based on the sunlight reflection characteristics of each heliostat obtained in Example 1 or 2. Hereinafter, the difference from the first and second embodiments will be mainly described.
 ヘリオスタット制御装置105は、上位装置にあたる発電部の制御装置115から、受光器101の受光量(または受光器101の発熱、もしくは発電部による発電量など)に関する指令を受け取る。指令を受け取ったヘリオスタット制御装置105は、各ヘリオスタットの太陽光反射特性を使用し、この指令を満たすように必要なヘリオスタットを選択して使用する制御を行う。 The heliostat control device 105 receives a command related to the amount of light received by the light receiver 101 (or the heat generated by the light receiver 101 or the amount of power generated by the power generation unit) from the control device 115 of the power generation unit corresponding to the host device. The heliostat control device 105 that has received the command uses the sunlight reflection characteristics of each heliostat and performs control to select and use the necessary heliostat to satisfy this command.
 この制御により、受光器上の二次元面分布的な熱ムラを予測できる。また、熱ムラを予測することにより、受光器の耐熱温度を超える点(以下、ホットスポットと呼ぶ)の発生を予測できる。そして、ホットスポットの発生を回避するようなヘリオスタットの制御を行うことにより、耐熱温度以下で受光器を使用できる。 This control makes it possible to predict thermal unevenness in a two-dimensional surface distribution on the light receiver. Further, by predicting the thermal unevenness, it is possible to predict the occurrence of a point exceeding the heat resistance temperature of the light receiver (hereinafter referred to as a hot spot). Then, by controlling the heliostat so as to avoid the occurrence of hot spots, the light receiver can be used at a temperature lower than the heat resistant temperature.
 図4は、受熱器に反射光を照射するヘリオスタットの選択および集光座標補正値の決定フローチャート図である。以下、図4を用いて、受熱器に反射光を照射するヘリオスタットの選択および集光座標補正値の決定フローチャートをステップごとに説明する。なお、各ヘリオスタットの太陽光反射特性は、本フローチャートの開始前に記録媒体109に記録されているものとする。 FIG. 4 is a flowchart of selection of a heliostat that irradiates reflected light to the heat receiver and determination of a condensing coordinate correction value. Hereinafter, the selection flowchart of the selection of the heliostat which irradiates reflected light to a heat receiver and the condensing coordinate correction value is demonstrated for every step using FIG. In addition, the sunlight reflection characteristic of each heliostat shall be recorded on the recording medium 109 before the start of this flowchart.
 ヘリオスタット制御装置105は、このフローチャートの開始時に、上位装置にあたる発電部の制御装置115から、受光器101の受光量に関する指令を得る(ステップs400)。この指令には、目標熱量のほか、集光運転時においては、受光器101の温度、発電部内部の蒸気圧力、および供給すべき熱量の情報などが含まれていてもよい。 The heliostat control device 105 obtains a command regarding the amount of light received by the light receiver 101 from the control device 115 of the power generation unit corresponding to the host device at the start of this flowchart (step s400). In addition to the target heat amount, this command may include information on the temperature of the light receiver 101, the steam pressure inside the power generation unit, and the amount of heat to be supplied during the light collection operation.
 次に、ヘリオスタット制御装置105は、ステップs400で得た指令を満たすべく、受光器上で生じさせるべき熱量や、受光器に集光すべき反射光の総量を算出する。また、ヘリオスタット制御装置105は、算出した熱量や、反射光の総量に対して、どの程度のズレであれば許容されるかの閾値を算出する(ステップs401)。なお、ここでは、ヘリオスタット制御装置105がズレの許容閾値を算出しているが、ユーザーが閾値を直接入力しても構わない。 Next, the heliostat control device 105 calculates the amount of heat to be generated on the light receiver and the total amount of reflected light to be collected on the light receiver in order to satisfy the command obtained in step s400. In addition, the heliostat control device 105 calculates a threshold value indicating how much deviation is allowed with respect to the calculated amount of heat and the total amount of reflected light (step s401). Here, the heliostat control device 105 calculates the allowable threshold value for deviation, but the user may directly input the threshold value.
 次に、ヘリオスタット制御装置105は、直達日射計112から、現時点の日照強度の情報を得る。そして、ヘリオスタット制御装置105は、現時点の日照強度を考慮して、ステップs401で算出した反射光の総量を満たすような集光を実現させるために必要な、反射鏡の面積の総和を算出する(ステップs402)。 Next, the heliostat control device 105 obtains information on the current sunshine intensity from the direct solar radiation meter 112. Then, the heliostat control device 105 calculates the total sum of the areas of the reflecting mirrors necessary for realizing the light condensing so as to satisfy the total amount of the reflected light calculated in step s401 in consideration of the current sunshine intensity. (Step s402).
 次に、ヘリオスタット制御装置105は、ステップs402で算出した反射鏡の面積の総和量を満たすヘリオスタット台数を算出する。そしてヘリオスタット制御装置105は、算出した台数に応じ、ヘリオスタットの初期選択パターンを決定する(ステップs403)。 Next, the heliostat control device 105 calculates the number of heliostats satisfying the total amount of the reflector areas calculated in step s402. Then, the heliostat control device 105 determines an initial selection pattern of the heliostat according to the calculated number (step s403).
 なお、耐久性や寿命などの問題から、ここでのヘリオスタットの選択は、一部のヘリオスタットに偏らないほうが望ましい。そこで本実施例では、ランダムにヘリオスタットを選択している。ただし、ヘリオスタットの選択が、一部のヘリオスタットに偏らないのであれば、どのような選択方法でもよい。例として、ある台数おきに選択する方法がある。また、他の例として、ヘリオスタット制御装置105により各ヘリオスタットの稼働時間を監視しておき、稼働時間の短いヘリオスタットから優先的に選択する方法がある。この方法では、各ヘリオスタットの稼働時間を高精度に均一化できる。 It should be noted that heliostat selection here should not be biased to some heliostats due to problems such as durability and life. Therefore, in this embodiment, a heliostat is selected at random. However, any selection method may be used as long as the selection of the heliostat is not biased to some heliostats. As an example, there is a method of selecting every other number. As another example, there is a method in which the operation time of each heliostat is monitored by the heliostat control device 105, and a heliostat with a short operation time is preferentially selected. In this method, the operation time of each heliostat can be made uniform with high accuracy.
 次に、ヘリオスタット制御装置105は、記録媒体109から、ステップs403で選択した各ヘリオスタットについての太陽光反射特性データを読み出す(ステップs404)。 Next, the heliostat control device 105 reads sunlight reflection characteristic data for each heliostat selected in step s403 from the recording medium 109 (step s404).
 次に、ヘリオスタット制御装置105は、各ヘリオスタットからの反射光による、受光器101上の積算集光分布の算出を行う(ステップs405)。なお、前述のとおり、積算集光分布とは、受光器に照射される反射光の総和の分布である。このステップs405の詳細について、図5を用いて説明する。 Next, the heliostat control device 105 calculates the integrated light collection distribution on the light receiver 101 by the reflected light from each heliostat (step s405). As described above, the integrated light collection distribution is a distribution of the total sum of reflected light applied to the light receiver. Details of step s405 will be described with reference to FIG.
 図5は、積算集光分布の取得方法図である。4枚のヘリオスタット(それぞれ、ヘリオスタット1から4とする)が選択された場合に、各ヘリオスタットの太陽光反射特性から、受光器101上の積算集光分布を算出する方法を示している。 FIG. 5 is a diagram illustrating a method for obtaining the integrated light collection distribution. When four heliostats (respectively, heliostats 1 to 4) are selected, a method of calculating the integrated light collection distribution on the light receiver 101 from the sunlight reflection characteristics of each heliostat is shown. .
 図5中、太陽光反射特性情報501~504は、記録媒体109上のデータベースから読み出された、ヘリオスタット1~4それぞれの、基準時刻における受光器101上の太陽光反射特性を、二次元位置[nm]と太陽光反射強度[w/m2]の相関で表したものである。ステップs405では、初めに、各ヘリオスタットそれぞれの太陽光反射特性を、現在時刻の太陽位置と反射鏡の方向を考慮した太陽光反射特性に変形する、ステップs505~s508を行う。続いて、ステップs509~s512にて、後述するステップs412で設定する、集光位置補正の補正量に応じた太陽光反射特性の変形を行う。なお、集光位置補正の補正値の初期値はゼロである。このため、初期フロー時点では、この変形は行われない。最後に、ステップs513にて、前記ステップs505~s512で変形した各太陽光反射特性から、受光器101上の積算集光分布を導き出す。 In FIG. 5, sunlight reflection characteristic information 501 to 504 is a two-dimensional representation of the sunlight reflection characteristic on the light receiver 101 at the reference time for each of the heliostats 1 to 4 read from the database on the recording medium 109. This is expressed by the correlation between the position [nm] and the sunlight reflection intensity [w / m 2 ]. In step s405, first, steps s505 to s508 are performed, in which the sunlight reflection characteristic of each heliostat is transformed into the sunlight reflection characteristic in consideration of the sun position at the current time and the direction of the reflecting mirror. Subsequently, in steps s509 to s512, the sunlight reflection characteristics are modified according to the correction amount of the condensing position correction set in step s412 described later. The initial value of the correction value for condensing position correction is zero. For this reason, this deformation is not performed at the time of the initial flow. Finally, in step s513, an integrated light collection distribution on the light receiver 101 is derived from the sunlight reflection characteristics deformed in steps s505 to s512.
 次に、ヘリオスタット制御装置105は、ステップs405で算出された積算集光分布から、受光器101上に生じる総熱量を求める。そして、前記ステップs401で算出した目標の総熱量(または反射光の総量)と比較し、この総熱量(または反射光の総量)が許容閾値内かどうかにより、集光状態を判定する(ステップs406)。 Next, the heliostat control device 105 obtains the total amount of heat generated on the light receiver 101 from the integrated light collection distribution calculated in step s405. Then, it is compared with the target total heat amount (or the total amount of reflected light) calculated in step s401, and the light collection state is determined based on whether or not the total heat amount (or the total amount of reflected light) is within the allowable threshold (step s406). ).
 前記総熱量が閾値以内の場合(ステップs406:Yes)には、ステップs407に移行し、ヘリオスタット制御装置105は、受光器101上の積算集光分布から、受光器101上のホットスポットの有無により、集光状態を判定する(ステップs407)。 When the total heat amount is within the threshold (step s406: Yes), the process proceeds to step s407, and the heliostat control device 105 determines whether there is a hot spot on the light receiver 101 from the integrated light distribution on the light receiver 101. Thus, the light collection state is determined (step s407).
 受光器上にホットスポットがないと判定された場合(ステップs407:Yes)、ヘリオスタット制御装置105は、この時点のヘリオスタットの選択パターンを、最終的なヘリオスタットの選択パターンと決定する。また、後述するステップs412において集光位置補正を行った場合は、その補正値を最終的な補正値と決定する(ステップs408)。 If it is determined that there is no hot spot on the light receiver (step s407: Yes), the heliostat control device 105 determines the heliostat selection pattern at this time as the final heliostat selection pattern. In addition, when the condensing position correction is performed in step s412 described later, the correction value is determined as the final correction value (step s408).
 最終的に、ヘリオスタット制御装置105は、ステップs408で決定した最終的なヘリオスタットの選択パターン、および補正値に基づいて、ヘリオスタットからの反射光の方向を制御し、受光器101へ反射光を照射させ、集光を開始する(ステップs409)。 Finally, the heliostat control device 105 controls the direction of the reflected light from the heliostat based on the final heliostat selection pattern determined in step s408 and the correction value, and reflects the reflected light to the light receiver 101. , And condensing is started (step s409).
 そして、一定の時間が経過した後(たとえば数分~数時間)、ステップs401に戻る。 Then, after a certain time has passed (for example, several minutes to several hours), the process returns to step s401.
 一方、ステップs406において、受光器上の総熱量(または反射光の総量)が、ステップs401で算出した許容閾値を超えていると判定された場合(ステップs406:No)、ヘリオスタット制御部105は、受光器上の総熱量(または反射光の総量)と目標の総熱量(または反射光の総量)を比較し、集光に使用するヘリオスタットの台数を増減し、変更する(ステップs410)。その後、ステップs404に戻る。 On the other hand, when it is determined in step s406 that the total heat amount (or the total amount of reflected light) on the light receiver exceeds the allowable threshold calculated in step s401 (step s406: No), the heliostat control unit 105 The total amount of heat (or the total amount of reflected light) on the light receiver is compared with the target total heat amount (or the total amount of reflected light), and the number of heliostats used for condensing is increased or decreased (step s410). Thereafter, the process returns to step s404.
 また、ステップs407において、受光器上にホットスポットがあると判断された場合(ステップs407:Yes)、ヘリオスタット制御部105は、各ヘリオスタットの太陽光反射特性から、ホットスポットの位置近傍に反射光の光量が集中しているヘリオスタットを検索する(ステップs411)。 In step s407, when it is determined that there is a hot spot on the light receiver (step s407: Yes), the heliostat control unit 105 reflects the solar spot in the vicinity of the hot spot position from each heliostat. A heliostat in which the amount of light is concentrated is searched (step s411).
 次に、ヘリオスタット制御部105は、ステップs411で検索されたホットスポットの位置近傍に反射光の光量が集中しているヘリオスタット(ホットスポットの原因であるヘリオスタット)について、反射光の方向を変化させる制御を行う(以下、集光位置補正と呼ぶ)。本実施例では、ヘリオスタットからの反射光の照射位置が、ホットスポットのサイズの半分程度移動するように、反射光の照射方向を変化させる。照射方向の変化方向は、ランダムに移動させる(このときの移動量と変化方向を合せて、集光位置補正の補正値と呼ぶ)(ステップs412)。なお、補正値の決定方法は、上記のような方法に限らず、例えば、反射光の光量が集中していない部分に反射光を集中させるように補正値を決定しても良い。 Next, the heliostat control unit 105 sets the direction of the reflected light for the heliostat in which the amount of reflected light is concentrated near the position of the hot spot searched in step s411 (the heliostat causing the hot spot). Control to be changed is performed (hereinafter referred to as condensing position correction). In this embodiment, the irradiation direction of the reflected light is changed so that the irradiation position of the reflected light from the heliostat moves about half of the size of the hot spot. The changing direction of the irradiation direction is randomly moved (the moving amount and the changing direction at this time are referred to as a correction value for correcting the condensing position) (step s412). The correction value determination method is not limited to the above method, and for example, the correction value may be determined so that the reflected light is concentrated on a portion where the amount of reflected light is not concentrated.
 次に、ヘリオスタット制御装置105は、ステップs412の処理回数が設定閾値以内か判定する(ステップs413)。何度ステップs412を繰り返してもホットスポットが発生してしまうような場合に、集光に使用するヘリオスタットを変更し、ホットスポットの発生を回避するためである。ステップs413の判定結果が閾値以内(ステップs413:Yes)の場合、ステップs404に戻る。 Next, the heliostat control device 105 determines whether or not the number of processes in step s412 is within a set threshold (step s413). This is because when a hot spot is generated even if the step s412 is repeated many times, the heliostat used for condensing is changed to avoid the generation of the hot spot. If the determination result in step s413 is within the threshold (step s413: Yes), the process returns to step s404.
 一方、ステップs413の判定結果が閾値を超えた(ステップs413:No)の場合、ステップs412の処理回数をリセットした上で、ヘリオスタットの選択パターンを切り替える(ステップs414)。切り替え前後で選択するヘリオスタットの総数が変化しないようにすることにより、反射鏡の総面積を変えずに、受光器上の積算集光分布のみ変化させることができ、ホットスポットの発生を回避することができる。 On the other hand, if the determination result in step s413 exceeds the threshold value (step s413: No), the selection pattern of the heliostat is switched after resetting the number of processes in step s412 (step s414). By preventing the total number of selected heliostats from changing before and after switching, it is possible to change only the integrated light collection distribution on the receiver without changing the total area of the reflector, avoiding hot spots. be able to.
 なお、ヘリオスタットの選択パターンの切り替えは、どのようなものでも構わないが、ホットスポットの近傍に反射光の光量が集中しているヘリオスタットの半分程度を、これまで選択されていなかった待機ヘリオスタットと交換することにより、これまでのホットスポットの位置に生じる熱量を下げつつも、他の場所でホットスポットが生じる可能性を低くできる。 The heliostat selection pattern can be switched by any method, but about half of the heliostat in which the amount of reflected light is concentrated in the vicinity of the hot spot is not used for the standby heliostat. By exchanging with the stat, it is possible to reduce the possibility of hot spots occurring at other locations while reducing the amount of heat generated at the positions of the hot spots so far.
 ステップs414の後、ステップs404へ戻る。 After step s414, the process returns to step s404.
 以上、本実施例によれば、各ヘリオスタットの太陽光反射特性に基づき、受光器上での2次元面分布的な熱ムラを予測して、ヘリオスタットからの反射光の方向を制御することにより、受光器上のホットスポットの発生を回避することができる。これにより、ホットスポットによる受光器の局所的な熱ダメージを抑えることができ、受光器の長寿命化を実現できる。また、このフローチャートを数分~数時間分で周期的に繰り返すことにより、経時的な太陽光反射特性の変化によりホットスポットが発生してしまった場合においても、ホットスポットが生じている期間を短くできる。
As described above, according to the present embodiment, based on the sunlight reflection characteristics of each heliostat, the two-dimensional surface distribution thermal unevenness on the light receiver is predicted, and the direction of the reflected light from the heliostat is controlled. Thus, the occurrence of hot spots on the light receiver can be avoided. Thereby, the local thermal damage of the light receiver by a hot spot can be suppressed, and the lifetime improvement of a light receiver can be implement | achieved. In addition, by repeating this flowchart periodically for several minutes to several hours, even if a hot spot occurs due to a change in solar reflection characteristics over time, the period during which the hot spot is generated can be shortened. it can.
 本実施例は、各ヘリオスタットの太陽光反射特性に基づいた、ヘリオスタットの反射鏡の保守必要性の判断に関する。以下、実施例1~3との相違点を中心に説明する。 This example relates to the determination of the necessity of maintenance of the reflector of the heliostat based on the sunlight reflection characteristics of each heliostat. Hereinafter, the difference from the first to third embodiments will be mainly described.
 図6は、ヘリオスタットの反射鏡の保守判定方法を示すフローチャート図である。本フローチャートに示す制御に基づけば、ヘリオスタット一台ずつについて、経時的な反射鏡の汚れが発生していないか、反射鏡に傷が発生していないかなどを判断できる。すなわち、反射鏡の汚れを落とすためのヘリオスタットの清掃や、傷の無い反射鏡への交換の時期を、一台ずつ判断することが可能となる。以下、各ステップの詳細について説明する。 FIG. 6 is a flowchart showing a maintenance determination method for a heliostat reflector. Based on the control shown in this flowchart, it is possible to determine, for each heliostat, whether or not the reflecting mirror is soiled over time or whether or not the reflecting mirror is damaged. In other words, it is possible to determine the time for cleaning the heliostat to remove the dirt from the reflecting mirror and the time for replacement with a reflecting mirror without scratches one by one. Details of each step will be described below.
 前提として、これらの処理を開始する以前に、反射鏡の交換、清掃、および面調整が行われているものとする。更に、その交換、清掃、および面調整の後に、実施例2にかかるフローチャートに基づいて、各ヘリオスタットの太陽光反射特性が記録媒体109に保存されているものとする。 As a premise, it is assumed that the reflector has been replaced, cleaned, and the surface has been adjusted before starting these processes. Furthermore, after the replacement, cleaning, and surface adjustment, it is assumed that the solar reflection characteristics of each heliostat are stored in the recording medium 109 based on the flowchart according to the second embodiment.
 まず、処理開始時における各ヘリオスタットの太陽光反射特性を取得し、保存(ステップs601)する。取得や保存の方法は、実施例2で説明したとおりである。 First, the sunlight reflection characteristics of each heliostat at the start of processing are acquired and stored (step s601). The acquisition and storage method is as described in the second embodiment.
 次に、ヘリオスタット制御部105は、記録媒体109内のデータベースから太陽光反射特性の情報を読み出し、前回の反射鏡の清掃後に取得した太陽光反射特性と、今回取得した現時点での太陽光反射特性を比較する。この比較により、同一のヘリオスタットについて、以前に行った反射鏡の清掃からの、経時的な太陽光反射特性の低下(劣化、悪化)を、特性低下量1として算出する。(ステップs602)
 次に、ヘリオスタット制御部105は、前記ステップs602により算出した太陽光反射特性の低下量が、閾値に達したか否かを判定する(ステップs603)。
Next, the heliostat control unit 105 reads the sunlight reflection characteristic information from the database in the recording medium 109, the sunlight reflection characteristic acquired after the previous cleaning of the reflector, and the current sunlight reflection acquired this time. Compare characteristics. By this comparison, the decrease (deterioration, deterioration) of the sunlight reflection characteristics over time from the previous cleaning of the reflector for the same heliostat is calculated as the characteristic decrease amount 1. (Step s602)
Next, the heliostat control unit 105 determines whether or not the amount of decrease in sunlight reflection characteristics calculated in step s602 has reached a threshold (step s603).
 太陽光反射特性の低下量が、閾値以内であると判断された(すなわち、太陽光反射特性の低下がほとんど見られない)場合(ステップs603:No)は、ヘリオスタット上の反射鏡の状態は正常である。このため、ヘリオスタット制御部105は、ヘリオスタット上の反射鏡を清掃や交換することは不要であると判断し(すなわち、反射鏡の清掃や交換指示を出力することなく)、図6の処理を終了する(ステップs604)。 When it is determined that the amount of decrease in the sunlight reflection characteristic is within the threshold (that is, almost no decrease in the sunlight reflection characteristic is observed) (step s603: No), the state of the reflector on the heliostat is It is normal. For this reason, the heliostat control unit 105 determines that it is unnecessary to clean or replace the reflecting mirror on the heliostat (that is, without outputting an instruction to clean or replace the reflecting mirror), and the process of FIG. Is finished (step s604).
 一方、太陽光反射特性の低下量が、閾値以上であると判断された場合(ステップs603:Yes)は、太陽光反射特性が経時的に低下していると認められる。太陽光反射特性の低下の要因のひとつとして、ヘリオスタット上の反射鏡が、経時的に汚れてしまうことが挙げられる。 On the other hand, when it is determined that the amount of decrease in the sunlight reflection characteristic is equal to or greater than the threshold (step s603: Yes), it is recognized that the sunlight reflection characteristic has decreased over time. One of the causes of the deterioration of the sunlight reflection characteristics is that the reflector on the heliostat gets dirty over time.
 そこでヘリオスタット制御部105は、その汚れを取り除くために、ヘリオスタット上の反射鏡の清掃を実施する指示を出力する(ステップs605)。 Therefore, the heliostat control unit 105 outputs an instruction to carry out cleaning of the reflecting mirror on the heliostat in order to remove the dirt (step s605).
 ステップとしては図示しないが、反射鏡の清掃は、清掃の指示を見た人間により行ってもよいし、ヘリオスタット制御部105により制御されるワイパーやノズルなどを設けておき、指示を受けると自動で清掃を行うようにしてもよい。 Although not shown as a step, the reflecting mirror may be cleaned by a person who has seen the cleaning instruction, or a wiper or a nozzle controlled by the heliostat control unit 105 is provided and automatically receives the instruction. You may make it clean by.
 反射鏡の清掃を実施した後、実施例2で説明したフローチャートに基づき、反射鏡の清掃を行ったヘリオスタットの受光器太陽光反射特性を取得する(ステップs606)。反射鏡の清掃を実施した直後であるから、このとき取得した太陽光反射特性は、反射鏡の汚れの影響がほぼないものであると考えられる。 After performing the cleaning of the reflecting mirror, the light receiving device sunlight reflection characteristics of the heliostat that has performed the cleaning of the reflecting mirror are acquired based on the flowchart described in the second embodiment (step s606). Since it is immediately after cleaning of the reflecting mirror, it is considered that the sunlight reflection characteristics obtained at this time are almost free from the influence of dirt on the reflecting mirror.
 次に、ヘリオスタット制御部105は、記録媒体109内のデータベースから情報を読み出し、前回の反射鏡の交換後に取得した太陽光反射特性と、ステップs606で取得した反射鏡の清掃後の太陽光反射特性を比較する。この比較により、同一のヘリオスタットについて、以前に行った反射鏡の交換からの、経時的な太陽光反射特性の低下を、特性低下量2として算出する(ステップs607)。 Next, the heliostat control unit 105 reads information from the database in the recording medium 109, and reflects the sunlight reflection characteristics obtained after the previous reflector replacement and the sunlight reflection after cleaning of the reflector obtained in step s606. Compare characteristics. By this comparison, the decrease in sunlight reflection characteristics over time from the previous replacement of the reflector for the same heliostat is calculated as the characteristic decrease amount 2 (step s607).
 次に、ヘリオスタット制御部105は、前記ステップs607により算出した太陽光反射特性の低下量が、閾値に達したか否かを判定する(ステップs608)。ステップs607により算出した太陽光反射特性の低下量が、閾値以上と判定された場合(ステップs608:Yes)は、反射鏡の清掃によっても、太陽光反射特性が回復しなかったと認められる。 Next, the heliostat control unit 105 determines whether or not the reduction amount of the sunlight reflection characteristic calculated in step s607 has reached a threshold (step s608). When it is determined that the amount of decrease in the sunlight reflection characteristic calculated in step s607 is equal to or greater than the threshold (step s608: Yes), it is recognized that the sunlight reflection characteristic has not been recovered even by cleaning the reflecting mirror.
 つまり、太陽光反射特性の低下の原因は、傷、腐食、または清掃で落ちない汚れなどが反射鏡に発生したためと判断できる。そこで、ヘリオスタット制御部105は、反射鏡の交換を実施する指示を出力する(ステップs612)。 That is, it can be determined that the cause of the deterioration of the solar reflection characteristics is that the reflector has scratches, corrosion, or dirt that cannot be removed by cleaning. Therefore, the heliostat control unit 105 outputs an instruction to replace the reflecting mirror (step s612).
 ステップとしては図示しないが、反射鏡の交換は、反射鏡の交換指示を見たユーザーが行っても良いし、ヘリオスタット制御部105により制御される反射鏡搬送機などを設けておき、自動的に行われるようにしてもよい。 Although not shown as a step, the reflector can be replaced by the user who has seen the instruction to replace the reflector, or by providing a reflector transporter controlled by the heliostat control unit 105, etc. You may be made to perform.
 また、ステップs612が行われた後は、反射鏡の状態は正常であるから、図6の処理を終了する。 Further, after step s612 is performed, the state of the reflecting mirror is normal, and thus the processing of FIG. 6 is terminated.
 一方、太陽光反射特性の低下量が、閾値以内であると判断された場合(ステップs608:No)は、清掃により、太陽光反射特性が回復したと認められる。 On the other hand, when it is determined that the amount of decrease in the sunlight reflection characteristic is within the threshold (step s608: No), it is recognized that the sunlight reflection characteristic has been recovered by cleaning.
 しかし、清掃作業時に反射鏡に力を掛けてしまい、反射鏡に歪みが発生してしまうことが考えられる。そこで、前記の場合(ステップs608:No)は、ステップs609に進み、ヘリオスタット上の反射鏡の歪み量の算出と判定を行う。 However, it is conceivable that a force is applied to the reflecting mirror during cleaning work, and the reflecting mirror is distorted. Therefore, in the above case (step s608: No), the process proceeds to step s609, and the amount of distortion of the reflector on the heliostat is calculated and determined.
 反射鏡の歪み量の算出は、ヘリオスタット制御部105が、記録媒体109内のデータベースから情報を読み出し、前回のミラー調整または交換の後に取得した太陽光反射特性と、今回ステップs606で取得した太陽光反射特性を比較することで行われる。 The calculation of the amount of distortion of the reflecting mirror is performed by the heliostat control unit 105 reading the information from the database in the recording medium 109, the solar reflection characteristics acquired after the previous mirror adjustment or replacement, and the sun acquired in step s606 this time. This is done by comparing the light reflection characteristics.
 反射鏡の歪み量は、ヘリオスタットが太陽光を集光する中心位置の変化量と、太陽光反射特性の標準偏差の変化量に基づいて算出する(ステップs609)。集光中心位置の変化量は、|前回の反射鏡の面調整後の集光中心位置-清掃後の集光中心位置|という式で表される。太陽光反射特性の標準偏差の変化量は(清掃後の標準偏差-前回の反射鏡の面調整後の標準偏差)という式で表される。 The amount of distortion of the reflector is calculated based on the amount of change in the center position where the heliostat collects sunlight and the amount of change in the standard deviation of the sunlight reflection characteristics (step s609). The amount of change in the condensing center position is represented by the following formula: | the condensing center position after the previous surface adjustment of the reflecting mirror−the condensing center position after cleaning |. The amount of change in the standard deviation of the sunlight reflection characteristic is expressed by the following formula: (standard deviation after cleaning−standard deviation after surface adjustment of the previous reflector).
 次に、ヘリオスタット制御部105は、前記ステップs609で算出された反射鏡の歪み量が、閾値に達したか否かを判定する(ステップs610)。 Next, the heliostat control unit 105 determines whether or not the distortion amount of the reflector calculated in step s609 has reached a threshold value (step s610).
 反射鏡の歪み量には、集光中心位置の変化量と、太陽光反射特性の標準偏差の変化量の二種類があるが、本ステップでは、どちらか一方でも閾値に達していた場合には、反射鏡の歪みが大きいと判定し、ヘリオスタット制御部105は、ステップs610:Yesの処理を進め、反射鏡の面の再調整を実施する指示を出力する(ステップs613)。ステップs613が行われた後は、反射鏡は正常な状態であるから、図6の処理を終了する。 There are two types of distortion of the reflecting mirror: the amount of change in the center position of the condenser and the amount of change in the standard deviation of the sunlight reflection characteristics. In this step, if either of them has reached the threshold, Then, it is determined that the distortion of the reflecting mirror is large, and the heliostat control unit 105 proceeds with the process of step s610: Yes and outputs an instruction to readjust the surface of the reflecting mirror (step s613). After step s613 is performed, since the reflecting mirror is in a normal state, the processing in FIG. 6 is terminated.
 一方、ステップs608により算出された反射鏡の歪み量が閾値以内の場合(ステップs610:No)、反射鏡の状態は正常(清掃により汚れを除去でき、反射鏡に傷などがなく、清掃時に反射鏡に歪みも生じなかった)であると判定し、ヘリオスタット制御部106は、図6の処理を終了する(ステップs611)。 On the other hand, when the amount of distortion of the reflecting mirror calculated in step s608 is within the threshold (step s610: No), the reflecting mirror is in a normal state (dirt can be removed by cleaning, the reflecting mirror is not damaged, and is reflected during cleaning. The heliostat control unit 106 ends the process of FIG. 6 (step s611).
 以下、図7を用いて、本実施例において反射鏡の清掃などを行った場合の、太陽光反射特性の変化を説明する。図7では、同図の上方から下方に向かってデータの記録時間が進んでいる。 Hereinafter, with reference to FIG. 7, a description will be given of changes in sunlight reflection characteristics when the reflecting mirror is cleaned in the present embodiment. In FIG. 7, the data recording time advances from the top to the bottom of FIG.
 図7は、各ヘリオスタットの太陽光反射特性の変化を示す説明図である。一例として、ヘリオスタット1から3の状態管理を行うものとする。なお実際は、備えてある全ヘリオスタットについて、この状態管理を行うことが望ましい。 FIG. 7 is an explanatory diagram showing changes in sunlight reflection characteristics of each heliostat. As an example, state management of the heliostats 1 to 3 is performed. Actually, it is desirable to perform this state management for all the heliostats provided.
 記録媒体109内のデータベースには、各ヘリオスタットの太陽光反射特性のデータが保存される。また、太陽光反射特性を取得した時刻や、取得前に行った保守情報などを、各ヘリオスタットの情報と紐づけして保存する。 In the database in the recording medium 109, sunlight reflection characteristic data of each heliostat is stored. In addition, the time when the sunlight reflection characteristics are acquired, the maintenance information performed before the acquisition, and the like are associated with the information of each heliostat and stored.
 以下、それぞれのヘリオスタットについて反射鏡の状態を説明する。 Hereafter, the state of the reflector will be described for each heliostat.
 図中の「ヘリオスタット1」欄には、反射鏡に汚れが生じてしまったヘリオスタットの、太陽光反射特性の経時的な変化が示されている。 In the "Heliostat 1" column in the figure, the change in the solar reflection characteristics over time of the heliostat that has become dirty on the reflector is shown.
 図中の「ヘリオスタット2」欄には、反射鏡に傷などが生じてしまったヘリオスタットの、太陽光反射特性の経時的な変化が示されている。 In the “Heliostat 2” column in the figure, the time-dependent change in the sunlight reflection characteristics of the heliostat in which the reflector is damaged is shown.
 図中の「ヘリオスタット3」欄には、反射鏡に汚れが生じてしまい、かつその清掃時に反射鏡に歪みが生じてしまったヘリオスタットの、太陽光反射特性の経時的な変化が示されている。 In the "Heliostat 3" column in the figure, the time-dependent change in the sunlight reflection characteristics of the heliostat in which the reflecting mirror is soiled and the reflecting mirror is distorted during cleaning is shown. ing.
 図中の「T01」には、前回の反射鏡の交換時に取得した、各ヘリオスタットの太陽光反射特性が示されている。 “T01” in the figure indicates the solar reflection characteristics of each heliostat obtained at the time of the previous reflector replacement.
 図中の「T02」には、反射鏡の交換後しばらく経った後に取得した、各ヘリオスタットの太陽光反射特性が示されている。 “T02” in the figure indicates the solar reflection characteristics of each heliostat obtained after a while after the reflector replacement.
 図中の「T03」には、T02の時点から更にしばらく経った後に取得した、各ヘリオスタットの太陽光反射特性が示されている。 “T03” in the figure shows the sunlight reflection characteristics of each heliostat obtained after a while from T02.
 図中の「T04」の時点で、各ヘリオスタット上の反射鏡について、清掃を行ったものとする。 Suppose that the reflector on each heliostat has been cleaned at the time of “T04” in the figure.
 図中の「T05」には、T04の時点で行った反射鏡の清掃の後に取得した、各ヘリオスタットの太陽光反射特性が示されている。 “T05” in the figure indicates the sunlight reflection characteristics of each heliostat obtained after cleaning of the reflector performed at T04.
 図中の「T06」には、T05の時点で取得した各ヘリオスタットの太陽光反射特性の情報を受けて行った、各ヘリオスタットへの保守作業の内容(反射鏡の交換や、反射鏡の歪み除去のための反射鏡の面調整)が示されている。 In “T06” in the figure, the contents of maintenance work for each heliostat performed by receiving information on the solar reflection characteristics of each heliostat acquired at the time of T05 (replacement of reflectors, The surface adjustment of the reflector for distortion removal is shown.
 図中の「T07」には、T06の時点で行った保守作業の後に取得した、各ヘリオスタットの太陽光反射特性が示されている。 “T07” in the figure indicates the solar reflection characteristics of each heliostat obtained after the maintenance work performed at the time of T06.
 各ヘリオスタットは、T01からT02、T03と時間が経過するにつれ、太陽光反射特性が低下していく。これは前述の通り、時間が経過するにつれ、反射鏡に汚れや傷が生じるためである。 The solar reflection characteristics of each heliostat decrease with time from T01 to T02 and T03. This is because, as described above, the reflecting mirror becomes dirty and scratched as time passes.
 T03の太陽光反射特性の測定時点で、太陽光反射特性の低下量が閾値を超えたものとする。するとヘリオスタット制御部105は、ステップs603に基づき、反射鏡を清掃する指示を出力する。 Suppose that the amount of decrease in sunlight reflection characteristics exceeds the threshold at the time of measurement of sunlight reflection characteristics at T03. Then, the heliostat control unit 105 outputs an instruction to clean the reflecting mirror based on step s603.
 ヘリオスタット1の場合、太陽光反射特性の低下は、反射鏡表面の汚れによるものである。このため、ヘリオスタット1は、反射鏡の清掃により反射鏡の汚れを除去することができる。この結果、太陽光反射特性が回復する(T05)。 In the case of Heliostat 1, the decrease in the sunlight reflection characteristics is due to the dirt on the reflector surface. For this reason, the heliostat 1 can remove the dirt of the reflecting mirror by cleaning the reflecting mirror. As a result, the sunlight reflection characteristic is recovered (T05).
 更に、清掃により太陽光反射特性が回復しているため、反射鏡には傷などがないと判定される(ステップs608)。更に、清掃後の太陽光反射特性(T06)はT01時点での太陽光反射特性とほぼ同一である。このため、清掃後の反射鏡には歪みがないと判断され(ステップs610)、ヘリオスタット1についての保守作業は終了する。 Furthermore, since the sunlight reflection characteristic has been recovered by cleaning, it is determined that the reflector is not scratched (step s608). Furthermore, the sunlight reflection characteristic after cleaning (T06) is almost the same as the sunlight reflection characteristic at time T01. For this reason, it is determined that there is no distortion in the reflecting mirror after cleaning (step s610), and the maintenance work for the heliostat 1 ends.
 次にヘリオスタット2について説明する。ヘリオスタット2の場合、太陽光反射特性の低下は、反射鏡に生じた傷などによるものである。このため、ヘリオスタット2の太陽光反射特性は、清掃によっては回復しない(T05)。このため、ヘリオスタット制御部105は、ステップs608に基づき、ヘリオスタット2上の反射鏡には傷などが多いと判定する。 Next, heliostat 2 will be described. In the case of the heliostat 2, the decrease in sunlight reflection characteristics is due to scratches or the like generated on the reflecting mirror. For this reason, the sunlight reflection characteristic of the heliostat 2 is not recovered by cleaning (T05). For this reason, the heliostat control unit 105 determines that the reflector on the heliostat 2 has many scratches based on step s608.
 その後、ヘリオスタット制御部105は、ステップs612に基づき、反射鏡を交換する指示を出力する。汚れや傷の無い反射鏡に交換することにより、ヘリオスタット2の太陽光反射特性は正常なものとなる(T07)。 Thereafter, the heliostat control unit 105 outputs an instruction to replace the reflecting mirror based on step s612. By exchanging with a reflector that is free from dirt and scratches, the sunlight reflection characteristics of the heliostat 2 become normal (T07).
 次にヘリオスタット3について説明する。ヘリオスタット3の場合、太陽光反射特性の低下は、反射鏡表面の汚れによるものである。このため、ヘリオスタット1の場合と同様に、反射鏡の清掃により、太陽光反射特性が回復する。しかし、ヘリオスタット3の場合は、反射鏡の面に歪みも発生しているため、清掃後の太陽光反射特性は、T05の欄に示すように崩れたものとなる。 Next, the heliostat 3 will be described. In the case of the heliostat 3, the decrease in the sunlight reflection characteristics is due to the dirt on the reflecting mirror surface. For this reason, similarly to the case of the heliostat 1, the sunlight reflection characteristic is recovered by cleaning the reflecting mirror. However, in the case of the heliostat 3, since the distortion | strain also has generate | occur | produced in the surface of a reflective mirror, the sunlight reflective characteristic after cleaning will be broken as shown in the column of T05.
 そこで、ヘリオスタット制御部105は、ステップs610に基づき、ミラーに歪みが生じていると判定する。その後、ヘリオスタット制御部105は、ステップs613に基づき、反射鏡の面の再調整を実施する指示を出力する(ステップs613)。反射鏡の面を調整することにより、太陽光反射特性は正常なものとなる(T07)。 Therefore, the heliostat control unit 105 determines that the mirror is distorted based on step s610. Thereafter, the heliostat control unit 105 outputs an instruction to readjust the mirror surface based on step s613 (step s613). By adjusting the surface of the reflecting mirror, the sunlight reflection characteristics become normal (T07).
 以上より、本実施例によれば、一台一台の目視などによらなくとも、ヘリオスタットの反射鏡の清掃、交換、または面調整の必要性を判断できる。
As described above, according to the present embodiment, it is possible to determine the necessity for cleaning, replacement, or surface adjustment of the reflecting mirror of the heliostat without visual inspection of each unit.
 本実施例は、各ヘリオスタットの太陽光反射特性に基づいた、ヘリオスタットの反射鏡の保守時期の予測に関する。以下、実施例1~4との相違点を中心に説明する。 This example relates to the prediction of the maintenance time of the heliostat reflector based on the sunlight reflection characteristics of each heliostat. Hereinafter, the difference from the first to fourth embodiments will be mainly described.
 図8は、反射鏡の清掃時期を予測する方法を示す説明図である。このグラフの縦軸は、定期的な太陽光反射特性の測定時(ステップs602)における、太陽光反射特性の低下量とし、横軸に時間をおく。 FIG. 8 is an explanatory diagram showing a method of predicting the cleaning time of the reflecting mirror. The vertical axis of this graph represents the amount of decrease in the solar reflection characteristic during periodic measurement of the solar reflection characteristic (step s602), and the horizontal axis represents time.
 時間軸は、反射鏡の清掃実施時点711から開始とする。前回の反射鏡の清掃時点711から、現在時点712に経過するにつれ、太陽光反射特性の低下量は徐々に増加する。ヘリオスタットの設置環境に大きな変化が無い限り、今後も太陽光反射特性の低下量は増加傾向となる。 The time axis starts from the point 711 when the reflector is cleaned. As the current reflector time 712 elapses from the previous reflector cleaning time 711, the amount of decrease in the sunlight reflection characteristics gradually increases. As long as there is no significant change in the installation environment of the heliostat, the amount of decrease in sunlight reflection characteristics will continue to increase.
 ヘリオスタット制御部105が、前回の反射鏡清掃時711から、現在時点712までの太陽光反射特性の経時変化の実測714に基づいて、この先の太陽光反射特性の予測直線715を引くことにより、太陽光反射特性低下閾値に到達する、次回の反射鏡の清掃時期713を予測できる。 The heliostat control unit 105 draws a prediction straight line 715 of the future solar reflection characteristic based on the actual measurement 714 of the temporal change in the solar reflection characteristic from the previous reflector cleaning time 711 to the current time point 712, The next reflection mirror cleaning time 713 that reaches the sunlight reflection characteristic deterioration threshold value can be predicted.
 図9は、反射鏡の交換時期を予測する方法を示す説明図である。このグラフの縦軸は、反射鏡の清掃後の太陽光反射特性の測定時(ステップs607)における、太陽光反射特性の低下量(すなわち、反射鏡に生じた傷量)とし、横軸に時間をおく。 FIG. 9 is an explanatory diagram showing a method of predicting the replacement time of the reflecting mirror. The vertical axis of this graph represents the amount of decrease in the solar reflection characteristics (that is, the amount of scratches generated in the reflection mirror) at the time of measuring the solar reflection characteristics after the cleaning of the reflecting mirror (step s607), and the horizontal axis represents time. Put.
 時間軸は、反射鏡の交換実施時点721から開始とする。前回の反射鏡の交換時点721から、現在時点722に経過するにつれ、反射鏡の傷量は徐々に増加する。ヘリオスタットの設置環境に大きな変化が無い限り、今後も傷量は増加傾向となる。 The time axis starts from the time when the reflector is replaced 721. The amount of scratches on the reflecting mirror gradually increases as the current reflecting time 722 elapses from the previous reflecting mirror replacement time 721. Unless there is a major change in the installation environment of the heliostat, the amount of scratches will continue to increase.
 ヘリオスタット制御部105が、前回の反射鏡交換時721から、現在時点722までの太陽光反射特性の経時変化の実測724に基づいて、この先の太陽光反射特性の予測直線725を引くことにより、反射鏡傷量閾値に到達する、次回の反射鏡の交換時期723を予測できる。 The heliostat control unit 105 draws a prediction straight line 725 for the future solar reflection characteristic based on the actual measurement 724 of the temporal change of the solar reflection characteristic from the previous reflector replacement 721 to the current time point 722, The next reflecting mirror replacement time 723 that reaches the reflecting mirror damage threshold value can be predicted.
 図10は、反射鏡の面の調整時期を予測する方法を示す説明図である。このグラフの縦軸は、反射鏡の清掃後の太陽光反射特性の測定時(ステップs609)における、反射鏡の歪み量とし、横軸に時間をおく。 FIG. 10 is an explanatory diagram showing a method of predicting the adjustment time of the reflecting mirror surface. The vertical axis of this graph is the amount of distortion of the reflecting mirror when measuring the sunlight reflection characteristics after cleaning the reflecting mirror (step s609), and the horizontal axis is time.
 時間軸は、反射鏡の交換または面の再調整の実施時点731から開始とする。前回の反射鏡の交換または面の再調整時点731から、現在時点732に経過するにつれ、反射鏡は徐々に歪んでいく。ヘリオスタットの設置環境に大きな変化が無い限り、今後も歪み量は増加傾向となる。 The time axis starts from the point of time 731 when the reflector is replaced or the surface is readjusted. The reflector is gradually distorted as the current time point 732 elapses from the previous time when the reflector is replaced or the surface is readjusted 731. As long as there is no significant change in the installation environment of the heliostat, the amount of distortion will continue to increase.
 ヘリオスタット制御部105が、前回の反射鏡交換時731から、現在時点732までの太陽光反射特性の経時変化の実測734に基づいて、この先の太陽光反射特性の予測直線735を引くことにより、反射鏡傷量閾値に到達する、次回の反射鏡の交換時期733を予測できる。 The heliostat control unit 105 draws a prediction line 735 for the future solar reflection characteristic based on the actual measurement 734 of the temporal change in the solar reflection characteristic from the previous reflector replacement 731 to the current time point 732, The next reflecting mirror replacement time 733 that reaches the reflecting mirror flaw amount threshold value can be predicted.
 なお、本実施例では予測直線を引くものとしたが、太陽光反射特性の変化の傾向によっては、予測曲線を引くものとしても構わない。 In this embodiment, the prediction straight line is drawn. However, depending on the tendency of changes in the sunlight reflection characteristics, a prediction curve may be drawn.
 以上より、本実施例によれば、複数期間分の太陽光反射特性のデータを比較解析することにより、ヘリオスタットの反射鏡の保守時期の予測も可能となる。
As described above, according to the present embodiment, it is possible to predict the maintenance time of the reflector of the heliostat by comparatively analyzing the data of the sunlight reflection characteristics for a plurality of periods.
 ヘリオスタットは屋外に設置されているため、強風に晒されることがあり、風の影響により、反射鏡の角度が変化したり、反射鏡の面が歪んだりする可能性がある。この結果、太陽光反射特性に変化が生じることがあるという問題がある。 Since heliostats are installed outdoors, they may be exposed to strong winds, and the angle of the reflector may change or the surface of the reflector may be distorted due to the influence of the wind. As a result, there is a problem that the sunlight reflection characteristics may change.
 一方、実施例3のステップs408にて選択されなかったヘリオスタットは、実施例3のフローチャートが再び処理されて、ステップs408にて選択されるまで、集光に使用されない。また、実施例4のステップs605、s612、またはs613のいずれかで保守指示が出力された後、保守が実施されるまで、そのヘリオスタットは集光に使用されない。この集光に使用されないヘリオスタットを防風に用いれば、集光を行っている他のヘリオスタットに、風の影響を及ぼさないようにすることができる。 On the other hand, the heliostat that was not selected in step s408 of the third embodiment is not used for light collection until the flowchart of the third embodiment is processed again and selected in step s408. Further, after the maintenance instruction is output in any of steps s605, s612, or s613 in the fourth embodiment, the heliostat is not used for light collection until the maintenance is performed. If a heliostat that is not used for light collection is used for wind protection, it is possible to prevent other heliostats that are collecting light from affecting the wind.
 そこで、本実施例は、ヘリオスタットを防風にも用いて、各ヘリオスタットが風により受ける影響を低減させる太陽光集光装置に関する。以下、実施例1~5との相違点を中心に説明する。 Therefore, the present embodiment relates to a solar light collecting device that uses heliostats for wind protection and reduces the influence of each heliostat on the wind. Hereinafter, the difference from the first to fifth embodiments will be mainly described.
 図11は、防風用ヘリオスタットを備えた太陽光集光装置の概略構成図である。 FIG. 11 is a schematic configuration diagram of a solar light collecting device equipped with a windproof heliostat.
 本実施例では、ヘリオスタットの近傍に、風向および風速センサー902を備え、風向および風速を検知する。 In this embodiment, a wind direction and wind speed sensor 902 is provided in the vicinity of the heliostat to detect the wind direction and the wind speed.
 また、ヘリオスタット制御部105は、風向および風速センサー902により、現在の風速が、ヘリオスタットの耐風速度以下であることを確認する。 Also, the heliostat control unit 105 confirms that the current wind speed is equal to or lower than the wind resistant speed of the heliostat by the wind direction and wind speed sensor 902.
 そして、ヘリオスタット制御部105は、集光に使用されていないヘリオスタットの内、風上の方向に設置されているものを、防風用ヘリオスタット901として用いる。例えば、反射鏡駆動機120を制御し、反射鏡が風に対して45度の角度となるようにする。 The heliostat control unit 105 uses a heliostat that is installed in the windward direction among heliostats that are not used for light collection as the windproof heliostat 901. For example, the reflecting mirror driver 120 is controlled so that the reflecting mirror has an angle of 45 degrees with respect to the wind.
 また、本実施例では、防風用ヘリオスタット901としては、風上の方向に設置されているものを用いるとしたが、外周付近に設置されているヘリオスタットを用いてもよいし、一定の間隔を空けたヘリオスタットを用いてもよい。さらに、風向および風速センサーを複数設置することにより、防風用ヘリオスタットの配置を最適化できる。 In this embodiment, as the windproof heliostat 901, the one installed in the windward direction is used. However, a heliostat installed in the vicinity of the outer periphery may be used, and a fixed interval may be used. A heliostat with a gap may be used. Furthermore, the installation of a windproof heliostat can be optimized by installing a plurality of wind direction and wind speed sensors.
 一方、風速値がヘリオスタットの耐風速度以上の場合、このまま集光動作や防風動作を継続すると、ヘリオスタットが破損するおそれがある。 On the other hand, if the wind speed value is higher than the wind speed of the heliostat, the heliostat may be damaged if the condensing operation or windbreak operation continues.
 そこで、ヘリオスタット制御部105は、プラントにある全てのヘリオスタットの集光動作や防風操作を停止し、ヘリオスタットの反射鏡の傾きが水平近傍となるように、各ヘリオスタットの反射鏡の向きを制御する。この制御により、強風下におけるヘリオスタットの破損を避けることができる。以下、この制御を「待機モード」と呼ぶ。 Therefore, the heliostat control unit 105 stops the condensing operation and windbreak operation of all the heliostats in the plant, and the direction of the reflecting mirrors of each heliostat is set so that the inclination of the reflecting mirrors of the heliostat is near the horizontal. To control. This control can prevent the heliostat from being damaged under strong winds. Hereinafter, this control is referred to as “standby mode”.
 ヘリオスタットの破損を避けるという観点であれば、「待機モード」における各ヘリオスタットの反射鏡の角度は、風向に対して平行となり易い水平位置が最も望ましい。なぜならば、風向に対して平行であれば、各ヘリオスタット(の反射鏡)は最も風の影響を受けにくいためである。しかし、反射鏡を完全な水平位置に保つと、雨や砂が反射鏡の面で留まりやすく、反射鏡に汚れが堆積しやすい。 From the standpoint of avoiding damage to the heliostat, the angle of the reflector of each heliostat in the “standby mode” is most preferably a horizontal position that tends to be parallel to the wind direction. This is because each heliostat (the reflecting mirror) is least affected by the wind if it is parallel to the wind direction. However, if the reflector is kept in a perfectly horizontal position, rain and sand tend to stay on the surface of the reflector, and dirt is likely to accumulate on the reflector.
 そこで、「待機モード」においては、反射鏡の面を水平位置から3°~10°傾けることが望ましい。この反射鏡の傾きにより、反射鏡面上の水滴や砂塵は流れ落ちやすくなる。反射鏡面の傾きはわずかであるから、強風下においても、反射鏡が破損することはほとんどない。 Therefore, in the “standby mode”, it is desirable to tilt the surface of the reflector 3 ° to 10 ° from the horizontal position. Due to the inclination of the reflecting mirror, water droplets and dust on the reflecting mirror surface easily flow down. Since the inclination of the reflecting mirror surface is slight, the reflecting mirror is hardly damaged even under strong winds.
 反射鏡の面の傾き角度を大きくすれば、水滴や砂塵の流れ落ちる効果は大きくなるが、反射鏡の破損可能性が増大する。そのため「待機モード」での反射鏡面の傾き角度は、設置環境の想定風速、降水量、および付着砂塵量などにより最適値を決定する。 If the tilt angle of the mirror surface is increased, the effect of water droplets and dust flowing down increases, but the possibility of breakage of the reflector increases. For this reason, the inclination angle of the reflecting mirror surface in the “standby mode” is determined to be an optimum value based on the assumed wind speed, precipitation, and amount of attached dust in the installation environment.
 以上より、本実施例によれば、防風用ヘリオスタット901によって、集光動作中のヘリオスタット103への風の影響を低減できる。また、強風の際にも、汚れの堆積を防止しながら、ヘリオスタットの破損可能性を低くできる。
As described above, according to the present embodiment, the wind-proof heliostat 901 can reduce the influence of wind on the heliostat 103 during the light collecting operation. In addition, the possibility of damage to the heliostat can be reduced while preventing accumulation of dirt even in strong winds.
 実施例6にかかる太陽光集光装置は、前述したように、強風状態でのヘリオスタットの破損を避けるための「待機モード」を有する。しかし、この「待機モード」であっても、強風下では反射鏡部分が振動(びびり)してしまい、反射鏡119と支持脚121の結合部分が疲労破壊するおそれがある。以下、図12および図13を用いて、この振動発生のメカニズムを説明する。 As described above, the solar light collecting apparatus according to Example 6 has the “standby mode” for avoiding damage to the heliostat in a strong wind state. However, even in this “standby mode”, the reflector portion vibrates (chatters) under strong winds, and the joint portion between the reflector 119 and the support leg 121 may be fatigued. Hereinafter, the mechanism of the vibration generation will be described with reference to FIGS. 12 and 13.
 図12は、反射鏡の支持構造図である。反射鏡119と支持脚121が支持部分951を介して結合した構造となっている。 FIG. 12 is a diagram showing the support structure of the reflecting mirror. The reflecting mirror 119 and the support leg 121 are coupled via a support portion 951.
 また、図13は、風による反射鏡の振動概略図である。ヘリオスタットは屋外に設置されるため、その位置で吹く風は常に一定ではなく、風向および風速ともに脈動する。風の脈動(風向、風速)により、反射鏡119が、例えば、図13(a)の方向(下方向)に少しひずむとする。ひずみ出すと、風のあたる断面積が増加するため、より強く風の影響を受けることになる。この結果、更にひずみが増加する。 FIG. 13 is a schematic diagram of the vibration of the reflecting mirror caused by the wind. Since the heliostat is installed outdoors, the wind blown at that position is not always constant, and both the wind direction and the wind speed pulsate. It is assumed that the reflecting mirror 119 is slightly distorted in the direction (downward direction) of FIG. 13A due to wind pulsation (wind direction, wind speed), for example. When the distortion starts, the cross-sectional area on which the wind hits increases, so that it is more strongly affected by the wind. As a result, the strain further increases.
 ここで、反射鏡は弾性を持つため、ひずみの増加とともに反力が大きくなり、風の脈動とも関連し、図13(b)のように、図13(a)とは反対側の方向(上方向)にひずむ。この側でも、ひずみの増加と風の脈動により、図13(a)の状態に戻る。この繰り返しにより、反射鏡は振動することになる。この際、反射鏡119と支持脚121を結合する支持部分951では、応力の方向が振動に応じて反転することになり、疲労が進展する。最終的には、反射鏡の破断につながる。 Here, since the reflecting mirror has elasticity, the reaction force increases as the strain increases and is related to the pulsation of the wind. As shown in FIG. 13B, the direction opposite to FIG. Direction). Even on this side, the state returns to the state of FIG. 13A due to the increase in strain and the pulsation of the wind. By repeating this, the reflecting mirror vibrates. At this time, in the support portion 951 that couples the reflecting mirror 119 and the support leg 121, the direction of stress is reversed according to vibration, and fatigue progresses. Eventually, the reflector will be broken.
 そこで、本実施例は、反射鏡の振動を抑制するために、各ヘリオスタットの反射鏡や支持部分などに、揚力発生部材を備えた太陽光集光装置に関する。以下、実施例1~6との相違点を中心に説明する。 Therefore, the present embodiment relates to a solar light collecting device provided with a lift generating member on the reflecting mirror or supporting portion of each heliostat in order to suppress the vibration of the reflecting mirror. Hereinafter, the difference from the first to sixth embodiments will be mainly described.
 図14は、反射鏡の揚力発生部材の概略図である。反射鏡119の下面の外周には、流線形状の揚力発生部材952が設けられている。平面鏡119に対し平行な風を受けると揚力発生部材952は下方向の揚力を発生させる。これにより、「待機モード」で風が発生した際、ヘリオスタットが備える揚力発生部材952により、平面鏡119が下方向に揚力を受けるため、図13に示すような振動を抑えることができる。なお、下方向に限らず、特定の方向に揚力を受けることができれば、振動は抑制できる。 FIG. 14 is a schematic view of the lift generating member of the reflecting mirror. A streamline-shaped lift generating member 952 is provided on the outer periphery of the lower surface of the reflecting mirror 119. When the wind parallel to the plane mirror 119 is received, the lift generating member 952 generates a downward lift. Thereby, when the wind is generated in the “standby mode”, the plane mirror 119 receives the lift force downward by the lift force generation member 952 provided in the heliostat, so that the vibration shown in FIG. 13 can be suppressed. Note that vibration can be suppressed if lift force can be received in a specific direction, not limited to the downward direction.
 具体的には、図13(b)の状態で反射鏡119が風により受ける力は、上向きなのに対して、図14の例では、揚力により下向きのままである。したがって、ミラーの振動の振幅を抑えることができる。結果的に、支持部分951での応力が軽減し、疲労破壊までの期間を大幅に長期化できる。 Specifically, the force received by the reflecting mirror 119 by the wind in the state of FIG. 13B is upward, whereas in the example of FIG. 14, it remains downward due to lift. Therefore, the amplitude of the vibration of the mirror can be suppressed. As a result, the stress at the support portion 951 is reduced, and the period until fatigue failure can be greatly prolonged.
 ここで、発生させる揚力の大きさは、T=(Vw/V0)・(ΔL/L0)・Pという式で示される。Tは揚力発生部材952で発生する揚力、Vwは風速、V0は分子の平均速度(常温で約500m)、L0は揚力発生部材952の幅、Pは大気圧である。また、ΔLは揚力発生部材952の凸部の長さと凹部の長さの差である。例えば、長さ600mmのミラーにL=30mmの幅で、△L=6mmの凸部を作り、50m/secの風が当たった場合、一辺に、約3.6kgの力がかかる。 Here, the magnitude of the lift force to be generated is represented by the equation T = (Vw / V0) · (ΔL / L0) · P. T is the lift generated by the lift generating member 952, Vw is the wind speed, V0 is the average speed of the molecule (about 500 m at room temperature), L0 is the width of the lift generating member 952, and P is the atmospheric pressure. ΔL is the difference between the length of the convex portion and the length of the concave portion of the lift generating member 952. For example, when a convex part of ΔL = 6 mm is formed on a 600 mm long mirror with a width of L = 30 mm and a wind of 50 m / sec is hit, a force of about 3.6 kg is applied to one side.
 想定される風力(風速)や、部材のばね係数に応じ、揚力発生部材952の形状(幅、曲率等)を設計する。 The shape (width, curvature, etc.) of the lift generating member 952 is designed according to the assumed wind force (wind speed) and the spring coefficient of the member.
 本実施例にかかる揚力発生部材の変形例を図15から図19に示す。 15 to 19 show modifications of the lift generating member according to the present embodiment.
 図15は、複数の反射鏡についての揚力発生部材の構成図である。複数枚の反射鏡を一つの架台に設置する場合の、揚力発生部材の例である。複数枚の反射鏡119を1枚の反射鏡と見なした場合の最外周部分のみに、揚力発生部材952が設けられている。揚力発生部材952が設けられていない部分において、反射鏡119に振動が多少発生するが、この振動は、反射鏡119間の隙間を小さくすることで問題にならない程度まで減少させることができる。 FIG. 15 is a configuration diagram of lift generating members for a plurality of reflecting mirrors. It is an example of a lift generating member in the case of installing a plurality of reflecting mirrors on one gantry. The lift generating member 952 is provided only in the outermost peripheral part when the plurality of reflecting mirrors 119 are regarded as one reflecting mirror. In the portion where the lift generating member 952 is not provided, some vibration is generated in the reflecting mirror 119, but this vibration can be reduced to an extent that does not cause a problem by reducing the gap between the reflecting mirrors 119.
 図16は、複数の反射鏡についての揚力発生部材の別の構成図である。複数枚の反射鏡を一つの架台に設置する場合の、揚力発生部材の別の例である。複数枚の反射鏡119それぞれの外周部に、揚力発生部材952が設けられている。反射鏡119間の隙間を大きくする場合は、このように全ての反射鏡の外周部に揚力発声部材を設けるとよい。 FIG. 16 is another configuration diagram of lift generating members for a plurality of reflecting mirrors. It is another example of a lift generating member in the case of installing a plurality of reflecting mirrors on one gantry. A lift generating member 952 is provided on the outer periphery of each of the plurality of reflecting mirrors 119. In the case where the gap between the reflecting mirrors 119 is increased, it is preferable to provide a lift-speaking member on the outer peripheral portion of all the reflecting mirrors.
 図17は、曲率を有する反射鏡の構成図である。矩形の反射鏡119の頂点部分に曲率をつけ、曲率をつけた部分を揚力発生部材952としたものである。この場合も、図14の例と同様に、揚力発生部材952の効果は大きい。更に、曲率部分が、風の渦の発生を避け、反射鏡の振動はより軽減される。 FIG. 17 is a configuration diagram of a reflecting mirror having a curvature. A curvature is given to the apex portion of the rectangular reflecting mirror 119, and the portion with the curvature is used as a lift generating member 952. Also in this case, the effect of the lift generating member 952 is great as in the example of FIG. Furthermore, the curvature portion avoids the generation of wind vortices and the vibration of the reflector is further reduced.
 図18は、反射鏡表面に凸部を有する反射鏡の構成図である。反射鏡側に凸部を作った例である。この場合は、反射鏡の面積が小さくなるデメリットはあるが、一方で、反射鏡の面に砂塵が直接当たらないという効果がある。 FIG. 18 is a configuration diagram of a reflecting mirror having a convex portion on the reflecting mirror surface. This is an example in which a convex portion is formed on the reflecting mirror side. In this case, there is a demerit that the area of the reflecting mirror is reduced, but on the other hand, there is an effect that the dust does not directly hit the surface of the reflecting mirror.
 図19は、端部を折り曲げた反射鏡の構成図である。折り曲げ構造による揚力発生部材の例である。金属等からなる反射鏡では、反射鏡119の端部を折り曲げることにより、揚力発生部材952を構成できる。反射鏡自体を折り曲げるだけなので、生産コストを低減できる。 FIG. 19 is a configuration diagram of a reflecting mirror whose end is bent. It is an example of the lift generation | occurrence | production member by a bending structure. In a reflecting mirror made of metal or the like, the lift generating member 952 can be configured by bending the end of the reflecting mirror 119. Since the reflector itself is simply bent, the production cost can be reduced.
 以上より、本実施例によれば、強風下でも反射鏡の振動を抑えることができ、ひいては反射鏡の結合部分などの破壊可能性を低減できる。 As described above, according to the present embodiment, it is possible to suppress the vibration of the reflecting mirror even under a strong wind, and to reduce the possibility of breakage of the connecting portion of the reflecting mirror.
 なお、本発明は上記の実施例に限定されるものではなく、その要旨を逸脱しない範囲における構成の置換や追加、処理順番の入れ替え、削除などが可能である。
In addition, this invention is not limited to said Example, The replacement | exchange and addition of a structure in the range which does not deviate from the summary, replacement of a process order, deletion, etc. are possible.
101…受光器、102…タワー、103…ヘリオスタット、104…ヘリオスタットのうちの一台、105…ヘリオスタット制御装置、106…CPU部、107…入力部、108…表示部、109…記録媒体、110…スクリーン、111…カメラ、112…直達日射計、113…冷却設備、114…配管、115…制御装置、117…配管、118…蒸気タービン、119…反射鏡、120…反射鏡駆動機、121…支持脚、301…基準時刻の太陽位置、302…太陽位置、304…光量分布、305…光量分布、901…防風用ヘリオスタット、902…風向および風速センサー、951…支持部分、952…揚力発生部材 DESCRIPTION OF SYMBOLS 101 ... Light receiver, 102 ... Tower, 103 ... Heliostat, 104 ... One of heliostats, 105 ... Heliostat control device, 106 ... CPU part, 107 ... Input part, 108 ... Display part, 109 ... Recording medium 110 ... Screen, 111 ... Camera, 112 ... Direct pyranometer, 113 ... Cooling equipment, 114 ... Piping, 115 ... Control device, 117 ... Piping, 118 ... Steam turbine, 119 ... Reflective mirror, 120 ... Reflective mirror driver, DESCRIPTION OF SYMBOLS 121 ... Supporting leg, 301 ... Solar position at reference time, 302 ... Solar position, 304 ... Light quantity distribution, 305 ... Light quantity distribution, 901 ... Windproof heliostat, 902 ... Wind direction and wind speed sensor, 951 ... Supporting part, 952 ... Lifting force Generating member

Claims (15)

  1.  照射された光を受け取る受光器と、
     太陽光を反射し、その反射光を前記受光器に照射する複数のヘリオスタットと、
     前記複数のヘリオスタットを制御することにより、前記ヘリオスタットからの反射光を制御する制御装置と、
     を備えた太陽光集光装置において、
     前記複数のヘリオスタットのうちの一部からの反射光が照射され、当該反射光に基づき当該ヘリオスタットの太陽光反射特性を測定する測定機構と、
     を備えることを特徴とする太陽光集光装置。
    A receiver for receiving the irradiated light;
    A plurality of heliostats that reflect sunlight and irradiate the receiver with the reflected light;
    A control device that controls reflected light from the heliostat by controlling the plurality of heliostats;
    In a solar concentrator equipped with
    A measurement mechanism that is irradiated with reflected light from a part of the plurality of heliostats, and that measures the sunlight reflection characteristics of the heliostat based on the reflected light;
    A solar condensing device comprising:
  2.  請求項1記載の太陽光集光装置において、
     前記制御装置による前記ヘリオスタットからの反射光の制御は、前記へリオスタットの太陽光反射特性、または太陽光反射特性から得られる前記受光器の熱量分布に基づき行われることを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 1,
    Control of the reflected light from the heliostat by the control device is performed based on the sunlight reflection characteristics of the heliostat or the heat distribution of the light receiver obtained from the sunlight reflection characteristics. Optical device.
  3.  請求項2記載の太陽光集光装置において、
     前記制御装置は、前記受光器上の熱量分布が前記受光器の耐熱温度以下となるように、前記ヘリオスタットを制御することを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 2,
    The said control apparatus controls the said heliostat so that the calorie | heat amount distribution on the said light receiver may become below the heat-resistant temperature of the said light receiver, The solar condensing device characterized by the above-mentioned.
  4.  請求項1記載の太陽光集光装置において、
     前記測定機構は、前記へリオスタットからの反射光が照射される反射光受光器と、当該反射光受光器の光量分布を取得する光量取得器を含むことを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 1,
    The measurement mechanism includes a reflected light receiver to which reflected light from the heliostat is irradiated, and a light amount acquisition unit for acquiring a light amount distribution of the reflected light receiver.
  5.  請求項1記載の太陽光集光装置において、
     前記測定機構による前記ヘリオスタットの太陽光反射特性の測定は、当該ヘリオスタットの状態が所定の条件を満たすと行われることを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 1,
    The solar light collecting device, wherein the measurement of the sunlight reflection characteristic of the heliostat by the measurement mechanism is performed when the state of the heliostat satisfies a predetermined condition.
  6.  請求項1記載の太陽光集光装置において、
     前記測定機構による前記ヘリオスタットの太陽光反射特性の測定は、太陽光集光装置の稼動時間または受光器の受光量もしくは発熱量の積算値の少なくともいずれかが、所定の条件を満たすと行われることを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 1,
    The measurement of the solar reflection characteristic of the heliostat by the measurement mechanism is performed when at least one of the operation time of the solar light collecting device or the integrated value of the light reception amount or the heat generation amount of the light receiver satisfies a predetermined condition. The solar condensing device characterized by the above.
  7.  請求項1記載の太陽光集光装置において、
     前記ヘリオスタットの太陽光反射特性の測定結果を記憶する記憶部を備え、
     前記測定機構により、一定期間毎に各ヘリオスタットの太陽光反射特性を測定し、
     前記制御部は、前記記憶部に記憶された複数期間分の太陽光反射特性を比較解析することにより、各ヘリオスタットの保守時期を判断することを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 1,
    A storage unit for storing measurement results of solar reflection characteristics of the heliostat;
    By the measurement mechanism, the solar reflection characteristic of each heliostat is measured at regular intervals,
    The said control part judges the maintenance time of each heliostat by comparing and analyzing the sunlight reflection characteristic for several periods memorize | stored in the said memory | storage part, The solar light condensing device characterized by the above-mentioned.
  8.  請求項1記載の太陽光集光装置において、
     前記制御部は、前記複数期間分の太陽光反射特性を比較することにより、各ヘリオスタットの汚れ、傷、または歪みの少なくともいずれかを解析して、各ヘリオスタットの保守時期を判断することを特徴とする太陽光集光装置。
    The solar light collecting device according to claim 1,
    The control unit analyzes the at least one of dirt, scratches, and distortion of each heliostat by comparing the sunlight reflection characteristics for the plurality of periods, and determines the maintenance time of each heliostat. A featured solar concentrator.
  9.  複数のヘリオスタットからの反射光を受光器に集光する太陽光集光装置における、前記ヘリオスタットを制御する太陽光集光制御装置であって、
     前記ヘリオスタットから照射された反射光に基づき、当該ヘリオスタットの太陽光反射特性を測定する測定機構と、
     前記測定機構により測定された太陽光反射特性を記憶する記憶部と、
     を備えることを特徴とする太陽光集光制御装置。
    In a solar light collecting device for collecting reflected light from a plurality of heliostats on a light receiver, a solar light collecting control device for controlling the heliostat,
    Based on the reflected light emitted from the heliostat, a measurement mechanism for measuring the solar reflection characteristics of the heliostat;
    A storage unit for storing sunlight reflection characteristics measured by the measurement mechanism;
    A solar light condensing control device comprising:
  10.  請求項9記載の太陽光集光制御装置において、
     前記ヘリオスタットの制御は、前記記憶部に記憶された当該へリオスタットの太陽光反射特性から、前記受光器の熱量分布を算出し、前記受光器の熱量分布が前記受光器の耐熱温度以下となるように行われることを特徴とする太陽光集光制御装置。
    The solar light collecting control device according to claim 9, wherein
    The control of the heliostat calculates the heat distribution of the light receiver from the solar reflection characteristics of the heliostat stored in the storage unit, and the heat distribution of the light receiver is equal to or lower than the heat resistant temperature of the light receiver. The solar light condensing control device characterized by being performed.
  11.  請求項9記載の太陽光集光制御装置において、
     前記測定部は、前記へリオスタットからの反射光が照射される反射光受光器と、当該反射光受光部の光量分布を取得する光量取得器を含むことを特徴とする太陽光集光制御装置。
    The solar light collecting control device according to claim 9, wherein
    The solar light collection control device, wherein the measurement unit includes a reflected light receiver that receives the reflected light from the heliostat and a light amount acquirer that acquires a light amount distribution of the reflected light receiver.
  12.  請求項9記載の太陽光集光制御装置において、
     前記測定機構により、一定期間毎に各ヘリオスタットの太陽光反射特性を測定し、前記記憶部に記憶された複数期間分の太陽光反射特性を比較解析することにより、各ヘリオスタットの保守時期を判断することを特徴とする太陽光集光制御装置。
    The solar light collecting control device according to claim 9, wherein
    The measurement mechanism measures the solar reflection characteristics of each heliostat at regular intervals, and compares and analyzes the solar reflection characteristics for a plurality of periods stored in the storage unit, thereby determining the maintenance time of each heliostat. A sunlight condensing control device characterized by determining.
  13.  受光器に反射光を集光する、複数の太陽光反射器の制御方法であって、
     前記複数の太陽光反射器のうちの一部からの反射光を、太陽光反射器の太陽光反射特性を測定する測定部に照射するように制御し、当該太陽光反射特性を測定することを特徴とする複数の太陽光反射器の制御方法。
    A method of controlling a plurality of solar reflectors that collects reflected light on a light receiver,
    Controlling the reflected light from some of the plurality of solar reflectors to irradiate the measurement unit that measures the solar reflective characteristics of the solar reflector, and measuring the solar reflective characteristics A control method for a plurality of solar reflectors.
  14.  請求項13記載の複数の太陽光反射器の制御方法において、
     前記受光器の熱量分布が前記受光器の耐熱温度以下となるように、前記太陽光反射器を制御することを特徴とする複数の太陽光反射器の制御方法。
    The method of controlling a plurality of solar reflectors according to claim 13,
    A control method for a plurality of solar reflectors, wherein the solar reflectors are controlled such that a heat distribution of the optical receivers is equal to or lower than a heat resistant temperature of the optical receivers.
  15.  請求項13記載の複数の太陽光反射器の制御方法において、
     一定期間ごとに太陽光反射器の太陽光反射特性を測定し、当該太陽光反射特性の測定結果の変化から、太陽光反射器の保守時期を判断することを特徴とする太陽光反射器の制御方法。
    The method of controlling a plurality of solar reflectors according to claim 13,
    Solar reflector control characterized by measuring sunlight reflection characteristics of a solar reflector at regular intervals and judging the maintenance time of the solar reflector from changes in the measurement results of the sunlight reflection characteristics Method.
PCT/JP2015/052259 2015-01-28 2015-01-28 Solar light collecting device, controlling device for same, and solar light reflector control method WO2016121016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052259 WO2016121016A1 (en) 2015-01-28 2015-01-28 Solar light collecting device, controlling device for same, and solar light reflector control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052259 WO2016121016A1 (en) 2015-01-28 2015-01-28 Solar light collecting device, controlling device for same, and solar light reflector control method

Publications (1)

Publication Number Publication Date
WO2016121016A1 true WO2016121016A1 (en) 2016-08-04

Family

ID=56542673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052259 WO2016121016A1 (en) 2015-01-28 2015-01-28 Solar light collecting device, controlling device for same, and solar light reflector control method

Country Status (1)

Country Link
WO (1) WO2016121016A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780673A (en) * 2019-11-15 2020-02-11 浙江中光新能源科技有限公司 Heliostat night cleaning system based on guidance of searchlight

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564275A (en) * 1984-06-21 1986-01-14 Mcdonnell Douglas Corporation Automatic heliostat track alignment method
DE102008008402A1 (en) * 2008-02-09 2009-08-13 Robert Bosch Gmbh Solar power plant with sensor-based adjustment option
US20090250052A1 (en) * 2007-11-12 2009-10-08 Luz Ii Ltd. Solar receiver with energy flux measurement and control
JP2011032960A (en) * 2009-08-04 2011-02-17 Mitsubishi Heavy Ind Ltd Solar heat gas turbine power generator and solar heat gas turbine power generation method
US20130021471A1 (en) * 2011-07-21 2013-01-24 Google Inc. Reflective Surface Orientating with Multiple View Ports
US20130284162A1 (en) * 2010-12-22 2013-10-31 Limestone Avenue Campbell Heliostat calibration and control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564275A (en) * 1984-06-21 1986-01-14 Mcdonnell Douglas Corporation Automatic heliostat track alignment method
US20090250052A1 (en) * 2007-11-12 2009-10-08 Luz Ii Ltd. Solar receiver with energy flux measurement and control
DE102008008402A1 (en) * 2008-02-09 2009-08-13 Robert Bosch Gmbh Solar power plant with sensor-based adjustment option
JP2011032960A (en) * 2009-08-04 2011-02-17 Mitsubishi Heavy Ind Ltd Solar heat gas turbine power generator and solar heat gas turbine power generation method
US20130284162A1 (en) * 2010-12-22 2013-10-31 Limestone Avenue Campbell Heliostat calibration and control
US20130021471A1 (en) * 2011-07-21 2013-01-24 Google Inc. Reflective Surface Orientating with Multiple View Ports

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780673A (en) * 2019-11-15 2020-02-11 浙江中光新能源科技有限公司 Heliostat night cleaning system based on guidance of searchlight

Similar Documents

Publication Publication Date Title
CN103309359B (en) Method and system for operating solar column system
CN102549350B (en) Calibration system for solar collector installation
CN107843348B (en) Device and method for measuring energy flow density of heat absorber
CN102495640B (en) Heliostat calibration method and system for solar power station
US20130284162A1 (en) Heliostat calibration and control
CN108917205B (en) System and method for thermal-mechanical monitoring of solar receivers
WO2013044848A1 (en) Calibration system and calibration method for heliostat in solar power station
CN102980313A (en) Heliostat error correction system and method for solar tower optical-thermal power station
WO2008001891A1 (en) Inspecting device, and inspecting method
WO2016121016A1 (en) Solar light collecting device, controlling device for same, and solar light reflector control method
US9300851B2 (en) Method and system for compensating optical aberrations in a telescope
CN102411375A (en) Method and system for accurately controlling sunlight reflection device
US12085312B2 (en) Sensor arrangement and optimized tracking for CSP systems
Riveros-Rosas et al. Concentration Images Profiles of the High-Flux Solar Furnace of CIE-UNAM in Temixco, Mexico. First Stage
KR102016749B1 (en) Condensing sunlight apparatus capable of accurate measuring solar radiation and Operating methods thereof
Meiser Analysis of parabolic trough concentrator mirror shape accuracy in laboratory and collector
Les et al. Validation of a low-cost camera for Scalable HeliOstat calibRation sysTem (SHORT)
US20120298177A1 (en) Concentrating photovoltaic systems with offset photovoltaic devices and/or associated methods
US11835267B2 (en) Method and arrangement for verifying reflector surfaces of parabolic trough solar collectors
CN103032974A (en) Device and method for adjusting and correcting reflecting surface type of tower type system heliostat
JP2015140937A (en) Solar thermal collection system and track correction method for same
Saldivar-Aguilera et al. Dual feedback closed-loop control for one-axis solar trackers of parabolic trough collector systems
US20240240834A1 (en) CSP System, sensor arrangement, method and use
AU2002244529B2 (en) Solar mirror testing and alignment
CN202993613U (en) Adjusting and correcting device for reflecting surface of heliostat of tower system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP