WO2016120928A1 - Container unit - Google Patents

Container unit Download PDF

Info

Publication number
WO2016120928A1
WO2016120928A1 PCT/JP2015/005889 JP2015005889W WO2016120928A1 WO 2016120928 A1 WO2016120928 A1 WO 2016120928A1 JP 2015005889 W JP2015005889 W JP 2015005889W WO 2016120928 A1 WO2016120928 A1 WO 2016120928A1
Authority
WO
WIPO (PCT)
Prior art keywords
container unit
wall portion
concavo
circulation path
convex
Prior art date
Application number
PCT/JP2015/005889
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 川合
中西 清史
聖治 久保
五十嵐 進
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016120928A1 publication Critical patent/WO2016120928A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • This disclosure relates to a container unit that performs temperature management of an internal space.
  • a conventional heat insulating structure in a container uses a combination of a heat insulating material sandwiched between an inner wall and an outer wall and an air conditioning path formed on the inner space side of the inner wall.
  • the heat insulating performance depends on the thickness of the heat insulating portion such as the heat insulating material, it is necessary to increase the thickness of the heat insulating material in order to ensure high heat insulating performance. In this case, it is difficult to say that sufficient heat insulation performance can be obtained with a sufficient space on the inner space side.
  • the problem of the present disclosure is to provide a container unit capable of improving the heat insulation performance without increasing the thickness of the heat insulation space.
  • a container unit is a container unit that stores cargo in an internal space, and forms an internal space, and a heat insulating space between a first surface on the internal space side and a second surface on the opposite side.
  • the outer wall portion having the inner wall portion is disposed to face the first surface of the outer wall portion with a predetermined gap, and an air flow is generated in the circulation path, and an inner wall portion that forms a circulation path between the outer wall portion and the first surface.
  • the container unit according to the present disclosure can improve the heat insulation performance without increasing the thickness of the heat insulation space.
  • FIG. 1 is a perspective view showing a configuration of the entire container unit according to the embodiment.
  • 2 is a cross-sectional view taken along the line 2-2 of the side surface 12c of the container unit of FIG.
  • FIG. 3 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit of FIG. 1.
  • FIG. 4 is an enlarged schematic view of the main part P1 of FIG.
  • FIG. 5 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit of FIG. 1.
  • FIG. 6 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit according to another embodiment.
  • 7A is a cross-sectional view taken along line 7-7 of FIG.
  • FIG. 7B is another 7-7 cross-sectional view of FIG.
  • FIG. 8 is a perspective view showing a configuration of another first surface of the outer wall portion of the container unit according to another embodiment.
  • FIG. 9 is a perspective view showing the configuration of the third surface of the inner wall
  • FIG. 1 is a perspective view illustrating a configuration of an entire container unit according to an embodiment of the present disclosure.
  • the container unit 10 is used to store various cargos and the like in a box-shaped internal space, and includes an air conditioning unit 11 and a container unit 12.
  • Air conditioning unit 11 As shown in FIG. 1, the air conditioning unit 11 is disposed on the side of the container unit 12 that stores cargo and the like in order to manage the temperature in the internal space S ⁇ b> 1 formed in the box-shaped container unit 12. Yes. And as shown in FIG. 1, the air-conditioning part 11 has the compressor 11a, the heat exchanger 11b, and the airflow control fan 11c which is an air conditioner.
  • the compressor 11a circulates the refrigerant flowing in the heat exchanger 11b.
  • the heat exchanger 11b performs heat exchange between the air passing through the vicinity and the refrigerant so as to adjust the air sent downstream to a predetermined temperature.
  • the airflow control fan 11c forms a first airflow F1, which will be described later, generated in the container unit 10. More specifically, as shown in FIG. 1, the airflow control fan 11c first generates a first airflow F1 that flows in the direction of the side surface 12c along the ceiling surface 12e from the side surface 12a side. As a result, a first air flow F1 that flows along the ceiling surface 12e, the side surface 12c, and the floor surface 12f is formed from a portion where the side surface 12a and the ceiling surface 12e are connected in the circulation path S2 described later.
  • the rotational speed of the airflow control fan 11c is controlled so as to adjust the amount and speed of the airflow based on the detection result of a temperature sensor (not shown) arranged in the container unit 12. That is, when the difference between the detected temperature in the container unit 12 and the set temperature is large, control is performed so that the rotational speed of the airflow control fan 11c increases. On the other hand, when the temperature difference is small, the airflow control fan 11c is controlled to reduce the rotation speed or stop the rotation.
  • the container portion 12 has a box shape for storing various cargos in the internal space S1, and includes a side surface 12a, a side surface 12b, a side surface 12c, a side surface 12d, a ceiling surface 12e, and a floor surface 12f. have. And the container part 12 forms internal space S1 by these six surfaces.
  • the side surface 12a is a surface adjacent to the air conditioning unit 11, and is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12b and 12d.
  • the side surface 12a forms the left side surface in FIG. Note that a circulation path S2 and the like which will be described later are formed on the side surface 12a.
  • the side surface 12b is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12a and 12c, and forms the back side surface in FIG.
  • the side surface 12c is a surface opposed to the side surface 12a adjacent to the air conditioning unit 11, and is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12b and 12d.
  • the side surface 12c forms the right side surface in FIG. Note that a circulation path S2 and the like described later are formed on the side surface 12c.
  • the side surface 12d is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12a and 12c, and forms the front side surface in FIG.
  • the side surface 12d is provided with an unillustrated opening / closing door for carrying cargo in and out.
  • the ceiling surface 12e forms the upper surface of the box-shaped container portion 12, and is connected to the four side surfaces 12a, 12b, 12c, and 12d. Note that a circulation path S2 and the like described later are formed on the ceiling surface 12e.
  • the floor surface 12f forms the bottom surface of the box-shaped container portion 12, and is connected to the four side surfaces 12a, 12b, 12c, and 12d. Note that a circulation path S2 and the like described later are formed on the floor surface 12f.
  • the container unit 10 of the present embodiment has the following heat insulating structure on the ceiling surface 12e, the side surface 12c, the floor surface 12f, and the side surface 12a among the six surfaces forming the internal space S1 in the container portion 12. I have.
  • FIG. 2 is a 2-2 cross-sectional view of the side surface 12c of the container unit of FIG.
  • the configuration of the side surface 12c will be described with reference to FIG. 2, but the other ceiling surface 12e, floor surface 12f, and side surface 12a are assumed to have the same configuration, although the arrangement directions are different.
  • the side surface 12 c of the container portion 12 of the container unit 10 of the present embodiment includes an outer wall portion 20 and an inner wall portion 30 that are arranged substantially parallel to each other.
  • the outer wall portion 20 is disposed on the outside air side of the side surface 12c, and includes an aluminum plate 21 that is a second surface, a heat insulating material 22 that is a heat insulating space, and an aluminum plate 23.
  • the aluminum plate 21 is made of, for example, an aluminum plate having a thickness of about 0.8 mm, and forms the outermost surface in contact with the outside air.
  • the heat insulating material 22 is provided between the aluminum plate 21 and the aluminum plate 23 so that the temperature inside the container portion 12 is not affected by the temperature of the outside air.
  • the heat insulating material 22 is comprised using the urethane foam, for example.
  • the aluminum plate 23 is, for example, a plate-shaped member made of aluminum, and has a first concavo-convex structure, which will be described in detail with reference to FIG. 3, on the first surface that is the surface facing the internal space S 1, that is, the side facing the inner wall portion 30. It has an uneven structure 23a.
  • the aluminum plate 23 forms a circulation path S2 in a gap between the aluminum plate 23 and the inner wall portion 30 that is disposed to face the gap through a predetermined gap.
  • the inner wall portion 30 is disposed on the side of the inner space S1 on the side surface 12c with a predetermined gap with respect to the aluminum plate 23 of the outer wall portion 20.
  • the inner wall portion 30 has a resin plate 31, a convex portion 32, and a through hole H.
  • the resin plate 31 is, for example, a resin plate-like member, and has a second concavo-convex structure, which will be described in detail with reference to FIG. 5, on the third surface that is the surface of the outer wall portion 20 facing the aluminum plate 23. It has an uneven structure 31a.
  • the resin plate 31 is provided with a convex portion 32 on the surface on the internal space S1 side. Further, the resin plate 31 has a through hole H that allows the internal space S1 and the circulation path S2 to communicate with each other at a predetermined interval. As described above, the resin plate 31 forms the circulation path S ⁇ b> 2 in the gap between the resin plate 31 and the outer wall portion 20 disposed so as to face the gap through the predetermined gap.
  • the convex portion 32 is a quadrangular member in cross-sectional view, and is disposed on the fourth surface, which is the surface of the resin plate 31 on the internal space S1 side. And the convex part 32 is arrange
  • the convex portion 32 is formed on the inner surface of the internal space S1, it is possible to prevent the cargo from being arranged so as to contact the inner surface. Therefore, even when the container unit 10 is fully loaded with cargo, it is possible to secure a route through which the air temperature-controlled by the air conditioning unit 11 passes into the internal space S1, so that the efficiency of the air conditioning unit 11 can be improved. .
  • the through hole H is formed so as to penetrate the resin plate 31 so that the internal space S1 and the circulation path S2 communicate with each other. And the through-hole H is arrange
  • FIG. 3 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit of FIG. 1.
  • FIG. 4 is an enlarged schematic view of the main part P1 of FIG.
  • the concavo-convex structure 23a is formed on the first surface of the aluminum plate 23 constituting the outer wall portion 20, that is, the surface side facing the resin plate 31 of the inner wall portion 30. I have.
  • the concavo-convex structure 23a is configured by alternately arranging a plurality of concave portions and convex portions in a grid pattern.
  • the first air flow F1 generated in the circulation path S2 passes through the surface of the concavo-convex structure 23a.
  • a part of the first air flow F1 causes a stay F2a due to the concave portion of the concavo-convex structure 23a, thereby generating an air flow F2b in a direction substantially perpendicular to the first air flow F1.
  • the air flow that combines the stay F2a and the air flow F2b is the second air flow F2.
  • the first air flow F1 is generated in the circulation path S2 as a result of blowing air exchanged with the refrigerant through the heat exchanger 11b by the air flow control fan 11c. Therefore, the temperature of the first air flow F1 is temperature-managed in order to maintain the temperature of the internal space S1 in the container unit 10 at the set temperature.
  • the second air flow F2 generated by the concave portion of the concavo-convex structure 23a can be actively sent to the inner space S1 side. Therefore, the temperature management in the internal space S1 of the container unit 10 can be efficiently performed.
  • the container unit 10 of the present embodiment employs a structure that can efficiently perform temperature management by the air conditioning unit 11, the thickness of the heat insulating material 22 can be made thinner than before.
  • the container unit 10 of the present embodiment can have a larger volume of the internal space S1 than the conventional container unit. As a result, the amount of cargo loaded in the container unit 10 can be increased.
  • FIG. 5 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit of FIG. 1.
  • the concavo-convex structure 31a is provided on the surface side facing the aluminum plate 23 of the outer wall portion 20, which is the third surface of the resin plate 31 constituting the inner wall portion 30. ing.
  • the concavo-convex structure 31 a is configured by alternately and continuously arranging linear concave portions and linear convex portions.
  • the concave and convex portions constituting the concave-convex structure 31a are formed so as to extend along the flowing direction of the first air flow F1 generated by the air flow control fan 11c.
  • the flow of the first air flow F1 temperature-controlled by the air conditioning unit 11 is not hindered on the inner wall 30 side where the uneven structure 31a is formed. Therefore, the heat dissipation effect to the internal space S1 in the inner wall portion 30 can be improved, and the temperature of the temperature-controlled first air flow F1 can be efficiently radiated to the internal space S1 side. As a result, the efficiency of temperature management by the air conditioning unit 11 can be further improved.
  • FIG. 6 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit according to another embodiment.
  • the concavo-convex structure formed on the first surface of the outer wall portion is formed with a concavo-convex structure 123a which is a first concavo-convex structure including a plurality of linear grooves formed in parallel to each other.
  • An aluminum plate 123 may be used.
  • the uneven structure 123a is provided so that a plurality of unevenness is arranged along the direction intersecting the direction of the first air flow F1, and thus the same effect as in the above embodiment is obtained. Obtainable.
  • FIG. 7A is a cross-sectional view taken along line 7-7 in FIG. 3, and FIG. 7B is a cross-sectional view taken along line 7-7 in FIG.
  • the cross section of the concave portion and the cross section of the convex portion of the lattice-like uneven structure 23a may be rectangular, or the cross section of the concave portion of the lattice-like uneven structure 23a is as shown in FIG. 7B.
  • the concavo-convex structure 23a may have a point shape as a whole.
  • FIG. 8 is a perspective view showing the configuration of another first surface of the outer wall portion of the container unit according to another embodiment. Furthermore, as shown in FIG. 8, an aluminum plate 223 on which a concavo-convex structure 223a that is a first concavo-convex structure including a corrugated shape that is a plurality of corrugated shapes formed in parallel to each other may be used.
  • the concavo-convex structure 223a is provided so that a plurality of corrugated irregularities are arranged along the direction intersecting the direction of the first air flow F1, so that the same as in the above embodiment. The effect of can be obtained.
  • FIG. 9 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit according to still another embodiment.
  • an aluminum plate 231 on which a concavo-convex structure 231a that is a second concavo-convex structure including a corrugated shape that is a plurality of corrugated shapes formed in parallel to each other may be used.
  • the structure according to the present disclosure may be applied to all six surfaces including the side surfaces 12b and 12d illustrated in FIG. Or you may apply only to the side surface 12a shown in FIG. 1, the ceiling surface 12e, and the side surface 12c.
  • the heat insulating space may be formed by an air layer without filling the heat insulating material.
  • heat insulating materials other than urethane foam such as glass wool, may be used.
  • the configuration may be such that only the concavo-convex structure 23a on the outer wall 20 side that generates the second air flow F2 is provided, and the concavo-convex structure on the inner wall 30 side is not provided.
  • the aluminum plate 21 and the aluminum plate 23 were formed with the plate-shaped member made from aluminum, and the example which formed the resin plate 31 with the plate-shaped member made from resin demonstrated.
  • the present disclosure is not limited to this.
  • all of these members may be formed of an aluminum member or a resin member. Or you may form in combination with another raw material.
  • the materials of the aluminum plates 123, 231, and 233 are not limited in the same manner.
  • the container unit of the present disclosure has the effect of improving the heat insulation performance without increasing the thickness of the heat insulating material, and thus can be widely applied to containers and containers for storing various articles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Duct Arrangements (AREA)

Abstract

This container unit stores cargo in an internal space. The container unit is provided with: an outer wall part that forms the internal space and that has a thermal insulation space between a first surface thereof that is on the internal-space side and a second surface thereof that is on the opposite side; an inner wall part that is arranged to face the first surface of the outer wall part with a prescribed gap therebetween and that forms a circulation path between itself and the first surface; an air conditioning device that generates an airflow in the circulation path; and a first concave/convex structure that is provided to the first surface of the outer wall part and that has a plurality of recesses/protrusions that are formed along a direction that is orthogonal to the direction of the airflow generated in the circulation path.

Description

コンテナユニットContainer unit
 本開示は、内部空間の温度管理を行うコンテナユニットに関する。 This disclosure relates to a container unit that performs temperature management of an internal space.
 従来のコンテナ内の断熱構造には、例えば、内壁と外壁との間に挟みこまれた断熱材と、内壁の内部空間側に形成された空調路とを組み合わせた構成が用いられている。 For example, a conventional heat insulating structure in a container uses a combination of a heat insulating material sandwiched between an inner wall and an outer wall and an air conditioning path formed on the inner space side of the inner wall.
 これにより、コンテナの内部空間の温度や内部空間に載置された物品等の温度管理を行っている。 In this way, the temperature of the internal space of the container and the temperature of the articles placed in the internal space are managed.
米国特許第6189330号明細書US Pat. No. 6,189,330 米国特許出願公開第2014/0144161号明細書US Patent Application Publication No. 2014/0144161 米国特許出願公開第2010/0072211号明細書US Patent Application Publication No. 2010/0072211
 しかしながら、上記従来のコンテナの構成では、以下に示すような問題点を有している。 However, the conventional container configuration described above has the following problems.
 すなわち、上記公報に開示されたコンテナでは、断熱性能は断熱材等の断熱部の厚さに依存することから、高い断熱性能を確保するためには、断熱材の厚みを大きくする必要がある。この場合には、内部空間側のスペースを十分に確保した状態で、十分な断熱性能が得られるとは言い難い。 That is, in the container disclosed in the above publication, since the heat insulating performance depends on the thickness of the heat insulating portion such as the heat insulating material, it is necessary to increase the thickness of the heat insulating material in order to ensure high heat insulating performance. In this case, it is difficult to say that sufficient heat insulation performance can be obtained with a sufficient space on the inner space side.
 本開示の課題は、断熱空間の厚みを大きくすることなく、断熱性能を向上させることが可能なコンテナユニットを提供することである。 The problem of the present disclosure is to provide a container unit capable of improving the heat insulation performance without increasing the thickness of the heat insulation space.
 本開示に係るコンテナユニットは、内部空間内に貨物を収納するコンテナユニットであって、内部空間を形成するとともに、内部空間側の第1面とその反対側の第2面との間に断熱空間を有する外壁部と、外壁部の第1面に対して所定の隙間を介して対向配置されており、第1面との間に循環路を形成する内壁部と、循環路において空気流を発生させる空調装置と、外壁部の第1面に設けられており、循環路において生じた空気流の方向に対して交差する方向に沿って複数の凹凸が形成された第1凹凸構造と、を備えている。 A container unit according to the present disclosure is a container unit that stores cargo in an internal space, and forms an internal space, and a heat insulating space between a first surface on the internal space side and a second surface on the opposite side. The outer wall portion having the inner wall portion is disposed to face the first surface of the outer wall portion with a predetermined gap, and an air flow is generated in the circulation path, and an inner wall portion that forms a circulation path between the outer wall portion and the first surface. An air conditioner to be provided, and a first concavo-convex structure provided on the first surface of the outer wall and having a plurality of concavo-convex structures formed in a direction intersecting the direction of the air flow generated in the circulation path. ing.
 本開示に係るコンテナユニットによれば、断熱空間の厚みを大きくすることなく、断熱性能を向上させることができる。 The container unit according to the present disclosure can improve the heat insulation performance without increasing the thickness of the heat insulation space.
図1は、実施の形態に係るコンテナユニット全体の構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of the entire container unit according to the embodiment. 図2は、図1のコンテナユニットの側面12cの2-2断面図である。2 is a cross-sectional view taken along the line 2-2 of the side surface 12c of the container unit of FIG. 図3は、図1のコンテナユニットの外壁部の第1面の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit of FIG. 1. 図4は、図2の要部P1を拡大した概略図である。FIG. 4 is an enlarged schematic view of the main part P1 of FIG. 図5は、図1のコンテナユニットの内壁部の第3面の構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit of FIG. 1. 図6は、他の実施の形態に係るコンテナユニットの外壁部の第1面の構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit according to another embodiment. 図7Aは、図3の7-7断面図である。7A is a cross-sectional view taken along line 7-7 of FIG. 図7Bは、図3の別の7-7断面図である。FIG. 7B is another 7-7 cross-sectional view of FIG. 図8は、他の実施の形態に係るコンテナユニットの外壁部の別の第1面の構成を示す斜視図である。FIG. 8 is a perspective view showing a configuration of another first surface of the outer wall portion of the container unit according to another embodiment. 図9は、他の実施の形態に係るコンテナユニットの内壁部の第3面の構成を示す斜視図である。FIG. 9 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit according to another embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 (実施の形態)
 本実施の形態に係るコンテナユニット10について、図1~図5を用いて説明する。
(Embodiment)
A container unit 10 according to the present embodiment will be described with reference to FIGS.
 (コンテナユニット10の構成)
 図1は、本開示の一実施の形態に係るコンテナユニット全体の構成を示す斜視図である。図1に示すように、コンテナユニット10は、箱型の内部空間内に各種貨物等を収納するために使用され、空調部11と、コンテナ部12と、を備えている。
(Configuration of container unit 10)
FIG. 1 is a perspective view illustrating a configuration of an entire container unit according to an embodiment of the present disclosure. As shown in FIG. 1, the container unit 10 is used to store various cargos and the like in a box-shaped internal space, and includes an air conditioning unit 11 and a container unit 12.
  (空調部11)
 図1に示すように、空調部11は、箱型のコンテナ部12内に形成される内部空間S1内における温度を管理するために、貨物等を収納するコンテナ部12の側方に配置されている。そして、図1に示すように、空調部11は、コンプレッサ11a、熱交換器11b、および空調装置である気流制御ファン11cを有している。
(Air conditioning unit 11)
As shown in FIG. 1, the air conditioning unit 11 is disposed on the side of the container unit 12 that stores cargo and the like in order to manage the temperature in the internal space S <b> 1 formed in the box-shaped container unit 12. Yes. And as shown in FIG. 1, the air-conditioning part 11 has the compressor 11a, the heat exchanger 11b, and the airflow control fan 11c which is an air conditioner.
 コンプレッサ11aは、熱交換器11b内を流れる冷媒を循環させる。 The compressor 11a circulates the refrigerant flowing in the heat exchanger 11b.
 熱交換器11bは、近傍を通過する空気と冷媒との間で熱交換を行うことで、下流側へ送り出される空気が所定の温度になるように調整する。 The heat exchanger 11b performs heat exchange between the air passing through the vicinity and the refrigerant so as to adjust the air sent downstream to a predetermined temperature.
 気流制御ファン11cは、コンテナユニット10内において生じる、後述する第1空気流F1を形成する。より具体的には、図1に示すように、気流制御ファン11cは、まず、側面12a側から天井面12eに沿って側面12c方向に流れる第1空気流F1を生成する。これにより、後述する循環路S2において、側面12aと天井面12eとが連結された部分から、天井面12e、側面12cおよび床面12fに沿って流れる第1空気流F1が形成される。 The airflow control fan 11c forms a first airflow F1, which will be described later, generated in the container unit 10. More specifically, as shown in FIG. 1, the airflow control fan 11c first generates a first airflow F1 that flows in the direction of the side surface 12c along the ceiling surface 12e from the side surface 12a side. As a result, a first air flow F1 that flows along the ceiling surface 12e, the side surface 12c, and the floor surface 12f is formed from a portion where the side surface 12a and the ceiling surface 12e are connected in the circulation path S2 described later.
 また、気流制御ファン11cは、コンテナ部12内に配置された図示しない温度センサの検出結果に基づいて、空気流の量、速さを調整するように、回転速度が制御される。つまり、コンテナ部12内の検出温度と設定温度との差が大きい場合には、気流制御ファン11cの回転数が大きくなるように制御される。一方、温度差が小さい場合には、気流制御ファン11cの回転数を小さくする、あるいは回転を停止させるように制御される。 Further, the rotational speed of the airflow control fan 11c is controlled so as to adjust the amount and speed of the airflow based on the detection result of a temperature sensor (not shown) arranged in the container unit 12. That is, when the difference between the detected temperature in the container unit 12 and the set temperature is large, control is performed so that the rotational speed of the airflow control fan 11c increases. On the other hand, when the temperature difference is small, the airflow control fan 11c is controlled to reduce the rotation speed or stop the rotation.
  (コンテナ部12)
 図1に示すように、コンテナ部12は、内部空間S1内に各種貨物等を収納する箱型形状であって、側面12a、側面12b、側面12c、側面12d、天井面12e、および床面12fを有している。そして、コンテナ部12は、これらの6つの面によって内部空間S1を形成する。
(Container part 12)
As shown in FIG. 1, the container portion 12 has a box shape for storing various cargos in the internal space S1, and includes a side surface 12a, a side surface 12b, a side surface 12c, a side surface 12d, a ceiling surface 12e, and a floor surface 12f. have. And the container part 12 forms internal space S1 by these six surfaces.
 側面12aは、空調部11に隣接する側の面であって、天井面12e、床面12fおよび側面12b、12dに連結されている。側面12aは、図1における左側の側面を形成する。なお、側面12aには、後述する循環路S2等が形成されている。 The side surface 12a is a surface adjacent to the air conditioning unit 11, and is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12b and 12d. The side surface 12a forms the left side surface in FIG. Note that a circulation path S2 and the like which will be described later are formed on the side surface 12a.
 側面12bは、天井面12e、床面12fおよび側面12a、12cに連結されており、図1における奥側の側面を形成する。 The side surface 12b is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12a and 12c, and forms the back side surface in FIG.
 側面12cは、空調部11に隣接する側面12aに対向配置された面であって、天井面12e、床面12fおよび側面12b、12dに連結されている。側面12cは、図1における右側の側面を形成する。なお、側面12cには、後述する循環路S2等が形成されている。 The side surface 12c is a surface opposed to the side surface 12a adjacent to the air conditioning unit 11, and is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12b and 12d. The side surface 12c forms the right side surface in FIG. Note that a circulation path S2 and the like described later are formed on the side surface 12c.
 側面12dは、天井面12e、床面12fおよび側面12a、12cに連結されており、図1における手前側の側面を形成する。なお、側面12dには、貨物等を搬出入するための図示しない開閉扉が設けられている。 The side surface 12d is connected to the ceiling surface 12e, the floor surface 12f, and the side surfaces 12a and 12c, and forms the front side surface in FIG. The side surface 12d is provided with an unillustrated opening / closing door for carrying cargo in and out.
 図1に示すように、天井面12eは、箱型形状のコンテナ部12の上面を形成し、4つの側面12a、12b、12c、12dと連結されている。なお、天井面12eには、後述する循環路S2等が形成されている。 As shown in FIG. 1, the ceiling surface 12e forms the upper surface of the box-shaped container portion 12, and is connected to the four side surfaces 12a, 12b, 12c, and 12d. Note that a circulation path S2 and the like described later are formed on the ceiling surface 12e.
 床面12fは、図1に示すように、箱型形状のコンテナ部12の底面を形成し、4つの側面12a、12b、12c、12dと連結されている。なお、床面12fには、後述する循環路S2等が形成されている。 As shown in FIG. 1, the floor surface 12f forms the bottom surface of the box-shaped container portion 12, and is connected to the four side surfaces 12a, 12b, 12c, and 12d. Note that a circulation path S2 and the like described later are formed on the floor surface 12f.
  (外壁部20および内壁部30)
 本実施の形態のコンテナユニット10は、コンテナ部12内に内部空間S1を形成する6つの面のうち、天井面12e、側面12c、床面12f、および側面12aにおいて、以下のような断熱構造を備えている。
(Outer wall portion 20 and inner wall portion 30)
The container unit 10 of the present embodiment has the following heat insulating structure on the ceiling surface 12e, the side surface 12c, the floor surface 12f, and the side surface 12a among the six surfaces forming the internal space S1 in the container portion 12. I have.
 図2は、図1のコンテナユニットの側面12cの2-2断面図である。ここでは、図2を用いて側面12cの構成について説明するが、その他の天井面12e、床面12f、側面12aについても、配置向きが異なるものの、同様の構成を備えているものとする。 FIG. 2 is a 2-2 cross-sectional view of the side surface 12c of the container unit of FIG. Here, the configuration of the side surface 12c will be described with reference to FIG. 2, but the other ceiling surface 12e, floor surface 12f, and side surface 12a are assumed to have the same configuration, although the arrangement directions are different.
 図2に示すように、本実施の形態のコンテナユニット10のコンテナ部12の側面12cは、互いに略平行に配置された外壁部20と内壁部30とを備えている。 As shown in FIG. 2, the side surface 12 c of the container portion 12 of the container unit 10 of the present embodiment includes an outer wall portion 20 and an inner wall portion 30 that are arranged substantially parallel to each other.
 図2に示すように、外壁部20は、側面12cにおける外気側に配置されており、第2面であるアルミ板21、断熱空間である断熱材22、およびアルミ板23を有している。 As shown in FIG. 2, the outer wall portion 20 is disposed on the outside air side of the side surface 12c, and includes an aluminum plate 21 that is a second surface, a heat insulating material 22 that is a heat insulating space, and an aluminum plate 23.
 アルミ板21は、例えば、厚さ0.8mm程度のアルミ製の板材によって構成されており、外気と接する最も外側の面を形成する。 The aluminum plate 21 is made of, for example, an aluminum plate having a thickness of about 0.8 mm, and forms the outermost surface in contact with the outside air.
 断熱材22は、コンテナ部12の内部の温度が外気の温度に影響を受けないようにするために、アルミ板21とアルミ板23との間に設けられている。そして、断熱材22は、例えば、ウレタンフォームを用いて構成されている。 The heat insulating material 22 is provided between the aluminum plate 21 and the aluminum plate 23 so that the temperature inside the container portion 12 is not affected by the temperature of the outside air. And the heat insulating material 22 is comprised using the urethane foam, for example.
 アルミ板23は、例えば、アルミ製の板状部材であって、内部空間S1側、つまり内壁部30と対向する側の表面である第1面に、図3で詳しく説明する、第1凹凸構造である凹凸構造23aを有している。また、アルミ板23は、所定の隙間を介して対向配置された内壁部30との間の隙間に、循環路S2を形成する。 The aluminum plate 23 is, for example, a plate-shaped member made of aluminum, and has a first concavo-convex structure, which will be described in detail with reference to FIG. 3, on the first surface that is the surface facing the internal space S 1, that is, the side facing the inner wall portion 30. It has an uneven structure 23a. In addition, the aluminum plate 23 forms a circulation path S2 in a gap between the aluminum plate 23 and the inner wall portion 30 that is disposed to face the gap through a predetermined gap.
 図2に示すように、内壁部30は、側面12cにおける内部空間S1側に、外壁部20のアルミ板23に対して所定の隙間を介して配置されている。そして、内壁部30は、樹脂板31、凸部32、および貫通穴Hを有している。 As shown in FIG. 2, the inner wall portion 30 is disposed on the side of the inner space S1 on the side surface 12c with a predetermined gap with respect to the aluminum plate 23 of the outer wall portion 20. The inner wall portion 30 has a resin plate 31, a convex portion 32, and a through hole H.
 樹脂板31は、例えば、樹脂製の板状部材であって、外壁部20のアルミ板23に対向する側の面である第3面に、図5で詳しく説明する、第2凹凸構造である凹凸構造31aを有している。また、樹脂板31は、内部空間S1側の面に、凸部32が設けられている。さらに、樹脂板31は、所定の間隔ごとに、内部空間S1と循環路S2とを連通させる貫通穴Hを有している。樹脂板31は、上述したように、所定の隙間を介して対向配置された外壁部20との間の隙間に、循環路S2を形成する。 The resin plate 31 is, for example, a resin plate-like member, and has a second concavo-convex structure, which will be described in detail with reference to FIG. 5, on the third surface that is the surface of the outer wall portion 20 facing the aluminum plate 23. It has an uneven structure 31a. The resin plate 31 is provided with a convex portion 32 on the surface on the internal space S1 side. Further, the resin plate 31 has a through hole H that allows the internal space S1 and the circulation path S2 to communicate with each other at a predetermined interval. As described above, the resin plate 31 forms the circulation path S <b> 2 in the gap between the resin plate 31 and the outer wall portion 20 disposed so as to face the gap through the predetermined gap.
 図2に示すように、凸部32は、断面視において四角形の部材であって、樹脂板31における内部空間S1側の面である第4面に配置されている。そして、凸部32は、第1空気流F1の方向に沿って所定の間隔ごとに複数配置されており、略水平方向に沿って延伸している。 As shown in FIG. 2, the convex portion 32 is a quadrangular member in cross-sectional view, and is disposed on the fourth surface, which is the surface of the resin plate 31 on the internal space S1 side. And the convex part 32 is arrange | positioned for every predetermined space | interval along the direction of the 1st airflow F1, and is extended | stretched along the substantially horizontal direction.
 これにより、内部空間S1の内面に凸部32が形成されているため、貨物が内面に接するように配置されることを防止することができる。よって、コンテナユニット10に貨物が満載された場合でも、空調部11によって温度管理された空気が内部空間S1内へ抜ける経路を確保することができるため、空調部11の効率を向上させることができる。 Thereby, since the convex portion 32 is formed on the inner surface of the internal space S1, it is possible to prevent the cargo from being arranged so as to contact the inner surface. Therefore, even when the container unit 10 is fully loaded with cargo, it is possible to secure a route through which the air temperature-controlled by the air conditioning unit 11 passes into the internal space S1, so that the efficiency of the air conditioning unit 11 can be improved. .
 図2に示すように、貫通穴Hは、内部空間S1と循環路S2とを連通させるように、樹脂板31を貫通するように形成されている。そして、貫通穴Hは、凸部32と同様に、第1空気流F1の方向において所定の間隔ごとに複数配置されており、略水平方向に沿って開口部分が延伸している。さらに、貫通穴Hは、後述するアルミ板23の凹凸構造23aによって生じた第2空気流F2が、循環路S2から内部空間S1側へ抜けていくように、凹凸構造23aの凹部に対向する位置に設けられている。 As shown in FIG. 2, the through hole H is formed so as to penetrate the resin plate 31 so that the internal space S1 and the circulation path S2 communicate with each other. And the through-hole H is arrange | positioned for every predetermined space | interval in the direction of the 1st airflow F1 similarly to the convex part 32, and the opening part is extended along the substantially horizontal direction. Further, the through hole H is located at a position facing the concave portion of the concavo-convex structure 23a so that the second air flow F2 generated by the concavo-convex structure 23a of the aluminum plate 23 described later escapes from the circulation path S2 toward the internal space S1. Is provided.
  (凹凸構造23a)
 図3は、図1のコンテナユニットの外壁部の第1面の構成を示す斜視図である。図4は、図2の要部P1を拡大した概略図である。本実施の形態のコンテナユニット10では、上述したように、外壁部20を構成するアルミ板23における第1面、すなわち、内壁部30の樹脂板31に対向する面側、に、凹凸構造23aを備えている。
(Uneven structure 23a)
FIG. 3 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit of FIG. 1. FIG. 4 is an enlarged schematic view of the main part P1 of FIG. In the container unit 10 of the present embodiment, as described above, the concavo-convex structure 23a is formed on the first surface of the aluminum plate 23 constituting the outer wall portion 20, that is, the surface side facing the resin plate 31 of the inner wall portion 30. I have.
 図3に示すように、凹凸構造23aは、複数の凹部と凸部とが格子状に交互に連続配置されて構成されている。 As shown in FIG. 3, the concavo-convex structure 23a is configured by alternately arranging a plurality of concave portions and convex portions in a grid pattern.
 また、図4に示すように、凹凸構造23aは、その表面上を、循環路S2内に生じた第1空気流F1が通過する。 Further, as shown in FIG. 4, the first air flow F1 generated in the circulation path S2 passes through the surface of the concavo-convex structure 23a.
 このとき、図4に示すように、第1空気流F1の一部が、凹凸構造23aの凹部の部分によって滞留F2aを起こし、第1空気流F1に略垂直な方向に空気流F2bを生じさせる。なお、滞留F2aと空気流F2bとを合わせた空気流が、第2空気流F2である。 At this time, as shown in FIG. 4, a part of the first air flow F1 causes a stay F2a due to the concave portion of the concavo-convex structure 23a, thereby generating an air flow F2b in a direction substantially perpendicular to the first air flow F1. . Note that the air flow that combines the stay F2a and the air flow F2b is the second air flow F2.
 そして、図4に示すように、凹凸構造23aの凹部によって生じた第2空気流F2は、第1空気流F1の進行方向に対して略垂直方向に形成された内壁部30の樹脂板31の貫通穴Hから内部空間S1へと抜けていく。 And as shown in FIG. 4, the 2nd airflow F2 produced by the recessed part of the uneven structure 23a of the resin board 31 of the inner wall part 30 formed in the substantially perpendicular direction with respect to the advancing direction of the 1st airflow F1 It escapes from the through hole H to the internal space S1.
 ここで、第1空気流F1は、熱交換器11bを介して冷媒と熱交換された空気を気流制御ファン11cによって送風した結果、循環路S2内に生成されたものである。よって、第1空気流F1の温度は、コンテナユニット10内の内部空間S1の温度を設定温度に維持するために、温度管理されている。 Here, the first air flow F1 is generated in the circulation path S2 as a result of blowing air exchanged with the refrigerant through the heat exchanger 11b by the air flow control fan 11c. Therefore, the temperature of the first air flow F1 is temperature-managed in order to maintain the temperature of the internal space S1 in the container unit 10 at the set temperature.
 これにより、温度管理された第1空気流F1の一部として、凹凸構造23aの凹部によって生じた第2空気流F2を、積極的に内部空間S1側へと送り込むことができる。よって、コンテナユニット10の内部空間S1における温度管理を効率よく実施することができる。 Thereby, as part of the temperature-controlled first air flow F1, the second air flow F2 generated by the concave portion of the concavo-convex structure 23a can be actively sent to the inner space S1 side. Therefore, the temperature management in the internal space S1 of the container unit 10 can be efficiently performed.
 また、本実施の形態のコンテナユニット10は、空調部11による温度管理を効率よく実施することができる構造を採用しているため、断熱材22の厚みを従来よりも薄くすることができる。 Moreover, since the container unit 10 of the present embodiment employs a structure that can efficiently perform temperature management by the air conditioning unit 11, the thickness of the heat insulating material 22 can be made thinner than before.
 よって、同じ大きさのコンテナユニットと比較した場合、本実施の形態のコンテナユニット10は、従来のコンテナユニットよりも内部空間S1の容積を大きくすることができる。この結果、コンテナユニット10内に積載する貨物の量を増加させることができる。 Therefore, when compared with a container unit of the same size, the container unit 10 of the present embodiment can have a larger volume of the internal space S1 than the conventional container unit. As a result, the amount of cargo loaded in the container unit 10 can be increased.
  (凹凸構造31a)
 図5は、図1のコンテナユニットの内壁部の第3面の構成を示す斜視図である。上述したように、本実施の形態のコンテナユニット10では、内壁部30を構成する樹脂板31における第3面である、外壁部20のアルミ板23と対向する面側に、凹凸構造31aを備えている。
(Uneven structure 31a)
FIG. 5 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit of FIG. 1. As described above, in the container unit 10 of the present embodiment, the concavo-convex structure 31a is provided on the surface side facing the aluminum plate 23 of the outer wall portion 20, which is the third surface of the resin plate 31 constituting the inner wall portion 30. ing.
 図5に示すように、凹凸構造31aは、直線状の凹部と直線状の凸部とが交互に連続配置されて構成されている。 As shown in FIG. 5, the concavo-convex structure 31 a is configured by alternately and continuously arranging linear concave portions and linear convex portions.
 また、図5に示すように、凹凸構造31aを構成する凹部および凸部は、気流制御ファン11cによって生成された第1空気流F1の流れる方向に沿って延伸するように形成されている。 Further, as shown in FIG. 5, the concave and convex portions constituting the concave-convex structure 31a are formed so as to extend along the flowing direction of the first air flow F1 generated by the air flow control fan 11c.
 これにより、凹凸構造31aが形成された内壁部30側においては、空調部11によって温度管理された第1空気流F1の流れを妨げることはない。よって、内壁部30における内部空間S1への放熱効果を向上させ、温度管理された第1空気流F1の温度を効率よく内部空間S1側へ放熱することができる。この結果、空調部11による温度管理の効率をさらに向上させることができる。 Thus, the flow of the first air flow F1 temperature-controlled by the air conditioning unit 11 is not hindered on the inner wall 30 side where the uneven structure 31a is formed. Therefore, the heat dissipation effect to the internal space S1 in the inner wall portion 30 can be improved, and the temperature of the temperature-controlled first air flow F1 can be efficiently radiated to the internal space S1 side. As a result, the efficiency of temperature management by the air conditioning unit 11 can be further improved.
 なお、本実施の形態の構成では、構造的に放熱効果を得ているため、放熱効果の高い素材を用いて凹凸構造31a等を形成することで、より高い効果を得ることができる。 In addition, in the structure of this Embodiment, since the heat dissipation effect is obtained structurally, a higher effect can be acquired by forming the uneven structure 31a etc. using the material with a high heat dissipation effect.
 (他の実施の形態)
 以上、本開示の一実施の形態について説明したが、本開示は上記実施の形態に限定されるものではなく、開示の要旨を逸脱しない範囲で種々の変更が可能である。
(Other embodiments)
Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the disclosure.
 (A)
 上記実施の形態では、図3に示すように、外壁部20の第1面を構成するアルミ板23の表面に、格子状の凹凸構造23aが形成された例を挙げて説明した。しかし、本開示はこれに限定されるものではない。
(A)
In the said embodiment, as shown in FIG. 3, the example which the grid | lattice-like uneven structure 23a was formed in the surface of the aluminum plate 23 which comprises the 1st surface of the outer wall part 20 was demonstrated and demonstrated. However, the present disclosure is not limited to this.
 図6は、他の実施の形態に係るコンテナユニットの外壁部の第1面の構成を示す斜視図である。例えば、図6に示すように、外壁部の第1面に形成される凹凸構造は、互いに平行に形成された複数の直線状の溝を含む第1凹凸構造である凹凸構造123aが形成されたアルミ板123を用いてもよい。 FIG. 6 is a perspective view showing the configuration of the first surface of the outer wall portion of the container unit according to another embodiment. For example, as shown in FIG. 6, the concavo-convex structure formed on the first surface of the outer wall portion is formed with a concavo-convex structure 123a which is a first concavo-convex structure including a plurality of linear grooves formed in parallel to each other. An aluminum plate 123 may be used.
 この場合には、第1空気流F1の方向に対して交差する方向に沿って複数の凹凸が配置されるように凹凸構造123aが設けられていることで、上記実施の形態と同様の効果を得ることができる。 In this case, the uneven structure 123a is provided so that a plurality of unevenness is arranged along the direction intersecting the direction of the first air flow F1, and thus the same effect as in the above embodiment is obtained. Obtainable.
 図7Aは、図3の7-7断面図であり、図7Bは図3の別の7-7断面図である。図7Aに示すように、格子状の凹凸構造23aの凹部の断面と凸部の断面が共に長方形であってもよいし、図7Bに示すように、格子状の凹凸構造23aの凹部の断面が長方形でなく、凹凸構造23aが全体として、点形状であってもよい。 7A is a cross-sectional view taken along line 7-7 in FIG. 3, and FIG. 7B is a cross-sectional view taken along line 7-7 in FIG. As shown in FIG. 7A, the cross section of the concave portion and the cross section of the convex portion of the lattice-like uneven structure 23a may be rectangular, or the cross section of the concave portion of the lattice-like uneven structure 23a is as shown in FIG. 7B. Instead of the rectangle, the concavo-convex structure 23a may have a point shape as a whole.
 図7Bのような場合でも、図7Aの場合と同様の効果を得ることができる。 Even in the case of FIG. 7B, the same effect as in the case of FIG. 7A can be obtained.
 図8は、他の実施の形態に係るコンテナユニットの外壁部の別の第1面の構成を示す斜視図である。さらに、図8に示すように、互いに平行に形成された複数の波型形状であるコルゲート形状を含む第1凹凸構造である凹凸構造223aが形成されたアルミ板223を用いてもよい。 FIG. 8 is a perspective view showing the configuration of another first surface of the outer wall portion of the container unit according to another embodiment. Furthermore, as shown in FIG. 8, an aluminum plate 223 on which a concavo-convex structure 223a that is a first concavo-convex structure including a corrugated shape that is a plurality of corrugated shapes formed in parallel to each other may be used.
 この場合でも、第1空気流F1の方向に対して交差する方向に沿って複数の波型形状の凹凸が配置されるように、凹凸構造223aが設けられていることで、上記実施形態と同様の効果を得ることができる。 Even in this case, the concavo-convex structure 223a is provided so that a plurality of corrugated irregularities are arranged along the direction intersecting the direction of the first air flow F1, so that the same as in the above embodiment. The effect of can be obtained.
 (B)
 上記実施形態では、図5に示すように、内壁部30の第3面を構成する樹脂板31の表面に、直線状の溝が複数配置された凹凸構造31aが形成された例を挙げて説明した。しかし、本開示はこれに限定されるものではない。
(B)
In the above embodiment, as shown in FIG. 5, an example in which a concavo-convex structure 31 a in which a plurality of linear grooves are arranged is formed on the surface of the resin plate 31 constituting the third surface of the inner wall portion 30 will be described. did. However, the present disclosure is not limited to this.
 図9は、さらに他の実施の形態に係るコンテナユニットの内壁部の第3面の構成を示す斜視図である。例えば、図9に示すように、互いに平行に形成された複数の波型形状であるコルゲート形状を含む第2凹凸構造である凹凸構造231aが形成されたアルミ板231を用いてもよい。 FIG. 9 is a perspective view showing the configuration of the third surface of the inner wall portion of the container unit according to still another embodiment. For example, as shown in FIG. 9, an aluminum plate 231 on which a concavo-convex structure 231a that is a second concavo-convex structure including a corrugated shape that is a plurality of corrugated shapes formed in parallel to each other may be used.
 この場合でも、第1空気流F1の方向に平行に凹凸が形成された凹凸構造231aが設けられていることで、上記実施の形態と同様の効果を得ることができる。 Even in this case, the same effect as that of the above embodiment can be obtained by providing the concavo-convex structure 231a having the concavo-convex formed parallel to the direction of the first air flow F1.
 (C)
 上記実施の形態では、本開示に係る構造を、コンテナユニット10の側面12a、天井面12e、側面12c、および床面12fに適用した例を挙げて説明した。しかし、本開示はこれに限定されるものではない。
(C)
In the above-described embodiment, the structure according to the present disclosure has been described by taking an example in which the structure is applied to the side surface 12a, the ceiling surface 12e, the side surface 12c, and the floor surface 12f of the container unit 10. However, the present disclosure is not limited to this.
 例えば、本開示に係る構造を、図1に示す側面12b,12dも含む6面全てに適用してもよい。あるいは、図1に示す側面12a、天井面12e、側面12cだけに適用してもよい。 For example, the structure according to the present disclosure may be applied to all six surfaces including the side surfaces 12b and 12d illustrated in FIG. Or you may apply only to the side surface 12a shown in FIG. 1, the ceiling surface 12e, and the side surface 12c.
 その他、コンテナユニットを構成する6面のうちのどの面に適用するかは、適宜、選択可能である。 In addition, it can be selected as appropriate to which of the six surfaces constituting the container unit.
 (D)
 上記実施の形態では、図2に示すように、外壁部20を構成する外側のアルミ板21と内側のアルミ板23との間の隙間に、ウレタンフォーム等の断熱材22を充填した断熱空間を形成した例を挙げて説明した。しかし、本開示はこれに限定されるものではない。
(D)
In the above-described embodiment, as shown in FIG. 2, a heat insulating space in which a heat insulating material 22 such as urethane foam is filled in a gap between the outer aluminum plate 21 and the inner aluminum plate 23 constituting the outer wall portion 20. The example formed was explained. However, the present disclosure is not limited to this.
 例えば、断熱材を充填せずに、空気の層によって断熱空間を形成してもよい。 For example, the heat insulating space may be formed by an air layer without filling the heat insulating material.
 その他、グラスウール等、ウレタンフォーム以外の断熱材を用いてもよい。 In addition, heat insulating materials other than urethane foam, such as glass wool, may be used.
 (E)
 上記実施の形態では、空調部11による温度管理の効率を向上させるために、外壁部20側の凹凸構造23aと内壁部30側の凹凸構造31aとを対向配置して組み合わせた構成を例として挙げて説明した。しかし、本開示はこれに限定されるものではない。
(E)
In the said embodiment, in order to improve the efficiency of the temperature management by the air-conditioning part 11, the structure which provided the uneven structure 23a by the side of the outer wall part 20 and the uneven structure 31a by the side of the inner wall part 30 facing each other as an example is mentioned. Explained. However, the present disclosure is not limited to this.
 例えば、第2空気流F2を生じさせる外壁部20側の凹凸構造23aだけを備え、内壁部30側の凹凸構造を持たない構成であってもよい。 For example, the configuration may be such that only the concavo-convex structure 23a on the outer wall 20 side that generates the second air flow F2 is provided, and the concavo-convex structure on the inner wall 30 side is not provided.
 (F)
 上記実施の形態では、アルミ板21、アルミ板23をアルミ製の板状部材によって形成し、樹脂板31を樹脂製の板状部材によって形成した例を挙げて説明した。しかし、本開示はこれに限定されるものではない。
(F)
In the said embodiment, the aluminum plate 21 and the aluminum plate 23 were formed with the plate-shaped member made from aluminum, and the example which formed the resin plate 31 with the plate-shaped member made from resin demonstrated. However, the present disclosure is not limited to this.
 例えば、これらの部材を全てアルミ製の部材によって形成してもよいし、樹脂製の部材によって形成してもよい。あるいは、他の素材と組み合わせて形成してもよい。 For example, all of these members may be formed of an aluminum member or a resin member. Or you may form in combination with another raw material.
 なお、アルミ板123、231、233についても同様に、その素材が限定されるものではない。 Note that the materials of the aluminum plates 123, 231, and 233 are not limited in the same manner.
 本開示のコンテナユニットは、断熱材の厚みを大きくすることなく、断熱性能を向上させることができるという効果を奏することから、各種物品を保管するコンテナや容器等に対して広く適用可能である。 The container unit of the present disclosure has the effect of improving the heat insulation performance without increasing the thickness of the heat insulating material, and thus can be widely applied to containers and containers for storing various articles.
 10 コンテナユニット
 11 空調部
 11a コンプレッサ
 11b 熱交換器
 11c 気流制御ファン
 12 コンテナ部
 12a,12b,12c,12d 側面
 12e 天井面
 12f 床面
 20 外壁部
 21 アルミ板
 22 断熱材
 23 アルミ板
 23a 凹凸構造
 30 内壁部
 31 樹脂板
 31a 凹凸構造
 32 凸部
 123 アルミ板
 123a 凹凸構造
 223 アルミ板
 223a 凹凸構造
 231 アルミ板
 231a 凹凸構造
 F1 第1空気流
 F2 第2空気流
 F2a 滞留
 F2b 空気流
 H 貫通穴
 P1 要部
 S1 内部空間
 S2 循環路
DESCRIPTION OF SYMBOLS 10 Container unit 11 Air conditioning part 11a Compressor 11b Heat exchanger 11c Air flow control fan 12 Container part 12a, 12b, 12c, 12d Side surface 12e Ceiling surface 12f Floor surface 20 Outer wall part 21 Aluminum plate 22 Heat insulating material 23 Aluminum plate 23a Uneven structure 30 Inner wall Portion 31 Resin plate 31a Concavity and convexity structure 32 Convex portion 123 Aluminum plate 123a Concavity and convexity structure 223 Aluminum plate 223a Concavity and convexity structure 231 Aluminum plate 231a Concavity and convexity structure F1 First air flow F2 Second air flow F2a Retention F2b Air flow H Through hole P1 Essential portion S1 Internal space S2 circuit

Claims (9)

  1.  内部空間内に貨物を収納するコンテナユニットであって、
     前記内部空間を形成するとともに、前記内部空間側の第1面とその反対側の第2面との間に断熱空間を有する外壁部と、
     前記外壁部の前記第1面に対して所定の隙間を介して対向配置されており、前記第1面との間に循環路を形成する内壁部と、
     前記循環路において空気流を発生させる空調装置と、
     前記外壁部の前記第1面に設けられており、前記循環路において生じた空気流の方向に対して交差する方向に沿って複数の凹凸が形成された第1凹凸構造と、
    を備えているコンテナユニット。
    A container unit for storing cargo in an internal space,
    Forming the internal space, and an outer wall portion having a heat insulating space between the first surface on the internal space side and the second surface on the opposite side,
    An inner wall portion disposed opposite to the first surface of the outer wall portion via a predetermined gap, and forming a circulation path with the first surface;
    An air conditioner for generating an air flow in the circulation path;
    A first concavo-convex structure provided on the first surface of the outer wall portion, wherein a plurality of concavo-convex structures are formed along a direction intersecting a direction of air flow generated in the circulation path;
    Container unit equipped with.
  2.  前記内壁部における前記外壁部の前記第1面に対向する第3面に設けられており、前記循環路において生じた空気流の方向に沿って複数の凹凸が形成された第2凹凸構造を、さらに備えている、
    請求項1に記載のコンテナユニット。
    A second concavo-convex structure provided on a third surface of the inner wall portion facing the first surface of the outer wall portion, wherein a plurality of concavo-convex structures are formed along a direction of air flow generated in the circulation path, In addition,
    The container unit according to claim 1.
  3.  前記内壁部における前記外壁部の前記第1面に対向する第3面とは反対側の第4面に設けられており、前記内部空間に向かって突出する凸部を、さらに備えている、
    請求項1に記載のコンテナユニット。
    A convex portion that is provided on a fourth surface of the inner wall portion opposite to the third surface of the outer wall portion facing the first surface, and protrudes toward the inner space;
    The container unit according to claim 1.
  4.  前記外壁部は、前記断熱空間に配置された断熱材を有している、
    請求項1に記載のコンテナユニット。
    The outer wall portion has a heat insulating material disposed in the heat insulating space.
    The container unit according to claim 1.
  5.  前記内壁部は、前記内部空間と前記循環路とを連通させる貫通穴を有している、
    請求項1に記載のコンテナユニット。
    The inner wall portion has a through hole that allows the internal space and the circulation path to communicate with each other.
    The container unit according to claim 1.
  6.  前記第1凹凸構造は、直線状、格子状、点形状のいずれか1つを有する凹凸を含むように構成されている、
    請求項1に記載のコンテナユニット。
    The first uneven structure is configured to include unevenness having any one of a linear shape, a lattice shape, and a point shape.
    The container unit according to claim 1.
  7.  前記第1凹凸構造は、波状のコルゲート構造を含む、
    請求項1に記載のコンテナユニット。
    The first uneven structure includes a corrugated corrugated structure,
    The container unit according to claim 1.
  8.  前記第2凹凸構造は、直線状を有する凹凸を含むように構成されている、
    請求項2に記載のコンテナユニット。
    The second concavo-convex structure is configured to include a concavo-convex having a linear shape.
    The container unit according to claim 2.
  9.  前記第2凹凸構造は、波状のコルゲート構造を含む、
    請求項2に記載のコンテナユニット。
    The second uneven structure includes a corrugated corrugated structure,
    The container unit according to claim 2.
PCT/JP2015/005889 2015-01-30 2015-11-27 Container unit WO2016120928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016924A JP2018040497A (en) 2015-01-30 2015-01-30 Container unit
JP2015-016924 2015-07-29

Publications (1)

Publication Number Publication Date
WO2016120928A1 true WO2016120928A1 (en) 2016-08-04

Family

ID=56542594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005889 WO2016120928A1 (en) 2015-01-30 2015-11-27 Container unit

Country Status (2)

Country Link
JP (1) JP2018040497A (en)
WO (1) WO2016120928A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829261Y1 (en) * 1970-06-05 1973-09-05
JPS54122161U (en) * 1978-02-15 1979-08-27
JPS5549678A (en) * 1978-09-30 1980-04-10 Yoshiaki Tanaka Temperatureemaintaining case
JPS58179321U (en) * 1982-05-27 1983-11-30 株式会社タイガ−産業 External wall plate
JPS62153651A (en) * 1985-12-26 1987-07-08 Okumura Constr Co Ltd Method of setting opening degree of indoor blow-off port in ductless air conditioner system
JPS641378U (en) * 1987-06-24 1989-01-06
JPH0216979U (en) * 1988-07-15 1990-02-02
JPH0258677U (en) * 1988-10-19 1990-04-26
US20080034780A1 (en) * 2006-08-11 2008-02-14 Samsung Electronics Co., Ltd. Ice making apparatus and refrigerator having the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829261Y1 (en) * 1970-06-05 1973-09-05
JPS54122161U (en) * 1978-02-15 1979-08-27
JPS5549678A (en) * 1978-09-30 1980-04-10 Yoshiaki Tanaka Temperatureemaintaining case
JPS58179321U (en) * 1982-05-27 1983-11-30 株式会社タイガ−産業 External wall plate
JPS62153651A (en) * 1985-12-26 1987-07-08 Okumura Constr Co Ltd Method of setting opening degree of indoor blow-off port in ductless air conditioner system
JPS641378U (en) * 1987-06-24 1989-01-06
JPH0216979U (en) * 1988-07-15 1990-02-02
JPH0258677U (en) * 1988-10-19 1990-04-26
US20080034780A1 (en) * 2006-08-11 2008-02-14 Samsung Electronics Co., Ltd. Ice making apparatus and refrigerator having the same

Also Published As

Publication number Publication date
JP2018040497A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP2010518334A5 (en)
JP6022037B2 (en) Vacuum insulation
WO2016120928A1 (en) Container unit
WO2015025855A1 (en) Partition member and heating/cooling system
JP6058903B2 (en) Radiant air conditioner
JP6454915B2 (en) Cooling heat transfer device
JP5371016B2 (en) container
JP2014090209A (en) Heat sink and air conditioner
KR101314039B1 (en) Insulation material for building
JP2019100673A (en) Cold/hot storage device
KR20100059140A (en) Heat exchange element for ventilating duct
JP6004222B2 (en) Heat sink and air conditioner
JP2021002952A (en) Power conversion device
JP5663321B2 (en) Vacuum insulation
JP2013204285A (en) Latent heat storage building material and method of manufacturing the same
JP2007078229A (en) Storage
US8079194B2 (en) Thermal insulating element
JP3221800U (en) Insulating container wall and insulating container
JP6179035B2 (en) Heat storage type heat medium circulation type air conditioner and heat storage material container used therefor
JP2012002398A (en) Heat storage and release device
JP2009238110A (en) Vending machine
JP2015190685A (en) Total heat exchange element and heat exchange ventilation device using the same
JP2016089416A (en) Free access floor and cooling and heating system
JP2023149232A (en) Show case
JP5797163B2 (en) Total heat exchange element and total heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15879828

Country of ref document: EP

Kind code of ref document: A1