WO2016119684A1 - 数据传输方法和站点 - Google Patents

数据传输方法和站点 Download PDF

Info

Publication number
WO2016119684A1
WO2016119684A1 PCT/CN2016/072192 CN2016072192W WO2016119684A1 WO 2016119684 A1 WO2016119684 A1 WO 2016119684A1 CN 2016072192 W CN2016072192 W CN 2016072192W WO 2016119684 A1 WO2016119684 A1 WO 2016119684A1
Authority
WO
WIPO (PCT)
Prior art keywords
sss
pss
station
cca
ecca
Prior art date
Application number
PCT/CN2016/072192
Other languages
English (en)
French (fr)
Inventor
苟伟
赵亚军
彭佛才
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016119684A1 publication Critical patent/WO2016119684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • This document relates to, but is not limited to, the field of mobile wireless communications, and more particularly to data transmission methods and sites in unlicensed carrier systems.
  • LTE Rel-13 In the evolution of LTE, in September 2014, the LTE Rel-13 version began to be researched.
  • One of the important items in Rel-13 is that the LTE system works with unlicensed carriers. This technology will enable LTE systems to use existing unlicensed carriers, greatly increasing the potential spectrum resources of LTE systems, enabling LTE systems to achieve lower spectrum costs.
  • the application is more (from the data point of view, multi-service mentioned can be operated in it, such as Machine to machine (M2M), Vehicle to vehicle (V2V)).
  • M2M Machine to machine
  • V2V Vehicle to vehicle
  • a site in this application, a device that uses an unlicensed carrier, including a base station, a UE, etc.
  • CCA clear channel assessment
  • LTE is based on subframe-based scheduling data transmission
  • one subframe duration is 1 ms, including 14 OFDM symbols (in the case of a standard CP)
  • a CCA mechanism is introduced in the LTE system.
  • Some of the public resources suggest that the implementation of the CCA be placed at the beginning of the subframe, or that the CCA continues backwards from the start of the subframe, and how long it will last, which will be the implementation of the CCA and eCCA. Random decision. In such a subframe, how the site utilizes other resources (except for the resources corresponding to the CCA duration) and how the signals in the resource are transmitted will be a problem to be solved in the art.
  • the embodiment of the invention provides a data transmission method and a site to utilize other resources than resources corresponding to the CCA duration.
  • a data transmission method includes:
  • the station After the station successfully performs CCA/eCCA in the subframe, the station transmits a primary synchronization signal (PSS) and/or a secondary synchronization signal in a complete LTE Orthogonal Frequency Division Multiplexing (OFDM) symbol of the occupied subframe resource ( SSS).
  • PSS primary synchronization signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the station sends the PSS and/or the SSS in the complete LTE OFDM symbol of the occupied subframe resource, including: the station preferentially selects the complete LTE OFDM symbol transmission remaining in the subframe where the CCA/eCCA is located. PSS and / or SSS.
  • the sending, by the station, the PSS and/or the SSS in the complete LTE symbol of the occupied subframe resource includes:
  • the station selects 2 complete LTE OFDM symbols to transmit PSS and/or after successful CCA/eCCA execution. SSS.
  • the station sends the SSS first in the two complete LTE OFDM symbols, and then sends the PSS.
  • the station sends the PSS first in the two complete LTE OFDM symbols, and then sends the SSS.
  • the 2 complete LTE OFDM symbols selected by the station include the 1st and 2nd complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the sending, by the station, the PSS and/or the SSS in the complete LTE symbol of the occupied subframe resource includes:
  • the station transmits a PSS or SSS on the LTE OFDM symbol.
  • the method further includes the station sending the unsent SSS and/or the PSS in a next subframe of the CCA/eCCA subframe.
  • the method further includes:
  • the station After the CCA/eCCA is successfully executed, the station sends a reserved signal in other LTE OFDM symbols in the subframe of the CCA/eCCA, where the reserved signal includes a reference signal, and the reference signal is one or the following Multiple:
  • CRS Cell Reference Signal
  • CSI-RS Channel State Reference Signal
  • PRS Positioning Reference Signal
  • DRS Dedicated Reference Signal
  • DMRS Demodulated Reference Signal
  • the reserved signal further includes a PSS and/or an SSS.
  • the method further includes:
  • the station transmits a reference signal in the divided complete LTE OFDM symbols after the CCA/eCCA is successfully executed, wherein the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the CRS includes one or more of the following: 1 antenna port, 2 antenna ports, and 4 antenna ports;
  • the PRS includes one or more of the following: a PRS corresponding to one and two PBCH antenna ports, and a PRS corresponding to four PBCH antenna ports;
  • the DMRS includes one or more UE-specific reference signals as a PDSCH;
  • the CSI-RS may be selected as one or more sets of CSI-RSs.
  • the method further includes:
  • the station When the station does not transmit data in the divided complete LTE OFDM symbols, the station ensures that at least one type of reference signal is transmitted in the LTE OFDM symbol;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or SSS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a CRS or CSI-RS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or an SSS in a frequency domain position in the LTE OFDM symbol, in other frequency domains of the LTE OFDM symbol.
  • the location sends a CRS or CSI-RS until the user data starts.
  • the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol, including:
  • the station simultaneously sends CRS and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and data, or,
  • the station simultaneously transmits CRS, CSI-RS, and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and reserved signals, or
  • the station simultaneously sends CRS and data,
  • the PRS includes a PRS corresponding to one and two PBCH antenna ports
  • the CRS includes a CRS corresponding to one or two antenna ports.
  • the method further includes:
  • the station maps in the LTE OFDM symbol in the subframe according to the manner specified by the LTE protocol, and when the corresponding LTE OFDM symbol is occupied by the CCA/eCCA, it is mapped to the CCA/eCCA occupied.
  • the reference signal in the LTE OFDM symbol is destroyed.
  • the CMA/eCCA is fixed in a time direction position range in the subframe, and the CCA/eCCA allows to start execution in any symbol in the subframe.
  • the PDCCH or ePDCCH is sent in the complete LTE OFDM symbol.
  • the sending, by the station, the PSS and/or the SSS in the complete LTE symbol includes:
  • the station transmits the PSS in other frequency domain locations of the complete LTE OFDM symbol in addition to the frequency domain position of the PSS or SSS in the carrier according to LTE.
  • the frequency domain location of the PSS or SSS specified in the LTE is located in the carrier center of 63 subcarriers, except for the most intermediate subcarrier.
  • the station when the PSS or SSS sent by using the other frequency domain location, the station is outside the 63 subcarriers of the carrier center, and is PSS or the unit of every 63 subcarriers to the low frequency end or the high frequency end.
  • the SSS allocates subcarriers, and the PSS or SSS is transmitted in each unit, the most intermediate subcarrier of the unit is not used.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the PSS is allocated to the low frequency end/high frequency end and 62 subcarriers in addition to the 63 subcarriers in the carrier center.
  • the SSS allocates subcarriers, and when PSS or SSS is transmitted in each unit, it is transmitted in each subcarrier in the unit.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the method further includes:
  • the total bandwidth occupied by the PSS or SSS in each of the LTE OFDM symbols transmitting the PSS or SSS in the carrier is not less than 80% of the carrier bandwidth.
  • the embodiment of the invention further provides a data transmission method, including:
  • the reference signal is sent in the complete LTE OFDM symbol.
  • the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the CRS includes one or more of the following: 1 antenna port, 2 antenna ports, and 4 antenna ports;
  • the PRS includes one or more of the following: a PRS corresponding to one and two PBCH antenna ports, and a PRS corresponding to four PBCH antenna ports;
  • the DMRS includes one or more UE-specific reference signals (PDSCH);
  • the CSI-RS includes one or more sets of CSI-RSs.
  • the method further includes:
  • the station When the station does not transmit data in the divided complete LTE OFDM symbols, the station ensures that at least one type of reference signal is transmitted in the LTE OFDM symbol;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or SSS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a CRS or CSI-RS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or an SSS in a frequency domain position in the LTE OFDM symbol, in other frequency domains of the LTE OFDM symbol.
  • the location sends a CRS or CSI-RS until the user data starts.
  • the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol, including:
  • the station simultaneously sends CRS and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and data, or,
  • the station simultaneously transmits CRS, CSI-RS, and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and reserved signals, or
  • the station simultaneously sends CRS and data,
  • the PRS includes a PRS corresponding to one and two PBCH antenna ports
  • the CRS includes a CRS corresponding to one or two antenna ports.
  • the method further includes:
  • the station maps in the LTE OFDM symbol in the subframe according to the manner specified by the LTE protocol, and when the corresponding LTE OFDM symbol is occupied by the CCA/eCCA, it is mapped to the CCA/eCCA occupied.
  • the reference signal in the LTE OFDM symbol is destroyed.
  • the CMA/eCCA is fixed in a time direction position range in the subframe, and the CCA/eCCA allows to start execution in any symbol in the subframe.
  • the PSS and/or are sent in the complete LTE OFDM symbol. Or SSS.
  • the station selects 2 complete LTE OFDM symbol transmissions after the CCA/eCCA is successfully executed. PSS and / or SSS.
  • the station sends the SSS first in the two complete LTE OFDM symbols, and then sends the PSS.
  • the station sends the PSS first in the two complete LTE OFDM symbols, and then sends the SSS.
  • the selected 2 complete LTE OFDM symbols include the first and second complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the station when the remaining part of the subframe of the CCA/eCCA is capable of dividing 1 OFDM symbol, the station sends a PSS or SSS thereon, in a next subframe of the subframe of the CCA/eCCA. Send unsent SSS or PSS.
  • the method further includes:
  • the station when the station is further capable of dividing the complete LTE OFDM symbol in the remaining time of the subframe of the CCA/eCCA, sending a reserved signal in the complete LTE OFDM symbol, where the reserved signal includes a reference signal, where
  • the reference signal is one or more of the following:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the reserved signal further includes a PSS and/or an SSS.
  • the station is in the complete LTE OFDM symbol.
  • the PDCCH or ePDCCH is transmitted.
  • the station when only the PSS or the SSS is sent in the complete LTE OFDM symbol, the station is in addition to the frequency domain position of the PSS or the SSS in the carrier according to the LTE, and is also in the complete LTE OFDM symbol.
  • the other frequency domain locations transmit PSS or SSS, the frequency domain location of the PSS or SSS specified in the carrier is located in the carrier center of 63 subcarriers, except for the most intermediate subcarrier.
  • the station allocates subcarriers to the PSS or SSS in units of 63 subcarriers to the low frequency end or the high frequency end, and each unit is used.
  • PSS or SSS is transmitted, the most intermediate subcarrier of the unit is not used.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the station allocates PSS or SSS to the low frequency end/high frequency end and 62 subcarriers in units of 63 subcarriers in the carrier center.
  • the subcarriers are transmitted in each subcarrier within the unit when the PSS or SSS is transmitted in each unit.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the method further includes
  • Each of the carriers transmits PSS or SSS in the LTE OFDM symbol of the PSS or SSS.
  • the total bandwidth is not less than 80% of the carrier bandwidth.
  • the embodiment of the invention further provides a data transmission method, including:
  • the station After the CCA/eCCA is successfully executed in the subframe, when the remaining time in the subframe occupied by the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, the station sends the reserved signal in the complete LTE OFDM symbol.
  • the reserved signal includes a reference signal, and the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the reserved signal further includes a PSS and/or an SSS.
  • sending the reserved signal in the complete LTE OFDM symbol includes:
  • the station selects 2 complete LTE OFDM symbols to transmit PSS and/or after successful CCA/eCCA execution. SSS.
  • the station sends the SSS first in the two complete LTE OFDM symbols, and then sends the PSS.
  • the station sends the PSS first in the two complete LTE OFDM symbols, and then sends the SSS.
  • the 2 complete LTE OFDM symbols selected by the station include the 1st and 2nd complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the station when the remaining part of the subframe of the CCA/eCCA can be divided into one complete LTE OFDM symbol, the station sends a PSS or SSS on the LTE OFDM symbol, where the CCA/eCCA sub- Unsent SSS and/or PSS are sent in the next subframe of the frame.
  • the CMA/eCCA is fixed in a time direction position range in the subframe, and the CCA/eCCA allows to start execution in any symbol in the subframe.
  • the station when the station sends the PSS or the SSS, when there is only PSS or SSS in the complete LTE OFDM symbol, the station is not only in the frequency domain position of the PSS or the SSS in the carrier according to the LTE, but also Send PSS or other frequency domain locations of the complete LTE OFDM symbol SSS, the frequency domain location of the PSS or SSS specified in the LTE is located in the carrier center of 63 subcarriers, except for the most intermediate subcarrier.
  • the station when the PSS or SSS sent by using the other frequency domain location, the station is outside the 63 subcarriers of the carrier center, and is PSS or the unit of every 63 subcarriers to the low frequency end or the high frequency end.
  • the SSS allocates subcarriers, and the PSS or SSS is transmitted in each unit, the most intermediate subcarrier of the unit is not used.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the PSS is allocated to the low frequency end/high frequency end and 62 subcarriers in addition to the 63 subcarriers in the carrier center.
  • the SSS allocates subcarriers, and when PSS or SSS is transmitted in each unit, it is transmitted in each subcarrier in the unit.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the method further includes:
  • the total bandwidth occupied by the PSS or SSS in each of the LTE OFDM symbols transmitting the PSS or SSS in the carrier is not less than 80% of the carrier bandwidth.
  • sending the reserved signal in the complete LTE OFDM symbol further includes:
  • the station After the CCA/eCCA is successfully executed, the station sends the reference signal in the divided complete LTE OFDM symbols, and the reference signal is one or more of the following:
  • CRS CRS
  • CSI-RS Positioning Reference Signal
  • PRS Positioning Reference Signal
  • DRS Dedicated Reference Signal
  • DMRS Demodulated Reference Signal
  • the CRS includes one or more of the following: 1 antenna port, 2 antenna ports, and 4 antenna ports;
  • the PRS includes one or more of the following: a PRS corresponding to one and two PBCH antenna ports, and a PRS corresponding to four PBCH antenna ports;
  • the DMRS includes one or more UE-specific reference signals for the PDSCH (UE-specific) Reference signals associated with PDSCH);
  • the CSI-RS includes one or more sets of CSI-RSs.
  • the station when the station does not send data in the divided complete LTE OFDM symbol, the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or SSS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a CRS or CSI-RS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or an SSS in a frequency domain position in the LTE OFDM symbol, in other frequency domains of the LTE OFDM symbol.
  • the location sends a CRS or CSI-RS until the user data starts.
  • the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol, including:
  • the station simultaneously sends CRS and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and data, or,
  • the station simultaneously transmits CRS, CSI-RS, and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and reserved signals, or
  • the station simultaneously sends CRS and data,
  • the PRS includes a PRS corresponding to one and two PBCH antenna ports
  • the CRS includes a CRS corresponding to one or two antenna ports.
  • the method further includes:
  • the station maps in the LTE OFDM symbol in the subframe according to the manner specified by the LTE protocol, and when the corresponding LTE OFDM symbol is occupied by the CCA/eCCA, it is mapped to the CCA/eCCA occupied.
  • the reference signal in the LTE OFDM symbol is destroyed.
  • the embodiment of the invention further provides a site, including:
  • the PSS/SSS transmitting module is configured to send the PSS and/or the SSS in the complete LTE OFDM symbol of the occupied subframe resource after the CCA/eCCA is successfully executed in the subframe.
  • the PSS/SSS sending module includes:
  • a first sending unit configured to select, when the remaining part of the subframe of the CCA/eCCA is capable of dividing 2 or more complete LTE OFDM symbols, select 2 complete LTE OFDM symbol transmissions after CCA/eCCA is successfully executed PSS and / or SSS.
  • the PSS/SSS sending module further includes:
  • a second sending unit configured to transmit a PSS or an SSS on the LTE OFDM symbol when the remaining portion of the CCA/eCCA subframe is capable of being divided into one complete LTE OFDM symbol, in the CCA/eCCA sub- Unsent SSS and/or PSS are sent in the next subframe of the frame.
  • the site also includes:
  • a reserved signal sending module configured to send a reserved signal in another LTE OFDM symbol in a subframe of the CCA/eCCA after the CCA/eCCA is successfully executed, where the reserved signal includes a reference signal, the reference signal For one or more of the following:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the site also includes:
  • a reference signal transmitting module configured to transmit a reference signal in the divided complete LTE OFDM symbols, wherein the reference signal comprises any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the site also includes:
  • a PDCCH/ePDCCH transmitting module configured to: after the CCA/eCCA is successfully executed, when the remaining time in the subframe of the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, transmitting the PDCCH or the complete LTE OFDM symbol ePDCCH.
  • the embodiment of the invention further provides a site, including:
  • a reference signal sending module configured to: after the CCA/eCCA in the subframe is successfully executed, when the remaining time in the subframe occupied by the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, in the complete LTE OFDM
  • the reference signal is transmitted in the symbol, and the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the site also includes:
  • the PSS/SSS transmitting module is configured to send the PSS and the complete LTE OFDM symbol when the remaining time in the subframe of the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol after the CCA/eCCA is successfully executed. / or SSS.
  • the embodiment of the invention further provides a site, including:
  • a reserved signal sending module configured to: after the CCA/eCCA is successfully executed in the subframe, when the remaining time in the subframe occupied by the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, in the complete LTE A reserved signal is transmitted in the OFDM symbol, the reserved signal including a reference signal, the reference signal comprising any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the reserved signal further includes a PSS and/or an SSS, where the reserved signal sending module includes:
  • a PSS/SSS transmitting unit configured to: when the remaining portion of the subframe of the CCA/eCCA is capable of dividing 2 or more complete LTE OFDM symbols, the station selects 2 complete after the CCA/eCCA is successfully executed
  • the LTE OFDM symbols transmit PSS and/or SSS.
  • the PSS/SSS sending unit is further configured to: when the remaining part of the subframe of the CCA/eCCA can be divided into one complete LTE OFDM symbol, send the PSS or the SSS on the LTE OFDM symbol, The unsent SSS and/or PSS are transmitted in the next subframe of the subframe of the CCA/eCCA.
  • the reserved signal sending module further includes:
  • the reference signal transmitting unit is configured to transmit the reference signal in the divided complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the embodiment of the present invention provides a data transmission method and a station. After a CCA/eCCA in a subframe is successfully executed, the station sends a PSS and/or SSS or a reference signal or a pre-determined signal in a complete LTE OFDM symbol of the occupied subframe resource. Leave the signal. The use of the remaining resources after the execution of the CCA/eCCA is realized, and the problem of using other resources other than the resources corresponding to the CCA duration is solved.
  • FIG. 1 is a schematic diagram of a data transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of still another data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of still another data transmission method according to an embodiment of the present disclosure.
  • 4 is a schematic diagram of a complete LTE OFDM symbol remaining after CCA/eCCA is executed
  • FIG. 5 is a schematic diagram of a manner in which a PSS/SSS occupies remaining LTE OFDM symbols after CCA/eCCA execution;
  • FIG. 6 is a schematic diagram of still another manner of remaining LTE OFDM symbols after PSS/SSS occupies CCA/eCCA execution;
  • FIG. 7 is a schematic diagram of a method for transmitting a reserved signal
  • FIG. 8 is a schematic diagram of still another method for transmitting a reserved signal
  • FIG. 9 is a schematic diagram of still another method for transmitting a reserved signal
  • FIG. 10 is a schematic diagram of signal mapping in a CCA/eCCA subframe
  • 11 is a schematic diagram of signal mapping in another CCA/eCCA subframe
  • FIG. 12 is a schematic diagram of signal mapping in another CCA/eCCA subframe
  • 13 is a schematic diagram of signal mapping in another CCA/eCCA subframe
  • 15 is a schematic diagram of signal mapping in another CCA/eCCA subframe
  • Figure 16 is a schematic diagram of a reserved symbol transmission
  • FIG. 17 is a schematic structural diagram of a station according to Embodiment 9 of the present invention.
  • FIG. 18 is a schematic structural diagram of still another station according to Embodiment 9 of the present invention.
  • FIG. 19 is a schematic structural diagram of still another station according to Embodiment 9 of the present invention.
  • LTE is based on subframe-based scheduling data transmission
  • one subframe duration is 1 ms, including 14 OFDM symbols (in the case of a standard CP)
  • a CCA mechanism is introduced in the LTE system.
  • some public resources suggest that the execution of the CCA be placed at the beginning of the subframe, or that the CCA continues backward from the starting point of the subframe, and how long it lasts, which will be performed by the CCA and the eCCA. The execution is randomly determined. In such a subframe, how the site utilizes other resources (except for the resources corresponding to the CCA duration) and how the signals in the resource are transmitted is a problem to be solved by those skilled in the art.
  • Embodiments of the present invention provide a data transmission method and site. Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
  • an embodiment of the present invention provides a data transmission method, including:
  • the station After the station successfully performs CCA/eCCA in the subframe, the station transmits a primary synchronization signal (PSS) and/or a secondary synchronization signal in a complete LTE Orthogonal Frequency Division Multiplexing (OFDM) symbol of the occupied subframe resource ( SSS).
  • PSS primary synchronization signal
  • OFDM Orthogonal Frequency Division Multiplexing
  • the station sends the PSS and/or the SSS in the complete LTE OFDM symbol of the occupied subframe resource, including: the station preferentially selects the complete LTE OFDM symbol transmission remaining in the subframe where the CCA/eCCA is located. PSS and / or SSS.
  • the sending, by the station, the PSS and/or the SSS in the complete LTE symbol of the occupied subframe resource includes:
  • the station selects 2 complete LTE OFDM symbols to transmit PSS and/or after successful CCA/eCCA execution. SSS.
  • the station sends the SSS first in the two complete LTE OFDM symbols, and then sends the PSS.
  • the station sends the PSS first in the two complete LTE OFDM symbols, and then sends the SSS.
  • the 2 complete LTE OFDM symbols selected by the station include the 1st and 2nd complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the sending, by the station, the PSS and/or the SSS in the complete LTE symbol of the occupied subframe resource includes:
  • the station transmits a PSS or SSS on the LTE OFDM symbol.
  • the method further includes the station sending the unsent SSS and/or the PSS in a next subframe of the CCA/eCCA subframe.
  • the method further includes:
  • the station After the CCA/eCCA is successfully executed, the station sends a reserved signal in other LTE OFDM symbols in the subframe of the CCA/eCCA, where the reserved signal includes a reference signal, and the reference signal is one or the following Multiple:
  • CRS Cell Reference Signal
  • CSI-RS Channel State Reference Signal
  • PRS Positioning Reference Signal
  • DRS Dedicated Reference Signal
  • DMRS Demodulated Reference Signal
  • the reserved signal further includes a PSS and/or an SSS.
  • the method further includes:
  • the station transmits a reference signal in the divided complete LTE OFDM symbols after the CCA/eCCA is successfully executed, wherein the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the CRS includes one or more of the following: 1 antenna port, 2 antenna ports, 4 antenna ports;
  • the PRS includes one or more of the following: a PRS corresponding to one and two PBCH antenna ports, and a PRS corresponding to four PBCH antenna ports;
  • the DMRS includes one or more UE-specific reference signals as a PDSCH;
  • the CSI-RS includes one or more sets of CSI-RSs.
  • the method further includes:
  • the station When the station does not transmit data in the divided complete LTE OFDM symbols, the station ensures that at least one type of reference signal transmission is present in the LTE OFDM symbol.
  • the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol, including:
  • the station simultaneously sends CRS and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and data, or,
  • the station simultaneously transmits CRS, CSI-RS, and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and reserved signals, or
  • the station simultaneously sends CRS and data,
  • the PRS includes a PRS corresponding to one and two PBCH antenna ports
  • the CRS includes a CRS corresponding to one or two antenna ports.
  • the method further includes:
  • the station maps in the LTE OFDM symbol in the subframe according to the manner specified by the LTE protocol, and when the corresponding LTE OFDM symbol is occupied by the CCA/eCCA, it is mapped to the CCA/eCCA occupied.
  • the reference signal in the LTE OFDM symbol is destroyed.
  • the CMA/eCCA is fixed in a time direction position range in the subframe, and the CCA/eCCA allows to start execution in any symbol in the subframe.
  • the PDCCH or ePDCCH is sent in the complete LTE OFDM symbol.
  • the sending, by the station, the PSS and/or the SSS in the complete LTE symbol includes:
  • the station transmits the PSS in other frequency domain locations of the complete LTE OFDM symbol in addition to the frequency domain position of the PSS or SSS in the carrier according to LTE.
  • the frequency domain location of the PSS or SSS specified in the LTE is located in the carrier center of 63 subcarriers, except for the most intermediate subcarrier.
  • the station when the PSS or SSS sent by using the other frequency domain location, the station is outside the 63 subcarriers of the carrier center, and is PSS or the unit of every 63 subcarriers to the low frequency end or the high frequency end.
  • the SSS allocates subcarriers, and the PSS or SSS is transmitted in each unit, the most intermediate subcarrier of the unit is not used.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the PSS is allocated to the low frequency end/high frequency end and 62 subcarriers in addition to the 63 subcarriers in the carrier center.
  • the SSS allocates subcarriers, and when PSS or SSS is transmitted in each unit, it is transmitted in each subcarrier in the unit.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the method further includes:
  • the total bandwidth occupied by the PSS or SSS in each of the LTE OFDM symbols transmitting the PSS or SSS in the carrier is not less than 80% of the carrier bandwidth.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • an embodiment of the present invention further provides a data transmission method, including:
  • the reference signal is sent in the complete LTE OFDM symbol.
  • the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the CRS includes one or more of the following: 1 antenna port, 2 antenna ports, and 4 antenna ports;
  • the PRS includes one or more of the following: a PRS corresponding to one and two PBCH antenna ports, and a PRS corresponding to four PBCH antenna ports;
  • the DMRS includes one or more UE-specific reference signals (PDSCH);
  • the CSI-RS includes one or more sets of CSI-RSs.
  • the method further includes:
  • the station When the station does not transmit data in the divided complete LTE OFDM symbols, the station ensures that at least one type of reference signal transmission is present in the LTE OFDM symbol.
  • the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol, including:
  • the station simultaneously sends CRS and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and data, or,
  • the station simultaneously transmits CRS, CSI-RS, and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and reserved signals, or
  • the station simultaneously sends CRS and data,
  • the PRS includes a PRS corresponding to one and two PBCH antenna ports
  • the CRS includes a CRS corresponding to one or two antenna ports.
  • the method further includes:
  • the station maps in the LTE OFDM symbol in the subframe according to the manner specified by the LTE protocol, and when the corresponding LTE OFDM symbol is occupied by the CCA/eCCA, it is mapped to the CCA/eCCA occupied.
  • the reference signal in the LTE OFDM symbol is destroyed.
  • the CMA/eCCA is fixed in a time direction position range in the subframe, and the CCA/eCCA allows to start execution in any symbol in the subframe.
  • the site is left in the subframe of the CCA/eCCA.
  • the remaining time is also capable of dividing the complete LTE OFDM symbol, transmitting the PSS and/or SSS in the complete LTE OFDM symbol.
  • the station selects 2 complete LTE OFDM symbol transmissions after the CCA/eCCA is successfully executed. PSS and / or SSS.
  • the station sends the SSS first in the two complete LTE OFDM symbols, and then sends the PSS.
  • the station sends the PSS first in the two complete LTE OFDM symbols, and then sends the SSS.
  • the selected 2 complete LTE OFDM symbols are the first and second complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the station when the remaining part of the subframe of the CCA/eCCA is capable of dividing 1 OFDM symbol, the station sends a PSS or SSS thereon, in a next subframe of the subframe of the CCA/eCCA. Send unsent SSS or PSS.
  • the method further includes:
  • the station when the station is further capable of dividing the complete LTE OFDM symbol in the remaining time of the subframe of the CCA/eCCA, sending a reserved signal in the complete LTE OFDM symbol, where the reserved signal includes a reference signal, where
  • the reference signal is one or more of the following:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the reserved signal further includes a PSS and/or an SSS.
  • the station is in the complete LTE OFDM symbol.
  • the PDCCH or ePDCCH is transmitted.
  • the station when only the PSS or the SSS is sent in the complete LTE OFDM symbol, the station is in addition to the frequency domain position of the PSS or the SSS in the carrier according to the LTE, and is also in the complete LTE OFDM symbol.
  • the other frequency domain locations transmit PSS or SSS, the frequency domain location of the PSS or SSS specified in the carrier is located in the carrier center of 63 subcarriers, except for the most intermediate subcarrier.
  • the station allocates subcarriers to the PSS or SSS in units of 63 subcarriers to the low frequency end or the high frequency end, and each unit is used.
  • PSS or SSS is transmitted, the most intermediate subcarrier of the unit is not used.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the station allocates PSS or SSS to the low frequency end/high frequency end and 62 subcarriers in units of 63 subcarriers in the carrier center.
  • the subcarriers are transmitted in each subcarrier within the unit when the PSS or SSS is transmitted in each unit.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the method further includes
  • the total bandwidth occupied by the PSS or SSS in each of the LTE OFDM symbols transmitting the PSS or SSS in the carrier is not less than 80% of the carrier bandwidth.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • an embodiment of the present invention further provides a data transmission method, including:
  • the station After the CCA/eCCA is successfully executed in the subframe, when the remaining time in the subframe occupied by the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, the station sends the reserved signal in the complete LTE OFDM symbol.
  • the reserved signal includes a reference signal, and the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the reserved signal further includes a PSS and/or an SSS.
  • sending the reserved signal in the complete LTE OFDM symbol includes:
  • the station selects 2 complete after the CCA/eCCA is successfully executed.
  • the LTE OFDM symbols transmit PSS and/or SSS.
  • the station sends the SSS first in the two complete LTE OFDM symbols, and then sends the PSS.
  • the station sends the PSS first in the two complete LTE OFDM symbols, and then sends the SSS.
  • the 2 complete LTE OFDM symbols selected by the station include the 1st and 2nd complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • the station when the remaining part of the subframe of the CCA/eCCA can be divided into one complete LTE OFDM symbol, the station sends a PSS or SSS on the LTE OFDM symbol, where the CCA/eCCA sub- Unsent SSS and/or PSS are sent in the next subframe of the frame.
  • the CMA/eCCA is fixed in a time direction position range in the subframe, and the CCA/eCCA allows to start execution in any symbol in the subframe.
  • the station when there is only PSS or SSS in the complete LTE OFDM symbol, the station is not only in the frequency domain position of the PSS or the SSS in the carrier according to the LTE, but also The PSS or SSS is transmitted at other frequency domain locations of the complete LTE OFDM symbol, the frequency domain location of the GSM-defined PSS or SSS in the carrier is located at 63 carriers in the carrier center, except for the most intermediate subcarrier.
  • the station when the PSS or SSS sent by using the other frequency domain location, the station is outside the 63 subcarriers of the carrier center, and is PSS or the unit of every 63 subcarriers to the low frequency end or the high frequency end.
  • the SSS allocates subcarriers, and the PSS or SSS is transmitted in each unit, the most intermediate subcarrier of the unit is not used.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the PSS is allocated to the low frequency end/high frequency end and 62 subcarriers in addition to the 63 subcarriers in the carrier center.
  • the SSS allocates subcarriers, and when PSS or SSS is transmitted in each unit, it is transmitted in each subcarrier in the unit.
  • the method further includes:
  • An interval of at least one subcarrier is reserved between units.
  • the method further includes:
  • the total bandwidth occupied by the PSS or SSS in each of the LTE OFDM symbols transmitting the PSS or SSS in the carrier is not less than 80% of the carrier bandwidth.
  • sending the reserved signal in the complete LTE OFDM symbol further includes:
  • the station After the CCA/eCCA is successfully executed, the station sends the reference signal in the divided complete LTE OFDM symbols, and the reference signal is one or more of the following:
  • CRS CRS
  • CSI-RS Positioning Reference Signal
  • PRS Positioning Reference Signal
  • DRS Dedicated Reference Signal
  • DMRS Demodulated Reference Signal
  • the CRS includes one or more of the following: 1 antenna port, 2 antenna ports, and 4 antenna ports;
  • the PRS includes one or more of the following: a PRS corresponding to one and two PBCH antenna ports, and a PRS corresponding to four PBCH antenna ports;
  • the DMRS includes one or more UE-specific reference signals (PDSCH);
  • the CSI-RS includes one or more sets of CSI-RSs.
  • the station when the station does not send data in the divided complete LTE OFDM symbol, the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol.
  • the station ensures that at least one type of reference signal is sent in the LTE OFDM symbol, including:
  • the station simultaneously sends CRS and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and data, or,
  • the station simultaneously transmits CRS, CSI-RS, and PRS, or
  • the station simultaneously transmits CRS, CSI-RS, and reserved signals, or
  • the station simultaneously sends CRS and data,
  • the PRS includes a PRS corresponding to one and two PBCH antenna ports, and the CRS includes CRS corresponding to 1 or 2 antenna ports.
  • the method further includes:
  • the station maps in the LTE OFDM symbol in the subframe according to the manner specified by the LTE protocol, and when the corresponding LTE OFDM symbol is occupied by the CCA/eCCA, it is mapped to the CCA/eCCA occupied.
  • the reference signal in the LTE OFDM symbol is destroyed.
  • the reserved signal (also referred to as the occupied signal) can be transmitted in the subframe in which the Clear Channel Assessment/Extended Clear Channel Assessment (CCA/eCCA) is located, including the CCA/eCCA success time.
  • CCA/eCCA Clear Channel Assessment/Extended Clear Channel Assessment
  • the remaining resources in the corresponding OFDM symbol, and/or the remaining OFDM symbols in the subframe in which the CCA/eCCA is located can also be transmitted in other subframes in which the station preempts the unlicensed carrier.
  • the receiving end can assume that the reserved signal contains one or more of the following signals: CRS, PRS, PSS/SSS, CSI-RS.
  • the optional method includes CRS of 1 or 2 antenna ports (ports 0 and 1), PRS of 1 and 2 PBCH antenna ports (port 6), and OFDM corresponding to PSS/SSS located at the CCA/eCCA success time.
  • CRS of 1 or 2 antenna ports (ports 0 and 1)
  • PRS of 1 and 2 PBCH antenna ports (port 6)
  • OFDM corresponding to PSS/SSS located at the CCA/eCCA success time.
  • the PSS/SSS is located in the 7th and 8th symbols in the subframe, or the PSS/SSS is located in the immediately adjacent 2 after the OFDM symbol allocated for the CCA/eCCA in the subframe. In the symbol.
  • the station when the LTE system works in an unlicensed carrier, the station performs CCA/eCCA. If the eCCA/eCCA is executed from the start time of the subframe, and the random backoff mechanism is introduced, the site itself can only perform. After the CCA/eCCA succeeds, it can be known which resources (remaining LTE OFDM symbols) remain in the subframe, which is actually the resource from the starting point of the successful CCA/eCCA to the end of the subframe.
  • These resources are all composed of non-complete LTE OFDM symbols and/or full LTE OFDM symbols, wherein if the LTE OFDM symbol range performed by CCA/eCCA is allocated in advance, the complete LTE OFDM symbol is composed of two parts, and part of it is allocated to The remaining part of the CCA/eCCA symbol is a symbol that is not assigned to CCA/eCCA.
  • the station performs CCA/eCCA.
  • the station determines the remaining resources in the subframe to determine the remaining complete LTE OFDM symbol positions and numbers.
  • the data transmission of the station is generally scheduled in units of subframes, then the station does not send data in the remaining complete LTE OFDM symbols (because the data transmitted in this way is very complicated, but if the function of the station is strong (high cost) , when it is possible to send data), the site starts sending data in the next sub-frame, then the site wants to prevent other sites or systems (such as wifi system) from robbing
  • the station needs to send signals (called reserved signals or reserved signals) in the remaining resources to occupy the unlicensed carriers, so that other sites or systems find unauthorized when performing CCA/eCCA.
  • the carrier is non-idle, so that the station can guarantee that the right to use the unlicensed carrier will not be lost in the next subframe.
  • the station transmits data in the remaining complete LTE OFDM symbols in the following manner.
  • PSS/SSS The manner in which PSS/SSS is sent is described below.
  • the station determines that when the remaining time resources in the subframe can also divide the complete LTE OFDM symbol, and the station determines that two or more complete LTE OFDM symbols can be divided.
  • the station selects 2 complete symbols to transmit PSS and/or SSS, wherein the latter transmits the SSS when the former transmits the SSS, or the latter transmits the SSS when the former transmits the PSS.
  • the 2 symbols determined by the station are the first and second complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • Figure 5 shows an alternative.
  • the station transmits a PSS or SSS in the symbol.
  • the station sends the SSS or PSS in the first symbol of the next subframe, so that the station can send the complete PSS/SSS, so that the UE can continue to use the PSS/SSS for synchronization purposes, the former only sends a symbol PSS.
  • SSS the role of the reserved signal can be realized, but the ability to synchronize the purpose becomes weak.
  • the execution time range of the CCA/eCCA is fixed to some symbols of the subframe, for example, the CCA/eCCA is fixed in the first three (or the first four) symbols in the subframe.
  • the station transmits the PSS and SSS in the first two symbols after the execution time range configured for the CCA/eCCA. For example, according to the foregoing assumption, the station transmits the PSS and SSS in the 4th and 5th symbols in the subframe, as illustrated in FIG. 6.
  • the symbol position of the PSS/SSS in this way is determined by the number of symbols assigned to the CCA/eCCA.
  • the symbol position of the PSS/SSS is the same as in Figure 5, but the manner of sign determination is still different.
  • the mapping within the specific symbol, the transmission of the PSS for that symbol, and the transmission of the SSS for that symbol can be performed as follows.
  • the station performs CCA/eCCA successfully in the subframe, the subframe When two or more LTE symbols remain, the station transmits a PSS or SSS in the last 2 LTE symbols of the subframe.
  • the station transmits PSS/SSS in the frequency domain position in the carrier according to LTE (the PSS/SSS specified by LTE is located in 63 carriers in the carrier center, except for the middle One subcarrier), also transmitting PSS or SSS in other frequency domain locations of the symbol.
  • the station can transmit PSS/ in the unit of 63 subcarriers in addition to the middle 63 subcarriers, after the reserved subcarrier spacing is extended to the low frequency or high frequency end.
  • SSS intermediate one carrier reserved. For example, if there is a given interval, for example, 5 subcarriers.
  • the station reserves 5 subcarriers outside the relevant PSS/SSS subcarriers, and then selects a new 63 subcarriers (frequency domain continuous) to transmit the PSS/SSS, and One carrier in the middle is reserved, and no PSS/SSS is sent, and it is sequentially extended to other frequencies. If 63 subcarriers cannot be allocated at the low-end or high-end frequencies of the carrier, then these carriers do not transmit PSS or SSS.
  • the interval may not be reserved, for example, the interval is set to zero.
  • the reserved interval facilitates the reduction of interference between the PSS/SSS of each unit and facilitates the resolution of the receiving end.
  • the interval is 0, which is completely ok for the channel.
  • the resolution difficulty is slightly increased. In some scenarios, the receiver does not need to parse, and only needs to detect the energy signal.
  • the embodiment of the present invention also includes the unit of 62 sub-carriers.
  • the subcarriers in other frequency domain locations are selected to transmit PSS/SSS, and all 62 subcarriers transmit PSS/SSS.
  • the station 1 when a 20M carrier is preempted by the station 1, if the station 1 is in the above manner PSS/SSS, then at the non-central frequency point of 20M, other stations may retrieve the PSS/SSS. It is thought that the location is the access center frequency of a certain carrier (for example, 5M carrier), so that access is attempted, and finally the power of the station is wasted.
  • the PSS/SSS sent by the non-central frequency point of the carrier in the embodiment of the present invention should maintain one or more of the following features:
  • the symbol order of the PSS and SSS is opposite to the order of the symbols at the associated carrier center frequency.
  • the PSS/SSS is transmitted in two fixed symbols, and the symbol sequence is the symbol of the pre-SSS, and the symbol of the PSS is retransmitted. Then, according to the scheme of the embodiment of the present invention, other frequency domain locations are used.
  • the symbol of the PSS should be sent first, and the symbol of the SSS should be sent.
  • the PSS or SSS uses a sequence that differs from the selected PSS or SSS in the relevant LTE. For example, if the selected PSS or SSS sequence set in the relevant LTE is A, then the PSS or SSS transmitted in other frequency domain locations selects a sequence other than the A set.
  • PSS/SSS is not transmitted among several subcarriers at the center frequency of each possible carrier, such as 63 subcarriers in the center but except for the middle one subcarrier.
  • Each possible carrier means that the carrier is divided according to the bandwidth in advance. For example, the carrier is divided according to the values of 5M and 10M. After the carrier is divided, the center frequency is uniquely determined. These center frequencies are called possible. The center frequency of the carrier.
  • the PSS/SSS is not transmitted as the center position of the PSS/SSS subcarrier.
  • the PSS/SSS is transmitted without using the subcarrier whose frequency of the subcarrier is 300 kHz.
  • the total number of transmissions or occupied bandwidth satisfies the following requirements: in each of the unlicensed carriers that transmit PSS or SSS, a total of PSS or SSS is transmitted.
  • the bandwidth is not less than 80% of the bandwidth of the carrier. 80% means that signal energy can be detected over 80% of the full bandwidth.
  • the above method solves the problem of transmitting PSS/SSS at other positions in the frequency domain of the carrier.
  • the foregoing manner may implement the role that the station transmits the PSS/SSS to occupy the carrier after performing CCA/eCCA in the subframe.
  • the related PSS/SSS transmission mechanism is reserved, it is also convenient for the UE to use the relevant synchronization mechanism.
  • Other frequency domain extended PSS/SSS can also be used by the UE for synchronization purposes, thereby improving synchronization accuracy.
  • the station determines that when the remaining time resources in the subframe can also divide the complete LTE OFDM symbol, the station uses the complete symbol to transmit the reference signal, and one purpose of the reference signal can be used as The reserved signal (or the reserved signal can be constructed from some of these reference signals and configured by the station each time the reserved signal component).
  • These reference signals include one or more of the subordinates: CRS, CSI-RS, PRS, DRS, DMRS, and the like. The specific can be sent by the site selection configuration according to different purposes.
  • the station uses the above-mentioned related reference signal as a reserved signal for occupying the use right of the unlicensed carrier in the subframe, the above reference signal should be: the station makes the above complete LTE OFDM symbol There is at least one type of reference signal sent.
  • the PSS and/or SSS have been transmitted in the foregoing manner in the complete LTE OFDM symbol, the reference signals in these symbols are not subject to the above constraints.
  • the station does not send data in the symbol, or does not send a reserved signal (the reserved signal refers to a reserved signal formed by the non-reference signal).
  • the antenna port As the reserved signal, including 1 antenna end, 2 antenna ports, and 4 antenna ports.
  • the specific pattern indication as the reserved signal needs to be given, including the PRS corresponding to one and two PBCH antenna ports, and the PRS corresponding to the four PBCH antenna ports.
  • For DMRS one or more UE-specific reference signals associated with PDSCH are included; for CSI-RS, one or more sets of non-zero power configurations are included.
  • the site is configured with both CRS and PRS, and optionally PSS/SSS.
  • the CRS of one or two antenna ports, and the PRS corresponding to one and two PBCH antenna ports are used.
  • Such a configuration can best satisfy at least one type of reference signal transmission in the remaining complete LTE OFDM symbols.
  • This method is very suitable for the case where the CCA/ECCA starts from the start position of the subframe.
  • the second and third OFDM can be used.
  • the PSS and/or SSS are transmitted in the symbol in the foregoing manner, and the remaining symbols transmit the reference signal according to the method of the embodiment of the present invention.
  • the PSS/SSS can be mapped in the new manner according to the foregoing new manner, and the symbol position can also be determined using the relevant LTE rule, for example, fixed in the 7th and 8th symbols in the subframe (the subframe is 14).
  • the symbol consists of a sub-frame corresponding to the standard CP.
  • the PSS is in the 8th symbol, and the SSS is in the 7th symbol (also interchangeable). In this way, it is assumed that the seventh and eighth symbols still exist in the complete LTE symbol in the subframe (according to the original symbol of the subframe).
  • the site configures both CRS and CSI-RS and user data.
  • PSS/SSS is also configured.
  • the channel bandwidth occupied by user data is not less than 80% of the carrier bandwidth.
  • the CSI-RS includes one or more sets.
  • a DMRS for demodulating user data can also be transmitted.
  • the PSS/SSS can be mapped in the new manner according to the foregoing new manner, and the symbol position can also be determined using the relevant LTE rule, for example, fixed in the 7th and 8th symbols in the subframe (the subframe is 14).
  • the symbol consists of a sub-frame corresponding to the standard CP.
  • the PSS is in the 8th symbol, and the SSS is in the 7th symbol (also interchangeable). In this way, it is assumed that the seventh and eighth symbols still exist in the complete LTE symbol in the subframe (according to the original symbol of the subframe).
  • the station simultaneously sends CRS, CSI-RS and PRS, and optionally PSS/SSS.
  • CRS CRS of one or two antenna ports, and a PRS corresponding to one and two PBCH antenna ports are used.
  • Such a configuration can best satisfy at least one type of reference signal transmission in the remaining complete LTE OFDM symbols.
  • This method is very suitable for the case where the CCA/ECCA starts from the start position of the subframe.
  • the second and third OFDM can be used.
  • the PSS and/or SSS are transmitted in the symbol in the foregoing manner, and the remaining symbols transmit the reference signal according to the method of the embodiment of the present invention.
  • the CSI-RS consists of one or more sets.
  • the PSS/SSS can be mapped in the new manner according to the foregoing new manner, and the symbol position can also be determined using the relevant LTE rule, for example, fixed in the 7th and 8th symbols in the subframe (the subframe is 14).
  • the symbol consists of a sub-frame corresponding to the standard CP.
  • the PSS is in the 8th symbol, and the SSS is in the 7th symbol (also interchangeable). In this way, it is assumed that the seventh and eighth symbols still exist in the complete LTE symbol in the subframe (according to the original symbol of the subframe).
  • the station When the station does not send (downlink) data and control domain in the subframe of the occupied unlicensed carrier, the station also needs to send a signal in the subframe, a way of reserving the signal, for example, as shown in FIG. 7, where RS Indicates that the symbol transmits a reference signal, wherein the reference signal may be in the foregoing composition manner.
  • the RS at this time includes at least one CRS of one or two antenna ports, and one PRS corresponding to two PBCH antenna ports.
  • the station may send one or more of the following in the first three symbols of the subframe: PDCCH, PHICH, and PCFICH. The first symbol also sends a CRS, and the other symbols transmit the reference signal as described above.
  • the reserved signal is composed of a combination of PSS/SSS and the above reference signals.
  • the optional reference signals described above are CRS and PRS, and the CSI-RS is transmitted for CSI measurement or RRM measurement.
  • the CRS of one or two antenna ports, the PRS corresponding to one and two PBCH antenna ports are used at this time.
  • CSI-RS can be configured with multiple sets to improve measurement accuracy.
  • the mapping rule within the subframe is the same as the related LTE specification, and the reference signal whose mapping pattern is on its symbol is destroyed for the symbol occupied by the execution of the CCA/eCCA. For example, taking the two antenna port CRS as an example, other reference signals are executed in the same way. If the station performs CCA/eCCA successfully in the third symbol, then the CCA/eCCA occupies the first 3 OFDM, then it will be in front of the subframe. The mapped CRSs of the three symbols are destroyed, and the CRS is mapped only in the following 11 symbols according to the pattern specified by the relevant LTE protocol.
  • the total execution duration of the CCA/ECCA is fixed.
  • the CCA/eCCA is performed in the first n (n is a positive integer) symbols of the subframe, so obviously there will be 14 in the subframe (
  • the standard CP corresponds to the number of symbols as an example) - n LTE symbols.
  • the above reference signal, PSS/SSS is mapped in 14-n symbols of the subframe in the foregoing manner. If the corresponding symbol is occupied by CCA/eCCA, the reference signal, PSS/SSS, planned to be mapped in the symbol is destroyed. In the first n symbols, the non-complete LTE symbols (if any) from the time after the CCA/eCCA success (that is, the site performs CCA/eCCA acquisition rights) to the end of the nth symbol, if complete, The reserved signal is transmitted in the presence of the reserved signal (in this case, the reserved signal in the non-complete LTE symbol is not defined by this patent, and the reserved signal in the complete LTE symbol may be defined by the present invention or may be defined by the patent).
  • the above reference signal, PSS/SSS is mapped in the 14-n symbols as described above. If the corresponding symbol is occupied by CCA/eCCA, the reference signal, PSS/SSS, planned to be mapped in the symbol is destroyed.
  • a reservation signal is transmitted from a time after the success of the CCA/eCCA to a non-complete LTE symbol within a period of the end of the most recent LTE symbol; from the end of the most recent LTE symbol to the nth The complete LTE symbol within the time period of the end of the symbol, according to the previous The complete LTE OFDM symbols remaining in the sub-frame are used to transmit the reference signal, PSS/SSS.
  • mapping of the reference signal and the PSS/SSS is performed in the foregoing manner from the beginning of the CCA/eCCA to the end of the subframe within the subframe.
  • the time period from the start position of the subframe to the start position of the CCA/eCCA in the subframe is transmitted according to the mapping rule of the reference signal and the PSS/SSS in the related art.
  • the complete LTE symbols are divided into two types in the subframe, one is allocated to the LTE OFDM remaining after performing CCA/eCCA in the CCA/eCCA time period, and the other is allocated to the CCA/eCCA time period.
  • External LTE OFDM symbols In the above two types of LTE symbols, the CRS of one or two antenna ports is mapped and transmitted in the pattern in the first symbol in the subframe.
  • the CRS of one or two antenna ports is mapped and transmitted in the pattern in the first symbol of the subframe, and the latter LTE OFDM symbol maps the reference signal and the PSS/SSS in the foregoing manner.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the station performs CCA/eCCA in a certain subframe, the station determines that its own CCA/eCCA is successful, and the station determines whether there is a complete LTE OFDM symbol in the symbol (within the first three symbols in this embodiment) allocated to the CCA/eCCA, when the station When it is determined that there is a complete LTE OFDM symbol (assuming the remaining 2 complete symbols), the station transmits the PSS, SSS in the aforementioned 2 complete symbols, and may be transmitted in the manner described above in the embodiment of the present invention.
  • the station transmits one or more of the CRS, the PRS, and the CSI-RS in the following 11 symbols (in the case where the subframe includes 14 symbols as an example), and the mapping manner is in the foregoing manner in the embodiment of the present invention.
  • the station transmits PSS and SSS in only the middlemost one of the 63 subcarriers in the middle of the carrier among the two complete symbols.
  • the station transmits one or more of the CRS, PRS, and CSI-RS in the foregoing manner in the following 11 symbols and the foregoing 2 complete symbols, and the mapping manner is in the foregoing manner in the embodiment of the present invention.
  • a design of a reserved signal consisting of PSS/SSS and associated RSs is used in Figure 8 to occupy all of the symbols in the subframe.
  • PSS/SSS, CRS, and PRS, CSI-RS and PRS are optional configurations.
  • the PSS/SSS is located in the 2nd and 3rd symbols. Of these two symbols, there is currently no reference signal transmitted, so the PSS/SSS is transmitted to occupy the channel.
  • This reserved signal can be used to occupy the entire subframe.
  • a signal mapping in a CCA/eCCA subframe is provided in FIG. It is assumed that the time at which the CCA/eCCA is executed is started from the start position of the subframe, and the first three symbols of the maximum use of the CCA/eCCA are configured (3 is just an example of other values).
  • the station performs CCA/eCCA in a certain subframe, the station determines that its own CCA/eCCA is successful, and the station determines whether there is a complete LTE OFDM symbol in the symbol (within the first three symbols in this embodiment) allocated to the CCA/eCCA, when the station When it is determined that there is a complete LTE OFDM symbol (assuming the remaining 2 complete symbols), the station transmits the PSS, SSS in the aforementioned 2 complete symbols. The station then continues to transmit the RS and PSS/SSS in Figure 8 in the symbols following the 3 symbols configuring the CCA/eCCA.
  • RS PSS/SSS
  • PSS/SSS PSS/SSS
  • the station transmits one or more of CRS, PRS, and CSI-RS in the foregoing manner in the following 11 symbols and the above 2 complete symbols, a total of 13 symbols, and the mapping manner is implemented according to the present invention.
  • FIG. 10 shows an illustration in which R0 is CRS. Port 0, R1 is CRS port 1, R6 is PRS, and R1 in Figure 10 is optional. Among them, CRS and PRS are required (PRS is transmitted according to full bandwidth), and CRS is 1 or 2 antenna ports, PRS is 1 and 2 PBCH antenna ports are corresponding.
  • CSI-RS it can be configured as 0 sets or multiple sets.
  • the station can configure the corresponding CSI-RS as CSI measurement or RRM measurement.
  • the CRS of the first symbol in FIG. 10 is destroyed due to the execution of CCA/eCCA, and is mapped if CCA/eCCA is not executed.
  • CRS can be sent in a total of 13 or the following 11 symbols.
  • PRS may not be sent.
  • the station can configure the corresponding CSI-RS as CSI measurement or RRM measurement as needed.
  • the PSS/SSS is sent in the subframe, and the sending manner can be performed in the foregoing manner.
  • the station issues downlink data from the next sub-frame for simple scheduling.
  • the site needs to select CRS and PRS to send in the 13 symbols.
  • the PSS or the SSS can be sent.
  • the specific transmission mode refer to the foregoing manner.
  • the PSS/SSS For the symbol in which the PSS/SSS is transmitted, if the above reference signal is transmitted in the symbol at the same time, then the PSS/SSS in the symbol is no longer transmitted in the frequency domain extension.
  • the station transmits one or more of CRS, PRS, and CSI-RS in the foregoing manner in the following 11 symbols and the above 2 complete symbols, a total of 13 symbols, and the mapping manner is implemented according to the present invention.
  • the foregoing method in the example Since the 7th and 8th symbols are included in the 13 symbols described in the subframe at this time, the PSS and the SSS are transmitted on the 7th and 8th symbols.
  • the seventh symbol may be sent by the SSS, and the eighth symbol may be sent by the PSS, and vice versa.
  • the PSS and/or SSS at this time may employ PSS and/or SSS sequences outside of the current LTE system.
  • the station transmits the PSS, SSS (that is, the first two symbols in the next 11 symbols, or the fourth and the first of the entire subframe) in the first two symbols after the symbols assigned by the CCA/eCCA. 5 symbols).
  • the fourth symbol may be sent by the SSS
  • the fifth symbol may be sent by the PSS, and vice versa.
  • the PSS and/or SSS at this time may employ PSS and/or SSS sequences outside of the current LTE system.
  • a reference signal pattern is provided for transmitting in the remaining complete OFDM symbols to implement the occupied channel function, and also improve the synchronization precision.
  • FIG. 11 and FIG. 12 are diagrams of resource unit mappings of one PRB pair in a subframe
  • R represents a reference signal map
  • l is a label of an LTE symbol.
  • the reference signal in the symbol is destroyed and no mapping is performed.
  • the position of the reference signal map is illustrated in the figure.
  • the reference signals at different positions may be separately mapped by a plurality of different antenna ports, and are also composed of one antenna port mapping. If PSS/SSS is mapped in the symbol, the corresponding reference signal is destroyed at the position where the PSS/SSS is mapped, and is not mapped, and is mapped at other positions of the symbol.
  • user data (including control information) is sent in the symbol, the reference signal is not mapped at the location where the user data is transmitted, other location mapping, or the user data mapping is not mapped at the position of the reference signal, and the reference signal is still The map is sent.
  • Figures 13, 14, and 15 are another resource unit mapping pattern according to a PRB pair in a subframe, and R indicates a reference signal mapping.
  • R indicates a reference signal mapping.
  • the reference signal in the symbol is destroyed and no mapping is performed.
  • the position of the reference signal map is illustrated in the figure.
  • the reference signals at different positions may be separately mapped by a plurality of different antenna ports, and are also composed of one antenna port mapping. If PSS/SSS is mapped in the symbol, the corresponding reference signal is destroyed at the position where the PSS/SSS is mapped, and is not mapped, and is mapped at other positions of the symbol. If user data (including control information) is sent in the symbol, the reference signal is not mapped at the location where the user data is transmitted, other location mapping, or the user data mapping is not mapped at the position of the reference signal, and the reference signal is still The map is sent.
  • the reference signal patterns of FIG. 11 to FIG. 15 can also be mapped on the complete LTE OFDM symbol according to the foregoing manner in the embodiment of the present invention.
  • the LAA station sends a reservation signal in the complete symbol and starts scheduling user data in the next subframe.
  • the main purpose of the reserved signal is to occupy the channel and prevent other stations or systems from stealing. Therefore, it is necessary to have a signal transmitted in each symbol so that the signal energy in the symbol is non-empty when other stations detect it.
  • the reserved signal should include CRS, PRS.
  • the reserved signal can also be used to help the UE improve synchronization, so PSS/SSS (similar to Rel-8) can also be configured.
  • the CSI-RS can also be configured if the measurement of the UE (CSI, RRM) is improved.
  • the CCA/eCCA is executed from the start position of the subframe, but the time point of the stop is difficult to determine. Therefore, if the reserved signal is configured with PSS/SSS, the PSS/SSS can be sent after the symbol of the CCA/eCCA success time. In the immediate 2 symbols. Additionally, PSS/SSS can also be used to identify the starting position of the complete symbol.
  • the station when the station does not transmit user data in the divided complete LTE OFDM symbols, the station transmits PSS or SSS in the frequency domain position in the LTE OFDM symbol until the user Data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a CRS or CSI-RS in a frequency domain position in the LTE OFDM symbol until a user data starting point;
  • the station when the station does not send user data in the divided complete LTE OFDM symbol, the station sends a PSS or an SSS in a frequency domain position in the LTE OFDM symbol, where The other frequency domain locations of the LTE OFDM symbols transmit CRS or CSI-RS until the user data starting point.
  • the LAA station can only transmit the user data and the necessary demodulation reference signal, thereby achieving the purpose of occupying the channel.
  • the mode in case1 sends a reserved signal (for example, the reserved signal is composed of CRS, CSI-RS, PSS/SSS, and PRS is optional) can also be sent.
  • the user data is not mapped at the position of the reserved signal.
  • the LAA station When the user data occupies less than 80% of the nominal channel bandwidth, the LAA station still needs to send the reserved signal in the manner of case1 to meet the regulatory requirements, and also to prevent other frequencies of the unlicensed carrier from being used by other Site or system preemption.
  • the reserved signal should include the relevant CRS, PRS, PSS/SSS, CSI-RS; to avoid designing new reserved signals and reducing the standardization workload.
  • the LAA site can be configured by configuring the reserved signals to suit different scenarios. At the same time, if the reserved signal components are uniquely determined, it is also very good, and the signaling overhead can be reduced.
  • the reserved signal is transmitted regardless of whether the user data is sent or not; the unified processing method can reduce the complexity, and the reserved signal can also help improve the synchronization and measurement of the UE.
  • the PSS/SSS in the reserved signal is located in the 2 symbols immediately after the LAA station performs the CCA/eCCA successful symbol; if the frequency domain extension of the PSS/SSS is needed, the specific extension mode may refer to the foregoing manner; /SSS can also identify the starting position of the complete symbol.
  • An embodiment of the present invention provides a site, and the structure of the site is as shown in FIG. 17, and includes:
  • the PSS/SSS transmitting module 1401 is configured to transmit the PSS and/or the SSS in the complete LTE OFDM symbol of the occupied subframe resource after the CCA/eCCA is successfully executed in the subframe.
  • the PSS/SSS sending module 1401 includes:
  • the first sending unit 14011 is configured to: when the remaining part of the subframe of the CCA/eCCA is capable of dividing 2 or more complete LTE OFDM symbols, select 2 complete LTE OFDM symbols after the CCA/eCCA is successfully executed. Send PSS and/or SSS.
  • the PSS/SSS sending module 1401 further includes:
  • a second sending unit 14012 configured to: when the remaining part of the subframe of the CCA/eCCA can be divided into one complete LTE OFDM symbol, send a PSS or an SSS on the LTE OFDM symbol, where the CSA/eCCA The unsent SSS and/or PSS are transmitted in the next subframe of the subframe.
  • the site also includes:
  • the reserved signal sending module 1402 is configured to send a reserved signal in the other LTE OFDM symbols in the subframe of the CCA/eCCA after the CCA/eCCA is successfully executed, where the reserved signal includes a reference signal, the reference
  • the signal is one or more of the following:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the site also includes:
  • the reference signal transmitting module 1403 is configured to transmit the reference signal in the divided complete LTE OFDM symbols, wherein the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the site also includes:
  • the PDCCH/ePDCCH transmitting module 1404 is configured to: after the CCA/eCCA is successfully executed, when the remaining time in the subframe of the CCA/eCCA can further divide the complete LTE OFDM symbol, send the PDCCH in the complete LTE OFDM symbol. Or ePDCCH.
  • An embodiment of the present invention further provides a site, and the structure thereof is as shown in FIG. 18, including:
  • the reference signal sending module 1501 is configured to: when the CCA/eCCA is successfully executed in the subframe, when the remaining time in the subframe occupied by the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, in the complete LTE
  • the reference signal is transmitted in the OFDM symbol, and the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the site also includes:
  • the PSS/SSS sending module 1502 is configured to send the PSS in the complete LTE OFDM symbol when the remaining time in the subframe of the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol after the CCA/eCCA is successfully executed. And / or SSS.
  • the embodiment of the present invention further provides a site, and the structure thereof is as shown in FIG. 19, including:
  • the reserved signal sending module 1601 is configured to: after the CCA/eCCA in the subframe is successfully executed, when the remaining time in the subframe occupied by the CCA/eCCA is further capable of dividing the complete LTE OFDM symbol, in the complete A reserved signal is transmitted in the LTE OFDM symbol, and the reserved signal includes a reference signal, and the reference signal includes any one or any of the following signals:
  • CRS CRS
  • CSI-RS CRS
  • PRS CRS
  • DRS DRS
  • DMRS DMRS
  • the reserved signal further includes a PSS and/or an SSS
  • the reserved signal sending module 1601 includes:
  • the PSS/SSS transmitting unit 16011 is configured to: when the remaining part of the subframe of the CCA/eCCA is capable of dividing 2 or more complete LTE OFDM symbols, the station selects 2 complete after the CCA/eCCA is successfully executed.
  • the LTE OFDM symbol transmits PSS and/or SSS.
  • the PSS/SSS sending unit 16011 is further configured to: when the remaining part of the subframe of the CCA/eCCA can be divided into one complete LTE OFDM symbol, send the PSS or the SSS on the LTE OFDM symbol. Sending unsent SSS and/or PSS in the next subframe of the CCA/eCCA subframe.
  • the reserved signal sending module 1601 further includes:
  • the reference signal transmitting unit 16012 is configured to transmit the reference signal in the divided complete LTE OFDM symbols after the CCA/eCCA is successfully executed.
  • Embodiments of the present invention provide a data transmission method and a station, where a station transmits a PSS and/or SSS or a reference signal in a complete LTE OFDM symbol of an occupied subframe resource after a CCA/eCCA in a subframe is successfully executed. Reserved signal. The use of the remaining resources after the execution of the CCA/eCCA is realized, and the problem of using other resources other than the resources corresponding to the CCA duration is solved.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution realizes the utilization of the remaining resources after the execution of the CCA/eCCA, and solves the problem of using other resources than the resources corresponding to the CCA duration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法和站点。涉及无线通信领域;解决了利用CCA时长对应的资源外的其他资源的问题。该方法包括:站点在子帧内CCA/eCCA执行成功后,所述站点在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS。上述技术方案适设置为LTE系统,实现了对CCA/eCCA执行之后剩余资源的利用。

Description

数据传输方法和站点 技术领域
本文涉及但不限于移动无线通信领域,特别是涉及非授权载波系统中的数据传输方法和站点。
背景技术
在LTE的演进过程中,在2014年9月份,LTE Rel-13版本开始立项研究,其中Rel-13中一个重要的立项就是LTE系统使用非授权载波工作。这项技术将使得LTE系统能够使用目前存在的非授权载波,大大提升LTE系统的潜在频谱资源,使得LTE系统能够获得更低的频谱成本。
非授权频谱存在很多优势:
1、免费/低费用(不需要购买非频谱,频谱资源为零成本)。
2、准入要求低,成本低(个人、企业都可以参与部署,设备商的设备可以任意)。
3、共享资源(多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,提高频谱效率)。
4、无线接入技术多(跨不同的通信标准,协作难,网络拓扑多样)。
5、无线接入站点多(用户数量大,协作难度大,集中式管理开销大)。
6、应用多(从资料看,多业务被提及可以在其中运营,例如Machine to machine(M2M)、Vehicle to vehicle(V2V))。
一些地区或国家对非授权载波的使用存在法规管制要求,例如在欧洲,系统在非授权载波中运营时,需要支持LBT机制。例如站点(本申请中泛指使用非授权载波的设备,包括基站、UE等)在使用非授权之前需要先执行对于载波的空闲信道评估(CCA),如果CCA的结果为载波是空闲的,那么站点才能有可能使用。为了避免邻近的多个站点同时对于同一载波执行CCA 时,如果CCA结果为空闲,则这些邻近的站点将同时使用非授权载波,之间可能存在较大的干扰。在一个地区在非授权载波的管制中,针对不同抢占使用机制还引入了扩展CCA(eCCA)。
针对LTE系统的特点,例如,LTE是基于子帧为单位调度数据发送的,一个子帧时长为1ms,包括14个OFDM符号(标准CP情况下),在LTE系统中引入CCA机制。其中一些公开资源建议,将CCA的执行放置在子帧的开始部分,或者说CCA从子帧的起始时刻点开始向后持续,至于持续多长时间,这些都将由CCA以及eCCA的执行情况来随机决定。在这种子帧中,站点如何利用其他资源(除了CCA时长对应的资源),以及在该资源中的信号如何发送,这将是本领域要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种数据传输方法和站点,以利用CCA时长对应的资源外的其他资源。
一种数据传输方法,包括:
站点在子帧内CCA/eCCA执行成功后,所述站点在占用的子帧资源的完整的LTE正交频分复用(OFDM)符号中发送主同步信号(PSS)和/或辅同步信号(SSS)。
可选的,所述站点在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS,包括,站点优先选择所述CCA/eCCA所在的子帧中剩余的完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在占用的子帧资源的完整的LTE符号中发送PSS和/或SSS包括:
当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
可选的,所述站点选择的2个完整的LTE OFDM符号包括CCA/eCCA执行成功之后的第1个和第2个完整的LTE OFDM符号。
可选的,所述站点在占用的子帧资源的完整的LTE符号中发送PSS和/或SSS包括:
当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,所述站点在该LTE OFDM符号上发送PSS或SSS。
可选的,该方法还包括,所述站点在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,该方法还包括:
所述站点在CCA/eCCA执行成功之后,在所述CCA/eCCA的子帧中的其他LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
可选的,所述预留信号还包括PSS和/或SSS。
可选的,该方法还包括:
所述站点在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送参考信号,其中所述参考信号包括下述信号中的任一个或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
所述DMRS,包括一个或多个UE专用参考信号为PDSCH;
所述CSI-RS,可选为一套或多套的CSI-RS。
可选的,该方法还包括:
当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
可选的,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
所述站点同时发送CRS和PRS,或者,
所述站点同时发送CRS、CSI-RS和数据,或者,
所述站点同时发送CRS、CSI-RS和PRS,或者,
所述站点同时发送CRS、CSI-RS和预留信号,或者,
所述站点同时发送CRS和数据,
其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
可选的,该方法还包括:
所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
可选的,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
可选的,所述站点在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
可选的,所述站点在所述完整的LTE符号中发送PSS和/或SSS包括:
当在所述完整的LTE OFDM符号中只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
可选的,所述站点在使用所述其他频域位置发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,所述站点在使用所述其他频域位置发送未发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,该方法还包括:
载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
本发明实施例还提供了一种数据传输方法,包括:
站点在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
所述DMRS,包括一个或多个UE专用参考信号为PDSCH(UE-specific reference signals associated with PDSCH);
所述CSI-RS,包括一套或多套的CSI-RS。
可选的,该方法还包括:
当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
可选的,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
所述站点同时发送CRS和PRS,或者,
所述站点同时发送CRS、CSI-RS和数据,或者,
所述站点同时发送CRS、CSI-RS和PRS,或者,
所述站点同时发送CRS、CSI-RS和预留信号,或者,
所述站点同时发送CRS和数据,
其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
可选的,该方法还包括:
所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
可选的,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
可选的,所述站点在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PSS和/或SSS。
可选的,当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
可选的,所选择2个完整的LTE OFDM符号包括所述CCA/eCCA执行成功后的第一个和第二个完整的LTE OFDM符号。
可选的,当所述CCA/eCCA的子帧剩余的部分能够划分1个OFDM符号时,所述站点在其上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS或PSS。
可选的,该方法还包括:
所述站点在所述CCA/eCCA的子帧剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述预留信号还包括PSS和/或SSS。
可选的,所述站点在子帧内CCA/eCCA执行成功后,当该CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
可选的,当在所述完整的LTE OFDM符号中发送的只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
可选的,所述站点在使用所述其他频域位置发送PSS或SSS时,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,所述站点在使用所述其他频域位置发送PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,该方法还包括,
载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的 总共的带宽不低于载波带宽的80%。
本发明实施例还提供了一种数据传输方法,包括:
站点在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述预留信号还包含PSS和/或SSS。
可选的,在所述完整的LTE OFDM符号中发送预留信号包括:
当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
可选的,所述站点选择的2个完整的LTE OFDM符号包括CCA/eCCA执行成功之后的第1个和第2个完整的LTE OFDM符号。
可选的,当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,所述站点在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
可选的,所述站点在发送PSS或SSS时,当在所述完整的LTE OFDM符号中只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或 SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
可选的,所述站点在使用所述其他频域位置发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,所述站点在使用所述其他频域位置发送未发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,该方法还包括:
载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
可选的,在所述完整的LTE OFDM符号中发送预留信号还包括:
所述站点在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送所述参考信号,所述参考信号为下述一个或多个:
CRS、CSI-RS、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
可选的,所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
所述DMRS,包括一个或多个UE专用参考信号为PDSCH(UE-specific  reference signals associated with PDSCH);
所述CSI-RS,包括一套或多套的CSI-RS。
可选的,当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
可选的,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
所述站点同时发送CRS和PRS,或者,
所述站点同时发送CRS、CSI-RS和数据,或者,
所述站点同时发送CRS、CSI-RS和PRS,或者,
所述站点同时发送CRS、CSI-RS和预留信号,或者,
所述站点同时发送CRS和数据,
其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
可选的,该方法还包括:
所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
本发明实施例还提供了一种站点,包括:
PSS/SSS发送模块,设置为在子帧内CCA/eCCA执行成功后,在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS。
可选的,所述PSS/SSS发送模块包括:
第一发送单元,设置为当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述PSS/SSS发送模块还包括:
第二发送单元,设置为当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,该站点还包括:
预留信号发送模块,设置为在CCA/eCCA执行成功之后,在所述CCA/eCCA的子帧中的其他LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,该站点还包括:
参考信号发发送模块,设置为在划分出的完整的LTE OFDM符号中发送参考信号,其中所述参考信号包括下述信号中的任一个或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,该站点还包括:
PDCCH/ePDCCH发送模块,设置为在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
本发明实施例还提供了一种站点,包括:
参考信号发送模块,设置为在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,该站点还包括:
PSS/SSS发送模块,设置为在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PSS和/或SSS。
本发明实施例还提供了一种站点,包括:
预留信号发送模块,设置为在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述预留信号还包含PSS和/或SSS,所述预留信号发送模块包括:
PSS/SSS发送单元,设置为当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述PSS/SSS发送单元,还设置为当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,所述预留信号发送模块还包括:
参考信号发送单元,设置为在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送所述参考信号。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供了一种数据传输方法和站点,站点在子帧内CCA/eCCA执行成功后,在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS或参考信号或预留信号。实现了对CCA/eCCA执行之后剩余资源的利用,解决了利用CCA时长对应的资源外的其他资源的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种数据传输方法示意图;
图2为本发明实施例提供的又一种数据传输方法示意图;
图3为本发明实施例提供的又一种数据传输方法示意图;
图4为CCA/eCCA执行后剩余的完整的LTE OFDM符号示意图;
图5为PSS/SSS占用CCA/eCCA执行后的剩余的LTE OFDM符号的一种方式示意图;
图6为PSS/SSS占用CCA/eCCA执行后的剩余的LTE OFDM符号的又一种方式示意图;
图7为一种预留信号发送方式的示意图;
图8为又一种预留信号发送方式的示意图;
图9为又一种预留信号发送方式的示意图;
图10为一种CCA/eCCA子帧中信号映射示意图;
图11为又一种CCA/eCCA子帧中信号映射示意图;
图12为又一种CCA/eCCA子帧中信号映射示意图;
图13为又一种CCA/eCCA子帧中信号映射示意图;
图14为又一种CCA/eCCA子帧中信号映射示意图;
图15为又一种CCA/eCCA子帧中信号映射示意图;
图16为预留符号发送示意图;
图17为本发明的实施例九提供的一种站点的结构示意图;
图18为本发明的实施例九提供的又一种站点的结构示意图;
图19为本发明的实施例九提供的又一种站点的结构示意图。
本发明的实施方式
针对LTE系统的特点,例如,LTE是基于子帧为单位调度数据发送的,一个子帧时长为1ms,包括14个OFDM符号(标准CP情况下),在LTE系统中引入CCA机制。相关技术中,一些公开资源建议,将CCA的执行放置在子帧的开始部分,或者说CCA从子帧的起始时刻点开始向后持续,至于持续多长时间,这些都将由CCA以及eCCA的执行情况来随机决定。在这种子帧中,站点如何利用其他资源(除了CCA时长对应的资源),以及在该资源中的信号如何发送,是本领域技术人员要解决的问题。
本发明的实施例提供了一种数据传输方法和站点。下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,本发明的实施例提供了一种数据传输方法,包括:
站点在子帧内CCA/eCCA执行成功后,所述站点在占用的子帧资源的完整的LTE正交频分复用(OFDM)符号中发送主同步信号(PSS)和/或辅同步信号(SSS)。
可选的,所述站点在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS,包括,站点优先选择所述CCA/eCCA所在的子帧中剩余的完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在占用的子帧资源的完整的LTE符号中发送PSS和/或SSS包括:
当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
可选的,所述站点选择的2个完整的LTE OFDM符号包括CCA/eCCA执行成功之后的第1个和第2个完整的LTE OFDM符号。
可选的,所述站点在占用的子帧资源的完整的LTE符号中发送PSS和/或SSS包括:
当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,所述站点在该LTE OFDM符号上发送PSS或SSS。
可选的,该方法还包括,所述站点在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,该方法还包括:
所述站点在CCA/eCCA执行成功之后,在所述CCA/eCCA的子帧中的其他LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
可选的,所述预留信号还包括PSS和/或SSS。
可选的,该方法还包括:
所述站点在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送参考信号,其中所述参考信号包括下述信号中的任一个或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、 4个天线端口;
所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
所述DMRS,包括一个或多个UE专用参考信号为PDSCH;
所述CSI-RS,包括一套或多套的CSI-RS。
可选的,该方法还包括:
当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送。
可选的,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
所述站点同时发送CRS和PRS,或者,
所述站点同时发送CRS、CSI-RS和数据,或者,
所述站点同时发送CRS、CSI-RS和PRS,或者,
所述站点同时发送CRS、CSI-RS和预留信号,或者,
所述站点同时发送CRS和数据,
其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
可选的,该方法还包括:
所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
可选的,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
可选的,所述站点在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
可选的,所述站点在所述完整的LTE符号中发送PSS和/或SSS包括:
当在所述完整的LTE OFDM符号中只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
可选的,所述站点在使用所述其他频域位置发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,所述站点在使用所述其他频域位置发送未发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,该方法还包括:
载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
如图2所示,本发明的实施例还提供了一种数据传输方法,包括:
站点在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
所述DMRS,包括一个或多个UE专用参考信号为PDSCH(UE-specific reference signals associated with PDSCH);
所述CSI-RS,包括一套或多套的CSI-RS。
可选的,该方法还包括:
当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送。
可选的,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
所述站点同时发送CRS和PRS,或者,
所述站点同时发送CRS、CSI-RS和数据,或者,
所述站点同时发送CRS、CSI-RS和PRS,或者,
所述站点同时发送CRS、CSI-RS和预留信号,或者,
所述站点同时发送CRS和数据,
其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
可选的,该方法还包括:
所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
可选的,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
可选的,所述站点在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩 余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PSS和/或SSS。
可选的,当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
可选的,所选择2个完整的LTE OFDM符号为所述CCA/eCCA执行成功后的第一个和第二个完整的LTE OFDM符号。
可选的,当所述CCA/eCCA的子帧剩余的部分能够划分1个OFDM符号时,所述站点在其上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS或PSS。
可选的,该方法还包括:
所述站点在所述CCA/eCCA的子帧剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述预留信号还包括PSS和/或SSS。
可选的,所述站点在子帧内CCA/eCCA执行成功后,当该CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
可选的,当在所述完整的LTE OFDM符号中发送的只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
可选的,所述站点在使用所述其他频域位置发送PSS或SSS时,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,所述站点在使用所述其他频域位置发送PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,该方法还包括,
载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
如图3所示,本发明的实施例还提供了一种数据传输方法,包括:
站点在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述预留信号还包含PSS和/或SSS。
可选的,在所述完整的LTE OFDM符号中发送预留信号包括:
当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的 LTE OFDM符号发送PSS和/或SSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
可选的,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
可选的,所述站点选择的2个完整的LTE OFDM符号包括CCA/eCCA执行成功之后的第1个和第2个完整的LTE OFDM符号。
可选的,当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,所述站点在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
可选的,所述站点在发送PSS或SSS时,当在所述完整的LTE OFDM符号中只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
可选的,所述站点在使用所述其他频域位置发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,所述站点在使用所述其他频域位置发送未发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
可选的,该方法还包括:
在单位之间预留至少一个子载波的间隔。
可选的,该方法还包括:
载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
可选的,在所述完整的LTE OFDM符号中发送预留信号还包括:
所述站点在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送所述参考信号,所述参考信号为下述一个或多个:
CRS、CSI-RS、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
可选的,所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
所述DMRS,包括一个或多个UE专用参考信号为PDSCH(UE-specific reference signals associated with PDSCH);
所述CSI-RS,包括一套或多套的CSI-RS。
可选的,当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送。
可选的,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
所述站点同时发送CRS和PRS,或者,
所述站点同时发送CRS、CSI-RS和数据,或者,
所述站点同时发送CRS、CSI-RS和PRS,或者,
所述站点同时发送CRS、CSI-RS和预留信号,或者,
所述站点同时发送CRS和数据,
其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括 1个或2个天线端口对应的CRS。
可选的,该方法还包括:
所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
预留信号(也可称为占用信号)能被发送在空闲信道评估/扩展空闲信道评估(Clear Channel Assessment/extended Clear Channel Assessment,CCA/eCCA)所在的子帧中,其中包括CCA/eCCA成功时刻对应的OFDM符号内剩余资源中,和/或CCA/eCCA所在的子帧中剩余的OFDM符号中,也能被发送在站点抢占到非授权载波的其他子帧中。接收端能够假定,预留信号包含下述一个或多个信号:CRS、PRS、PSS/SSS、CSI-RS。其中,可选的方式包括1个或2个天线端口(端口0、1)的CRS、1个和2个PBCH天线端口(端口6)的PRS、PSS/SSS位于CCA/eCCA成功时刻对应的OFDM符号之后的紧邻的2个符号中,或者PSS/SSS位于子帧中第7个和第8个符号中,或者,PSS/SSS位于子帧中为CCA/eCCA分配的OFDM符号之后的紧邻的2个符号中。
参考图3,LTE系统在非授权载波中工作时,站点执行CCA/eCCA如果从子帧的起始时刻,如果执行eCCA/eCCA,且引入随机回退机制的话,那么站点自己也只能在执行CCA/eCCA成功后才能获知子帧中剩余的资源(剩余的LTE OFDM符号)有哪些,实际就是从CCA/eCCA成功的起始点到子帧结束的资源。这些资源都是由非完整LTE OFDM符号和/或完整LTE OFDM符号组成,其中,如果事先分配了CCA/eCCA执行的LTE OFDM符号范围,那么完整LTE OFDM符号由两部分组成的,一部分是分配给CCA/eCCA的符号中剩余下,一部分是未分配给CCA/eCCA的符号。
站点执行CCA/eCCA,当站点执行CCA/eCCA成功后,站点确定子帧中剩余的资源,确定剩余的完整的LTE OFDM符号位置和数量。
站点的数据发送一般都是以子帧为单位调度的,那么站点不在剩余的完整的LTE OFDM符号中发送数据(因为这方式下发送数据非常复杂,但是,如果站点的功能强(成本高)时,也有可能会发送数据)时,站点在下一个子帧开始发送数据,那么站点为了防止其他站点或系统(例如wifi系统)抢 走非授权载波资源,那么站点需要在剩余的资源中发送信号(称为预留信号或预留信号),来占住非授权载波,使得其他站点或系统在执行CCA/eCCA时,发现非授权载波是非空闲的,从而使得站点能够在下一个子帧时,保证非授权载波的使用权不会丢失。
站点在剩余的完整LTE OFDM符号中按照下面的方式发送数据。
下面描述发送PSS/SSS的方式。
站点在子帧内CCA/eCCA执行成功后,确定当该子帧中剩余的时间资源还能够划分出完整的LTE OFDM符号时,且站点确定能够划分2个或2个以上完整的LTE OFDM符号时,站点在其中选择2个完整的符号发送PSS和/或SSS,其中,所述2个完整符号中前者发送SSS时,则后者发送PSS;或者前者发送PSS时,则后者发送SSS。站点确定的所述2个符号为CCA/eCCA执行成功之后的第一个和第二个完整LTE OFDM符号。图5给出了一种可选方案。
如果站点确定划分的完整LTE OFDM符号为1个时,站点在该符号中发送PSS或SSS。可选的,站点在下一个子帧的第一个符号中发送SSS或PSS,这样,站点可以发送完整的PSS/SSS,使得UE能够继续使用PSS/SSS实现同步目的,前者只发送一个符号的PSS或SSS,可以实现预留信号的作用,但是同步目的的能力变弱。
如果规定CCA/eCCA的执行时间范围固定为子帧的某几个符号,例如固定为子帧中前3个(或前4个)符号内执行CCA/eCCA。这种情况下,除了前述的PSS/SSS符号位置确定方法外,还可以按照下面的方式进行。站点在配置给CCA/eCCA的执行时间范围之后的前2个符号中发送PSS、SSS。例如按照前述假设站点在子帧中第4个和第5个符号中发送PSS、SSS,如图6所示意的。这种方式下PSS/SSS的符号位置是由分配给CCA/eCCA的符号数量来决定的。如果分配给CCA/eCCA的符号数第一个符号,那么PSS/SSS的符号位置就与图5是相同的,但是采用的符号确定方式仍然不同。具体符号内的映射、那个符号发送PSS、那个符号发送SSS,可以按照下面的方式进行。
另一个可选的方式,如果站点在子帧内执行CCA/eCCA成功后,该子帧 仍然剩余2个或以上LTE符号时,站点在该子帧的最后2个LTE符号中发送PSS或SSS。
载波的频域其他位置发送PSS/SSS的方式:
当在完整LTE符号中只有PSS或SSS时,站点除了按照LTE规定的在载波中的频域位置发送PSS/SSS外(LTE规定的PSS/SSS位于载波中心的63个载波中,但除了最中间一个子载波),还在该符号的其他频域位置发送PSS或SSS。
如果在其他频域位置发送PSS/SSS,站点能够在除了中间63个子载波之外,按照63个子载波为单位,向低频端或高频端在预留给定子载波间隔后扩展,来发送PSS/SSS(中间一个载波预留)。例如,如果有给定间隔,例如为5个子载波。站点向低频段扩展PSS/SSS时,站点在相关的PSS/SSS的子载波之外,预留5个子载波,然后选定新的63个子载波(频域连续)来进行发送PSS/SSS,且中间的一个载波预留,不发PSS/SSS,依次向其他频率方向扩展。在载波低端或高端频率处如果不能分配63个子载波时,则这些载波不发送PSS、SSS。
在上述的描述中,也可以不预留间隔,例如间隔设置为0。预留间隔有利于每一个单元的PSS/SSS彼此之间减少干扰,有利于接收端解析。间隔为0,对于占道作用是完全可以的,只是解析难度略有增加,在一些场景下,接收端不需要解析,只需要探测能量信号即可。
上述按照63个单位来选择其他频域位置的子载波来发送PSS/SSS,但是需要预留每63个载波中间的哪一个子载波,所以,本发明实施例也包括按照62个子载波为单位来选择其他频域位置的子载波来发送PSS/SSS,此时所有62个子载波都发送PSS/SSS。
可选的,为了克服下面的问题,当一个20M的载波被站点1抢占使用时,如果站点1按照上述方式PSS/SSS,那么在20M的非中心频点处,其他站点可能检索到PSS/SSS,会以为该处为某一载波(例如5M载波)的接入中心频点处,从而尝试接入,最终造成该站点的电能浪费。可选的,本发明实施例在载波的非中心频点处发送的PSS/SSS,应该保持下面特点中的一个或多个:
1)PSS和SSS的符号顺序与相关的载波中心频点处的符号顺序相反。例如相关的LTE FDD下,是在固定的两个符号中发送PSS/SSS,且符号顺序为先发SSS的符号,再发PSS的符号,那么按照本发明实施例的方案,其他频域位置的处应该先发送PSS的符号,在发送SSS的符号。
2)PSS或SSS采用序列不同于相关LTE中选定的PSS或SSS的序列。例如,相关LTE中选定的PSS或SSS序列集合为A,那么在其他频域位置发送的PSS或SSS就选择除了A集合之外的序列。
3)在每一个可能的载波的中心频点处的若干个子载波中不发送PSS/SSS,例如中心的63个子载波但除了中间一个子载波。每一个可能的载波,是指,载波是按照带宽事先划分好的,例如按照5M、10M等数值会划分载波,载波划分好以后其中心频点也就唯一确定了,这些中心频点称为可能的载波的中心频点。
4)在下行载波中,在子载波对应频率为UE扫频的频点时,不将其作为PSS/SSS子载波的中心位置来发送PSS/SSS。其中,例如UE扫频的频点为300KH的整数倍时,则就不使用子载波的频率为300KHz的整数的子载波发送PSS/SSS。
对于PSS/SSS在非授权载波的非中心频点位置处发送时,总的发送次数或占用带宽满足下面的要求:非授权载波中每一个发送PSS或SSS的符号中,总共发送PSS或SSS占用的带宽不低于该载波的带宽的80%。80%是指在全带宽的80%的带宽上能探测到信号能量。
上述方式解决了在载波的频域其他位置发送PSS/SSS的相关问题。
上述发送PSS/SSS的方式可以在剩余的所有完整LTE OFDM符号重复实施。
上述方式可以实现站点在子帧中执行CCA/eCCA之后发送PSS/SSS来占住载波的作用。同时由于相关的PSS/SSS发送机制被保留,也便于UE沿用相关的同步机制。其他频域扩展的PSS/SSS也可以被UE使用来作为同步目的,从而提升同步精度。
下面描述参考信号的发送。
站点在子帧内CCA/eCCA执行成功后,确定当该子帧中剩余的时间资源还能够划分出完整的LTE OFDM符号时,站点使用完整的符号发送参考信号,该参考信号的一个目的可以作为预留信号(或者说,预留信号能够由这些参考信号中的某个(些)构造,且由站点配置每次的预留信号组成成分)。这些参考信号包括下属的一个或多个:CRS、CSI-RS、PRS、DRS、DMRS等。具体的可以根据不同目的,由站点选择配置发送。
如果站点将上述相关的参考信号作为预留信号的目的来使用,用来占用用非授权载波在该子帧的使用权时,上述的参考信号应该为:站点使得上述的完整的LTE OFDM符号中均有至少一个类型的参考信号发送。这里,如果上述的完整的LTE OFDM符号中已经按照前述的方式发送了PSS和/或SSS,则这些符号中的参考信号不受上述约束。可选的,上述方式实施时,是站点在所述符号中不发送数据、或不发送预留信号(这个预留信号是指由非上述参考信号形成的预留信号)时。
对于CRS,站点配置时,需要给出作为预留信号时的天线端口,包括1个天线端、2个天线端口、4个天线端口。对于PRS站点配置时,需要给出作为预留信号时的具体图样指示,包括1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS。对于DMRS,包括一个或多个UE专用参考信号(为解调PDSCH)(UE-specific reference signals associated with PDSCH);对于CSI-RS,包括一套或多套非零功率配置。
一些可选的组合为预留信号罗列如下(但不限于此):
1)站点同时配置CRS和PRS,可选的也配置PSS/SSS。其中,可选的,使用1个或2个天线端口的CRS、1个和2个PBCH天线端口对应的PRS。这样的配置能够最大可能的满足在剩余的完整的LTE OFDM符号中均有至少一个类型的参考信号发送。这种方式非常适合CCA/ECCA从子帧起始位置开始的情况,针对LTE系统,如果站点执行CCA/eCCA成功的点在第一个OFDM符号内,那么可以在第二个和第三个OFDM符号中按照前述方式发送PSS和/或SSS,其余的符号中按照本发明实施例的方法发送参考信号。本方式中,PSS/SSS除了能够按照前述的新方式映射发送外,也可以使用相关的LTE的规则确定符号位置,例如固定在子帧中第7个和第8个符号中(子帧由14个 符号组成,以标准CP对应的子帧为例),PSS在第8个符号中,SSS在第7个符号中(也可以互换)。这种方式是假设子帧中完整的LTE符号中仍然存在第7、8个符号(按照子帧原本的符号划分)。
2)站点同时配置CRS和CSI-RS以及用户数据,可选的也配置PSS/SSS,其中用户数据占用的信道带宽不低于载波带宽的80%。其中CSI-RS包括一套或多套。这种情况下因为有用户数据,也可以发送用于解调用户数据的DMRS。本方式中,PSS/SSS除了能够按照前述的新方式映射发送外,也可以使用相关的LTE的规则确定符号位置,例如固定在子帧中第7个和第8个符号中(子帧由14个符号组成,以标准CP对应的子帧为例),PSS在第8个符号中,SSS在第7个符号中(也可以互换)。这种方式是假设子帧中完整的LTE符号中仍然存在第7、8个符号(按照子帧原本的符号划分)。
3)站点同时发送CRS、CSI-RS和PRS,可选的也配置PSS/SSS。其中,使用1个或2个天线端口的CRS、1个和2个PBCH天线端口对应的PRS。这样的配置能够最大可能的满足在剩余的完整的LTE OFDM符号中均有至少一个类型的参考信号发送。这种方式非常适合CCA/ECCA从子帧起始位置开始的情况,针对LTE系统,如果站点执行CCA/eCCA成功的点在第一个OFDM符号内,那么可以在第二个和第三个OFDM符号中按照前述方式发送PSS和/或SSS,其余的符号中按照本发明实施例的方法发送参考信号。CSI-RS包括一套或多套。本方式中,PSS/SSS除了能够按照前述的新方式映射发送外,也可以使用相关的LTE的规则确定符号位置,例如固定在子帧中第7个和第8个符号中(子帧由14个符号组成,以标准CP对应的子帧为例),PSS在第8个符号中,SSS在第7个符号中(也可以互换)。这种方式是假设子帧中完整的LTE符号中仍然存在第7、8个符号(按照子帧原本的符号划分)。
当站点在占用的非授权载波的子帧中不发送(下行)数据和控制域时,站点也需要在该子帧中发送信号,一种预留信号的方式,例如图7所示,其中RS表示该符号发送参考信号,其中参考信号可以是前述组成方式,可选的,此时的RS至少包括1个或2个天线端口的CRS、1个和2个PBCH天线端口对应的PRS。当站点在该子帧中不发送数据但发送控制域时,那么站点可以在该子帧前3个符号中发送下述一个或多个:PDCCH、PHICH和 PCFICH。其中第一个符号也发送CRS,其他符号按照前述方式发送参考信号。
预留信号由PSS/SSS和上述的参考信号组合而成。可选的上述参考信号为CRS和PRS,发送CSI-RS用于CSI测量或RRM测量。为了占有更多的完整LTE OFDM符号,此时使用1个或2个天线端口的CRS、1个和2个PBCH天线端口对应的PRS。CSI-RS可以配置多套,以便于提升测量精度。
由于剩余的完整的LTE OFDM符号数量不定,所以对于参考信号在符号内的映射规则给出描述:
在子帧内的映射规则与相关的LTE规定相同,对于由于执行CCA/eCCA而占用的符号,将其映射图样在其符号上的参考信号打掉。例如以两天线端口CRS为例,其他参考信号同理执行,假设站点执行CCA/eCCA在第3个符号中成功,那么CCA/eCCA就占用了前3个OFDM,那么就将在子帧的前3个符号中的映射的CRS打掉,CRS只在后面11个符号中按照相关LTE协议规定的图样映射。
在一种情况下,CCA/ECCA的总的执行时长是固定,例如规定CCA/eCCA在子帧的前n(n为正整数)个符号中执行,那么显然子帧中肯定会有14(以标准CP对应符号数为例)-n个LTE符号。对于这种情况,可以按照下面之一处理:
1)上述的参考信号、PSS/SSS,按照前述方式在所述子帧的14-n个符号中映射。如果对应的符号被CCA/eCCA占用了,就打掉该符号中计划映射的参考信号、PSS/SSS。在前n个符号中,从CCA/eCCA成功(就是站点执行CCA/eCCA获得使用权)后的时刻到第n个符号结束的时段内的非完整LTE符号(如果有)、完整LTE符号(如果有)中发送预留信号(此时非完整LTE符号中的预留信号为非本专利定义的,完整LTE符号中的预留信号可以是本发明定义的,也可以是非本专利定义的)。
2)上述的参考信号、PSS/SSS,按照前述方式在所述的14-n个符号中映射。如果对应的符号被CCA/eCCA占用了,就打掉该符号中计划映射的参考信号、PSS/SSS。在前n个符号中,从CCA/eCCA成功后的时刻之后到最近的LTE符号结束处的时段内的非完整LTE符号中发送预留信号;从所述最近的LTE符号结束处开始到第n个符号结束的时段内的完整LTE符号,按照前 述子帧内剩余的完整的LTE OFDM符号来发送参考信号、PSS/SSS。
对于CCA/eCCA从子帧中任意位置时刻开始的情况。子帧内从CCA/eCCA开始直到该子帧结束的时间段内按照前述方式进行参考信号、PSS/SSS的映射发送。子帧内从子帧起始位置到CCA/eCCA开始位置的时间段,按照相关技术中参考信号、PSS/SSS的映射规则发送。
可选的,子帧内将完整的LTE符号分为两类,一类是分配给CCA/eCCA时间段内执行CCA/eCCA成功后余下的LTE OFDM,一类是分配给CCA/eCCA时间段之外的LTE OFDM符号。在上述的两类LTE符号中均按照1个或2个天线端口的CRS在子帧中第一个符号中的图样映射发送。或者,前者的LTE OFDM符号中按照1个或2个天线端口的CRS在子帧中第一个符号中的图样映射发送,后者的LTE OFDM符号中按照前述方式映射参考信号、PSS/SSS。
上述的多种方式、不同类型的信号在不冲突的情况,可以混合使用,或者按照符号为单位进行混合使用。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
下面提供可选的实施例。
实施例一
假设执行CCA/eCCA的时刻是从子帧起始位置开始的,且配置CCA/eCCA最大使用前3个符号(3只是一个例子其他数值也可以)。站点在某一子帧中执行CCA/eCCA,站点确定自己CCA/eCCA成功,站点确定分配给CCA/eCCA的符号内(本实施例前3个符号内)是否还有完整LTE OFDM符号,当站点确定存在完整的LTE OFDM符号时(假设剩余2个完整符号),站点在前述的2个完整符号中发送PSS、SSS,可以按照本发明实施例中前述的方式来发送。站点在后面11个符号(以子帧包含14个符号为例)中发送CRS、PRS、CSI-RS中的一个或多个,映射方式按照本发明实施例中前述的方式。
实施例二
基于实施例1的假设,站点在前述的2个完整符号中仅在载波中间的63个子载波除了最中间的一个载波中发送PSS、SSS。站点在后面11个符号和前述的2个完整符号,共13个符号中按照前述方式发送CRS、PRS、CSI-RS中的一个或多个,映射方式按照本发明实施例中前述的方式。
实施例三
图8中提供一种预留信号的设计,该预留信号由PSS/SSS、以及相关的RS组成,来占用子帧中所有的符号。例如PSS/SSS、CRS、PRS构成的,CSI-RS、PRS是可选配置的。
PSS/SSS位于第2个和第3个符号中,这两个符号中,目前没有任何的参考信号发送,所以发送PSS/SSS来占用信道。
该预留信号能被用于占用整个子帧。
图9中提供了一种CCA/eCCA子帧中信号映射。假设执行CCA/eCCA的时刻是从子帧起始位置开始的,且配置CCA/eCCA最大使用前3个符号(3只是一个例子其他数值也可以)。站点在某一子帧中执行CCA/eCCA,站点确定自己CCA/eCCA成功,站点确定分配给CCA/eCCA的符号内(本实施例前3个符号内)是否还有完整LTE OFDM符号,当站点确定存在完整的LTE OFDM符号时(假设剩余2个完整符号),站点在前述的2个完整符号中发送PSS、SSS。然后站点继续可以在配置CCA/eCCA的3个符号之后的符号中发送图8中的RS和PSS/SSS。
其中RS、PSS/SSS均可以采用前述方式。
实施例四
基于实施例1的假设,站点在后面11个符号和前述的2个完整符号,共13个符号中按照前述方式发送CRS、PRS、CSI-RS中的一个或多个,映射方式按照本发明实施例中前述的方式,图10给出了一种示意,其中R0为CRS 端口0,R1为CRS端口1,R6为PRS,图10中的R1为可选的。其中,CRS和PRS是需要的(PRS按照全带宽发送),且CRS为1个或2个天线端口、PRS为1个和2个PBCH天线端口对应的。对于CSI-RS可以配置为0套或多套,如果有需要按照CSI-RS执行CSI测量或RRM测量时,站点可以配置对应的CSI-RS为CSI测量或RRM测量。其中,图10中的第一个符号的CRS是由于执行CCA/eCCA而被打掉了,如果不执行CCA/eCCA则是需要映射的。
当CCA/eCCA所在子帧有下行数据(包括用户数据、广播类数据,且下行数据可以占用80%的系统带宽),此时,在共13个或后面11个符号中可以发送CRS,此时PRS可以不发送。如果需要CSI-RS执行测量,站点可以根据需要配置对应的CSI-RS为CSI测量或RRM测量。此时可选的,该子帧中发送PSS/SSS,发送方式可以按照前述方式执行。
当CCA/eCCA所在子帧不发送下行数据,这种情况有可能站点为了调度简单,就从下一个子帧开始发行下行数据。此时,站点需呀选择CRS和PRS来发送在所述13个符号中。但是此时会发现,所述13个符号中的第一个、第二个符号中没有参考信号,此时可以发送PSS或SSS,具体发送方式可以参考前述方式。
对于发送了PSS/SSS的符号,如果同时该符号中有上述参考信号发送,那么此时该符号中的PSS/SSS不再在频域扩展发送。
实施例五
基于实施例1的假设,站点在后面11个符号和前述的2个完整符号,共13个符号中按照前述方式发送CRS、PRS、CSI-RS中的一个或多个,映射方式按照本发明实施例中前述的方式。由于此时子帧中所述的13个符号中包含第7、第8个符号,此时,在第7、第8个符号上发送PSS、SSS。可选的,可以是第7个符号发送SSS,第8个符号发送PSS,反之也可以。此时的PSS和/或SSS可以采用当前LTE系统中之外的PSS和/或SSS序列。
实施例六
基于实施例1的假设,站点在CCA/eCCA分配的符号之后前2个符号中发送PSS、SSS(也就是后面11个符号中的前2个符号,或者是整个子帧的第4个、第5个符号)。可选的,按照整个子帧描述,可以是第4个符号发送SSS,第5个符号发送PSS,反之也可以。此时的PSS和/或SSS可以采用当前LTE系统中之外的PSS和/或SSS序列。
实施例七
本实施例中提供一种参考信号图样,用于在剩余的完整OFDM符号中发送,来实现占用信道作用,同时也提升同步精度。
图11、图12按照子帧内一个PRB对的资源单位映射图样,R表示有参考信号映射,l为LTE符号的标号。在子帧内对应的LTE符号被CCA/eCCA占用时,该符号中的参考信号打掉,不进行映射。图中示意的有参考信号映射的位置,不同位置的参考信号可以由多个不同天线端口分别映射构成,也是由一个天线端口映射构成。如果符号中映射有PSS/SSS时,则对应的参考信号在映射PSS/SSS的位置打掉,不映射,在符号的其他位置进行映射。如果符号中有用户数据(也包括控制信息)发送时,则在用户数据发送的位置处不映射该参考信号,其他位置映射,或者用户数据映射时不在该参考信号的位置映射,该参考信号仍然映射发送。
图13、14、15是另一种按照子帧内一个PRB对的资源单位映射图样,R表示有参考信号映射。在子帧内对应的LTE符号被CCA/eCCA占用时,该符号中的参考信号打掉,不进行映射。图中示意的有参考信号映射的位置,不同位置的参考信号可以由多个不同天线端口分别映射构成,也是由一个天线端口映射构成。如果符号中映射有PSS/SSS时,则对应的参考信号在映射PSS/SSS的位置打掉,不映射,在符号的其他位置进行映射。如果符号中有用户数据(也包括控制信息)发送时,则在用户数据发送的位置处不映射该参考信号,其他位置映射,或者用户数据映射时不在该参考信号的位置映射,该参考信号仍然映射发送。
图11~图15的参考信号图样也可以按照本发明实施例前述方式执行映射在完整的LTE OFDM符号上。
实施例八
参考图16,完整符号中的预留信号的发送可以从下面2个方面进行分析和考虑。
case1,完整符号中不发送用户数据,仅发送预留信号预留信道直到下一个子帧;
LAA站点在完整符号中发送预留信号,在下一个子帧中开始调度用户数据。此时,预留信号主要目的是占住信道,防止其他站点或系统抢走,所以,需要使得每一个符号中都有信号发送,以使得该符号中的信号能量为非空当其他站点检测时。为了实现上述的目的,预留信号应该包括CRS、PRS。预留信号也可以被用来帮助UE改善同步,所以,PSS/SSS(类似与Rel-8)也可以被配置。如果考虑到改善UE的测量(CSI、RRM),CSI-RS也能被配置。
通常CCA/eCCA从子帧起始位置开始执行,但是停止的时间点很难确定,所以,预留信号如果配置PSS/SSS,PSS/SSS能被发送在CCA/eCCA成功时刻点所在符号之后的紧邻的2个符号中。附加的,PSS/SSS也能用来标识完整符号的起始位置。
在case1的情况下,当LAA站点执行CCA/eCCA且成功获得信道在符号#0中时,符号#1、符号#2发送PSS/SSS。此时,为了满足发送信号的带宽不低于名义信道的80%,PSS/SSS能被扩展在频域,具体的扩展FFS。
从图16中也可看出,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该 LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
case2,完整符号中发送用户数据和必要的参考信号;
当用户数据占用的带宽等于高于名义信道带宽的80%时,此时LAA站点可以只发送用户数据和必要的解调参考信号,就可以实现占住信道的目的。如果为了更好的帮助UE实现同步、测量,case1中的方式发送预留信号(例如此时预留信号由CRS、CSI-RS、PSS/SSS组合而成的,PRS可选)也能被发送,此时用户数据不在预留信号的位置映射。
当用户数据占用的带宽小于名义信道带宽的80%时,此时LAA站点仍然需要按照case1中的方式发送预留信号,以满足管制的要求,同时也是为了防止该非授权载波的其他频率被其他站点或系统抢占。
通过上述的分析,完整符号中的预留信号设计原则如下:
1、预留信号应该包括相关的CRS、PRS、PSS/SSS、CSI-RS;以避免设计新的预留信号,减少标准化的工作量。
2、LAA站点能够通过配置预留信号具体有哪些相关信号组成,以适合不同的场景需求;同时,如果预留信号组成被唯一确定,也是非常好的,可以减少信令开销。
3、完整符号中,不管是否发送用户数据,预留信号都被发送;统一的处理方式可以减少复杂度,预留信号也能帮助改善UE的同步、测量。
4、预留信号中的PSS/SSS位于LAA站点执行CCA/eCCA获得成功的符号之后紧邻的2个符号中;PSS/SSS的频域扩展如果需要,则需要具体扩展方式可以参考前述方式;PSS/SSS也能标识完整符号的起始位置。
实施例九
本发明实施例提供了一种站点,该站点的结构如图17所示,包括:
PSS/SSS发送模块1401,设置为在子帧内CCA/eCCA执行成功后,在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS。
可选的,所述PSS/SSS发送模块1401包括:
第一发送单元14011,设置为当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述PSS/SSS发送模块1401还包括:
第二发送单元14012,设置为当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,该站点还包括:
预留信号发送模块1402,设置为在CCA/eCCA执行成功之后,在所述CCA/eCCA的子帧中的其他LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,该站点还包括:
参考信号发发送模块1403,设置为在划分出的完整的LTE OFDM符号中发送参考信号,其中所述参考信号包括下述信号中的任一个或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,该站点还包括:
PDCCH/ePDCCH发送模块1404,设置为在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
本发明实施例还提供了一种站点,其结构如图18所示,包括:
参考信号发送模块1501,设置为在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,该站点还包括:
PSS/SSS发送模块1502,设置为在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PSS和/或SSS。
本发明实施例还提供了一种站点,其结构如图19所示,包括:
预留信号发送模块1601,设置为在子帧内CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号包含以下信号中的任一或任意多个:
CRS、CSI-RS、PRS、DRS、DMRS。
可选的,所述预留信号还包含PSS和/或SSS,所述预留信号发送模块1601包括:
PSS/SSS发送单元16011,设置为当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
可选的,所述PSS/SSS发送单元16011,还设置为当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
可选的,所述预留信号发送模块1601还包括:
参考信号发送单元16012,设置为在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送所述参考信号。
本发明的实施例提供了一种数据传输方法和站点,站点在子帧内CCA/eCCA执行成功后,在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS或参考信号或预留信号。实现了对CCA/eCCA执行之后剩余资源的利用,解决了利用CCA时长对应的资源外的其他资源的问题。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
上述技术方案实现了对CCA/eCCA执行之后剩余资源的利用,解决了利用CCA时长对应的资源外的其他资源的问题。

Claims (78)

  1. 一种数据传输方法,包括:
    站点在子帧内空闲信道评估/扩展空闲信道评估(CCA/eCCA)执行成功后,所述站点在占用的子帧资源的完整的长期演进(LTE)正交频分复用(OFDM)符号中发送主同步信号(PSS)和/或辅同步信号(SSS)。
  2. 根据权利要求1所述的数据传输方法,其中,所述站点在占用的子帧资源的完整的LTE OFDM符号中发送PSS和/或SSS包括:
    站点优先选择所述CCA/eCCA所在的子帧中剩余的完整的LTE OFDM符号发送PSS和/或SSS。
  3. 根据权利要求2所述的数据传输方法,其中,所述站点在占用的子帧资源的完整的LTE符号中发送PSS和/或SSS包括:
    当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
  4. 根据权利要求3所述的数据传输方法,其中,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
  5. 根据权利要求3所述的数据传输方法,其中,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
  6. 根据权利要求3所述的数据传输方法,其中,所述站点选择的2个完整的LTE OFDM符号包括CCA/eCCA执行成功之后的第1个和第2个完整的LTE OFDM符号。
  7. 根据权利要求2所述的数据传输方法,其中,所述站点在占用的子帧资源的完整的LTE符号中发送PSS和/或SSS包括:
    当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,所述站点在该LTE OFDM符号上发送PSS或SSS。
  8. 根据权利要求1所述的数据传输方法,该方法还包括:
    所述站点在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
  9. 根据权利要求1所述的数据传输方法,该方法还包括:
    所述站点在CCA/eCCA执行成功之后,在所述CCA/eCCA的子帧中的其他LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
    小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  10. 根据权利要求9所述的数据传输方法,所述预留信号还包括PSS和/或SSS。
  11. 根据权利要求1所述的数据传输方法,该方法还包括:
    所述站点在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送参考信号,其中所述参考信号包括下述信号中的任一个或任意多个:
    小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  12. 根据权利要求11所述的数据传输方法,其中,
    所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
    所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
    所述DMRS,包括一个或多个UE专用参考信号为PDSCH;
    所述CSI-RS,包括一套或多套的CSI-RS。
  13. 根据权利要求11所述的数据传输方法,该方法还包括:
    当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据 时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,直到用户数据起始点;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
  14. 根据权利要求13所述的数据传输方法,其中,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
    所述站点同时发送CRS和PRS,或者,
    所述站点同时发送CRS、CSI-RS和数据,或者,
    所述站点同时发送CRS、CSI-RS和PRS,或者,
    所述站点同时发送CRS、CSI-RS和预留信号,或者,
    所述站点同时发送CRS和数据,
    其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
  15. 根据权利要求11所述的数据传输方法,该方法还包括:
    所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
  16. 根据权利要求2所述的数据传输方法,其中,
    所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
  17. 根据权利要求2所述的数据传输方法,还包括:
    所述站点在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
  18. 根据权利要求2所述的数据传输方法,其中,所述站点在所述完整的LTE符号中发送PSS和/或SSS包括:
    当在所述完整的LTE OFDM符号中只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
  19. 根据权利要求18所述的数据传输方法,其中,所述站点在使用所述其他频域位置发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
  20. 根据权利要求19所述的数据传输方法,该方法还包括:
    在单位之间预留至少一个子载波的间隔。
  21. 根据权利要求18所述的数据传输方法,其中,所述站点在使用所述其他频域位置发送未发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
  22. 根据权利要求21所述的数据传输方法,该方法还包括:
    在单位之间预留至少一个子载波的间隔。
  23. 根据权利要求18所述的数据传输方法,该方法还包括:
    载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
  24. 一种数据传输方法,包括:
    站点在子帧内空闲信道评估/扩展空闲信道评估CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的长期演进LTE正交频分复用OFDM符号时,在所述完整的LTE OFDM符号中发送参考信号,所述参考信号包含以下信号中的任一或任意多个:
    小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  25. 根据权利要求24所述的数据传输方法,其中,
    所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
    所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、4个PBCH天线端口对应的PRS;
    所述DMRS,包括一个或多个UE专用参考信号为物理下行共享信道PDSCH;
    所述CSI-RS,包括一套或多套的CSI-RS。
  26. 根据权利要求24所述的数据传输方法,该方法还包括:
    当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送主同步信号PSS或辅同步信号SSS,直到用户数据起始点;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
  27. 根据权利要求26所述的数据传输方法,其中,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
    所述站点同时发送CRS和PRS,或者,
    所述站点同时发送CRS、CSI-RS和数据,或者,
    所述站点同时发送CRS、CSI-RS和PRS,或者,
    所述站点同时发送CRS、CSI-RS和预留信号,或者,
    所述站点同时发送CRS和数据,
    其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
  28. 根据权利要求24所述的数据传输方法,该方法还包括:
    所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
  29. 根据权利要求24所述的数据传输方法,其中,
    所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
  30. 根据权利要求24所述的数据传输方法,还包括:
    所述站点在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PSS和/或SSS。
  31. 根据权利要求30所述的数据传输方法,其中,当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
  32. 根据权利要求31所述的数据传输方法,其中,所述站点在所述2个 完整的LTE OFDM符号中先发送SSS,后发送PSS。
  33. 根据权利要求31所述的数据传输方法,其中,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
  34. 根据权利要求31所述的数据传输方法,其中,所选择2个完整的LTE OFDM符号包括所述CCA/eCCA执行成功后的第一个和第二个完整的LTE OFDM符号。
  35. 根据权利要求30所述的数据传输方法,其中,
    当所述CCA/eCCA的子帧剩余的部分能够划分1个OFDM符号时,所述站点在其上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS或PSS。
  36. 根据权利要求24所述的数据传输方法,该方法还包括:
    所述站点在所述CCA/eCCA的子帧剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
    CRS、CSI-RS、PRS、DRS、DMRS。
  37. 根据权利要求36所述的数据传输方法,所述预留信号还包括PSS和/或SSS。
  38. 根据权利要求24所述的数据传输方法,还包括:所述站点在子帧内CCA/eCCA执行成功后,当该CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
  39. 根据权利要求30所述的数据传输方法,还包括,
    当在所述完整的LTE OFDM符号中发送的只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS 在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
  40. 根据权利要求39所述的数据传输方法,其中,所述站点在使用所述其他频域位置发送PSS或SSS时,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
  41. 根据权利要求40所述的数据传输方法,该方法还包括:
    在单位之间预留至少一个子载波的间隔。
  42. 根据权利要求39所述的数据传输方法,其中,所述站点在使用所述其他频域位置发送PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
  43. 根据权利要求42所述的数据传输方法,该方法还包括:
    在单位之间预留至少一个子载波的间隔。
  44. 根据权利要求39所述的数据传输方法,该方法还包括,
    载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
  45. 一种数据传输方法,包括:
    站点在子帧内空闲信道评估/扩展空闲信道评估CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的长期演进LTE正交频分复用OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号包含以下信号中的任一或任意多个:
    小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  46. 根据权利要求45所述的数据传输方法,所述预留信号还包含主同步 信号PSS和/或辅同步信号SSS。
  47. 根据权利要求46所述的数据传输方法,其中,在所述完整的LTE OFDM符号中发送预留信号包括:
    当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
  48. 根据权利要求47所述的数据传输方法,其中,所述站点在所述2个完整的LTE OFDM符号中先发送SSS,后发送PSS。
  49. 根据权利要求47所述的数据传输方法,其中,所述站点在所述2个完整的LTE OFDM符号中先发送PSS,后发送SSS。
  50. 根据权利要求47所述的数据传输方法,其中,所述站点选择的2个完整的LTE OFDM符号包括CCA/eCCA执行成功之后的第1个和第2个完整的LTE OFDM符号。
  51. 根据权利要求47所述的数据传输方法,还包括,当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,所述站点在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
  52. 根据权利要求47所述的数据传输方法,其中,所述CCA/eCCA在子帧中的时间方向位置可取范围是固定的,所述CCA/eCCA允许在子帧中任意符号中开始执行。
  53. 根据权利要求47所述的数据传输方法,其中,所述站点在发送PSS或SSS时,当在所述完整的LTE OFDM符号中只有PSS或SSS时,所述站点除了按照LTE规定PSS或SSS在载波中的频域位置外,还在该完整的LTE OFDM符号的其他频域位置发送PSS或SSS,所述LTE规定的PSS或SSS在载波中的频域位置位于载波中心63个子载波,但除了最中间的子载波。
  54. 根据权利要求53所述的数据传输方法,其中,所述站点在使用所述其他频域位置发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端或高频率端,以每63个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,该单位最中间的子载波不被使用。
  55. 根据权利要求54所述的数据传输方法,该方法还包括:
    在单位之间预留至少一个子载波的间隔。
  56. 根据权利要求53所述的数据传输方法,其中,所述站点在使用所述其他频域位置发送未发送的PSS或SSS时,在载波中心63个子载波之外,向低频率端/高频率端,以62个子载波为单位为PSS或SSS分配子载波,且每一个单位中PSS或SSS发送时,在该单位内的每一个子载波中都发送。
  57. 根据权利要求56所述的数据传输方法,该方法还包括:
    在单位之间预留至少一个子载波的间隔。
  58. 根据权利要求47所述的数据传输方法,该方法还包括:
    载波中每一个发送PSS或SSS的LTE OFDM符号中PSS或SSS占用的总共的带宽不低于载波带宽的80%。
  59. 根据权利要求47所述的数据传输方法,在所述完整的LTE OFDM符号中发送预留信号还包括:
    所述站点在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送所述参考信号,所述参考信号为下述一个或多个:
    CRS、CSI-RS、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  60. 根据权利要求59所述的数据传输方法,其中,
    所述CRS,包括下述一个或多个:1个天线端口、2个天线端口、4个天线端口;
    所述PRS,包括下述一个或多个:1个和2个PBCH天线端口对应的PRS、 4个PBCH天线端口对应的PRS;
    所述DMRS,包括一个或多个UE专用参考信号为PDSCH;
    所述CSI-RS,包括一套或多套的CSI-RS。
  61. 根据权利要求60所述的数据传输方法,还包括:
    当所述站点在所述划分出的完整的LTE OFDM符号中不发送数据时,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,直到用户数据起始点;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送CRS或CSI-RS,直到用户数据起始点;
    或者,当所述站点在所述划分出的完整的LTE OFDM符号中不发送用户数据时,所述站点在所述LTE OFDM符号中频域位置发送PSS或SSS,在该LTE OFDM符号的其他频域位置发送CRS或CSI-RS,直到用户数据起始点。
  62. 根据权利要求61所述的数据传输方法,其中,所述站点保证所述LTE OFDM符号中均有至少一个类型的参考信号发送,包括:
    所述站点同时发送CRS和PRS,或者,
    所述站点同时发送CRS、CSI-RS和数据,或者,
    所述站点同时发送CRS、CSI-RS和PRS,或者,
    所述站点同时发送CRS、CSI-RS和预留信号,或者,
    所述站点同时发送CRS和数据,
    其中,所述PRS包括1个和2个PBCH天线端口对应的PRS,CRS包括1个或2个天线端口对应的CRS。
  63. 根据权利要求61所述的数据传输方法,该方法还包括:
    所述站点在发送所述参考信号时,按照LTE协议规定的方式在子帧内的 LTE OFDM符号中映射,当对应的LTE OFDM符号被CCA/eCCA占用时,则将映射于CCA/eCCA占用的LTE OFDM符号中的参考信号打掉。
  64. 一种站点,包括:
    主同步信号PSS/辅同步信号SSS发送模块,设置为在子帧内空闲信道评估/扩展空闲信道评估CCA/eCCA执行成功后,在占用的子帧资源的完整的长期演进LTE正交频分复用OFDM符号中发送PSS和/或SSS。
  65. 根据权利要求64所述的站点,其中,所述PSS/SSS发送模块包括:
    第一发送单元,设置为当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
  66. 根据权利要求65所述的站点,所述PSS/SSS发送模块还包括:
    第二发送单元,设置为当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
  67. 根据权利要求64所述的站点,该站点还包括:
    预留信号发送模块,设置为在CCA/eCCA执行成功之后,在所述CCA/eCCA的子帧中的其他LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号为下述一个或多个:
    小区参考信号CRS、信道状态参考信号CSI-RS、定位参考信号PRS、专用参考信号DRS、和解调的参考信号DMRS。
  68. 根据权利要求64所述的站点,该站点还包括:
    参考信号发发送模块,设置为在划分出的完整的LTE OFDM符号中发送参考信号,其中所述参考信号包括下述信号中的任一个或任意多个:
    小区参考信号CRS、信道状态参考信号CSI-RS、定位参考信号PRS、专用参考信号DRS、和解调的参考信号DMRS。
  69. 根据权利要求64所述的站点,该站点还包括:
    物理下行控制信道PDCCH/扩展物理下行控制信道ePDCCH发送模块,设置为在CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的LTE OFDM符号时,在所述完整的LTE OFDM符号中发送PDCCH或ePDCCH。
  70. 一种站点,包括:
    参考信号发送模块,设置为在子帧内空闲信道评估/扩展空闲信道评估CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的长期演进LTE正交频分复用OFDM符号时,在所述完整的LTEOFDM符号中发送参考信号,所述参考信号包含以下信号中的任一或任意多个:
    小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  71. 根据权利要求70所述的站点,该站点还包括:
    主同步信号PSS/辅同步信号SSS发送模块,设置为在空闲信道评估/扩展空闲信道评估CCA/eCCA执行成功后,当CCA/eCCA的子帧中剩余的时间还能够划分出完整的长期演进LTE正交频分复用OFDM符号时,在所述完整的LTE OFDM符号中发送PSS和/或SSS。
  72. 一种站点,包括:
    预留信号发送模块,设置为在子帧内空闲信道评估/扩展空闲信道评估CCA/eCCA执行成功后,在所述CCA/eCCA占用的子帧中剩余的时间还能够划分出完整的长期演进LTE正交频分复用OFDM符号时,在所述完整的LTE OFDM符号中发送预留信号,所述预留信号包含参考信号,所述参考信号包含以下信号中的任一或任意多个:
    小区参考信号(CRS)、信道状态参考信号(CSI-RS)、定位参考信号(PRS)、专用参考信号(DRS)、解调的参考信号(DMRS)。
  73. 根据权利要求72所述的站点,所述预留信号还包含主同步信号PSS 和/或辅同步信号SSS,所述预留信号发送模块包括:
    PSS/SSS发送单元,设置为当所述CCA/eCCA的子帧剩余的部分能够划分2个或2个以上完整的LTE OFDM符号时,所述站点在CCA/eCCA执行成功之后选择2个完整的LTE OFDM符号发送PSS和/或SSS。
  74. 根据权利要求72所述的站点,
    所述PSS/SSS发送单元,还设置为当所述CCA/eCCA的子帧剩余的部分能够划分为1个完整的LTE OFDM符号时,在该LTE OFDM符号上发送PSS或SSS,在所述CCA/eCCA的子帧的下一个子帧中发送未发送的SSS和/或PSS。
  75. 根据权利要求73所述的站点,所述预留信号发送模块还包括:
    参考信号发送单元,设置为在CCA/eCCA执行成功之后,在划分出的完整的LTE OFDM符号中发送所述参考信号。
  76. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~23中任一项所述的方法。
  77. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求24~44中任一项所述的方法。
  78. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求45~63中任一项所述的方法。
PCT/CN2016/072192 2015-01-30 2016-01-26 数据传输方法和站点 WO2016119684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510052329.7A CN105991497B (zh) 2015-01-30 2015-01-30 数据传输方法和站点
CN201510052329.7 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119684A1 true WO2016119684A1 (zh) 2016-08-04

Family

ID=56542426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072192 WO2016119684A1 (zh) 2015-01-30 2016-01-26 数据传输方法和站点

Country Status (2)

Country Link
CN (1) CN105991497B (zh)
WO (1) WO2016119684A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071674A1 (en) * 2019-10-09 2021-04-15 Qualcomm Incorporated Reporting enhancements for positioning
EP3654713B1 (en) * 2017-07-28 2023-07-12 Huawei Technologies Co., Ltd. Synchronization signal block transmission method, access network device, and terminal device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148801B (zh) * 2015-09-25 2020-05-12 江苏都市交通规划设计研究院有限公司 一种通信信号的处理方法、装置及通信服务器
CN106507439B (zh) * 2016-10-28 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
BR112019008609B1 (pt) 2016-10-29 2024-01-30 Huawei Technologies Co., Ltd Método para transmissão de enlace de descida, método para acesso a um espectro não licenciado, primeiro ponto de transmissão e controlador
CN108632981B (zh) * 2017-03-23 2021-01-29 华为技术有限公司 一种下行同步信号发送方法和接收方法及设备
CN108667544B (zh) * 2017-03-31 2019-10-25 华为技术有限公司 传输信号的方法和装置
CN108989001B (zh) * 2017-05-31 2021-03-26 北京佰才邦技术有限公司 一种eDRS的发送及接收方法、基站及移动通信终端
CN109151893B (zh) * 2017-06-16 2022-02-18 展讯通信(上海)有限公司 物理广播信道的资源映射方法及装置、基站、存储介质
CN109495413B (zh) * 2017-09-11 2022-04-01 中国移动通信有限公司研究院 同步信号块的传输、小区质量的测量方法、基站及终端
WO2019213941A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Aperiodic channel state information computation for cross-carrier scheduling
US11963158B2 (en) 2018-09-21 2024-04-16 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and apparatus, device, system, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771147A (zh) * 2010-02-25 2012-11-07 美国博通公司 用于4GWiMAX/LTE-WiFi/BT共存时域法的方法及系统
US20130195073A1 (en) * 2012-01-30 2013-08-01 Renesas Mobile Corporation Low-Cost LTE System with Distributed Carrier Aggregation on the Unlicensed Band
CN104247488A (zh) * 2012-01-26 2014-12-24 交互数字专利控股公司 用于lte共存的动态参数调整

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9565593B2 (en) * 2013-05-20 2017-02-07 Qualcomm Incorporated Techniques for selecting subframe type or for interleaving signals for wireless communications over unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771147A (zh) * 2010-02-25 2012-11-07 美国博通公司 用于4GWiMAX/LTE-WiFi/BT共存时域法的方法及系统
CN104247488A (zh) * 2012-01-26 2014-12-24 交互数字专利控股公司 用于lte共存的动态参数调整
US20130195073A1 (en) * 2012-01-30 2013-08-01 Renesas Mobile Corporation Low-Cost LTE System with Distributed Carrier Aggregation on the Unlicensed Band

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3654713B1 (en) * 2017-07-28 2023-07-12 Huawei Technologies Co., Ltd. Synchronization signal block transmission method, access network device, and terminal device
WO2021071674A1 (en) * 2019-10-09 2021-04-15 Qualcomm Incorporated Reporting enhancements for positioning
US11405888B2 (en) 2019-10-09 2022-08-02 Qualcomm Incorporated Reporting enhancements for positioning

Also Published As

Publication number Publication date
CN105991497A (zh) 2016-10-05
CN105991497B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2016119684A1 (zh) 数据传输方法和站点
JP6464234B2 (ja) 情報送信方法及び装置
US10985886B2 (en) Downlink channel decoding method, downlink information transmission method, user equipment, and base station
US10306638B2 (en) Direct current component subcarrier configuration method and apparatus
US10397917B2 (en) Method and arrangement for configuring CSI measurements
JP6437493B2 (ja) 通信システムにおける従来のofdmホストキャリアへの仮想キャリアの挿入
US10873972B2 (en) Method and equipment for channel sensing and signal transmission
CN104301273B (zh) 使用非授权载波发送及接收信号的方法、基站及用户设备
JP5976681B2 (ja) 通信システムにおける従来のofdmホストキャリアへの仮想キャリアの挿入
EP2777204B1 (en) Transmission and reception of overlapping E-PDCCH and PDCCH signals
RU2595642C1 (ru) Способ отправки управляющей информации, способ приема и устройство
US9277414B2 (en) Wireless communication system, base station, and mobile station
KR20170128427A (ko) 비인가된 캐리어 상에서 동작하는 scell에서의 제어 시그널링의 수신을 위한 방법 및 장치
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
CN104113387B (zh) 同步信号的处理方法、装置及系统、信道估计方法及装置
CN105981421A (zh) 终端装置、基站装置、通信系统、通信方法、以及集成电路
CN104823399B (zh) 信息发送方法、基站和用户设备
CN103096477A (zh) 增强型pdcch实现方法及相关设备
US9313006B2 (en) Methods and apparatus for resource element mapping
WO2017049988A1 (zh) 一种数据发送、接收方法及装置
CN103095443A (zh) 增强型pdcch实现方法及设备
KR20180082061A (ko) 제어채널의 전송 및 수신방법, 장치 및 시스템
WO2019158036A1 (zh) 参考信号图样的确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742746

Country of ref document: EP

Kind code of ref document: A1