WO2016119664A1 - 穿戴式心电检测装置及穿戴式生理检测装置 - Google Patents

穿戴式心电检测装置及穿戴式生理检测装置 Download PDF

Info

Publication number
WO2016119664A1
WO2016119664A1 PCT/CN2016/072022 CN2016072022W WO2016119664A1 WO 2016119664 A1 WO2016119664 A1 WO 2016119664A1 CN 2016072022 W CN2016072022 W CN 2016072022W WO 2016119664 A1 WO2016119664 A1 WO 2016119664A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
user
ear
finger
wearing
Prior art date
Application number
PCT/CN2016/072022
Other languages
English (en)
French (fr)
Inventor
周常安
Original Assignee
周常安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510038236.9A external-priority patent/CN104586382B/zh
Priority claimed from CN201510038000.5A external-priority patent/CN104665823A/zh
Priority claimed from CN201510037872.XA external-priority patent/CN104665822B/zh
Application filed by 周常安 filed Critical 周常安
Priority to US15/546,281 priority Critical patent/US20180020937A1/en
Priority to EP16742726.9A priority patent/EP3278724A4/en
Priority to JP2017600127U priority patent/JP3217016U/ja
Publication of WO2016119664A1 publication Critical patent/WO2016119664A1/zh
Priority to US16/563,953 priority patent/US20200085331A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]

Definitions

  • the present invention relates to a wearable electrocardiographic detecting device, and more particularly to a wearable electrocardiographic detecting device and a wearable physiological detecting device having a structure for actively applying a force to an electrode to provide better ECG signal quality.
  • ECG detection devices are used to examine various major diseases of various heart diseases, such as whether there is arrhythmia, cardiac hypertrophy caused by hypertension or valvular heart disease, myocardial infarction or ischemic heart disease. .
  • ECG detection devices When people feel the heart discomfort and go to the hospital for examination, they often use traditional ECG detection devices. For example, 12-lead ECG detection can detect various heart problems in more detail, but if the heart is not suitable. It is an accidental symptom. For example, if the arrhythmia is not correct, it is very likely that the heart condition at the time of onset cannot be measured during the test. Therefore, to adapt to this sporadic symptom, the Holter electrocardiograph will be used. The method of long-term detection, for example, wearing 24 hours to several days, hopes to record the electrocardiogram when symptoms appear in this way, and ECG event recorder similar to the Hult ECG machine.
  • Hult-type electrocardiographs are often used to monitor heart conditions after cardiac surgery or medications to confirm treatment outcomes.
  • the electrode paste must be set up in the hospital, and usually after the long-term measurement is completed, the doctor can download and record the recorded electrocardiogram. Analysis, it takes at least a few days to know what is wrong with the heart, so it is not only complicated, but also lacks real-time.
  • a further proposed improvement is a hand-held ECG detecting device which solves the problem of having to wear the device for a long time by using a dry electrode which is not required to be attached to the body, and simplifies the detection.
  • the complexity The hand-held ECG detecting device is provided with a dry electrode on the surface of the device, and can be placed at any time by contacting the hand and/or the body surface as needed, as disclosed in U.S. Patent Application No. 7,147, 571, and U.S. Patent No. 7,197,351.
  • the detection therefore, is no longer limited by the time of wearing on the body and the electrode sticking, so it can be used more flexibly to monitor the heart.
  • ECG detecting device is usually also equipped with an analysis program and a display screen. It allows the user to know the test result at the moment of measurement, and does not have to wait until the hospital is consulted. Therefore, it is quite suitable for home use, and also provides users who are highly concerned about their heart health, and can regularly understand the heart condition at their own pace. Easy way.
  • the above-mentioned ECG detecting device whether in a handheld form or in combination with a mobile phone, can be carried around, but since it must be operated by hand, it is required to display results in accordance with ergonomic requirements. The size cannot be too small, and it is still a certain burden on the carrying; moreover, since the electrode is not always placed on the body, it is to be tested. At the same time, more steps are required. For example, the device can be taken out after being taken out and then turned on, so that the timing of the detection may be missed.
  • the measurement by the two hands is easy to cause unstable phenomena such as hand shaking during measurement, thereby causing the measured electrocardiogram to have a situation such as baseline drift, waveform deformation, etc., and further, when the user wishes When the hand is stable and the muscles are tense or deliberately used to ensure contact with the electrodes, it is easy to exert an EMG signal that affects signal analysis.
  • the electrocardiographic detecting device can be worn on the body
  • other physiological information can be further obtained by the obtained ECG signal.
  • the time series of the heartbeat interval can be obtained according to the electrocardiogram to perform HRV (Heart Rate Variability).
  • Mutation rate) analysis and knowing the activity of the autonomic nerve, can also obtain information about the RSA (Respiratory Sinus Arrhythmia) by analyzing the time series, and then know the user's respiratory changes, and pass This information guides the user through breathing exercises that help improve the balance of autonomic nerves.
  • HRV Heart Rate Variability
  • An object of the present invention is to provide a wearable ECG detecting device, comprising: a control module comprising a processor; a finger wearing structure for being disposed on a finger of a user's upper limb; a wrist wearing structure For being placed on a wrist of another upper limb of the user; a first electrode and a second electrode, wherein the first electrode is located on a surface of the finger when the finger wearing structure is disposed on the finger, and the second electrode is located on the wrist wearing structure a device disposed on the other surface of the wrist in contact with the skin near the wrist; and an information providing unit for providing user information, wherein the finger wearing structure is performed when the ECG signal is detected And the wrist-worn structure is electrically connected by a pair of connectors and formed integrally, and the skin of the finger contacts the first electrode, and the skin near the wrist contacts the second electrode to form an ECG signal extraction circuit And perform ECG signal extraction.
  • Another object of the present invention is to provide a wearable electrocardiogram detecting device, wherein an electrode for extracting an electrocardiographic signal is implemented in a wearable form, and the electrode can be in contact with the skin without the user's application of force. .
  • Another object of the present invention is to provide a wearable electrocardiogram detecting device which has both an electrocardiographic signal and an electroencephalogram signal detecting function, and can realize an electrode and a device while being disposed on the head through a head-mounted structure. Contact of the head skin batch.
  • FIG. 1A-1B show schematic views of a finger-mounted ECG detecting device in accordance with the present invention
  • FIGS. 2A-2C are diagrams showing the operation of the finger-mounted electrocardiographic detecting device according to the present invention.
  • Figure 3 is a schematic view showing the position of the electrode contacting the standard twelve-electrode electrocardiogram
  • FIGS. 4A-4G show an exemplary example of a finger-mounted ECG detecting device according to the present invention
  • Figure 5A is a schematic view showing an ear-mounted electrocardiographic detecting device according to the present invention.
  • Figure 5B is a schematic view showing the operation of the ear-mounted electrocardiographic detecting device according to the present invention.
  • 5C-5D show an exemplary example of an ear-mounted electrocardiographic detecting device according to the present invention
  • 6A-6C show an exemplary embodiment of an electrode placement position of an ear-mounted electrocardiographic detecting device according to the present invention
  • Figure 7A shows an ear-worn electrocardiographic device according to the present invention, the electrode of which the electrode can be contacted a schematic diagram of the skin near the flower;
  • Figure 7B shows a schematic view of the inner surface of the auricle
  • FIGS. 8A-8B show an exemplary embodiment of a wearable electrocardiographic apparatus according to the present invention, while employing a finger-wearing structure and an ear-wearing structure;
  • FIGS. 9A-9B are schematic views showing a wrist-worn electrocardiographic detecting device according to the present invention.
  • 9C-9D are views showing the operation of the wrist-worn electrocardiographic detecting device according to the present invention.
  • FIGS. 9E-9F show an exemplary embodiment of a wearable electrocardiographic detecting device according to the present invention, which employs both a wrist-worn structure and a finger-worn structure;
  • FIGS. 10A-10D show an exemplary embodiment of a wrist-worn electrocardiographic detecting device according to the present invention, through which external electrodes are connected;
  • 11A shows an illustrative example of a finger-mounted ECG detecting device in which a finger-worn electrode is externally connected through a connection port;
  • FIG. 11B shows an exemplary embodiment of an ear-mounted electrocardiographic detecting device according to the present invention, in which an electrode is externally connected through a connection port;
  • 11C shows an illustrative example of a finger-mounted ECG detecting device in which an ear-worn electrode is externally connected through a connection port;
  • FIGS. 12A-12B show an illustrative example of obtaining an electrocardiographic signal through two ECG detection circuits in accordance with the wearable electrocardiographic detection device of the present invention
  • Figure 13 is a view showing the operation of the head-mounted electrocardiographic detecting device according to the present invention.
  • FIGS. 14A-14C are schematic views showing the operation of the eyeglass type electrocardiographic detecting apparatus according to the present invention.
  • a wearable electrocardiographic device includes a control module, a wearable structure, a first electrode and a second electrode, and an information providing unit, wherein the circuit system includes a processor to control the device
  • the overall operation for example, performing extraction of an electrocardiographic signal or the like via the first electrode and the second electrode, and the wearing structure is configured to set the device on the user when performing ECG signal extraction to provide ease of use.
  • the information providing unit is for providing information to the user, for example, operating related information, physiological information, analysis results, and the like.
  • the circuit system can be implemented to be housed in the wearable structure, or, further, the device according to the present invention can further include a housing, and the circuit system can be accommodated in the housing and/or Or in the wearing structure, therefore, depending on the actual implementation, there is no limitation; in addition, the material of the housing can be implemented to be the same as or different from the wearing structure, for example, if implemented as the same material, It is formed in an integrally formed form, and when it is implemented as a different material, a suitable material can be selected according to the position to be worn, and there is no limitation.
  • the manner in which the information providing unit provides information may have more options, including, but not limited to, visual, auditory, and tactile means, for example.
  • the information providing unit may be implemented as a display element and/or a light-emitting element to provide information by means of text display, graphic change, and/or light number change, or the information providing unit may also be implemented as a sounding module.
  • the information is provided by means of a change in sound frequency or volume or a voice; or alternatively, the information providing unit may be implemented as a vibration module and provide information using variations such as the strength, length, and the like of the vibration.
  • the information providing unit can be further implemented as a wired transmission module Or a wireless transmission module to output information to an external device to provide the information to the user through the external device, wherein the external device can be, but is not limited to, a personal computer, a smart phone, a tablet A computer or a smart watch or the like is only required to be able to provide the information to the user, and thus there is no limitation.
  • the external device can be, but is not limited to, a personal computer, a smart phone, a tablet A computer or a smart watch or the like is only required to be able to provide the information to the user, and thus there is no limitation.
  • the first electrode is configured to be in contact with the skin of the user when the entire electrocardiographic detecting device is disposed on the user through the wearing structure.
  • the contact between the first electrode and the skin is achieved by the action of placing the wearing structure on the body, so that the first electrode can be realized with the skin without the user having to apply force by himself.
  • the contact between the muscles caused by the muscle tension caused by the operation can be significantly reduced, which is quite helpful for obtaining good signal quality.
  • the second electrode there are several implementation options, for example, can be implemented on another surface of the device other than the surface for the user to touch other parts of the skin, for example, a finger a part of the skin, such as the chest, and it should be noted that the surface for arranging the first electrode and the other surface for arranging the second electrode may be any surface of the wearing structure or the housing Any surface, without limitation, only need to note that the first electrode and the second electrode do not contact the same part of the skin of the user, and the material of the second electrode may be metal, conductive rubber, or any The conductive material is not limited, and further, it can be implemented as a non-contact type electrode, for example, a capacitive electrode, an inductive electrode, or an electromagnetic electrode, etc., to increase the usability.
  • a non-contact type electrode for example, a capacitive electrode, an inductive electrode, or an electromagnetic electrode, etc.
  • the active contact force of the wearing structure can also be utilized to achieve contact with the skin, and thus, there is no limitation.
  • the wearable ECG detecting device in use, can be placed on the body by the user, for example, on a finger, on a wrist, on the ear, or on the head, etc., in this case.
  • the contact between the first electrode and the skin is achieved, then,
  • the user when the second electrode is also disposed on the user through the other wearing structure, the user only needs to set the two wearing structures on the body, and the electrode setting for extracting the ECG signal is already Completed, therefore, the user can press the start button to perform signal extraction for a period of time when there is a need to record the electrocardiogram, for example, 30 seconds or 1 minute, or can also be implemented as an extraction of the ECG signal on the device. Recording and/or analysis is started immediately, so as to save the action of pressing the start measurement in order to record the sudden cardiac condition. Therefore, there is no limitation, and an appropriate method can be selected according to actual needs.
  • the other wearing structure can also be combined with another housing, and the second electrode can also be implemented on any surface of the other wearing structure or the other housing, only It is necessary to be able to realize the contact of the second electrode with the skin when the other wearing structure is disposed on the user, and therefore, there is no limitation.
  • the operation of the device and/or the detection of the electrocardiogram can be activated in addition to the manner of generally turning on the power and/or starting the detection.
  • a switch may be disposed adjacent to the second electrode, which may be triggered by a biasing force of the second electrode in contact with the skin to bring the device into a state in which ECG signal extraction is possible to be activated.
  • the second electrode can be coupled to a physical state detection unit to detect a physical change in the electrode when it contacts the skin, and the electrode is known by the physical change Whether the contact with the skin is sufficiently stable, so that the device can perform ECG signal extraction, and the first electrode can also be implemented to be connected to a physical state detecting unit without limitation.
  • the physical change includes, but is not limited to, a pressure change and a change in impedance.
  • the physical state detecting unit may include a pressure sensing module to know the pressure change. And determining whether the pressing of the electrode is sufficient, or the physical state detecting unit can also be implemented as a switch, and the magnitude of the pressure received by the electrode is also known, or the physical state detecting unit can also include the impedance sensing circuit. Or a capacitance sensing circuit to determine whether the impedance and capacitance of the electrode are changed, and whether the ECG detection can be performed, and therefore, is not limited.
  • the device when the determination is made, if the switch is not completely switched, and/or the physical change does not meet a predetermined range, it means that the contact state between the second electrode and the skin is insufficient for ECG signal extraction, and therefore, the device is at The state in which the ECG signal extraction cannot be activated, if the switch has been completely switched and/or the physical change conforms to a predetermined range, it indicates that the contact between the second electrode and the skin is sufficient for ECG signal extraction, so The device converts to a state in which the ECG signal extraction can be initiated.
  • the electrode it is also possible to control whether the electrode can be used by determining whether the switch is completely or whether the physical change conforms to the preset range, for example, whether the electrode is turned on or not, that is, the electrode is in an unusable state until After the switch is completely switched or the physical change meets the preset range, the electrode is converted into a usable state, for example, turned on, so that the clarity of the obtained ECG signal can be further ensured. Conducive to the accuracy of the analysis results.
  • the device according to the present invention can be designed as The device will automatically start detecting the ECG signal after a certain time, for example, 3 seconds; or in another preferred embodiment, the device will be converted to a certain time after, for example, 3 seconds later.
  • the state of the ECG signal extraction is performed, and thereafter, if the extractable state continues, the ECG signal detection is started. Therefore, there are various possibilities, but the actual demand changes, and there is no limitation.
  • the device according to the present invention can also be implemented in a state of signal extraction, but recording is performed only when the characteristics of the electrocardiographic signal are detected, or the sampling frequency or signal magnification is adjusted. , with a more complete record of all Possible ECG signal changes.
  • the wearing structure is implemented as a finger-wearing structure. Therefore, the wearable electrocardiographic detecting device according to the present invention is carried by the finger-wearing structure and is disposed on the user.
  • the wearable electrocardiographic detecting device is carried by the finger-wearing structure and is disposed on the user.
  • the finger here, it can be implemented as shown in FIG. 1A, in the form of the finger-wearing structure receiving circuit system, or can also be implemented as shown in FIG. 1B, and the finger-wearing structure is combined with a shell.
  • the circuit system can be accommodated in the housing and/or the finger-wearing structure, and thus, depending on the actual implementation, there is no limitation.
  • the first electrode 10 is located on a surface of the device that can be in contact with the skin of the finger due to the wearing action when the finger-wearing structure is disposed on the finger, and the second electrode 12 is located at the device.
  • the other surface except the surface for example, it may be a surface opposite to the surface or a surface adjacent thereto, and it is only necessary to pay attention to a position where the skin of the finger is not touched.
  • the finger wearing form is a familiar and no need to re-learn the use mode for the general user, and directly refers to the wearing structure.
  • the contact between the first electrode and the skin can be completed by bonding to the finger, and then, when it is necessary to record the electrocardiogram at any time, it is only necessary to perform contact between the second electrode and other parts of the skin other than the limb of the finger.
  • the ECG signal is extracted immediately, and the operation flow and action are simple, natural and convenient.
  • the contact between the first electrode and the skin can be achieved without the user's application of force, and the effect of muscle tension on the ECG signal can be minimized.
  • the second electrode located on the surface can be touched by another hand, as shown in FIG. 2A, or the other parts can be touched by moving the hand wearing the device.
  • the skin as shown in Figure 2B, shows the operation of touching the ring to the cheek Shape
  • Figure 2C shows the manner in which the ECG signal is extracted from the ring to the torso, and therefore, there is no limitation.
  • the user can realize the electrocardiographic signal extraction circuit by moving the hand wearing the device to contact other parts of the body, which brings more operational possibilities. It also allows the user to select the appropriate contact location according to the environment and needs, which is more convenient.
  • FIG. 3 shows that the standard twelve-pole is generally obtained.
  • the contact position of the electrocardiogram, by the finger-type ECG detecting device according to the present invention the user can conveniently wear the device on the left-hand finger and obtain different angles by contacting the respective measuring points of V1 to V6. Electrocardiogram projection of the heart.
  • an electrocardiogram of one angle can be obtained for each two electrodes, that is, the position of the electrode determines the projection angle of the electrical activity of the heart reflected by the electrocardiogram, and the heart is stereoscopic and produces a diseased heart.
  • the site may be located at any heart position. For example, the examination of myocardial infarction needs to see if there is ST drift in the ECG waveform due to myocardial necrosis, but it may not be noticeable at certain angles due to its positional relationship. At that time, it is necessary to check through different angles of the electrocardiogram. Therefore, obtaining ECGs at different angles is very helpful for judging heart disease.
  • the position of the finger-wearing structure according to the present invention on the finger is preferably a knuckle where the proximal phalanx or the middle phalanx is located, so as to avoid the situation in which the hand movement is detached due to the position approaching the end of the finger, for example.
  • the finger-wearing structure can be in the form of a general ring as shown in FIG. 4A or in the form of a housing on the flexible band around the finger as shown in FIG. 4B or as shown in FIG. 4B. As shown in FIG.
  • the structure can be further adjusted to have a surrounding diameter, Further ensuring the interaction between the electrodes and the skin Contact stability, for example, the ring can be implemented as a mechanism with a variable ring to accommodate different wearer's fingers, and the belt can be implemented with an adjustable fixed position, for example, by providing a hook and loop fastener to allow The user selects the tightness and the like when wrapping, and the embodiment can be changed according to the actual situation, and there is no limitation; in addition, the form of a clip can be used to clamp the knuckles or the fingertips, and the elasticity of the clip itself can be achieved. The fixed effect is also a good choice.
  • a finger sleeve provided on the fingertip, as shown in FIGS. 4D1-4D2, that is, a groove structure into which a finger can be inserted, for example, a ring or a cavity, and the An electrode is disposed on an inner surface of the groove structure, and the inner surface is a surface that conforms to the finger to achieve contact between the first electrode and the skin of the finger when the finger is extended.
  • the groove structure may be made of an elastic material such as rubber or silica gel to achieve contact between the electrode and the skin, or may be formed with a plastic casing and provided with an elastic material inside to cover the finger, or It is a structural design that provides an inward force to ensure good contact between the internal electrodes and the skin of the fingertips, so there is no limit.
  • Such a form is advantageous in that it is easier to access different positions to achieve an ECG of different projection angles. Therefore, the finger-type ECG detecting device according to the present invention can be implemented in various forms according to actual needs without limitation.
  • the housing 20 can also be connected to the finger wearing structure through a connecting wire and disposed on the wrist of the limb where the finger is located through a wrist wearing structure, as shown in FIG. 4E.
  • a hardware configuration such as a circuit, a battery, or the like, which is originally located near the finger and coupled to the finger-wearing structure, can be moved to the wrist to reduce the burden of the finger when the device is worn, and the wrist-worn structure and / or the surface of the housing that is not in contact with the wrist portion, or the position at which the second electrode is disposed, providing the user with another contact option, or, as shown in FIG. 4F,
  • Both the structure and the wrist-worn structure have a housing, and thus, there is no limitation.
  • the housing 20 can also be implemented to be coupled to the finger-wearing structure via a connector, as shown in Figures 4G1-4G2, in which case the first electrode 10 touching the right hand finger, and the second electrode 12 contacting the skin near the wrist of the left hand, and since the finger wearing structure is placed on the wrist by being combined with the housing disposed on the wrist, when the user places the hands on the wrist On a fixed surface, for example, on a tabletop, when measuring, a very stable measurement posture can be formed, and the generation of the EMG signal is minimized.
  • the circuit of the ECG detection can be connected by a connector connection. It is shortened, so it can minimize the electromagnetic interference noise in the environment induced by the connecting line, so it is also a very favorable choice.
  • the wearing structure is implemented as an ear wearing structure, and therefore, the wearable electrocardiographic detecting device according to the present invention is carried by the ear wearing structure and is provided to the user.
  • the circuitry is housed within the ear-worn structure and/or additionally included in a housing.
  • the first electrode 10 is located on a surface of the device that can be in contact with the skin of the ear or the area near the ear due to the wearing action when the ear wearing structure is disposed on the ear.
  • the second electrode 12 it is located on the other surface of the device except the surface, for example, may be the surface opposite to the surface, or the surface adjacent thereto, only need to pay attention not to contact The position of the skin in the ear or the area near the ear is sufficient.
  • the first electrode 10 can also be implemented to have two electrodes, as shown in FIG. 6A2, and one of the electrodes is used as a ground or reference electrode to suppress common mode noise, for example, noise from a power source, and therefore, implementation There are no restrictions on it.
  • the advantage of using the ear as the position of the contact electrode is that the ear and its vicinity are regions where the myoelectric signal is extremely small, and a relatively stable relative positional relationship with the head is provided, so even if the user is measuring During the movement of the body, for example, slightly turning the body or turning the neck, the contact between the electrodes and the skin can remain stable without causing too much interference affecting the measurement results.
  • the ear is a part that is less covered by the clothing than other body parts, and can be easily contacted directly when needed, and further, the ear
  • the skin around it and the skin also have less hair characteristics, and the contact between the electrodes and the skin can be easily and unobstructed, and therefore is a very convenient choice for the user.
  • the user can easily realize the ECG signal extraction circuit by using the second electrode of the device worn on the ear by hand, which is quite convenient.
  • the housing 20 can also be connected to the ear wearing structure through a connecting wire and disposed on a wrist through a wrist wearing structure, as shown in FIG. 5C.
  • a hardware configuration that is originally located in the vicinity of the ear in combination with the ear-worn structure such as a circuit, a battery, etc., can be moved to the wrist to reduce the burden on the ear when the device is worn, and the wrist-worn structure and/or the shell
  • the body can also be used as a position for setting the second electrode, for example, a position for the user to touch the other hand, or a position at which the wrist of the casing can be contacted, etc., to provide the user with another contact option, or Both the ear-worn structure and the wrist-worn structure have a housing as shown in FIG. 5D, and thus, there is no limitation.
  • a common fixing method in daily life such as an ear hook, an earplug, an ear clip, etc., as shown in FIG. 6A1-6C, for the user. It does not need to be re-learned, and it can be configured naturally. Therefore, the user can simply complete the electrode setting as the action of wearing the earphones normally; and, when the electrodes are placed on the ear by the above-mentioned fixing method, The contact between the electrode and the skin can be achieved without the user's application of force, and the interference of the EMG signal can be minimized, and a good quality signal can be obtained.
  • the ear-wearing structure is implemented to be attached to the ear by means of a magnetic force, for example, two components that are magnetically attracted to each other across the ear, and the electrodes are set On one of the components, and the two components can be implemented such that both are magnetic, or one component has a magnetic force, and the other component can be magnetically attracted without limitation; here, the magnetic force can be disposed through the interior of the component. Or directly made of a magnetic material, and in the same way, a substance that is attracted by a magnetic force can also be set. Inside or used to form parts.
  • the position on the ear to obtain the ECG signal there is no limitation, and it can be any position of the ear itself, for example, in the ear canal, the earlobe, the inner surface of the auricle and the back side, for example, the ear cavity, the area near the ear canal, etc.
  • These locations are locations where the electrodes can be contacted and the ECG signal is obtained.
  • auricle also called pinna
  • auricle also called pinna
  • the superior concha and the ear cavity are inside the auricle
  • a concha floor that is, a plane parallel to the skull
  • the natural physiological structure of the ear provides a continuous plane perpendicular to the bottom of the ear, and, in addition, immediately below the wall of the ear, located between the tragus and the tragus between the tragus ( Intertragic notch), as well as the immediate tragus, also provides a contact area perpendicular to the bottom of the ear.
  • the force required to fix the electrode will be the force parallel to the bottom of the ear (ie, the force perpendicular to the direction of the arm wall), especially when implemented as an earplug.
  • the earplug and the abutting force between the protrusion and the recess on the inner surface of the auricle the stable contact between the electrode and the vertical region can be naturally achieved at the same time, which is quite convenient in use.
  • the contact position on the back of the auricle has the same advantages.
  • the common ear hook structure is usually provided with a component in front of and behind the auricle, and is fixed by the interaction force between the two. The effect on the auricle, therefore, when the electrode contact position is selected on the back of the auricle, it will exactly match the direction of the force of the interaction force, and naturally the stable contact between the electrode and the skin on the back of the auricle can be achieved.
  • the ear-mounted electrocardiographic detecting device is also suitable for combination with an earphone, for example, a wired or wireless earphone, in addition to allowing the electrocardiographic detection to be more integrated into daily life.
  • an earphone for example, a wired or wireless earphone
  • it can also exert greater effects through the sounding function of the earphone.
  • the user can provide the result of the analysis by sound and/or voice, for example, alerting the abnormality of the electrocardiogram signal or periodically reminding the user to record the electrocardiogram. Wait, it is more convenient.
  • the earphone When it is implemented in combination with the earphone, it is not limited to being implemented only in the form of a single-sided earwear, and may also be implemented in the form of a bilateral earwear.
  • the general-purpose earphone microphone is mostly in the form of a single-sided earphone.
  • the earphones for listening to music are mostly in the form of a bilateral earphone. In this case, it is only necessary to provide electrodes on the single-sided ear-wearing structure, which is not affected and is not limited.
  • both ears are selectable wearing positions.
  • the contact position of the second electrode has a considerable influence on the signal quality, wherein when the left upper limb touches
  • the quality of the obtained ECG signal is much better than that obtained by contacting the right upper limb, especially when the electrode contacts the left ear and the left upper limb respectively, and the signal quality is optimal. Therefore, when the ECG signal is measured in such a manner as to contact the ear, it is preferable to contact the second electrode with the left upper limb to avoid poor signal quality due to contact with the right upper limb, thereby causing misjudgment in the analysis.
  • the first electrode and the second electrode are further implemented to achieve contact with the skin through the finger-wearing structure and the ear-wearing structure, respectively, as shown in FIG. 8A.
  • the user only needs to wear the wearing structure on the ear and the finger respectively, that is, the electrode configuration required for measuring the electrocardiographic signal is completed, which is quite convenient, and between the two electrodes and the skin.
  • the contact is achieved by the active application of the wear structure, and the EMG signal interference caused by muscle tension can be minimized.
  • the housing is combined only on a single wearing structure.
  • the housing may be provided with two housings, without limitation, and the circuit system may also be accommodated in any of the wearing structures and the housing without limitation, and may be changed according to actual needs.
  • the electrocardiographic electrodes disposed on the ear can also be combined with the electrocardiographic electrodes disposed at other locations to obtain ECG signals, such as the neck, shoulders, back, upper arms,
  • the position of the forearm, chest, etc. can be placed near the neck and shoulder by a neck-wearing structure such as a necklace or a collar, or can be placed on the arm by an arm-worn structure or a wrist-worn structure, or by a chest strap, or It is also quite convenient to implement the electrode in the form of a patch and set it on the chest. Therefore, any electrode placement position capable of projecting an electrocardiogram is within the scope of the present invention.
  • the wearing structure is implemented as a wrist-worn structure, and therefore, the wearable electrocardiographic detecting device according to the present invention is carried by the wrist-worn structure and is disposed on a wrist of the user. And the circuitry is housed within the wrist-worn structure and/or further included in a housing.
  • the first electrode 10 is located on a surface of the device that can be in contact with the skin near the wrist due to the wearing action when the wrist-worn structure is disposed on the wrist.
  • the second electrode 12 is located on the other surface of the device except the surface, for example, may be the surface opposite to the surface, or the surface adjacent thereto, only need to pay attention to not touch the wrist
  • the position of the limb skin can be.
  • the first electrode 10 can also be implemented to have two electrodes, as shown in FIG. 9B, and one of the electrodes is used as a ground or reference electrode to suppress common mode noise, for example, noise from a power source, and therefore, implementation There are no restrictions on it.
  • the main reason for selecting the wrist as the position for setting the electrocardiac detecting device is that since the wrist-worn form is the same as the wearing of the watch, it is familiar and does not require re-learning, and the wrist wearing is directly
  • the structure is bonded to the wrist to complete the contact between the first electrode and the skin. After that, when it is necessary to record the electrocardiogram at any time, it is only necessary to The electrocardiographic signal extraction can be performed immediately by contacting the second electrode with the skin of the part other than the limb of the finger, and the operation flow and the operation are simple, natural and convenient.
  • the contact between the first electrode and the skin can be achieved without the user's application of force, which can minimize the influence of muscle tension on the ECG signal.
  • the user can easily realize the ECG signal extraction circuit by using the hand to contact the second electrode, which is quite convenient.
  • the circuit can be accommodated in the wrist-worn structure as shown in FIGS. 9D1-9D2, and thus, there is no limitation.
  • the first electrode 10 and the second electrode 12 are implemented to be worn by the wrist wearing structure 90 and the fingers respectively.
  • the structure 92 realizes contact with the skin, so that the user only needs to wear the wearing structure on the finger and the wrist respectively, that is, the electrode configuration required for measuring the electrocardiographic signal is completed, which is quite convenient, and two
  • the contact between the electrode and the skin is realized by the active application of the wearing structure, and the user can contact the electrode without applying force, and if the user can measure both hands on the fixed plane during the measurement. On the top, it will make the EMG signal interference caused by muscle tension can be minimized, which is quite advantageous.
  • a third electrode may be further disposed on the surface of the wrist wearing structure that is not in contact with the wrist skin, for example, as shown in FIG. 9F.
  • the surface 94 or the surface 95 is such that the user can still extract the electrocardiographic signal through the first electrode 10 and the third electrode without using the finger-wearing structure, providing another use option.
  • the wrist-worn electrocardiographic detecting device may further include a connection port 14, as shown in FIGS. 10A-10C, to electrically connect the third electrode 16 through a connecting line, where
  • the third electrode may be further implemented to replace the function of the second electrode.
  • the second electrode may be automatically activated when the third electrode is connected to the connection port.
  • the disabling, or the user can decide which electrode to activate by a switch, and the embodiment is not limited.
  • the third electrode 16 can also be implemented to be in contact with the skin through the wearing structure.
  • an ear-worn structure as shown in FIG. 10B
  • a finger-wearing structure as shown in FIG. 10C
  • a spectacles structure or a wrist-worn structure.
  • the third electrode 16 can also be implemented to be connected by a connector, as shown in FIGS. 10D1-D2.
  • the first electrode 10 contacts the wrist of the user by wearing the wrist-worn structure, and The third electrode 16 is located in the finger-wearing structure.
  • the finger-wearing structure is combined with the device on the wrist through the connector, a relatively stable measurement posture can be achieved, which is more helpful to obtain. High quality ECG signal.
  • the device of the present invention can provide more contact position selection to achieve different cardiac angle projections than the second electrode located on the surface of the device.
  • An electrocardiogram for example, when the angle of projection of the heart when the second electrode is used is obtained by both hands (the wrist wearing the wrist-worn structure and the hand contacting the second electrode), the third electrode is used to provide the ear The wearing structure contacts the ear (for example, the left hand wearing the wrist-worn structure and the left ear wearing the ear-worn structure) to obtain an electrocardiogram selection of different cardiac projection angles.
  • the examination of myocardial infarction needs to see whether there is ST drift in the ECG waveform due to myocardial necrosis, but when the lesion occurs at some angles When the next can't be detected, the ECG at different angles has its necessity.
  • the device of the present invention allows the user to perform electrocardiographic signal measurement by contacting the second electrode located on the surface by extending the third electrode, or simply reconnecting an electrode when needed. The way to get more information about the heart.
  • the extended third electrode further provides other advantages in use.
  • the arrangement of the second electrode allows the user to easily and quickly obtain the ECG signal by touching the surface electrode as needed, and the extended third electrode provides the user with the third electrode.
  • Another option for stabilizing signals Since the third electrode is in contact with a part of the skin of the user's body when the third electrode is used, the muscle tension and the hand shaking which are most likely to affect the quality of the electrocardiographic signal can be excluded. Get a more stable and high quality ECG signal.
  • the third electrode extending through the connecting line as shown in FIGS. 10B-10C also allows the user to select a measurement position where the electrocardiographic signal is stronger, for example, closer to the heart.
  • the same size of the EMG signal can be excluded in the case of a strong ECG signal, but in the case of a weak ECG signal, it is likely to be unable to communicate with the ECG.
  • the signal is differentiated and misjudged. Therefore, the user can improve the accuracy of the analysis result by setting the third electrode to a position where a strong ECG signal can be obtained.
  • the wrist-worn electrocardiac detecting apparatus has two operation modes, a first operation mode and a second operation mode, in which the first electrode and the second electrode are formed together
  • An electrocardiographic signal extraction circuit for obtaining a first electrocardiogram and in the second mode of operation, the first electrode and the third electrode together form a second electrocardiographic signal extraction loop to obtain a second electrocardiogram, and
  • an optional operating mode design stable and high-quality ECG signals can be obtained even in different operating environments and usage habits.
  • the above-described finger-type ECG detecting device and the ear-mounted ECG detecting device can also be implemented to have a connection port for connecting a third electrode. , replacing the second electrode.
  • the finger-type ECG detecting device can be connected to a finger-type third electrode through a connecting wire
  • the ear-worn ECG detecting device can also be connected through a connecting wire.
  • One finger wears the third electrode, both of which require the use of hand contact
  • the operating mode of the electrode is replaced by a finger-wearing structure that provides an active force, so that unstable factors that may be generated by hand contact can be eliminated, helping to obtain a more stable signal
  • the wearable ECG detecting device can also be connected to an ear-mounted third electrode.
  • a cardiac projection angle electrocardiogram different from the two-hand contact electrode is also obtained. Therefore, there is no limit.
  • the wearable electrocardiographic detecting device may be implemented to obtain a first electrocardiogram through the first electrode and the second electrode, and obtain a second electrocardiogram through the first electrode and the third electrode.
  • the first electrode forms an electrocardiographic detection circuit with the second electrode and the third electrode simultaneously when the measurement is performed, so that the user can follow different Choose different modes of operation for your needs to get the heart information that is closest to your needs.
  • the wearing structure is implemented as a head-mounted structure, and therefore, the wearable electrocardiographic detecting device according to the present invention is carried by the head-mounted structure and is disposed on the head of the user.
  • the circuitry is housed within the headgear structure and/or housed in a separately included housing.
  • the first electrode is located on a surface of the device that can be in contact with the skin of the head due to the wearing action when the head structure is disposed on the head, and the second electrode 12 is located.
  • the skin of the upper limb for example, the finger, the arm
  • the neck, the shoulder, and the like is contacted, thereby achieving an electrocardiographic signal extraction circuit.
  • the second electrode can be disposed at various positions, for example, on a surface opposite to the surface of the head structure or on a surface adjacent thereto.
  • the second electrode is disposed on the exposed surface of the ear-wearing structure for the user to make contact with the upper limb; or alternatively, the second electrode may be extended to a position such as a neck or a shoulder by a connecting wire, for example, by The neck-wearing structure of the collar or necklace, or extending to the chest, for example, by a chest strap or by applying the electrode as a patch, ECG signals can also be obtained. Therefore, there are various possibilities and no restrictions.
  • the head-wearing structure can also be implemented in various forms, for example, a belt body, a headgear, or a hard head frame with an adjustment mechanism, or a form of glasses, etc., with an emphasis on achieving electrodes and skin. Contact, therefore, no restrictions.
  • the head-wearing structure which is quite convenient to use is a spectacles structure.
  • the natural contact position of the glasses frame includes, but is not limited to, the nose pads contact the bridge of the nose, the roots, and/or the two eyes.
  • the front section of the temples will contact the temples, and the back of the glasses will contact the ears.
  • the V-shaped recessed area between the skull and the skull, and the portion of the temple falling behind the auricle will contact the skin behind the auricle, so that the first electrode is placed at a position where the eyeglass structure is naturally contacted when it is placed on the head.
  • the electrode contact can be completed at the same time by the action of wearing the lens structure, and then, the second electrode 12 disposed on the exposed surface can be used for the upper limb contact of the user, as shown in FIG. 14A, the ECG signal can be obtained, such that It is not only easy to use, but also allows the ECG detection device to be integrated into daily life and increase the willingness to use.
  • the second electrode can also be implemented as a finger-piercing structure, a wrist-worn structure, an arm-worn structure, a neck-worn structure, a shoulder-worn structure, or a chest strap.
  • Other parts fixed to the body can be changed according to actual needs, without restrictions.
  • the spectacles structure described refers to a wear structure that is placed on the head through the auricle and the nose as a support point, and that comes into contact with the skin of the head and/or the ear, and therefore, It is limited to the general eyeglass structure, and includes its deformation.
  • it may be a structure with a clamping force on both sides of the skull, or a form of asymmetry of the two temples, for example, the temple has a curved shape behind the auricle.
  • the other side of the temple has no curved part and is only placed above the auricle, and there is no lens. Therefore, there are various possibilities and no limitation.
  • the hard material of ordinary glasses in addition to the hard material of ordinary glasses, it can also be implemented as an elastic material, which not only increases the stability of the electrode contact, but also provides the use comfort, for example, the use of memory metal, flexible
  • the plastic material forms a frame, and/or elastic rubber, silica gel, etc. are disposed at the electrode contact position to make the contact more stable and unlimited.
  • the electrode and the required circuit can be directly embedded in the eyeglass structure, for example, the eyeglasses. Or the lens frame; or, the arrangement of the electrodes and the circuit can be achieved through an additional structure.
  • the additional structure 18 is implemented as a temple extending from a single side to make the first electrode 10 Contacting a contact point near the lower half of the back side of the one-sided auricle, and then engaging the second electrode 12 on the exposed surface of the eyeglass, or, as shown in FIG.
  • the additional structure 18 is implemented as a temple extending from a single side to
  • the first electrode 10 is brought into contact with the vicinity of the one-sided auricle and the vicinity of the inter-cephalic V-shaped depression (here, the first electrode can contact the skull, the V-shaped depression, and/or the auricle back, without limitation), and the second electrode 12 is also provided.
  • the exposed surface is for touch, so there are various possibilities, and the required circuit can be partially or completely disposed in the eyeglass structure or the additional structure as needed, without limitation, and further, the additional The structure can be implemented in a removable form to allow the user to selectively attach the additional structure to the eyeglass structure for detection when needed. Therefore, there are various possibilities and no restrictions.
  • the function of the earphone and/or the microphone can be provided by providing a sounding element and/or a sounding element (for example, a microphone) on the eyeglass structure, or the earphone can be extended by the eyeglasses.
  • a sounding element and/or a sounding element for example, a microphone
  • the acoustic element and the earphone used may be in the form of bone conduction in addition to the generally common air conduction form, for example, the bone may be directly placed at the position where the temple is in contact with the skull. Conducting the horn, or extending the bone conduction earphone from the temple, there is no limit.
  • the device according to the present invention can also be implemented to communicate with a portable electronic device, for example, by wired or wireless means such as a headphone jack or Bluetooth, and communicate with an electronic device such as a smart phone or a tablet computer.
  • a sounding element air conduction or In the case of a bone conduction type and a sound pickup element
  • the device according to the invention can be used as a hands-free handset for talking; furthermore, by providing a vibration module, a sounding element (air conduction or bone conduction),
  • the display device, the light-emitting device, and the like the device according to the present invention can further implement an information providing interface as the portable electronic device, for example, for providing an incoming call reminder, a message notification, etc., and more integrated into the daily life of the user.
  • the information can be provided in various ways, such as sound, vibration, illumination, and lens display, without limitation.
  • the head and the ear have similar characteristics, and it is not easy to generate an electromyographic signal that interferes with the electrocardiographic signal. Therefore, it is also suitable for setting the position of the electrocardiographic electrode, and further, the head electric structure can further set the electroencephalogram electrode.
  • the head electric structure can further set the electroencephalogram electrode.
  • An EEG electrode is provided to contact the EEG signal sampling points on the head.
  • common sampling points include Fp1, Fp2, O1, O2, A1, A2, etc., or any position defined by the 10-20 system. It is quite advantageous to provide users with more detection functions without increasing the burden.
  • the electrocardiographic electrode disposed on the head structure for contacting the skin of the head may further share as an electroencephalogram electrode, and form an electrocardiographic signal extraction circuit with the second electrode, and Forming an EEG circuit with an other EEG electrode.
  • the sharing method can also be implemented by using two electrodes simultaneously to obtain an electrocardiogram signal and an EEG signal, that is, the ECG signal and the EEG signal are obtained by the same physiological signal acquisition circuit.
  • the reason for this can be that the ECG signal is much larger than the EEG signal, wherein the ECG signal falls within the range of millivolts (mV), and the EEG signal falls within the range of microvolts ( ⁇ V). Therefore, even if they enter the same input of the physiological signal capture circuit, the two can be distinguished from each other.
  • an electrode contacting the head can be used to cooperate with another electrode that can simultaneously contact the head and the hand to achieve the ECG signal and the EEG signal.
  • the electrode that contacts the head and the hand at the same time for example, the most common metal electrode sheet can be electrically connected to the two electrode pieces contacting the hand and the head, or can be implemented as one electrode piece.
  • the two portions are in contact with the hand and the head, respectively, for example, when placed on the headgear structure, the skin of the head and the skin of the outside hand are contacted on the inside, and therefore, the embodiment is not limited.
  • the EEG electrodes are also suitable for placement on the earwear structures of Figures 5-6 and 8.
  • cerebral cortex activity can be detected, for example, temporal lobe.
  • the ears are separated from the head due to their structure and position. Affected by brain activity, it has always been regarded as one of the best positions for setting the reference electrode. Therefore, the reference electrode is combined with the ear in the ear-wearing structure, which is originally common for EEG detection.
  • the ear-mounted electrocardiographic detecting device is also quite suitable for combining and providing an electroencephalogram electrode to obtain an electroencephalogram signal, and is also suitable for adopting a shared electrode, that is, simultaneously implementing the first electrode.
  • a shared electrode that is, simultaneously implementing the first electrode.
  • a headgear structure may be additionally connected to set an electroencephalogram electrode at In this way, the EEG signals can be obtained by the EEG electrodes respectively disposed on the head structure and the ear wearing structure, and are disposed on the exposed surface of the ear wearing structure by the ECG electrodes disposed in the ear wearing structure.
  • the ECG electrodes (Fig. 5-6) or the ECG electrodes of the ECG electrodes (Fig. 8) disposed on the finger-worn structure obtain ECG signals, thereby providing various possible implementation options.
  • the electroencephalogram signal and the ECG signal can be captured by the glasses structure.
  • the head and the ear can be simultaneously contacted, for example, the bridge of the nose and the root of the mountain. , between the two eyes, the temples, the V-shaped area between the skull and the auricle, the back of the auricle, etc., or the position of the posterior occipital bone through the backward extending temples, so as long as the two EEG electrodes and
  • the first electrode (or the electrocardiographic electrode and one of the electroencephalogram electrodes are implemented to be shared) is disposed at a position where the lens structure is in contact with the skin.
  • the second electrode which is disposed on the exposed surface or extended, can be configured to obtain the electrode and obtain the signal.
  • the eyeglass structure and the earwear structure may be further combined for providing the first electrode and the second electrode, for example, an earplug or an ear clip may be extended from the eyeglass structure, or the eyeglass structure has a port.
  • an earplug or ear clip may be extended from the eyeglass structure, or the eyeglass structure has a port.
  • an earplug or ear clip or the ear-wearing structure can be sleeved on the structure of the eyeglass, etc., so that there are more implementation possibilities, for example, contact with the skin on the structure of the eyeglasses.
  • the first electrode is located at a position where the earplug/ear clip can contact the skin of the auricle, and the first electrode is located at the exposed surface of the spectacles structure; or, the first electrode and the second electrode are both located at the ear wearing structure.
  • the ear-wearing structure is disposed near the ear by means of a combination with the structure of the glasses, and in this way, it is equivalent to providing a frame for the general glasses to utilize the owner's own frame.
  • Physiological sensing element disposed manner with considerable advantages. Therefore, it can be implemented in various forms without limitation.
  • the electrocardiographic detecting device since adopting the design of the wearable form, provides the possibility of conveniently and continuously acquiring the electrocardiographic signal during wear, and thus provides the user with more convenient functions.
  • the wearable form allows the user to wear on the body without burden, it is quite suitable for wearing in daily life.
  • the user can wear the device on the ear and on the finger in daily life. Or on the wrist, and when necessary, for example, when the heart is uncomfortable, start the ECG signal detection in real time, or perform ECG detection regularly every day to effectively grasp the heart changes.
  • the ECG detecting device thus worn on the body, the electrocardiogram when the arrhythmia occurs or the electrocardiogram when the user feels the irregular heartbeat can be recorded in real time. To judge whether or not you have a heart rhythm as a doctor The basis of Qi.
  • the user can either record the electrocardiogram or touch the second through the hand when feeling uncomfortable.
  • the electrocardiogram is obtained in real time by means of electrodes, as shown in FIG. 2A, FIG. 5B, FIG. 9C and FIG. 14; alternatively, if the second electrode is placed on the body by the wearing structure or the third electrode is used, The two electrodes of the ECG signal are all in contact, so the user only needs to activate the ECG signal measurement, for example, by pressing the start button, the ECG can be recorded in real time. In any case, it is quite simple and convenient to use.
  • the device according to the present invention can be set to automatically record the next fixed time electrocardiogram after the electrocardiographic measurement is activated, for example, 30 seconds or 1 minute, so that the user can easily record the heart in real time without feeling.
  • an electrocardiogram occurs when an arrhythmia occurs.
  • the user can also choose to record a continuous electrocardiogram for a long time, especially when both electrodes are placed on the body through the wearing structure, and by analyzing the electrocardiogram continuously obtained for a long time, the user can obtain more information. .
  • information of a continuous heart rate sequence can be obtained from a continuous electrocardiogram for HRV (Heart Rate Variability) analysis.
  • HRV analysis is the most important method for observing autonomic nervous activity.
  • the results of HRV analysis can provide a detailed understanding of autonomic nervous activity, such as sympathetic activity, parasympathetic activity, autonomic balance, and The overall activity of autonomic nerves, etc., and more and more studies have shown that many diseases, such as headache, gastrointestinal discomfort, hypertension, insomnia, depression, etc., may be caused by autonomic nervous disorders.
  • the device according to the present invention is in the form of wearing, the result of the real-time HRV analysis can also be provided to the user through the information providing unit, so that the user can know in real time which behaviors or emotions are present. It is possible to cause an autonomic nervous imbalance, and further, with the design of the present invention, the user can also perform physical and mental adjustments in real time, for example, relaxing the body and mind, and knowing whether the autonomic nerve has returned to a more coordinated state.
  • the HRV analysis of the continuous electrocardiogram during sleep can also be used to understand the physiological changes during sleep.
  • the sleep cycle can be judged, and the sleep quality can be understood, which is quite convenient.
  • the device according to the present invention can be implemented to store the ECG signal first, and after the measurement is completed, output the signal for further processing, for example, output to a computer device. Storage and analysis, etc.; and/or, since the device of the present invention has an information providing unit, relevant information or analysis results can also be provided to the user in real time, for example, average heart rate, HRV analysis results, etc., and/or,
  • the information providing unit can also be implemented to transmit the recorded ECG signals and/or data to an external device, such as a mobile phone, a tablet computer, etc., in real time, and the external device performs real-time display and/or analysis. ,no limit.
  • the wearable electrocardiographic detecting device also provides a means for the user to perform breathing training with him or her.
  • the device can obtain a continuous ECG signal and obtain a time series of heartbeat intervals, that is, a heart rate sequence, and by analyzing the heart rate sequence, the relevant sinus arrhythmia can be obtained ( Respiratory Sinus Arrhythmia (RSA), the so-called RSA refers to the phenomenon that the heartbeat changes due to the influence of the respiratory system on the autonomic nervous system in the case where the heart rate is controlled by the autonomic nervous system.
  • RSA Respiratory Sinus Arrhythmia
  • the so-called RSA refers to the phenomenon that the heartbeat changes due to the influence of the respiratory system on the autonomic nervous system in the case where the heart rate is controlled by the autonomic nervous system.
  • the heartbeat is accelerated, and the heartbeat is slowed down during breathing. Therefore, the pattern of changes in breathing and the activity of the autonomic nerve can be known by observing the RSA.
  • the self-regulating nerve can be affected by consciously adjusting the breathing to achieve the effect of relaxing the body and mind.
  • the respiration rate, the tidal volume, and the ratio during the exhalation/inhalation period all affect the sympathetic and parasympathetic effects.
  • the rate of respiration can be reduced to the range of 5-8 times per minute, it can help increase parasympathetic nerve activity, in addition, when the ratio during exhalation/inhalation increases, that is, when there is relative to inhalation During the longer exhalation period during the period, the activity of the parasympathetic nerve can also be improved.
  • breathing training is performed by providing a breathing guide that the user has a breathing pattern that helps to relax the body and mind.
  • the breathing guide provides a 5-minute per minute that reduces sympathetic activity. 8 times of breathing rate, and / or in the case of natural breathing, increased exhalation period, to guide the user to lower the breathing rate and / or increase the period of exhalation, thereby increasing parasympathetic nerve activity, inhibiting sympathetic nerves, and let The human body can be relieved from tension and restored to relaxation.
  • the device of the present invention provides breathing in the case where it is desired to record the electrocardiogram at the time of occurrence of arrhythmia in real time.
  • Guided training functions in order to allow the user to change the way of autonomic nerve balance by controlling breathing, will help to improve the symptoms of arrhythmia, which complement each other and make more sense.
  • the wearable electrocardiographic detecting device When breathing training is performed using the wearable electrocardiographic detecting device according to the present invention, the user only needs to wear the device on the body and maintain contact between the two electrodes and the skin, and during the breathing training, the information is provided.
  • the providing unit is configured to provide a respiratory guiding signal to the user to allow the user to follow the adjusted breathing.
  • the information providing unit can also provide physiological changes in the user during the breathing training, for example, sympathetic and negative. Changes in sympathetic activity, changes in heart rate, and changes in actual breathing patterns are used as a reference for breathing training.
  • both electrodes are disposed on the body through the wearing structure, for example, using a second electrode that can be disposed through the wearing structure.
  • the respiratory guidance signal may also be a dynamic guidance signal adjusted according to the respiratory change pattern obtained by the heart rate sequence, that is, the respiratory state of the user obtained in real time to know the respiratory rate. And/or whether it falls within the range of speeds that are conducive to relaxation, and based on the dynamic adjustment of the guidance signal, so that the user can achieve the effect of breathing guidance training in the most relaxed and comfortable way.
  • the amplitude of the RSA it is helpful to trigger a Relaxation Response, and the accumulated stress is released, thereby achieving an effect of increasing the proportion of parasympathetic/sympathetic activity, and therefore, by observing the user's heart rate change pattern, and When the heart rate starts to accelerate, the user is informed by the guide that the inhalation can be started, and when the heart rate starts to slow down, the user is informed by the guidance that the exhalation can be started, so as to increase the amplitude of the RSA and achieve the purpose of relaxing the body and mind.
  • the breathing and heart rate are harmonious and synchronized by the frequency domain analysis of the heart rate sequence, and the better harmony and synchronization between breathing and heart rate represents a more orderly and coordinated heartbeat rhythm. That is, the human body is in a relatively relaxed and stable state. Therefore, when the user obtains relevant information while performing training, the physiological state of the person can be changed by consciousness.
  • the EEG signal can be obtained by cooperating with the EEG electrode, the heart rate, the respiration and the synchronization between the EEG signals can be observed to understand the physiological state of the user.
  • exhalation and inhalation can cause fluctuations in intravascular blood volume, and this fluctuation will also reach the brain with blood flow, which in turn causes brain waves to be in the low frequency segment, for example, below 0.5 Hz. Fluctuation, therefore, you can also learn the breathing pattern by observing the brain waves, and then Because the sinus node and vascular system of the heart are also regulated by the autonomic nervous system, the autonomic nervous system also feeds the heart rate and blood pressure changes back to the brain through the baroreceptor system, thereby affecting the brain.
  • the function and operation affects the cerebral cortex and can be measured by EEG. Therefore, there is a relationship between the three, and the good synchronicity between the three can represent the human body in a more relaxed state, which is quite useful. information.
  • the information providing unit can provide the information about the heart rate in real time while providing the respiratory guidance signal, and/or the information about the synchronization of the related breathing and the heart rate obtained by the spectrum calculation. Therefore, the user
  • the effect of breathing adjustment on the autonomic nerve can be known in real time, for example, whether the activity of the parasympathetic nerve is improved, or whether the activity of the sympathetic nerve has decreased, etc., so that the respiratory guidance signal can be used
  • the physiological feedback program is more efficient.
  • the HRV analysis result can be further used to let the user know the effectiveness of the breathing training.
  • the HRV analysis can be performed before and after the breathing training, and the effect of the breathing training on the autonomic nerve is learned, even It can also be implemented as a real-time HRV analysis, and the information providing unit allows the user to know the activity of the autonomic nerve in real time, and allows the user to understand his or her physiological condition in a physiologically similar manner, which further contributes to the realization. Relax and unwind.
  • the real-time HRV analysis can be performed by moving the concept of the Moving Window, that is, first determining a time period, for example, 1 minute. Or 2 minutes, after that, by continuously changing the time zone backwards, for example, every 5 seconds, the HRV analysis result can be obtained continuously, for example, an HRV analysis result is obtained every 5 seconds, thus providing
  • the concept of weighting can also be used to moderately increase the proportion of physiological signals closer to the analysis time, so that the analysis results are closer to real-time physiological conditions.
  • the information providing unit can have various options when providing the breathing guide signal, for example, it can be guided in a visual, audible, and/or tactile manner without limitation.
  • the choice of visual guidance includes, but is not limited to, graphic changes, text display, change in illumination brightness, and/or change in signal number, etc., all of which are suitable methods, for example, utilizing a pattern of breathing changes in the display element.
  • the pattern guides the user to inhale and exhale; or the amount of LED light changes to represent inhalation and exhalation; or the text can be used to directly inform the user to inhale and exhale.
  • the selection includes, but is not limited to, sound changes and voices.
  • the intensity of the sound may represent the change of inhalation and exhalation; or the sound type represents the inhalation and Exhale, let the user follow, for example, bird screams, waves, different music tracks, etc.; or you can also tell the user to inhale or exhale by voice, for example, when you start breathing induction training
  • the breathing mode of the user can be guided by the "inhalation” and "exhalation” voice indications in accordance with the breathing change mode, and the user is informed to continue when it detects that the user's breathing has met the desired change mode. Maintain the current suction rate” and stop the voice guidance of "inhalation” and "exhalation”. Therefore, there are various options that can be varied depending on the actual implementation requirements, without limitation.
  • the above-described auditory guidance will appear more natural, and since the sound and/or voice directly enters the ear via the earphone, it does not disturb the person around, so It also provides concealment, allowing breathing training to be performed regardless of time and place. For example, breathing training is also more convenient when riding a vehicle.
  • the tactile guiding method it is preferable to provide a change in vibration by a combination of a member in contact with the user's body, for example, a wearing structure, and as for the manner in which the vibration changes, there is no Limitations, for example, may be implemented to use a vibration signal to alert the user to the correct exhalation and/or inspiratory start time point, or to generate only when the user's breathing pattern is found to be deviating from the preset target pilot signal. Vibration guidance, etc.
  • the user can pry the eyes during the breathing guide training, which is more conducive to body relaxation and breathing adjustment.
  • the respiratory guidance signal may also be implemented to be output to the external device via the information providing unit and the wired/wireless transmission module, for example, a smart phone, a tablet computer, a smart watch, or the like.
  • the external guidance device provides the respiratory guidance signal to the user for breathing training.
  • the respiratory guidance signal is implemented to be generated by the external device and provided to the user, and the external device further receives the relevant user from the information providing unit.
  • the information about the user's breathing pattern is stored as a reference for subsequent viewing of the record.
  • the wearable electrocardiographic detecting device of the present invention in addition to the extraction of the electrocardiographic signal and the above-mentioned detection of the electroencephalogram signal, other physiological sensors may be included to be obtained when worn on the body. Other physiological signals.
  • the light sensor refers to a sensor having a light emitting element and a light receiving element and utilizing the principle of PPG (photoplethysmography) to obtain an optical signal, for example, by means of penetration or reflection.
  • PPG photoplethysmography
  • the measurement which is also accomplished by the action of wearing the wear structure, for example, on the surface on which the first electrode is located, such that it can be with the first electrode by the action of wearing the wear structure It is disposed on the user, for example, near a finger, an ear or an ear, a wrist or a head, etc.; or, it can be disposed on the user through another wearing structure, for example, the optical sensor can be disposed on the ear wearing structure.
  • the physiological signal is obtained from the ear and/or the vicinity of the ear by the combination of the ear wearing structure and the eyeglass structure, and therefore, there is no limitation.
  • the light sensor mainly detects the pulse generated by the heart beat, and through the continuous pulse change obtained, the user's heart rate sequence can be obtained and used for correlation analysis, since only a single light sensor can obtain the physiological signal.
  • the setting is simple, the user only needs to wear the wearing structure to wear, so it is quite advantageous for continuous signal acquisition for long-term physiological state monitoring.
  • the apparatus of the present invention is particularly advantageous for early warning and judgment of arrhythmia when it simultaneously has the function of acquiring an electrocardiographic signal using an electrode and acquiring a heart rate sequence using an optical sensor.
  • arrhythmia for example, different types of arrhythmia, such as premature atrial contractions (PAC) that occur in the atria, and early onset ventricular contractions that occur in the ventricle ( Premature ventricular contractions (PVC), which traditionally need to be judged by observing an electrocardiogram, can still be interpreted by observing changes in heart rate, such as premature beats, ventricular fibrillation. (AF, Atrial Fibrillation), various symptoms such as Tachycardia, Bradycardia, Pause, etc.
  • PAC premature atrial contractions
  • PVC Premature ventricular contractions
  • AF Atrial Fibrillation
  • various symptoms such as Tachycardia, Bradycardia, Pause, etc.
  • the heart rate sequence is pre-screened to see if there is a possible arrhythmia event, and then, when an arrhythmia event occurs, the user is notified to perform an electrocardiogram test to further confirm the correctness of the arrhythmia event and obtain further The details of.
  • the user places the device on the body through the wearing structure, for example, a finger, an ear, a wrist, and a head.
  • the light sensor on the wearing structure performs continuous pulse wave detection, and After the heart rate sequence is obtained, the acquired heart rate sequence is continuously compared with the temporal characteristics of the arrhythmia possible event, and when a coincidence occurs, a possible arrhythmia event is determined, and at this time, the information providing unit notifies The user has a possible arrhythmia event and reminds the user to measure the ECG signal. Therefore, after receiving the notification, the user can easily extract the ECG signal by contacting the second electrode and obtain the ECG signal immediately. An arrhythmia ECG signal may appear.
  • the ECG signal can be directly analyzed to know whether there is an arrhythmia symptom, and the result is notified Users, or, can be transmitted to an external device, such as a mobile phone or tablet, for storage and/or analysis in real time, or they can be stored first, and then analyzed later, for example, downloaded to a computer for analysis, etc. , unlimited.
  • an external device such as a mobile phone or tablet
  • the heart rate sequence obtained by the light sensor can also be used for continuous HRV analysis and breathing training as described above. Since its execution procedure is similar to the foregoing, the difference lies only in the physiology according to HRV analysis and respiratory training.
  • the signal is a sequence of heart rate obtained by the light sensor, and therefore, it will not be described again; and, in addition, it can also cooperate with the acquisition of the EEG signal, and continuously perform the synchronization analysis between the respiratory, heart rate and EEG signals, so as not to Provide users with more information in the case of increased burden.
  • the time required for the pulse wave to pass from the heart to the sensing position of the light sensor can also be obtained, that is, the so-called Pulse Transit Time (PTT).
  • PTT Pulse Transit Time
  • the reference blood pressure value can be calculated by a specific relationship between PTT and blood pressure values.
  • the photosensor can be additionally disposed in the respective wearing structures by setting the photosensors at different positions, for example, when both electrodes are disposed through the wearing structure, so that By calculating the time difference between two pulse waves
  • the information about the Pulse Wave Velocity (PWV) can be obtained, and the reference blood pressure value can be obtained by a known calculation theory, for example, can be respectively set on the ear wearing structure and the wrist wearing structure, or, if When implemented as a bilateral ear-worn structure, the light sensor can also be placed on both ears, so that there are various possibilities and no restrictions.
  • the blood pressure value can be directly obtained by using the cuff and the air pump, and in this case, the pulse pulse can be continuously changed by the cuff, and the analysis of the arrhythmia possible event as described above can be performed. Quite has an advantage.
  • the wearable electrocardiographic detecting device is also suitable for use during exercise, for example, the user can wear the device according to the present invention during exercise without feeling a burden and rest in the middle of exercise.
  • the time is directly measured to know the effect of exercise on the heart.
  • the ECG can be obtained by touching the electrode by hand or directly when the two wearable structures are worn directly, or when the light sensor is configured.
  • the heart rate sequence or the like is acquired by the light sensor, it can be known from the information provided by the information providing unit, for example, whether sufficient exercise intensity (whether the heartbeat reaches the intended target) or whether the heart is abnormal or not is known.
  • exercise is a good time for arrhythmia, and therefore, the electrocardiogram when arrhythmia occurs can be recorded in real time by the device of the present invention.
  • the wearable electrocardiographic detecting device in addition to the intense exercise period, other time when the heartbeat abnormality may occur, for example, when climbing a mountain or flying a plane, it is also suitable to use the wearable electrocardiographic detecting device according to the present invention to grasp the heart condition in a more real time. .
  • the wearable electrocardiographic detecting device is configured such that the device is placed on the user by wearing the structure, so that the contact between the electrocardiographic electrode and the skin is completed by the wearing action, thereby reducing the user's exertion. And reducing the effects of myoelectric signal interference, especially when the two electrodes needed to obtain the ECG signal are placed on the user through the wearing structure, the interference of muscle tension is minimized; Whether it is wearing, wearing, wearing, and/or wearing, it is common in everyday life.
  • the wearing method does not appear abrupt in use, and is more conducive to the user to wear on the body at ordinary times, so as to record physiological signals at any time when necessary, for example, recording an electrocardiogram when arrhythmia occurs, and/or Obtaining own physiological information, for example, real-time HRV analysis results, and/or for performing physiological regulation, for example, performing breathing training, etc., therefore, it is not only easy to configure, convenient to use, but also widely used.
  • the wearable electrocardiographic detecting device also provides two modes of operation, in which the two electrodes are located on the surface of the device, and in the second mode of operation, one of the electrodes passes The connecting line extends out. Therefore, in addition to the user's selection of the operating mode according to the use environment and operating habits, in the second operating mode, the extended electrodes are also provided to be set at different body positions to achieve different The angle is possible to project the electrocardiogram, and since the extended electrode is disposed on the user through the wearing structure, it further provides an operation mode that does not require the user to actively apply force, which is quite advantageous.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Pulmonology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种穿戴式心电检测装置,包括一第一电极(10)以及一第二电极(12),其中,至少该第一电极(10)通过一穿戴结构而设置于使用者身上,且该第二电极(12)接触一上肢、颈部或肩膀的皮肤,以实现一心电信号提取回路,并进行心电信号提取。还公开了一种穿戴式生理检测装置。

Description

穿戴式心电检测装置及穿戴式生理检测装置 技术领域
本发明涉及一种穿戴式心电检测装置,特别涉及一种穿戴式心电检测装置及穿戴式生理检测装置,其具有对电极主动施力的结构,以提供更佳的心电信号品质。
背景技术
已知,心电检测装置用于检查各种心脏疾病的主要途径,例如,是否有心律不齐、因高血压或心脏瓣膜疾病所引起的心肌肥厚、心肌梗塞或是缺血性心脏病等病症。
当人们感受到心脏不适而至医院进行检查时,多采用的是传统的心电检测装置,例如,十二导联心电图检测,可较详尽的检测出各种心脏问题,但若心脏不适的来源是偶发性的症状,例如,心律不齐,则很可能无法在检测期间测得发病时的心脏情况,因此,适应此种偶发性症状,多会采用配戴霍特式(Holter)心电图机进行长时间检测的方式,例如,配戴24小时至数天的时间,希望以这种方式记录下出现症状时的心电图,而与霍特式心电图机类似的,心电事件记录器(ECG event recorder)也是采用长期配戴的方式,但不同地是,其让使用者自行决定记录的时间,例如,心脏觉得不舒服的时候,并通过按钮启动的方式而记录下心电图,例如,装置平常不进行记录,而是在使用者按下按钮时才记录下按压时间前后各30秒的心电图。而除了用来记录偶发性症状外,霍特式心电图机也常用于监控心脏手术或服用治疗药物后的心脏情形,以确认治疗效果。
无论是霍特式心电图机或心电事件记录器,其设置方式都必须在身上粘贴多个用以取得心电图的电极,并通过连接线连接至一装置,因此,使用者在测量期间必须一直粘贴着电极且将装置配戴于身上, 相当不便,也容易因长时间粘贴电极而产生皮肤不适,这些都是让使用者却步的原因,再加上,有时也会出现即使经过长时间配戴检测后,却因没有发病而未记录下任何可供分析偶发性症状的心电图。而且,这样的检测,必须通过专业医护人员的协助才能完成设置,例如,电极的粘贴必须在医院内设置完成,并且,通常是在完成长时间的测量后,再由医生下载记录下来的心电图进行分析,需要至少数天后才能知道心脏出了什么问题,所以,不但复杂度高,也缺乏实时性。
因此,针对上述的这些缺点,进一步提出的改进是手持式心电检测装置,其通过采用不需粘贴于身上的干式电极而解决必须将装置长期配戴于身上的困扰,以及简化进行检测时的复杂度。如申请号为US7149571以及US7197351的美国专利申请所公开,手持式心电检测装置在装置的表面设置有干式电极,可随时在有需求时通过接触手及/或体表的方式而进行心电检测,因此,不再受限于配戴于身上的时间以及电极粘贴,故可更具弹性地用来监控心脏的情形,而且,这样的心电检测装置通常也配置有分析程序及显示屏幕,可让使用者在测量的当下即得知检测结果,无须等到至医院会诊,因此,相当适合居家使用,并且,也提供了对自身心脏健康有高度关心的使用者平时可自行定时了解心脏情形的简易途径。
之后,随着随身携带的电子装置,例如,智能手机的普及,近年来出现的是与手机相结合的心电检测装置,如美国专利US8615290所公开,其与手持式心电检测装置类似,同样是采用干式电极,差别只在于是通过手机的操作界面进行装置的操控,这样的方式让有监控心脏需求的使用者可减少随身携带的装置的数量。
只是,上述无论是手持形式或是与手机相结合形式的心电检测装置,虽然可随身携带,但由于必须由手握持而操作,故在符合人体工学的需求下,再加上需要显示结果,尺寸上无法过小,携带上仍是一定的负担;而且,由于电极并未一直设置于身上,因此,欲进行检测 时,需要较多的步骤,例如,先取出装置后再开机,才能开始进行检测,故也有可能因此而错失检测的时机。
而且,以双手进行测量的方式很容易在测量时发生如手部晃动等不稳定的现象,因而造成所测得的心电图出现基线飘移、波形变形等影响分析的状况,再者,当使用者希望手部维持稳定而肌肉紧张或是特意用力以确保与电极间接触时,也很容易因用力而产生影响信号分析的肌电信号。
因此,有需要一种穿戴式心电检测装置,能解决上述的缺点,让使用者可更方便使用的同时,也可将操作时各种不确定因素的影响降至最低。
并且,当心电检测装置可穿戴于身上时,就可通过所取得的心电信号而进一步获得其他的生理信息,例如,可根据心电图取得心跳间隔的时间序列,以进行HRV(Heart Rate Variability,心率变异率)分析,而得知自律神经的活动情形,也可通过分析该时间序列而获得相关RSA(Respiratory Sinus Arrhythmia,窦性心律不齐)的信息,进而得知使用者的呼吸变化,而通过这些信息,就可引导使用者进行有助于改善自律神经平衡的呼吸训练。
由于心律不齐的重要成因之一是自律神经失调,因此,当使用者希望通过穿戴式的心电检测装置而实时记录下发生心律不齐时的心电图时,若同一装置可提供改善心律不齐症状的功能,对使用者而言,将会是更为完整的解决方案。
发明内容
本发明的目的在于提供一种穿戴式心电检测装置,包括:一控制模块,包括一处理器;一指戴结构,用以设置于一使用者一上肢体的一手指上;一腕戴结构,用以设置于该使用者另一上肢体的一手腕上; 一第一电极以及一第二电极,其中,该第一电极位于该指戴结构设置于该手指上时,该装置与该手指皮肤接触的一表面上,以及该第二电极位于该腕戴结构设置于该手腕上时,该装置与该手腕附近的皮肤相接触的另一表面上;以及一信息提供单元,用以提供使用者信息,其中,当进行心电信号检测时,该指戴结构以及该腕戴结构通过一对连接器而相电连接,并形成一整体,以及该手指的皮肤接触该第一电极,以及该手腕附近的皮肤接触该第二电极,以形成一心电信号提取回路,并进行心电信号提取。
本发明的另一目的在于提供一种穿戴式心电检测装置,其用以提取心电信号的电极是实施为穿戴形式,可在无须使用者施力的情形下,实现电极与皮肤间的接触。
本发明的再一目的在于提供一种穿戴式心电检测装置,其通过指戴结构而将装置设置于手指上,并在配戴同时实现电极与手指皮肤间的接触。
本发明的又一目的在于提供一种穿戴式心电检测装置,其通过耳戴结构而将装置设置于耳朵上,并在配戴的同时实现电极与耳朵或耳朵附近区域的皮肤间的接触。
本发明的又一目的在于提供一种穿戴式心电检测装置,其同时通过指戴结构以及耳戴结构而将提取心电信号所需的两个电极分别设置于手指上以及耳朵上,以在便于穿戴的同时,也达到最小化肌电信号干扰的效果,更进一步提供长时间连续取得心电信号的途径。
本发明的又一目的在于提供一种穿戴式心电检测装置,其通过腕戴结构而将装置设置于手腕上,并在配戴的同时实现电极与手腕附近皮肤间的接触。
本发明的又一目的在于提供一种穿戴式心电检测装置,其同时具有心电信号以及脑电信号检测功能,且在通过头戴结构而将装置设置于头部的同时,可实现电极与头部皮批的接触。
本发明的又一目的在于提供一种穿戴式心电检测装置,其具有两种操作模式,以提供不同心脏投影角度的心电图,并让使用者可根据使用环境及操作习惯而选择操作模式。
本发明的又一目的在于提供一种穿戴式心电检测装置,其可提供心率序列的HRV分析结果,以了解使用者自律神经活动情形。
本发明的又一目的在于提供一种穿戴式心电检测装置,其可根据心率序列而取得RSA信息,以作为引导使用者进行呼吸训练的基础,进而达到影响自律神经的效果。
本发明的又一目的在于提供一种穿戴式心电检测装置,其可根据心率序列而取得相关使用者呼吸模式的信息,以进行脑电信号、呼吸以及心率间的同步性分析。
附图说明
图1A-1B显示根据本发明的指戴式心电检测装置的示意图;
图2A-2C显示根据本发明的指戴式心电检测装置的操作示意图;
图3显示取得标准十二导极心电图的电极接触位置示意图;
图4A-4G显示根据本发明的指戴式心电检测装置的示范性实例;
图5A显示根据本发明的耳戴式心电检测装置的示意图;
图5B显示根据本发明的耳戴式心电检测装置的操作示意图;
图5C-5D显示根据本发明的耳戴式心电检测装置的示范性实例;
图6A-6C显示根据本发明的耳戴式心电检测装置,电极配置位置示范性实例;
图7A显示根据本发明的耳戴式心电检测装置,其电极可接触的耳 朵附近皮肤的示意图;
图7B显示耳廓内面构造示意图;
图8A-8B显示根据本发明穿戴式心电检测装置,同时采用指戴结构以及耳戴结构的示范性实例;
图9A-9B显示根据本发明的腕戴式心电检测装置的示意图;
图9C-9D显示根据本发明的腕戴式心电检测装置的操作示意图;
图9E-9F显示根据本发明的穿戴式心电检测装置,同时采用腕戴结构以及指戴结构的示范性实例;
图10A-10D显示根据本发明的腕戴式心电检测装置,通过连接端口外接电极的示范性实例;
图11A显示根据本发明的指戴式心电检测装置,通过连接端口外接指戴电极的示范性实例;
图11B显示根据本发明的耳戴式心电检测装置,通过连接端口外接指戴电极的示范性实例;
图11C显示根据本发明的指戴式心电检测装置,通过连接端口外接耳戴电极的示范性实例;
图12A-12B显示根据本发明的穿戴式心电检测装置,通过两个心电检测回路取得心电信号的示范性实例;
图13显示根据本发明的头戴式心电检测装置的操作示意图;
图14A-14C显示根据本发明的眼镜式心电检测装置的操作示意图。
其中,附图标记说明如下:
10 第一电极
12 第二电极
14 连接端口
16 第三电极
18 附加结构
20 壳体
90 腕戴结构
92 指戴结构
94、95 表面
具体实施方式
根据本发明的穿戴式心电检测装置,包括一控制模块,一穿戴结构,一第一电极以及一第二电极,以及一信息提供单元,其中,该电路系统包括一处理器,以控制装置的整体运作,例如,经由该第一电极以及该第二电极而执行心电信号的提取等,该穿戴结构用于在进行心电信号提取时将装置设置于使用者身上,以提供使用方便性,至于该信息提供单元则是用以将信息提供给使用者,例如,操作相关信息,生理信息以及分析结果等。
其中,该电路系统可实施为容置于该穿戴结构内,或者,进一步地,根据本发明的装置也可再包括一壳体,此时,该电路系统就可容置于该壳体及/或该穿戴结构中,因此,可视实际实施情形而定,没有限制;此外,该壳体的材质则是可实施为与该穿戴结构相同或不同,例如,若实施为相同材质时,就可形成为一体成型的形式,另外,若实施为不同材质时,就可依照穿戴位置的不同而选择适合的材质,同样没有限制。
另外,由于根据本发明的心电检测装置是实施为穿戴的形式,因此,该信息提供单元提供信息的方式可以有更多的选择,包括,但不限于,视觉、听觉以及触觉等方式,举例而言,该信息提供单元可实施为显示元件及/或发光元件,以利用文字显示、图形变化、及/或灯号变化等方式而提供信息;或者,该信息提供单元也可实施为发声模块,以通过声音频率或音量的改变或语音的方式而提供信息;又或者,该信息提供单元也可实施为振动模块,并利用如振动的强弱、长短等变化方式而提供信息。
再者,该信息提供单元也可进一步实施为,经由一有线传输模块 或一无线传输模块而将信息输出至一外部装置,以通过该外部装置而将该信息提供给使用者,其中,该外部装置可以是,但不限于,一个人电脑、一智能手机、一平板电脑或是一智能手表等,只需是能够将该信息提供给使用者的装置即可,因此,没有限制。
在根据本发明的穿戴式心电检测装置中,特别地是,该第一电极实施为位于当整个心电检测装置通过该穿戴结构而被设置于使用者身上时,会接触使用者皮肤的一表面上,也即,该第一电极与皮肤间的接触是通过将穿戴结构设置于身上的动作而实现,因此,在使用者无须自行施力的情形下,该第一电极就可实现与皮肤间的接触,故因操作动作带来的肌肉紧张所引发的肌电干扰将可被显著地降低,相当有助于获得良好的信号品质。
至于该第二电极,其则是有数种实施上的选择,举例而言,可实施为位于装置上除了该表面以外的另一表面上,以供使用者其他部分皮肤进行触碰,例如,手指、胸膛等部分的皮肤,而需要注意地是,用以设置该第一电极的表面以及用以设置该第二电极的另一表面,可以是该穿戴结构的任一表面,或是该壳体的任一表面,没有限制,只需注意,该第一电极与该第二电极不会接触使用者身上同一部分的皮肤即可,至于第二电极的材质则可以是金属、导电橡胶、或任何导电材质,没有限制,且进一步地,更可实施为非接触形式电极,例如,电容式电极,感应式电极,或电磁式电极等,以增加使用方便性。
或者,替代地,也可实施为通过一另一穿戴结构而被设置于使用者身上,如此一来就同样可利用穿戴结构的主动施力而实现与皮肤间的接触,因此,没有限制。
据此,在使用时,使用者可通过该穿戴结构而将根据本发明的穿戴式心电检测装置设置于身上,例如,手指上、手腕上、耳朵上、或头上等,而在此情形下,该第一电极与皮肤间的接触即已实现,然后, 当出现测量心电图的需求时,只需再通过将第二电极触碰其他部分皮肤的动作,提取心电信号的回路即可实现,使用者可在随时有需要时方便且容易地取得心电图。
另外,当该第二电极也实施为通过该另一穿戴结构而设置于使用者身上时,则使用者只需将两个穿戴结构皆设置于身上,用以提取心电信号的电极设置即已完成,因此,使用者可在有需要记录下心电图时按下启动键进行一段时间的信号提取,例如,30秒或1分钟,或者,也可实施为心电信号的提取在装置配戴于身上后随即开始记录及/或分析,以省下为了记录下突发心脏状况而按压启动测量的动作,所以,没有限制,可依实际需求而选择适合的方式。
在此,同样地,该另一穿戴结构上也可结合有另一壳体,而该第二电极则同样可实施为位于该另一穿戴结构或该另一壳体的任一表面上,只需能在该另一穿戴结构被设置于使用者身上时实现该第二电极与皮肤的接触即可,因此,没有限制。
由于根据本发明的心电检测装置是采用穿戴的形式,因此,配合穿戴于身上的操作行为,装置及/或心电检测的启动,除了一般开启电源及/或启动检测的方式外,还可有各种选择,例如,可在该第二电极附近设置一开关,其可因第二电极与皮肤接触的施力而被触发,以使装置进入可进行心电信号提取的状态,以接着启动装置及/或心电检测;或者,作为替代,可将该第二电极连接至一物理状态检测单元,以检测电极在接触皮肤时所产生的一物理变化,并通过该物理变化而得知电极与皮肤间的接触是否足够稳定,因而可知装置是否已可进行心电信号提取,另外,该第一电极同样也可实施为连接至一物理状态检测单元,没有限制。
在此,该物理变化包括,但不限于,压力变化以及阻抗变化,举例而言,该物理状态检测单元可包括压力感测模块,以得知压力变化, 而判断电极所受到的按压是否足够,或是该物理状态检测单元也可实施为一开关,同样可得知电极所承受的压力大小,又或者,该物理状态检测单元也可包括阻抗感测电路或电容感测电路,以得知电极的阻抗、电容变化,而判断是否可进行心电检测,因此,不受限制。
故在进行判断时,若该开关未完全切换,及/或该物理变化不符合一预设范围,即表示该第二电极与皮肤间的接触状态不足以进行心电信号提取,因此,装置处于心电信号提取无法被启动的状态,若该开关已完全切换及/或该物理变化符合一预设范围时,则表示该第二电极与皮肤间实现了足以进行心电信号提取的接触,因此,装置转换为该心电信号提取可被启动的状态。
在此,特别地,还可通过开关是否切换完全或物理变化是否符合预设范围的判断来控制电极是否可被使用,例如,导通与否,也就是,电极先处于不可使用的状态,直到开关完全被切换后或该物理变化符合该预设范围后,电极才转换为可使用的状态,例如,被导通,如此一来,将可进一步确保所取得的心电信号的清晰度,更有利于分析结果的准确性。
而更进一步地,在判断为可进行心电信号提取后,如何启动装置及/或检测,同样有各种选择,举例而言,在一较佳实施例中,根据本发明的装置可设计为,装置会在一定时间后,例如,3秒后,自动开始进行检测心电信号;或在一另一较佳实施例中,装置在一定时间后,例如,3秒后,才会转换为可进行心电信号提取的状态,之后,若可提取状态仍持续,则启动心电信号检测,因此,有各种可能,可是实际需求而变化,没有限制。
此外,配合上述的启动及判断方式,根据本发明的装置也可实施为一直处于信号提取的状态,但仅在检测到心电信号特征时才进行记录,或是才调整取样频率或信号放大倍率,以更加完整的记录下所有 可能的心电信号变化。
以下即举例说明根据本发明的穿戴式心电检测装置的较佳实施方式。
首先,根据本发明第一方面的构想,该穿戴结构是实施为一指戴结构,因此,根据本发明的穿戴式心电检测装置是由该指戴结构所承载,并用以设置于使用者的一手指上,在此,可实施为如图1A所示,由该指戴结构容置电路系统的形式,或者,也可实施为如图1B所示,该指戴结构上再结合一壳体20的形式,而该电路系统则可容置于该壳体及/或该指戴结构中,因此,可视实际实施情形而定,没有限制。
其中,该第一电极10是位于当该指戴结构被设置于手指上时,该装置上可因穿戴动作而与该手指皮肤接触的一表面上,至于该第二电极12则是位于该装置上除了该表面外的另一表面上,例如,可以是与该表面相对的表面,或是与其相邻的表面上,只需注意是不会接触该手指皮肤的位置即可。
在此,选择手指作为设置心电检测装置的位置的主要原因在于,指戴形式对一般使用者而言,就如同配戴戒指一样,是熟悉且无须重新学习的使用方式,直接将指戴结构结合于手指上即可完成第一电极与皮肤间的接触,之后,当随时有需要记录下心电图时,只需再进行将该第二电极与该手指所在肢体以外的其他部分皮肤的接触就可马上进行心电信号提取,操作流程及动作简单、自然又方便。而且,通过指戴结构对手指施力,该第一电极与皮肤间的接触无须使用者施力即可实现,可让肌肉紧张度对于心电信号的影响降至最低。
实际操作的方式有许多可能,例如,可由另一手去触碰位于表面的该第二电极,如图2A所示,或者,也可通过移动戴有该装置的手的方式而触碰其他部分的皮肤,如图2B显示了将戒指接触脸颊的操作情 形,以及图2C显示了将戒指接触躯干的心电信号提取方式,因此,没有限制。
在此,特别地是,由于是采用指戴形式,因此让使用者可通过移动戴有该装置的手去接触身体其他部位的方式而实现心电信号提取回路,带来了更多操作可能性,也让使用者可根据使用环境及需求的不同,而选择适合的接触位置,更具便利性。
所以,通过这样的概念,使用者将可很方便地通过接触不同的位置,而取得不同投影角度的心电图,有助于更精准地判断心脏的状况,图3显示了一般取得标准十二导极心电图的接触位置,通过根据本发明的指戴式心电检测装置,使用者将可很方便地将装置配戴于左手手指上,并通过接触V1~V6各个量测点,而分别取得不同角度心脏的心电图投影。
在进行心电图测量时,每两电极就可得出一个角度的心电图,也就是,电极的设置位置决定了心电图所反应的心脏电气活动的投影角度,而由于心脏是立体的,且产生病变的心脏部位可能位于任何心脏位置,例如,心肌梗塞的检查需要察看心电波形中是否出现因心肌坏死而出现的ST飘移,但往往可能因为其发生位置的关系而在某些角度下无法被察觉,此时,就需要通过不同角度的心电图才有可能检查得出来,因此,取得不同角度的心电图对于判断心脏疾病有很大的帮助。
在此,根据本发明的指戴结构在手指上的设置位置,较佳为近节指骨或中节指骨所在的指节,以避免因位置接近手指末端而发生因手部动作脱落的情况,举例而言,该指戴结构可如图4A所示,采用如一般戒指的形式,或者如图4B所示,实施为环绕手指的可挠曲带体上戴有壳体的形式,或是如图4C所示,实施为仅可挠曲带体的形式,或是实施为开放的C型环形式,没有限制;在此,无论采用何种形式,都可进一步具有可调整环绕直径的结构,以进一步确保电极与皮肤间的 接触稳定性,例如,戒指可实施为具有可变化戒围的机构,以适应不同配戴者的手指,以及带体可实施为具有可调整的固定位置,例如,通过设置粘扣带,以让使用者选择环绕时的紧度等,同样可依实际情形而变化实施方式,没有限制;另外,也可采用夹子的形式,以夹住指节或是指尖,并通过夹子本身的弹性而达到固定的效果,同样是很好的选择。
再者,也可实施为设置于指尖的指套,如图4D1-4D2所示,也即,一可供手指伸入的凹槽结构,例如,环状或凹洞的形式,而该第一电极则是设置于该凹槽结构的内表面上,并且,该内表面是实施为符合手指的表面,以在手指伸入时实现该第一电极与手指皮肤间的接触,在此,该凹槽结构可由具弹性的材质所制成,例如,橡胶或硅胶,以实现电极与皮肤间的接触,或者,也可形成为具有塑胶壳体,并于内部设置弹性材质而包覆手指,或是采用可提供向内施力的结构设计等方式,以确保内部电极与指尖皮肤间的良好接触,因此,没有限制。而这样的形式则具优势地让接触不同位置以取得不同投影角度心电图的操作显得更为容易。所以,根据本发明的指戴式心电检测装置可依实际需求而实施为各种形式,没有限制。
另外,在一较佳实施例中,该壳体20也可通过一连接线而连接至该指戴结构,并通过一腕戴结构而设置于该手指所在肢体的手腕上,如图4E所示,如此一来,原本位于手指附近与指戴结构结合的硬件配置,例如,电路、电池等,可被移至手腕上,以减少手指在配戴装置时的负担,并且,该腕戴结构及/或该壳体不与该腕部接触的表面上,也可作为设置该第二电极的位置,提供使用者另一种接触选择,或者,如图4F所示,也可实施为该指戴结构以及该腕戴结构上皆具有壳体,因此,没有限制。
再者,在一另一较佳实施例中,该壳体20也可实施为通过连接器而与该指戴结构相结合,如图4G1-4G2所示,在此情形下,第一电极 10接触右手手指,以及第二电极12接触左手手腕附近皮肤,而且,由于指戴结构是通过与设置于手腕上的壳体相结合而靠置于手腕上,因此,当使用者将双手放置于固定的表面上,例如,桌面上,进行测量时,将可形成非常稳定的测量姿势,而使得肌电信号的产生被降至最低,另外,通过连接器连接的形式,心电检测的回路可被缩短,因此可让因连接线而感应的环境中电磁干扰噪声减至最少,因此,也是一种相当有利的选择。
再者,根据本发明另一方面的构想,该穿戴结构是实施为一耳戴结构,因此,根据本发明的穿戴式心电检测装置是由该耳戴结构所承载,并用以设置于使用者的一耳朵上,而该电路系统则是容置于该耳戴结构内,及/或另外包括的一壳体内。
其中,如图5A所示,该第一电极10是位于当该耳戴结构被设置于耳朵上时,该装置上可因穿戴动作而与该耳朵或该耳朵附近区域的皮肤接触的一表面上,至于该第二电极12则是位于该装置上除了该表面外的另一表面上,例如,可以是与该表面相对的表面,或是与其相邻的表面上,只需注意是不会接触该耳朵或该耳朵附近区域皮肤的位置即可。在此,该第一电极10也可实施为具有两个电极,如图6A2所示,并将其中一个电极作为接地或参考电极,以抑制共模噪声,例如,来自电源的噪声,因此,实施上没有限制。
在此,利用耳朵作为接触电极的位置有一个优势是,耳朵及其附近是肌电信号极小的区域,再加上其与头部之间相当稳定的相对位置关系,因此即使使用者在测量期间身体出现移动,例如,稍微转动身体或转动脖子,电极与皮肤间的接触仍可维持稳定,不会产生太多影响测量结果的干扰。
另外,在一般日常生活中,相较于其他身体部位,耳朵是较少受到衣物覆盖的部位,可以较容易地在有需要时直接接触,再者,耳朵 及其周围的皮肤还具有毛发较少的特性,电极与皮肤间的接触可轻松无障碍的实现,因此,对使用者而言是相当方便的选择。
所以,在实际操作时,如图5B所示,使用者只要利用手接触配戴于耳朵上的装置的该第二电极,就可轻易实现心电信号提取回路,相当方便。
另外,在一较佳实施例中,该壳体20也可通过一连接线而连接至该耳戴结构,并通过一腕戴结构而设置于一手腕上,如图5C所示,如此一来,原本位于耳朵附近与耳戴结构结合的硬件配置,例如,电路、电池等,可被移至手腕上,以减少耳朵在配戴装置时的负担,并且,该腕戴结构及/或该壳体也可作为设置该第二电极的位置,例如,可供使用者另一手接触的位置,或是可接触该壳体所在手腕的位置等,提供使用者另一种接触选择,或者,也可实施为该耳戴结构以及该腕戴结构上皆具有壳体,如图5D所示,因此,没有限制。
在此,根据本发明耳戴结构的实施形式可以有各种选择,例如,一般日常生活中常见的固定方式,如图6A1-6C所示的耳挂、耳塞、耳夹等形式,让使用者不需要重新学习,可以很自然的进行配置,因此,使用者只需简单地如平时戴耳机的动作,即可完成电极设置;而且,当通过上述的固定方式而将电极设置于耳朵上时,电极与皮肤的接触不需使用者施力即可实现,肌电信号的干扰可被降至最低,可获得品质良好的信号。
另外,特别地是,在一较佳实施例中,该耳戴结构实施为利用磁力的方式而附着于耳朵上,例如,可利用隔着耳朵彼此磁性相吸的两个部件,并将电极设置于其中一部件上,且两个部件可实施为两者皆具有磁性,或一个部件具有磁力,而另一个部件可被磁力吸引,没有限制;在此,磁力可通过于部件的内部设置磁性物质,或是直接由磁性物质制成部件而实现,另外,同样地,受磁力吸引的物质也可设置 于部件内部或用以形成部件。
至于要在耳朵上的哪个位置取得心电信号,则是没有限制,可以是耳朵本身的任何位置,例如,耳道内、耳垂、耳廓内面及背面,例如,耳甲腔、耳道口附近区域等,耳轮及耳廓背面,以及如图7A所示,耳朵附近的区域,例如,耳朵与头壳交界处附近的皮肤等,这些位置都是可用以接触电极并取得心电信号的位置。
其中有一个耳廓上需要特别说明的位置,请参阅图7B所示的耳廓(auricle,也称为pinna)结构,其中,在耳廓内面的耳甲艇(superior concha)及耳甲腔(inferior concha)的周围,有自耳甲底部(concha floor)(也即,平行于头颅的平面)向上连接至对耳轮(antihelix)以及对耳屏(antitragus)的一垂直区域,称为耳甲墙(concha wall),此耳朵的天然生理结构正好提供了垂直于耳甲底部的一连续平面,另外,紧接于耳甲墙下方,位于对耳屏以及耳屏之间的耳屏间切迹(intertragic notch),以及紧邻的耳屏(tragus),同样提供了垂直于耳甲底部的接触区域。
当以此区域作为电极接触位置时,固定电极所需要的力量,将会是平行于耳甲底部的力量(也即垂直于该耳甲墙方向的力量),尤其,当实施为耳塞形式时,通过耳塞与耳廓内面的凸起与凹陷间的抵顶力量,就能自然地同时达成电极与此垂直区域间的稳定接触,在使用上相当具方便性。
另外,耳廓背面的接触位置也具有同样的优势,尤其一般常见耳挂结构在实施时通常都会在耳廓的前方及后方分别设置一部件,并通过两者间的相互作用力而达到固定于耳廓上的效果,因此,当电极接触位置选择在耳廓背面时,将正好符合相互作用力的施力方向,自然就能达成电极与耳廓背面皮肤间的稳定接触。
另外,由于设置位置为耳朵,因此,根据本发明的耳戴式心电检测装置也很适合与耳机相结合,例如,有线或无线耳机,如此一来,除了可让心电检测更融入日常生活外,也可通过耳机的发声功能而发挥更大的效果,例如,可通过声音及/或语音而提供使用者分析结果,例如,提醒出现心电信号异常,或是定时提醒使用者记录下心电图等,更为便利。
而当实施为与耳机相结合时,就不限于仅实施为单边耳戴的形式,也可实施为双边耳戴的形式,举例而言,一般通话用耳机麦克风多为单边耳戴形式,类似前述的实施例,而听音乐用耳机则多为双边耳戴形式,此时,只需于单边耳戴结构上设置电极即可,不受影响,也不受限制。
在此,需要注意地是,两个耳朵都是可以选择的配戴位置,然而,经实验后得知,第二电极的接触位置对于信号品质有相当程度的影响,其中,当左上肢触碰第二电极、或第二电极设置于左上肢时,所获得的心电信号的品质远优于接触右上肢所取得的信号,尤其以电极分别接触左耳以及左上肢有最佳的信号品质,因此,在以接触耳朵的方式而进行心电信号测量时,较佳地是利用左上肢接触该第二电极,以避免因接触右上肢而造成信号品质不良,进而导致分析产生误判。
并且,特别地,根据本发明再一方面的构想,还可进一步地,将该第一电极以及该第二电极实施为分别通过指戴结构以及耳戴结构而实现与皮肤的接触,如图8A-8B所示,如此一来,使用者只需将穿戴结构分别配戴于在耳朵及手指上,即已完成测量心电信号所需的电极配置,相当方便,而且,两个电极与皮肤间的接触皆是由穿戴结构主动施力所实现,更使因肌肉紧张度所造成的肌电信号干扰可被降至最低。
在此,可如图8A及图8B所示,只在单个穿戴结构上结合有壳体, 或者,也可两个穿戴结构上皆设有壳体,没有限制,并且,电路系统也同样没有限制地可容置于任一个穿戴结构以及壳体中,依实际需求而改变。
此外,除了配合指戴结构上的心电电极以外,设置在耳朵上的心电电极也可配合设置在其他位置的心电电极而取得心电讯号,例如,颈部、肩膀、背部、上臂、前臂、胸膛等位置,例如,可通过如项链、项圈的颈戴结构而设置于颈部及肩膀附近,也可通过臂戴结构或腕戴结构而设置于手臂上,或是通过胸带、或将电极实施为贴片形式而设置于胸膛,同样相当方便。因此,只要是能够投影出心电图的电极设置位置皆属本发明所欲规范的范畴。
根据本发明又一方面的构想,该穿戴结构是实施为一腕戴结构,因此,根据本发明的穿戴式心电检测装置是由该腕戴结构所承载,并用以设置于使用者的一手腕上,而该电路系统则是容置于该腕戴结构内,及/或进一步包括的一壳体内。
其中,如图9A1-9A2所示,该第一电极10是位于当该腕戴结构被设置于手腕上时,该装置上可因穿戴动作而与该手腕附近皮肤接触的一表面上,至于该第二电极12则是位于该装置上除了该表面外的另一表面上,例如,可以是与该表面相对的表面,或是与其相邻的表面上,只需注意是不会接触该手腕所在肢体皮肤的位置即可。在此,该第一电极10也可实施为具有两个电极,如图9B所示,并将其中一个电极作为接地或参考电极,以抑制共模噪声,例如,来自电源的噪声,因此,实施上没有限制。
在此,选择手腕作为设置心电检测装置的位置的主要原因在于,因为腕戴形式对一般使用者而言,就如同配戴手表一样,是熟悉且无须重新学习的使用方式,直接将腕戴结构结合于手腕上即可完成第一电极与皮肤间的接触,之后,当随时有需要记录下心电图时,只需再 进行将该第二电极与该手指所在肢体以外的其他部分皮肤的接触就可马上进行心电信号提取,操作流程及动作简单、自然又方便。而且,通过腕戴结构对手腕施力,该第一电极与皮肤间的接触无须使用者施力即可实现,可让肌肉紧张度对于心电信号的影响降至最低。
所以,在实际操作时,如图9C所示,使用者只要利用手接触该第二电极,就可轻易地实现心电信号提取回路,相当方便。而除了穿戴结构上承载有壳体的形式外,也可如图9D1-9D2所示,将电路容置于腕戴式结构中,因此,没有限制。
并且,特别地,根据本发明又一方面的构想,还可进一步地,如图9E-9F2所示,将该第一电极10以及该第二电极12实施为分别通过腕戴结构90以及指戴结构92而实现与皮肤的接触,如此一来,使用者只需将穿戴结构分别配戴于在手指及手腕上,即已完成测量心电信号所需的电极配置,相当方便,而且,两个电极与皮肤间的接触皆是由穿戴结构主动施力所实现,使用者无须施力即可实现与电极的接触,再加上,若使用者可在进行测量时将双手皆放置于固定的平面上,将可使因肌肉紧张度所造成的肌电信号干扰可被降至最低,相当具有优势。
此外,在图9E及图9F所显示的实施例中,还可进一步地额外在该腕戴结构不与手腕皮肤接触的表面上,再设置一第三电极,例如,设置于图9F中所示的表面94或表面95上,以让使用者在不使用指戴结构的情形下,仍然可以通过第一电极10以及第三电极而进行心电讯号的撷取,提供另一个使用上的选择。
再者,进一步地,根据本发明的腕戴式心电检测装置也可包括一连接端口14,如图10A-10C所示,以通过一连接线而电连接该第三电极16,在此,该第三电极可进一步实施为取代该第二电极的功能,例如,可实施为该第二电极会在该第三电极连接至该连接端口时自动被 失能,或者,也可通过一切换开关而让使用者自行决定要启动的是哪一个电极,实施方式不受限制,此外,该第三电极16也可实施为通过穿戴结构而实现与皮肤接触,例如,耳戴结构(如图10B所示)、指戴结构(如图10C所示)、眼镜结构、或腕戴结构等。
替代地,该第三电极16也可实施为通过连接器的方式连接,如图10D1-D2所示,此时,第一电极10会因配戴该腕戴结构而接触使用者的手腕,以及第三电极16会位于该指戴结构之中,在此情形下,由于指戴结构是通过连接器而与手腕上的装置相结合,因此,可实现相当稳定的测量姿势,更有助于取得高品质的心电信号。
当如图10B-10C所示通过连接线而延伸出第三电极时,相较于位于装置表面的第二电极,本发明的装置将可提供更多的接触位置选择,以取得不同心脏角度投影的心电图,举例而言,当使用第二电极时的心脏投影角度是通过两手(配戴腕戴结构的手腕以及接触第二电极的手部)而取得时,使用第三电极就可提供利用耳戴结构接触耳朵(例如,配戴腕戴结构的左手以及配戴耳戴结构的左耳)以取得不同心脏投影角度心电图的选择。
如前所述地,由于产生病变的心脏部位可能位于任何心脏位置,例如,心肌梗塞的检查需要察看心电波形中是否出现因心肌坏死而出现的ST飘移,但当病变发生位置在某些角度下无法被察觉时,不同角度的心电图就有其必要性。
因此,本发明的装置通过延伸出第三电极的方式,让使用者除了可通过接触位于表面的第二电极而进行心电信号测量外,也可在有需求时,简单地通过再连接一电极的方式,而得到更多有关心脏的信息。
另外,延伸出的第三电极也进一步提供了其他使用上的优势。
在本发明中,第二电极的设置让使用者可以很简单且迅速地在有需要时通过触碰表面电极的方式而取得心电信号,而延伸而出的第三电极则提供了使用者取得稳定信号的另一个选择。由于在使用第三电极时,其是通过穿戴结构而使第三电极与使用者身体一部分皮肤接触,因此,可将最容易影响心电信号品质的肌肉紧张度、手部晃动等因素排除,进而获得更为稳定且高品质的心电信号。
此外,相对于触碰第二电极的手,如图10B-10C所示通过连接线延伸而出的第三电极也让使用者可选择心电信号较强的测量位置,例如,距离心脏较近的位置,以让干扰信号的影响变小,例如,相同大小的肌电信号在心电信号较强的情形下可被排除,但在心电信号较微弱的情形下就很可能会因无法与心电信号做出区别而产生误判,所以,使用者就可通过将第三电极设置于可取得较强心电信号的位置,进而提高分析结果的正确性。
所以,根据本发明的腕戴式心电检测装置具有两种操作模式,第一操作模式以及第二操作模式,在该第一操作模式中,由该第一电极以及该第二电极一起形成第一心电信号提取回路,以取得第一种心电图,以及在该第二操作模式中,该第一电极以及该第三电极一起形成第二心电信号提取回路,进而取得第二种心电图,而通过如此可供选择的操作模式设计,即使面临不同的操作环境以及使用习惯,都可取得稳定且高品质心电信号。
而除了腕戴式心电检测装置外,同样地,上述的根据本发明的指戴式心电检测装置以及耳戴式心电检测装置也可实施为具有一连接端口,以连接一第三电极,取代该第二电极。
举例而言,如图11A所示,指戴式心电检测装置可通过连接线而连接一指戴式第三电极,以及如图11B,耳戴式心电检测装置也可通过连接线而连接一指戴式第三电极,此两种情况皆让原本需利用手接触 电极的操作模式被可提供主动施力的指戴结构所取代,如此一来,因手部接触而可能产生的不稳定因子就可被排除,有助于取得更稳定的信号;另外,如图11C所示,指戴式心电检测装置也可连接一耳戴式第三电极,除了提供无须施力的测量方式外,也取得与双手接触电极不同的心脏投影角度心电图。因此,没有限制。
再进一步地,根据本发明的穿戴式心电检测装置也可实施为,可同时通过第一电极与第二电极取得第一种心电图,以及通过第一电极与第三电极取得第二种心电图,如图12A以及图12B所示,也即,该第一电极在进行测量时,同时与该第二电极以及与该第三电极形成心电检测回路,如此一来,使用者就可依照不同的需求而选择不同的操作模式,以获得最接近自身需求的心脏信息。
再者,根据本发明再一方面的构想,该穿戴结构实施为一头戴结构,因此,根据本发明的穿戴式心电检测装置由该头戴结构所承载,并用以设置于使用者的头部,而该电路系统则是容置于该头戴结构内,及/或容置于另外包括的一壳体内。
如图13所示,该第一电极位于当该头戴结构被设置于头部时,该装置上可因穿戴动作而与头部皮肤接触的一表面上,至于该第二电极12则是位于该装置上除了该表面外的另一表面上,以接触上肢(例如,手指、手臂)、颈部、肩膀等位置的皮肤,进而达成心电讯号撷取回路。在此,需注意地是,该第二电极的设置位置可以有各种选择,举例而言,可以位于与该头戴结构的该表面相对的表面、或是与其相邻的表面上,以供上肢进行触碰,或是通过一指戴结构、腕戴结构、或臂戴结构而接触上肢的皮肤;或者,替代地,也可连接可固定于耳朵上的一耳戴结构,并将该第二电极设置于该耳戴结构的外露表面,以供使用者利用上肢进行接触;或者,替代地,也可通过连接线而将该第二电极延伸至颈部或肩膀等位置,例如,通过如项圈、项链的颈戴结构,或是延伸至胸膛,例如,通过胸带或将电极实施为贴片形式, 同样也可取得心电讯号。因此,可以有各种可能,没有限制。
在此,该头戴结构也可实施为各种形式,例如,带体,头罩(headgezr),或是具调整机构的硬式头框,或是眼镜形式等,重点在于可达成电极与皮肤的接触,因此,没有限制。
其中,相当具使用方便性的头戴结构是眼镜结构。一般眼镜在穿戴时,眼镜框架自然接触的位置包括,但不限于,鼻垫会接触鼻梁、山根、及/或两眼间区域,眼镜脚的前段会接触太阳穴附近,眼镜脚后段会接触耳廓与头颅间的V型凹陷区域,以及眼镜脚落在耳廓后方的部分会接触耳廓后方的皮肤,所以,只要将第一电极设置在眼镜结构设置于头上时会自然接触的位置,就可通过穿戴眼镜结构的动作而同时完成电极接触,然后,只要再配合设置于外露表面上的第二电极12供使用者上肢接触,如图14A所示,就可取得心电讯号,如此一来,不但使用方便,也让心电检测装置可融入日常生活,增加使用意愿,相当具有优势。
另外,当有需要时,例如,需要长时间取得心电讯号时,第二电极也可实施为通过指戴结构、腕戴结构、臂戴结构、颈戴结构、肩戴结构、或胸带等而固定于身体的其他部分,可依实际需求而改变,没有限制。
在此,需要注意地是,所叙述的眼镜结构是指,通过耳廓以及鼻子作为支撑点而设置于头上、且会与头部及/或耳朵的皮肤产生接触的穿戴结构,因此,不限于一般的眼镜结构,也包括其变形,举例而言,可以是对头颅两侧具夹力的结构,或是实施为两边眼镜脚不对称的形式,例如,一边镜脚于耳廓后方具有弯曲部分,另一边镜脚则不具弯曲部分仅架于耳廓上方,并且,也可不具镜片,因此,有各种可能性,没有限制。
另外,在材质的选择上,除了如一般眼镜的硬式材质外,也可实施为弹性材质,不但可增加电极接触的稳定性,也进一步提供使用舒适性,例如,可利用记忆金属、可挠曲塑胶材质等形成镜架,及/或在电极接触位置处设置弹性橡胶、硅胶等,让接触更稳定,皆不受限制。
至于电极与眼镜结构的结合方式,也有各种可能,举例而言,可将电极及所需电路(例如,处理器,电池,无线传输模块等)直接嵌设于眼镜结构中,例如,眼镜脚、镜片框架中;或者,也可透过一附加结构而达成电极、电路的配置,例如,如图14B所示,该附加结构18实施为延伸自单边的眼镜脚,以使第一电极10接触单侧耳廓背面下半部附近的接触点,再配合位于眼镜的外露表面上的第二电极12,或者,如图14C所示,该附加结构18实施为延伸自单边的眼镜脚,以使第一电极10接触单侧耳廓上方与头颅间V型凹陷附近(在此,第一电极可接触头颅、V型凹陷、及/或耳廓背面,没有限制),也提供第二电极12于其外露表面上,以供触碰,故可以有各种可能,且所需的电路还可依需求而部分或全部设置于眼镜结构或该附加结构中,没有限制,另外,进一步地,该附加结构可实施为可移除形式,以让使用者具选择性地可在有需要时再将附加结构结合至眼镜结构上进行侦测。因此,可以有各种可能,没有限制。
且当实施为眼镜形式时,可通过在眼镜结构上设置发声元件及/或收音元件(例如,麦克风)的方式而提供耳机及/或麦克风的功能,或者,也可利用由眼镜脚延伸出耳机的方式,在此,特别地是,所采用的发声元件、耳机除了可以是一般常见的空气传导形式外,也可采用骨传导形式,例如,可直接在镜脚与头骨接触的位置处设置骨传导喇叭,或是从镜脚延伸出骨传导耳机,没有限制。
再者,根据本发明的装置也可实施为可与一可携式电子装置沟通,例如,以耳机插孔、蓝牙等有线或无线方式与智能型手机,平板计算机等电子装置进行沟通,如此一来,在具有发声元件(空气传导式或 骨传导式)以及收音元件的情形下,根据本发明的装置就可作为免持听筒,以用于通话;此外,进一步地,通过设置振动模块,发声元件(空气传导式或骨传导式),显示元件,以及发光元件等,根据本发明的装置还可进一步实施作为该可携式电子装置的信息提供接口,例如,用于提供来电提醒、讯息通知等,更加融入使用者的日常生活,至于讯息的提供则可通过声音、振动、发光、镜片显示等各种方式,没有限制。
头部与耳朵有类似的特性,不容易产生会对心电信号造成干扰的肌电信号,因此,同样是适合设置心电电极的位置,而且,通过头戴结构,还可进一步设置脑电电极,以取得脑电信号,举例而言,只需于眼镜结构、头戴结构的内侧设置至少二个脑电电极,或是在配合有耳戴结构时,在头戴结构以及耳戴结构的内侧分设一脑电电极,以接触头上的脑电信号取样点,例如,常见的取样点包括Fp1、Fp2、O1、O2、A1、A2等、或是任何根据10-20系统所定义的位置,就可在几乎不增加负担的情形下,提供使用者更多的检测功能,相当具有优势。
而且,设置于头戴结构上用以接触头部皮肤的心电电极,也即,第一电极,还可进一步共享作为脑电电极,而与该第二电极形成心电讯号撷取电路,以及与一另一脑电电极形成脑电撷取电路。
或者,替代地,共享的方式也可实施为,由两个电极同时用来取得心电讯号以及脑电讯号,也即,心电讯号以及脑电讯号通过同一个生理讯号撷取电路而取得,在此,可以这样执行的原因是,心电讯号远大于脑电讯号,其中,心电讯号约落在毫伏(mV)的范围,而脑电信号则落在微伏(μV)的范围,因此,即使进入生理讯号撷取电路的同一个输入端,两者仍可彼此区分。
在实施时,举例而言,可利用一个接触头部的电极,配合上另一个可同时接触头部及手部的电极而来达成心电讯号以及脑电讯号的取 得,其中,该同时接触头部及手部的电极,以最常见的金属电极片为例,可实施为接触手部以及头部的二个电极片彼此电连接,也可实施为一个电极片的二个部分分别接触手部以及头部,例如,当设置于头戴结构上时,于内侧接触头部的皮肤以及外侧手部的皮肤,因此,实施形式不受限。
据此,脑电电极也同样适合设置于如图5-6以及图8的耳戴结构上。首先,耳朵及耳朵附近区域有可检测到大脑皮质活动的位置,例如,颞叶区(temporal lobe),再者,在脑电检测领域中,耳朵由于构造以及位置皆与头部相分离,不易受脑部活动的影响,故一直被视为是设置参考电极的最佳位置之一,所以,将参考电极结合于耳戴结构中而与耳朵接触,原本即为脑电检测时所常见,因此,根据本发明的耳戴式心电检测装置上也相当适合于结合设置脑电电极,以取得脑电讯号,并且,也与同样适合采用共享电极的方式,也即,将第一电极同时实施为脑电电极。
更进一步,在图5-图6以及图8的实施例中,除了将二个脑电电极皆设置于耳戴结构上以外,还可另外连接一头戴结构,以将一脑电电极设置在其中,如此一来,就可通过分别设置于头戴结构以及耳戴结构上的脑电电极取得脑电讯号,并通过设置于耳戴结构内的心电电极配合上设置在耳戴结构外露表面上的心电电极(图5-图6)、或是设置在指戴结构上的心电电极(图8)的心电电极而取得心电讯号,进而提供各种可能的实施选择。
此外,也可通过眼镜结构而实现脑电讯号以及心电讯号的撷取,如前所述,当眼镜结构设置于头上时可同时接触头部及耳朵的多个位置,例如,鼻梁、山根、两眼间区域、太阳穴、头颅与耳廓间的V型区域、耳廓背面等,或是通过向后延伸的眼镜脚而接触脑后枕骨的位置,因此,只要将二个脑电电极以及第一电极(或是心电电极与其中一个脑电电极实施为共享)设置于眼镜结构与皮肤产生接触的位置, 再配合设置于外露表面、或延伸而出的第二电极,相当方便就可完成电极地配置并取得讯号。
再者,特别地是,还可进一步结合眼镜结构及耳戴结构,以用来设置第一电极以及第二电极,例如,可由眼镜结构延伸出一耳塞或耳夹,或是眼镜结构具有一端口,以电连接一耳塞或耳夹,或是耳戴结构可套设于眼镜结构上等,如此一来,就有更多的实施可能性,举例而言,可在眼镜结构上与皮肤的接触位置设置第一电极,然后,进一步地,让使用者在有需要时通过端口连接上一耳塞/耳夹,以通过耳塞/耳夹的外露表面上的第二电极取得心电讯号,或者,相反地,也可以第一电极位于耳塞/耳夹可接触耳廓皮肤的位置,而第一电极则位于眼镜结构的外露表面;或者,也可实施为第一电极以及第二电极皆位于耳戴结构上,且耳戴结构是通过与眼镜结构相结合的方式设置于耳朵附近,而通过这样的方式,等于提供了让一般的眼镜使用者可利用自有的镜架而设置生理感测元件的方式,相当具有优势。因此,可以实施为各种形式,没有限制。
在实际使用时,根据本发明的心电检测装置由于采用穿戴形式的设计,因此提供了于穿戴期间方便地连续取得心电信号的可能性,也因此提供使用者更多的便利功能。
首先,由于采用穿戴的形式可让使用者无负担地穿戴于身上,因此,相当适合在日常生活中配戴使用,举例而言,使用者可在日常生活中将装置戴于耳朵上、手指上或手腕上,而在随时有需要时,例如,觉得心脏不舒服时,实时地启动心电信号检测,或是每天定期地进行心电图检测,有效地掌握自身的心脏变化。
尤其,心律不齐的发生常是无预警的,因此,通过这样穿戴于身上的心电检测装置,就可实时地记录下发生心律不齐时的心电图或是使用者感觉心跳不规则时的心电图,以作为医生判断是否患有心律不 齐时的依据。
举例而言,无论是采用指戴、耳戴、眼镜、头戴或腕戴形式的心电检测装置,使用者皆可在感到不舒服时或是想要记录下心电图,通过手部接触第二电极的方式而实时取得心电图,如图2A,图5B,图9C以及图14所示;替代地,若采用第二电极通过穿戴结构而设置于身上或是使用第三电极的情况时,由于取得心电信号的两个电极皆已完成接触,因此,使用者只需启动心电信号测量,例如,通过按压启动键,就可实时地记录下心电图。无论何种情形,在使用上皆相当简单且方便。
在此,根据本发明的装置可设定为会在心电测量被启动后自动地记录下一固定时间的心电图,例如,30秒或1分钟,以让使用者可轻松地实时记录下心脏感到不适时,例如,发生心律不齐时的心电图。
另外,使用者也可选择长时间记录下连续的心电图,尤其是当两个电极皆通过穿戴结构而设置于身上的时候,而通过分析长时间连续取得的心电图,使用者可获得更多的信息。
举例而言,可根据连续心电图而取得连续心率序列的信息,以进行HRV(Heart Rate Variability,心率变异率)分析。HRV分析是观察自律神经活动最主要的方法,通过HRV分析所产生的分析结果,可详细的了解自律神经活动的情形,例如,交感神经的活性,副交感神经的活性,自律神经的平衡状况,以及自律神经整体的活性大小等,且已有越来越多的研究显示,许多疾病,例如,头痛、肠胃道不适、高血压、失眠、抑郁症等,都可能是由于自律神经失调所导致。所以,通过长时间连续HRV分析结果就可得知在日常作息中,自律神经活动的变化情形,进而探讨日常生活中哪些行为或情绪是否导致自律神经失调,以及上述的疾病是否导因于自律神经失调等。
而且,由于根据本发明的装置是采用穿戴的形式,因此,通过该信息提供单元,还可将实时HRV分析的结果提供给使用者,因此,使用者就可实时地得知有哪些行为或情绪可能造成自律神经失衡,且更进一步地,通过本发明这样的设计,使用者还可实时进行身心调整,例如,放松身心,而得知自律神经是否因此而恢复至较为协调的状态。
此外,当于睡眠期间使用时,通过对睡眠期间连续心电图进行HRV分析,也可了解睡眠期间的生理变化,例如,可以判断睡眠周期,可以了解睡眠品质等,相当具便利性。
在此,需注意地是,在取得心电信号后,根据本发明的装置可实施为将心电信号先储存下来,待测量结束后,再输出进行进一步的处理,例如,输出至电脑装置进行储存以及分析等;及/或,由于本发明的装置具有信息提供单元,故也可实时地将相关的信息或分析结果提供给使用者,例如,平均心率、HRV分析结果等,及/或,该信息提供单元也可实施为将所记录下的心电信号及/或数据实时地传输至一外部装置,例如,手机、平板电脑等,而由该外部装置进行实时显示及/或分析,因此,没有限制。
再者,根据本发明的穿戴式心电检测装置也提供了让使用者可随身进行呼吸训练的途径。通过穿戴于身上的形式,根据本发明的装置可取得连续心电信号,并获得心跳间隔的时间序列,也即,心率序列,而通过分析该心率序列,就可获得相关窦性心律不齐(Respiratory Sinus Arrhythmia,RSA)的信息,所谓的RSA是指,在心率是受自律神经控制的情形下,呼吸因对自律神经系统产生影响而使得心跳出现变化的现象,一般而言,吸气期间会使心跳加速,而呼吸期间则使心跳减缓,故可通过观察RSA而得知呼吸的变化模式以及自律神经的活动情形。
另,由于呼吸是一种受自律神经控制又可受意识影响的生理活动, 因此,可通过有意识地调整呼吸而影响自律神经,以达到放松身心的效果,其中,根据研究显示,呼吸速率(respiration rate)、潮气量以及呼气期间/吸气期间比例皆是影响交感与副交感神经活性的因子,其中,速率变慢可降低交感神经的活性,而速率变快则会使交感神经活性增加,举例而言,一般成人的呼吸速率约落在每分钟10-18次的范围内,当呼吸的速率可降低至每分钟5-8次的范围时,可有助于增加副交感神经活性,另外,当呼气期间/吸气期间比例增加时,也即,当具有相对于吸气期间而言较长的呼气期间时,副交感神经的活性同样可获得提升。
所以,一般而言,呼吸训练即是通过提供使用者具有有助于放松身心的呼吸模式的一呼吸导引而进行,例如,呼吸导引会提供落在可降低交感神经活性的每分钟5-8次的呼吸速率,及/或在可自然呼吸前提下,增长的呼气期间,以导引使用者降低呼吸速率及/或增长呼气期间,进而增加副交感神经活性,抑制交感神经,而让人体可从紧张状态中解除,恢复放松。
而且,由于自律神经失调也是心律不齐的重要成因之一,因此,在使用本装置的使用者的目的之一是希望实时记录下心律不齐发生时的心电图的情形下,本发明装置提供呼吸导引训练功能,以让使用者通过控制呼吸而改变自律神经平衡的方式,将有助于改善心律不齐症状,两者相辅相成,更具意义。
当利用根据本发明的穿戴式心电检测装置而进行呼吸训练时,使用者只需将装置穿戴于身上,并维持两个电极与皮肤间的接触即可,而在进行呼吸训练期间,该信息提供单元则用以将呼吸导引信号提供给使用者,以让使用者跟随调整呼吸,另外,该信息提供单元也可提供有关使用者于呼吸训练期间的生理状态变化,例如,交感神经与负交感神经的活性变化,心率的变化,以及实际呼吸模式的变化等,以作为使用者进行呼吸训练的参考。
在此,由于执行呼吸训练的时间较长,因此,较佳地是,使用者可选择两个电极皆通过穿戴结构而设置于身上的形式,例如,利用可通过穿戴结构而设置的第二电极,或是利用第三电极配合第一电极进行心电信号提取,而以更轻松的方式进行呼吸训练。
另外,该呼吸导引信号也可以是根据由心率序列所取得的呼吸变化模式而进行作为调整的一动态导引信号,也就是,通过实时获得的使用者的呼吸状况,以得知呼吸速率为何、及/或是否落在有利于放松身心的速率范围中,并据以动态调整导引信号,而让使用者能以最轻松舒适的方式达到呼吸导引训练的效果。
或者,由于加大RSA的振幅有助于触发放松反应(Relaxation Response),解除累积的压力,而达到提高副交感神经/交感神经活性比例的效果,因此,可通过观察使用者的心率变化模式,并在心率开始加速时,通过导引告知使用者可以开始吸气,以及在心率开始减缓时,通过导引告知使用者可以开始吐气,以达到增大RSA振幅的效果,也达到放松身心的目的。
更进一步地,还可通过对心率序列进行频域分析的结果而得知呼吸与心率是否和谐及同步,而呼吸与心率间较好的和谐及同步性则代表着较有秩序且协调的心跳节律,也就是,人体处于比较放松、安稳的状态,因此,当使用者在进行训练时获得相关的信息时,就可通过意识而改变自身的生理状态。
此外,当配合上脑电电极而可取得脑电信号时,可观察心率,呼吸以及脑电信号间的同步性(synchronization),而了解使用者的生理状态。因为,根据研究显示,呼气与吸气会造成血管内血量的波动,且此波动也会随着血流到达脑部,进而造成脑波于低频区段,例如,低于0.5赫兹,的波动,因此,也可通过观察脑波而得知呼吸模式,再 者,由于心脏的窦房节及血管系统也受自律神经系统的调控,而且,自律神经系统也会通过压力受器系统(baroreceptor system)将心率及血压的改变馈送回脑部,进而影响脑部的功能与运作,例如,影响大脑皮质,并可由EEG测得,因此,三者间存在着彼此影响的关系,且三者间良好的同步性可代表人体处于较为放松的状态,是相当有用的信息。
举例而言,该信息提供单元在提供该呼吸导引信号的同时,也可实时提供相关心率的信息,及/或通过频谱计算而获得的相关呼吸与心率的同步性的信息,因此,使用者就可实时得知呼吸调整对于自律神经所造成的影响,例如,副交感神经的活性是否获得提升,或是交感神经的活性是否已降低等,如此一来,将可让利用呼吸导引信号而进行的生理回馈程序更具效率。
另外,还可进一步通过HRV的分析结果让使用者得知呼吸训练的成效,例如,可以在进行呼吸训练的前后分别执行HRV分析,而得知呼吸训练对于自律神经所带来的影响,甚至,也可实施为实时HRV分析,并通过该信息提供单元实时地让使用者得知自律神经的活动情形,而以类似生理回馈的方式而让使用者实时了解自身的生理状况,进一步有助于实现放松身心的效果。
由于HRV分析是对一段时间内心率序列进行分析,因此,实时HRV分析的进行可通过移动时间窗格(Moving Window)的概念而实施,也即,先决定一计算时间区段,例如,1分钟或2分钟,之后,通过不断将此时间区段向后推移的方式,例如,每5秒计算一次,就可持续地得到HRV分析结果,例如,每5秒获得一HRV分析结果,因而实现提供实时HRV分析结果的目的,另外,也可采用加权计算(weighting)的概念,适度地增加较接近分析时间的生理信号的计算比重,以让分析结果更贴近实时的生理状况。
该信息提供单元在提供该呼吸导引信号时可以有各种选择,例如,可采用视觉、听觉、及/或触觉的方式进行导引,没有限制。视觉导引的选择包括,但不限于,图形变化,文字显示,发光亮度变化,及/或灯号变化等,皆为合适的方式,举例而言,可在显示元件上利用符合呼吸变化模式的图案而导引使用者进行吸气及吐气;或者由LED灯的数量变化代表吸气及吐气;又或者可利用文字直接告知使用者进行吸气及吐气等。
另外,当采用听觉导引的方式时,选择则包括,但不限于,声音变化以及语音,举例而言,可由声音的强弱代表吸气及吐气变化;或者由不同的声音种类代表吸气及吐气,而让使用者跟随,例如,鸟叫声、海浪声、不同的音乐曲目等;或者也可以通过语音而告知使用者该进行吸气或吐气,例如,当刚开始进行呼吸导引训练时,可通过符合呼吸变化模式的“吸气”及“吐气”语音指示而导引使用者的呼吸模式,而当检测到使用者的呼吸已符合欲达到的变化模式时,即告知使用者“继续维持现在的吸吐速率”,而停止“吸气”“吐气”的语音导引。因此,可以有各种选择,可依实际实施的需求而变化,没有限制。
而当根据本发明的装置实施为与耳机结合的情形时,上述的听觉引导将显得更为自然,并且,由于声音及/或语音直接经由耳机进入耳朵,完全不会打扰到身边的人,故也进一步提供了隐蔽性,让呼吸训练的进行可不受时间地点限制,例如,乘坐交通工具时也可进行呼吸训练,更为便利。
再者,当采用触觉导引的方式时,则较佳地是通过与使用者身体接触的部件,例如,穿戴结构,相结合的形式而提供振动的变化,至于振动的变化方式,则同样没有限制,例如,可实施为利用振动信号来提醒使用者正确的呼气及/或吸气起始时间点,或是只在发现使用者的呼吸模式偏离预设的目标导引信号过多时才产生振动导引等。
在此,具优势地是,当采用听觉及/或触觉导引的方式时,使用者可于呼吸导引训练期间阖上双眼,更有助于身体放松及呼吸调整。
另外,在一较佳实施例中,该呼吸导引信号也可实施为经由该信息提供单元以及有线/无线传输模块而输出至该外部装置后,例如,智能手机,平板电脑,智能手表等,再由该外部装置将该呼吸导引信号提供给使用者,以供使用者进行呼吸训练。
而特别地,在另一较佳实施例中,该呼吸导引信号则是实施为由该外部装置产生并提供给使用者,此时,该外部装置会进一步自该信息提供单元接收相关使用者自律神经活动或呼吸模式的信息,以在提供该呼吸导引信号的同时提供给使用者,或是用来作为调整该呼吸导引信号的依据,另外,该外部装置也可进一步将所需接收的相关使用者呼吸模式的信息储存下来,以作为之后察看记录时的参考。
再者,根据本发明的穿戴式心电检测装置,除了可进行心电信号的提取,以及上述所提及的脑电信号检测外,也可包括其他的生理传感器,以在穿戴于身上时取得其他的生理信号。
举例而言,可具有至少一光传感器,在此,光传感器是指具有光发射元件以及光接收元件,并利用PPG(photoplethysmography)原理而取得光信号的传感器,例如,利用穿透方式或反射方式进行测量者,而其同样是通过配戴穿戴结构的动作而完成设置,例如,可位于该第一电极所在的表面上,因而使得其可因穿戴该穿戴结构的动作而与该第一电极一起被设置于使用者身上,例如,手指、耳朵或耳朵附近、腕部或头部等;或者,也可通过另一穿戴结构而设置于使用者身上,例如,可将光传感器设置于耳戴结构上,并通过耳戴结构与眼镜结构相结合的方式而自耳朵及/或耳朵附近区域取得生理讯号,因此,没有限制。
光传感器主要在于检测因心脏搏动所产生的脉搏,而通过所取得的连续脉搏变化,就可获得使用者的心率序列,并用以进行相关的分析,由于只需单个光传感器即可取得生理信号,设置简单,使用者仅需配戴上该穿戴结构配戴即可,故相当有利于连续信号取得,以进行长时间生理状态监控。
当本发明的装置同时具有利用电极取得心电信号以及利用光传感器取得心率序列的功能时,将特别有利于心律不齐的预警以及判断。这是因为,虽然完整的心律不齐信息,例如,不同类型的心律不齐,如发生于心房的早发性心房收缩(Premature atrial contractions,PAC),以及发生在心室的早发性心室收缩(Premature ventricular contractions,PVC),在传统上需要通过观察心电图而进行判定,但通过观察心率的变化,仍可解读出是否出现心律不齐的特征,例如,早发性收缩(Premature Beats),心室颤动(AF,Atrial Fibrillation),心跳过快(Tachycardia)、心跳过慢(Bradycardia)、心跳暂停(Pause)等各种症状,因此,通过本发明如此的配置,就可达到利用光传感器长时间连续取得心率序列而预先筛选是否出现心律不齐可能事件,之后,当出现心律不齐可能事件时,再通知使用者进行心电检测,以进一步确认该心律不齐可能事件的正确与否,以及获得进一步的详细信息。
所以,在实际实施时,使用者将装置通过穿戴结构而设置于身上,例如,手指、耳朵、手腕、头部上,此时,该穿戴结构上的光传感器即执行连续的脉波检测,并取得心率序列,之后,所取得的心率序列会持续地与心律不齐可能事件的时间特征进行比较,并在出现相符时,决定一心律不齐可能事件,此时,是通过该信息提供单元通知使用者已出现心律不齐可能事件,并提醒使用者进行心电信号测量,因此,使用者在收到通知后,就可很简单地通过接触该第二电极而进行心电信号提取,立即取得可能出现心律不齐的心电信号。在此,该心电信号可以直接进行分析而得知是否出现心律不齐症状,并将结果通知使 用者,或者,可实时传输至一外部装置,例如,手机或平板电脑,进行储存及/或分析等,或者,也可先行储存下来,待之后再行分析,例如,下载至电脑进行分析等,不受限制。
另外,通过光传感器所取得的心率序列,也可如前所述地用于进行连续HRV分析以及呼吸训练,由于其执行程序与前述类似,不同处仅在于据以进行HRV分析以及呼吸训练的生理信号是由光传感器所取得的心率序列,因此,即不再赘述;而且,也可配合取得脑电信号,而连续地进行呼吸、心率及脑电信号三者间的同步性分析,以在不增加负担的情形下提供使用者更多的信息。
再者,当实施为同时取得心电信号以及脉搏时,还可得出脉波从心脏传至光传感器的感测位置所需的时间,也就是所谓的脉波传递时间(Pulse Transit Time,PTT),且由于PTT与影响血压高低的动脉血管硬度有关,因此就可通过PTT与血压值间特定的关系而计算出参考的血压值。
而且,当是利用手部触碰外露表面上的电极而取得心电讯号,进而获得PTT时,由于手部需举起接触外露电极,在此情形下,无论光传感器的侦测位置是耳廓内面或背侧、耳廓附近的头颅皮肤、鼻梁/山根/两眼尖区域,或是触碰外露电极的手部,其与心脏间的位置相对高度皆不变,而根据血液动力学可知,PTT会受到测量位置与心脏位置间高度差的影响,因此,通过这样的方式,一般PPT测量时常见的因取样位置相对于心脏不固定所产生的影响,将可被排除,如此一来,只要经过校准(calibration)之后,就可稳定地获得精准的血压值,而且,这样的测量方式还可不受站姿或坐姿的影响,相当具有优势。
另外,类似地,也可通过将光传感器设置于不同位置,例如,当实施为两个电极皆通过穿戴结构而进行设置时,可在分别的穿戴结构中皆另外设置光传感器,如此一来,通过计算两处脉波传递的时间差 就可获得相关脉波传播速度(Pulse Wave Velocity,PWV)的信息,进而通过已知的计算理论即可得到参考血压值,例如,可分别设置于耳戴结构以及腕戴结构上,或者,若实施为双边耳戴结构时,也可将光传感器分设于两边耳朵上,因此,可以有各种可能,没有限制。
或者,也可配合使用压脉带及充气泵而直接取得血压值,且在此情形下,还可通过压脉带取得脉搏连续变化,进而执行如上所述的心律不齐可能事件的分析,同样相当具有优势。
更进一步,根据本发明的穿戴式心电检测装置也适合于运动期间使用,举例而言,使用者可在运动过程中戴着根据本发明的装置而不会感到负担,并在运动中间休息的时间直接进行测量而得知运动对心脏所造成的影响,例如,可通过手接触电极而取得心电图或是当已直接配戴两个穿戴结构时直接取得心电信号或是在配置有光传感器的情形下由光传感器取得心率序列等,因此,就可根据信息提供单元所提供的信息而得知,例如,是否达到了足够的运动强度(心跳是否达到预期目标),或是心脏是否出现异常等,尤其运动是心律不齐的好发时间,因此,通过本发明的装置也可很实时的记录下发生心律不齐时的心电图。
另外,除了较激烈的运动期间外,其他可能出现心跳异常的时间,例如,爬山、搭飞机的时候,也适合使用根据本发明的穿戴式心电检测装置,以更加实时地掌握自身的心脏状况。
综上所述,根据本发明的穿戴式心电检测装置通过穿戴结构而将装置设置于使用者身上的形式,使得心电电极与皮肤间的接触通过穿戴动作而完成,达到减少使用者施力,以及降低肌电信号干扰的效果,尤其,当用以取得心电信号所需的两个电极皆通过穿戴结构而设置于使用者身上时,更是让肌肉紧张度的干扰降至最低;而且,无论是采用指戴、耳戴、腕戴、及/或头戴的方式,都是一般日常生活中常见的 配戴方式,在使用上不会显得突兀,更有利于使用者于平时配戴于身上,以在有需要时随时记录下生理信号,例如,出现心律不齐时记录下心电图等,及/或获得自身的生理信息,例如,实时HRV分析结果,及/或用以进行生理调控,例如,进行呼吸训练等,因此,不但配置容易、使用方便,更是应用广泛。
再者,根据本发明的穿戴式心电检测装置也提供两种操作模式,在第一种操作模式中,两个电极皆位于装置的表面,以及在第二种操作模式中,其中一个电极通过连接线延伸而出,因此,除了使用者可根据使用环境以及操作习惯的不同而进行选择操作模式外,在第二操作模式中,延伸而出的电极也提供了设置于不同身体位置而取得不同角度投影心电图的可能,并且,由于该延伸而出的电极是通过穿戴结构而设置于使用者身上,故也更进一步提供了无须使用者主动施力的操作模式,相当具有优势。

Claims (56)

  1. 一种穿戴式心电检测装置,包括:
    一控制模块,包括一处理器;
    一耳戴结构,设置于一使用者的一耳朵上;
    一第一电极以及一第二电极,其中,该第一电极位在该耳戴结构设置于该耳朵上时,该装置与该耳朵或耳朵附近皮肤接触的一表面上,以及该第二电极位于该装置上不与该耳朵或耳朵附近皮肤接触的一另一表面上;以及
    一信息提供单元,用以提供使用者信息,
    其中,
    当进行心电信号检测时,使用者通过配戴上该耳戴结构而使该第一电极接触该耳朵或该耳朵附近区域的皮肤,并利用一手接触该第二电极,以实现一心电信号提取回路,并进行心电信号提取。
  2. 如权利要求1所述的装置,其中,该耳戴结构实施为下列形式的其中之一,包括:耳夹,耳塞,以及耳挂。
  3. 如权利要求1所述的装置,其进一步包括多个脑电电极,通过该耳戴结构而接触该耳朵或耳朵附近的皮肤,以取得脑电信号。
  4. 如权利要求3所述的装置,其中,该第一电极实施为与其中一脑电电极共享。
  5. 如权利要求1所述的装置,其中,该处理器执行该心电信号的一分析,以取得使用者的心跳间隔的一时间序列,并执行该时间序列与一心律不齐时间序列特征的比较,以判断是否具有一心律不齐事件。
  6. 如权利要求1所述的装置,其进一步包括一传输模块,以及该信息提供单元进一步构建为通过该传输模块而将信息传输至一外部装 置,以通过该外部装置而将该信息提供予使用者。
  7. 如权利要求1所述的装置,其进一步包括一光传感器,其通过该耳戴结构而与该第一电极一起被设置于该耳朵上,以检测使用者的连续脉搏变化。
  8. 如权利要求7所述的装置,其中,该处理器通过所测得的连续脉搏变化而取得使用者的心跳间隔的一时间序列。
  9. 如权利要求8所述的装置,其中,该处理器执行该时间序列与一心律不齐时间序列特征进行比较,以判断是否具有一心律不齐可能事件。
  10. 如权利要求9所述的装置,其中,当具有该心律不齐可能事件时,该处理器产生一通知信号,以通过该信息提供单元而通知使用者发生该心律不齐可能事件,并提醒使用者进行心电信号检测。
  11. 如权利要求8所述的装置,其中,该处理器执行该时间序列的一HRV分析,以得出反应自律神经活动的信息。
  12. 如权利要求8所述的装置,其中,该处理器执行该时间序列的一分析,以得出使用者的RSA信息,作为产生一呼吸导引信号的依据,并在一呼吸训练区段中,通过该信息提供单元而将该呼吸导引信号提供予使用者。
  13. 如权利要求7所述的装置,其中,该处理器通过所测得的连续脉搏变化以及该心电信号而取得脉波传递时间,并借此计算得出使用者的参考血压值。
  14. 一种穿戴式心电检测装置,包括:
    一控制模块,包括一处理器;
    一指戴结构,设置于一使用者的一手指上;
    一第一电极以及一第二电极,其中,该第一电极位在该指戴结构设置于该手指上时,该装置与该手指皮肤接触的一表面上,以及该第二电极位于该装置上不与该手指的皮肤接触的一另一表面上;以及
    一信息提供单元,用以提供使用者信息,
    其中,
    当进行心电信号检测时,使用者通过配戴上该指戴结构而使该第一电极接触该手指的近端指节或中节指骨所在指节的皮肤,并使该第二电极接触该手指所在肢体以外的其他身体部分,以实现一心电信号提取回路,并进行一心电信号提取。
  15. 如权利要求14所述的装置,其进一步包括一壳体,用以容置该控制模块的至少一部分,且实施为与该指戴结构间通过一对连接器而相结合,并通过一腕戴结构而设置于另一肢体的一腕部上。
  16. 如权利要求14所述的装置,其中,该处理器执行该心电信号的一分析,以取得使用者的心跳间隔的一时间序列,并执行该时间序列与一心律不齐时间序列特征的比较,以判断是否具有一心律不齐事件。
  17. 如权利要求14所述的装置,其进一步包括一传输模块,以及该信息提供单元进一步构建为通过该传输模块而将信息传输至一外部装置,以通过该外部装置而将该信息提供予使用者。
  18. 如权利要求14所述的装置,其进一步包括一光传感器,其通过该指戴结构而与该第一电极一起被设置于该手指上,以检测使用者的连续脉搏变化。
  19. 如权利要求18所述的装置,其中,该处理器通过所测得的连 续脉搏变化而取得使用者的心跳间隔的一时间序列。
  20. 如权利要求19所述的装置,其中,该处理器执行该时间序列与一心律不齐时间序列特征进行比较,以判断是否具有一心律不齐可能事件。
  21. 如权利要求20所述的装置,其中,当具有该心律不齐可能事件时,该处理器产生一通知信号,以通过该信息提供单元而通知使用者发生该心律不齐可能事件,并提醒使用者进行心电信号检测。
  22. 如权利要求19所述的装置,其中,该处理器执行该时间序列的一HRV分析,以得出反应自律神经活动的信息。
  23. 如权利要求19所述的装置,其中,该处理器执行该时间序列的一分析,以得出使用者的RSA信息,作为产生一呼吸导引信号的依据,并在一呼吸训练区段中,通过该信息提供单元而将该呼吸导引信号提供予使用者。
  24. 如权利要求18所述的装置,其中,该处理器通过所测得的连续脉搏变化以及该心电信号而取得脉波传递时间,并借此计算得出使用者的参考血压值。
  25. 一种穿戴式心电检测装置,包括:
    一控制模块,包括一处理器;
    一指戴结构,用以设置于一使用者的一手指上;
    一耳戴结构,用以设置于该使用者的一耳朵上;
    一第一电极以及一第二电极,其中,该第一电极位于该指戴结构设置于该手指上时,该装置与该手指皮肤接触的一表面上,以及该第二电极位于该耳戴结构设置于该耳朵上时,该装置与该耳朵或耳朵附近的皮肤相接触的另一表面上;以及
    一信息提供单元,用以提供使用者信息,
    其中,
    当进行心电信号检测时,使用者通过配戴上该指戴结构而使该第一电极接触该手指的皮肤,以及通过配戴上该耳戴结构而使该第二电极接触该耳朵或耳朵附近区域的皮肤,以实现一心电信号提取回路,并进行心电信号提取。
  26. 如权利要求25所述的装置,其进一步包括多个脑电电极,以在该耳戴结构设置于耳朵时,取得脑电信号。
  27. 如权利要求26项所述的装置,其中,该第二电极实施为与其中一脑电电极共享。
  28. 如权利要求26项所述的装置,其进一步包括一头戴结构,并具有至少一脑电电极设置在上面。
  29. 如权利要求25所述的装置,其进一步包括一传输模块,以及该信息提供单元进一步构建为通过该传输模块而将信息传输至一外部装置,以通过该外部装置而将该信息提供予使用者。
  30. 如权利要求25所述的装置,其进一步包括至少一光传感器,设置于该指戴结构以及该耳戴结构的其中之一或多上,以检测使用者的连续脉搏变化。
  31. 如权利要求30所述的装置,其中,该处理器通过所测得的连续脉搏变化以及该心电信号而取得脉波传递时间,并借此计算得出使用者的参考血压值。
  32. 如权利要求30所述的装置,其实施为具有二光传感器,分别通过该指戴结构而与该第一电极一起被设置于该手指上,以及通过该 耳戴结构而与该第二电极一起被设置于该耳朵上,以检测使用者的连续脉搏变化,以及该处理器通过二处所测得的脉搏而取得相关脉波传播速度的信息,并借此计算得出使用者的参考血压值。
  33. 一种穿戴式心电检测装置,包括:
    一控制模块,包括一处理器;
    一指戴结构,用以设置于一使用者一上肢体的一手指上;
    一腕戴结构,用以设置于该使用者另一上肢体的一手腕上;
    一第一电极以及一第二电极,其中,该第一电极位于该指戴结构设置于该手指上时,该装置与该手指皮肤接触的一表面上,以及该第二电极位于该腕戴结构设置于该手腕上时,该装置与该手腕附近的皮肤相接触的另一表面上;以及
    一信息提供单元,用以提供使用者信息,
    其中,
    当进行心电信号检测时,该指戴结构以及该腕戴结构通过一对连接器而相电连接,并形成一整体,以及该手指的皮肤接触该第一电极,以及该手腕附近的皮肤接触该第二电极,以形成一心电信号提取回路,并进行心电信号提取。
  34. 如权利要求33所述的装置,其中,该指戴结构实施为一指套结构,其具有一凹槽,以容置该手指的一指尖,且该第一电极位于该凹槽内。
  35. 如权利要求33所述的装置,其中,该指戴结构实施为一戒指结构。
  36. 如权利要求33所述的装置,进一步包括一第三电极,位于该腕戴结构不与该手腕的皮肤接触的一表面上。
  37. 如权利要求33所述的装置,其中,该处理器执行该心电信号 的一分析,以取得使用者的心跳间隔的一时间序列,并执行该时间序列与一心律不齐时间序列特征的比较,以判断是否具有一心律不齐事件。
  38. 如权利要求33所述的装置,其进一步包括一传输模块,以及该信息提供单元进一步构建为通过该传输模块而将信息传输至一外部装置,以通过该外部装置而将该信息提供予使用者。
  39. 如权利要求33所述的装置,其进一步包括至少一光传感器,设置于该指戴结构以及该腕戴结构的其中之一或多上,以检测使用者的连续脉搏变化。
  40. 如权利要求39所述的装置,其中,该处理器通过所测得的连续脉搏变化以及该心电信号而取得脉波传递时间,并通过计算得出使用者的参考血压值。
  41. 如权利要求39所述的装置,其中,其实施为具有二光传感器,分别通过该指戴结构而与该第一电极一起被设置于该手指上,以及通过该耳戴结构而与该第二电极一起被设置于该耳朵上,以检测使用者的连续脉搏变化,以及该处理器通过二处所测得的脉搏而取得相关脉波传播速度的信息,并借此计算得出使用者的参考血压值。
  42. 一种穿戴式生理检测装置,包括:
    一控制模块,包括一处理器;
    一头戴结构,设置于一使用者的头部上;
    一第一电极以及一第二电极,其中,该第一电极位于该头戴结构设置于该头部时,该装置与头部皮肤接触的一表面上,以及该第二电极位于该装置上不与该头部皮肤接触的一另一表面上;以及
    一信息提供单元,用以提供使用者信息,
    其中,
    当进行心电信号检测时,使用者通过配戴上该头戴结构而使该第一电极接触该头部的皮肤,并利用一上肢接触该第二电极,以实现一心电信号提取回路,并进行心电信号提取;以及
    其中,
    该装置进一步包括多个脑电电极,以在配戴该头戴结构的期间取得脑电信号。
  43. 如权利要求42所述的装置,其中,该第一电极以及该第二电极的其中之一或多实施为脑电电极。
  44. 如权利要求42所述的装置,其中,该第二电极设置在下列的其中之一上,包括:一耳戴结构,一指戴结构,一腕戴结构,以及一臂戴结构。
  45. 如权利要求42所述的装置,其中,该多个脑电电极的其中之一设置在一耳戴结构上。
  46. 如权利要求42所述的装置,其中,该头戴结构实施为下列型式的其中之一或多,包括:一带体,一头罩,一头框,以及一眼镜。
  47. 如权利要求42所述的装置,其中,该处理器执行该心电信号的一分析,以取得使用者的心跳间隔的一时间序列,并执行该时间序列与一心律不齐时间序列特征的比较,以判断是否具有一心律不齐事件。
  48. 如权利要求42所述的装置,其进一步包括一传输模块,以及该信息提供单元进一步构建为通过该传输模块而将信息传输至一外部装置,以通过该外部装置而将该信息提供予使用者。
  49. 如权利要求42所述的装置,其进一步包括一光传感器,其通 过该头戴结构而被设置于该头部,以检测使用者的连续脉搏变化,以及该处理器通过所测得的连续脉搏变化而取得使用者的心跳间隔的一时间序列。
  50. 如权利要求49所述的装置,其中,该处理器执行该时间序列的一分析,以获得相关使用者呼吸模式的信息,以进一步进行脑电信号,呼吸,以及心率的一同步性分析。
  51. 如权利要求49所述的装置,其中,该处理器执行该时间序列与一心律不齐时间序列特征进行比较,以判断是否具有一心律不齐可能事件。
  52. 如权利要求50所述的装置,其中,当具有该心律不齐可能事件时,该处理器产生一通知信号,以通过该信息提供单元而通知使用者发生该心律不齐可能事件,并提醒使用者进行心电信号检测。
  53. 如权利要求49所述的装置,其中,该处理器执行该时间序列的一HRV分析,以得出反应自律神经活动的信息。
  54. 如权利要求49所述的装置,其中,该处理器执行该时间序列的一分析,以得出使用者的RSA信息,作为产生一呼吸导引信号的依据,并在一呼吸训练区段中,通过该信息提供单元而将该呼吸导引信号提供予使用者。
  55. 一种穿戴式生理检测装置,包括:
    一控制模块,包括一处理器;
    一第一穿戴结构,设置于一使用者的头部或耳朵上;
    一第二穿戴结构,设置于该使用者的颈部或肩膀上;
    一第一电极以及一第二电极,其中,该第一电极位在该第一穿戴结构设置于该头部或耳朵时,接触头部或耳朵皮肤的一表面上,以及 该第二电极位在该第二穿戴结构设置于颈部或肩膀时,接触颈部或肩膀皮肤的一表面上;
    一信息提供单元,用以提供使用者信息,
    其中,
    当进行心电信号检测时,使用者通过配戴上该第一穿戴结构而使该第一电极接触该头部或耳朵的皮肤,以及配戴上该第二穿戴结构而使该第二电极接触颈部或肩膀附近的皮肤,以实现一心电信号提取回路,并进行心电信号提取;以及
    其中,
    该装置更包括复数个脑电电极,设置于该第一穿戴结构上,以在配戴期间取得脑电信号。
  56. 如权利要求55所述的装置,其中,该第一电极实施为与其中一脑电电极共享。
PCT/CN2016/072022 2015-01-26 2016-01-25 穿戴式心电检测装置及穿戴式生理检测装置 WO2016119664A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/546,281 US20180020937A1 (en) 2015-01-26 2016-01-25 Wearable electrocardiographic measurement device
EP16742726.9A EP3278724A4 (en) 2015-01-26 2016-01-25 PORTABLE ELECTROCARDIOGRAPHIC DETECTION DEVICE AND PORTABLE PHYSIOLOGICAL DETECTION DEVICE
JP2017600127U JP3217016U (ja) 2015-01-26 2016-01-25 装着型心電検出装置並びに装着型生理機能検出装置
US16/563,953 US20200085331A1 (en) 2015-01-26 2019-09-09 Wearable electrocardiographic measurement device

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201510038236.9A CN104586382B (zh) 2015-01-26 2015-01-26 穿戴式生理检测装置
CN201510038000.5A CN104665823A (zh) 2015-01-26 2015-01-26 穿戴式心电检测装置
CN201510037872.X 2015-01-26
CN201510037872.XA CN104665822B (zh) 2015-01-26 2015-01-26 穿戴式心电检测装置
CN201510038236.9 2015-01-26
CN201510038000.5 2015-01-26
CN201610043828.4 2016-01-22
CN201620064551.9 2016-01-22
CN201620064281.1U CN205493819U (zh) 2015-01-26 2016-01-22 穿戴式心电检测装置
CN201620064281.1 2016-01-22
CN201610043828.4A CN106725374A (zh) 2015-01-26 2016-01-22 穿戴式心电检测装置
CN201620064148.6U CN205493806U (zh) 2015-01-26 2016-01-22 穿戴式心电检测装置
CN201620064551.9U CN205493807U (zh) 2015-01-26 2016-01-22 穿戴式心电检测装置
CN201620064148.6 2016-01-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/546,281 A-371-Of-International US20180020937A1 (en) 2015-01-26 2016-01-25 Wearable electrocardiographic measurement device
US16/563,953 Division US20200085331A1 (en) 2015-01-26 2019-09-09 Wearable electrocardiographic measurement device

Publications (1)

Publication Number Publication Date
WO2016119664A1 true WO2016119664A1 (zh) 2016-08-04

Family

ID=56542417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072022 WO2016119664A1 (zh) 2015-01-26 2016-01-25 穿戴式心电检测装置及穿戴式生理检测装置

Country Status (1)

Country Link
WO (1) WO2016119664A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106901721A (zh) * 2017-03-13 2017-06-30 歌尔科技有限公司 智能腕戴设备和智能腕戴设备心电测量方法
CN107951479A (zh) * 2017-12-14 2018-04-24 迦沃科技(深圳)有限公司 一种无线耳机与心率手环二合一式可穿戴设备
WO2018156291A1 (en) * 2017-02-21 2018-08-30 Bose Corporation Collecting biologically-relevant information using an earpiece
US10213157B2 (en) 2017-06-09 2019-02-26 Bose Corporation Active unipolar dry electrode open ear wireless headset and brain computer interface
EP3556282A4 (en) * 2017-01-13 2019-11-13 Huawei Technologies Co., Ltd. DEVICE THAT CAN BE USED
CN110537908A (zh) * 2019-09-03 2019-12-06 深圳旭宏医疗科技有限公司 一种心电监测设备和使用方法
EP3600023A4 (en) * 2017-05-15 2020-10-21 Joseph Wiesel METHOD AND APPARATUS FOR DETECTION OF ATRIAL FIBRILLATION
CN112263260A (zh) * 2020-10-27 2021-01-26 青岛大爱慈康智能医疗科技有限公司 心电图采集装置
CN114699086A (zh) * 2022-03-30 2022-07-05 青岛虚拟现实研究院有限公司 Vr设备穿戴舒适度检测系统
WO2023011704A1 (en) * 2021-08-03 2023-02-09 Huawei Technologies Co., Ltd. Electronic device and method for carotid artery disease risk assessment

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220485A1 (en) * 2003-04-17 2004-11-04 Polar Electro Oy Method and device for measuring heart rate, and method for manufacturing the device
CN101708121A (zh) * 2009-07-15 2010-05-19 香港中文大学 耳挂式低功耗生理参数监测装置
CN101972137A (zh) * 2010-11-02 2011-02-16 叶继伦 一种多生理参数的同步监测方法及装置
US7894888B2 (en) * 2008-09-24 2011-02-22 Chang Gung University Device and method for measuring three-lead ECG in a wristwatch
CN102028457A (zh) * 2010-11-24 2011-04-27 北京麦邦光电仪器有限公司 脉率测量方法及指环式脉率测量仪
WO2014033360A1 (en) * 2012-08-28 2014-03-06 Mega Elektroniikka Oy A control module and an arrangement for measuring a biosignal
CN104323785A (zh) * 2014-11-27 2015-02-04 刘卫明 亚健康综合症智能康复仪
CN104586382A (zh) * 2015-01-26 2015-05-06 周常安 穿戴式生理检测装置
CN104665823A (zh) * 2015-01-26 2015-06-03 周常安 穿戴式心电检测装置
CN104665822A (zh) * 2015-01-26 2015-06-03 周常安 穿戴式心电检测装置
CN204600457U (zh) * 2015-01-26 2015-09-02 周常安 穿戴式生理检测装置
CN204813865U (zh) * 2015-01-26 2015-12-02 周常安 穿戴式心电检测装置
CN204863166U (zh) * 2015-01-26 2015-12-16 周常安 穿戴式心电检测装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220485A1 (en) * 2003-04-17 2004-11-04 Polar Electro Oy Method and device for measuring heart rate, and method for manufacturing the device
US7894888B2 (en) * 2008-09-24 2011-02-22 Chang Gung University Device and method for measuring three-lead ECG in a wristwatch
CN101708121A (zh) * 2009-07-15 2010-05-19 香港中文大学 耳挂式低功耗生理参数监测装置
CN101972137A (zh) * 2010-11-02 2011-02-16 叶继伦 一种多生理参数的同步监测方法及装置
CN102028457A (zh) * 2010-11-24 2011-04-27 北京麦邦光电仪器有限公司 脉率测量方法及指环式脉率测量仪
WO2014033360A1 (en) * 2012-08-28 2014-03-06 Mega Elektroniikka Oy A control module and an arrangement for measuring a biosignal
CN104323785A (zh) * 2014-11-27 2015-02-04 刘卫明 亚健康综合症智能康复仪
CN104586382A (zh) * 2015-01-26 2015-05-06 周常安 穿戴式生理检测装置
CN104665823A (zh) * 2015-01-26 2015-06-03 周常安 穿戴式心电检测装置
CN104665822A (zh) * 2015-01-26 2015-06-03 周常安 穿戴式心电检测装置
CN204600457U (zh) * 2015-01-26 2015-09-02 周常安 穿戴式生理检测装置
CN204813865U (zh) * 2015-01-26 2015-12-02 周常安 穿戴式心电检测装置
CN204863166U (zh) * 2015-01-26 2015-12-16 周常安 穿戴式心电检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278724A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556282A4 (en) * 2017-01-13 2019-11-13 Huawei Technologies Co., Ltd. DEVICE THAT CAN BE USED
US11493889B2 (en) 2017-01-13 2022-11-08 Huawei Technologies Co., Ltd. Wearable device
US11344256B2 (en) 2017-02-21 2022-05-31 Bose Corporation Collecting biologically-relevant information using an earpiece
WO2018156291A1 (en) * 2017-02-21 2018-08-30 Bose Corporation Collecting biologically-relevant information using an earpiece
CN110461220A (zh) * 2017-02-21 2019-11-15 伯斯有限公司 使用耳塞来收集生物相关信息
CN106901721B (zh) * 2017-03-13 2023-10-20 歌尔科技有限公司 智能腕戴设备和智能腕戴设备心电测量方法
CN106901721A (zh) * 2017-03-13 2017-06-30 歌尔科技有限公司 智能腕戴设备和智能腕戴设备心电测量方法
EP3600023A4 (en) * 2017-05-15 2020-10-21 Joseph Wiesel METHOD AND APPARATUS FOR DETECTION OF ATRIAL FIBRILLATION
US10213157B2 (en) 2017-06-09 2019-02-26 Bose Corporation Active unipolar dry electrode open ear wireless headset and brain computer interface
CN107951479A (zh) * 2017-12-14 2018-04-24 迦沃科技(深圳)有限公司 一种无线耳机与心率手环二合一式可穿戴设备
CN110537908A (zh) * 2019-09-03 2019-12-06 深圳旭宏医疗科技有限公司 一种心电监测设备和使用方法
CN110537908B (zh) * 2019-09-03 2024-04-09 深圳旭宏医疗科技有限公司 一种心电监测设备和使用方法
CN112263260A (zh) * 2020-10-27 2021-01-26 青岛大爱慈康智能医疗科技有限公司 心电图采集装置
WO2023011704A1 (en) * 2021-08-03 2023-02-09 Huawei Technologies Co., Ltd. Electronic device and method for carotid artery disease risk assessment
CN114699086A (zh) * 2022-03-30 2022-07-05 青岛虚拟现实研究院有限公司 Vr设备穿戴舒适度检测系统

Similar Documents

Publication Publication Date Title
JP3217016U (ja) 装着型心電検出装置並びに装着型生理機能検出装置
CN205493819U (zh) 穿戴式心电检测装置
JP3217017U (ja) ウェアラブル生理検査機器
WO2016119664A1 (zh) 穿戴式心电检测装置及穿戴式生理检测装置
CN104586382B (zh) 穿戴式生理检测装置
CN104665822B (zh) 穿戴式心电检测装置
WO2016119665A1 (zh) 穿戴式生理检测装置
TWI669102B (zh) Wearable physiological detection device
CN204813865U (zh) 穿戴式心电检测装置
CN110115567A (zh) 多用途生理检测系统
CN204600457U (zh) 穿戴式生理检测装置
CN204863166U (zh) 穿戴式心电检测装置
WO2017124946A1 (zh) 动态心血管活动监测方法、系统以及穿戴式监测装置
TWI603709B (zh) Dynamic cardiovascular activity monitoring method and apparatus and system using the same
TW201626941A (zh) 穿戴式心電檢測裝置
CN209003960U (zh) 多用途生理检测系统
TWI610658B (zh) 穿戴式生理檢測裝置
TW201626950A (zh) 穿戴式心電檢測裝置
TWI701016B (zh) 多用途生理檢測裝置
CN210204730U (zh) 多用途生理检测系统
TWI650105B (zh) 穿戴式生理檢測裝置
CN209474599U (zh) 多用途生理检测系统
CN209391925U (zh) 多用途生理检测装置
TWM566551U (zh) Multi-purpose physiological detecting device and system
TWM582375U (zh) Multi-purpose physiological detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017600127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016742726

Country of ref document: EP