WO2016119169A1 - 储电装置的结构 - Google Patents

储电装置的结构 Download PDF

Info

Publication number
WO2016119169A1
WO2016119169A1 PCT/CN2015/071831 CN2015071831W WO2016119169A1 WO 2016119169 A1 WO2016119169 A1 WO 2016119169A1 CN 2015071831 W CN2015071831 W CN 2015071831W WO 2016119169 A1 WO2016119169 A1 WO 2016119169A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection circuit
storage device
current
circuit substrates
overload
Prior art date
Application number
PCT/CN2015/071831
Other languages
English (en)
French (fr)
Inventor
王正权
张勋
Original Assignee
王正权
张勋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王正权, 张勋 filed Critical 王正权
Priority to PCT/CN2015/071831 priority Critical patent/WO2016119169A1/zh
Publication of WO2016119169A1 publication Critical patent/WO2016119169A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention provides a structure of a power storage device, in particular, a structure of a power storage device capable of performing rapid charging and slow discharging under a stable large current.
  • supercapacitors also known as double-layer capacitors (EDLC) or electric double-layer capacitors
  • EDLC double-layer capacitors
  • electric double-layer capacitors are electrochemical capacitors that have developed in recent years with high energy density, which are interspersed with traditional electrostatic capacitors and chemical power supplies. It is a special energy storage component based on the electrode/solution interface electrochemical process, which is hundreds of times to thousands of times higher than the traditional electrolytic capacitor capacity.
  • a standard battery-sized electrolytic capacitor has a capacity of tens of microfarads (uF), but a supercapacitor of the same size can reach several farads (F), up to two orders of magnitude.
  • uF microfarads
  • F farads
  • the energy density of double-layer capacitors in the laboratory can be increased by an order of magnitude, so it is especially suitable for precision energy control and transient load devices, rather than general-purpose circuit components, and the price of supercapacitors is also As the decline, more and more people are doing research in this area.
  • the method generally uses the following four methods: constant current mode (ConstantCurrent, CC), constant voltage mode (ConstantVoltage, CV), pulse charging mode and constant current / constant voltage mode.
  • the constant current mode is the fastest mode, but when the battery is nearly full, the charging efficiency will be reduced, and the overcharge protection mechanism must be set to protect the battery. Therefore, the charging circuit using the constant current mode is costly.
  • the inventors of the present invention have collected the relevant materials in view of the above-mentioned deficiencies, and through multi-party evaluation and consideration, and through years of experience accumulated in the industry, through continuous trial and modification, the design has been designed to greatly reduce the charging.
  • An inventor of the structure of a power storage device that takes time and extends the discharge time.
  • the main object of the present invention is to use a current value close to the maximum amount of stored electricity of the power storage device as an input current, and to reverse the current and prevent an overload, and then charge the power storage device to achieve fast charging and discharging time. Lengthen the purpose.
  • the solution of the present invention is:
  • a structure of a power storage device comprising:
  • a power storage device electrically connecting the overload protection circuit substrates, wherein the power storage device has a plurality of capacitors connected in series to increase an input current.
  • the input current of the power storage device is 200 amps (A) to 2000 amps (A).
  • the capacitances are from 1 Farad (F) to 5 Farads (F).
  • the power storage device is quickly charged and slowly discharged in conjunction with the overload protection circuit substrate.
  • the charging time is from 3 seconds to 3 minutes.
  • the discharge time is from 60 hours to 84 hours.
  • the reverse protection circuit substrate, the overload protection circuit substrate, and the power storage device are housed in an explosion-proof positioning structure.
  • the current is first passed through the reverse protection circuit substrate, and the current is prevented from generating a reverse current to the input terminal and the output terminal, and then the current flows to the overload protection circuit substrate, thereby stabilizing the current.
  • the overload protection is prevented, so that the power storage device can be charged with a large current, and the purpose of fast charging can be achieved, and the power storage device can be discharged at the same time, and the overload protection circuit substrate and the power storage device have the effect of reducing the current output speed.
  • the overload protection circuit substrate and the power storage device have the effect of reducing the current output speed.
  • In order to achieve slow discharge extend the use of power storage devices for the purpose of aging.
  • the charging time of the conventional rechargeable battery can be long and the charging efficiency is not good, and the battery that can be quickly charged is easy to have a problem of current overload and excessive discharge speed, and the practical progress is achieved. Sex.
  • Figure 1 is a block diagram showing the structure of a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a preferred embodiment of the present invention.
  • Figure 3 is a schematic view (1) of the operation of the preferred embodiment of the present invention.
  • Figure 4 is a schematic view (2) of the operation of the preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural view of another embodiment of the present invention.
  • FIG. 1 and FIG. 2 are block diagrams and structural diagrams of a preferred embodiment of the present invention. It is apparent from the drawings that the present invention includes:
  • the electrical device 3 has a plurality of capacitors 31 connected in series to increase the input current.
  • FIG. 1 to FIG. 4 are structural block diagram, structure diagram, action diagram (1) and action diagram (2) according to a preferred embodiment of the present invention.
  • a direct current DC
  • the magnitude of the direct current can be determined according to the maximum amount of power stored in the power storage device 3, for example, when the power storage device 3 is the largest.
  • the input current can be a charge of 250 amps or less.
  • the power storage device 3 of the present invention since there are a plurality of capacitors 31 connected in series, and the capacity of each of the capacitors 31 is 1 to Farad (F) to 5 Farads (F), that is, the amount of electricity stored in the power storage device 3 of the present invention is 200 amps (A) to 2000 amps (A), so the input current of the power storage device 3 can be 200 amps (A) to 2000 amps (A).
  • the required charging time is 3 seconds to 3 minutes. Although it cannot achieve the "second charge" state, it is more expensive than the conventional charging technology. In terms of time, it can be described as a leap forward.
  • the reverse protection circuit substrate 1 and the overload protection circuit substrate 2 wherein the function of the reverse protection circuit substrate 1 is to control the current flow to avoid the input terminal and the output terminal to generate a reverse current, and the overload protection circuit substrate 2
  • the function is to reduce the current output speed to stabilize the current to prevent overload.
  • the discharge time is 60 hours to 84 hours.
  • FIG. 5 is a schematic structural view of another embodiment of the present invention. It can be clearly seen from the figure that the positioning structure 4a (represented by asphalt in this embodiment) is filled with the power storage device, and is robust and stable. The position of the reverse protection circuit board 1a, the overload protection circuit board 2a, and the power storage device 3a is more effective in reducing the impact of an explosion shock and preventing an explosion.
  • the input current can be greatly improved, and the charging time is greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种储电装置的结构,包括多个供控制电流流向避免输入端及输出端产生逆向电流的逆向保护电路基板(1)、多个分别电性连结该些逆向保护电路基板(1)供降低电流输出速度以稳定电流防止过载的过载保护电路基板(2)、一电性连结该些过载保护电路基板的蓄电装置(3)、及多个相互串联用以提升输入电流的电容(31)。借此,用户能够以接近该蓄电装置的最大蓄电量的电流值作为输入电流,让输入电流经过逆向保护电路基板及过载保护电路基板,而后对蓄电装置进行充电,达成快速充电,另利用过载保护电路基板的功效,使放电时间加长且无电流过载。

Description

储电装置的结构 技术领域
本发明为提供一种储电装置的结构,尤指一种可在稳定的大电流下进行快速充电及慢速放电的储电装置的结构。
背景技术
按,超级电容器,又称为双层电容器(ElectricalDouble-LayerCapacitors,EDLC)或电双层电容器,是一种在近年发展起来拥有高能量密度的电化学电容器,其介于传统静电电容器和化学电源之间,乃基于电极/溶液接口电化学过程的特种储能组件,比传统的电解电容容量高上数百倍至数千倍不等。
一个标准电池大小的电解电容容量为几十微法拉(uF),但同样大小的超级电容器则可以达到几法拉(F),差别可达两个数量级。截至2011年为止,在实验室中双层电容器的能量密度能再提高一个数量级,也因此,其特别适用于精密能源控制和瞬间负载设备中,而不是通用电路组件,且超级电容器的价格亦正在下降,遂有越来越多人在这方面做研究。
若只是容量加大,而未能提高充电效益,其实用性仍然有限,故为了使电池能够有效率的充电,许多专家学者正积极研究如何让充电技术能再进一步的改良与突破,而其充电方法通常采用以下四种方法:定电流模式(ConstantCurrent,CC)、定电压模式(ConstantVoltage,CV)、脉冲充电模式及定电流/定电压模式。其中定电流模式为最快速的模式,但于电池快要接近充饱时,充电效率会降低,且必须要设置过充保护机制保护电池,因此采用定电流模式的充电电路成本较高。
此外,即使可让电池完成快速充电,但仍无法减缓其放电速度,故对用户而言,目前的充电电池仍然有诸多使用上的不便。
是以,要如何解决上述习用的问题与缺失,即为本发明的申请人与从事此行业的相关厂商所亟欲研究改善的方向所在者。
发明内容
故,本发明的发明人有鉴于上述缺失,乃搜集相关资料,经由多方评估及考虑,并以从事于此行业累积的多年经验,经由不断试作及修改,始设计出此种可大幅缩减充电时间并延长放电时间的储电装置的结构的发明专利者。
本发明的主要目的在于:以接近蓄电装置的最大蓄电量的电流值作为输入电流,并对电流作止逆及防止过载的动作,而后对蓄电装置进行充电,来达成快速充电及放电时间加长的目的。
为达上述目的,本发明的解决方案是:
一种储电装置的结构,包含:
多个逆向保护电路基板,供控制电流流向避免输入端及输出端产生逆向电流;
多个分别电性连结该些逆向保护电路基板的过载保护电路基板,借降低电流输出速度以稳定电流防止过载;
一电性连结该些过载保护电路基板的蓄电装置,该蓄电装置内具有多个相互串联的电容,以提升输入电流。
进一步,该蓄电装置的输入电流为200安培(A)至2000安培(A)。
进一步,该些电容容量为1法拉(F)至5法拉(F)。
进一步,该蓄电装置配合该过载保护电路基板而得以快速充电、慢速放电。
进一步,该充电时间为3秒钟至3分钟。
进一步,该放电时间为60小时至84小时。
进一步,该些逆向保护电路基板、该些过载保护电路基板及该蓄电装置收容于一供防爆的定位结构内。
当使用者对本发明输入电流进行蓄电动作时,使电流先经过逆向保护电路基板,借其控制电流流向避免输入端及输出端产生逆向电流,接着电流乃流向过载保护电路基板,借其稳定电流防止过载,如此即可以大电流对蓄电装置进行充电,而达成快速充电的目的,亦可同时让蓄电装置进行放电,且由于过载保护电路基板及蓄电装置具有降低电流输出速度的功效,借以实现慢速放电、延长蓄电装置的使用时效的目的。
借由上述技术,可针对习用充电电池所存在的充电时间冗长、充电效率不佳,而可快速充电的电池则容易有电流过载、放电速度过快的问题点加以突破,达到上述优点的实用进步性。
附图说明
图1为本发明较佳实施例的结构方块图;
图2为本发明较佳实施例的结构示意图;
图3为本发明较佳实施例的动作示意图(一);
图4为本发明较佳实施例的动作示意图(二);
图5为本发明另一实施例的结构示意图。
【符号说明】
逆向保护电路基板1、1a
过载保护电路基板2、2a
蓄电装置3、3a
电容31
定位结构4a。
具体实施方式
为达成上述目的及功效,本发明所采用的技术手段及构造,兹绘图就本发明较佳实施例详加说明其特征与功能如下,俾利完全了解。
请参阅图1及图2所示,为本发明较佳实施例的结构方块图及结构示意图,由图中可清楚看出本发明包括:
多个逆向保护电路基板1,供控制电流流向避免输入端及输出端产生逆向电流;
多个分别电性连结该些逆向保护电路基板1的过载保护电路基板2,借降低电流输出速度以稳定电流防止过载;一电性连结该些过载保护电路基板2的蓄电装置3,该蓄电装置3内具有多个相互串联的电容31,以提升输入电流。
请同时配合参阅图1至图4所示,为本发明较佳实施例的结构方块图、结构示意图、动作示意图(一)及动作示意图(二),由图中可清楚看出,当使用者在运用本发明进行充电时,由逆向保护电路基板1的输入端输入直流电流(DC),且该直流电大小可依据蓄电装置3的最大蓄电量而决定,例如,当蓄电装置3的最大蓄电量为250安培时,输入电流大小可为小于等于250安培的电荷量。以逼近最大蓄电量的输入电流进行充电时,理论上可在一秒钟左右完成充电,但充电过程中,电池电量接近满载时,电流的输入必须有个缓冲,使得整体充电速度大约为三秒钟。而本案的蓄电装置3内因为具有多个相互串联的电容31,且各该电容31的容量为1法拉(F)至5法拉(F),意即本案的蓄电装置3的蓄电量为200安培(A)至2000安培(A),因此蓄电装置3的输入电流便可为200安培(A)至2000安培(A)。随着输入电流大小与蓄电装置3最大蓄电量间的差距改变,所需充电时间为3秒钟至3分钟,虽然无法达到「秒充」的境界,但相较于习用的充电技术所耗费的时间而言,可谓飞跃性的进步。
而为达成上述充电效益,则必须仰赖逆向保护电路基板1及过载保护电路基板2,其中逆向保护电路基板1的功用为控制电流流向避免输入端及输出端产生逆向电流,而过载保护电路基板2的功用则为降低电流输出速度以稳定电流防止过载。当单位时间内通过导线某一截面的电荷量大于一定值时,容易产生不稳定的状态,而导致瞬间电流量浮动率增加,致使用电装置发生过载的状况,而该些过载电路保护基板即为解决此问题而存在,因此,即使在输入端通以较高的电流,对整体结构而言,也不会有过载等问题,也因为充电时间极短,也就不会有过热的问题。另外,当蓄电装置3进行放电时,则另需以逆向保护电路基板1来确保输入端及输出端的电流为同进同出,而不会发生逆向电流的问题,再加上过载保护电路基板2具有降低电流输出速度的功效,即使蓄电装置3拥有大蓄电量,也不会有多余的电力耗损,更可拉长蓄电装置3的使用时间,以本实施例而言该放电时间为60小时到84小时。
另请同时配合图5所示,为本发明另一实施例的结构示意图,由图中可清楚看出,配合填入储电装置的定位结构4a(本实施例以沥青为代表),强健稳固逆向保护电路基板1a、过载保护电路基板2a、及蓄电装置3a的位置,达到减缓爆炸冲击、防止爆炸的效果,而更具安全性。
故,请参阅全部附图所示,本发明使用时,与习用技术相较,着实存在下列优点:
一、借由蓄电装置3及过载保护电路基板2的配合作动,可达到快速充电、慢速放电的功效。
二、借由过载保护电路基板2的功效,使输入电流可大幅提高,而大幅缩减充电时间。
惟,以上所述仅为本发明的较佳实施例而已,非因此即局限本发明的专利范围,故举凡运用本发明说明书及图式内容所为的简易修饰及等效结构变化,均应同理包含于本发明的专利范围内,合予陈明。

Claims (7)

1、一种储电装置的结构,其特征在于,包含:
多个逆向保护电路基板,供控制电流流向避免输入端及输出端产生逆向电流;
多个分别电性连结该些逆向保护电路基板的过载保护电路基板,借降低电流输出速度以稳定电流防止过载;
一电性连结该些过载保护电路基板的蓄电装置,该蓄电装置内具有多个相互串联的电容,以提升输入电流。
2、如权利要求1所述的储电装置的结构,其特征在于:该蓄电装置的输入电流为200安培至2000安培。
3、如权利要求1所述的储电装置的结构,其特征在于:该些电容容量为1法拉至5法拉。
4、如权利要求1所述的储电装置的结构,其特征在于:该蓄电装置配合该过载保护电路基板而得以快速充电、慢速放电。
5、如权利要求4所述的储电装置的结构,其特征在于:该充电时间为3秒钟至3分钟。
6、如权利要求4所述的储电装置的结构,其特征在于:该放电时间为60小时至84小时。
7、如权利要求1所述的储电装置的结构,其特征在于:该些逆向保护电路基板、该些过载保护电路基板及该蓄电装置收容于一供防爆的定位结构内。
PCT/CN2015/071831 2015-01-29 2015-01-29 储电装置的结构 WO2016119169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071831 WO2016119169A1 (zh) 2015-01-29 2015-01-29 储电装置的结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071831 WO2016119169A1 (zh) 2015-01-29 2015-01-29 储电装置的结构

Publications (1)

Publication Number Publication Date
WO2016119169A1 true WO2016119169A1 (zh) 2016-08-04

Family

ID=56542166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071831 WO2016119169A1 (zh) 2015-01-29 2015-01-29 储电装置的结构

Country Status (1)

Country Link
WO (1) WO2016119169A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202197226U (zh) * 2011-09-14 2012-04-18 南京天溯自动化控制系统有限公司 一种基于超级电容的电站直流电源装置
CN102570531A (zh) * 2010-12-31 2012-07-11 中国移动通信集团甘肃有限公司 多级充电均衡控制装置及方法
CN103066704A (zh) * 2011-10-19 2013-04-24 上海奥威科技开发有限公司 基于超级电容器的后备储能模块
CN103701162A (zh) * 2013-12-06 2014-04-02 翟东波 电池管理系统
CN104022553A (zh) * 2014-06-20 2014-09-03 山西科泰微技术有限公司 超级电容充电电路
WO2014207658A1 (en) * 2013-06-26 2014-12-31 Automobili Lamborghini S.P.A. Charge/discharge device for a pack of supercapacitors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570531A (zh) * 2010-12-31 2012-07-11 中国移动通信集团甘肃有限公司 多级充电均衡控制装置及方法
CN202197226U (zh) * 2011-09-14 2012-04-18 南京天溯自动化控制系统有限公司 一种基于超级电容的电站直流电源装置
CN103066704A (zh) * 2011-10-19 2013-04-24 上海奥威科技开发有限公司 基于超级电容器的后备储能模块
WO2014207658A1 (en) * 2013-06-26 2014-12-31 Automobili Lamborghini S.P.A. Charge/discharge device for a pack of supercapacitors
CN103701162A (zh) * 2013-12-06 2014-04-02 翟东波 电池管理系统
CN104022553A (zh) * 2014-06-20 2014-09-03 山西科泰微技术有限公司 超级电容充电电路

Similar Documents

Publication Publication Date Title
WO2001089058A1 (en) A power supply
CN102857128B (zh) 交流直流转换电路
CN104505876A (zh) 串联储能系统的电容式电压均衡系统及方法
CN102723752A (zh) 压电充电式移动终端
CN103023107A (zh) 新型的锂电池组无损均衡电路
CN103066704A (zh) 基于超级电容器的后备储能模块
CN101764422A (zh) 一种串联充放电单元的均压电路
CN103780231B (zh) 实现峰值采样保持的电路结构
US9461483B1 (en) Electrical energy storage device with damping function
CN202435082U (zh) 电池组主动均衡电路
CN203135551U (zh) 一种具有大电流输出高能量密度的移动工具锂电容加锂电池混合电源系统
CN202712917U (zh) 一种新型串联超级电容器组动态均压装置
JP2015516650A (ja) 電極板及び電極アセンブリ、蓄電池、並びに電極板を備えるキャパシタ
WO2016119169A1 (zh) 储电装置的结构
CN105244934B (zh) 一种备用电池充电电路
CN204721218U (zh) 升压与线性充电共用功率器件的移动电源转换器
CN202886482U (zh) 超级电容容量快速检测装置
TWM505741U (zh) 儲電裝置之結構
CN201766126U (zh) 快速充电电池
CN204761282U (zh) 一种母线电容电路及车载三相电机逆变器
CN106374149A (zh) 一种多节锂电池电芯压差平衡系统
CN202424273U (zh) 一种电池电量平衡电路
CN203607883U (zh) 一种新型电池均衡充电装置
CN109412247B (zh) 一种并联电容式降压充电器
CN103441556A (zh) 一种超级电容器组充放电均衡装置及均衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879377

Country of ref document: EP

Kind code of ref document: A1