WO2016119035A1 - Structural material tower and assembly method - Google Patents

Structural material tower and assembly method Download PDF

Info

Publication number
WO2016119035A1
WO2016119035A1 PCT/BR2016/050017 BR2016050017W WO2016119035A1 WO 2016119035 A1 WO2016119035 A1 WO 2016119035A1 BR 2016050017 W BR2016050017 W BR 2016050017W WO 2016119035 A1 WO2016119035 A1 WO 2016119035A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
segment
segments
structural
tower segment
Prior art date
Application number
PCT/BR2016/050017
Other languages
French (fr)
Portuguese (pt)
Inventor
Cristiano Ferreira De SÁ
Marcos ONISHI
Daniel Massashi KAKO
Péricles Brasiliense FUSCO
Original Assignee
Proacqua Construções E Comércio Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102015002142A external-priority patent/BR102015002142A2/en
Priority claimed from BR132015028527-1A external-priority patent/BR132015028527E2/en
Application filed by Proacqua Construções E Comércio Ltda. filed Critical Proacqua Construções E Comércio Ltda.
Publication of WO2016119035A1 publication Critical patent/WO2016119035A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/12Structures made of specified materials of concrete or other stone-like material, with or without internal or external reinforcements, e.g. with metal coverings, with permanent form elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/16Prestressed structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/34Arrangements for erecting or lowering towers, masts, poles, chimney stacks, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to wind power generation systems and, more particularly, to the support towers of wind-driven turbines, said towers being made of structural material according to construction techniques.
  • Wind power generation is based on the use of wind-driven turbines mounted on tops of tower towers whose heights tend to be higher and higher.
  • Interest in increasing the height of the towers stems from the fact that wind speeds increase with their distance from the ground and that the power generated by wind turbines varies with the wind speed cube.
  • Towers with heights of up to one hundred (100) meters can be built entirely with concrete structures, but for this it is necessary to use auxiliary cranes with large load capacity and with heights higher than the tower to be built itself, such cranes which make it impossible to increase the height of concrete towers economically.
  • Higher towers, in the state of the art have mixed structures in which the highest parts are built with metal structures.
  • Wind turbine designs are internationally regulated by the standards of "INTERNATIONAL STANDARD IEC 61400-1 -” Wind Turbines - Design requirements ", International Electrotechnical Commission, Geneve, 2005.
  • Wind power towers can be built on land or in shallow water, offshore or in large lakes.
  • the support base is adapted to the specific environmental conditions of the building, but the building procedures of the raised parts are almost always of the same nature.
  • the base diameters of the towers, entirely or partially of concrete, are in the order of a dozen meters, and the lengths seek to reach and even exceed a hundred meters.
  • the prefabricated parts are assembled into modular cylindrical or trunk-conical staves, consolidated by circular transverse prestressing, with heights of one to three meters. Thereafter, these cylindrical or trunk-conical modules are longitudinally assembled on top of each other and consolidated by prestressing longitudinal reinforcement, constituting tower segments with lengths of the order of 10 to 20 meters.
  • industrially prefabricated parts are constructed in the form of elongated cylindrical sectors, with lengths of the order of 10 to 20 meters and widths of the order of 3 meters, which are consolidated on the jobsite by transverse prestressing, thus being constructed. the desired tower segments.
  • figure 1.8 located on page 23, shows that in the concrete tower segments, at their ends are placed metallic annular boxes, made of "heavy plates” of stainless steel, which are solidified to the walls of tower segments.
  • These annular housings are intended for the dual function of anchoring the longitudinal prestressing cables of the tower segments, which are external to the concrete walls, and for anchoring the tie bars of the two neighboring tower segments, ensuring that the ends of the walls come into direct contact, end to end.
  • the monolithic direct coupling may be performed using longitudinal or transverse prestressing which compresses the cross sections of the prefabricated parts. This kind of bonding can be as sturdy as the solidarity walls themselves.
  • the direct connection of the faces of the contact parts ie the direct connection of the end nodes of the contacting parts, may be done directly by welding or, indirectly, by welding. through specialized local joining systems with parts screwed together and with the frame bars.
  • the double knot is formed by two steel boxes, and has what can be understood as a direct structural behavior, because when two tower segments tend to to compress against each other, the endpoints of the double "knot” also tend to approach each other and, vice versa, when the tower segments tend to move apart, as in the lifting situation with the With the aid of external cranes, the double knot end nodes also tend to move away from each other.
  • telescopic operation requires that the connecting nodes have the opposite behavior, that is, the "reverse behavior” characterized by the fact that the ends of the tower segments are away when they tend to be compressed together, and vice versa, where tower segments tend to be pulled when the reverse-knot double-node end nodes tend to compress.
  • the double node of reverse behavior is the typical node of telescopic behavior.
  • the tower structures function as if they were cantilevered beams in the base, supporting their own weight and the weight of the turbine placed on top, besides the wind action on the turbine and on the tower body itself.
  • the tower structure is not a usual beam with massive cross section.
  • the tower structure, formed by the tower segments, constitutes a structural system classified as thin shell, which presents the risk of ruin due to transverse instability of the wall of its constituent rings, due to the high torsional forces existing in its Thin walls.
  • Fig. 1 exemplifies one of the basic procedures which, according to the state of the art, are employed in the construction of concrete towers for wind power generation.
  • the prefabricated elements 102 in the form of a semiconic or semi-cylindrical sector, are taken to the jobsite by road transport 104 and are joined therein by State of the art procedures, forming trunk staves.
  • 105, height 106 which in turn are joined by usual procedures forming 107 tower segments 107 height.
  • the frusto-conical or cylindrical staves 105 are mounted with heights 106 ranging from one to three. meters.
  • tower segments 107 may have heights 108 which usually range from ten to twenty meters.
  • tower segments 107 which have metal reinforcing structural rings at both ends (not shown), must be suspended and placed in their respective design positions by cranes 110, operating height 111 greater than the total height 109 of the tower to be built.
  • the tower segments 107 after being placed in their final positions, are connected to each other by means of steel bars joining the metal tabs in the tower. inner face of the two ends of both tower segments joining together. In this way, these connecting bars solidify the set of tower segments with each other. After this solidarity, the power generation equipment 112 is hoisted by the crane and placed on the highest tower segment 101.
  • US patent 4,486,989 of 12/11/1984 favors a method of constructing raised water tanks by telescopic method suitable for the construction under consideration.
  • U.S. Patent 4,660,336 of April 18, 1987 privileges a method of constructing a raised water tank and its tower by a telescopic process whose invented elements are relevant to the type of construction. considered.
  • each tower segment lifting step the operation is performed by means of hydraulic push-up jacks, which are applied to metal support platforms of the not-raised segment projecting flap assembly, built inside the tower. tower, with diameters suitable for each particular step.
  • an element (detail 56, figures 3B and 10C) facing the interior of the tower but for the sole purpose of serving as a limit switch.
  • the support of the tower segments on the segments immediately below them is made by inclined metal parts (detail 96, Fig. 10C) whose support and operation are not explained, only being informed that they transmit the loads. from the underside of the tower segments to undisclosed recesses in the periphery of the top of the tower segment wall positioned lower than that in elevation, and there is no structural stiffening member of the connecting regions successive tower segments.
  • the methods of building the wind power system towers made of steel or structural concrete, always comprise the same three phases as follows: construction of base-level tower segments, lifting of these segments by placing them in overlapping positions, and solidarity of the union of these segments in their final positions.
  • the tower segments have a geometric conformation that allows their positioning within each other, in concentric positions with respect to each other and in relation to each other. to the tower axis to be built, and capable of withstanding the stresses to which they will be subjected during the construction and during its useful life, in which the tower must function as a solidary structural system of monolithic behavior.
  • tower segments As in the manufacture of other telescopic systems, for the installation of tower segment lifting devices and to stop these movements when these segments reach their specified design positions, tower segments they shall be provided with projecting tabs at their ends, with the forward end tab facing into the tower, and the rear end tab facing away from the tower.
  • FIG. 2-A of this application illustrates the basic problems with tower tower junctions for wind power generation. This figure shows the flexing and rupture caused by forces applied to protruding thin flanges parallel to the supporting walls. The flexing of the flaps is fully propagated to the support wall, regardless of the existence and position of any triangular stiffeners ("French hands") placed perpendicular to the support wall.
  • Figure 2-B presents a state of the art solution recommended by Concrete Center. in their previously cited publications (2007/2005), to be applied to the union of thin walls of cylindrical towers constructed by overlapping the tower segments with the use of tall cranes.
  • the cylindrical walls of the tower segments have at their upper end a rigid metal ring 201, and at their lower end a rigid metal ring 202.
  • the metal rings of neighboring tower segments of equal diameter are connected. by steel bars 506 applying forces 203.
  • the longitudinal bias cables 204 are anchored to both metal end rings of each tower segment.
  • Each tie bar and bias cable corresponds to sections 205 along the perimeter of the protruding tabs 208 of the rigid rings.
  • the tie bars apply concentrated torsion torques 206 with an intuitive representation acting clockwise on the metal ring sectors 202 and apply concentrated torsional torques torque with an intuitive representation 207 acting anti-clockwise on the metal ring sectors 201 .
  • This figure 2-B shows the overall effect of these torsional torques on the metal ring 201 of the lower end of the joining tower segment by the vector representation 209 of these torques.
  • the resultant of these torques along the entire perimeter of flap 208 is zero, the resultant 210 along the left half of flap 208 shows that the overall effect corresponds to a bending torque 211 applied virtually to the left end of ring 201.
  • the overall effect of localized torsional torques is symmetrical to the previous effect.
  • the resulting torsional torque 212 also corresponds to a virtual bending torque 213 applied to the right end of ring 211.
  • the set of these bending torques simulate, for each pair of segments 205 symmetrically arranged along rigid tab 208, bending bars. 214 and 215 in the direction defined by each pair of segments considered.
  • the present invention aims to solve the problem of how to make these rigid concrete rings, with different diameters that allow the telescopic lifting of the tower segments.
  • Another objective is the development of a constructive method for assembling towers of structural materials formed by a plurality of cylindrical tower segments.
  • Another objective is the development of a constructive method for assembling towers of structural materials formed by stacking at least two trunk-conical tower segments.
  • said cylindrical tower segments have staggered diameters, said diameters being progressively smaller for the higher tower segments.
  • said tower segments have a conical shape, the diameter of each tower segment decreasing in the direction of its height.
  • said tower segments have a cylindrical shape and individual lengths of the order of 15 to 30 meters, with constant diameters of the order of 10 to 3 meters, which progressively decrease as they are placed at higher positions along the tower.
  • Tower elements are constructed by coupling thin-wall cylindrical modules mounted on the jobsite with structural concrete elements manufactured industrially which are consolidated by longitudinal claim.
  • industrially prefabricated parts are constructed in the form of elongated cylindrical sectors, with lengths in the order of 10 to 20 meters and widths in the order of 3 meters, which on the construction site are consolidated by transverse pretension, thus constructing the segments. turrets desired.
  • the tower segments are constructed in the form of tubes with large diameters, but with thin walls, in the order of 20 to 30 centimeters.
  • the tower segment unions at their ends are constructed "thick annular strips of intended concrete" which, linked and solidified together, also by pretension, form a special structural system. which gives the tower structure a monolithic behavior.
  • the present invention by providing high rigidity rings with different diameters at the ends of the tower segments, meets all the requirements necessary for the telescopic construction of structural concrete towers for wind power generation, thing that cannot be done in the state of the art.
  • each annular strip will have lengths of about one and a half meters to three meters and thicknesses of about half a meter, together constituting connecting elements that give the double nodes lengths of the order of up to 6 meters. meters.
  • Figure 1 which refers to the State of the Art, schematically shows the successive procedures employed in the construction of concrete towers for wind power generation. Such procedures include the indispensable use of auxiliary metal cranes, with heights higher than the height of the tower to be built, which condition does not exist with the present invention.
  • Figure 2- A demonstrates the impossibility of connecting the tower segments with thin walls by simple thin flanges, due to the flexion of these thin walls, due to the transmission of the forces to which these flanges are subjected.
  • Figure 2-B shows that for thin-walled tower segments of any structural material, whether steel or concrete, to be joined together, even by non-telescopic construction methods, the existence of rings is indispensable. They are very rigid at the ends of the connecting tower segments, and it is not possible to use only simple thin flanges.
  • Figure 3 schematically shows in perspective the appearance of a tower with all cylindrical tower segments already assembled and ready for lifting, as well as the positions of those tower segments after they have been raised and placed in their final positions in the tower.
  • Figure 4 schematically shows, in vertical diametrical section, the geometric configuration of one of the cylindrical tower segments employed in this invention, showing that it meets all the necessary requirements for the telescopic construction of structural concrete towers.
  • Figure 5 shows schematically the general process of lifting and subsequent solidification of the cylindrical tower segments allowed by the presence of rigid structural concrete rings formed by the thick flaps existing in the cylindrical modular rings of their ends, considering the arrangement of a sequence of three neighboring tower segments, lower segment 501, intermediate segment 502 and upper segment 503, concentric with tower axis 311.
  • Figure 6-A schematically shows the basic arrangement of the circumferential prestressing armored cables 610 of the lower flap region 403 of the upper end of the lower tower segment 603, and the basic arrangement of the circumferential reinforcing prestressing cables 611. from the lower flap region 401 of the lower end of the upper turret 602. These reinforcements are responsible for the resistance of the connecting node of the neighboring turret segments to the acting vertical loads, including their own weight forces.
  • Figure 6-B shows the arrangement of the compressive stresses of the concrete which, together with the compressed connecting rod balancing cables described in Figure 6-A, form the internal structure of the rigid rings forming the connecting knot. of the tower segments.
  • the two circular prestressing cables of the upper region of the rigid rings have the purpose of ensuring the resistance of the upper band of these rings against the shear, bending and twisting forces acting on the tower structure.
  • Figure 7 shows the arrangement of all intended and passive reinforcements within the double reverse behavior node constructed with the thick bands in contact of two neighboring tower segments connected together.
  • Figure 8 shows the various stages of the process of assembling a tower formed by cylindrical tower segments.
  • Figures 9 and 10 refer to a second embodiment of the invention in which the tower is comprised of two frusto-conical shaped tower segments.
  • Figure 11 illustrates the mounting of an auxiliary stand on the top of the upper tower segment used for lifting components related to power generation.
  • Figure 12 shows the tower already armed by lifting the second tower segment and joining it with the first supporting tower segment.
  • Figure 13 shows the detail of the double reverse behavior node at the junction of said tower segments. In this figure, for the sake of clarity, the prestressing elements have been omitted.
  • Figure 14 shows the lifting of the propeller by the auxiliary gantry.
  • the present invention maintains some basic State of the art procedures for preliminary activities, some of which are illustrated in Fig. 1.
  • These basic procedures leading to the construction of tower segments can be of several different types, which They are chosen according to the project and the industrial availability in the vicinity of the construction site.
  • prefabricated building elements are employed to construct tower segments as overlapping cylindrical stave assemblies; in another type, as sets of elongated sectors of longitudinally desired cylindrical surfaces which are joined by transverse circular pretension, and in another type, as overlapping trochanic stave assemblies.
  • the cylindrical modular ring 306 of the lower end of the tower segments has a total length 406, in which there is a thicker end strip 402 of length 407 and internal diameter 412 equal to internal diameter 410. of the rings 308 of the parallel medium body, and with an outside diameter 413 greater than the outside diameter 411 of the rings of the middle body, forming a projecting flap projected outwardly of the tower segment;
  • the cylindrical modular ring 307 of the upper end of the tower segments has a total length 408, in which there is a thicker end strip, with length 409 and internal diameter 414 smaller than the internal diameter 410 of the middle body rings, with Outer diameter 415 equal to the outer diameter 411 of the middle body rings, forming a recessed flap projected into the turret segment.
  • Fig. 4 schematically shows, in vertical diametrical section, that the modular cylindrical rings 306 and 307 of the ends of the tower segments are made with two different thickness bands 418 and 417 at their respective ends.
  • the thick strip 402 (Fig. 4) of the lower end of the tower segments and the thick strip 404 of the upper end of the tower segments that make contact between neighboring tower segments are of thicker thickness constituting in very rigid rings 601 (fig. 6- A), which form the protruding tabs 401 at the lower ends and recessed 403 at the upper ends of the tower segments (see Fig. 5), maintaining a common area on this contact face. and allowing reciprocal compression bonding of the ends of neighboring tower segments, although they have different diameters.
  • the recessed flap 404 is directed into the tower, and at the lower end of the protruding flap 402 is directed towards the outside of the tower.
  • connection of the protruding tabs 402 of the lower end of the tower segments with the recessed tabs 404 of the upper end of the tower segments is made by means of prestressed cables or bars. 506, which allow the adjacent tower segments to be solidified already in their final, lower 501 and intermediate 502 positions, with different diameters, and enable the telescopic lifting of the 503 upper tower segments without the use of cranes external to the tower itself under construction.
  • the protruding tabs of the neighboring tower segments are joined together by prestressed longitudinal reinforcement 506 distributed along the periphery of the tower segments into holes suitably located for such union, which tabs have prestressed reinforcement. and of transverse passive reinforcement designed to resist internal transverse stresses resulting from changes in the direction of internal longitudinal forces along these tabs.
  • this new telescopic construction method is essentially based on the joining of neighboring tower segments by means of a double-acting reverse knot composed of thick rings of structural concrete forming mutually complementary protruding tabs and recesses. ends of these segments without the use of metal tabs or auxiliary cranes employed in the state of the art.
  • the construction method refers to a tower 301 (Fig. 3-A) with a "H" height 312 of about 100m, formed with segments. 302, 303, 304, (base, intermediate, top), with variable length "h” 309, having constant outside diameters "D", but decreasing as the segments are located higher, assuming also that base tower segment 302 has a 10m diameter, reaching the top tower segment 304 with the diameter of 3m.
  • the thicknesses of the lower (402) and (404) upper wings forming the stiffening rings 601 (Fig. 6-A) of the ends of the tower segments are of the order of two to three times the thickness of the staves.
  • Cylindrical Modular 308 (Fig. 4) forming the average body of the tower segments, reaching thicknesses of 0.5m to 1.0m and the length of these rings is six to eight times the thickness of the 308 staves, reaching up to lengths of the order of 1.5m.
  • These stiffening rings are solidified with each other and with the body walls of the two tower segments by longitudinal pretension and circular transverse pretension.
  • the set of the two connecting rings at the ends of the neighboring tower segments forms a rigid knot, with two rings of individual heights of 1m to 1.5m and thicknesses of the order of 70cm to 1m, forming together a knot.
  • reverse behavior structural structure with longitudinal length of up to 3m, ensuring a significant increase in the transverse stiffness of the tower segments.
  • the thicknesses of these end rings are large enough that the set of connecting nodes 601 function as if they were a massive structure, allowing the structural operation of the tower to simulate the behavior of a beam. solid section, set in the foundation of the base.
  • the present method provides that the base 302, intermediate 303 and top 304 tower segments are constructed by overlapping the cylindrical modules 306, 307, 308 (Fig. 3 -B) around each other, directly on the foundation 310, forming a set of tower segments 305, which allows to elevate these tower segments that make up tower 301, inside the tower itself to be built without the use of high lift cranes and load capacities as required by conventional methods.
  • a set 305 of tower segments is formed directly on foundation 310, formed by: tower base with larger outer diameter 302; intermediate tower segments 303 of smaller diameter than that and successively smaller in relation to one another; and smaller diameter top tower segments 304, all resting directly on the foundation 310, disposed within each other, concentric with each other and relative to the tower axis 311, as shown in Figure 3-B.
  • a tower 301 is constructed of cylindrical tower segments 302, 303, 304, of varying lengths (h), forming a set 305 of tower segments that are individually lifted as shown in Figure 8 and superimposed on each other, with external diameters decreasing as tower segments are at higher levels.
  • this tower segment lifting process is initiated by intermediate segment 303 which in the set of segments 305 is adjacent to the outer segment, base tower segment 302. , and ends with top segment 304 which is in the center of segment set 305 and which is placed on top of tower 301.
  • Lifting the tower segments is by means of four to eight flexible lifting cables 504 (Fig. 5), with passive anchors on the underside of the outer projecting flap 402 located at the lower end of the tower segment 503 (fig. 5) It will be suspended. Lifting forces are applied by means of lifting jacks (505) installed on the upper face of the inner protruding flap 404 located at the upper end of the tower segment 502 which supports the lift and which, after lifting, will be positioned in the position below. of the segment that was lifted.
  • Tower segments 302, 303, 304 built into each other for lifting individually, one at a time, are diametrically spaced apart by gaps 709 (Fig. 7) on the order of five centimeters ( 5cm), which are sufficient so that, when lifting the tower segments, there is no interference between them.
  • flexible metal spacers (not shown) with a thickness of five centimeters (5cm) are placed at their ends, positioned in said clearance.
  • concrete shims 711 are placed within a horizontal clearance 710 of the order of 10 centimeters which is rigidly grouted at the conclusion of the operation.
  • FIG. 5 shows schematically the process of lifting tower segments, considering the arrangement of a sequence of three segments.
  • the upper tower segment 503 is in the process of lifting by means of flexible lifting cables 504, which are pulled by 505 Strand Jack lifting equipment installed on top of the recessed flap 404 of the upper end of the segment.
  • intermediate tower 502 which will remain lower than the end position of upper tower segment 503.
  • the flexible cables are anchored to the underside of the projecting tab 402 of the lower end of upper segment 503 being hoisted.
  • Intermediate tower segment 502 which supports the lifting of upper segment 503, is in its final position suspended by splicing bars 506 anchored on one side to the face.
  • bottom flap protruding 402 from the lower end of the intermediate turret segment 502, and on the other side at the upper face of the recessed upper flap 404 of the upper end of the lower turret segment 501 supporting all segments tower positions higher than its own position.
  • the lifting process carried out in isolation with each tower segment, is electronically controlled in real time.
  • the forces applied by each lifting jack 505 and the vertical displacements of each lifting cable 504 are controlled. the verticality of the rising segment.
  • the joining of two overlapping tower segments is made by contacting the upper face 401 of the thick strip forming the outer projecting flap 402 of the lower end of a tower segment 503. - which in the tower will be in a higher position - with the underside 403 of the thick strip forming the inner recessed flap 404 of the upper end of the tower segment which will be in the lowest position in the tower.
  • Figure 7 shows the complete arrangement of the prestressing cables responsible for the composition of the two-tower double joining knot formed by joining the protruding tab 402 of the upper segment 602 with the recessing flap 404 of the lower segment 603. .
  • Figure 6-A shows that the longitudinal prestress of the upper tower segment 602 is provided by the prestress cables 604, embedded in holes along its cylindrical wall, with anchors 605 located on the underside of flap 402
  • the longitudinal prestressing of the lower tower segment 603 is provided by the prestressing cables 606, embedded in holes along its cylindrical wall, with anchors 607 located on the upper face of the flap 404.
  • 404, of the tower segments that are connected by a double-acting reverse node - as these tower segments have different diameters - is made by intended bars 506, with lower anchor 608 on the underside of the lower end flap 402 upper segment 602, and upper anchor 609 on the upper face of flap 404 of the upper end of lower segment 603.
  • the longitudinal bending forces are anchored at the ends of each tower segment, producing a uniform field of vertical compression stresses, which will overlap the vertical compression stresses of the external compression loads applied to the tower. including the weight forces themselves.
  • Figure 6-A also shows the cables of the circumferential prestressing armature 610 of the lower flap region 404 of the upper end of the lower tower segment 603 and the arrangement of the circumferential reinforcement prestressing cables 611 of the lower flap region. 402 from the lower end of upper turret segment 602, which are required for balancing the inclined compression stress fields 623 and 624 shown in figure 6-B.
  • Figure 6-B shows the arrangement of the compressive stresses 616 and 617 of the concrete which, together with the circular pretensioning cables 610 and 611 constitute the basic internal structure of the rigid rings forming the connecting node of the segments.
  • Tower It should be noted that the two circular prestressing cables of the upper regions of the rigid rings are intended to complete the strength of the structure under the action of bending forces, shear forces and torsional forces acting on the bonding region of the neighboring rings. .
  • the complete structure of the connecting node of neighboring tower segments is shown in figure 7.
  • Figure 6-B shows the compressive stresses 620 on the midbody wall of the sustained tower segment, and 621 on the support segment wall, as well as the respective inclined connecting rods 623 and 624 leading to these stresses. compression to corresponding anchorages 608 and 609 of the connecting reinforcement of the two neighboring tower segments.
  • Figure 7 shows all the passive and intended reinforcement and their structural arrangement within the double reverse behavior node constructed with the thick bands in contact of two neighboring tower segments.
  • the supporting segment wall 603 surrounds the supported tower segment wall 602. Between them there is a clearance 709 of the order of five centimeters (5cm) to ensure that during the lifting operation there is no interference between the two tower segments. Later, at the end of the connection, this gap 709 is filled with high resistance grout consolidating the bonding of the two segments.
  • concrete shims 711 are placed within a horizontal clearance 710 of the order of 10 centimeters which is rigidly grouted at the conclusion of the operation.
  • the figure also shows the transverse concrete slab 701, joined to the lower end face of the supported tower segment, which transversely consolidates all the structural parts of that connecting region.
  • the slab 701 is supported by the anchor piece 702 located between the longitudinal prestressing reinforcement anchor 605 of that turret and the rigid ring connecting armature 608 of the two turret segments.
  • the circular prestressing cables 703 of the upper region of the thickened band 402 of the supported tower segment and the circular prestressing cables 704 of the upper region of the thickened band 404 of the supporting tower segment.
  • Figure 7 shows the circular prestressing reinforcement 706 and 705. which should be respectively placed along the average body of the two tower segments joined by the double reverse behavior node.
  • Figure 7 shows the stirrups of the passive reinforcing reinforcement 708 of the diametrical anchoring region of the circular prestressing cables 611, placed in the lower region of the thick end band of the supported tower segment, which support compressed concrete strips 623, already considered in the analysis of Fig. 6-B, which from the structural node 622 are inclined to withstand the vertical compressive stresses 620 from the loads 618 applied externally to the tower. which are supported at their base on the anchoring 608 of the rigid ring connecting armature forming the double-acting reverse knot and, at their top, are horizontally in the upper region of the rigid ring of the lower end of the segment. supported tower, which structurally simulates a virtual diametric compression band 617 (shown in Fig. 6-B).
  • Fig. 7 also shows the stirrups of the passive reinforcement reinforcements 707 of the diametrical anchor region of the circular prestressing cables 610, placed in the lower region of the thick band of the upper end of the supporting tower segment. , which horizontally support the lower end of the concrete strips 624 which at their upper end, in the region of the upper end anchoring 609 of the bars of the double-knuckle rigid ring connecting armature, are now inclined to support the vertical component of the force applied by these bars 506, inclined bands which at their top rest horizontally on the upper region of the rigid ring of the upper end of the supporting tower segment, which structurally simulates a virtual diametric compression band 616 ( shown in Fig. 6-B).
  • Figure 8 schematically summarizes the new construction method presented by this invention, showing, in (a) the set of tower segments 305, consisting of: larger outer diameter base tower segment 302; intermediates 303 of smaller diameters than one and successively smaller relative to each other, and smaller central end 304, constructed with different heights "h" 309, within the outer base segment 302, which is the largest diameter, directly on the foundation 310 and concentric with each other and relative to the tower axis 311.
  • Steps (b) through (e) show that the tower segment lifting begins with the intermediate segment 303, neighboring the outer base segment 302 of the assembly 305, and ends with the elevation of the central top segment 304, with which the construction of tower 301 at height 312 is completed.
  • Tower elements are constructed by coupling thin-wall cylindrical modules mounted on the construction site with industrially manufactured structural concrete elements that are consolidated by longitudinal bending.
  • industrially prefabricated parts are constructed in the shape of elongated cylindrical sectors, with lengths of the order of 10 to 20 meters and widths of the order of 3 meters, which on the jobsite are consolidated by transverse prestressing, thus constructing the segments. turrets desired.
  • Figure 5 shows generally the lifting according to the present invention. Considering a set of 3 successive tower segments 501, 502 and 503, it is assumed that segment 501 had previously been solidified to the base of the tower, and had also been used for the lifting operation of segment-1. -torre 502.
  • the general lifting operation is shown by the lifting of the tower segment 503, which initially comprised the concentric assembly of 3 tower segments, arranged within each other, concentric with each other and with respect to the axis.
  • the Strand Jack 505 is supported on the upper edge of the outer base segment 502, the lifting wire ropes 504 are routed through the respective openings of the inner upper flap 404 of the segment. base 502 and the openings of the lower outer flap 402 of neighboring segment 503 and anchored to the lower face of the lower outer flap 402 of segment 503 to be lifted. From this position is lifted until tower 503 reaches the height it should occupy in the tower, whereby the protruding portion 401 of the lower outer flap 402 is disposed under the recessed portion 403 of the upper inner flap 404 of segment 502, keeping, as indicated in Fig. 7, the gap 710 between them, by the presence of the concrete shims 711 which allow the subsequent grouting of the gap.
  • the connecting cables 504 are routed through the openings of the upper inner flap 404 of segment 504, and the openings of the lower outer flap 402 of segment 503, and, after proper grout hardening, the usual bending procedure is performed in the technique solidifying the two tower segments.
  • Strand Jack 505 and 504 ropes are disassembled and transferred to the upper edge of the newly erected middle tower segment 503 and the ropes are mounted in the openings of the lower outer flap 402 of the next tower segment to be erected.
  • Figures 9 to 14 refer to a second embodiment which results in a saving in the cost of ancillary equipment as well as a substantial saving in the time required at the tower assembly site.
  • the second configuration and constitution requires shorter assembly time by reducing the number of lifting and clamping operations of tower segments by means of strand jacks. Indeed, practice shows that considerable time is required to assemble each set of lifting means, as the flexible cables must be reliably and reliably arranged before the respective strand jacks are actuated. In addition, these are time consuming operations, as such equipment must work in sync to maintain the verticality and side clearances of the tower segment being lifted.
  • the tower consists of two superimposed telescopic trunk-conical tower segments, a first lower tower segment and a second upper tower segment, which has a diameter smaller than the lower one on the which point is supported, said point being provided with means for connecting and solidifying said segments, to form a single structure, said means consisting of a double structural node of reverse behavior, already detailed in connection with figures 6A, 6B and 7.
  • Both of these tower segments are assembled at the work site by stacking modular elements (staves) joined together and solidified by means of longitudinal (axial) pretension.
  • Fig. 9 shows the upper tower segment 304 assembled by stacking trunk-conical staves 301 and joined together by longitudinal pretension to form a solidary assembly.
  • This figure further shows a thick annular strip 303 located at the lower end of the tower segment protruding from its outer wall. Said annular band will be part of the double structural node of reverse behavior when the tower is armed.
  • the lower segment 302 is mounted by stacking the staves 305, formed by trunk-conical sectors joined by the vertical edges and solidified by circular transverse pretension.
  • Said tower segment 302 hereinafter referred to as "first" has its lower end consolidated to the foundation of the tower by longitudinal pretension, being provided at its upper end with a thick annular strip 307 projecting towards the which, together with the thick annular strip 303 of the lower end of the tower segment 302 - designated as the "second" tower segment - will form the double reverse behavior structural node.
  • Said annular strips each have a length of the order of up to 15 times the wall thickness of the tower segment and a thickness of up to three times the thickness of said wall.
  • the upper end of the first tower segment 302 is provided with a recessed thick annular strip 307 protruding into the tower, and the lower end of the second tower segment 304 is provided. a thick projecting annular strip 303 protruding out of the tower.
  • the second tower segment 304 has a total height greater than that the first tower segment 302, the portion 311 protruding above the top of the latter measuring between 3 and 15 meters, preferably 10 meters.
  • the upper end of said spare portion 311 comprises a metal module for supporting nacelle 309 (not shown in this figure) housing the electric power generator, which metal module (unreferenced) is consolidated to the tower segment by means of the longitudinal pretension.
  • Fig. 10 further shows the provision of a through hole 312 provided in said metal module which will be used in the installation and fixing of the elements associated with the generation of electric power, as will be described below.
  • an auxiliary winch 308 is attached to the metal module by means of a shaft (not shown) that is it fits into said hole 312.
  • Said auxiliary winch has the function of lifting and assembling the elements related to the electric power generation, such as the nacelle 309 containing the generator and the wind driven propeller (not shown).
  • nacelle 309 Once the lifting of nacelle 309 to the top of tower segment 304 is completed, it is positioned and secured to said metal module by known means. This second tower segment 304 is then lifted by means of strand jacks supported on the upper edge of the first tower segment 302, without the need for auxiliary structures, using the method described above in connection with Fig. 5. At the end of this lift, the appearance of the tower is that illustrated in Fig. 12, which shows nacelle 309 already attached to the top of it.
  • Fig. 14 is a cross-sectional view of said knot, which is consolidated by prestressing elements as shown in figures 6A, 6B and 7 and detailed in the corresponding description.
  • FIG. 14 This figure further shows the transverse concrete slab 310, integral with the lower end face of the upper tower segment, which transversely consolidates said segment. turrets providing increased rigidity in this region.
  • the slab 310 may be formed at the beginning of the assembly of the second tower segment 302 when it is still grounded. This saves additional time and labor on tower assembly.
  • the inner diameter 314 of said first strip 307 at the upper end of the lower tower segment 302 corresponds to the outer diameter of the lower end body. of the upper tower segment 304, and the outer diameter of said second strip 303 of the lower end of the upper turret 304 corresponds to the internal diameter of the upper end body of the lower turret 302.
  • the propeller lift begins, an operation shown in Fig. 13. For this, a cable that is pulled from the same winch 308 already used to lift and position the nacelle. The lower end of the cable is attached to the propeller 400, previously mounted on the ground. When the propeller lift is completed, it is installed on the wind generator shaft, thus completing the assembly assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Wind Motors (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

The invention relates to a structural material tower and to an assembly method, the tower being produced by civil engineering technology, and comprising at least one lower tower segment (302) and one upper tower segment (304) telescopically arranged, the segments being joined by reverse behaviour double nodes. The tower can comprise one or more intermediary tower segments (303, 501, 502, 503), all the tower segments being concentrically assembled on site on the ground. The reverse behaviour double nodes comprise a protruding annular band (310, 402) at the lower end of the tower segment and a recessed annular band (307, 404) at the upper end of the tower segment, these bands being compressed against each other and firmly attached by pretensioned steel elements (506). Also provided is an auxiliary winch (308) mounted at the upper end of the upper tower segment (304) for hoisting, once the tower is assembled, the nacelle (309) containing the generator and associated components, as well as the propeller (400).

Description

TORRE DE MATERIAIS ESTRUTURAIS E MÉTODO DE MONTAGEM  TOWER OF STRUCTURAL MATERIALS AND ASSEMBLY METHOD
Campo de Aplicação Application field
[001] Refere-se a presenta invenção aos sistemas de geração eólica de energia elétrica e, mais particularmente, às torres de sustentação das turbinas movidas pela ação do vento, ditas torres sendo fabricadas em material estrutural de acordo com técnicas de construção civil.  [001] The present invention relates to wind power generation systems and, more particularly, to the support towers of wind-driven turbines, said towers being made of structural material according to construction techniques.
Estado da Técnica  State of the Art
[002] A geração eólica de energia elétrica é baseada no emprego de turbinas movidas pela ação do vento, montadas em naceles instaladas no topo de torres cujas alturas tendem a ser cada vez mais altas. O interesse pelo aumento da altura das torres decorre do fato de que a velocidade do vento aumenta com a sua distância do solo e que a potência gerada pelas turbinas eólicas varia com o cubo da velocidade do vento. As torres com alturas até da ordem de cem (100) metros podem ser construídas inteiramente com estruturas de concreto, mas para isso é necessário empregar guindastes auxiliares com grande capacidade de carga e com alturas superiores à própria altura a torre a ser construída, guindastes esses que inviabilizam economicamente o aumento da altura das torres de concreto. Torres com maiores alturas, no estado da técnica, têm estruturas mistas em que as partes mais altas são construídas com estruturas metálicas.  [002] Wind power generation is based on the use of wind-driven turbines mounted on tops of tower towers whose heights tend to be higher and higher. Interest in increasing the height of the towers stems from the fact that wind speeds increase with their distance from the ground and that the power generated by wind turbines varies with the wind speed cube. Towers with heights of up to one hundred (100) meters can be built entirely with concrete structures, but for this it is necessary to use auxiliary cranes with large load capacity and with heights higher than the tower to be built itself, such cranes which make it impossible to increase the height of concrete towers economically. Higher towers, in the state of the art, have mixed structures in which the highest parts are built with metal structures.
[003] Os projetos de turbinas eólicas são regulados, em âmbito internacional, pelas normas do "INTERNATIONAL STANDARD IEC 61400-1 - "Wind Turbines - Design requirements ", International Electrotechnical Commission, Geneve, 2005.  [003] Wind turbine designs are internationally regulated by the standards of "INTERNATIONAL STANDARD IEC 61400-1 -" Wind Turbines - Design requirements ", International Electrotechnical Commission, Geneve, 2005.
[004] A tecnologia de geração eólica de eletricidade e as perspectivas de seu emprego estão descritas em " Milton Pinto - Fundamentos de energia eólica, LTC Livros Técnicos e Científicos, Rio de Janeiro, 2013 ". O potencial brasileiro de geração eólica de energia elétrica está relatado na publicação 'ATLAS DO POTENCIAL EÓLICO BRASILEIRO - Eletrobrás, 2.001 ".  [004] Wind power generation technology and prospects for its use are described in "Milton Pinto - Wind Power Fundamentals, LTC Technical and Scientific Books, Rio de Janeiro, 2013". The Brazilian potential for wind power generation is reported in the publication 'ATLAS DO BRASILEIRO WIND POTENTIAL - Eletrobrás, 2001'.
[005] Nas construções sujeitas à ação do vento, os esforços em suas estruturas crescem rapidamente com a altura. Por essa razão, as torres eólicas são construídas com forma aproximada tronco-cônica, e com diâmetro continuamente variável que diminui em direção a seu topo. [005] In constructions subject to wind action, the stresses on their structures grow rapidly with height. For this reason, the wind towers are built with an approximate trunk-conical shape, and with a continuously variable diameter that decreases towards their top.
[006] As torres para a geração eólica de energia elétrica podem ser construídas em terra firme ou em águas pouco profundas, marítimas ou em lagos de grandes dimensões. Em cada caso particular, a base de apoio é adaptada às condições ambientais específicas da construção, mas os procedimentos construtivos das partes elevadas são praticamente sempre da mesma natureza. Os diâmetros das bases das torres inteiramente ou parcialmente de concreto, são da ordem de uma dezena de metros, e os comprimentos buscam atingir e até ultrapassar uma centena de metros.  [006] Wind power towers can be built on land or in shallow water, offshore or in large lakes. In each particular case, the support base is adapted to the specific environmental conditions of the building, but the building procedures of the raised parts are almost always of the same nature. The base diameters of the towers, entirely or partially of concrete, are in the order of a dozen meters, and the lengths seek to reach and even exceed a hundred meters.
[007] Como as torres eólicas estão usualmente localizadas em sítios isolados, as torres de concreto são construídas com partes de concreto protendido, pré-fabricadas em instalações industriais existentes na região de realização da obra, não existindo viabilidade económica na construção de torres de concreto moldadas no local da obra. Essas partes pré -fabricadas são transportadas para a obra por meio de transporte rodoviário em virtude das particularidades desse tipo de construção. As dimensões das peças pré-fabricadas são limitadas pelas dimensões dos veículos rodoviários de transporte. Em princípio, no transporte rodoviário, sem batedores, a maior largura permitida para o veículo de transporte é de aproximadamente 3 metros. [007] As wind towers are usually located in isolated locations, concrete towers are constructed with prestressed concrete parts, prefabricated in existing industrial facilities in the region where the work was done, and there is no economic viability in the construction of concrete towers. molded on site. These prefabricated parts are transported to the site by road transport due to the particularities of this type of construction. The dimensions of prefabricated parts are limited by the size of road transport vehicles. In principle, in road transport without beaters, the largest allowable width for the transport vehicle is approximately 3 meters.
[008] No local de construção da torre, no estado da técnica, as peças pré-fabricadas são reunidas em aduelas modulares cilíndricas ou tronco-cônicas, consolidados por protensão transversal circular, com alturas de um a três metros. A seguir, esses módulos cilíndricos ou tronco-cônicos são reunidos longitudinalmente uns sobre os outros e consolidados por protensão de armaduras longitudinais, constituindo-se em segmentos-de-torre, com comprimentos da ordem de 10 a 20 metros. Alternativamente, as peças pré-fabricadas industrialmente são construídas com o formato de setores cilíndricos alongados, com comprimentos da ordem de 10 a 20 metros e larguras da ordem de 3 metros, que no canteiro de obra são consolidados por protensão transversal, construindo-se assim os segmentos- de-torre desejados.  [008] At the tower construction site, in the state of the art, the prefabricated parts are assembled into modular cylindrical or trunk-conical staves, consolidated by circular transverse prestressing, with heights of one to three meters. Thereafter, these cylindrical or trunk-conical modules are longitudinally assembled on top of each other and consolidated by prestressing longitudinal reinforcement, constituting tower segments with lengths of the order of 10 to 20 meters. Alternatively, industrially prefabricated parts are constructed in the form of elongated cylindrical sectors, with lengths of the order of 10 to 20 meters and widths of the order of 3 meters, which are consolidated on the jobsite by transverse prestressing, thus being constructed. the desired tower segments.
[009] Uma descrição geral do Estado da Técnica na construção de torres eólicas de concreto pode ser encontrada na internet, no documento " Concrete Towers for Onshore and Offshore Wind Farms - Conceptual Design Studies " -54 págs. The Concrete Center, UK, 2007. Nesse documento, a figura 1.6, situada na página 21, mostra claramente que a dificuldade existente nos métodos usuais de construção de torres de concreto com seção transversal cilíndrica ou tronco-cônica é constituída pela necessidade de emprego de guindastes de grande altura para a montagem das torres por sobreposição de seus segmentos- de-torre, uns sobre os outros. [009] An overview of the state of the art in the construction of concrete wind towers can be found on the Internet in the document "Concrete Towers for Onshore and Offshore Wind Farms - Conceptual Design Studies" -54 pgs. The Concrete Center, UK, 2007. In this document, Figure 1.6, on page 21, clearly shows that the difficulty in the usual methods of constructing cylindrical or trunk-conical concrete towers is the need to employ high height cranes for mounting the towers by overlapping their tower segments on top of each other.
[010] Nesse mesmo documento, a figura 1.8, situada na página 23, mostra que nos segmentos-de- torre de concreto, em suas extremidades são colocadas caixas anulares metálicas, feitas de "chapas pesadas" de aço inoxidável, que são solidarizadas às paredes dos segmentos de torre. Essas caixas anulares são destinadas à dupla função de ancoragem dos cabos da protensão longitudinal dos segmentos de torre, que são externos às paredes de concreto, e à ancoragem das barras de solidarização dos dois segmentos-de-torre vizinhos, garantindo que as extremidades das paredes entrem em contato direto, topo a topo.  In the same document, figure 1.8, located on page 23, shows that in the concrete tower segments, at their ends are placed metallic annular boxes, made of "heavy plates" of stainless steel, which are solidified to the walls of tower segments. These annular housings are intended for the dual function of anchoring the longitudinal prestressing cables of the tower segments, which are external to the concrete walls, and for anchoring the tie bars of the two neighboring tower segments, ensuring that the ends of the walls come into direct contact, end to end.
[011] No estado da técnica não existe tecnologia eficiente para a construção de torres eólicas telescópicas de concreto, com segmentos-de-torre cilíndricos, de diâmetros que diminuem à medida que devem ser colocados em posições mais altas na torre. No estado da técnica existem apenas métodos telescópicos de elevação de um único elemento de concreto, usualmente representado por uma caixa d' agua.  [011] In the prior art there is no efficient technology for the construction of telescopic concrete wind towers with cylindrical tower segments of decreasing diameters as they are to be placed higher in the tower. In the prior art there are only telescopic methods of lifting a single concrete element, usually represented by a water tank.
[012] Para essa finalidade, dentro da moderna literatura profissional relativa ao projeto e construção de estruturas de concreto armado e pretendido, podem ser citadas as publicações:  [012] To this end, within the modern professional literature on the design and construction of reinforced and intended concrete structures, publications may be cited:
[013] FUSCO, P.B. - Técnica de armar as estruturas de concreto, Ed. Pini, São Paulo. laed. 1995, 2a ed. 2013. [013] FUSCO, PB - Technique of reinforcing concrete structures, Ed. Pini, São Paulo. l the ed. 1995 to 2 ed. 2013
FUSCO, P.B. - Estruturas de concreto. Solicitações tangenciais. Ed. Pini, São Paulo, 2008.  FUSCO, P.B. - Concrete structures. Tangential requests. Ed. Pini, Sao Paulo, 2008.
[014] Para o entendimento do estado da técnica na construção de torres de geração eólica de energia elétrica, deve-se esclarecer que, do ponto de vista da engenharia de estruturas, as torres funcionam como vigas verticais em balanço, ou seja, como barras verticais retilíneas engastadas em seu "nó" de fundação. [014] In order to understand the state of the art in the construction of wind power towers, it should be clarified that, from a structural engineering point of view, the towers function as vertical balance beams, ie as bars. straight lines embedded in their foundation "knot".
[015] De modo geral, na construção de estruturas feitas com barras pré-fabricadas, de qualquer material, as seções transversais de ligação das barras são tratadas, no modelo teórico, como se elas fossem pontos virtuais de união dessas barras, que teoricamente são tratada como linhas, constituindo- se no que se entende por "nós" da estrutura . Todavia, esses "nós", de verdade, são formados por sistemas estruturais localizados, construídos até com material diferente do material empregado na pré-fabricação das barras da estrutura. In general, in the construction of structures made of prefabricated bars of any material, the connecting cross sections of the bars are treated, in the theoretical model, as if they were virtual points of union of these bars, which theoretically are treated as lines, constituting what is meant by "nodes" of the structure. However, these "knots" really are formed by localized structural systems, built even with material different from the material used in the prefabrication of the structure bars.
[016] No caso de construções de concreto, quando as partes da estrutura são inteiramente produzidas por pré-fabricação, não existe um recurso equivalente ao emprego de solda nas estruturas metálicas, não sendo exequível a ligação direta monolítica de elementos estruturais, entre os quais pudessem ser transmitidos eficientemente todos os tipos de esforços, esforços normais, esforços cortantes, esforços de flexão e esforços de torção. Quando são empregadas peças estruturais pré-fabricadas de concreto, as formas de ligação aparentemente diretas de tais peças pré-fabricadas, como no caso de pontes, os nós da estrutura são sempre de simples apoio relativo articulado, com vigas apoiadas em pilares por intermédio de aparelhos de apoio, ou no caso de prédios industriais, com vigas apoiadas em consolos curtos salientes das faces dos pilares, não existindo solidarização monolítica dos elementos que são unidos.  [016] In the case of concrete constructions, when the parts of the structure are entirely prefabricated, there is no equivalent feature to the use of welding in metal structures, and the monolithic direct bonding of structural elements is not feasible. all types of forces, normal forces, shear forces, bending forces and torsional forces could be transmitted efficiently. When prefabricated structural parts of concrete are employed, the apparently direct forms of connection of such prefabricated parts, such as bridges, the structure nodes are always of simple articulated relative support, with beams supported by columns by means of support devices, or in the case of industrial buildings, with beams supported by short consoles protruding from the pillar faces, there being no monolithic solidarity of the elements that are joined.
[017] No caso de segmentos de paredes delgadas de concreto, planas ou cilíndricas, a união direta monolítica pode ser realizada com emprego de protensão, longitudinal ou transversal, que comprima entre si as seções transversais das partes pré-fabricadas. Esse tipo de união pode ser tão resistente quanto as próprias paredes solidarizadas.  [017] In the case of thin, flat or cylindrical concrete wall segments, the monolithic direct coupling may be performed using longitudinal or transverse prestressing which compresses the cross sections of the prefabricated parts. This kind of bonding can be as sturdy as the solidarity walls themselves.
[018] Todavia, se o que se pretende aplicar é uma força paralela ao plano médio da parede, mas que não esteja contida nesse plano médio, como no caso de forças de protensão aplicadas em abas salientes da parede, essa aplicação produz esforços de flexão na aba de apoio, que se transmitem integralmente à parede de apoio, propagando-se ao longo dessa parede, até ser equilibrado por um elemento rígido ligado à fundação da estrutura, ou pela própria fundação. Nesse caso, a parede deve ser suficientemente resistente para suportar a flexão que lhe vai ser aplicada, e suficientemente rígida para evitar uma rotação por flexão da aba de carregamento, que possa provocar a ruína funcional da construção. However, if what is to be applied is a force parallel to the median plane of the wall but not contained in that median plane, as in the case of prestressing forces applied to protruding tabs on the wall, this application produces bending forces. in the support flap, which are transmitted integrally to the support wall, spreading along that wall, until it is balanced by a rigid element connected to the foundation of the structure, or by the foundation itself. In such a case, the wall must be strong enough to withstand the bending to be applied to it, and sufficiently rigid to prevent a flexural rotation of the loading flap that could cause functional ruin of the construction.
[019] Uma solução proposta para esse problema foi publicada pela Concrete Center UK 2007, que consiste no emprego de caixas metálicas rígidas de aço inoxidável nas extremidades de segmentos- de- torre tronco-cônicos, nas quais são embutidas as extremidades das parede de concreto. O emprego de segmentos-de-torre tronco-cônicos foi decorrente da necessidade de que, nas seções de contato, ambos os segmentos-de-torre tivessem o mesmo diâmetro. O emprego de anéis metálicos rígidos decorre da necessidade de equilibrar a flexão provocada pela excentricidade dos cabos de protensão de um dos segmentos, em relação à superfície média da parede desse mesmo segmento, pudesse ser equilibrada pela flexão provocada pela excentricidade dos cabos de protensão do outro segmento, em relação a superfície média de sua própria parede. A proposta publicada pela Concrete Center UK 2007 mostrou a necessidade de anéis metálicos rígidos para evitar a flexão nas paredes de concreto dos dois segmentos-de-torre unidos por essas caixas de aço. No entanto, como as caixas de ambas as extremidades que se unem têm o mesmo diâmetro, o método construtivo proposto não permite o içamento telescópico dos segmentos-de- torre, pois ambas as caixas estão situadas dentro da torre. [019] A proposed solution to this problem has been published by Concrete Center UK 2007, which consists of the use of rigid stainless steel housings at the ends of trunk-conical tower segments into which the ends of the concrete wall are embedded. . The use of stem-conical tower segments resulted from the need for both contact segments to have the same diameter in the contact sections. The use of rigid metal rings stems from the The need to balance the flexure caused by the eccentricity of the prestressing cables of one of the segments, relative to the average wall surface of that same segment, could be balanced by the flexion caused by the eccentricity of the prestressing cables of the other segment, relative to the average surface area. your own wall. The proposal published by Concrete Center UK 2007 showed the need for rigid metal rings to prevent bending in the concrete walls of the two tower segments joined by these steel housings. However, since the boxes at both ends that join have the same diameter, the proposed construction method does not allow telescopic lifting of the tower segments, as both boxes are located inside the tower.
[020] No caso de estruturas de aço, a ligação direta das faces das peças em contado, isto é, a ligação direta dos nós de extremidade das peças em contato, pode ser feita diretamente com o emprego de solda ou, de modo indireto, por meio de sistemas locais especializados de união com peças parafusadas entre si e com as barras da estrutura.  [020] In the case of steel structures, the direct connection of the faces of the contact parts, ie the direct connection of the end nodes of the contacting parts, may be done directly by welding or, indirectly, by welding. through specialized local joining systems with parts screwed together and with the frame bars.
[021] No caso de estruturas de concreto, a união monolítica das extremidades de diferentes peças inteiramente pré -fabricadas exigiria o emprego de "peças especiais de união", que passariam a constituir- se em uma espécie de "nós duplos rígidos" da estrutura assim formada. Tais peças especiais de união, que poderiam ter dimensões bastante significativas, passariam a fazer o papel teórico de um "nó duplo", por ficar ligado simultaneamente aos nós de extremidade das duas peças pré-moldadas independentemente, e rígidos, por eliminarem todos os graus de liberdade relativa entre essas extremidades, tornando monolítica a união por ele realizada.  [021] In the case of concrete structures, the monolithic joining of the ends of different entirely prefabricated parts would require the use of "special joining parts", which would become a kind of "rigid double knots" of the structure. thus formed. Such special joining pieces, which could have quite significant dimensions, would now play the theoretical role of a "double knot" by being simultaneously connected to the end nodes of the two independently rigid pieces and eliminating all degrees. of relative freedom between these ends, making the union he held monolithic.
[022] Em uma interpretação simplificada desse problema estrutural tridimensional de ligação de peças pré-fabricadas, pode-se analisar a estrutura como se ela fosse uma viga reta, feita com segmentos pré-fabricados. [022] In a simplified interpretation of this three-dimensional structural problem of prefab bonding, one can analyze the structure as if it were a straight beam made of prefabricated segments.
[023] Na construção de torres de concreto de acordo com o estado da técnica, o nó duplo é formado por duas caixas de aço, e tem o que se pode entender como um comportamento estrutural direto, pois quando dois segmentos-de-torre tendem a se comprimir, um contra o outro, os nós de extremidade do "nó" duplo também tendem a se aproximar entre si e, vice-versa, quando os segmentos-de-torre tendem a se afastar, como na situação de levantamento com o auxílio de guindastes externos, os nós de extremidade do "nó" duplo também tendem se afastar um do outro.  [023] In the construction of concrete towers according to the state of the art, the double knot is formed by two steel boxes, and has what can be understood as a direct structural behavior, because when two tower segments tend to to compress against each other, the endpoints of the double "knot" also tend to approach each other and, vice versa, when the tower segments tend to move apart, as in the lifting situation with the With the aid of external cranes, the double knot end nodes also tend to move away from each other.
[024] Pelo contrário, no caso de construções telescópicas, o funcionamento telescópico exige que os nós de ligação tenham o comportamento oposto, ou seja, que tenham o "comportamento reverso" caracterizado pelo fato de que as extremidades dos segmentos-de-torre se afastem quando elas tendem a ser comprimidas entre si e, vice-versa, em que os segmentos-de-torre tendem a ser tracionados quando os nós de extremidade do nó duplo de comportamento reverso tendem a se comprimir.  On the contrary, in the case of telescopic constructions, telescopic operation requires that the connecting nodes have the opposite behavior, that is, the "reverse behavior" characterized by the fact that the ends of the tower segments are away when they tend to be compressed together, and vice versa, where tower segments tend to be pulled when the reverse-knot double-node end nodes tend to compress.
[025] O nó duplo de comportamento reverso é o nó típico do comportamento telescópico. [025] The double node of reverse behavior is the typical node of telescopic behavior.
[026] O método de solidarização dos segmentos-de-torre com nós de comportamento direto foi reapresentado pelo Concrete Center em 2007, com a mesma proposta recomendada pelo próprio Concrete Center, em sua publicação de 2005, ISBN 1-904818-34-X que, em sua figura 2, à página 5, mostra o emprego de caixas anulares metálicas de grande rigidez para a união de segmentos-de-torre de mesmo diâmetro. Esta solução, evidentemente, não pode ser aplicada a levantamento por um método telescópico, uma vez que ambas as abas metálicas estão dispostas por dentro da seção transversal da torre. [026] The method of solidifying tower segments with direct behavior nodes was re-presented by Concrete Center in 2007, with the same proposal recommended by Concrete itself. Center, in its 2005 publication, ISBN 1-904818-34-X which, in its figure 2, on page 5, shows the use of very rigid metal ring housings for joining tower segments of the same diameter. This solution, of course, cannot be applied to lifting by a telescopic method since both metal tabs are disposed within the tower cross section.
[027] Para analisar a construção de torres eólicas, é importante salientar que, em princípio, as estruturas das torres funcionam como se fossem vigas em balanço engastadas na base, suportando seu próprio peso e o peso da turbina colocada em seu topo, além da ação do vento na turbina e no próprio corpo da torre. Todavia, a estrutura da torre não é uma viga usual com seção transversal maciça. A estrutura da torre, formada pelos segmentos-de-torre constitui-se em um sistema estrutural classificado como casca delgada, que apresenta o risco de ruína por instabilidade transversal da parede de seus anéis constitutivos, em virtude dos elevados esforços de torção existentes em suas paredes delgadas. [027] In order to analyze the construction of wind towers, it is important to note that, in principle, the tower structures function as if they were cantilevered beams in the base, supporting their own weight and the weight of the turbine placed on top, besides the wind action on the turbine and on the tower body itself. However, the tower structure is not a usual beam with massive cross section. The tower structure, formed by the tower segments, constitutes a structural system classified as thin shell, which presents the risk of ruin due to transverse instability of the wall of its constituent rings, due to the high torsional forces existing in its Thin walls.
[028] Desse modo, no estado da técnica, para eliminar essa deficiência intrínseca de resistência do sistema estrutural das torres de parede delgada, o necessário enrijecimento transversal dos segmentos-de- torre, como mostrado nos documentos publicados pelo Concrete Center UK, 2007/2005, é realizado também por meio da estrutura formada pelas duas caixas anulares metálicas existentes na união das duas extremidade dos diferentes segmentos-de-torre, fazendo com que o sistema estrutural da torre simule o comportamento estrutural das vigas de seção transversal maciça. [028] Thus, in the state of the art, to eliminate this intrinsic strength deficiency of the structural system of thin-walled towers, the necessary transverse stiffening of tower segments, as shown in the documents published by Concrete Center UK, 2007 / 2005, is also realized through the structure formed by the two metallic annular boxes existing in the union of the two ends of the different tower segments, making the structural system of the tower simulate the structural behavior of the massive cross section beams.
[029] Em resumo, no estado da técnica, a segurança estrutural das torres eólicas de concreto é garantida pelo enrijecimento transversal de seus segmentos-de-torre, dado pelo nó duplo de comportamento direto que liga as extremidades dos segmentos-de-torre. Note-se que o nó duplo de comportamento direto impede a elevação telescópica dos segmentos-de-torre e exige que a superposição dos segmentos-de-torre seja feita com o emprego de guindastes externos de altura operacional maior que a altura da própria torre a ser construída.  [029] In summary, in the state of the art, the structural safety of concrete wind towers is ensured by the transverse stiffening of their tower segments, given by the straight-acting double knot that connects the ends of the tower segments. Note that the straight-acting double knot prevents the telescopic elevation of the tower segments and requires that the tower segments overlap with the use of external cranes higher than the height of the tower itself. be built.
[030] A Fig. 1 exemplifica um dos procedimentos básicos que, de acordo com o estado da técnica, são empregados na construção de torres de concreto destinadas à geração eólica de energia elétrica. Para a construção da torre com altura total 109, os elementos pré-fabricados 102, em forma de setor semicônico ou semicilíndrico, são levados para o canteiro de obra por transporte rodoviário 104 e aí são unidos por procedimentos do Estado da Técnica, formando aduelas tronco-cônicas 105, de altura 106, que por sua vez são unidas por procedimentos usuais formando segmentos-de-torre 107 de altura 108. De modo geral, as aduelas tronco-cônicas ou cilíndricas 105 são montadas com alturas 106 variando de um a três metros. Com isso, os segmentos-de-torre 107 podem ter alturas 108 que variam usualmente de dez a vinte metros. Para a montagem da torre, os segmentos de torre 107, que dispõem de anéis estruturais metálicos de reforço em ambas as extremidades (não ilustrados), devem ser suspensos e colocados em suas respectivas posições de projeto por guindastes 110, de altura operacional 111 maior que a altura total 109 da torre a ser construída. Durante a construção da torre, os segmentos-de-torre 107, após serem colocados em suas posições finais, são ligados entre si por meio de barras de aço que unem as abas metálicas existentes na face interna das duas extremidades de ambos os segmentos-de-torre que se juntam. Desse modo, essas barras de ligação solidarizam o conjunto de segmentos-de-torre entre si. Após essa solidarização, os equipamentos 112 de geração de energia elétrica são içados pelo guindaste e colocados sobre o segmento- de-torre 101 mais alto. [030] Fig. 1 exemplifies one of the basic procedures which, according to the state of the art, are employed in the construction of concrete towers for wind power generation. For the construction of the tower with full height 109, the prefabricated elements 102, in the form of a semiconic or semi-cylindrical sector, are taken to the jobsite by road transport 104 and are joined therein by State of the art procedures, forming trunk staves. 105, height 106, which in turn are joined by usual procedures forming 107 tower segments 107 height. In general, the frusto-conical or cylindrical staves 105 are mounted with heights 106 ranging from one to three. meters. Thus, tower segments 107 may have heights 108 which usually range from ten to twenty meters. For tower mounting, tower segments 107, which have metal reinforcing structural rings at both ends (not shown), must be suspended and placed in their respective design positions by cranes 110, operating height 111 greater than the total height 109 of the tower to be built. During tower construction, the tower segments 107, after being placed in their final positions, are connected to each other by means of steel bars joining the metal tabs in the tower. inner face of the two ends of both tower segments joining together. In this way, these connecting bars solidify the set of tower segments with each other. After this solidarity, the power generation equipment 112 is hoisted by the crane and placed on the highest tower segment 101.
[031] Um caminho óbvio para evitar o emprego de guindastes de grande porte e de grande altura para a suspensão dos segmentos-de-torre é o emprego de estruturas telescópicas associadas ao uso de nós duplos de comportamento reverso. [031] An obvious way to avoid the use of large and tall cranes for tower suspension is the use of telescopic structures associated with the use of double reverse behavior nodes.
[032] O emprego de estruturas telescópicas surgiu com os primórdios da revolução industrial. Desde o aperfeiçoamento do telescópio, feito por Galileu Galilei no início do século XVII, a construção de estruturas telescópicas em instrumentos, aparelhos e máquinas floresceu ao longo de todo mundo civilizado, até se chegar aos copos metálicos telescópicos dos escoteiros da primeira metade do século XX, às antenas telescópicas de rádio dos automóveis e escadas de incêndio da segunda metade do século XX, e aos artefatos telescópicos de alumínio e de plástico estrutural do século XXI.  [032] The use of telescopic structures arose with the dawn of the industrial revolution. From the improvement of the telescope by Galileo Galilei in the early 17th century, the construction of telescopic structures on instruments, apparatus and machines has flourished throughout the civilized world, until reaching the telescopic metal cups of the first half of the twentieth century. to the radio telescopic antennas of cars and fire ladders of the second half of the twentieth century, and the telescopic artifacts of aluminum and structural plastic of the 21st century.
[033] O emprego de estruturas telescópicas em construções da Engenharia Civil já ocorre de longa data. Assim, por exemplo, a patente norte-americana US4,312, 167 de 26/01/1982 privilegia um método de construção de torres e das respectivas caixas d' agua de grande porte, o qual emprega dispositivos de montagem telescópica, que foram inventados para esse tipo específico de construção. [033] The use of telescopic structures in civil engineering constructions has been in existence for a long time. Thus, for example, US Patent 4,312,167 of January 26, 1982 privileges a method of building towers and their large water tanks which employs telescopic mounting devices which were invented. for this specific type of construction.
[034] Do mesmo modo, a patente norte americana US4,486,989 de 11/12/1984 privilegia um método de construção de caixas d'agua elevadas por método telescópico adequado á construção considerada. Likewise, US patent 4,486,989 of 12/11/1984 favors a method of constructing raised water tanks by telescopic method suitable for the construction under consideration.
[035] De maneira semelhante, a patente norte-americana US4,660,336 de 18/04/1987 privilegia um método de construção de caixa d'agua elevada e da respectiva torre realizada por um processo telescópico cujos elementos inventados são pertinentes ao tipo de construção considerada.  Similarly, U.S. Patent 4,660,336 of April 18, 1987 privileges a method of constructing a raised water tank and its tower by a telescopic process whose invented elements are relevant to the type of construction. considered.
[036] Uma tentativa de apresentar uma tecnologia de construção de torres de geração eólica de energia elétrica, com o emprego de elevação telescópica dos segmentos-de-torre, foi feita com a patente britânica GB2451191 publicada em 27/03/2013, com prioridade de 18/07/2007. Esta patente refere-se à construção de torres offshore em águas pouco profundas. De acordo com o desenho (Fig. 10 A daquele documento), os segmentos-de-torre, após serem construídos, são transportados na horizontal, por flutuação, e colocados em posição vertical no local da obra. Na fase inicial da construção, os segmentos- de-torre são dispostos sobre a fundação da torre em um arranjo concêntrico entre si e com o eixo da torre, cuja configuração é adequada à elevação telescópica. A elevação dos segmentos-de-torre, de acordo com o desenho (Fig. 11 do documento citado) e do relatório, não é feita pelo içamento telescópico dos sucessivos segmentos-de-torre. Pelo contrário, em cada etapa de levantamento dos segmentos-de-torre, a operação é feita por meio de macacos hidráulicos de levantamento por empurra, aplicados em plataformas metálicas de apoio do conjunto de abas salientes dos segmentos ainda não levantados, construídas no interior da torre, com diâmetros adequados a cada etapa particular. Na extremidade superior dos segmentos-se-torre existe um elemento (detalhe 56, figuras 3B e 10C), voltado para o interior da torre, mas com a finalidade única de servir de guia de fim de curso. E importante assinalar que o apoio dos segmentos-de-torre sobre os segmentos que lhes ficam imediatamente abaixo é feito por peças metálicas inclinadas (detalhe 96, Fig. 10C) cujo apoio e funcionamento não são explicados, sendo informado apenas que elas transmitem as cargas vindas da aba inferior dos segmento-de-torre a recessos, também não descritos, existentes na periferia do topo da parede do segmento-de-torre posicionada mais baixo que aquele em elevação, não existindo nenhum elemento estrutural de enrijecimento transversal das regiões de ligação dos sucessivos segmentos-de-torre. [036] An attempt to introduce a technology for the construction of wind power towers, using telescopic elevation of tower segments, was made with British patent GB2451191 published on 27/03/2013, with priority. of July 18, 2007. This patent relates to the construction of shallow water offshore towers. According to the drawing (Fig. 10A of that document), the tower segments, after being constructed, are transported horizontally by floatation and placed upright at the job site. In the initial phase of construction, the tower segments are arranged on the tower foundation in a concentric arrangement with each other and with the tower axis, whose configuration is suitable for telescopic lifting. Lifting the tower segments according to the drawing (Fig. 11 of the cited document) and the report is not done by telescoping the successive tower segments. On the other hand, at each tower segment lifting step, the operation is performed by means of hydraulic push-up jacks, which are applied to metal support platforms of the not-raised segment projecting flap assembly, built inside the tower. tower, with diameters suitable for each particular step. At the upper end of the In tower segments there is an element (detail 56, figures 3B and 10C) facing the interior of the tower but for the sole purpose of serving as a limit switch. It is important to note that the support of the tower segments on the segments immediately below them is made by inclined metal parts (detail 96, Fig. 10C) whose support and operation are not explained, only being informed that they transmit the loads. from the underside of the tower segments to undisclosed recesses in the periphery of the top of the tower segment wall positioned lower than that in elevation, and there is no structural stiffening member of the connecting regions successive tower segments.
[037] Os métodos de construção das torres de sistemas de geração eólica de energia elétrica, feitas de aço ou de concreto estrutural, sempre compreendem as mesmas três fases seguintes: construção de segmentos-de-torre ao nível da base, içamento desses segmentos colocando-os em posições sobrepostas, e solidarização da união desses segmentos em suas posições finais.  [037] The methods of building the wind power system towers, made of steel or structural concrete, always comprise the same three phases as follows: construction of base-level tower segments, lifting of these segments by placing them in overlapping positions, and solidarity of the union of these segments in their final positions.
[038] Da mesma maneira que na fabricação de outros sistemas telescópicos, na construção telescópica de torres é preciso que os segmentos-de-torre tenham uma conformação geométrica que permita o seu posicionamento uns dentro dos outros, em posições concêntricas entre si e em relação ao eixo da torre a ser construída, e que sejam capazes de resistir aos esforços a que vão ser sujeitos durante a construção e durante sua vida útil, na qual a torre deve funcionar como um sistema estrutural solidário de comportamento monolítico.  Just as in the manufacture of other telescopic systems, in the telescopic construction of towers it is necessary that the tower segments have a geometric conformation that allows their positioning within each other, in concentric positions with respect to each other and in relation to each other. to the tower axis to be built, and capable of withstanding the stresses to which they will be subjected during the construction and during its useful life, in which the tower must function as a solidary structural system of monolithic behavior.
[039] Da mesma maneira que na fabricação de outros sistemas telescópicos, para a instalação dos dispositivos de içamento dos segmentos-de-torre e para o trav amento desses movimentos quando esses segmentos atingem suas posições especificadas no projeto, os segmentos-de-torre devem ser dotados de abas salientes em suas extremidades, com a aba da extremidade de avanço voltada para dentro da torre, e a aba da extremidade de retaguarda voltada para fora da torre.  [039] As in the manufacture of other telescopic systems, for the installation of tower segment lifting devices and to stop these movements when these segments reach their specified design positions, tower segments they shall be provided with projecting tabs at their ends, with the forward end tab facing into the tower, and the rear end tab facing away from the tower.
[040] Da mesma maneira que na fabricação de torres por outros diferentes métodos construtivos que empregam a união de segmentos-de-torre pré-fabricados, em um método telescópico também é indispensável que o conjunto de segmentos interligados resulte em um sistema estrutural integrado, com comportamento estrutural de viga em balanço engastada na base. Para isso, as uniões dos diferentes segmentos-de-torre devem comportar-se como nós rígidos da estrutura, que possam garantir um comportamento monolítico do sistema estrutural.  Just as in the manufacture of towers by other different construction methods employing the union of prefabricated tower segments, in a telescopic method it is also indispensable that the set of interconnected segments result in an integrated structural system, with structural behavior of cantilevered beam at base. For this, the joints of the different tower segments must behave as rigid nodes of the structure, which can guarantee a monolithic behavior of the structural system.
[041] A figura 2- A do presente pedido ilustra os problemas básicos existentes nas uniões de segmentos-de-torre das torres destinadas à geração eólica de energia elétrica. Essa figura mostra a flexão e a ruptura provocadas por forças aplicadas a flanges delgadas salientes, paralelamente às paredes que as sustentam. A flexão das abas é integralmente propagada para a parede de sustentação, independentemente da existência e da posição de eventuais enrijecedores triangulares ("mãos francesas") colocados perpendicularmente à parede de sustentação. [041] Figure 2-A of this application illustrates the basic problems with tower tower junctions for wind power generation. This figure shows the flexing and rupture caused by forces applied to protruding thin flanges parallel to the supporting walls. The flexing of the flaps is fully propagated to the support wall, regardless of the existence and position of any triangular stiffeners ("French hands") placed perpendicular to the support wall.
[042] A figura 2-B apresenta uma solução do estado da técnica, recomendada pelo Concrete Center em suas publicações (2007/2005) já citadas anteriormente, para ser aplicada à união de paredes delgadas de torres cilíndricas construídas por superposição dos segmentos-de-torre com emprego de guindastes de grande altura. As paredes cilíndricas dos segmentos-de-torre dispõem em sua extremidade superior de um anel metálico rígido 201, e em sua extremidade inferior de um anel metálico rígido 202. Os anéis metálicos dos segmentos-de-torre vizinhos, com iguais diâmetros, são ligados por barras de aço 506 que aplicam forças 203 . De forma análoga, os cabos 204 de pretensão longitudinal são ancorados em ambos os anéis metálicos da extremidades de cada segmento-de-torre. A cada barra de união e cabo de pretensão correspondem trechos 205 ao longo do perímetro das abas salientes 208 dos anéis rígidos. As barras de ligação aplicam binários de torção concentrados, com representação intuitiva 206, agindo no sentido horário nos setores do anel metálico 202, e aplicam binários de torção concentrados, com representação intuitiva 207, agindo no sentido anti -horário nos setores do anel metálico 201. [042] Figure 2-B presents a state of the art solution recommended by Concrete Center. in their previously cited publications (2007/2005), to be applied to the union of thin walls of cylindrical towers constructed by overlapping the tower segments with the use of tall cranes. The cylindrical walls of the tower segments have at their upper end a rigid metal ring 201, and at their lower end a rigid metal ring 202. The metal rings of neighboring tower segments of equal diameter are connected. by steel bars 506 applying forces 203. Similarly, the longitudinal bias cables 204 are anchored to both metal end rings of each tower segment. Each tie bar and bias cable corresponds to sections 205 along the perimeter of the protruding tabs 208 of the rigid rings. The tie bars apply concentrated torsion torques 206 with an intuitive representation acting clockwise on the metal ring sectors 202 and apply concentrated torsional torques torque with an intuitive representation 207 acting anti-clockwise on the metal ring sectors 201 .
[043] Essa figura 2-B mostra o efeito global desses binários de torção, sobre o anel metálico 201 da extremidade inferior do segmento-de-torre que participa da união, por meio da representação vetorial 209 desses binários. Embora a resultante desses binários ao longo de todo o perímetro da aba 208 seja nula, a resultante 210 ao longo da metade esquerda da aba 208 mostra que o efeito global corresponde a um binário de flexão 211, aplicado virtualmente na extremidade esquerda do anel 201. Na metade direita da aba 208, o efeito global dos binários localizados de torção é simétrico ao efeito anterior. A resultante 212 dos binários de torção também corresponde a um binário virtual de flexão 213 aplicado na extremidade direita do anel 211. O conjunto desses binários de flexão simulam, para cada par de segmentos 205 simetricamente dispostos ao longo da aba rígida 208, barras de flexão 214 e 215 na direção definida por cada par de segmentos considerado.  [043] This figure 2-B shows the overall effect of these torsional torques on the metal ring 201 of the lower end of the joining tower segment by the vector representation 209 of these torques. Although the resultant of these torques along the entire perimeter of flap 208 is zero, the resultant 210 along the left half of flap 208 shows that the overall effect corresponds to a bending torque 211 applied virtually to the left end of ring 201. In the right half of tab 208, the overall effect of localized torsional torques is symmetrical to the previous effect. The resulting torsional torque 212 also corresponds to a virtual bending torque 213 applied to the right end of ring 211. The set of these bending torques simulate, for each pair of segments 205 symmetrically arranged along rigid tab 208, bending bars. 214 and 215 in the direction defined by each pair of segments considered.
[044] O efeito conjunto dos binários de torção 206 e 207 que agem em sentidos opostos tende a provocar uma abertura de rotação entre as seções transversais dos anéis rígidos 202 e 201, obrigando a que haja uma rotação igual entre as seções transversais das paredes de concreto a eles respectivamente solidarizadas. Desse modo, uma parte dos binários de torção 206 e 207, que deveriam equilibrar-se entre si, são transferidos como momentos fletores para as paredes de concreto ligados aos anéis do nó duplo de união dos segmentos-de-torre. Quanto maior é a rigidez dos anéis 201 e 202, menor é a rotação relativa por torção dos anéis metálicos entre si, e menor é a flexão que solicita as paredes de concreto dos segmentos-de-torre. Um fenómeno da mesma natureza, mas em sentidos contrários aos anteriores, ocorre com as forças aplicadas aos anéis 201 e 202 pelos cabos de pretensão longitudinal dos segmentos-de- torre.  [044] The joint effect of torsion torques 206 and 207 acting in opposite directions tends to cause a rotation opening between the cross sections of the rigid rings 202 and 201, forcing an equal rotation between the cross sections of the concrete to them respectively in solidarity. In this way, a portion of the torsional torques 206 and 207, which should balance each other, are transferred as bending moments to the concrete walls attached to the rings of the twin junction of the tower segments. The greater the stiffness of the rings 201 and 202, the lower the relative torsional rotation of the metal rings to each other, and the less bending that the concrete walls of the tower segments require. A phenomenon of the same nature, but in opposite directions, occurs with the forces applied to the rings 201 and 202 by the longitudinal pretension cables of the tower segments.
[045] Na tentativa de apropriação de conhecimentos existentes a respeito da movimentação telescópica de elementos de uma construção, embora empregando apenas técnicas já conhecidas da Engenharia Civil, foram requeridos privilégios de invenção para tais conhecimentos através do pedido de patente US2012/0159875A1 "TELESCÓPIO TOWER ASSEMBLY AND METHOD " de 28/06/2012, que descreve o método construtivo telescópico como se fosse uma novidade na indústria da construção civil. [046] Os desenhos apresentados no documento citado não apresentam qualquer detalhe referente às dimensões das abas salientes, que são mostradas apenas em desenhos esquemáticos com dimensões muito pequenas, que não mostram se podem ter dimensões adequadas à formação de nós rígidos necessários às funções a serem por eles exercidas. Em particular, os detalhes das abas mostrados em desenhos com dimensões um pouco maiores, em suas figuras 3 e 4, que também são esquemáticos e da mesma natureza que os detalhes mostrados nas figuras 1, 2, 9, e 10, revelam-se inadequados à união de peças de concreto estrutural, por não terem arranjo estrutural que possa resistir aos esforços de flexão que agem nessas uniões, nem rigidez suficiente para garantir o monolitismo do comportamento estrutural. Em resumo, a ausência de anéis rígidos, como os anéis formados pelas caixas metálicas analisadas nos parágrafos anteriores, inviabiliza este método construtivo tanto para estruturas de aço quanto para as de concreto. [045] In an attempt to appropriate existing knowledge about the telescopic movement of elements of a building, while employing only known Civil Engineering techniques, invention privileges were sought for such knowledge through US2012 / 0159875A1 "TOWER TELESCOPE". ASSEMBLY AND METHOD "of 28/06/2012, which describes the telescopic construction method as new to the construction industry. [046] The drawings presented in the cited document do not show any detail regarding the dimensions of the protruding tabs, which are shown only in very small schematic drawings, which do not show whether they can be of adequate dimensions to form rigid knots necessary for the functions to be performed. exercised by them. In particular, the details of the tabs shown in slightly larger drawings in Figures 3 and 4, which are also schematic and of the same nature as the details shown in Figures 1, 2, 9, and 10, are inadequate. the joining of structural concrete pieces, because they have no structural arrangement that can resist the bending efforts acting on these joints, nor enough rigidity to guarantee the monolithism of the structural behavior. In short, the absence of rigid rings, such as the rings formed by the metal boxes analyzed in the previous paragraphs, makes this construction method unfeasible for both steel and concrete structures.
Objetivos da Invenção  Objectives of the Invention
[047] Em vista do exposto, tem a presente invenção o objetivo de resolver o problema de como realizar esses anéis rígidos de concreto, com diâmetros diferentes que permitem o içamento telescópico dos segmentos de torre.  In view of the foregoing, the present invention aims to solve the problem of how to make these rigid concrete rings, with different diameters that allow the telescopic lifting of the tower segments.
[048] Outro objetivo é o desenvolvimento de um método construtivo para montagem de torres de materiais estruturais formadas por uma pluralidade de segmentos-de-torre cilíndricos. [048] Another objective is the development of a constructive method for assembling towers of structural materials formed by a plurality of cylindrical tower segments.
[049] Mais outro objetivo é o desenvolvimento de um método construtivo para a montagem de torres de materiais estruturais formadas pelo empilhamento de pelo menos dois segmentos de torre tronco-cônicos. [049] Another objective is the development of a constructive method for assembling towers of structural materials formed by stacking at least two trunk-conical tower segments.
Descrição Geral da Invenção  General Description of the Invention
[050] De acordo com a presente invenção, foi desenvolvido um "nó estrutural duplo" de concreto estrutural, de comportamento reverso, que possibilita a construção de torres com alturas de até mais de uma centena de metros, mediante o içamento telescópico de segmentos-de-torre cilíndricos ou cónicos, o diâmetro das torres diminuindo progressivamente em função da altura. [050] In accordance with the present invention, a reverse-acting "double structural node" of structural concrete has been developed which enables the construction of towers with heights of up to more than one hundred meters by telescopic lifting of segments. cylindrical or conical turrets, the diameter of the towers decreasing progressively as a function of height.
[051] De acordo com outra característica da invenção, ditos segmentos-de-torre cilíndricos possuem diâmetros escalonados, ditos diâmetros sendo progressivamente menores para os segmentos-de-torre mais elevados.  According to another feature of the invention, said cylindrical tower segments have staggered diameters, said diameters being progressively smaller for the higher tower segments.
[052] De acordo com outra característica da invenção, ditos segmentos-de- torre possuem formato tronco-cônico, o diâmetro de cada segmento-de-torre diminuindo no sentido de sua altura.  [052] According to another feature of the invention, said tower segments have a conical shape, the diameter of each tower segment decreasing in the direction of its height.
[053] De acordo com outra característica da invenção, ditos segmentos-de- torre possuem formato cilíndrico e comprimentos individuais da ordem de 15 a 30 metros, com diâmetros constantes, da ordem de 10 a 3 metros, que diminuem progressivamente à medida que são colocados em posições mais altas ao longo da torre.  [053] According to another feature of the invention, said tower segments have a cylindrical shape and individual lengths of the order of 15 to 30 meters, with constant diameters of the order of 10 to 3 meters, which progressively decrease as they are placed at higher positions along the tower.
[054] A construção dos elementos-de-torre é feita com o acoplamento de módulos cilíndricos de parede delgada, montados no canteiro de obra com elementos de concreto estrutural fabricados industrialmente que são consolidados por pretensão longitudinal. Alternativamente, as peças prefabricadas industrialmente são construídas com o formato de setores cilíndricos alongados, com comprimentos da ordem de 10 a 20 metros e larguras da ordem de 3 metros, que no canteiro de obra são consolidados por pretensão transversal, construindo-se assim os segmentos-de-torre desejados. [054] Tower elements are constructed by coupling thin-wall cylindrical modules mounted on the jobsite with structural concrete elements manufactured industrially which are consolidated by longitudinal claim. Alternatively, industrially prefabricated parts are constructed in the form of elongated cylindrical sectors, with lengths in the order of 10 to 20 meters and widths in the order of 3 meters, which on the construction site are consolidated by transverse pretension, thus constructing the segments. turrets desired.
[055] No caso de o material estrutural ser o concreto, os segmentos-de-torre são construídos com o formato de tubos de grandes diâmetros, mas com paredes delgadas, de espessuras da ordem de 20 a 30 centímetros. Para a construção dos "nós duplos" de comportamento reverso das uniões dos segmentos-de- torre, em suas extremidades são construídas "faixas anulares espessas de concreto pretendido" que, ligadas e solidarizadas entre si, também por pretensão, formam um sistema estrutural especial que confere à estrutura da torre um comportamento monolítico. [055] Where the structural material is concrete, the tower segments are constructed in the form of tubes with large diameters, but with thin walls, in the order of 20 to 30 centimeters. For the construction of the "double knots" of reverse behavior of the tower segment unions, at their ends are constructed "thick annular strips of intended concrete" which, linked and solidified together, also by pretension, form a special structural system. which gives the tower structure a monolithic behavior.
[056] A presente invenção, mediante o provimento de anéis de grande rigidez, com diâmetros diferentes nas extremidades dos segmentos-de-torre, atende a todos os requisitos necessários à construção telescópica de torres de concreto estrutural destinadas à geração eólica de energia elétrica, coisa que não pode ser feita no estado da técnica.  [056] The present invention, by providing high rigidity rings with different diameters at the ends of the tower segments, meets all the requirements necessary for the telescopic construction of structural concrete towers for wind power generation, thing that cannot be done in the state of the art.
[057] Para que os nós duplos de ligação dos segmentos-de-torre tenham rigidez adequada, as faixas anulares espessas que compõem cada elemento do nó duplo devem ter comprimentos da ordem de seis até 15 vezes a espessura da parede do segmento-de-torre, e espessuras de até três vezes a espessura da parede do segmento-de-torre. Em torres com parede de 20 centímetros, cada faixa anular terá comprimentos da ordem de um metro e meio a três metros e espessuras da ordem de meio metro, constituindo, em conjunto, elementos de ligação que conferem aos nós duplos comprimentos da ordem de até 6 metros. [057] In order for the twin connecting nodes of the tower segments to be adequately rigid, the thick annular bands that make up each element of the double node must have lengths of the order of six to 15 times the wall thickness of the tower segment. up to three times the wall thickness of the tower segment. In towers with a wall of 20 cm, each annular strip will have lengths of about one and a half meters to three meters and thicknesses of about half a meter, together constituting connecting elements that give the double nodes lengths of the order of up to 6 meters. meters.
Descrição das Figuras  Description of the Figures
[058] As demais características e vantagens da invenção serão melhor compreendidas através da descrição de concretizações exemplificativas e não limitativas, e das figuras que a elas se referem, nas quais:  The further features and advantages of the invention will be better understood by describing exemplary and non-limiting embodiments, and the accompanying figures in which:
[059] A figura 1, que se refere ao Estado da Técnica, mostra esquematicamente os sucessivos procedimentos empregados na construção de torres de concreto destinadas à geração eólica de energia elétrica. Esses procedimentos incluem o indispensável emprego de guindastes metálicos auxiliares, com alturas superiores à altura da própria torre a ser construída, condição essa que não existe com a presente invenção. [059] Figure 1, which refers to the State of the Art, schematically shows the successive procedures employed in the construction of concrete towers for wind power generation. Such procedures include the indispensable use of auxiliary metal cranes, with heights higher than the height of the tower to be built, which condition does not exist with the present invention.
[060] A figura 2- A demonstra a impossibilidade da ligação dos segmentos-de-torre com paredes delgadas, por simples flanges também delgadas, em virtude da flexão dessas paredes delgadas, decorrente da transmissão dos esforços a que tais flanges são submetidas. [060] Figure 2- A demonstrates the impossibility of connecting the tower segments with thin walls by simple thin flanges, due to the flexion of these thin walls, due to the transmission of the forces to which these flanges are subjected.
[061] A figura 2-B mostra que para os segmentos-de-torre de parede delgada, de qualquer material estrutural, seja aço ou concreto, serem unidos solidariamente entre si, mesmo por métodos construtivos não telescópicos, é indispensável a existência de anéis de grande rigidez nas extremidades dos segmentos- de-torre que se unem, não sendo possível empregar apenas simples flanges delgadas. [062] A figura 3 mostra esquematicamente, em perspectiva, o aspecto de uma torre com todos os segmentos-de-torre cilíndricos já montados e prontos para erguimento, bem como as posições desses segmento-de-torre após terem sido erguidos e colocados em suas posições finais na torre. [061] Figure 2-B shows that for thin-walled tower segments of any structural material, whether steel or concrete, to be joined together, even by non-telescopic construction methods, the existence of rings is indispensable. They are very rigid at the ends of the connecting tower segments, and it is not possible to use only simple thin flanges. [062] Figure 3 schematically shows in perspective the appearance of a tower with all cylindrical tower segments already assembled and ready for lifting, as well as the positions of those tower segments after they have been raised and placed in their final positions in the tower.
[063] A figura 4 apresenta esquematicamente, em corte diametral vertical, a configuração geométrica de um dos segmentos-de-torre cilíndrico empregados nesta invenção, mostrando que atende a todos os requisitos necessários para a construção telescópica de torres de concreto estrutural. Figure 4 schematically shows, in vertical diametrical section, the geometric configuration of one of the cylindrical tower segments employed in this invention, showing that it meets all the necessary requirements for the telescopic construction of structural concrete towers.
[064] A figura 5 mostra esquematicamente o processo geral de içamento e posterior solidarização dos segmentos-de-torre cilíndricos permitido pela presença de anéis rígidos de concreto estrutural formados pelas abas espessas existentes nos anéis modulares cilíndricos de suas extremidades, considerando o arranjo de uma sequência de três segmentos-de-torre vizinhos, segmento inferior 501, segmento intermediário 502 e segmento superior 503, concêntricos com o eixo 311 da torre. [064] Figure 5 shows schematically the general process of lifting and subsequent solidification of the cylindrical tower segments allowed by the presence of rigid structural concrete rings formed by the thick flaps existing in the cylindrical modular rings of their ends, considering the arrangement of a sequence of three neighboring tower segments, lower segment 501, intermediate segment 502 and upper segment 503, concentric with tower axis 311.
[065] A figura 6-A mostra esquematicamente o arranjo básico dos cabos da armadura de protensão circunferencial 610 da região inferior aba 403 da extremidade superior do segmento-de-torre inferior 603, e o arranjo básico dos cabos de protensão da armadura circunferencial 611 da região inferior aba 401 da extremidade inferior do segmento-de-torre superior 602. Essas armaduras são responsáveis pela resistência do nó de ligação dos segmentos-de-torre vizinhos às cargas verticais atuantes, inclusive as forças de peso próprio. [065] Figure 6-A schematically shows the basic arrangement of the circumferential prestressing armored cables 610 of the lower flap region 403 of the upper end of the lower tower segment 603, and the basic arrangement of the circumferential reinforcing prestressing cables 611. from the lower flap region 401 of the lower end of the upper turret 602. These reinforcements are responsible for the resistance of the connecting node of the neighboring turret segments to the acting vertical loads, including their own weight forces.
[066] A figura 6-B mostra o arranjo das tensões de compressão do concreto que, em conjunto com os cabos circulares de equilíbrios das bielas comprimidas descritas na figura 6-A, formam a estrutura interna dos anéis rígidos que formam o nó de ligação dos segmentos-de-torre.  [066] Figure 6-B shows the arrangement of the compressive stresses of the concrete which, together with the compressed connecting rod balancing cables described in Figure 6-A, form the internal structure of the rigid rings forming the connecting knot. of the tower segments.
[067] Observe-se que os dois cabos circulares de protensão da região superior dos anéis rígidos têm uma finalidade assegurar a resistência da faixa superior desses anéis diante dos esforços de cisalhamento, flexão e torção que atuam na estrutura da torre.  [067] Note that the two circular prestressing cables of the upper region of the rigid rings have the purpose of ensuring the resistance of the upper band of these rings against the shear, bending and twisting forces acting on the tower structure.
[068] A figura 7 mostra o arranjo de todas as armaduras, pretendidas e passivas, dentro do nó duplo de comportamento reverso construído com as faixas espessas em contato de dois segmentos-de-torre vizinhos ligados entre si.  [068] Figure 7 shows the arrangement of all intended and passive reinforcements within the double reverse behavior node constructed with the thick bands in contact of two neighboring tower segments connected together.
[069] A figura 8 mostra as diversas fases do processo de montagem de uma torre formada por segmentos-de-torre cilíndricos.  [8] Figure 8 shows the various stages of the process of assembling a tower formed by cylindrical tower segments.
[070] As figuras 9 e 10 se referem a uma segunda concretização da invenção em que a torre é constituída por dois segmentos-de-torre de formato tronco-cônico.  Figures 9 and 10 refer to a second embodiment of the invention in which the tower is comprised of two frusto-conical shaped tower segments.
[071] A figura 11 ilustra a montagem de um cavalete auxiliar no topo do segmento-de-torre superior, utilizado no içamento dos componentes relacionados com a geração de energia elétrica.  [071] Figure 11 illustrates the mounting of an auxiliary stand on the top of the upper tower segment used for lifting components related to power generation.
[072] A figura 12 mostra a torre já armada mediante o içamento do segundo segmento-de-torre e sua junção com o primeiro segmento-de-torre que lhe dá apoio. [072] Figure 12 shows the tower already armed by lifting the second tower segment and joining it with the first supporting tower segment.
[073] A figura 13 mostra o detalhe do nó duplo de comportamento reverso na junção de ditos segmentos-de-torre. Nesta figura omitiram-se, a bem da clareza, os elementos de protensão. [074] A figura 14 mostra o içamento da hélice por meio do cavalete auxiliar. [073] Figure 13 shows the detail of the double reverse behavior node at the junction of said tower segments. In this figure, for the sake of clarity, the prestressing elements have been omitted. [074] Figure 14 shows the lifting of the propeller by the auxiliary gantry.
Descrição Detalhada da Invenção  Detailed Description of the Invention
[075] A presente invenção mantém alguns procedimentos básicos do Estado da Técnica referentes a atividades preliminares, algumas das quais estão ilustradas na Fig. 1. Esses procedimentos básicos que levam à construção de segmentos-de-torre podem ser de vários tipos diferentes, que são escolhidos em função do projeto e das disponibilidades industriais existentes nas proximidades do local da construção das tores. Em um dos tipos de procedimentos básicos, os elementos construtivos pré-fabricados são empregados para construir os segmentos-de-torre como conjuntos de aduelas cilíndricas superpostas; em outro tipo, como conjuntos de setores alongados de superfícies cilíndricas pretendidas longitudinalmente que são unidos por pretensão circular transversal e ainda, em outro tipo, como conjuntos de aduelas troco- cônicas superpostas. [075] The present invention maintains some basic State of the art procedures for preliminary activities, some of which are illustrated in Fig. 1. These basic procedures leading to the construction of tower segments can be of several different types, which They are chosen according to the project and the industrial availability in the vicinity of the construction site. In one of the basic procedures, prefabricated building elements are employed to construct tower segments as overlapping cylindrical stave assemblies; in another type, as sets of elongated sectors of longitudinally desired cylindrical surfaces which are joined by transverse circular pretension, and in another type, as overlapping trochanic stave assemblies.
[076] A descrição detalhada dos procedimentos construtivos preliminares que levam à construção de segmentos-de-torre, refere-se à torre composta por uma pluralidade de segmentos-de-torre cilíndricos, sendo ditos procedimentos realizados utilizando conhecimentos do estado da técnica:  [076] The detailed description of the preliminary construction procedures leading to the construction of tower segments refers to the tower composed of a plurality of cylindrical tower segments, said procedures being performed using knowledge of the state of the art:
[077] - execução da fundação 103 no local da obra; [077] - Execution of foundation 103 at the construction site;
[078] - recebimento dos elementos estruturais de concreto 102, fabricados industrialmente e transportados para a obra por veículos rodoviários 104;  [078] - receipt of industrially manufactured concrete structural members 102 and transported to the site by road vehicles 104;
[079] - montagem das aduelas modulares que serão superpostas para formar os segmentos-de-torre, com as dimensões especificadas para cada um destes.  [079] - assembly of the modular staves that will be superimposed to form the tower segments, with the dimensions specified for each of them.
[080] - superposição das aduelas modulares intermediárias 308, todas de mesmo diâmetro para cada um dos segmentos-de-torre, bem como dos anéis das extremidades inferior 306 e superior 307, cujas características são descritas a seguir: [080] - Overlap of the intermediate modular staves 308, all of the same diameter for each of the tower segments, as well as the lower end rings 306 and upper 307, the characteristics of which are described below:
segundo mostra a Fig. 4, o anel modular cilíndrico 306 da extremidade inferior dos segmentos-de-torre têm um comprimento total 406, na qual existe uma faixa de extremidade 402 mais espessa, de comprimento 407 e diâmetro interno 412 igual ao diâmetro interno 410 dos anéis 308 do corpo médio paralelo, e com diâmetro externo 413 maior que o diâmetro externo 411 dos anéis do corpo médio, formando uma aba saliente projetada para o exterior do segmento-de-torre;  As shown in Fig. 4, the cylindrical modular ring 306 of the lower end of the tower segments has a total length 406, in which there is a thicker end strip 402 of length 407 and internal diameter 412 equal to internal diameter 410. of the rings 308 of the parallel medium body, and with an outside diameter 413 greater than the outside diameter 411 of the rings of the middle body, forming a projecting flap projected outwardly of the tower segment;
o anel modular cilíndrico 307 da extremidade superior dos segmentos-de-torre têm um comprimento total 408, na qual existe uma faixa de extremidade mais espessa, com comprimento 409 e diâmetro interno 414 menor que o diâmetro interno 410 dos anéis do corpo médio, com diâmetro externo 415 igual ao diâmetro externo 411 dos anéis do corpo médio, formando uma aba reentrante projetada para o interior do segmento-de-torre.  the cylindrical modular ring 307 of the upper end of the tower segments has a total length 408, in which there is a thicker end strip, with length 409 and internal diameter 414 smaller than the internal diameter 410 of the middle body rings, with Outer diameter 415 equal to the outer diameter 411 of the middle body rings, forming a recessed flap projected into the turret segment.
[081] - realização da pretensão longitudinal final dos tirantes 604 (ilustrados na Fig. 6-A) dos segmentos de torre comprimindo mutuamente as aduelas 308 e os anéis das extremidades inferior 306 e superior 307 de modo a formar um segmento-de-torre. [082] A partir deste ponto, terminam os procedimentos conhecidos no estado da técnica e passa-se à execução dos passos específicos da invenção, conforme segue: [081] - Realization of the final longitudinal pretension of the risers 604 (shown in Fig. 6-A) of the tower segments by mutually compressing the staves 308 and the lower end rings 306 and upper 307 to form a tower segment. . From this point, the procedures known in the prior art are completed and the specific steps of the invention are carried out as follows:
[083] A Fig. 4 mostra esquematicamente, em corte diametral vertical, que os anéis cilíndricos modulares 306 e 307 das extremidades dos segmentos-de-torre são feitos com duas faixas de espessuras diferentes 418 e 417 em suas respectivas extremidades. As outras faixas desses anéis, que são ligadas às aduelas modulares 308, vizinhas do mesmo segmento, têm a mesma espessura 416 que esses 308 do corpo médio do segmento-de-torre. A faixa espessa 402 (fig. 4) da extremidade inferior dos segmentos- de-torre e a faixa espessa 404 da extremidade superior dos segmentos-de-torre que fazem contato entre segmentos-de-torre vizinhos, têm espessuras maiores, constituindo-se em anéis 601 (fig. 6- A) de grande rigidez, que formam as abas salientes 401 nas extremidades inferiores e reentrantes 403 nas extremidades superiores dos segmentos-de-torre (ver Fig. 5), mantendo uma área comum nessa face de contato e permitindo a ligação por compressão recíproca das extremidades dos segmentos-de-torre vizinhos, embora eles tenham diâmetros diferentes.  Fig. 4 schematically shows, in vertical diametrical section, that the modular cylindrical rings 306 and 307 of the ends of the tower segments are made with two different thickness bands 418 and 417 at their respective ends. The other bands of these rings, which are attached to the modular staves 308, neighboring the same segment, have the same thickness 416 as those 308 of the middle body of the tower segment. The thick strip 402 (Fig. 4) of the lower end of the tower segments and the thick strip 404 of the upper end of the tower segments that make contact between neighboring tower segments are of thicker thickness constituting in very rigid rings 601 (fig. 6- A), which form the protruding tabs 401 at the lower ends and recessed 403 at the upper ends of the tower segments (see Fig. 5), maintaining a common area on this contact face. and allowing reciprocal compression bonding of the ends of neighboring tower segments, although they have different diameters.
[084] Na extremidade superior dos segmentos-de-torre (fig. 4), a aba reentrante (404) é dirigida para o interior da torre, e na extremidade inferior da aba saliente (402) é dirigida para o exterior da torre.  At the upper end of the tower segments (Fig. 4), the recessed flap 404 is directed into the tower, and at the lower end of the protruding flap 402 is directed towards the outside of the tower.
[085] Segundo mostra a Fig. 5, a ligação das abas salientes 402 da extremidade inferior dos segmentos-de-torre com as abas reentrantes 404 da extremidade superior dos segmentos-de-torre é feita por meio de cabos ou de barras protendidas de aço 506, que permitem a solidarização de segmentos-de- torre adjacentes já em suas posições finais, 501 inferior e 502 intermediárias, com diâmetros diferentes, e possibilitam o içamento telescópico dos segmento-de-torre em posição superior 503, sem o emprego de guindastes externos à própria torre em construção.  As shown in Fig. 5, the connection of the protruding tabs 402 of the lower end of the tower segments with the recessed tabs 404 of the upper end of the tower segments is made by means of prestressed cables or bars. 506, which allow the adjacent tower segments to be solidified already in their final, lower 501 and intermediate 502 positions, with different diameters, and enable the telescopic lifting of the 503 upper tower segments without the use of cranes external to the tower itself under construction.
[086] As abas salientes dos segmentos-de-torre vizinhos são ligadas entre si por armaduras longitudinais protendidas 506, distribuídas ao longo da periferia dos segmentos-de-torre, em orifícios adequadamente localizados para essa união, abas essas que dispõem de armaduras protendidas e de armaduras passivas transversais, destinadas a resistir aos esforços transversais internos, decorrentes das mudanças de direção dos esforços longitudinais internos ao longo dessas abas.  [086] The protruding tabs of the neighboring tower segments are joined together by prestressed longitudinal reinforcement 506 distributed along the periphery of the tower segments into holes suitably located for such union, which tabs have prestressed reinforcement. and of transverse passive reinforcement designed to resist internal transverse stresses resulting from changes in the direction of internal longitudinal forces along these tabs.
[087] Em resumo, este novo método construtivo telescópico é essencialmente baseado na união de segmentos-de-torre vizinhos, por meio de um nó duplo de comportamento reverso, composto por anéis espessos de concreto estrutural que formam abas salientes e reentrantes mutuamente complementares nas extremidades desses segmentos, sem necessidade de emprego de abas metálicas, nem de guindastes auxiliares empregados no estado da técnica.  [087] In summary, this new telescopic construction method is essentially based on the joining of neighboring tower segments by means of a double-acting reverse knot composed of thick rings of structural concrete forming mutually complementary protruding tabs and recesses. ends of these segments without the use of metal tabs or auxiliary cranes employed in the state of the art.
[088] Numa realização exemplificativa, apresentada apenas para fixar as ideias, admite-se que o método construtivo se refira a uma torre 301 (fig. 3-A) com altura "H" 312 de cerca de 100m, formada com segmentos-de-torre 302, 303, 304, (base, intermediários, de topo), com comprimentos "h" 309 variáveis, tendo diâmetros externos constantes "D", mas que diminuem à medida que os segmentos ficam situados em posições mais altas, admitindo-se também que o segmento-de-torre de base 302 tenha um diâmetro de 10m, chegando ao segmento-de-torre de topo 304 com o diâmetro de 3m. [088] In an exemplary embodiment, presented solely for the sake of fixing the ideas, it is assumed that the construction method refers to a tower 301 (Fig. 3-A) with a "H" height 312 of about 100m, formed with segments. 302, 303, 304, (base, intermediate, top), with variable length "h" 309, having constant outside diameters "D", but decreasing as the segments are located higher, assuming also that base tower segment 302 has a 10m diameter, reaching the top tower segment 304 with the diameter of 3m.
[089] As espessuras das abas 402 (inferior) e (404) superior que formam os anéis de rigidez 601 (Fig. 6-A) das extremidades dos segmentos-de-torre são da ordem de duas a três vezes a espessura das aduelas modulares cilíndricas 308 (Fig. 4) que formam o corpo médio dos segmentos-de-torre, chegando a espessuras de 0,5m a 1,0m e o comprimento desses anéis é da ordem seis a oito vezes a espessura das aduelas 308, chegando até comprimentos da ordem de l,5m. Esses anéis de rigidez são solidarizados entre si e às paredes dos corpos dos dois segmentos-de-torre por pretensão longitudinal e por pretensão transversal circular. Desse modo, o conjunto dos dois anéis de união das extremidades dos segmentos-de- torre vizinhos forma um nó rígido, com dois anéis de alturas individuais de lm a 1,5m e espessuras da ordem de 70cm a lm, formando em conjunto um nó estrutural de comportamento reverso, com comprimento longitudinal da ordem de até 3m, garantindo um significativo aumento da rigidez transversal dos segmentos-de-torre. De acordo com as modernas teorias das estruturas de concreto, as espessuras desses anéis de extremidades são suficientemente grandes para que o conjunto dos nós de ligação 601 funcionem como se fossem uma estrutura maciça, permitindo que o funcionamento estrutural da torre simule o comportamento de uma viga de seção maciça, engastada na fundação da base. [089] The thicknesses of the lower (402) and (404) upper wings forming the stiffening rings 601 (Fig. 6-A) of the ends of the tower segments are of the order of two to three times the thickness of the staves. Cylindrical Modular 308 (Fig. 4) forming the average body of the tower segments, reaching thicknesses of 0.5m to 1.0m and the length of these rings is six to eight times the thickness of the 308 staves, reaching up to lengths of the order of 1.5m. These stiffening rings are solidified with each other and with the body walls of the two tower segments by longitudinal pretension and circular transverse pretension. Thus, the set of the two connecting rings at the ends of the neighboring tower segments forms a rigid knot, with two rings of individual heights of 1m to 1.5m and thicknesses of the order of 70cm to 1m, forming together a knot. reverse behavior structural structure, with longitudinal length of up to 3m, ensuring a significant increase in the transverse stiffness of the tower segments. According to modern theories of concrete structures, the thicknesses of these end rings are large enough that the set of connecting nodes 601 function as if they were a massive structure, allowing the structural operation of the tower to simulate the behavior of a beam. solid section, set in the foundation of the base.
[090] Segundo mostra a figura 3-A, o presente método prevê que os segmentos-de-torre de base 302, intermediários 303 e de topo 304 sejam construídos, sobrepondo-se os módulos cilíndricos 306, 307, 308 (fig. 3-B) uns em volta dos outros, diretamente sobre a fundação 310, formando um conjunto de segmentos segmentos-de-torre 305, que permite elevar esses segmentos-de-torre que compõem a torre 301, por dentro da própria torre a ser construída sem o uso de guindastes de grandes alturas e capacidades de carga como exigido nos métodos convencionais.  As shown in Figure 3-A, the present method provides that the base 302, intermediate 303 and top 304 tower segments are constructed by overlapping the cylindrical modules 306, 307, 308 (Fig. 3 -B) around each other, directly on the foundation 310, forming a set of tower segments 305, which allows to elevate these tower segments that make up tower 301, inside the tower itself to be built without the use of high lift cranes and load capacities as required by conventional methods.
[091] Ao fim da construção dos segmentos-de-torre 302, 303, 304, com módulos cilíndricos 306, 307, 308 adequados, forma-se, diretamente, sobre a fundação 310, um conjunto 305 de segmentos-de- torre, formado por: segmento-de-torre base externo de maior diâmetro 302; segmentos-de-torre intermediários 303, de diâmetros menores que aquele e sucessivamente menores uns em relação aos outros; e segmento-de-torre de topo 304 de menor diâmetro, todos apoiados diretamente na fundação 310, dispostos uns dentro dos outros, concêntricos entre si e em relação ao eixo 311 da torre, conforme ilustrado na figura 3-B.  [091] At the end of the construction of tower segments 302, 303, 304, with suitable cylindrical modules 306, 307, 308, a set 305 of tower segments is formed directly on foundation 310, formed by: tower base with larger outer diameter 302; intermediate tower segments 303 of smaller diameter than that and successively smaller in relation to one another; and smaller diameter top tower segments 304, all resting directly on the foundation 310, disposed within each other, concentric with each other and relative to the tower axis 311, as shown in Figure 3-B.
[092] O segmento-de-torre externo no conjunto segmento-de-torre de base 302, fica solidarizado à fundação 310 desde a sua construção. Ao longo do içamento, os demais segmentos, intermediários 303 e de topo 304 serão solidarizados sucessivamente entre si, à medida que são içados e ligados ao segmento que lhes dá apoio.  [092] The external tower segment in base tower segment assembly 302 has been in solidarity with foundation 310 since its construction. Over the course of the lift, the remaining intermediate 303 and top 304 segments will be successively solidified with each other as they are lifted and linked to the supporting segment.
[093] No método construtivo telescópico ora proposto, como se mostra na figura 3-B, uma torre 301 é construída com segmentos-de-torre 302, 303, 304 cilíndricos, de comprimentos (altura) "h" variáveis, formando um conjunto 305 de segmentos-de-torre que são içados individualmente, como se mostra na figura 8, e superpostos uns sobre os outros, com diâmetros externos que diminuem à medida que os segmentos-de-torre ficam em níveis mais elevados. [093] In the proposed telescopic construction method, as shown in Figure 3-B, a tower 301 is constructed of cylindrical tower segments 302, 303, 304, of varying lengths (h), forming a set 305 of tower segments that are individually lifted as shown in Figure 8 and superimposed on each other, with external diameters decreasing as tower segments are at higher levels.
[094] Como é mostrado em (b) na figura 8, este processo de içamento dos segmentos-de-torre é iniciado pelo segmento intermediário 303 que no conjunto 305 de segmentos é adjacente ao segmento exterior, segmento-de-torre de base 302, e termina com o segmento de topo 304 que está no centro do conjunto de segmentos 305 e que é colocado no topo da torre 301.  As shown in (b) in Figure 8, this tower segment lifting process is initiated by intermediate segment 303 which in the set of segments 305 is adjacent to the outer segment, base tower segment 302. , and ends with top segment 304 which is in the center of segment set 305 and which is placed on top of tower 301.
[095] O içamento dos segmentos de torre é feito por meio de quatro a oito cabos flexíveis 504 (Fig. 5) de içamento, com ancoragens passivas na face inferior da aba saliente 402 externa localizada na extremidade inferior do segmento de torre 503 (fig. 5) que vai ser suspenso. As forças de içamento são aplicadas por meio de macacos de içamento (505) instalados na face superior da aba saliente 404 interna localizada na extremidade superior do segmento de torre 502 que dá sustentação ao levantamento e que, após o içamento, ficará posicionado na posição abaixo do segmento que foi içado.  [095] Lifting the tower segments is by means of four to eight flexible lifting cables 504 (Fig. 5), with passive anchors on the underside of the outer projecting flap 402 located at the lower end of the tower segment 503 (fig. 5) It will be suspended. Lifting forces are applied by means of lifting jacks (505) installed on the upper face of the inner protruding flap 404 located at the upper end of the tower segment 502 which supports the lift and which, after lifting, will be positioned in the position below. of the segment that was lifted.
[096] O processo de montagem preliminar dos segmentos-de-torre, 302, 303, 304 é realizado, simultaneamente, com todos os segmentos do conjunto de segmentos 305. Para cada segmento-de-torre 302 ou 303 ou 304 (figura 3-B), a construção é necessariamente iniciada pelo anel cilíndrico da extremidade inferior dotado da aba externa inferior 402, que ficará dirigida para o exterior da torre. A seguir são colocados as aduelas intermediários 308 que formam o corpo médio e, ao final, é instalado o anel da extremidade superior 307', no qual existe a aba interna superior 404, que ficará dirigida para o interior da torre.  [096] The preliminary assembly process of tower segments 302, 303, 304 is performed simultaneously with all segments of segment set 305. For each tower segment 302 or 303 or 304 (Figure 3 -B), the construction is necessarily initiated by the lower end cylindrical ring provided with the lower outer flap 402, which will be directed towards the outside of the tower. Next, the intermediate staves 308 forming the middle body are placed and, at the end, the upper end ring 307 'is installed, in which there is the upper inner flap 404, which will be directed into the tower.
[097] Os segmentos-de-torre 302, 303, 304, construídos uns dentro dos outros, para serem içados individualmente, um de cada vez, ficam afastados diametralmente entre si por folgas 709 (fig. 7) da ordem de cinco centímetros (5cm), que são suficientes para que, no içamento dos segmentos de torre, não haja interferência entre eles. Como medida suplementar de garantia da liberdade de içamento independente dos segmentos de torre, em suas extremidades são colocados afastadores metálicos flexíveis (não ilustrados) com a espessura de cinco centímetros (5cm), posicionados na referida folga. Para o nivelamento perfeito dos segmentos-de-torre, na operação de içamento são colocados calços de concreto 711 dentro de uma folga horizontal 710 da ordem de 10 centímetros que é grouteada rigidamente na conclusão da operação.  [097] Tower segments 302, 303, 304, built into each other for lifting individually, one at a time, are diametrically spaced apart by gaps 709 (Fig. 7) on the order of five centimeters ( 5cm), which are sufficient so that, when lifting the tower segments, there is no interference between them. As an additional measure of guaranteeing the freedom of lifting independent of the tower segments, flexible metal spacers (not shown) with a thickness of five centimeters (5cm) are placed at their ends, positioned in said clearance. For perfect leveling of the tower segments, in the lifting operation concrete shims 711 are placed within a horizontal clearance 710 of the order of 10 centimeters which is rigidly grouted at the conclusion of the operation.
[098] A figura 5 mostra esquematicamente o processo de içamento dos segmentos-de-torre, considerando o arranjo de uma sequência de três segmentos. O segmento-de-torre superior 503 está em processo de içamento por meio de cabos flexíveis de içamento 504, que são tracionados por equipamentos hidráulicos de içamento (Strand Jack) 505 instalados no topo da aba reentrante 404 da extremidade superior do segmento-de-torre intermediário 502, que permanecerá em posição inferior à posição final do segmento-de-torre superior 503. Na extremidade oposta, os cabos flexíveis estão ancorados na face inferior da aba saliente 402 da extremidade inferior do segmento superior 503 que está sendo içado.  Figure 5 shows schematically the process of lifting tower segments, considering the arrangement of a sequence of three segments. The upper tower segment 503 is in the process of lifting by means of flexible lifting cables 504, which are pulled by 505 Strand Jack lifting equipment installed on top of the recessed flap 404 of the upper end of the segment. intermediate tower 502, which will remain lower than the end position of upper tower segment 503. At the opposite end, the flexible cables are anchored to the underside of the projecting tab 402 of the lower end of upper segment 503 being hoisted.
[099] O segmento-de-torre intermediário 502, que dá apoio para o içamento do segmento superior 503, está em sua posição final, suspenso por barras de emenda 506, ancoradas, de um lado, na face inferior da aba inferior saliente 402 da extremidade inferior do segmento-de-torre intermediário 502, e do outro lado, na face superior da aba superior reentrante 404 da extremidade superior do segmento-de-torre inferior 501, que dá apoio a todos os segmentos de torre situados em posição mais alta que a sua própria posição. [099] Intermediate tower segment 502, which supports the lifting of upper segment 503, is in its final position suspended by splicing bars 506 anchored on one side to the face. bottom flap protruding 402 from the lower end of the intermediate turret segment 502, and on the other side at the upper face of the recessed upper flap 404 of the upper end of the lower turret segment 501 supporting all segments tower positions higher than its own position.
[0100] O processo de içamento, realizado isoladamente com cada segmento de torre, é controlado eletronicamente, em tempo real, sendo controlados as forças aplicadas por cada macaco 505 de içamento e os deslocamentos verticais de cada cabo de içamento 504, controlando-se assim a verticalidade do segmento em elevação. [0100] The lifting process, carried out in isolation with each tower segment, is electronically controlled in real time. The forces applied by each lifting jack 505 and the vertical displacements of each lifting cable 504 are controlled. the verticality of the rising segment.
[0101] De acordo com o detalhado na Fig. 5, a união de dois segmentos de torre superpostos é feita por meio do contato da face superior 401 da faixa espessa que forma a aba saliente externa 402 da extremidade inferior de um segmento de torre 503 - que na torre, ficará em posição mais alta - com a face inferior 403 da faixa espessa que forma a aba reentrante interna 404 da extremidade superior do segmento de torre que na torre ficará em posição mais baixa.  As detailed in Fig. 5, the joining of two overlapping tower segments is made by contacting the upper face 401 of the thick strip forming the outer projecting flap 402 of the lower end of a tower segment 503. - which in the tower will be in a higher position - with the underside 403 of the thick strip forming the inner recessed flap 404 of the upper end of the tower segment which will be in the lowest position in the tower.
[0102] A figura 7 mostra o arranjo completo dos cabos de protensão responsáveis pela composição do nó duplo de união de dois segmentos-de-torre, formado pela união da aba saliente 402 do segmento superior 602 com a aba reentrante 404 do segmento inferior 603.  [0102] Figure 7 shows the complete arrangement of the prestressing cables responsible for the composition of the two-tower double joining knot formed by joining the protruding tab 402 of the upper segment 602 with the recessing flap 404 of the lower segment 603. .
[0103] A figura 6-A mostra que a protensão longitudinal do segmento-de-torre superior 602 é dada pelos cabos de protensão 604, embutidos em orifícios existentes ao longo de sua parede cilíndrica, com ancoragens 605 situadas na face inferior da aba 402. A protensão longitudinal do segmento-de-torre inferior 603 é dada pelos cabos de protensão 606, embutidos em orifícios existentes ao longo de sua parede cilíndrica, com ancoragens 607 situadas na face superior da aba 404. A armadura de solidarização das abas 402 e 404, dos segmentos-de-torre que se ligam por um nó duplo de comportamento reverso - pois esses segmentos-de-torre tem diâmetros diferentes - é feita por barras pretendidas 506, com ancoragem inferior 608 na face inferior da aba 402 da extremidade inferior do segmento superior 602, e ancoragem superior 609 na face superior da aba 404 da extremidade superior do segmento inferior 603.  Figure 6-A shows that the longitudinal prestress of the upper tower segment 602 is provided by the prestress cables 604, embedded in holes along its cylindrical wall, with anchors 605 located on the underside of flap 402 The longitudinal prestressing of the lower tower segment 603 is provided by the prestressing cables 606, embedded in holes along its cylindrical wall, with anchors 607 located on the upper face of the flap 404. 404, of the tower segments that are connected by a double-acting reverse node - as these tower segments have different diameters - is made by intended bars 506, with lower anchor 608 on the underside of the lower end flap 402 upper segment 602, and upper anchor 609 on the upper face of flap 404 of the upper end of lower segment 603.
[0104] As forças de protensão longitudinal são ancoradas nas extremidades de cada segmento-de- torre, produzindo um campo uniforme de tensões de compressão verticais, que vai se superpor às tensões verticais de compressão das cargas externas de compressão aplicadas à torre, nelas se incluindo as próprias forças peso.  The longitudinal bending forces are anchored at the ends of each tower segment, producing a uniform field of vertical compression stresses, which will overlap the vertical compression stresses of the external compression loads applied to the tower. including the weight forces themselves.
[0105] Como o diâmetro do segmento-de-torre suportado é menor que o diâmetro do segmento-de- torre de suporte, as tensões de compressão verticais existentes no segmento suportado, ao longo do nó duplo de comportamento reverso transformam-se em tensões de compressão inclinadas para poder passar de um segmento de diâmetro menor para um segmento de diâmetro maior. [0105] As the diameter of the supported tower segment is smaller than the diameter of the supporting tower segment, the vertical compression stresses in the supported segment along the reverse behavior double node become stresses. compression bends to move from a smaller diameter segment to a larger diameter segment.
[0106] A figura 6-A também mostra os cabos da armadura de protensão circunferencial 610 da região inferior da aba 404 da extremidade superior do segmento-de-torre inferior 603 e o arranjo dos cabos de protensão da armadura circunferencial 611 da região inferior aba 402 da extremidade inferior do segmento-de-torre superior 602, que são necessários para o equilíbrio dos campos inclinados de tensões de compressão 623 e 624 mostrados na figura 6-B. [0106] Figure 6-A also shows the cables of the circumferential prestressing armature 610 of the lower flap region 404 of the upper end of the lower tower segment 603 and the arrangement of the circumferential reinforcement prestressing cables 611 of the lower flap region. 402 from the lower end of upper turret segment 602, which are required for balancing the inclined compression stress fields 623 and 624 shown in figure 6-B.
[0107] A figura 6-B mostra o arranjo das tensões de compressão 616 e 617 do concreto que, em conjunto com os cabos de pretensão circulares 610 e 611 constituem a estrutura interna básica dos anéis rígidos que formam o nó de ligação dos segmentos-de-torre. Observe-se que os dois cabos circulares de protensão das regiões superiores dos anéis rígidos têm por finalidade completar a resistência da estrutura sob a ação de esforços de flexão, de esforços de cisalhamento e de esforços de torção que atuam na região de ligação dos anéis vizinhos. A estrutura completa do nó de ligação dos segmentos-de-torre vizinhos está mostrada na figura 7.  Figure 6-B shows the arrangement of the compressive stresses 616 and 617 of the concrete which, together with the circular pretensioning cables 610 and 611 constitute the basic internal structure of the rigid rings forming the connecting node of the segments. Tower It should be noted that the two circular prestressing cables of the upper regions of the rigid rings are intended to complete the strength of the structure under the action of bending forces, shear forces and torsional forces acting on the bonding region of the neighboring rings. . The complete structure of the connecting node of neighboring tower segments is shown in figure 7.
[0108] A figura 6-B mostra as tensões de compressão 620 na parede do corpo médio do segmento-de- torre sustentado, e 621 na parede do segmento de sustentação, bem como as respectivas bielas inclinadas 623 e 624 que conduzem essas tensões de compressão às correspondentes ancoragens 608 e 609 da armadura de ligação dos dois segmentos-de-torre vizinhos. Figure 6-B shows the compressive stresses 620 on the midbody wall of the sustained tower segment, and 621 on the support segment wall, as well as the respective inclined connecting rods 623 and 624 leading to these stresses. compression to corresponding anchorages 608 and 609 of the connecting reinforcement of the two neighboring tower segments.
[0109] A figura 7 mostra todas as armaduras, passivas e pretendidas, e seu arranjo estrutural dentro do nó duplo de comportamento reverso construído com as faixas espessas em contato de dois segmentos- de-torre vizinhos. A parede 603 do segmento que dá suporte envolve a parede 602 do segmento-de-torre suportado. Entre elas existe uma folga 709 da ordem de cinco centímetros (5cm) para garantir que durante a operação de içamento não haja interferência entre os dois segmentos-de-torre. Posteriormente, ao final da ligação, essa folga 709 é preenchida com graute de alta resistência consolidando a ligação dos dois segmentos. Para o nivelamento perfeito dos segmentos-de-torre, na operação de içamento são colocados calços de concreto 711 dentro de uma folga horizontal 710 da ordem de 10 centímetros que é grouteada rigidamente na conclusão da operação.  [0109] Figure 7 shows all the passive and intended reinforcement and their structural arrangement within the double reverse behavior node constructed with the thick bands in contact of two neighboring tower segments. The supporting segment wall 603 surrounds the supported tower segment wall 602. Between them there is a clearance 709 of the order of five centimeters (5cm) to ensure that during the lifting operation there is no interference between the two tower segments. Later, at the end of the connection, this gap 709 is filled with high resistance grout consolidating the bonding of the two segments. For perfect leveling of the tower segments, in the lifting operation concrete shims 711 are placed within a horizontal clearance 710 of the order of 10 centimeters which is rigidly grouted at the conclusion of the operation.
[0110] A figura mostra também a laje de concreto transversal 701, unida à face da extremidade inferior do segmento-de-torre suportado, que consolida transversalmente todas as peças estruturais dessa região de ligação. A laje 701 é suportada pela peça de ancoragem 702 situada entre a ancoragem 605 da armadura de protensão longitudinal desse segmento-de-torre e a ancoragem 608 da armadura de ligação dos anéis rígidos dos dois segmentos-de-torre. Nessa mesma figura são mostrados os cabos de protensão circular 703 da região superior da faixa espessa 402 do segmento-de-torre suportado, e os cabos de protensão circular 704 da região superior da faixa espessa 404 do segmento-de-torre de suporte. Essas armaduras garantem a compressão tangencial dos anéis de rigidez das extremidades dos segmentos-de- torre, impedindo que, durante a vida útil da torre, neles apareçam tensões de tração decorrentes dos estados múltiplos de tensões devidos à ação dos esforços de cisalhamento e de torção decorrentes da ação do vento nos equipamentos de geração de energia elétrica e na própria superfície lateral da torre.  [0110] The figure also shows the transverse concrete slab 701, joined to the lower end face of the supported tower segment, which transversely consolidates all the structural parts of that connecting region. The slab 701 is supported by the anchor piece 702 located between the longitudinal prestressing reinforcement anchor 605 of that turret and the rigid ring connecting armature 608 of the two turret segments. In the same figure are shown the circular prestressing cables 703 of the upper region of the thickened band 402 of the supported tower segment, and the circular prestressing cables 704 of the upper region of the thickened band 404 of the supporting tower segment. These reinforcements ensure the tangential compression of the stiffness rings at the ends of the tower segments, preventing tensile stresses arising from the multiple stress states due to the action of shear and torsional forces during the tower's service life. due to wind action on the power generation equipment and on the tower's own lateral surface.
[0111] De maneira análoga, com a mesma finalidade de segurança, de que não apareçam tensões de tração nas paredes 612 e 613 dos corpos médios dos dois segmentos-de-torre vizinhos, a figura 7 mostra as armaduras de protensão circular 706 e 705 que devem ser respectivamente colocadas ao longo do corpo médio dos dois segmentos-de-torre unidos pelo nó duplo de comportamento reverso. Similarly, for the same safety purpose, that no tensile stresses appear on the walls 612 and 613 of the middle bodies of the two neighboring tower segments, Figure 7 shows the circular prestressing reinforcement 706 and 705. which should be respectively placed along the average body of the two tower segments joined by the double reverse behavior node.
[0112] A figura 7 mostra os estribos das armaduras passivas 708, de reforço da região de ancoragem diametral dos cabos de protensão circular 611, colocados na região inferior da faixa espessa da extremidade inferior do segmento-de-torre suportado, os quais dão apoio horizontal às faixas comprimidas de concreto 623, já consideradas na análise da figura 6-B, que a partir do nó estrutural 622, passam a suportar, de modo inclinado, as tensões verticais de compressão 620 provenientes das cargas 618 aplicadas externamente à torre, faixas inclinadas essas que se apoiam em sua base na ancoragem 608 da armadura de ligação dos anéis rígidos que formam o nó duplo de comportamento reverso e, em seu topo, apoiam-se horizontalmente na região superior do anel rígido da extremidade inferior do segmento- de-torre suportado, que estruturalmente simula uma faixa virtual diametral de compressão 617 (indicada na Fig. 6-B). [0112] Figure 7 shows the stirrups of the passive reinforcing reinforcement 708 of the diametrical anchoring region of the circular prestressing cables 611, placed in the lower region of the thick end band of the supported tower segment, which support compressed concrete strips 623, already considered in the analysis of Fig. 6-B, which from the structural node 622 are inclined to withstand the vertical compressive stresses 620 from the loads 618 applied externally to the tower. which are supported at their base on the anchoring 608 of the rigid ring connecting armature forming the double-acting reverse knot and, at their top, are horizontally in the upper region of the rigid ring of the lower end of the segment. supported tower, which structurally simulates a virtual diametric compression band 617 (shown in Fig. 6-B).
[0113] De modo análogo, a figura 7 também mostra os estribos das armaduras passivas 707 de reforço da região de ancoragem diametral dos cabos de protensão circular 610, colocados na região inferior da faixa espessa da extremidade superior do segmento-de-torre de suporte, os quais dão apoio horizontal à extremidade inferior das faixas de concreto 624 que em sua extremidade superior, na região da ancoragem 609 da extremidade superior das barras 506 da armadura de ligação dos anéis rígidos do nó duplo da torre, de modo inclinado passam a suportar a componente vertical da força aplicada por essas barras 506, faixas inclinadas essas que em seu topo se apoiam horizontalmente na região superior do anel rígido da extremidade superior do segmento-de-torre de suporte, que estruturalmente simula uma faixa virtual diametral de compressão 616 (indicada na Fig. 6-B).  Similarly, Fig. 7 also shows the stirrups of the passive reinforcement reinforcements 707 of the diametrical anchor region of the circular prestressing cables 610, placed in the lower region of the thick band of the upper end of the supporting tower segment. , which horizontally support the lower end of the concrete strips 624 which at their upper end, in the region of the upper end anchoring 609 of the bars of the double-knuckle rigid ring connecting armature, are now inclined to support the vertical component of the force applied by these bars 506, inclined bands which at their top rest horizontally on the upper region of the rigid ring of the upper end of the supporting tower segment, which structurally simulates a virtual diametric compression band 616 ( shown in Fig. 6-B).
[0114] A figura 8 resume esquematicamente o novo método construtivo apresentado por esta invenção, mostrando, em (a) o conjunto 305 de segmentos-de-torre, formado por: segmento-de-torre de base de maior diâmetro externo 302; intermediários 303 de diâmetros menores que aquele e sucessivamente menores uns em relação aos outros, e central de topo 304 de menor diâmetro, construídos com diferentes alturas "h" 309, no interior do segmento de base externo 302, que é o de maior diâmetro, diretamente sobre a fundação 310 e concêntricos entre si e em relação ao eixo 311 da torre. Os passos (b) até (e) mostram que o levantamento dos segmentos-de-torre é iniciado com o segmento intermediário 303, vizinho ao segmento de base 302 exterior do conjunto 305, e termina com a elevação do segmento de topo central 304, com o qual fica completada a construção da torre 301, com a altura 312.  Figure 8 schematically summarizes the new construction method presented by this invention, showing, in (a) the set of tower segments 305, consisting of: larger outer diameter base tower segment 302; intermediates 303 of smaller diameters than one and successively smaller relative to each other, and smaller central end 304, constructed with different heights "h" 309, within the outer base segment 302, which is the largest diameter, directly on the foundation 310 and concentric with each other and relative to the tower axis 311. Steps (b) through (e) show that the tower segment lifting begins with the intermediate segment 303, neighboring the outer base segment 302 of the assembly 305, and ends with the elevation of the central top segment 304, with which the construction of tower 301 at height 312 is completed.
[0115] A construção dos elementos-de-torre é feita com o acoplamento de módulos cilíndricos de parede delgada, montados no canteiro de obra com elementos de concreto estrutural fabricados industrialmente que são consolidados por protensão longitudinal. Alternativamente, as peças prefabricadas industrialmente são construídas com o formato de setores cilíndricos alongados, com comprimentos da ordem de 10 a 20 metros e larguras da ordem de 3 metros, que no canteiro de obra são consolidados por protensão transversal, construindo-se assim os segmentos-de-torre desejados. [0116] Mais detalhadamente, a figura 5 mostra, de modo genérico, o içamento, segundo a presente invenção. Considerando um conjunto de 3 segmentos-de-torre sucessivos 501, 502 e 503, admita-se que o segmento 501 já tivesse sido anteriormente solidarizado à base da torre, e que também já tivesse sido usado para a operação de içamento do segmento-de-torre 502. A operação genérica de içamento é mostrada pelo içamento do segmento-de-torre 503, que, incialmente compunha o conjunto concêntrico de 3 segmentos-de-torre, dispostos uns dentro dos outros, concêntricos entre si e em relação ao eixo "X" 310 da torre e apoiados sobre a fundação 310. [0115] Tower elements are constructed by coupling thin-wall cylindrical modules mounted on the construction site with industrially manufactured structural concrete elements that are consolidated by longitudinal bending. Alternatively, industrially prefabricated parts are constructed in the shape of elongated cylindrical sectors, with lengths of the order of 10 to 20 meters and widths of the order of 3 meters, which on the jobsite are consolidated by transverse prestressing, thus constructing the segments. turrets desired. In more detail, Figure 5 shows generally the lifting according to the present invention. Considering a set of 3 successive tower segments 501, 502 and 503, it is assumed that segment 501 had previously been solidified to the base of the tower, and had also been used for the lifting operation of segment-1. -torre 502. The general lifting operation is shown by the lifting of the tower segment 503, which initially comprised the concentric assembly of 3 tower segments, arranged within each other, concentric with each other and with respect to the axis. "X" 310 of the tower and resting on the foundation 310.
[0117] A partir dessa posição inicial, os equipamentos hidráulicos de içamento (Strand Jack) 505 são apoiados na borda superior do segmento de base externo 502, os cabos de aço de içamento 504 são atravessados nas respectivas aberturas da aba superior interna 404 do segmento de base 502 e nas aberturas da aba externa inferior 402 do segmento 503 vizinho e ancorados na face inferior da aba externa inferior 402 do segmento 503 a ser içado. A partir dessa posição é feito o içamento até que o segmento- de-torre 503 alcance a altura que deve ocupar na torre, condição em que a porção saliente 401 da aba externa inferior 402 dispõe-se sob a porção reentrante 403 da aba interna superior 404 do segmento 502, guardando, como indicado na Fig. 7, a folga 710 entre ambas, pela presença dos calços de concreto 711 que permitem o posterior grauteamento da folga. Nessa posição, os cabos de ligação 504 são atravessados nas aberturas da aba interna superior 404 do segmento 504, e nas aberturas da aba externa inferior 402 do segmento 503, e, após o endurecimento adequado do graute, é feito o procedimento de protensão usual na técnica solidarizando os dois segmentos-de-torre. Os equipamentos hidráulicos de içamento (Strand Jack) 505 e cabos 504 são desmontados e transferidos para a borda superior do segmento-de-torre intermediário 503 recém erguido e os cabos são montados nas aberturas da aba externa inferior 402 do próximo segmento-de-torre a ser erguido.  From this starting position, the Strand Jack 505 is supported on the upper edge of the outer base segment 502, the lifting wire ropes 504 are routed through the respective openings of the inner upper flap 404 of the segment. base 502 and the openings of the lower outer flap 402 of neighboring segment 503 and anchored to the lower face of the lower outer flap 402 of segment 503 to be lifted. From this position is lifted until tower 503 reaches the height it should occupy in the tower, whereby the protruding portion 401 of the lower outer flap 402 is disposed under the recessed portion 403 of the upper inner flap 404 of segment 502, keeping, as indicated in Fig. 7, the gap 710 between them, by the presence of the concrete shims 711 which allow the subsequent grouting of the gap. In this position, the connecting cables 504 are routed through the openings of the upper inner flap 404 of segment 504, and the openings of the lower outer flap 402 of segment 503, and, after proper grout hardening, the usual bending procedure is performed in the technique solidifying the two tower segments. Strand Jack 505 and 504 ropes are disassembled and transferred to the upper edge of the newly erected middle tower segment 503 and the ropes are mounted in the openings of the lower outer flap 402 of the next tower segment to be erected.
[0118] Após a elevação de todos os segmentos-de-torre, a face inferior da aba saliente da extremidade inferior dos segmentos-de-torre é solidarizada ao longo de seu perímetro pela colocação de uma laje maciça 701 pré-moldada de concreto armado (ver Fig. 7), com abertura central, que é fixada por protensão vertical 702 a essa aba saliente, e que assim enrijece transversalmente essa seção transversal da torre.  [0118] After lifting all the tower segments, the underside of the flap protruding from the lower end of the tower segments is solidified along its perimeter by placing a massive precast reinforced concrete slab 701. (see Fig. 7), with central opening, which is secured by vertical prestressing 702 to this protruding flap, and thus stiffens transversely of this tower cross section.
[0119] Com este novo método de construção, todas as cargas que agem em um dado segmento-de- torre, inclusive as ações devidas ao peso do próprio segmento, são transmitidas para o segmento de torre que lhe está imediatamente abaixo, através da seção transversal formada pela face comum das duas abas salientes dos anéis em contato, que são solidarizadas por protensão após o endurecimento do groute de enchimento da folga existente entre elas.  [0119] With this new construction method, all loads acting on a given tower segment, including actions due to the weight of the tower segment itself, are transmitted to the tower segment immediately below it through the section. formed by the common face of the two projecting tabs of the contacting rings, which are solidified by prestressing after the hardening of the backlash filler between them.
[0120] As figuras 9 a 14 se referem a uma segunda modalidade construtiva que resulta numa economia no custo dos equipamentos auxiliares, bem como numa substancial economia do tempo necessário no local da montagem da torre. [0121] A segunda configuração e constituição exigem um menor tempo de montagem mediante a redução do número de operações de levantamento e fixação dos segmentos-de-torre por meio de strand jacks. Com efeito, a prática demonstra que se requer um tempo considerável para a montagem de cada conjunto de meios de içamento, uma vez que é necessário dispor os cabos flexíveis de modo confiável e seguro, antes de serem acionados os respectivos strand jacks. Além disso, trata-se de operações demoradas, uma vez que é preciso que tais equipamentos trabalhem em sincronismo, de modo a manter a verticalidade e as folgas laterais do segmento-de-torre que estiver sendo levantado. Figures 9 to 14 refer to a second embodiment which results in a saving in the cost of ancillary equipment as well as a substantial saving in the time required at the tower assembly site. [0121] The second configuration and constitution requires shorter assembly time by reducing the number of lifting and clamping operations of tower segments by means of strand jacks. Indeed, practice shows that considerable time is required to assemble each set of lifting means, as the flexible cables must be reliably and reliably arranged before the respective strand jacks are actuated. In addition, these are time consuming operations, as such equipment must work in sync to maintain the verticality and side clearances of the tower segment being lifted.
[0122] Nessa modalidade a torre é constituída por dois segmentos-de-torre tronco-cônicos telescópicos superpostos, um primeiro segmento-de-torre inferior e um segundo segmento-de-torre superior, este com diâmetro menor do que o inferior sobre o qual se encontra apoiado, sendo tal ponto de apoio provido de meios de ligação e solidarização de ditos segmentos, de modo a formar uma única estrutura, consistindo ditos meios em um nó estrutural duplo de comportamento reverso, já detalhado em conexão com as figuras 6A, 6B e 7. [0122] In this embodiment the tower consists of two superimposed telescopic trunk-conical tower segments, a first lower tower segment and a second upper tower segment, which has a diameter smaller than the lower one on the which point is supported, said point being provided with means for connecting and solidifying said segments, to form a single structure, said means consisting of a double structural node of reverse behavior, already detailed in connection with figures 6A, 6B and 7.
[0123] Ambos ditos segmentos-de-torre são montados no local da obra, mediante o empilhamento de elementos modulares (aduelas) unidos e solidarizados entre si por meio de pretensão longitudinal (axial).  [0123] Both of these tower segments are assembled at the work site by stacking modular elements (staves) joined together and solidified by means of longitudinal (axial) pretension.
[0124] A Fig. 9 mostra o segmento-de-torre superior 304 montado pelo empilhamento de aduelas tronco-cônicas 301 e unidas entre si por meio de pretensão longitudinal, de modo a formar um conjunto solidário. Essa figura ainda mostra uma faixa anular espessa 303 situada na extremidade inferior do segmento-de-torre projetando-se para fora de sua parede externa. Dita faixa anular irá fazer parte do nó estrutural duplo de comportamento reverso, quando a torre for armada. Fig. 9 shows the upper tower segment 304 assembled by stacking trunk-conical staves 301 and joined together by longitudinal pretension to form a solidary assembly. This figure further shows a thick annular strip 303 located at the lower end of the tower segment protruding from its outer wall. Said annular band will be part of the double structural node of reverse behavior when the tower is armed.
[0125] Após montagem desse segmento superior, é montado o segmento inferior 302 mediante empilhamento das aduelas 305, formadas por setores tronco-cônicos unidos pelas bordas verticais e solidarizados mediante pretensão transversal circular.  After assembly of this upper segment, the lower segment 302 is mounted by stacking the staves 305, formed by trunk-conical sectors joined by the vertical edges and solidified by circular transverse pretension.
[0126] O referido segmento-de-torre 302, doravante designado como "primeiro" tem sua extremidade inferior consolidada à fundação da torre por meio de pretensão longitudinal, sendo provido em sua extremidade superior de uma faixa anular espessa 307 que se projeta para o interior da torre a qual, em conjunto com a faixa anular espessa 303 da extremidade inferior do segmento-de-torre 302 - designado como "segundo" segmento-de-torre - irá formar o nó estrutural duplo de comportamento reverso. Ditas faixas anulares têm, cada uma, comprimento da ordem de até 15 vezes a espessura da parede do segmento-de-torre e espessura de até três vezes a espessura de dita parede.  Said tower segment 302, hereinafter referred to as "first", has its lower end consolidated to the foundation of the tower by longitudinal pretension, being provided at its upper end with a thick annular strip 307 projecting towards the which, together with the thick annular strip 303 of the lower end of the tower segment 302 - designated as the "second" tower segment - will form the double reverse behavior structural node. Said annular strips each have a length of the order of up to 15 times the wall thickness of the tower segment and a thickness of up to three times the thickness of said wall.
[0127] Em resumo, a extremidade superior do primeiro segmento-de-torre 302 é provida de uma faixa anular espessa 307 reentrante que se projeta para o interior da torre, e a extremidade inferior do segundo segmento-de-torre 304 é provida de uma faixa anular espessa 303 saliente que se projeta para fora da torre.  In summary, the upper end of the first tower segment 302 is provided with a recessed thick annular strip 307 protruding into the tower, and the lower end of the second tower segment 304 is provided. a thick projecting annular strip 303 protruding out of the tower.
[0128] Após terem sido montados concentricamente no solo ditos primeiro e segundo segmentos-de- torre, pode-se observar na Fig. 10 que o segundo segmento-de-torre 304 possui uma altura total maior do que o primeiro segmento-de-torre 302, a porção 311 que sobressai acima do topo deste último medindo entre 3 e 15 metros, preferencialmente 10 metros. A extremidade superior de dita porção sobressalente 311 compreende um módulo metálico destinado a suportar a nacele 309 (não ilustrada nessa figura) que abriga o gerador de energia elétrica, sendo esse módulo metálico (não referenciado) consolidado ao segmento-de-torre por meio da pretensão longitudinal. A Fig. 10 mostra ainda o provimento de um furo passante 312 provido no referido módulo metálico, o qual será utilizado na instalação e fixação dos elementos associados à geração de energia elétrica, como será descrito a seguir. After having been concentrically mounted on the ground said first and second tower segments, it can be seen in Fig. 10 that the second tower segment 304 has a total height greater than that the first tower segment 302, the portion 311 protruding above the top of the latter measuring between 3 and 15 meters, preferably 10 meters. The upper end of said spare portion 311 comprises a metal module for supporting nacelle 309 (not shown in this figure) housing the electric power generator, which metal module (unreferenced) is consolidated to the tower segment by means of the longitudinal pretension. Fig. 10 further shows the provision of a through hole 312 provided in said metal module which will be used in the installation and fixing of the elements associated with the generation of electric power, as will be described below.
[0129] Segundo mostra a Fig. 11, no topo do segundo elemento-de-torre 304, mais precisamente no dito módulo metálico, é instalado um guincho auxiliar 308 que se vincula ao módulo metálico através de um eixo (não ilustrado) que se encaixa no referido furo 312. Dito guincho auxiliar tem a função de elevar e montar os elementos relacionados com a geração de energia elétrica, tais como a nacele 309 contendo o gerador e a hélice (não ilustrada) acionada pelo vento.  As shown in Fig. 11, on top of second tower element 304, more precisely in said metal module, an auxiliary winch 308 is attached to the metal module by means of a shaft (not shown) that is it fits into said hole 312. Said auxiliary winch has the function of lifting and assembling the elements related to the electric power generation, such as the nacelle 309 containing the generator and the wind driven propeller (not shown).
[0130] Uma vez completado o levantamento da nacele 309 até o topo do segmento-de-torre 304, a mesma é posicionada e fixada ao dito módulo metálico por meios conhecidos. A seguir, é feito o içamento desse segundo segmento-de-torre 304 mediante guinchos de cordoalha (strand jacks) apoiados na borda superior do primeiro segmento-de-torre 302, sem necessidade de estruturas auxiliares, utilizando o método anteriormente descrito em conexão com a Fig. 5. Ao término desse içamento, o aspecto da torre é aquele ilustrado na Fig. 12, que mostra a nacele 309 já fixada ao topo da mesma.  Once the lifting of nacelle 309 to the top of tower segment 304 is completed, it is positioned and secured to said metal module by known means. This second tower segment 304 is then lifted by means of strand jacks supported on the upper edge of the first tower segment 302, without the need for auxiliary structures, using the method described above in connection with Fig. 5. At the end of this lift, the appearance of the tower is that illustrated in Fig. 12, which shows nacelle 309 already attached to the top of it.
[0131] O encontro entre ditos segmentos, indicado como "E" nessa figura, constitui o nó estrutural duplo de comportamento reverso, o qual provê a união rígida entre o segmento-de-torre superior 304 e o primeiro segmento-de-torre 302, cuja extremidade inferior está devidamente engastado na fundação definitiva (não ilustrada).  [0131] The encounter between said segments, indicated as "E" in this figure, constitutes the double reverse behavior structural node, which provides the rigid union between the upper tower segment 304 and the first tower segment 302. , whose lower end is properly set into the final foundation (not shown).
[0132] A Fig. 14 é uma vista em corte do referido nó, o qual é consolidado por meio de elementos de protensão, segundo mostrado nas figuras 6A, 6B e 7 e detalhado na descrição correspondente.  Fig. 14 is a cross-sectional view of said knot, which is consolidated by prestressing elements as shown in figures 6A, 6B and 7 and detailed in the corresponding description.
[0133] Por razões de clareza, tais elementos não se encontram ilustrados na Fig. 14. Essa figura mostra ainda a laje de concreto transversal 310, solidária com a face da extremidade inferior do segmento-de-torre superior, que consolida transversalmente dito segmento-de-torre provendo um aumento da rigidez nessa região. Ao contrário do que ocorre com o sistema que utiliza uma pluralidade de segmentos-de-torre cilíndricos, descrito em conexão com as figuras 3-A, 3-B, 7 e 8, onde as lajes referenciadas como 701 na Fig. 7 somente podem ser montadas após terminado o levantamento de todos os segmentos de torre, na segunda modalidade construtiva a laje 310 pode ser formada no início da montagem do segundo segmento-de-torre 302 quando este ainda se encontra apoiado no solo. Isso representa uma economia adicional de tempo e mão de obra na montagem da torre. For reasons of clarity, such elements are not illustrated in Fig. 14. This figure further shows the transverse concrete slab 310, integral with the lower end face of the upper tower segment, which transversely consolidates said segment. turrets providing increased rigidity in this region. In contrast to the system using a plurality of cylindrical tower segments, described in connection with figures 3-A, 3-B, 7 and 8, where the slabs referenced as 701 in Fig. 7 can only be assembled after the lifting of all tower segments is completed, in the second embodiment the slab 310 may be formed at the beginning of the assembly of the second tower segment 302 when it is still grounded. This saves additional time and labor on tower assembly.
[0134] Conforme se pode observar na vista em corte da Fig. 14 correspondente à torre já montada, o diâmetro interno 314 de dita primeira faixa 307 na extremidade superior do segmento-de-torre inferior 302 corresponde ao diâmetro externo do corpo da extremidade inferior do segmento-de-torre superior 304, e o diâmetro externo da dita segunda faixa 303 da extremidade inferior do segmento-de-torre superior 304 corresponde ao diâmetro interno do corpo da extremidade superior do segmento-de-torre inferior 302. As can be seen from the cross-sectional view of Fig. 14 corresponding to the tower already assembled, the inner diameter 314 of said first strip 307 at the upper end of the lower tower segment 302 corresponds to the outer diameter of the lower end body. of the upper tower segment 304, and the outer diameter of said second strip 303 of the lower end of the upper turret 304 corresponds to the internal diameter of the upper end body of the lower turret 302.
[0135] Uma vez completada a montagem da torre e completada a pretensão dos elementos que integram o nó estrutural duplo de comportamento reverso E, inicia-se o içamento da hélice, operação essa ilustrada na Fig. 13. Para isso, utiliza-se um cabo que é tracionado a partir do mesmo guincho 308 já utilizado para erguer e posicionar a nacele. A extremidade inferior do cabo é presa na hélice 400, previamente montada no solo. Ao terminar o içamento da hélice, esta é instalada no eixo do gerador eólico, completando destarte a montagem do conjunto.  [0135] Once the tower assembly is completed and the pretension of the elements that make up the double-acting reverse structural node E is complete, the propeller lift begins, an operation shown in Fig. 13. For this, a cable that is pulled from the same winch 308 already used to lift and position the nacelle. The lower end of the cable is attached to the propeller 400, previously mounted on the ground. When the propeller lift is completed, it is installed on the wind generator shaft, thus completing the assembly assembly.
[0136] Por oportuno, deve-se observar que no caso de torres estruturadas como exemplificado nas figuras 3 -A e 3-B, a saber, formadas por uma pluralidade de segmentos-de-torre cilíndricos, a instalação do guincho auxiliar 308 e da nacele 309 obedecem ao mesmo método adotado para a torre da Fig. 12, ou seja, os referidos elementos são instalados no segmento-de-torre superior - no caso, o segmento-de-torre 304 da torre ilustrada nas referidas figuras - quando este ainda se encontra no solo. Assim como ocorre com a torre formada por apenas dois segmentos-de-torre da Fig. 9 e seguintes, a condição que permite tal instalação é a maior altura do segmento-de-torre superior 304 com relação aos demais segmentos-de- torre. No caso da Fig. 3-B tal condição é observada, uma vez que o segmento-de-torre 304 possui altura maior, o que permite a instalação do guincho auxiliar na sua extremidade superior. It should be noted, as appropriate, that in the case of towers structured as exemplified in Figures 3A and 3B, namely formed by a plurality of cylindrical tower segments, the installation of auxiliary winch 308 and of the nacelle 309 follow the same method adopted for the tower of Fig. 12, i.e. said elements are installed in the upper tower segment - in this case, tower tower segment 304 illustrated in said figures - when it is still in the ground. As with the tower formed by only two tower segments of Fig. 9 et seq., The condition permitting such installation is the higher height of the top tower segment 304 relative to the other tower segments. In the case of Fig. 3-B such a condition is observed since the tower segment 304 has higher height which allows the auxiliary winch to be installed at its upper end.
[0137] Assim como descrito em conexão com a Fig. 13, o içamento da hélice e sua instalação no topo da torre formada por uma pluralidade de segmentos-de-torre cilíndricos também são executados com a torre ja montada, ou seja, na situação ilustrada na Fig. 3-A. As described in connection with Fig. 13, the lifting of the propeller and its installation on the top of the tower formed by a plurality of cylindrical tower segments are also performed with the tower already mounted, that is, in the situation. shown in Fig. 3-A.
[0138] Embora a presente invenção tenha sido descrita em conexão com modalidades preferenciais de realização, deve ser entendido que não se pretende limitar a invenção àquelas modalidades particulares. Assim, o uso de materiais estruturais não se encontra restrito ao concreto, podendo ser utilizadas estruturas metálicas em alguns ou mesmo em todos os segmentos-de-torre.  Although the present invention has been described in connection with preferred embodiments, it should be understood that the invention is not intended to be limited to those particular embodiments. Thus, the use of structural materials is not restricted to concrete and metal structures can be used in some or even all tower segments.
[0139] Evidentemente, não é necessário que tais estruturas utilizem elementos tais como as aduelas 301 ou 305, podendo ser executados mediante técnicas usualmente adotadas para a montagem de estruturas metálicas. Serão todavia preservadas as características fundamentais do objeto, tais como a maior altura do segmento-de-torre superior com relação aos demais, bem como o emprego do nó estrutural duplo de comportamento reverso na junção dos segmentos superior e inferior.  Of course, it is not necessary for such structures to use elements such as staves 301 or 305, and can be performed by techniques usually adopted for the assembly of metal structures. However, the fundamental characteristics of the object will be preserved, such as the higher height of the upper tower segment in relation to the others, as well as the use of the double structural node with reverse behavior in the junction of the upper and lower segments.
[0140] Ao contrário, pretende-se cobrir todas as alternativas, modificações e equivalentes possíveis dentro do espírito e do escopo da invenção, definidas de acordo com as reivindicações que seguem.  On the contrary, it is intended to cover all possible alternatives, modifications and equivalents within the spirit and scope of the invention, defined according to the following claims.

Claims

REIVINDICAÇÕES
1. TORRE DE MATERIAIS ESTRUTURAIS, constituída por segmentos-de-torre telescópicos superpostos, compreendendo um segmento-de-torre superior (304) apoiado sobre pelo menos um segmento de torre inferior (302) caracterizada pelo fato de dito segmento-de-torre superior ter altura maior do que dito pelo menos um segmento-de-torre inferior e as regiões de encontro dos segmentos-de- torre sobrepostos formarem um nó estrutural duplo de comportamento reverso (E), que compreende faixas anulares (303, 307, 402, 404) espessas de material estrutural, situadas nas extremidades em contato mútuo dos ditos segmentos-de-torre, faixas essas ligadas e solidarizadas entre si. 1. STRUCTURAL MATERIAL TOWER, consisting of superimposed telescopic tower segments, comprising an upper tower segment (304) supported on at least one lower tower segment (302) characterized by the fact that said tower segment higher height than said at least one lower tower segment and the meeting regions of the overlapping tower segments form a double reverse behavior structural node (E) comprising annular strips (303, 307, 402 404) thick strips of structural material, situated at the ends in mutual contact of said tower segments, which bands are connected and in solidarity with each other.
2. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 1, caracterizada pelo fato de compreender pelo menos um segmento-de-torre intermediário (303, 501, 502, 503). STRUCTURAL MATERIALS TOWER according to claim 1, characterized in that it comprises at least one intermediate tower segment (303, 501, 502, 503).
3. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 1, caracterizada pelo fato de consistir de dois segmentos-de-torre telescópicos, compreendendo um segmento-de-torre superior (304) e um segmento-de-torre inferior (302) ambos de formato tronco-cônico. STRUCTURAL MATERIAL TOWER according to claim 1, characterized in that it consists of two telescopic tower segments, comprising an upper tower segment (304) and a lower tower segment (302) both conical in shape.
4. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 2, caracterizada pelo fato de ditos segmentos de torre (302, 303, 304, 501, 502, 503), terem formato cilíndrico. STRUCTURAL MATERIAL TOWER according to claim 2, characterized in that said tower segments (302, 303, 304, 501, 502, 503) are cylindrical in shape.
5. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 1, caracterizada pelo fato de os segmentos-de-torre serem constituídos por aduelas modulares (301, 305, 308) sobrepostas umas sobre as outras, unidas globalmente entre si por pretensão longitudinal do segmento-de-torre. STRUCTURAL MATERIALS TOWER according to claim 1, characterized in that the tower segments consist of modular staves (301, 305, 308) overlapping each other, joined globally by longitudinal pretension of the segment. Tower
6. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 5, caracterizada pelo fato de ditas aduelas modulares (308) serem constituídas por setores alongados de superfícies cilíndricas unidos por protensão circular transversal. STRUCTURAL MATERIALS TOWER according to Claim 5, characterized in that said modular staves (308) consist of elongated sectors of cylindrical surfaces joined by transverse circular prestressing.
7. TORRE DE MATERIAIS ESTRUTURAIS de acordo com as reivindicações 1 ou 2, caracterizada pelo fato de cada um de ditos segmentos-de-torre (302, 303, 501, 502, 503), exceto o superior (304) compreender na sua região superior uma faixa anular reentrante (307, 404) espessa de material estrutural, tendo um comprimento (409) entre seis e quinze vezes a espessura (416) da parede do dito segmento-de- torre e espessura (417) de até três vezes a espessura de dita parede, o diâmetro interno (314, 414) de dita faixa correspondendo ao diâmetro externo do segmento-de-torre (304, 503) situado acima de dito segmento-de-torre considerado (302, 502). STRUCTURAL MATERIALS TOWER according to claim 1 or 2, characterized in that each of said tower segments (302, 303, 501, 502, 503) except the upper one (304) comprises in its region above is a thick recessed annular strip (307, 404) of structural material having a length (409) of between six and fifteen times the wall thickness (416) of said tower segment and thickness (417) of up to three times the thickness. thickness of said wall, the inside diameter (314, 414) of said strip corresponding to the outside diameter of the tower segment (304, 503) situated above said considered tower segment (302, 502).
8. TORRE DE MATERIAIS ESTRUTURAIS de acordo com as reivindicações 1 ou 2, caracterizada pelo fato de cada um de ditos segmentos-de-torre (303, 304, 501, 502, 503), exceto o inferior (302) compreender na sua região inferior uma faixa anular saliente (310, 402) espessa de material estrutural, tendo um comprimento (407) entre seis e quinze vezes a espessura (416) da parede do dito segmento-de- torre e espessura (418) de até três vezes a espessura de dita parede, o diâmetro externo (314, 414) de dita faixa correspondendo ao diâmetro externo do segmento-de-torre (304, 503) situado acima de dito segmento-de-torre considerado (302, 502). STRUCTURAL MATERIALS TOWER according to claim 1 or 2, characterized in that each of said tower segments (303, 304, 501, 502, 503) except the lower one (302) comprises in its region below is a projecting annular strip (310, 402) thick of structural material, having a length (407) between six and fifteen times the wall thickness (416) of said tower segment and up to three times the thickness (418). thickness of said wall, the outside diameter (314, 414) of said a strip corresponding to the outside diameter of the tower segment (304, 503) situated above said considered tower segment (302, 502).
9. TORRE DE MATERIAIS ESTRUTURAIS de acordo com as reivindicações 7 ou 8, caracterizada pelo fato de cada um de ditos nós estruturais duplos de comportamento reverso (E) ser formado pela superposição da aba saliente (401) da faixa anular saliente (310, 402) com a aba reentrante (403) da faixa anular reentrante (307, 404), ditas faixas anulare sendo solidarizadas entre si por meio de elementos protendidos de aço. STRUCTURAL MATERIALS TOWER according to claim 7 or 8, characterized in that each of said reverse-acting double structural nodes (E) is formed by overlapping the projecting flap (401) of the projecting annular band (310, 402 ) with the recessed flap (403) of the recessed annular band (307, 404), said annular bands being solidified with each other by means of prestressed steel elements.
10. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 9, caracterizada pelo fato de cada um de ditos elementos protendidos consistir de cabos de aço. STRUCTURAL MATERIAL TOWER according to Claim 9, characterized in that each of said prestressed elements consists of wire ropes.
11. TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 9, caracterizada pelo fato de cada um de ditos elementos protendidos consistir de barras de aço. STRUCTURAL MATERIALS TOWER according to claim 9, characterized in that each of said prestressed elements consists of steel bars.
12 MÉTODO DE MONTAGEM DE TORRE DE MATERIAIS ESTRUTURAIS constituída pelo empilhamento de uma pluralidade de segmentos-de-torre modulares telescópicos, compreendendo a execução da fundação (310) no local da obra, recebimento dos elementos estruturais modulares de concreto (102), fabricados industrialmente, formação de segmentos-de-torre (302, 303, 304) a partir da montagem de ditos elementos estruturais, montados in loco formando um conjunto (305) que compreende um primeiro segmento-de-torre base externo de maior diâmetro (302) e um segmento-de-torre de topo (304) de menor diâmetro disposto concentricamente ao segmento-de-torre de maior diâmetro, caracterizado pelo fato de compreender ainda os seguintes passos: 12 STRUCTURAL MATERIAL TOWER ASSEMBLY METHOD consists of stacking a plurality of telescopic modular tower segments, comprising the execution of the foundation (310) on site, receiving the industrially manufactured modular structural structural elements (102) , forming tower segments (302, 303, 304) from assembling said on-site assembled structural members forming an assembly (305) comprising a first larger diameter outer base tower segment (302) and a smaller diameter top tower segment (304) concentrically disposed to the larger diameter tower segment, further comprising the following steps:
• içamento do segmento-de-torre de menor diâmetro por meio de cabos (504) ancorados na face inferior da aba (310, 402) situada na extremidade inferior de dito segmento-de-torre de menor diâmetro tracionados a partir de macacos (505) apoiados sobre a borda superior da faixa reentrante (307, 404) localizada na extremidade superior de dito primeiro segmento- de-torre; • Lifting the smaller diameter tower segment by means of cables (504) anchored to the underside of the tab (310, 402) located at the lower end of said smaller diameter tower segment pulled from jacks (505). ) resting on the upper edge of the recessed strip (307, 404) located at the upper end of said first tower segment;
• instalação de barras de emenda (506) ancoradas na face inferior da aba inferior externa (310, 402) da extremidade inferior do segmento-de-torre de diâmetro menor, e do outro lado, na face superior da aba superior reentrante (307, 404) da extremidade superior de dito segmento-de-torre de diâmetro maior. • installing splice bars (506) anchored to the underside of the lower outer flange (310, 402) of the lower end of the smaller diameter turret segment, and on the other side to the upper face of the recessed upper flange (307, 404) of the upper end of said larger diameter tower segment.
13 MÉTODO DE MONTAGEM DE TORRE DE MATERIAIS ESTRUTURAIS de acordo com a reivindicação 12, em que a torre compreende, ainda, pelo menos um segmento-de-torre intermediário (303, 501, 502, 503), o qual é montado concentricamente ao dito pelo menos um segmento-de-torre de maior diâmetro, caracterizado pelo fato de compreender os seguintes passos: • içamento do segmento-de-torre intermediário (303) adjacente ao dito primeiro segmento- de-torre (302) por meio de cabos (504) ancorados na face inferior da aba (402) situada na extremidade inferior de dito segmento-de-torre intermediário (303) tracionados a partir de macacos (505) apoiados sobre a borda superior da faixa saliente (404) localizada na extremidade superior de dito primeiro segmento-de-torre (302); STRUCTURAL TOWER ASSEMBLY METHOD according to claim 12, wherein the tower further comprises at least one intermediate tower segment (303, 501, 502, 503) which is concentrically mounted to said one. at least one tower of larger diameter, characterized in that it comprises the following steps: Lifting the intermediate tower segment (303) adjacent to said first tower segment (302) by means of cables (504) anchored to the underside of the flap (402) located at the lower end of said tower segment. intermediate turret (303) pulled from jacks (505) resting on the upper edge of the protruding strip (404) located at the upper end of said first turret (302);
• instalação de de barras de emenda (506) ancoradas na face inferior da aba inferior externa (402) da extremidade inferior do segmento-de-torre intermediário (303), e do outro lado, na face superior da aba superior interna (404) da extremidade superior de dito primeiro segmento-de-torre (302); • installation of splice bars (506) anchored to the underside of the lower outer flap (402) of the lower end of the intermediate turret segment (303), and on the other side to the upper face of the inner upper flap (404) from the upper end of said first tower segment (302);
• repetição dos passos (c) e (d) para eentuais segmentos-de-torre intermediários adicionais. • repeating steps (c) and (d) for additional additional intermediate tower segments.
14 MÉTODO DE MONTAGEM DE TORRE DE MATERIAIS ESTRUTURAIS de acordo com as reivindicações 12 ou 13, caracterizado pelo fato de compreender, adicionalmente, a instalação de um guincho auxiliar (308) vinculado à extremidade superior de dito segmento-de-torre de topo (304). STRUCTURAL TOWER ASSEMBLY METHOD according to claim 12 or 13, characterized in that it further comprises the installation of an auxiliary winch (308) attached to the upper end of said top tower segment (304). ).
PCT/BR2016/050017 2015-01-30 2016-01-29 Structural material tower and assembly method WO2016119035A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BR102015002142A BR102015002142A2 (en) 2015-01-30 2015-01-30 structural concrete tower and mounting method
BRBR1020150021429 2015-01-30
BR132015028527-1A BR132015028527E2 (en) 2015-11-13 2015-11-13 Structural materials tower and mounting method
BRBR1320150285271 2015-11-13

Publications (1)

Publication Number Publication Date
WO2016119035A1 true WO2016119035A1 (en) 2016-08-04

Family

ID=56542063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/050017 WO2016119035A1 (en) 2015-01-30 2016-01-29 Structural material tower and assembly method

Country Status (1)

Country Link
WO (1) WO2016119035A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916816A (en) * 2016-10-11 2018-04-17 普罗腾德建筑系统与方案有限公司 Structural concrete tower and assemble method
CN109681390A (en) * 2018-12-26 2019-04-26 北京天杉高科风电科技有限责任公司 Wind power generating set, pylon and its foundation structure
WO2019190956A1 (en) * 2018-03-26 2019-10-03 General Electric Company Additively manufactured tower structure and method of fabrication
WO2020068119A1 (en) * 2018-09-28 2020-04-02 General Electric Company Method for manufacturing a telescoping wind turbine tower structure
CN111287907A (en) * 2018-12-06 2020-06-16 深圳京创重工特种工程有限公司 Construction method of concrete tower tube
US11346122B2 (en) * 2019-10-15 2022-05-31 M J Engineering LLC Layered multi-body support structure
US20220282747A1 (en) * 2019-10-15 2022-09-08 MJ Engineering LLC Layered multi-body support structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046552A1 (en) * 2000-12-05 2002-06-13 Allan P Henderson Tilt-up and telescopic support tower for large structures
EP1262614A2 (en) * 2001-06-01 2002-12-04 Oevermann GmbH & Co. KG, Hoch- und Tiefbau Prestressed concrete tower
WO2011006526A1 (en) * 2009-07-13 2011-01-20 Vsl International Ag Telescopic tower assembly and method
WO2013083854A1 (en) * 2011-12-09 2013-06-13 Inneo Torres, S.L. Assembly method for a telescopic tower and means for implementing said method
WO2013083853A1 (en) * 2011-12-09 2013-06-13 Inneo Torres, S.L. Horizontal joint assembly between two telescopic wind turbine tower portions and method of installing same
WO2013083852A1 (en) * 2011-12-09 2013-06-13 Inneo Torres, S.L. Assembly process of a telescopic tower
BR102012001573A2 (en) * 2012-01-23 2013-10-01 Bezerra Francisco Ricardo Cortez construction system for the manufacture and assembly of pre-cast concrete wind towers
US20140318040A1 (en) * 2013-04-24 2014-10-30 Solaris Technologies, Inc. Portable tower with improved guiding and lifting systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046552A1 (en) * 2000-12-05 2002-06-13 Allan P Henderson Tilt-up and telescopic support tower for large structures
EP1262614A2 (en) * 2001-06-01 2002-12-04 Oevermann GmbH & Co. KG, Hoch- und Tiefbau Prestressed concrete tower
WO2011006526A1 (en) * 2009-07-13 2011-01-20 Vsl International Ag Telescopic tower assembly and method
WO2013083854A1 (en) * 2011-12-09 2013-06-13 Inneo Torres, S.L. Assembly method for a telescopic tower and means for implementing said method
WO2013083853A1 (en) * 2011-12-09 2013-06-13 Inneo Torres, S.L. Horizontal joint assembly between two telescopic wind turbine tower portions and method of installing same
WO2013083852A1 (en) * 2011-12-09 2013-06-13 Inneo Torres, S.L. Assembly process of a telescopic tower
BR102012001573A2 (en) * 2012-01-23 2013-10-01 Bezerra Francisco Ricardo Cortez construction system for the manufacture and assembly of pre-cast concrete wind towers
US20140318040A1 (en) * 2013-04-24 2014-10-30 Solaris Technologies, Inc. Portable tower with improved guiding and lifting systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916816A (en) * 2016-10-11 2018-04-17 普罗腾德建筑系统与方案有限公司 Structural concrete tower and assemble method
WO2018068117A1 (en) * 2016-10-11 2018-04-19 Protende Sistemas E Métodos De Construções Ltda. Structural concrete tower and assembly method
WO2019190956A1 (en) * 2018-03-26 2019-10-03 General Electric Company Additively manufactured tower structure and method of fabrication
CN112135949A (en) * 2018-03-26 2020-12-25 通用电气公司 Additive manufactured tower structure and method of manufacture
WO2020068119A1 (en) * 2018-09-28 2020-04-02 General Electric Company Method for manufacturing a telescoping wind turbine tower structure
CN111287907A (en) * 2018-12-06 2020-06-16 深圳京创重工特种工程有限公司 Construction method of concrete tower tube
CN109681390A (en) * 2018-12-26 2019-04-26 北京天杉高科风电科技有限责任公司 Wind power generating set, pylon and its foundation structure
CN109681390B (en) * 2018-12-26 2020-08-28 北京天杉高科风电科技有限责任公司 Wind generating set, tower and foundation structure thereof
US11346122B2 (en) * 2019-10-15 2022-05-31 M J Engineering LLC Layered multi-body support structure
US20220282747A1 (en) * 2019-10-15 2022-09-08 MJ Engineering LLC Layered multi-body support structure

Similar Documents

Publication Publication Date Title
WO2016119035A1 (en) Structural material tower and assembly method
EP2215320B1 (en) Segmented concrete tower for wind power generators and method of erecting thereof
US10519685B2 (en) Hybrid concrete-composite tower for a wind turbine and method of manufacturing
CA2475354C (en) Wind turbine
CN110205938B (en) Steel pipe arch installation method of through beam-arch combination bridge
BR102016023743B1 (en) STRUCTURAL CONCRETE TOWER AND ASSEMBLY METHOD
CN104695715A (en) Construction method of beam string structure of roof
CN107841934B (en) Wing-spreading arch cable-stayed bridge
CA2823814C (en) Mounting assembly and method to erect in sections an annular tower for wind or heliostatic power generators in an energy farm
CN113215956A (en) Prefabricated hollow concrete-filled steel tube arch bridge and construction method thereof
MX2007009456A (en) Pre-stressed concrete tower for wind power generators.
CN103806373B (en) Oblique pull assembly type steel bridge on highway suspension cable anchor system
CN206512607U (en) Steel truss beam bolt applies stubborn operating platform
CN111197318B (en) Foundation for a tower of a wind turbine
CN110700109A (en) Construction process of concrete arch ring of steel pipe stiff skeleton of bridge
CN206942191U (en) A kind of temporary support of telescopic in height regulation reinforces combination steel construction
CN103195079B (en) Installing type template, installing type template group and complete installing type plate device
BR102015002142A2 (en) structural concrete tower and mounting method
CN219951707U (en) Overpass construction temporary supporting structure free of underbridge support
CN104818675A (en) Assembling method of rebar segments
EP3401445B1 (en) Anchoring section for a foundation structure
RU2768534C1 (en) Method of mounting a permanent quick-erect lightweight support for emergency recovery works on power transmission lines
CN114250705A (en) Truss bridge structure construction method based on secondary vertical rotation method
US4352598A (en) Concrete structure for the transmission of loads from the steel lattice of a marine platform and a method of forming said structure
BR132015028527E2 (en) Structural materials tower and mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742598

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742598

Country of ref document: EP

Kind code of ref document: A1