WO2016117991A1 - System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process - Google Patents

System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process Download PDF

Info

Publication number
WO2016117991A1
WO2016117991A1 PCT/MX2015/000006 MX2015000006W WO2016117991A1 WO 2016117991 A1 WO2016117991 A1 WO 2016117991A1 MX 2015000006 W MX2015000006 W MX 2015000006W WO 2016117991 A1 WO2016117991 A1 WO 2016117991A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
biodiesel
transesterification
water
raw material
Prior art date
Application number
PCT/MX2015/000006
Other languages
Spanish (es)
French (fr)
Inventor
Jose Martin VELEZ DE LA ROCHA
Omar VAZQUEZ PALMA
Dino Alejandro Pardo Guzman
Original Assignee
Velez De La Rocha Jose Martin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velez De La Rocha Jose Martin filed Critical Velez De La Rocha Jose Martin
Priority to PCT/MX2015/000006 priority Critical patent/WO2016117991A1/en
Publication of WO2016117991A1 publication Critical patent/WO2016117991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present application belongs to the alternative diesel production area from other renewable ones, through the application of the on-site transesterification process.
  • the processes work with a liquid biomass sludge that contains 10-20% of total solids which is reacted with hot water (190-250 ° C) at autogenous pressures to conglomerate the cells in a filterable solid that contains the lipids and It produces a sterile and nutrient-rich aqueous phase.
  • the lipids contained in the wet coal or "hydrochar" are converted into biodiesel without having to perform solvent extraction by using the supercritical ethanol method.
  • In situ transesterification has traditionally been limited to reactions catalyzed with bases. Although large conversions can be achieved at moderate temperatures, subcritically catalyzed in situ transesterification usually requires a large excess of alcohol, is sensitive to water and requires long reaction times. For example, soybean containing 7.4 wt% moisture was reacted at 23 ° C for 8 hours with 180: 1 methane fatty acid methane methanol to achieve 93% conversion of lipids to biodiesel. Later work has shown that if the percentage of humidity is reduced and physical pretreatment to biomass is carried out, high conversions can be achieved in shorter times and with less methanol 9-25: 1 MeOH: AG.
  • methanol still remains higher than commercial oil transesterification, which is usually carried out at 2: 1 MeOH: AG. Excess methanol is usually required to submerge the biomass, with a side effect being the dilution of water present at negligible concentrations.
  • microalgae has been investigated as the raw material for subcritical transesterification in situ. Since algae biomass typically contains a higher proportion of fatty acids compared to oilseeds, acid catalyzed reactions, which do not form soaps, are most commonly carried out. It has been found with Chlorella containing 0.7 wt% moisture was reacted at 60 ° C for 6 hours with approximately 105 MeOH: AG and 100 wt% H 2 S0 4 , the conversion balance to methyl esters was reduced by 20% compared to the reactions with dry biomass. When the biomass humidity exceeded 31.7% (dry base) or the water constituted 9.5 wt% of the mixture to be reacted, the transesterification was totally inhibited.
  • SC-1ST on-site transesterification
  • Hydrothermal processing which involves the application of temperature and pressure to biomass in an aqueous medium, assimilates the conversion of old plants into crude oil, coal and natural gas as the reserves on which the world depends today.
  • Subcritical extraction with water SCW
  • HTL hydrothermal liquefaction
  • SCW subcritical extraction with water
  • HTL hydrothermal liquefaction
  • Water is identified as a benign and non-toxic medium, with selective extraction or reaction capabilities and is a green solvent that is ready and available.
  • the process of converting biomass into HTC takes temperatures between 200-370 ° C and high pressures. The characteristics of the bio-crude or crude extract produced during this process vary depending on the temperature and pressure used.
  • the solubility of organic matter begins to increase rapidly from 200 ° C, and this improved solubility for organic compounds is provided by a single phase homogeneous medium for organic synthesis in subcritical water.
  • biochemical compounds found in the biomass undergo reactions such as hydrolysis, re-polymerization to create dense energy bio-crude oil, "hydrochar", water-soluble compounds and gaseous products.
  • the oxygen present in the biomass is removed in the form of water due to dehydration and by decarboxylation in the form of carbon dioxide.
  • the successful liquefaction of whole seaweed was demonstrated by Biller, Brown and Toor at temperatures of 300 ° C or higher to produce energy-dense bio-crude oil.
  • the biggest obstacle to refining bio-crude oil in regular refineries is the high nitrogen content, which requires a special catalyst or processing strategies.
  • In situ transesterification is a process in which the oil or fat contained in the seeds or oleaginous plant fruits, or in adipose tissue of animals is extracted and transesterified in a single step, which implies that alcohol used in the process, in turn, serves as an extractor agent for lipid material and as a reagent in its transesterification.
  • On-site transesterification has been considered, since the beginning of the biodiesel industry in the eighties of the twentieth century, as an alternative to reduce production costs. Its application eliminates the stage of mechanical extraction or solvent extraction, avoids the processes of refining the oil or grease, and increases the yield of esters from a given mass of seeds, compared to the conventional process that starts from the oil previously extracted.
  • Figure 1 is a flow chart of the process applied to carry out the transesterification in situ.
  • Figure 2 represents a diagram of the process and all the components used to carry out the transesterification in situ.
  • the first stage there is a primary tank (1) in which all the raw material with which it will be worked is received.
  • a continuous high pressure tubular reactor (2) to carry out the hydrothermal carbonization of the organic matter.
  • a tubular filtration system (3) by which excess water is removed from the coal obtained.
  • the fourth stage there are two high pressure continuous tubular batch (4) reactor in which the transesterification will be carried out in situ.
  • the primary tap (1) is empty and hermetically sealed, then the microcontroller (6) detects the state and opens the upper gate (5) for recharging raw material and once loaded, the upper gate (5 ) closes again.
  • the lower gate (7) opens to drop the raw material little by little towards the tubular reactor (2)
  • the function of the microcontroller (6) is important since it does not allow the opening and closing of the upper gate (5) and lower gate (7) the pressure inside the tubular reactor (2) is maintained.
  • the HTC process is carried out in which the organic matter is carbonized. Organic matter is found in a mixture of 20% solids. In order to carry out this process, the reactor temperature is maintained at 250 ° C, which is regulated by four heating bands (8).
  • the tubular reactor (2) has a safety valve A (9) which opens when the pressure exceeds the established limit.
  • the tubular reactor (2) also has a pressure sensor A (10), a temperature sensor A (1 1) and a water level sensor A (12).
  • In the inner part of the reactor there are two endless screws A (13), which give the necessary residence time of 45 minutes to the raw material, in order to carry out the carbonization of the same.
  • the water in the process helps to perform the hydrolysis and carbonization of the raw material.
  • a level of water (14) is always maintained in the reactor that must be regulated.
  • hydrochar falls into a secondary tank (19); said tank that has a normally open filling gate (20) and that closes tightly when the microcontroller B (21) detects a filling level of 80%, then the microcontroller B (21) sends to open the emptying gate (22 ) of the secondary tank (19) and the hydrochar goes to a filtration process to remove excess water.
  • the hydrochar falls on an endless screw B (17) to be able to move and give the necessary residence time to the matter to carry out the water removal. Water is filtered through a small mesh (18) where only water can pass and not solid materials.
  • the two batch reactors (4) perform the transesterification in situ. There are two separate batch reactors (4) to help maintain the continuous process. While one reactor is filled with the "hydrochar" material leaving the filtrate, the other reactor carries out the SC-IST reaction.
  • the hydrochar outgoing from the filtration process must have a humidity percentage between 45-50%.
  • the fourth stage of the process (SC-IST) is carried out with the addition of methanol in a molar ratio of 20: 1 MeOH: FA fatty methanocides.
  • This material enters one of the batch reactors (4) where the process of transesterification in situ is carried out in which the lipids inside the hydrochar are transformed into biodiesel.
  • the reactor temperature is maintained at 275 ° C, which is regulated by a heating jacket (23) which each reactor has. The high temperatures and the amount of water in the system cause the pressure to rise and be a danger factor in this system.
  • each reactor has an agitator (27) inside it to keep the reaction mixture homogeneous.
  • the two batch reactors (4) have a conical bottom (28) to help the homogeneity of the mixture and avoid stagnation of the mixture if the reactor has corners.
  • Each tank has in its lower part an extraction valve (29) to be able to carry out the recirculation of the mixture in the tank or for the emptying of the product.
  • the reactor It has a safety valve B (30) which opens when the pressure exceeds the desired limit.
  • Each batch tank (4) has its own recirculation pump (31) to be able to recirculate the mixture and help maintain homogeneity.
  • Feeding system There is a feed and dislocation system for raw material and high-pressure products using pneumatic valves that perform the movement of opening and closing the upper gate (5), lower gate (7), intake gate (20 ), drain gate (22) as the case may be.
  • This system is located at the beginning and end of the tubular reactor (2) for HTC.
  • the established system is designed to feed raw material and withdraw the product minimizing pressure losses in the system.
  • the primary tank (1) and the secondary tank (19) have a microcontroller (6) and microcontroller B (21) respectively that have the function of notifying when each tank is full or lacks raw material / product.
  • microcontroller (6) / microcontroller B (21) When microcontroller (6) / microcontroller B (21) indicates that the primary tank (l) / secondary tank (19) does not contain raw material / product, it sends a signal to the pneumatic valve to open the upper gate (5) / intake gate (20) and allow the filling of the primary tank (1) / secondary tank (19). When the microcontroller (6) / microcontroller B (21) indicates that the tank is full, it will send a signal to close the upper gate (5) / intake gate (20) (stop filling) and the lower gate will open ⁇ 1) 1 emptying gate (22) to let the raw material / product pass to the next process.
  • Each primary tank tank (l) / secondary tank (19) has a relief valve A (32) / relief valve B (33) to release the working pressure before the primary tank (1) opens the upper gate (5) and the secondary tank (19) open the drain gate (22).

Abstract

The invention relates to the production of bio-diesel from wet biomass having a high lipid content, using a process with two main stages, involving hydrothermal carbonisation (HTC) and supercritical in situ transesterification (SC-IST). The wet carbon or "hydrochar" produced by HTC is reacted with ethanol or methanol, not in excess, controlling the residence time, moisture levels, pressure and temperature. A continuous process is established, involving a number of stages such as hydrothermal carbonisation, filtering and supercritical in situ transesterification. This process observes the conditions that provide the best results: in the hydrothermal carbonisation, working with a mixture of 20% solids and at a temperature of 250°C for a time of 45 minutes, and for the supercritical in situ transesterification, working with a molar ratio of 20:1 of ethanol and fatty acids, having a moisture level between 45 and 50%, at a temperature of 275°C, and for a time of 180 minutes.

Description

SISTEMA DE GENERACIÓN DE BIODIESEL A PARTIR DE DIFERENTES MATERIAS PRIMAS CON ALTO CONTENIDO DE LÍPIDOS MEDIANTE EL PROCESO DE TRANSESTERIFICACIÓN IN SITU  BIODIESEL GENERATION SYSTEM FROM DIFFERENT RAW MATERIALS WITH HIGH LIPID CONTENT THROUGH THE IN SITU TRANSESTERIFICATION PROCESS
CAMPO TÉCNICO DE LA INVESTIGACIÓN TECHNICAL RESEARCH FIELD
La presente aplicación pertenece al área de producción de diésel alternativo a partir de otros renovables, mediante la aplicación del proceso de transesterifícación in situ. The present application belongs to the alternative diesel production area from other renewable ones, through the application of the on-site transesterification process.
ANTECEDENTES BACKGROUND
Hoy en día, la comercialización de biocombustibles a precios competitivos con el petróleo han sido bloqueados debido a la falta de tecnologías capaces de procesar y convertir biomasa húmeda en combustibles. Igualmente el producir un biocombustible avanzado o biodiesel a partir de biomasa húmeda que cumpla con los requerimientos de reducción de carbono de acuerdo con "US Renewable Fuel Standard" es difícil si la biomasa tiene que ser secada usando métodos no solares antes de la transformación a combustible. Tomado en cuenta la problemática de trabajar con biomasa húmeda, en la cual se ha propuesto un método de dos pasos para convertir biomasa húmeda a biodiesel mediante el proceso de carbonización hidrotermal y transesterifícación in situ con etanol y sin el uso de catalizador. En los procesos se trabaja con un lodo líquido de biomasa que contiene 10-20% de solidos totales la cual es reaccionada con agua caliente (190-250°C) a presiones autógenas para conglomerar las células en un sólido filtrable que contiene los lípidos y produce una fase acuosa estéril y rica en nutrientes. En el segundo paso, los lípidos contenidos en el carbón húmedo o "hydrochar" son convertidos en biodiesel sin previamente tener que realizar una extracción con solventes por el uso del método de etanol supercrítico. Today, the commercialization of biofuels at competitive prices with oil has been blocked due to the lack of technologies capable of processing and converting wet biomass into fuels. Likewise, producing an advanced biofuel or biodiesel from wet biomass that meets the carbon reduction requirements in accordance with "US Renewable Fuel Standard" is difficult if the biomass has to be dried using non-solar methods before fuel transformation. . Taking into account the problem of working with wet biomass, in which a two-step method has been proposed to convert wet biomass to biodiesel through the process of hydrothermal carbonization and transesterification in situ with ethanol and without the use of catalyst. The processes work with a liquid biomass sludge that contains 10-20% of total solids which is reacted with hot water (190-250 ° C) at autogenous pressures to conglomerate the cells in a filterable solid that contains the lipids and It produces a sterile and nutrient-rich aqueous phase. In the second step, the lipids contained in the wet coal or "hydrochar" are converted into biodiesel without having to perform solvent extraction by using the supercritical ethanol method.
La transesterifícación in situ tradicionalmente ha sido limitada a reacciones catalizadas con bases. Aunque se pueden alcanzar conversiones grandes a temperaturas moderadas, transesterifícación in situ catalizada subcríticamente por lo general requiere un gran exceso de alcohol, es sensible al agua y requiere largos tiempos de reacción. Por ejemplo, la soja conteniendo 7.4 wt% de humedad fue reaccionada a 23°C por 8 horas con metanol alcalino 180:1 metano ácido graso para alcanzar 93% de conversión de lípidos a biodiesel. Trabajos posteriores han mostrado que si se reduce el porcentaje de humedad y se lleva a cabo pretratamiento físico a la biomasa, altas conversiones pueden ser alcanzadas en menores tiempos y con menos metanol 9-25: 1 MeOH:AG. El uso de metanol de todos modos sigue siendo más elevado que la transesterifícación comercial de aceites, que por lo general es llevada a cabo a 2:1 MeOH:AG. El exceso de metanol por lo general es requerido para sumergir la biomasa, con un efecto secundario siendo la dilución del agua presente a concentraciones despreciables. In situ transesterification has traditionally been limited to reactions catalyzed with bases. Although large conversions can be achieved at moderate temperatures, subcritically catalyzed in situ transesterification usually requires a large excess of alcohol, is sensitive to water and requires long reaction times. For example, soybean containing 7.4 wt% moisture was reacted at 23 ° C for 8 hours with 180: 1 methane fatty acid methane methanol to achieve 93% conversion of lipids to biodiesel. Later work has shown that if the percentage of humidity is reduced and physical pretreatment to biomass is carried out, high conversions can be achieved in shorter times and with less methanol 9-25: 1 MeOH: AG. The use of methanol still remains higher than commercial oil transesterification, which is usually carried out at 2: 1 MeOH: AG. Excess methanol is usually required to submerge the biomass, with a side effect being the dilution of water present at negligible concentrations.
Recientemente, la microalga ha sido investigada como la materia prima para subcrítica transesterifícación in situ. Como la biomasa de alga típicamente contiene una proporción más alta de ácidos grasos a comparación de las semillas oleaginosas, reacciones catalizadas con ácido, que no forman jabones, son llevadas a cabo más comúnmente. Se ha encontrado con Chlorella que contiene 0.7 wt% humedad fue reaccionada a 60°C por 6 horas con aproximadamente 105 MeOH:AG y 100 wt% H2S04, el equilibrio de conversión a metil-ésteres fue reducida en un 20% comparada a las reacciones con biomasa seca. Cuando la humedad de la biomasa excedía 31.7% (base seca) o el agua constituía 9.5 wt% la mezcla a reaccionar, la transesterifícación fue totalmente inhibida. Recently, microalgae has been investigated as the raw material for subcritical transesterification in situ. Since algae biomass typically contains a higher proportion of fatty acids compared to oilseeds, acid catalyzed reactions, which do not form soaps, are most commonly carried out. It has been found with Chlorella containing 0.7 wt% moisture was reacted at 60 ° C for 6 hours with approximately 105 MeOH: AG and 100 wt% H 2 S0 4 , the conversion balance to methyl esters was reduced by 20% compared to the reactions with dry biomass. When the biomass humidity exceeded 31.7% (dry base) or the water constituted 9.5 wt% of the mixture to be reacted, the transesterification was totally inhibited.
Considerando los costos y la entrada de energía asociada con el secado y procesado de biomasa antes de la transesterifícación in situ subcrítica así como la recuperación del exceso de alcohol después de la reacción, se ha optado por la exploración de alcoholes supercríticos como un medio de reacción para la transesterifícación in situ (SC-IST). SC-1ST puede beneficiarse de costos reducidos porque no requiere catalizadores ni su recuperación y generalmente tiene una tolerancia mayor a materias primas que contienen agua y ácidos grasos. Aunque metanol y etanol supercrítico han sido bien estudiados como un medio para la producción de biodiesel sin el uso de catalizadores a partir de aceites vegetales puros, relativamente poco trabajo ha explorado SC-IST. Patil et al. (201 la,b) demostró la conversión de lípidos a biodiesel encontrados en algas mojadas utilizando el método de metanol supercrítico, pero relaciones MeOH:AG arriba de 1600 fueron empleadas. En otro trabajo, arroz seco fue reaccionado con una relación molar 90:1 MeOH:AG y C02 como solvente a 300°C, pero el rendimiento fue insatisfactoriamente bajo (50%) (Kasim et al., 2009). Finalmente ha habido reportes en la licuefacción termoquímica de biomasa seca de alga, como de otras materias primas, en alcoholes supercríticos (Huang et al., 2011; Zhou et al., 2012). Desde nuestra perspectiva, licuefacción en alcohol para producir bio-aceite y en transesterifícación in situ para producir biodiesel describen el mismo proceso. En ambos casos los rendimientos son - determinados después de remover los sólidos de la mezcla de reacción y de la evaporación del exceso de alcohol y en ambos casos un tipo de mejoramiento y limpieza es requerida antes de que el combustible esté listo para su uso. De la literatura a nuestra disposición, el trabajo de licuefacción tiende a concentrarse por lo general en materias primas previamente secadas y bajas en lípidos, favoreciendo la producción de bio-aceites sobre ésteres, mientras cualitativamente los productos se identifican con la utilización de GC-MS e ignorando el excesivo uso de metanol. Por el otro lado, el trabajo de transesterificación in situ por lo general aplica GC-FID para determinar cuantitativamente el rendimiento de los ésteres, mientras ignorando otros componentes en el biodiesel crudo y que precauciones se tienen que tomar para removerlos. Levine et al. (2010) demostró que los lípidos contenidos en "hydrochar" (46% humedad) pueden ser convertidos en FAEE cuando son reaccionados con alcohol. El rendimiento más alto de ésteres (60%) a 275°C fue alcanzado después de 120min de reacción con 50:1 EtOH:FA de relación molar. Considering the costs and energy input associated with the drying and processing of biomass before sub-critical in situ transesterification as well as the recovery of excess alcohol after the reaction, the exploration of supercritical alcohols has been chosen as a reaction medium for on-site transesterification (SC-IST). SC-1ST can benefit from reduced costs because it does not require catalysts or recovery and generally has a greater tolerance to raw materials that contain water and fatty acids. Although methanol and supercritical ethanol have been well studied as a means of biodiesel production without the use of catalysts from pure vegetable oils, relatively little work has explored SC-IST. Patil et al. (201 la, b) demonstrated the conversion of lipids to biodiesel found in wet algae using the supercritical methanol method, but MeOH: AG ratios above 1600 were employed. In another work, dry rice was reacted with a 90: 1 MeOH: AG and C0 2 molar ratio as a solvent at 300 ° C, but the yield was unsatisfactoryly low (50%) (Kasim et al., 2009). Finally, there have been reports on thermochemical liquefaction of dried algae biomass, as of other raw materials, in supercritical alcohols (Huang et al., 2011; Zhou et al., 2012). From our perspective, liquefaction in alcohol to produce bio-oil and in situ transesterification to produce biodiesel describe the same process. In both cases the yields are - determined after removing the solids from the reaction mixture and evaporation of excess alcohol and in both cases a type of improvement and cleaning is required before the fuel is ready for use. From the literature at our disposal, liquefaction work tends to concentrate generally on previously dried and low lipid raw materials, favoring the production of bio-oils on esters, while qualitatively the products are they identify with the use of GC-MS and ignoring the excessive use of methanol. On the other hand, on-site transesterification work usually applies GC-FID to quantitatively determine the performance of esters, while ignoring other components in raw biodiesel and what precautions have to be taken to remove them. Levine et al. (2010) showed that lipids contained in "hydrochar" (46% humidity) can be converted to FAEE when they are reacted with alcohol. The highest yield of esters (60%) at 275 ° C was reached after 120 min of reaction with 50: 1 EtOH: molar FA ratio.
En algunos de los procesos de producción de biocombustibles, se utilizan métodos en seco para realizar la extracción de los aceites. Esta etapa de la extracción de aceites es la más intensiva en cuestiones de consumo de energía. Esta etapa consume alrededor del 85% de la energía de producción. Para eliminar el consumo de energía involucrado en el secado, métodos de procesamiento húmedo han sido explorados para la producción de biocombustibles. In some of the biofuel production processes, dry methods are used to extract the oils. This stage of oil extraction is the most intensive in matters of energy consumption. This stage consumes about 85% of the production energy. To eliminate the energy consumption involved in drying, wet processing methods have been explored for the production of biofuels.
El procesamiento hidrotermal, el cual involucra la aplicación de temperatura y presión a biomasa en un medio acuoso, asimila la conversión de plantas antiguas en aceite crudo, carbón y gas natural como de las reservas de las cuales el mundo depende hoy en día. Hydrothermal processing, which involves the application of temperature and pressure to biomass in an aqueous medium, assimilates the conversion of old plants into crude oil, coal and natural gas as the reserves on which the world depends today.
Extracción subcrítica con agua (SCW) o licuefacción hidrotermal (HTL o HTC) es otra forma de aislar o producir la materia prima necesaria para la producción de biocombustibles. El agua es identificada como un medio benigno y no tóxico, con extracción selectiva o capacidades de reacción y es un solvente verde que está listo y disponible. El proceso de la conversión de la biomasa dentro de HTC se lleva a temperaturas entre 200-370°C y presiones altas. Las características del bio-crudo o extracto crudo producido durante este proceso varían dependiendo de la temperatura y presión utilizada. La solubilidad de la materia orgánica comienza a incrementarse rápidamente a partir de los 200°C, y esta solubilidad mejorada para compuestos orgánicos es proporcionada por un medio homogéneo monofásico para síntesis orgánica en agua subcrítica. La reducción de la constante dieléctrica hace al agua el solvente adecuado para compuestos orgánicos pequeños, como su constante dieléctrica cae de 80 a 25°C hasta 40 a 200°C. La extracción con agua subcrítica ha sido demostrada para la extracción de "manitol" encontrada en las hojas de oliva, y aceites esenciales de las semillas de cilantro. Subcritical extraction with water (SCW) or hydrothermal liquefaction (HTL or HTC) is another way to isolate or produce the raw material necessary for the production of biofuels. Water is identified as a benign and non-toxic medium, with selective extraction or reaction capabilities and is a green solvent that is ready and available. The process of converting biomass into HTC takes temperatures between 200-370 ° C and high pressures. The characteristics of the bio-crude or crude extract produced during this process vary depending on the temperature and pressure used. The solubility of organic matter begins to increase rapidly from 200 ° C, and this improved solubility for organic compounds is provided by a single phase homogeneous medium for organic synthesis in subcritical water. The reduction of the dielectric constant makes water the suitable solvent for small organic compounds, as its dielectric constant drops from 80 to 25 ° C to 40 to 200 ° C. Extraction with subcritical water has been demonstrated for the extraction of "mannitol" found in olive leaves, and essential oils of coriander seeds.
En la licuefacción hidrotermal y a temperaturas elevadas, compuestos bioquímicos encontrados en la biomasa se someten a reacciones como hidrólisis, repolimerización para crear aceite bio-crudo de energía densa, "hydrochar", compuestos solubles en agua y productos gaseosos. Durante este proceso, el oxígeno presente en la biomasa es removido en forma de agua debido a la deshidratación y por descarboxilación en la forma de dióxido de carbono. La exitosa licuefacción de alga entera fue demostrada por Biller, Brown y Toor a temperaturas de 300°C o mayor para producir aceite bio- crudo denso en energía. El mayor obstáculo para refinar el aceite bio-crudo en refinerías regulares, es el alto contenido de nitrógeno, que requiere una catalizador especial o estrategias para procesar. La transesterificación in situ es un proceso en el cual el aceite o la grasa contenidos en las semillas o en los frutos de planta oleaginosas, o en el tejido adiposos de animales se extrae y se transesterifica en un solo paso, lo que implica que el alcohol utilizado en el proceso sirve a su vez como agente extractor del material lípido y como reactivo en su transesterificación. In hydrothermal liquefaction and at elevated temperatures, biochemical compounds found in the biomass undergo reactions such as hydrolysis, re-polymerization to create dense energy bio-crude oil, "hydrochar", water-soluble compounds and gaseous products. During this process, the oxygen present in the biomass is removed in the form of water due to dehydration and by decarboxylation in the form of carbon dioxide. The successful liquefaction of whole seaweed was demonstrated by Biller, Brown and Toor at temperatures of 300 ° C or higher to produce energy-dense bio-crude oil. The biggest obstacle to refining bio-crude oil in regular refineries is the high nitrogen content, which requires a special catalyst or processing strategies. In situ transesterification is a process in which the oil or fat contained in the seeds or oleaginous plant fruits, or in adipose tissue of animals is extracted and transesterified in a single step, which implies that alcohol used in the process, in turn, serves as an extractor agent for lipid material and as a reagent in its transesterification.
La transesterificación in situ ha sido considerada, desde los inicios de la industria del biodiesel en la década del ochenta del siglo XX, como alternativa para disminuir costos de producción. Su aplicación elimina la etapa de extracción mecánica o extracción con solventes, evita los procesos de refinación del aceite o de la grasa, e incrementa el rendimiento de ésteres a partir de una masa dada de semillas, en comparación con el proceso convencional que parte del aceite previamente extraído. On-site transesterification has been considered, since the beginning of the biodiesel industry in the eighties of the twentieth century, as an alternative to reduce production costs. Its application eliminates the stage of mechanical extraction or solvent extraction, avoids the processes of refining the oil or grease, and increases the yield of esters from a given mass of seeds, compared to the conventional process that starts from the oil previously extracted.
BREVE DESCRIPCION DE FIGURAS BRIEF DESCRIPTION OF FIGURES
La Figura 1 es un diagrama de flujo del proceso aplicado para llevar a cabo la transesterificación in situ. Figure 1 is a flow chart of the process applied to carry out the transesterification in situ.
La figura 2 representa un diagrama del proceso y todos los componentes utilizados para poder llevar a cabo la transesterificación in situ. Figure 2 represents a diagram of the process and all the components used to carry out the transesterification in situ.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
En la primera etapa se cuenta con un tanque primario (1) en el cual se recibe toda la materia prima con la que se trabajará. En la segunda etapa se cuenta con un reactor tubular (2) continuo de alta presión para llevar a cabo la carbonización hidrotermal de la materia orgánica. En la tercera etapa se cuenta con un sistema de filtrado tubular (3) por la cual se elimina el exceso de agua del carbón obtenido. En la cuarta etapa se cuenta con dos reactor es batch (4) tubulares continuos de alta presión en la cual se llevará a cabo la transesterificación in situ. In the first stage there is a primary tank (1) in which all the raw material with which it will be worked is received. In the second stage there is a continuous high pressure tubular reactor (2) to carry out the hydrothermal carbonization of the organic matter. In the third stage there is a tubular filtration system (3) by which excess water is removed from the coal obtained. In the fourth stage there are two high pressure continuous tubular batch (4) reactor in which the transesterification will be carried out in situ.
En un principio el taque primario (1) se encuentra vacío y cerrado herméticamente, a continuación el microcontrolador (6) detecta el estado y abre la compuerta superior (5) para la recarga de materia prima y una vez cargado, la compuerta superior (5) se cierra de nuevo. En este punto la compuerta inferior (7) se abre para dejar caer la materia prima poco a poco hacia el reactor tubular (2), es importante la función del microcontrolador (6) ya que al no permitir la apertura y cierre de la compuerta superior (5) y compuerta inferior (7) la presión dentro del reactor tubular (2) se mantiene. Ya que la materia prima se encuentra dentro del reactor tubular (2) se lleva a cabo el proceso de HTC en el cual se carboniza la materia orgánica. La materia orgánica se encuentra en una mezcla de 20% de sólidos. Para poder llevar a cabo este proceso, la temperatura del reactor se mantiene a 250oC, la cual es regulada por cuatro bandas de calentamiento (8). Las altas temperaturas y la cantidad de agua en el sistema hacen que la presión se eleve y sea un factor de peligro en este sistema. Como medida de seguridad, el reactor tubular (2) cuenta con una válvula de seguridad A (9) la cual se abre cuando la presión sobrepasa el límite establecido. El reactor tubular (2) también cuenta con un sensor de presión A (10), un sensor de temperatura A (1 1) y un sensor de nivel de agua A (12). En la parte interior del reactor se encuentran dos tornillos sin fin A (13), los cuales dan el tiempo de residencia necesario de 45 minutos a la materia prima, para poder llevar a cabo la carbonización de ésta misma. El agua en el proceso ayuda a realizar la hidrólisis y carbonización de la materia prima. En el reactor siempre se mantiene un nivel de agua (14) que se debe de regular. Cuando el nivel de agua (14) se encuentra por debajo de lo requerido, se cuenta con una válvula de admisión (15) para poder agregar el agua necesaria para mantener el nivel de agua (14) deseado. Cuando hay un exceso de agua, se cuenta con una válvula de extracción (16) para poder realizar una purga del líquido. El producto saliente del reactor tubular (2) llamado hydrochar, cae dentro de un tanque secundario (19); dicho tanque que tiene una compuerta de llenado (20) normalmente abierta y que se cierra herméticamente cuando el microcontrolador B (21) detecta un nivel de llenado del 80%, entonces el microcontrolador B (21) manda a abrir la compuerta de vaciado (22) del tanque secundario (19) y el hydrochar pasa a un proceso de filtración para remover el exceso de agua. En este proceso el hydrochar cae en un tornillo sin fin B (17) para poder mover y dar el tiempo de residencia necesario a la materia para llevar a cabo la remoción de agua. El agua se filtra a través de una malla pequeña (18) donde solamente el agua puede pasar y no los materiales sólidos. Initially, the primary tap (1) is empty and hermetically sealed, then the microcontroller (6) detects the state and opens the upper gate (5) for recharging raw material and once loaded, the upper gate (5 ) closes again. At this point the lower gate (7) opens to drop the raw material little by little towards the tubular reactor (2), the function of the microcontroller (6) is important since it does not allow the opening and closing of the upper gate (5) and lower gate (7) the pressure inside the tubular reactor (2) is maintained. Since the raw material is inside the tubular reactor (2), the HTC process is carried out in which the organic matter is carbonized. Organic matter is found in a mixture of 20% solids. In order to carry out this process, the reactor temperature is maintained at 250 ° C, which is regulated by four heating bands (8). The high temperatures and the amount of water in the system cause the pressure to rise and be a danger factor in this system. As a safety measure, the tubular reactor (2) has a safety valve A (9) which opens when the pressure exceeds the established limit. The tubular reactor (2) also has a pressure sensor A (10), a temperature sensor A (1 1) and a water level sensor A (12). In the inner part of the reactor there are two endless screws A (13), which give the necessary residence time of 45 minutes to the raw material, in order to carry out the carbonization of the same. The water in the process helps to perform the hydrolysis and carbonization of the raw material. A level of water (14) is always maintained in the reactor that must be regulated. When the water level (14) is below what is required, there is an intake valve (15) to add the water necessary to maintain the desired water level (14). When there is an excess of water, there is an extraction valve (16) to purge the liquid. The outgoing product of the tubular reactor (2) called hydrochar, falls into a secondary tank (19); said tank that has a normally open filling gate (20) and that closes tightly when the microcontroller B (21) detects a filling level of 80%, then the microcontroller B (21) sends to open the emptying gate (22 ) of the secondary tank (19) and the hydrochar goes to a filtration process to remove excess water. In this process the hydrochar falls on an endless screw B (17) to be able to move and give the necessary residence time to the matter to carry out the water removal. Water is filtered through a small mesh (18) where only water can pass and not solid materials.
En la cuarta etapa, los dos reactores batch (4) realizan la transesterificación in situ. Se tienen dos reactores batch (4) separados para ayudar a mantener el proceso continuo. Mientras un reactor se llena con el material "hydrochar" saliente del filtrado, el otro reactor lleva a cabo la reacción de SC- IST. In the fourth stage, the two batch reactors (4) perform the transesterification in situ. There are two separate batch reactors (4) to help maintain the continuous process. While one reactor is filled with the "hydrochar" material leaving the filtrate, the other reactor carries out the SC-IST reaction.
El "hydrochar" saliente del proceso de filtración, debe de contar con un porcentaje de humedad entre 45-50%. La cuarta etapa del proceso (SC-IST) se realiza con la adición de metanol en una relación molar de 20:1 MeOH:FA metanohacidos grasos. Este material entra a uno de los reactores batch (4) donde se lleva a cabo el proceso de transesterificación in situ en el cual se transforman los lípidos dentro del "hydrochar" en biodiesel. Para poder llevar a cabo este proceso de SC-IST, la temperatura del reactor se mantiene a 275oC, la cual es regulada por una chaqueta de calentamiento (23) con la cual cuenta cada reactor. Las altas temperaturas y la cantidad de agua en el sistema hacen que la presión se eleve y sea un factor de peligro en este sistema. La temperatura, presión y nivel de agua, en cada reactor, son monitoreadas por un sensor de presión B (24), un sensor de temperatura B (25) y un sensor de nivel de agua B (26). Cada reactor batch (4) cuenta en su parte interior con un agitador (27) para poder mantener homogénea la mezcla de la reacción. Para poder llevar a cabo la transesterificación in situ de los lípidos encontrados en el "hydrochar", se necesita establecer un tiempo de residencia, en los reactores batch (4), de 180 minutos. Los dos reactores batch (4) cuentan con un fondo cónico (28) para poder ayudar a la homogeneidad de la mezcla y evitar estancamientos de la mezcla si el reactor contara con esquinas. Cada tanque cuenta en su parte inferior con una válvula de extracción (29) para poder llevar a cabo la recirculación de la mezcla en el tanque o ya sea para el vaciado del producto. Como medida de seguridad, el reactor cuenta con una válvula de seguridad B (30) la cual se abre cuando la presión sobrepasa el límite deseado. Cada tanque batch (4) cuenta con su propia bomba recirculadora (31) para poder realizar la recirculación de la mezcla y ayudar a mantener la homogeneidad. The hydrochar outgoing from the filtration process must have a humidity percentage between 45-50%. The fourth stage of the process (SC-IST) is carried out with the addition of methanol in a molar ratio of 20: 1 MeOH: FA fatty methanocides. This material enters one of the batch reactors (4) where the process of transesterification in situ is carried out in which the lipids inside the hydrochar are transformed into biodiesel. In order to carry out this SC-IST process, the reactor temperature is maintained at 275 ° C, which is regulated by a heating jacket (23) which each reactor has. The high temperatures and the amount of water in the system cause the pressure to rise and be a danger factor in this system. The temperature, pressure and water level in each reactor are monitored by a pressure sensor B (24), a temperature sensor B (25) and a water level sensor B (26). Each batch reactor (4) has an agitator (27) inside it to keep the reaction mixture homogeneous. In order to carry out the transesterification in situ of the lipids found in the "hydrochar", it is necessary to establish a residence time, in the batch reactors (4), of 180 minutes. The two batch reactors (4) have a conical bottom (28) to help the homogeneity of the mixture and avoid stagnation of the mixture if the reactor has corners. Each tank has in its lower part an extraction valve (29) to be able to carry out the recirculation of the mixture in the tank or for the emptying of the product. As a safety measure, the reactor It has a safety valve B (30) which opens when the pressure exceeds the desired limit. Each batch tank (4) has its own recirculation pump (31) to be able to recirculate the mixture and help maintain homogeneity.
Sistema de alimentación: Se cuenta con un sistema de alimentación y desalojamiento de materia prima y producto a alta presión mediante válvulas neumáticas que realizan el movimiento de abrir y cerrar la compuerta superior (5), compuerta inferior (7), compuerta de admisión (20), compuerta de vaciado (22) según sea el caso. Este sistema se encuentra localizado al inicio y final del reactor tubular (2) para HTC. El sistema establecido está diseñado para poder alimentar materia prima y retirar el producto minimizando las pérdidas de presión en el sistema. El tanque primario (1) y el tanque secundario (19) cuentan con un microcontrolador (6) y microcontrolador B (21) respectivamente que tienen la función de notificar cuando cada tanque esta lleno o le hace falta materia prima/producto. Cuando el microcontrolador (6)/microcontrolador B (21) indica que el tanque primario (l)/tanque secundario (19) no contiene materia prima/producto, éste manda una señal a la válvula neumática para abrir la compuerta superior (5)/compuerta de admisión (20) y permitir el llenado del tanque primario ( 1 )/tanque secundario ( 19). Cuando el microcontrolador (6)/ microcontrolador B (21) indique que el tanque está lleno, éste mandará una señal para cerrar la compuerta superior (5)/compuerta de admisión (20) (detener el llenado) y se abrirá la compuerta inferior {1)1 compuerta de vaciado (22) para dejar pasar la materia prima/producto al siguiente proceso. Cada tanque tanque primario (l)/tanque secundario (19) cuenta con una válvula de alivio A (32)/válvula de alivio B (33) para liberar la presión de trabajo antes de que el tanque primario (1) abra la compuerta superior (5) y el tanque secundario (19) abra la compuerta de vaciado (22). Feeding system: There is a feed and dislocation system for raw material and high-pressure products using pneumatic valves that perform the movement of opening and closing the upper gate (5), lower gate (7), intake gate (20 ), drain gate (22) as the case may be. This system is located at the beginning and end of the tubular reactor (2) for HTC. The established system is designed to feed raw material and withdraw the product minimizing pressure losses in the system. The primary tank (1) and the secondary tank (19) have a microcontroller (6) and microcontroller B (21) respectively that have the function of notifying when each tank is full or lacks raw material / product. When microcontroller (6) / microcontroller B (21) indicates that the primary tank (l) / secondary tank (19) does not contain raw material / product, it sends a signal to the pneumatic valve to open the upper gate (5) / intake gate (20) and allow the filling of the primary tank (1) / secondary tank (19). When the microcontroller (6) / microcontroller B (21) indicates that the tank is full, it will send a signal to close the upper gate (5) / intake gate (20) (stop filling) and the lower gate will open { 1) 1 emptying gate (22) to let the raw material / product pass to the next process. Each primary tank tank (l) / secondary tank (19) has a relief valve A (32) / relief valve B (33) to release the working pressure before the primary tank (1) opens the upper gate (5) and the secondary tank (19) open the drain gate (22).

Claims

REIVINDICACIONES
Lo que se reclama es:  What is claimed is:
Un sistema de generación de biodiesel de proceso continuo mediante la reacción supercrítica de transesterificación in situ en el cual se introducen lípidos y se obtiene biodisel; que está constituido por un dispositivo para la producción de biodiesel que incluye un reactor tubular continuo de diseño único y un método de procesamiento continuo de cuatro etapas a partir de biomasa con alto contenido de lípidos. A continuous process biodiesel generation system through the supercritical reaction of transesterification in situ in which lipids are introduced and biodiesel is obtained; which is constituted by a device for the production of biodiesel that includes a continuous tubular reactor of unique design and a method of continuous processing of four stages from biomass with high lipid content.
2. - El dispositivo de la reivindicación 1 que consta de: a) Un tanque cilindrico con fondo cónico para la recepción y almacenamiento de materia prima que cuenta con un microcontrolador para la compuerta de entrada y salida de material y una válvula reguladora de presión. Utilizado para el suministro del reactor tubular. b) Un reactor tubular continuo de diseño único que en su interior esta constituido por un par de tornillos sin fin que transportan la materia a través del reactor dándole el tiempo de residencia necesario para el proceso de carbonización hidrotermal; en su exterior cuenta con 4 bandas de calentamiento para brindar una temperatura uniforme y controlada; además cuenta con sensores de nivel, temperatura y presión para controlar las condiciones óptimas del proceso; cuenta también con una válvula liberadora de presión para seguridad; una válvula de control de admisión de agua; una válvula de purgado de agua. c) Un tanque cilindrico con fondo cónico para la recepción y almacenamiento de hydrochar que cuenta con un microcontrolador para la compuerta de entrada y salida de material y una válvula reguladora de presión. Utilizado para el suministro del sistema de filtrado. d) Un sistema de filtración para remover el excedente de humedad del hydrochar logrando un parámetro entre el 45% y 50% de humedad. e) Dos reactores batch para realizar la transesterificación in situ los cuales están constituidos en su interior por un agitador, sensores de presión, temperatura y nivel de fluidos, una válvula reguladora de presión para seguridad, en su exterior una válvula de tres vías para recirculación de material y descarga de producto final, una bomba de recirculación de material y una chaqueta de calentamiento que cubre todo el tanque. 2. - The device of claim 1 consisting of: a) A cylindrical tank with conical bottom for the reception and storage of raw material that has a microcontroller for the material inlet and outlet gate and a pressure regulating valve. Used for the supply of the tubular reactor. b) A continuous tubular reactor of unique design that inside is constituted by a pair of endless screws that transport the matter through the reactor giving it the residence time necessary for the hydrothermal carbonization process; outside it has 4 heating bands to provide a uniform and controlled temperature; It also has level, temperature and pressure sensors to control the optimal conditions of the process; it also has a pressure relief valve for safety; a water intake control valve; a water purge valve. c) A cylindrical tank with conical bottom for the reception and storage of hydrochar that has a microcontroller for the material inlet and outlet gate and a pressure regulating valve. Used to supply the filtering system. d) A filtration system to remove excess moisture from the hydrochar, achieving a parameter between 45% and 50% humidity. e) Two batch reactors to carry out on-site transesterification which are constituted in its interior by a stirrer, pressure sensors, temperature and fluid level, a pressure regulating valve for safety, outside a three-way valve for recirculation of material and final product discharge, a material recirculation pump and a heating jacket that covers the entire tank.
3. El método para la generación de biodiesel de proceso continuo mencionado en la reivindicación 1 y que consta de 4 etapas descritas a continuación: a) Recepción de materia prima: La materia prima a utilizar debe estar triturada y puede ser semillas o frutos de plantas oleaginosas y tejidos adiposos de animales, en teoría podría ser cualquier material orgánico que cuente con alto contenido de lípidos. En esta etapa se colecta almacena y prepara la materia prima con la que se alimentara el proceso. b) Carbonización hidrotermal: en esta etapa la materia prima es depositada dentro del reactor tubular donde un par de tornillos sin fin van moviendo el material a través del reactor y se va generando una mezcla de 20% de solidos, sometiéndola a una temperatura de 250° C y un tiempo de residencia de 45 min con lo cual se logra carbonizar hidrotermalmente la materia orgánica para destruir sus células y dejar libre y expuesto el aceite contenido en su interior. c) Filtrado: en esta etapa se realiza la remoción del exceso de agua utilizando un tornillo sin fin que empuja el material a través de un filtro de maya que no permite el paso de solidos con lo que se logra la obtención de hydrochar con un 45% a 50% de humedad. d) Transesterificación in situ: En esta etapa el hydrochar es depositado dentro de un reactorbatch en el cual se adiciona metanol para poder obtener una relación molar de 20: 1 MeOH:FA metanol :acidos grasos. A continuación la mezcla es sometida a una temperatura de 275°C y un tiempo de residencia de 180 min. Con lo que se logra la transesterifícación y con ello la transformación del aceite en biodiesel. En este proceso se cuenta con un agitador y un sistema de recirculación para poder lograr una homogeneidad en la mezcla. 3. The method for the generation of continuous process biodiesel mentioned in claim 1 and consisting of 4 steps described below: a) Receipt of raw material: The raw material to be used must be crushed and can be seeds or fruits of oil plants and fatty tissues of animals, in theory it could be any organic material that has a high lipid content. In this stage, the raw material with which the process will be fed is collected and prepared. b) Hydrothermal carbonization: at this stage the raw material is deposited inside the tubular reactor where a pair of endless screws move the material through the reactor and a mixture of 20% solids is generated, subjecting it to a temperature of 250 ° C and a residence time of 45 min, whereby the organic matter is hydrothermally carbonized to destroy its cells and free and exposed the oil contained inside. c) Filtering: at this stage the removal of excess water is performed using an endless screw that pushes the material through a maya filter that does not allow the passage of solids with what is achieved by obtaining hydrochar with a 45 % to 50% humidity. d) On-site transesterification: At this stage the hydrochar is deposited inside a reactorbatch in which methanol is added to obtain a molar ratio of 20: 1 MeOH: FA methanol: fatty acids. The mixture is then subjected to a temperature of 275 ° C and a residence time of 180 min. With which transesterification is achieved and with it the transformation of oil into biodiesel. In this process there is a stirrer and a recirculation system to achieve homogeneity in the mixture.
4. El sistema de la reivindicación 1 de producción de biodiesel que no requiere una etapa o proceso de extracción de aceite. 4. The system of claim 1 of biodiesel production that does not require an oil extraction stage or process.
5. El sistema de la reivindicación 1 de producción de biodiesel en medio acuoso y sin necesidad de un pretratamiento de secado. 5. The system of claim 1 of biodiesel production in aqueous medium and without the need for a pretreatment of drying.
6. E1 reactor tubular continuo mencionado en la reivindicación 2b que en su diseño contempla una forma en escuadra cuyo vértice esta en el punto mas bajo y sus aristas forman una 'V con lo que se logra una impregnación de la materia en el agua y que permite al mismo tiempo un escurrimiento de la misma antes de salir del proceso con lo que se conserva la temperatura y presión con variaciones inferiores al 5% al y se logra la reutilización del agua disminuyendo las pérdidas de presión y temperatura. 6. The continuous tubular reactor mentioned in claim 2b which in its design contemplates a square shape whose vertex is at the lowest point and its edges form a 'V with which an impregnation of matter in the water is achieved and that it allows a runoff of the same at the same time before leaving the process, which conserves the temperature and pressure with variations of less than 5% at and water reuse is achieved by reducing pressure and temperature losses.
7. Los lípidos con la que se alimenta el dispositivo de la reivindicación 1 que puede ser cualquier material orgánico que contenga un alto contenido lipídico. 7. The lipids with which the device of claim 1 is fed, which may be any organic material containing a high lipid content.
PCT/MX2015/000006 2015-01-21 2015-01-21 System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process WO2016117991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2015/000006 WO2016117991A1 (en) 2015-01-21 2015-01-21 System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2015/000006 WO2016117991A1 (en) 2015-01-21 2015-01-21 System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process

Publications (1)

Publication Number Publication Date
WO2016117991A1 true WO2016117991A1 (en) 2016-07-28

Family

ID=56417437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2015/000006 WO2016117991A1 (en) 2015-01-21 2015-01-21 System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process

Country Status (1)

Country Link
WO (1) WO2016117991A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120079760A1 (en) * 2010-09-02 2012-04-05 Savage Phillip E Method of producing biodiesel from a wet biomass
US20140262727A1 (en) * 2013-03-15 2014-09-18 Gas Technology Institute Rapid Production of Hydrothermally Carbonized Biomass via Reactive Twin-Screw Extrusion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120079760A1 (en) * 2010-09-02 2012-04-05 Savage Phillip E Method of producing biodiesel from a wet biomass
US20140262727A1 (en) * 2013-03-15 2014-09-18 Gas Technology Institute Rapid Production of Hydrothermally Carbonized Biomass via Reactive Twin-Screw Extrusion

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEVINE, R. B. ET AL.: "Process improvements for the supercritical in situ transesterification of carbonized algal biomass", BIORESOURCE TECHNOLOGY, vol. 136, 2013, pages 556 - 564 *
LEVINE, R.B. ET AL.: "Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification", ENERGY & FUELS, vol. 24, no. 9, 2010, pages 5235 - 5243 *
LEVINE, R.B.: "The production of algal biodiesel using hydrothermal carbonization and in situ transesterification.", TESIS DOCTORAL. THE UNIVERSITY OF MICHIGAN., 2013, Retrieved from the Internet <URL:http:Hdeepblue.lib.umich.edu/bitstream/handle/2027.42/99977/rblevine_1.pdf?sequence=1> *

Similar Documents

Publication Publication Date Title
Zhou et al. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions
Liu et al. Hydrothermal carbonization of natural microalgae containing a high ash content
ES2409855T3 (en) Production process of bio-oil from biomass
US20080188676A1 (en) Methods of robust and efficient conversion of cellular lipids to biofuels
Biernat et al. The possibility of future biofuels production using waste carbon dioxide and solar energy
WO2013063085A1 (en) Sequential hydrothermal liquifaction (seqhtl) for extraction of superior bio-oil and other organic compounds from oleaginous biomass
CN103361166A (en) Method for preparing bio-oil from microalgae through direct liquidation
Kushwaha et al. Life cycle assessment and techno-economic analysis of algae-derived biodiesel: current challenges and future prospects
Feng et al. Recent advances in algae-derived biofuels and bioactive compounds
CN104662133B (en) By the method and apparatus of sewage sludge production biodiesel
Martinez-Guerra et al. Energy aspects of microalgal biodiesel production.
CN103045346A (en) Method for preparing bio-oil fuel from microalgae through thermo-chemical conversion
Gharabaghi et al. Biofuels: bioethanol, biodiesel, biogas, biohydrogen from plants and microalgae
Bull et al. Bio-diesel production from oil of orange (Citrus sinensis) peels as feedstock
WO2016117991A1 (en) System for generating bio-diesel from different raw materials having a high lipid content by means of the in situ transesterification process
CN103980929A (en) Method for preparing biological fuel oil by fast pyrolyzing biomass
Ofori-Boateng et al. Comparative analysis of the effect of different alkaline catalysts on biodiesel yield
US9428703B2 (en) Method and apparatus for the making of a fuel
JP5358351B2 (en) Biodiesel fuel production equipment
CN105820829A (en) Process and device for preparing biomass oil through blue-green algae catalytic pyrolysis method
CN105567284A (en) Method for simultaneously preparing long-chain alkane and arene by taking microalgae oil as raw material
CN104277857A (en) Biological crude oil prepared by co-liquefying algae and crude glycerine and method for preparing biological crude oil by co-liquefying algae and crude glycerine
CN111621342B (en) Method for coproducing &#39;biodiesel&#39; and &#39;green diesel&#39; by thermochemical conversion of cyperus esculentus
Mathanker Hydrothermal liquefaction of lignocellulosic biomass to produce biofuels
Jumah et al. Recent trends on sewage sludge transesterification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879105

Country of ref document: EP

Kind code of ref document: A1