WO2016117732A1 - 이동통신 서비스를 위한 핸드오버 방법 - Google Patents

이동통신 서비스를 위한 핸드오버 방법 Download PDF

Info

Publication number
WO2016117732A1
WO2016117732A1 PCT/KR2015/000755 KR2015000755W WO2016117732A1 WO 2016117732 A1 WO2016117732 A1 WO 2016117732A1 KR 2015000755 W KR2015000755 W KR 2015000755W WO 2016117732 A1 WO2016117732 A1 WO 2016117732A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
handover
mobile communication
base stations
communication terminal
Prior art date
Application number
PCT/KR2015/000755
Other languages
English (en)
French (fr)
Inventor
조동호
임진택
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2016117732A1 publication Critical patent/WO2016117732A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/026Multicasting of data during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a handover method for a mobile communication service, and more particularly, a handover method of a mobile communication terminal provided with a mobile communication service, a handover support method of a base station for the same, and a hand of the mobile communication system by the same. It's about the over way.
  • EPC Evolved Packet Core
  • LTE Long Term Evolution
  • EPC has evolved the core network of the existing 3GPP system architecture to support Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), which is an evolved RAN, and to improve the efficiency of packet networks.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • a wireless communication system including an EPC and an E-UTRAN may be referred to as an EPS (Evolved Packet System), and an LTE mobile communication system currently serving in Korea corresponds to this.
  • EPS Evolved Packet System
  • handover is performed to provide a continuous service even while the mobile communication terminal is in motion.
  • Such a handover can be largely divided into a hard handover and a soft handover.
  • the hard handover first disconnects from the serving base station during the handover process and performs the connection to the target base station.
  • Soft handover disconnects from the serving base station after the connection with the target base station is completed.
  • Soft handover is superior to hard handover in terms of spectral efficiency or capacity because there is a section where both base stations are simultaneously connected during the handover process, but the radio link is twice as large as the hard handover. There are disadvantages to using more.
  • Semi-soft handover combines the advantages of hard and soft handover.
  • the distance between the serving base station and the target base station is similar, and the fading effects of the channels are added together, and the signal between both base stations undergoes a severe change with a similar average.
  • Quasi-soft handover exploits this change opportunistically to achieve diversity gains by adaptively changing radio resources with better signal quality between the serving base station and the target base station. This is called a site selection diversity (SSDT).
  • SSDT site selection diversity
  • Such semi-soft handover has an advantage of using the same amount of radio resources as the hard handover, while improving frequency efficiency compared to hard handover through the use of opportunistic signals.
  • high QoS is achieved by reducing handover by utilizing a plurality of cooperative base stations as well as a serving base station in adaptively changing radio resources having a better signal quality, such as a semi-soft handover. It improves the frequency efficiency at the same time.
  • the handover method of the mobile communication system comprises the steps of the serving base station that determines the handover of the mobile communication terminal to select a plurality of cooperative base stations, the handed to the cooperative base stations selected the serving base station Requesting over, the cooperative base stations responding to the serving base station in response to a handover request, the cooperative base stations requesting multicasting, receiving packet data, and the serving base station receiving the mobile communication terminal.
  • the mobile communication terminal may include performing a handover from the serving base station to a target base station among the cooperative base stations when the handover threshold condition is satisfied.
  • the serving base station and the cooperative base stations are multiple input multiple outputs (MIMOs) according to a comparison result of a channel environment with the mobile communication terminal and a preset transmission mode threshold. ) You can use any one of the transmission modes.
  • MIMOs multiple input multiple outputs
  • the mobile communication terminal may switch to a filter corresponding to the selected MIMO transmission mode to receive the packet data.
  • the serving base station and the cooperative base stations may use the spatial multiplexing transmission mode when the signal-to-interference and noise ratio (SINR) with the mobile communication terminal exceeds a preset transmission mode threshold.
  • SINR signal-to-interference and noise ratio
  • the handover of the mobile communication terminal when the handover of the mobile communication terminal is determined, selecting a plurality of cooperative base stations; and requesting handover from the selected cooperative base stations and receiving a response; Requesting the mobile communication terminal to reestablish an RRC connection; receiving packet data requested by the cooperative base stations to a mobility management node according to the handover request; and a channel environment with a serving base station and the cooperative base stations. And providing the packet data until the mobile communication terminal for real time checking satisfies a preset handover threshold condition, and wherein the handover threshold condition is satisfied, which one of the cooperative base stations is received from the serving base station. Recalling the mobile communication terminal that performed the handover to one target base station It may comprise the step of releasing the switch.
  • the serving base station and the cooperative base stations are any one of a plurality of MIMO transmission modes according to a comparison result of a channel environment with the mobile communication terminal and a preset transmission mode threshold. Transmission mode is available.
  • the serving base station and the cooperative base stations may use the spatial multiplexing transmission mode when the SINR with the mobile communication terminal exceeds a preset transmission mode threshold.
  • a handover method of a mobile communication terminal comprises the steps of: receiving an RRC connection reconfiguration message for handover from a serving base station, a plurality of cooperative base stations and the serving base station included in the RRC connection reconfiguration message; Requesting and receiving packet data from the serving base station or the cooperating base stations until a predetermined handover threshold condition is satisfied while real-time checking a channel environment of the channel environment; and if the handover threshold condition is satisfied, the serving base station And performing a handover from the cooperative base stations to any one of the target base stations.
  • the mobile communication terminal selects one transmission mode among a plurality of MIMO transmission modes by the serving base station and the cooperative base stations and transmits the packet data.
  • the packet data may be received by switching to a filter corresponding to the MIMO transmission mode.
  • high QoS is achieved by reducing handover by utilizing a plurality of cooperative base stations as well as a serving base station in adaptively changing radio resources having better signal quality, such as quasi-soft handover. It improves the frequency efficiency at the same time.
  • FIGS. 1A and 1B are flowcharts illustrating a handover method of a mobile communication system according to an exemplary embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a handover support method of a base station according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a handover method of a mobile communication terminal according to an embodiment of the present invention.
  • FIG. 4 is a graph showing simulation results for a handover method and a conventional handover method according to an embodiment of the present invention.
  • FIGS. 1A and 1B are flowcharts illustrating a handover method of a mobile communication system according to an exemplary embodiment of the present invention.
  • the handover method of the mobile communication system includes the steps 101 to 105 of the serving base station that determines the handover of the mobile communication terminal to select a plurality of cooperative base stations.
  • the serving base station further includes a step 107 of requesting handover to the selected cooperative base stations.
  • the method further includes steps 113 and 115 of the cooperative base station and the serving base station receiving packet data provided by the gateway by requesting multicasting from the mobility management node.
  • the serving base station further comprises a step 117 of requesting a radio resource control (RRC) connection reconfiguration to the mobile communication terminal.
  • RRC radio resource control
  • the mobile communication terminal checks the channel environment with the serving base station and the cooperative base stations in real time and requests and receives packet data from the serving base station or the cooperative base stations until the preset handover threshold condition is satisfied. 123).
  • the mobile terminal further includes steps 125 to 129 of performing handover from the serving base station to one of the target base stations.
  • the mobile communication terminal further comprises the steps (131 to 137) of the other base stations releasing resources for the mobile communication terminal except for the base station attached through the handover.
  • the mobile communication terminal further includes a step 139 of receiving packet data provided by the gateway from the attached base station.
  • FIG. 2 is a flowchart illustrating a handover support method of a base station according to an embodiment of the present invention.
  • the method for supporting a handover of a base station includes selecting 201 a plurality of cooperative base stations when the handover of the mobile communication terminal is determined.
  • the method further includes a step 203 of requesting handover from the selected cooperative base stations and receiving a response.
  • the method further includes requesting the mobile communication terminal to reset the RRC connection (205).
  • the method further includes the step 207 of receiving packet data requested by the cooperating base stations to the mobility management node according to the handover request.
  • the method further includes a step 209 of providing a packet data request until the mobile communication terminal which checks the channel environment with the serving base station and the cooperating base stations in real time meets a preset handover threshold condition.
  • the method further includes a step 211 of releasing resources for the mobile communication terminal that has performed the handover from the serving base station to the target base station among the cooperating base stations because the handover threshold condition is satisfied.
  • FIG. 3 is a flowchart illustrating a handover method of a mobile communication terminal according to an embodiment of the present invention.
  • the handover method of the mobile communication terminal includes a step 301 of receiving a RRC connection reconfiguration message for handover from the serving base station.
  • the method further includes the step 307 of performing a handover from the serving base station to any one of the target base stations.
  • a handover method of a mobile communication terminal a handover support method of a base station, and a handover method of the mobile communication system by the same according to an embodiment of the present invention will be described in detail with reference to FIGS. 1A and 1B to 4. Let's look at it.
  • the serving base station to which the mobile communication terminal is attached receives packet data for the mobile communication terminal from the gateway, and transmits the received packet data to the mobile communication terminal (101).
  • the mobile communication terminal receiving the mobile communication service through step 101 measures the radio wave environment for the base stations located in its vicinity including the serving base station and transmits a report on the measured radio wave environment to the serving base station.
  • the mobile communication terminal can measure and report a signal-to-interference and noise ratio (SINR) for radio waves transmitted from respective base stations (103).
  • SINR signal-to-interference and noise ratio
  • the serving base station determines whether the comparison result with the predetermined threshold value satisfies the handover evaluation index when there is a base station with better radio environment than the base station based on the radio environment report provided from the mobile communication terminal. If the evaluation index is satisfied, the handover of the mobile communication terminal is determined (105).
  • the serving base station selects a plurality of base stations satisfying the handover evaluation index as the cooperative base station (201), and transmits a handover request message to the selected cooperative base stations (107).
  • the cooperative base stations when receiving the handover request message, identify the resources they have, and determine whether there is room for service, and performs admission control to allow handover when there is service space (109).
  • the performed cooperative base stations transmit a handover request response message to the serving base station (111, 203).
  • the cooperative base stations that perform admission control in step 111 request multicasting from a mobility management entity (MME) to receive user data (113), and the mobility management node forwards the multicasting request to the gateway.
  • MME mobility management entity
  • the gateway transmits the packet data for the mobile communication terminal to the serving base station and the cooperative base stations in a multicasting manner (115).
  • the serving base station receiving the handover request response message from the cooperative base stations requests the mobile communication terminal to reset the RRC connection to the mobile communication terminal.
  • the RRC connection reconfiguration request message includes information on the cooperative base stations that performed the admission control in step 109 (117, 205, 301).
  • the mobile communication terminal attaches the cooperative base stations as the target base station according to the RRC connection reconfiguration request message (119), and requests and receives packet data from the target base stations including the serving base station and the cooperative base stations (121, 123). , 303).
  • the packet data received from the gateway is provided to the mobile communication terminal (207, 209).
  • the mobile communication terminal selects a base station having excellent propagation environment from the serving base station and the cooperative base stations while checking the channel environment with the serving base station and the cooperative base stations in real time, and requests packet data from the selected base station. Receive. The request and reception of such packet data are performed until the preset handover threshold condition is satisfied.
  • the preset handover threshold condition is a case where the SINR with one of the target base stations exceeds the preset handover threshold, and it is preferable to handover to the base station at this time.
  • the serving base station and the cooperative base station compares the channel environment with the base station and a preset transmission mode threshold value, and selects one transmission mode among a plurality of multiple input multiple output (MIMO) transmission modes according to the comparison result.
  • MIMO multiple input multiple output
  • MIMO system has several transmission modes unlike SISO (Single Input Single Output) system.
  • MIMO transmission modes defined in the 3GPP standard include open loop spatial multiplexing (OL-SM), closed loop spatial multiplexing (CL-SM), beamforming (BF), and transmit diversity (TD).
  • OL-SM open loop spatial multiplexing
  • CL-SM closed loop spatial multiplexing
  • BF beamforming
  • TD transmit diversity
  • SM spatial multiplexing
  • the spatial multiplexing (SM) shows a high gain in a sufficiently guaranteed SINR, rich-scattering environment
  • the BF and TD dominates the spatial multiplexing in a low SINR and low scattering environment. Has the performance.
  • the target base stations adaptively switch these MIMO modes according to channel conditions according to SINR and channel rank with the mobile communication terminal.
  • the target base stations may use the spatial multiplexing transmission mode when the SINR exceeds a preset transmission mode threshold value, or may use an orthogonal space-time block code (OSTBC) transmission mode.
  • OSTBC orthogonal space-time block code
  • the mobile communication terminal switches to a filter corresponding to a transmission mode selected by the target base stations to receive packet data.
  • packet data can be received by switching to a ZF (zero-forcing) filter or a minimum mean squared error (ZF) filter
  • ZF minimum mean squared error
  • the maximum ratio Packet data may be received by switching to a Maximum Ratio Combining (MRC) filter.
  • MRC Maximum Ratio Combining
  • the mobile communication terminal determines the handover when the radio environment with one of the target base stations satisfies the preset handover condition (125, 305), and after the handover is determined, detaches the source base station .
  • the mobile communication terminal and the serving base station are detached so that the serving base station corresponds to the source base station (127, 307).
  • the mobile communication terminal transmits a handover confirmation message to the handed over base station (129).
  • 1B illustrates a case where handover is performed to a cooperative base station #N according to an embodiment.
  • the cooperative base station #N transmits a handover complete message to the mobility management node (131), and transmits a packet rerouting message to the gateway (133).
  • the gateway transmits a resource release command to the other base stations except the base station to which the mobile communication terminal is attached through the handover (135), and thus the corresponding base stations release resources for the mobile communication terminal (137, 211). ).
  • the mobile communication terminal receives the packet data provided from the gateway from the attached base station (139).
  • Simulation was performed to verify the effect of the handover method of the mobile communication system according to an embodiment of the present invention, and the simulation environment is shown in Table 1 below.
  • the result of this simulation is the graph of FIG. 4.
  • the hard handover is the prior art
  • the semisoft handover is the handover method according to the present invention.
  • the handover method according to the embodiment of the present invention showed about 60% frequency efficiency improvement in the cell-edge region compared to the prior art.
  • Combinations of the steps of each flowchart attached to the present invention may be performed by computer program instructions.
  • These computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment such that the instructions performed through the processor of the computer or other programmable data processing equipment are described in each step of the flowchart. It will create a means to perform them.
  • These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored therein to produce an article of manufacture containing instruction means for performing the functions described in each step of the flowchart.
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for executing the functions described in each step of the flowchart.
  • each step may represent a module, segment or portion of code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment or portion of code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the steps may occur out of order.
  • the two steps shown in succession may in fact be performed substantially simultaneously or the steps may sometimes be performed in the reverse order, depending on the function in question.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

개시된 이동통신 시스템의 핸드오버 방법은, 이동통신 단말의 핸드오버를 결정한 서빙 기지국이 복수의 협력 기지국을 선정하는 단계와, 서빙 기지국이 선정된 협력 기지국들에게 핸드오버를 요청하는 단계와, 협력 기지국들이 서빙 기지국에게 핸드오버 요청에 대해 응답하는 단계와, 협력 기지국들이 멀티캐스팅을 요청하여 패킷 데이터를 제공받는 단계와, 서빙 기지국이 이동통신 단말에게 RRC 연결 재설정을 요청하는 단계와, 이동통신 단말이 서빙 기지국 및 협력 기지국들과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 서빙 기지국 또는 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계와, 이동통신 단말이 핸드오버 임계값 조건이 만족되면 서빙 기지국으로부터 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계를 포함한다.

Description

이동통신 서비스를 위한 핸드오버 방법
본 발명은 이동통신 서비스를 위한 핸드오버 방법에 관한 것으로, 더욱 상세하게는 이동통신 서비스를 제공받는 이동통신 단말의 핸드오버 방법과 이를 위한 기지국의 핸드오버 지원 방법 및 이들에 의한 이동통신 시스템의 핸드오버 방법에 관한 것이다.
주지하는 바와 같이, 3GPP 릴리스(Release) 8에서는 이동통신 시스템의 하나로써, 망 아키텍처(Network Architecture)인 EPC(Evolved Packet Core)를 기술하고 있다. EPC는 3GPP LTE(Long Term Evolution) 시스템을 위한 네트워크 노드들의 집합이다. EPC는 기존의 3GPP 시스템 아키텍처의 코어 네트워크(Core Network)를 진화시켜, 진화된 무선접속망(Evolved RAN)인 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network) 등을 지원하고, 또한 패킷망의 효율성을 높이기 위하여 네트워크 노드를 단순화시킨 효율적인 망구조를 갖는다. EPC와 E-UTRAN을 포함하는 무선통신 시스템을 EPS(Evolved Packet System)라고 호칭할 수도 있으며, 현재 국내에서 서비스 중인 LTE 이동통신 시스템이 이에 해당한다.
한편, 이러한 이동통신 시스템에서 이동통신 단말의 이동 중에도 끊임없는 서비스를 제공하기 위하여 핸드오버를 수행하게 되며, 이러한 핸드오버는 크게 하드 핸드오버와 소프트 핸드오버로 나눌 수 있다.
이 중에서, 하드 핸드오버는 핸드오버 과정 중에 서빙(serving) 기지국과의 연결을 먼저 끊고 타깃(target) 기지국으로의 연결을 수행한다. 반면에, 소프트 핸드오버는 타깃 기지국과의 연결이 완료된 후 서빙 기지국과의 연결을 끊는다. 소프트 핸드오버는 핸드오버 과정 중에 양 기지국과 동시에 연결되는 구간이 존재하기 때문에 주파수효율(spectral efficiency, 또는 capacity) 측면에서 하드핸드오버보다 우월하지만 무선 자원(radio link)을 하드 핸드오버에 비해 2배 더 사용하는 단점이 존재한다.
준-소프트(semisoft) 핸드오버는 하드 핸드오버와 소프트 핸드오버의 장점을 결합한 것이다. 일반적으로 핸드오버 과정 중에는 서빙 기지국과 타깃 기지국과의 거리가 비슷하고 이에 더해 채널의 페이딩 효과가 합산되어 양 기지국 사이의 신호는 비슷한 평균을 가진 채 심한 변화를 겪는다. 준-소프트 핸드오버는 이러한 변화를 기회적(opportunistically)으로 이용하여 서빙 기지국과 타깃 기지국 중 신호의 질이 더 좋은 무선 자원을 적응적으로 바꿔가며 다이버시티 이득을 얻는다. 이를 SSDT(Site Selection Diverstiy)라 한다.
이러한 준-소프트 핸드오버는 기회적인 신호의 이용을 통해 하드 핸드오버에 비해 주파수효율이 더 개선됨과 동시에 무선 자원은 하드 핸드오버와 동일한 양을 사용하는 장점이 있다.
최근의 이동통신 시스템은 네트워크의 용량 증대 등을 위하여 작은 셀에 대한 연구가 활발히 진행되고 있으며, 이에 따라 기지국 서비스 영역이 소형화됨에 따라 동반되는 잦은 핸드오버는 QoS(Quality of Service)의 감소를 초래하는 문제점이 있었다.
본 발명의 실시예에 따르면, 준-소프트 핸드오버와 같이 신호의 질이 더 좋은 무선 자원을 적응적으로 바꿔줌에 있어서 서빙 기지국뿐만 아니라 복수의 협력 기지국을 활용하여 핸드오버를 줄임으로써, 높은 QoS를 보장함과 아울러 주파수효율을 향상시킨다.
본 발명의 해결하고자 하는 과제는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 해결하고자 하는 과제는 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제 1 관점에 따른 이동통신 시스템의 핸드오버 방법은, 이동통신 단말의 핸드오버를 결정한 서빙 기지국이 복수의 협력 기지국을 선정하는 단계와, 상기 서빙 기지국이 선정된 상기 협력 기지국들에게 핸드오버를 요청하는 단계와, 상기 협력 기지국들이 상기 서빙 기지국에게 핸드오버 요청에 대해 응답하는 단계와, 상기 협력 기지국들이 멀티캐스팅을 요청하여 패킷 데이터를 제공받는 단계와, 상기 서빙 기지국이 상기 이동통신 단말에게 RRC(Radio Resource Control) 연결 재설정을 요청하는 단계와, 상기 이동통신 단말이 상기 서빙 기지국 및 상기 협력 기지국들과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 상기 서빙 기지국 또는 상기 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계와, 상기 이동통신 단말이 상기 핸드오버 임계값 조건이 만족되면 상기 서빙 기지국으로부터 상기 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계를 포함할 수 있다.
여기서, 상기 패킷 데이터를 요청하여 제공받는 단계에서, 상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 채널 환경과 기 설정된 전송모드 임계값과의 비교 결과에 따라 복수의 MIMO(Multiple Input Multiple Output) 전송모드 중에서 어느 한 전송모드를 이용할 수 있다.
상기 이동통신 단말은 상기 복수의 MIMO 전송모드 중에서 어느 한 전송모드가 선정되어 상기 패킷 데이터가 전송되면, 선정된 상기 MIMO 전송모드에 대응하는 필터로 스위칭하여 상기 패킷 데이터를 수신할 수 있다.
상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 SINR(Signal-to-Interference and Noise Ratio)이 기 설정된 전송모드 임계값을 초과하면 공간 다중화 전송모드를 이용할 수 있다.
본 발명의 제 2 관점에 따른 기지국의 핸드오버 지원 방법은, 이동통신 단말의 핸드오버가 결정되면 복수의 협력 기지국을 선정하는 단계와, 선정된 상기 협력 기지국들에게 핸드오버를 요청하여 응답받는 단계와, 상기 이동통신 단말에게 RRC 연결 재설정을 요청하는 단계와, 상기 핸드오버 요청에 따라 상기 협력 기지국들이 이동성 관리 노드에게 요청한 패킷 데이터를 수신하는 단계와, 서빙 기지국 및 상기 협력 기지국들과의 채널 환경을 실시간 확인하는 상기 이동통신 단말이 기 설정된 핸드오버 임계값 조건을 만족할 때까지 상기 패킷 데이터를 요청하면 제공하는 단계와, 상기 핸드오버 임계값 조건이 만족되어 상기 서빙 기지국으로부터 상기 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행한 상기 이동통신 단말에 대한 리소스를 해제하는 단계를 포함할 수 있다.
여기서, 상기 패킷 데이터를 요청하면 제공하는 단계에서, 상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 채널 환경과 기 설정된 전송모드 임계값과의 비교 결과에 따라 복수의 MIMO 전송모드 중에서 어느 한 전송모드를 이용할 수 있다.
상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 SINR이 기 설정된 전송모드 임계값을 초과하면 공간 다중화 전송모드를 이용할 수 있다.
본 발명의 제 3 관점에 따른 이동통신 단말의 핸드오버 방법은, 서빙 기지국으로부터 핸드오버를 위한 RRC 연결 재설정 메시지를 수신하는 단계와, 상기 RRC 연결 재설정 메시지에 포함된 복수의 협력 기지국 및 상기 서빙 기지국과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 상기 서빙 기지국 또는 상기 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계와, 상기 핸드오버 임계값 조건이 만족되면 상기 서빙 기지국으로부터 상기 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계를 포함할 수 있다.
여기서, 상기 패킷 데이터를 요청하여 제공받는 단계에서, 상기 이동통신 단말은 상기 서빙 기지국 및 상기 협력 기지국들에 의해 복수의 MIMO 전송모드 중에서 어느 한 전송모드가 선정되어 상기 패킷 데이터가 전송되면, 선정된 상기 MIMO 전송모드에 대응하는 필터로 스위칭하여 상기 패킷 데이터를 수신할 수 있다.
본 발명의 실시예에 의하면, 준-소프트 핸드오버와 같이 신호의 질이 더 좋은 무선 자원을 적응적으로 바꿔줌에 있어서 서빙 기지국뿐만 아니라 복수의 협력 기지국을 활용하여 핸드오버를 줄임으로써, 높은 QoS를 보장함과 아울러 주파수효율을 향상시킨다.
나아가, 채널 환경에 따라 복수의 MIMO 중에서 적합한 전송모드를 이용함으로써, 주파수효율을 더욱 증진시키는 효과가 있다.
도 1a 및 도 1b는 본 발명의 실시예에 따른 이동통신 시스템의 핸드오버 방법을 설명하기 위한 흐름도이다.
도 2는 본 발명의 실시예에 따른 기지국의 핸드오버 지원 방법을 설명하기 위한 흐름도이다.
도 3은 본 발명의 실시예에 따른 이동통신 단말의 핸드오버 방법을 설명하기 위한 흐름도이다.
도 4는 본 발명의 실시예에 따른 핸드오버 방법과 종래의 핸드오버 방법에 대한 시뮬레이션 결과를 보여주는 그래프이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1a 및 도 1b는 본 발명의 실시예에 따른 이동통신 시스템의 핸드오버 방법을 설명하기 위한 흐름도이다.
이에 나타낸 바와 같이 실시예에 따른 이동통신 시스템의 핸드오버 방법은, 이동통신 단말의 핸드오버를 결정한 서빙 기지국이 복수의 협력 기지국을 선정하는 단계(101 내지 105)를 포함한다.
이어서, 서빙 기지국이 선정된 협력 기지국들에게 핸드오버를 요청하는 단계(107)를 더 포함한다.
그리고, 협력 기지국들이 서빙 기지국에게 핸드오버 요청에 대해 응답하는 단계(109 및 111)를 더 포함한다.
또, 협력 기지국들이 이동성 관리 노드에게 멀티캐스팅을 요청하여 게이트웨이에서 제공하는 패킷 데이터를 협력 기지국 및 서빙 기지국이 제공받는 단계(113 및 115)를 더 포함한다.
아울러, 서빙 기지국이 이동통신 단말에게 RRC(Radio Resource Control) 연결 재설정을 요청하는 단계(117)를 더 포함한다.
다음으로, 이동통신 단말이 서빙 기지국 및 협력 기지국들과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 서빙 기지국 또는 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계(119 내지 123)를 더 포함한다.
그리고, 이동통신 단말이 핸드오버 임계값 조건이 만족되면 서빙 기지국으로부터 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계(125 내지 129)를 더 포함한다.
또, 이동통신 단말이 핸드오버를 통해 어태치된 기지국을 제외한 나머지 기지국들이 이동통신 단말에 대한 리소스를 해제하는 단계(131 내지 137)를 더 포함한다.
이후, 이동통신 단말이 게이트웨이에서 제공하는 패킷 데이터를 어태치된 기지국으로부터 전달받는 단계(139)를 더 포함한다.
도 2는 본 발명의 실시예에 따른 기지국의 핸드오버 지원 방법을 설명하기 위한 흐름도이다.
이에 나타낸 바와 같이 실시예에 따른 기지국의 핸드오버 지원 방법은, 이동통신 단말의 핸드오버가 결정되면 복수의 협력 기지국을 선정하는 단계(201)를 포함한다.
이어서, 선정된 협력 기지국들에게 핸드오버를 요청하여 응답받는 단계(203)를 더 포함한다.
그리고, 이동통신 단말에게 RRC 연결 재설정을 요청하는 단계(205)를 더 포함한다.
이어서, 핸드오버 요청에 따라 협력 기지국들이 이동성 관리 노드에게 요청한 패킷 데이터를 수신하는 단계(207)를 더 포함한다.
또, 서빙 기지국 및 협력 기지국들과의 채널 환경을 실시간 확인하는 이동통신 단말이 기 설정된 핸드오버 임계값 조건을 만족할 때까지 패킷 데이터를 요청하면 이를 제공하는 단계(209)를 더 포함한다.
아울러, 핸드오버 임계값 조건이 만족되어 서빙 기지국으로부터 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행한 이동통신 단말에 대한 리소스를 해제하는 단계(211)를 더 포함한다.
도 3은 본 발명의 실시예에 따른 이동통신 단말의 핸드오버 방법을 설명하기 위한 흐름도이다.
이에 나타낸 바와 같이 실시예에 따른 이동통신 단말의 핸드오버 방법은, 서빙 기지국으로부터 핸드오버를 위한 RRC 연결 재설정 메시지를 수신하는 단계(301)를 포함한다.
이어서, RRC 연결 재설정 메시지에 포함된 복수의 협력 기지국 및 서빙 기지국과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 서빙 기지국 또는 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계(303)를 더 포함한다.
다음으로, 핸드오버 임계값 조건이 만족되면 서빙 기지국으로부터 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계(307)를 더 포함한다.
이하, 도 1a와 도 1b 내지 도 4를 참조하여 본 발명의 실시예에 따른 이동통신 단말의 핸드오버 방법과 이를 위한 기지국의 핸드오버 지원 방법 및 이들에 의한 이동통신 시스템의 핸드오버 방법에 대해 자세히 살펴보기로 한다.
먼저, 이동통신 단말이 어태치된 서빙 기지국은 게이트웨이로부터 이동통신 단말을 위한 패킷 데이터를 수신하며, 수신된 패킷 데이터를 이동통신 단말에게 전달한다(101).
단계 101을 통해 이동통신 서비스를 제공받는 이동통신 단말은 서빙 기지국을 포함하여 자신의 주변에 위치하는 기지국들을 대상으로 하여 전파 환경을 측정하며, 측정된 전파 환경에 대한 리포트를 서빙 기지국에게 전송한다. 예컨대, 이동통신 단말은 각 기지국들로부터 송출되는 전파에 대해 SINR(Signal-to-Interference and Noise Ratio)을 측정하여 리포트할 수 있다(103).
그러면, 서빙 기지국은 이동통신 단말로부터 제공받은 전파 환경 리포트에 기초하여 자신보다 전파 환경이 우수한 기지국이 존재하는 경우에 기 설정된 임계값과의 비교 결과가 핸드오버 평가지표에 만족하는지를 판단하며, 핸드오버 평가지표에 만족되는 경우에는 이동통신 단말의 핸드오버를 결정한다(105).
이어서, 서빙 기지국은 단계 105에서 핸드오버 평가지표에 만족되는 복수의 기지국들을 협력 기지국으로 선정하며(201), 선정된 협력 기지국들에게 핸드오버 요청 메시지를 전송한다(107).
그리고, 핸드오버 요청 메시지를 수신한 협력 기지국들은 자신들이 보유한 리소스를 파악하여 서비스 여력이 있는지를 판단하며, 서비스 여력이 있는 경우에 핸드오버를 허용하는 승인 제어를 수행하고(109), 승인 제어를 수행한 협력 기지국들은 핸드오버 요청 응답 메시지를 서빙 기지국에게 전송한다(111, 203).
아울러, 단계 111에서 승인 제어를 수행한 협력 기지국들은 사용자 데이터를 제공받기 위하여 이동성 관리 노드(Mobility Management Entity, MME)에게 멀티캐스팅을 요청하며(113), 이동성 관리 노드는 게이트웨이에게 멀티캐스팅 요청을 전달하고, 게이트웨이는 서빙 기지국 및 협력 기지국들에게 이동통신 단말을 위한 패킷 데이터를 멀티캐스팅 방식으로 전송한다(115).
한편, 단계 111에서 협력 기지국들로부터 핸드오버 요청 응답 메시지를 수신한 서빙 기지국은 이동통신 단말에게 이동통신 단말에게 RRC 연결 재설정을 요청한다. 이때, RRC 연결 재설정 요청 메시지에는 단계 109에서 승인 제어를 수행한 협력 기지국들에 대한 정보가 포함된다(117, 205, 301).
그러면, 이동통신 단말은 RRC 연결 재설정 요청 메시지에 따라 협력 기지국들을 타깃 기지국으로 삼아 어태치하며(119), 서빙 기지국과 협력 기지국들이 포함된 타깃 기지국들에게 패킷 데이터를 요청하여 제공받는다(121, 123, 303). 이를, 서빙 기지국 또는 협력 기지국들의 입장에서 보면 게이트웨이로부터 수신한 패킷 데이터를 이동통신 단말에게 제공하는 것이다(207, 209)
여기서, 이동통신 단말은 이동통신 단말이 서빙 기지국 및 협력 기지국들과의 채널 환경을 실시간 확인하면서 서빙 기지국과 협력 기지국들 중에서 전파 환경이 우수한 기지국을 선정하며, 선정된 기지국에게 패킷 데이터를 요청하여 이를 수신한다. 이러한 패킷 데이터의 요청 및 수신은 기 설정된 핸드오버 임계값 조건이 만족할 때까지 수행하게 된다. 예컨대, 기 설정된 핸드오버 임계값 조건은 타깃 기지국들 중에서 어느 한 기지국과의 SINR이 기 설정된 핸드오버 임계값을 초과하는 경우이며, 이때는 해당 기지국으로 핸드오버하는 것이 바람직하기 때문이다.
아울러, 서빙 기지국 및 협력 기지국들은 기지국과의 채널 환경과 기 설정된 전송모드 임계값을 비교하며, 그 비교 결과에 따라 복수의 MIMO(Multiple Input Multiple Output)의 전송모드 중에서 어느 한 전송모드를 선정한다.
MIMO 시스템은 그 특성상 SISO(Single Input Single Output) 시스템과 달리 여러 전송모드들이 존재한다. 예컨대, 3GPP 표준에서 정의하는 MIMO 전송 모드들로는 OL-SM(Open Loop Spatial Multiplexing), CL-SM(Closed Loop Spatial Multiplexing), BF(Beamforming), TD(Transmit diversity) 등이 있다. 이러한 각 전송모드들은 채널의 환경에 따라 서로 다른 효율을 나타낸다. 일반적으로 공간 다중화(SM)의 경우에는 SINR이 충분히 보장되고 산란이 풍부(rich-scattering)한 환경에서 높은 이득을 나타내며, BF와 TD의 경우에는 낮은 SINR과 산란이 적은 환경에서 공간 다중화에 비해 우위의 성능을 갖는다.
따라서, 타깃 기지국들은 이동통신 단말과의 SINR 및 채널 랭크(rank) 등에 따른 채널 상황에 따라 이러한 MIMO 모드들을 적응적으로(adaptively) 스위칭하는 것이다. 예컨대, 타깃 기지국들은 SINR이 기 설정된 전송모드 임계값을 초과하면 공간 다중화 전송모드를 이용할 수 있으며, 그렇지 않은 경우에는 직교 시공간 블록 부호(Orthogonal Space-Time Block Code; OSTBC) 전송모드를 이용할 수 있다.
여기서, 이동통신 단말은 타깃 기지국들에 의해 선정된 전송모드에 대응하는 필터로 스위칭하여 패킷 데이터를 수신하게 된다. 예컨대, 공간 다중화 전송모드인 경우라면 ZF(zero-forcing) 필터 또는 최소 평균 제곱 에러(Minimum Mean Squared Error) 필터로 스위칭하여 패킷 데이터를 수신할 수 있으며, 직교 시공간 블록 부호 전송모드인 경우에는 최대비 결합(Maximal Ratio Combining; 이하 MRC) 필터로 스위칭하여 패킷 데이터를 수신할 수 있다.
다음으로, 이동통신 단말은 타깃 기지국들 중에서 어느 한 기지국과의 전파 환경이 기 설정된 핸드오버 조건을 만족하면 핸드오버를 결정하며(125, 305), 핸드오버가 결정된 이후에는 소스 기지국을 디태치한다. 여기서, 서빙 기지국이 소스 기지국에 대응하기에 이동통신 단말과 서빙 기지국이 디태치된다(127, 307).
이어서, 이동통신 단말이 핸드오버된 기지국에게 핸드오버 확인 메시지를 전송한다(129). 도 1b에는 실시예에 따라 협력 기지국#N으로 핸드오버되는 경우를 예시하였다.
그리고, 협력 기지국#N은 이동성 관리 노드에게 핸드오버 완료 메시지를 전송하고(131), 게이트웨이에게 패킷 경로 재설정 메시지를 전송한다(133).
아울러, 게이트웨이가 이동통신 단말이 핸드오버를 통해 어태치된 기지국을 제외한 나머지 기지국들에게 리소스 해제 명령을 전송하며(135), 이에 따라 해당 기지국들은 이동통신 단말에 대한 리소스를 해제한다(137, 211).
이후에는, 이동통신 단말이 게이트웨이에서 제공하는 패킷 데이터를 어태치된 기지국으로부터 전달받는다(139).
본 발명의 실시예에 따른 이동통신 시스템의 핸드오버 방법의 효과를 검증하기 위하여 시뮬레이션을 수행하였으며, 시뮬레이션 환경은 아래의 표 1과 같다.
표 1
Cell radius 50 m
Path loss exponent 3.68
Path loss constant 43.8 dB
Shadowing standard deviation 8 dB
BS Tx power 20 dBm
Noise power density -166.83 dBm/Hz
Channel bandwidth 10 MHz
Number of cells 61
Frequency reuse factor 1
Tx antenna correlation 0.1
이러한 시뮬레이션의 결과로 도출된 것이 도 4의 그래프이다. 도 4에서 Hard handover가 종래 기술이며, Semisoft handover가 본 발명에 따른 핸드오버 방법이다. 2X2 MIMO, 2X4 MIMO 모두에서 본 발명의 실시예에 따른 핸드오버 방법이 종래 기술에 비하여 셀-엣지 영역에서 약 60% 주파수효율 성능개선을 나타내었다.
본 발명에 첨부된 각 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도의 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시예들에서는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 이동통신 단말의 핸드오버를 결정한 서빙 기지국이 복수의 협력 기지국을 선정하는 단계와,
    상기 서빙 기지국이 선정된 상기 협력 기지국들에게 핸드오버를 요청하는 단계와,
    상기 협력 기지국들이 상기 서빙 기지국에게 핸드오버 요청에 대해 응답하는 단계와,
    상기 협력 기지국들이 멀티캐스팅을 요청하여 패킷 데이터를 제공받는 단계와,
    상기 서빙 기지국이 상기 이동통신 단말에게 RRC(Radio Resource Control) 연결 재설정을 요청하는 단계와,
    상기 이동통신 단말이 상기 서빙 기지국 및 상기 협력 기지국들과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 상기 서빙 기지국 또는 상기 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계와,
    상기 이동통신 단말이 상기 핸드오버 임계값 조건이 만족되면 상기 서빙 기지국으로부터 상기 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계를 포함하는 이동통신 시스템의 핸드오버 방법.
  2. 제 1 항에 있어서,
    상기 패킷 데이터를 요청하여 제공받는 단계에서, 상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 채널 환경과 기 설정된 전송모드 임계값과의 비교 결과에 따라 복수의 MIMO(Multiple Input Multiple Output) 전송모드 중에서 어느 한 전송모드를 이용하는 이동통신 시스템의 핸드오버 방법.
  3. 제 2 항에 있어서,
    상기 이동통신 단말은 상기 복수의 MIMO(Multiple Input Multiple Output) 전송모드 중에서 어느 한 전송모드가 선정되어 상기 패킷 데이터가 전송되면, 선정된 상기 MIMO 전송모드에 대응하는 필터로 스위칭하여 상기 패킷 데이터를 수신하는 이동통신 시스템의 핸드오버 방법.
  4. 제 2 항에 있어서,
    상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 SINR(Signal-to-Interference and Noise Ratio)이 기 설정된 전송모드 임계값을 초과하면 공간 다중화 전송모드를 이용하는 이동통신 시스템의 핸드오버 방법.
  5. 이동통신 단말의 핸드오버가 결정되면 복수의 협력 기지국을 선정하는 단계와,
    선정된 상기 협력 기지국들에게 핸드오버를 요청하여 응답받는 단계와,
    상기 이동통신 단말에게 RRC(Radio Resource Control) 연결 재설정을 요청하는 단계와,
    상기 핸드오버 요청에 따라 상기 협력 기지국들이 이동성 관리 노드에게 요청한 패킷 데이터를 수신하는 단계와,
    서빙 기지국 및 상기 협력 기지국들과의 채널 환경을 실시간 확인하는 상기 이동통신 단말이 기 설정된 핸드오버 임계값 조건을 만족할 때까지 상기 패킷 데이터를 요청하면 제공하는 단계와,
    상기 핸드오버 임계값 조건이 만족되어 상기 서빙 기지국으로부터 상기 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행한 상기 이동통신 단말에 대한 리소스를 해제하는 단계를 포함하는 기지국의 핸드오버 지원 방법.
  6. 제 5 항에 있어서,
    상기 패킷 데이터를 요청하면 제공하는 단계에서, 상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 채널 환경과 기 설정된 전송모드 임계값과의 비교 결과에 따라 복수의 MIMO(Multiple Input Multiple Output) 전송모드 중에서 어느 한 전송모드를 이용하는 기지국의 핸드오버 지원 방법.
  7. 제 6 항에 있어서,
    상기 서빙 기지국 및 상기 협력 기지국들은 상기 이동통신 단말과의 SINR(Signal-to-Interference and Noise Ratio)이 기 설정된 전송모드 임계값을 초과하면 공간 다중화 전송모드를 이용하는 기지국의 핸드오버 지원 방법.
  8. 서빙 기지국으로부터 핸드오버를 위한 RRC(Radio Resource Control) 연결 재설정 메시지를 수신하는 단계와,
    상기 RRC 연결 재설정 메시지에 포함된 복수의 협력 기지국 및 상기 서빙 기지국과의 채널 환경을 실시간 확인하면서 기 설정된 핸드오버 임계값 조건을 만족할 때까지 상기 서빙 기지국 또는 상기 협력 기지국들에게 패킷 데이터를 요청하여 제공받는 단계와,
    상기 핸드오버 임계값 조건이 만족되면 상기 서빙 기지국으로부터 상기 협력 기지국들 중에서 어느 한 타깃 기지국으로의 핸드오버를 수행하는 단계를 포함하는 이동통신 단말의 핸드오버 방법.
  9. 제 8 항에 있어서,
    상기 패킷 데이터를 요청하여 제공받는 단계에서, 상기 이동통신 단말은 상기 서빙 기지국 및 상기 협력 기지국들에 의해 복수의 MIMO(Multiple Input Multiple Output) 전송모드 중에서 어느 한 전송모드가 선정되어 상기 패킷 데이터가 전송되면, 선정된 상기 MIMO 전송모드에 대응하는 필터로 스위칭하여 상기 패킷 데이터를 수신하는 이동통신 단말의 핸드오버 방법.
PCT/KR2015/000755 2015-01-23 2015-01-23 이동통신 서비스를 위한 핸드오버 방법 WO2016117732A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0011233 2015-01-23
KR1020150011233A KR101698898B1 (ko) 2015-01-23 2015-01-23 이동통신 서비스를 위한 핸드오버 방법

Publications (1)

Publication Number Publication Date
WO2016117732A1 true WO2016117732A1 (ko) 2016-07-28

Family

ID=56417256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000755 WO2016117732A1 (ko) 2015-01-23 2015-01-23 이동통신 서비스를 위한 핸드오버 방법

Country Status (2)

Country Link
KR (1) KR101698898B1 (ko)
WO (1) WO2016117732A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963314A (zh) * 2023-09-21 2023-10-27 南京云程半导体有限公司 一种协作组播方法、电子设备及存储介质
US11871287B2 (en) 2020-07-24 2024-01-09 Electronics And Telecommunications Research Institute Method and apparatus for handover in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110043893A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 송수신 장치 및 방법
KR20110113863A (ko) * 2010-04-12 2011-10-19 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 핸드오버 지원 장치 및 방법
KR20140033657A (ko) * 2012-09-10 2014-03-19 삼성전자주식회사 이동 통신 시스템에서 매크로 기지국과 소형 셀 기지국 간 협력 통신 서비스 제공 장치 및 방법
WO2014079049A1 (zh) * 2012-11-23 2014-05-30 华为技术有限公司 网间协同的方法、协同节点和网络侧设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677238B1 (ko) * 2005-05-16 2007-02-02 엘지전자 주식회사 휴대 인터넷의 핸드오버 방법
CN102244566B (zh) 2010-05-11 2014-03-12 中兴通讯股份有限公司 用于多输入多输出系统的下行传输方法和基站
KR20120048325A (ko) * 2010-11-05 2012-05-15 아주대학교산학협력단 무선 통신 시스템에서 신호 송수신 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110043893A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 송수신 장치 및 방법
KR20110113863A (ko) * 2010-04-12 2011-10-19 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 핸드오버 지원 장치 및 방법
KR20140033657A (ko) * 2012-09-10 2014-03-19 삼성전자주식회사 이동 통신 시스템에서 매크로 기지국과 소형 셀 기지국 간 협력 통신 서비스 제공 장치 및 방법
WO2014079049A1 (zh) * 2012-11-23 2014-05-30 华为技术有限公司 网间协同的方法、协同节点和网络侧设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871287B2 (en) 2020-07-24 2024-01-09 Electronics And Telecommunications Research Institute Method and apparatus for handover in wireless communication system
CN116963314A (zh) * 2023-09-21 2023-10-27 南京云程半导体有限公司 一种协作组播方法、电子设备及存储介质
CN116963314B (zh) * 2023-09-21 2023-12-22 南京云程半导体有限公司 一种协作组播方法、电子设备及存储介质

Also Published As

Publication number Publication date
KR101698898B1 (ko) 2017-01-24
KR20160091489A (ko) 2016-08-03

Similar Documents

Publication Publication Date Title
Zhou et al. Distributed wireless communication system: a new architecture for future public wireless access
Zheng et al. 10 Gb/s hetsnets with millimeter-wave communications: access and networking-challenges and protocols
JP5450638B2 (ja) マルチセクタ協調通信における協調タイプの切り替え技術
CN108521653B (zh) 一种通信方法、装置及计算机可读存储介质
WO2012096449A2 (en) Method and apparatus for multi-cell cooperative transmission
WO2010079926A2 (ko) 다중 셀 환경에서 comp 수행 셀 결정방법 및 장치
WO2013028012A2 (en) Mobile terminal and communication method thereof, base station controller and control method thereof, and multi-cooperative transmission system using the same and method thereof
WO2009134093A2 (en) Method for allocating resources for edge-users using cooperative mimo
US9461739B2 (en) Wireless communication method, base station and system
KR20140113642A (ko) 밀리미터파 광대역 통신에서 신뢰도 향상 방법 및 장치
WO2012000252A1 (zh) 一种协作发送点的选择方法及选择装置
JP2007053768A (ja) 分散型アンテナシステム及びその通信方法
CN104854895A (zh) 用于无线通信系统中的无缝切换操作的方法和装置
WO2012036492A2 (ko) 다중 셀 시스템에서 셀 간 간섭을 완화하는 방법 및 이를 위한 장치
EP2545658A1 (en) Relay node operable with different spatial characteristic antenna patterns
WO2016085092A1 (en) Method and system for controlling transmission of code words during handover in a wireless network
US10104556B2 (en) Method and device for eliminating inter-system neighbor cell interference
WO2016117732A1 (ko) 이동통신 서비스를 위한 핸드오버 방법
Michail et al. A load and channel aware dynamic point selection algorithm for LTE-A CoMP networks
Sun et al. Cell cluster-based dynamic TDD DL/UL reconfiguration in TD-LTE systems
Xenakis et al. ANDSF-Assisted vertical handover decisions in the IEEE 802.11/LTE-Advanced network
Oyama et al. Load-balancing techniques for 5G millimeter-wave distributed antenna system
Li et al. Power allocation of dynamic point blanking for downlink CoMP in LTE-advanced
CN112154710A (zh) 管理大规模多输入多输出基站
EP1459583A1 (en) Method and system for providing a downlink connection in a cellular network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878987

Country of ref document: EP

Kind code of ref document: A1