WO2016117555A1 - Laminate film for decorating molded article and decorative molding - Google Patents

Laminate film for decorating molded article and decorative molding Download PDF

Info

Publication number
WO2016117555A1
WO2016117555A1 PCT/JP2016/051436 JP2016051436W WO2016117555A1 WO 2016117555 A1 WO2016117555 A1 WO 2016117555A1 JP 2016051436 W JP2016051436 W JP 2016051436W WO 2016117555 A1 WO2016117555 A1 WO 2016117555A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
clear coating
decorating
laminated film
Prior art date
Application number
PCT/JP2016/051436
Other languages
French (fr)
Japanese (ja)
Inventor
長谷高和
北村昌弘
栄田正三郎
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Publication of WO2016117555A1 publication Critical patent/WO2016117555A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer

Definitions

  • the present invention relates to a laminated film for decorative molded products and a decorative molded body.
  • a molded product obtained from various materials such as plastic, metal and the like, it is generally performed to decorate the surface in order to impart design properties to the surface or protect the surface.
  • a film decoration method using a laminated film is known.
  • a layer for decorating a molded product is created as a film, and this is applied to the molded product for decoration.
  • it consists of a base film layer, a clear coating layer, and a design layer, and it is disclosed that various curable paints are used in the clear coating layer.
  • a method of decorating by forming a clear coating layer with an energy ray curable coating composition and curing it after molding.
  • Patent Documents 1 to 3 In such a decoration method, in recent years, it has been studied to form a design layer by an ink jet printer (Patent Documents 1 to 3).
  • the ink jet printer can form various design layers having high design properties that cannot be obtained by ordinary coating.
  • an ink used in such an ink jet printer an energy ray curing type ink is known.
  • a step of curing the design layer with energy rays is required.
  • Patent Document 1 describes that the problem described above is improved by making the ultraviolet wavelength for curing the UV ink different from the ultraviolet wavelength for curing the protective layer.
  • a light source in the energy beam curing process it is important to select a light source in the energy beam curing process, and a high pressure mercury lamp, a metal halide lamp, a chemical lamp, an LED-UV lamp, etc. are usually used as the light source in the energy beam curing process.
  • a photopolymerization initiator has absorption in a wide wavelength range, and it is difficult to make the ultraviolet wavelength for curing the UV ink different from the ultraviolet wavelength for curing the protective layer. Since only a light source in a narrow wavelength range can be used, there is a risk of increasing costs in the manufacturing process.
  • Patent Document 2 describes that an ultraviolet absorbing layer is provided between the UV ink layer and the protective layer. However, Patent Document 2 does not describe a specific configuration of the ultraviolet absorbing layer. However, in order to obtain such a laminate, a UV ink layer is formed on the ultraviolet absorbing layer by ink jet printing, so that it is necessary to prevent ink repelling and bleeding. Furthermore, since stretching at the time of molding is necessary, it is preferable to have a performance that can cope with stretching.
  • the present invention solves the above-mentioned problems, maintains the stretchability of the clear coating layer in a decorative film in which a design layer is formed by ink jet printing, and causes repelling and bleeding in ink jet printing.
  • the object is to provide a film that can be satisfactorily performed.
  • the present invention is a laminated film for decorating a three-dimensional molded product having an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a clear coating layer (D) and a base film layer (E).
  • the design layer (B) is formed by inkjet printing with an energy ray curable ink
  • the ultraviolet absorbing layer (C) is formed of a coating composition containing a binder resin (C-1) and an ultraviolet absorber (C-2), and Surface tension 20-60 mN / m, and UV transmittance of 290 nm to 430 nm satisfying 20% or less
  • the ultraviolet absorbing layer (C) is formed between the design layer (B) and the clear coating layer (D),
  • the clear coating layer (D) is an energy ray curable coating
  • the laminated film is a laminated film for decorating a three-dimensional molded product characterized by having a breaking elongation of 30 to 400% at 40 to 130 ° C. before curing.
  • the laminated film for decorating the three-dimensional molded product has an adhesive layer (A), a design layer (B), an ultraviolet absorption layer (C), a clear coating layer (D), and a base film layer (E) in this order. It may be laminated.
  • the laminated film for decorating the three-dimensional molded product may be one in which a release layer (F) is provided between the clear coating layer (D) and the base film layer (E).
  • the laminated film for decorating the three-dimensional molded product has an adhesive layer (A), a design layer (B), an ultraviolet absorption layer (C), a base film layer (E), and a clear coating layer (D) in this order. It may be laminated.
  • the clear coating layer (D) is formed of a coating composition containing polyurethane acrylate (D1), a monomer / oligomer (D2) having an unsaturated double bond, and a polymerization initiator (D3). Because The polyurethane acrylate (D1) is Double bond equivalent: 130-600 g / eq Molecular weight Mw: 3000-200000 Urethane concentration: 300-2000 g / eq It is preferable that
  • the present invention is also a decorative molded body obtained by decorating a molded base material with the above-described three-dimensional molded product decorative laminated film.
  • the laminated film for decorating the three-dimensional molded product of the present invention has sufficient stretchability because the clear coating layer is not cured even by the curing process of ink jet printing using the energy ray curable ink. Further, the ink-jet printing can be favorably printed without causing repelling or bleeding.
  • the laminated film for decorating a three-dimensional molded product of the present invention is a film used in decorative molding of a three-dimensional molded product. That is, a film having design properties is adhered to various molded products to impart design properties to the molded products or to provide a surface protection function. In that case, it deform
  • a known arbitrary method can be used, and examples thereof include a method for making the contact by deforming by a method such as vacuum forming or pressure forming.
  • the laminated film for three-dimensional molded product decoration of the present invention is a decorative film having a design layer (B) formed by ink jet printing with an energy ray curable ink, and an ultraviolet absorbing layer (C) at a specific position. ) Is cut off, and when the design layer (B) is cured by irradiation with energy rays, the clear coating layer (D) is not irradiated with ultraviolet rays. In the case where the clear coating layer (D) is not cured, the elongation can be maintained during molding.
  • the ultraviolet absorbing layer (C) needs to be formed between the design layer (B) and the clear coating layer (D).
  • Examples of the layer structure of the laminated film for decorating a three-dimensional molded product that can achieve the above-described effects include those shown in FIGS. 1 is a laminate of an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a clear coating layer (D) and a base film layer (E) in this order. is there.
  • the base film layer (E) is peeled off before or after molding, and from the adhesive layer (A), the design layer (B), the ultraviolet absorbing layer (C), and the clear coating layer (D). A surface coating is formed.
  • a release layer (F) is provided between the clear coating layer (D) having the layer structure shown in FIG. 1 and the base film layer (E).
  • the substrate film layer (E) is a substrate having excellent releasability such as a PET film
  • the one shown in FIG. 3 is obtained by laminating an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a base film layer (E), and a clear coating layer (D) in this order. is there.
  • the base film is not peeled even after molding, and the adhesive layer (A), the design layer (B), the ultraviolet absorbing layer (C), the base film layer (E) and A coating layer composed of the clear coating layer (D) is formed.
  • the light source for curing the energy ray curable ink is not particularly limited, and any known light source such as a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a chemical lamp, or an LED-UV lamp may be used. Can be used.
  • Adhesive layer (A) The adhesive layer is used for adhering the laminated film to the substrate surface when the substrate is decorated with the laminated film.
  • the adhesive contained in the adhesive layer is not particularly limited as long as it is a conventionally known adhesive, and examples thereof include Byron UR-3200 (manufactured by Toyobo Co., Ltd.) and UR-1361ET (manufactured by Toa Gosei).
  • the adhesive may be formed by applying and drying the adhesive, or may be formed by laminating an adhesive sheet.
  • the thickness of the adhesive layer (A) is not particularly limited, but is preferably 3 to 30 ⁇ m, and more preferably 5 to 25 ⁇ m. If it is less than 3 ⁇ m, there is a possibility that sufficient adhesion cannot be secured. If it is more than 30 ⁇ m, coating and drying are difficult, and this is disadvantageous in terms of cost.
  • the design layer (B) in this invention is a layer which formed the design external appearance provided with the laminated
  • the design layer (B) in the present invention is a layer formed by ink jet printing with an energy ray curable ink.
  • the components of the ink, the apparatus and method used for inkjet printing are not particularly limited, and any known one can be used.
  • the ultraviolet absorbing layer (C) has a surface tension of 20 to 60 mM / m and an ultraviolet transmittance of 290 nm to 430 nm and satisfies 20% or less. Further, if the surface tension is low, the ink bleeds, and if it is high, the ink repellates. Further, when the ultraviolet transmittance is high, a sufficient ultraviolet blocking effect cannot be obtained. That is, it has sufficient surface tension to perform ink jet printing, has sufficient ultraviolet shielding ability to prevent curing of the clear coating layer, and has strength that does not cause a problem in molding. It is a thing.
  • the surface tension of the ultraviolet absorbing layer (C) is calculated by measuring the contact angles of water and methylene iodide using an automatic contact angle meter DSA20 (manufactured by Kurz).
  • the ultraviolet transmittance of the ultraviolet absorbing layer (C) was measured in the wavelength range of 290.0 nm to 430.0 nm using an ultraviolet-visible spectrophotometer U-4100 (Hitachi High Technologies).
  • the ultraviolet absorbing layer (C) preferably absorbs ultraviolet rays but easily transmits visible light. This is because if the visible light does not transmit, the design layer is difficult to see from the outside.
  • the ultraviolet absorbing layer (C) preferably has a strength of 40 to 130 ° C. and 3 to 1000 N / cm 2 . If the strength is low, swelling may occur during molding, and if it is high, moldability may be insufficient.
  • the strength of the ultraviolet absorbing layer (C) is the film strength when the ultraviolet absorbing layer alone is an autograph AG-IS manufactured by Shimadzu Corporation, at a temperature of 60 ° C., at a tensile rate of 50 mm / min, and an elongation of 200%. Is measured.
  • the ultraviolet absorbing layer (C) is formed of a coating composition containing a binder resin (C-1) and an ultraviolet absorber (C-2). And the layer which satisfy
  • the binder resin (C-1) is not particularly limited, and resins such as acrylic resin, vinyl chloride-vinyl acetate copolymer, polyamide resin, polyester resin, urethane resin, epoxy resin, and styrene resin can be used. Urethane resin is preferable, and urea bond-containing urethane resin is more preferable. One type can be used alone, or two or more types can be used in combination. It is preferably in the range of 85 to 99% by weight with respect to the total amount of the ultraviolet absorbing layer (C).
  • the ultraviolet absorber (C-2) is not particularly limited.
  • a triazine ultraviolet absorber a benzophenone ultraviolet absorber, a benzotriazole ultraviolet absorber, a cyanoacrylate ultraviolet absorber, or a hydroxybenzoate ultraviolet absorber.
  • An agent or the like can be used.
  • triazine ultraviolet absorber examples include 2- (2-hydroxy-4-methoxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4, 6-diphenyl-s-triazine, 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6- Examples thereof include bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-diphenyl-s-triazine.
  • benzophenone-based ultraviolet absorber examples include 2-hydroxybenzophenone, 5-chloro-2-hydroxybenzophenone 2,4-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2-hydroxy-4- Methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-n- Benzyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy -4,4 ' Diethoxybenzophenone, 2,2'-dihydroxy-4,4'-dipropoxybenzophenone, 2,2'-dihydroxy-4,4'-dibut
  • benzotriazole ultraviolet absorber examples include 2- (2-hydroxy-5-t-methylphenyl) -2H-benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) -2H. -Benzotriazole, 2- (2'-hydroxy-5'-t-octylphenyl) -2H-benzotriazole, 2- [2'-hydroxy-5 '-(hydroxymethyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-5 '-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-3'-methyl-5 '-(hydroxymethyl) phenyl] -2H-benzotriazole And the like.
  • Examples of the cyanoacrylate-based ultraviolet absorber include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and methyl-2-cyano-3- And methyl-3- (p-methoxyphenyl) acrylate.
  • hydroxybenzoate-based ultraviolet absorber examples include phenyl salicylate, resorcinol monobenzoate, 4-t-butylphenyl salicylate, 2,5-t-butyl-4-hydroxybenzoic acid n-hexadecyl ester, 2,4-di-t-butylphenyl-3 ', 5-di-t-butyl-4'-hydroxybenzoate, 2,4-di-t-amylphenyl-3', 5-di-t-butyl-4 ' -Hydroxybenzoate, hexadecyl-3 ', 5-di-t-butyl-4'-hydroxybenzoate and the like.
  • the ultraviolet absorber (C-2) is a triazine-based, benzophenone-based, or benzotriazole-based UV absorber because it has a high UV-absorbing property over a wide wavelength range (from about 280 to 360 nm) from a short wavelength region to a long wavelength region. Agents are preferred.
  • the ultraviolet absorber can be blended with the above compounds singly or in combination of two or more. Specifically, Tinuvin 400, 900, 447, 1130 (manufactured by BASF) can be used.
  • the blending amount of the ultraviolet absorber (C-2) varies depending on the ultraviolet absorber used, and is not particularly limited as long as it satisfies the above-described ultraviolet transmittance, but is 1 to 15 with respect to the total amount of the ultraviolet absorbing layer (C). It is preferably in the range of wt%, more preferably in the range of 3 to 10 wt%. If it is less than 1% by weight, the ultraviolet blocking effect may be insufficient. If it exceeds 15% by weight, the strength of the ultraviolet absorbing layer may be lowered, the moldability may be insufficient, and it is disadvantageous in terms of cost.
  • the ultraviolet absorbing layer (C) may contain a surface conditioner (C-3). That is, depending on the type of resin used in the ultraviolet absorbing layer (C), it may be difficult to make the surface tension within the range described above. In this case, the surface tension within the above-mentioned range can be obtained by blending the surface conditioner (C-3).
  • the surface conditioner (C-3) is not particularly limited, and for example, polyether-modified polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, and the like can be used. Specific examples include BYK-300, BYK-342, BYK-349 (manufactured by Big Chemie Japan).
  • the blending amount of the surface conditioner (C-3) is not particularly limited, and is preferably in the range of 0.01 to 5% by weight with respect to the total amount of the ultraviolet absorbing layer (C).
  • the thickness of the ultraviolet absorbing layer (C) is not particularly limited, but is preferably 3 to 30 ⁇ m, for example, and more preferably 5 to 25 ⁇ m. If it is too thin, it is difficult to obtain sufficient UV shielding performance and strength, and if it is too thick, the performance is not particularly improved, it will be disadvantageous in terms of cost, and coating and drying will be difficult. Become.
  • the clear coating layer (D) used in the present invention is an energy ray curable coating, and its specific composition is not particularly limited as long as it does not impair the physical properties of the laminated film. It can be set as an energy ray curable coating film. Especially, it is preferable that it is formed by the active energy ray-curable coating composition containing the polyurethane acrylate (D1), the monomer / oligomer (D2) having an unsaturated double bond, and the polymerization initiator (D3). .
  • the active energy ray-curable coating composition containing the polyurethane acrylate (D1), the monomer / oligomer (D2) having an unsaturated double bond, and the polymerization initiator (D3).
  • the active energy ray-curable coating composition comprises (D1) in a total amount of (D1) solid content weight and (D2) solid content weight ((D1) + (D2)) in 100 parts by weight. 50 to 99 parts by weight, and (D2) is contained so as to fall within the range of 1 to 50 parts by weight, and the total amount of (D1) solid content weight and (D2) solid content weight ((D1) + (D2 ))
  • (D3) is contained within a range of 0.5 to 20 parts by weight per 100 parts by weight.
  • the polyurethane acrylate (D1) is a compound having a urethane bond in the molecule and a (meth) acrylate group in the molecule.
  • polyurethane acrylate (D1) A well-known arbitrary thing can be used.
  • a compound obtained by equivalently reacting a compound having two or more isocyanate groups in a molecule with a compound having one or more hydroxyl groups and one or more double bond groups in the molecule ii ) After reacting a compound having two or more isocyanate groups in the molecule with a condensate of a polyol with a monobasic acid and / or polybasic acid and / or acid anhydride thereof, one more in the molecule
  • iii) after reacting a polyol with a compound having two or more isocyanate groups in the molecule And compounds obtained by reacting a compound having one or more hydroxyl groups and one or more double bond groups.
  • examples of the compound having one or more hydroxyl groups and one or more double bond groups in the molecule include 2-hydroxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, Examples of 4-hydroxybutyl (meth) acrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, and other commercially available products include Plaxel F (M) A series (trade name of Daicel Chemical Industries).
  • examples of the polyhydric alcohol include polyethylene glycol, polycarbonate diol, polytetramethylene glycol, trimethylol propane and the like, and commercially available products such as Plaxeldiol series (trade name of Daicel Chemical Industries). ), Plaxel Triol series (trade name of Daicel Chemical).
  • polystyrene resin it does not specifically limit as said polyol, A well-known acrylic polyol, polyester polyol, polycarbonate polyol, etc. can be used. Further, various low molecular weight diols such as ethylene glycol, butanediol, glycerin, pentaerythritol, and neopentyl glycol can be used as necessary.
  • the polyol preferably has a polycarbonate diol skeleton at a ratio of polycarbonate concentration: 0.5 to 75 wt% (ratio to the total amount of polyurethane acrylate (D1)).
  • a material having a polycarbonate diol skeleton toughness is exhibited, and there is an advantage that it is possible to prevent swelling during decorative molding and to maintain the design appearance (prevention of cracks).
  • the polycarbonate diol is more preferably 2 to 70% by weight.
  • the polyisocyanate is not particularly limited as long as it is a compound having two or more isocyanate groups, and examples thereof include aromatics such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and metaxylylene diisocyanate.
  • aromatics such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and metaxylylene diisocyanate.
  • Aliphatic groups such as hexamethylene diisocyanate; alicyclic groups such as isophorone diisocyanate; monomers thereof and multimers such as burette type, nurate type and adduct type.
  • Duranate 24A-90PX (NCO: 23.6%, trade name, manufactured by Asahi Kasei Co., Ltd.), Sumidur N-3200-90M (trade name, manufactured by Sumitomo Bayer Urethane Co., Ltd.), Takenate D165N- 90X (trade name, manufactured by Mitsui Chemicals), Sumijoule N-3300, Sumijoule N-3500 (both trade names, manufactured by Sumitomo Bayer Urethane Co., Ltd.), Duranate THA-100 (trade name, manufactured by Asahi Kasei) be able to. Moreover, the blocked isocyanate which blocked these can also be used as needed.
  • the polyurethane acrylate (D1) may partially have a urea bond.
  • a polyamine compound may be partially used in the synthesis of polyurethane acrylate.
  • the polyamine compound that can be used is not particularly limited. For example, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylenetetramine, diethylenetriamine, triaminopropane, 2,2,4-trimethylhexamethylene.
  • Diamine 2-hydroxyethylethylenediamine, N- (2-hydroxyethyl) propylenediamine, (2-hydroxyethylpropylene) diamine, (di-2-hydroxyethylethylene) diamine, (di-2-hydroxyethylpropylene) diamine, Aliphatic polyamines such as (2-hydroxypropylethylene) diamine, (di-2-hydroxypropylethylene) diamine and piperazine; 1,2- and 1,3-cyclobutane Alicyclic such as amine, 1,2-, 1,3- and 1,4-cyclohexanediamine, isophoronediamine (IPDA), methylenebiscyclohexane 2,4'- and / or 4,4'-diamine, norbornanediamine Polyamine; phenylenediamine, xylylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, diethyltoluenediamine, 3,3'-dichloro-4,4'
  • the polyurethane acrylate (D1) preferably has a double bond equivalent of 130 to 600 g / eq, more preferably 150 to 300 g / eq. If the double bond equivalent is less than 130 g / eq, there may be a problem that the cured film is inferior in crack resistance and impact resistance. When the double bond equivalent exceeds 600 g / eq, there is a possibility that problems such as inferior scratch resistance, surface hardness, and chemical resistance may occur.
  • the polyurethane acrylate (D1) preferably has a weight average molecular weight of 3000 to 200000. If the weight average molecular weight is less than 3000, there is a possibility of causing a problem that the blocking resistance is poor. When the weight average molecular weight exceeds 200,000, the compatibility between the obtained polyurethane acrylate (D1) and the monomer / oligomer (D2) having an unsaturated double bond contained in the clear coating composition is lowered. In addition, when the weight average molecular weight exceeds 200,000, the viscosity of the clear coating composition tends to increase.
  • the weight average molecular weight was measured by the method described later.
  • the polyurethane acrylate (D1) preferably has a urethane concentration of 300 to 2000 g / eq.
  • the urethane concentration is less than 300 g / eq, the compatibility between the obtained polyurethane acrylate (D1) and the monomer / oligomer (D2) having an unsaturated double bond contained in the clear coating composition is lowered.
  • the urethane concentration is less than 300 g / eq, the viscosity of the clear coating composition tends to increase.
  • the clear coating composition is diluted with an organic solvent in order to improve such an increase in viscosity, the amount of solid content in the clear coating composition is remarkably reduced, and the processability may be deteriorated. There is.
  • the urethane concentration exceeds 2000 g / eq, there is a possibility that problems such as inferior blocking resistance and impact resistance may occur.
  • the polyurethane acrylate (D1) preferably has a urea concentration of 500 to 1000 g / eq.
  • the urea concentration is less than 500 g / eq, the compatibility between the obtained polyurethane acrylate (D1) and the monomer / oligomer (D2) having an unsaturated double bond contained in the clear coating composition is lowered.
  • the urea concentration is less than 500 g / eq, the viscosity of the clear coating composition tends to increase.
  • the clear coating composition is diluted with an organic solvent in order to improve such an increase in viscosity, the amount of solid content in the clear coating composition is remarkably reduced, and the processability may be deteriorated. There is.
  • the urea concentration exceeds 1000 g / eq, there is a possibility of causing a problem that the blocking resistance is poor.
  • the polyurethane acrylate (D1) may be modified with fluorine and / or silicone. That is, the polyurethane acrylate (D1) may be synthesized by the above-described method using a monomer containing fluorine or a silicone unit, or the polyurethane acrylate (D1) obtained by the above-described method has. The functional group may be reacted with a compound having fluorine and / or silicone.
  • Examples of (meth) acrylates having 2 functional groups are 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethylene glycol Di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonane diol di (meth) acrylate, 1,10-decane
  • Examples of the (meth) acrylate having 3 functional groups are trimethylolmethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, trimethylolpropane propylene oxide modified tri ( Meth) acrylate, pentaerythritol tri (meth) acrylate, glycerin propoxytri (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate and the like.
  • trimethylolpropane trimethacrylate, pentaerythritol trimethacrylate, and the like can be preferably used.
  • Examples of (meth) acrylates having 4 functional groups are dipentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethylene oxide modified tetra (meth) acrylate, pentaerythritol propylene oxide modified tetra (meth) acrylate. , Ditrimethylolpropane tetra (meth) acrylate and the like. Of these, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and the like can be preferably used.
  • Examples of (meth) acrylates having 4 or more functional groups include pentaerythritol tetra (meth) acrylate, pentaerythritol ethylene oxide modified tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Dipentaerythritol penta (meth) acrylate, ditrimethylolpropane penta (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate, dipenta Examples include polyfunctional (meth) acrylates such as hexa (meth) acrylate of a caprolactone modified product of erythritol
  • Examples of (meth) acrylic oligomers include epoxy (meth) acrylate, polyester (meth) acrylate, and urethane (meth) acrylate.
  • the polyester acrylate-based prepolymer for example, by esterifying the hydroxyl group of a polyester oligomer having a hydroxyl group at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.
  • the epoxy acrylate prepolymer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
  • the urethane acrylate can be generally obtained by reacting a polyester polyol, polyether polyol, or polycarbonate polyol with an isocyanate monomer or a product obtained by reacting a prepolymer with an acrylate monomer having a hydroxyl group.
  • These (meth) acrylic oligomers may be used alone or in combination of two or more, or may be used in combination with the polyfunctional (meth) acrylate monomer.
  • the monomer / oligomer (D2) having an unsaturated double bond commercially available products such as UV 1700B manufactured by Nippon Synthetic Chemical Industry Co., Ltd. can also be used.
  • Polymerization initiator (D3) As said polymerization initiator (D3), the energy-beam polymerization initiator which superposition
  • examples of the energy ray polymerization initiator include benzoin compounds such as benzoin methyl ether; anthraquinone compounds such as 2-ethylanthraquinone; benzophenone compounds such as benzophenone; sulfide compounds such as diphenyl sulfide; Thioxanthone compounds such as 2,4-dimethylthioxanthone; acetophenone compounds such as 2,2-dimethoxy-2-phenylacetophenone; phosphinoxide compounds such as 2,4,6-trimethylbenzoindiphenylphosphinoxide; Examples thereof include a polymerization initiator for ultraviolet (UV) curing such as Irgacure (registered trademark) -184, Irgacure-819 (all manufactured by BASF). These compounds can use 1 type (s) or 2 or more types as a polymerization initiator.
  • UV ultraviolet
  • (Amount of (D1) to (D3)) In 100 parts by weight of the solid content weight of (D1) and the solid content weight of (D2) ((D1) + (D2)), 50 to 99 parts by weight of (D1) and 1 to 50 of (D2) It is contained so as to be in the range of parts by weight, and (D3) is 0 with respect to 100 parts by weight of the total weight of the solid content of (D1) and the solid content of (D2) ((D1) + (D2)). It is preferable that it is contained so as to be in the range of 5 to 20 parts by weight.
  • the blocking resistance is not preferable.
  • the content of the polyurethane acrylate (D1) exceeds 99 parts by weight, it is not preferable in that the scratch resistance and surface hardness are insufficient.
  • the lower limit is more preferably 55 parts by weight or more, and still more preferably 65 parts by weight or more.
  • the upper limit is more preferably 98 parts by weight or less, and still more preferably 95 parts by weight or less.
  • the content of the monomer / oligomer (D2) having an unsaturated double bond is less than 1 part by weight, it is not preferable in terms of insufficient scratch resistance and surface hardness.
  • the content of the monomer / oligomer (D2) having an unsaturated double bond exceeds 50 parts by weight, it is not preferable in that the blocking resistance is lowered.
  • the lower limit is more preferably 2 parts by weight or more, and still more preferably 5 parts by weight or more.
  • the upper limit is more preferably 45 parts by weight or less, and still more preferably 35 parts by weight or less.
  • the content of the polymerization initiator (D3) is less than 0.5 parts by weight, the clear layer cannot be sufficiently cured, and the resulting clear has scratch resistance, surface hardness, chemical resistance, and impact resistance. There is a possibility that the physical properties of the coating film cannot be obtained.
  • the content of the polymerization initiator (D3) exceeds 20 parts by weight, unreacted polymerization initiator (D3) remains in the clear coating film, and the clear coating film deteriorates due to sunlight outdoors. The weather resistance may deteriorate.
  • the clear coating composition preferably contains 0.5 to 20 parts by weight of a monomer having a thiol group and / or an amine group. It does not specifically limit as a monomer which has the said thiol group and / or amine group, The thiol compound and amine compound which are normally used can be mentioned.
  • amine compound examples include aliphatic diamines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylenetetramine, and diethylenetriamine: 1,2- and 1,3-cyclobutanediamine, 1, Alicyclic polyamines such as 2-, 1,3- and 1,4-cyclohexanediamine, isophoronediamine (IPDA), methylenebiscyclohexane 2,4′- and / or 4,4′-diamine, norbornanediamine: phenylenediamine Aromatic amines such as xylylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, diethyltoluenediamine, 4,4-bis- (sec-butyl) diphenylmethane: and the carboxy group of dimer acid Dimer acid diamine was converted into amino group, a dendrimer having a terminal amino group,
  • thiol compound examples include 1,4-bis (3-mercaptobutyryloxy) butane, ethylene glycol dimercaptopropionate, diethylene glycol dimercaptopropionate, 4-t-butyl-1,2-benzenedithiol, bis -(2-mercaptoethyl) sulfide, 4,4'-thiodibenzenethiol, benzenedithiol, glycol dimercaptoacetate, glycol dimercaptopropionate, ethylenebis (3-mercaptopropionate), polyethylene glycol dimercaptoacetate Polyethylene glycol di- (3-mercaptopyropionate), 2,2-bis (mercaptomethyl) -1,3-propanedithiol, 2,5-dimercaptomethyl-1,4-dithiane, bisphenofluorene (Ethoxy-3-mercaptopropionate), 4,8-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithi
  • the clear coating layer (D) used in the three-dimensional molded product decorative laminated film of the present invention is as described above, and more preferably, the polyurethane acrylate (D1) has a double bond equivalent of 130. ⁇ 600g / eq Molecular weight Mw: 3000-200000 Urethane concentration: 300 to 2000 g / eq, It is preferable that it is formed with the coating composition which is. It is preferable to use a material satisfying these properties. By forming the clear coating layer (D) with such a clear coating composition, it has blocking resistance, high scratch resistance, surface hardness, chemical resistance, and can impart good impact resistance. It is preferable in terms. Further, the polyurethane acrylate (D1) preferably has a urea concentration of 500 to 1000 g / eq.
  • the weight average molecular weight in this specification was measured using HLC-82220GPC manufactured by Tosoh Corporation.
  • the measurement conditions are as follows. Column: TSKgel Super Multipore HZ-M 3 developing solvents: tetrahydrofuran column inlet oven 40 ° C Flow rate: 0.35 ml / min.
  • Detector RI Standard polystyrene: Tosoh Corporation PS oligomer kit
  • a compound that is usually added as a coating material may contain other components.
  • other components include an ultraviolet absorber (UVA), a light stabilizer (HALS), a binder resin and a crosslinking agent, a pigment, a surface conditioner, an antifoaming agent, a conductive filler, and a solvent.
  • a solvent for mixing of each component contained in a clear coating composition, and viscosity adjustment.
  • the solvent include conventionally known organic materials used for paints such as ester, ether, alcohol, amide, ketone, aliphatic hydrocarbon, alicyclic hydrocarbon, and aromatic hydrocarbon. Solvents may be used alone or in combination of two or more.
  • a volatile substance when a volatile substance remains in a laminated
  • the clear coating composition preferably further contains 0.5 to 60 parts by weight of an inorganic / organic filler having an average primary particle size of 100 nm or less. Thereby, blocking resistance, high scratch resistance, and surface hardness can be improved.
  • the lower limit of the amount is more preferably 1% by weight, and the upper limit is more preferably 50% by weight.
  • the inorganic filler examples include silica, fine powder glass, alumina, calcium carbonate, kaolin, clay, sepiolite (magnesium silicate), talc (magnesium silicate), mica (aluminum silicate), zonotlite (calcium silicate), aluminum borate, hydro Talsite, wollastonite (calcium silicate), potassium titanate, titanium oxide, barium sulfate, magnesium sulfate, magnesium hydroxide, yttria, ceria, silicon carbide, boron carbide, zirconia, aluminum nitride, silicon nitride, or a combination thereof
  • non-metallic inorganic materials so-called ceramic fillers obtained through a melt mixture, molding, firing, or the like. Among them, silica, alumina, zirconia, or a eutectic mixture thereof is preferable from the viewpoint of cost and effect.
  • organic filler examples include beads of acrylic, styrene, silicone, polyurethane, acrylic urethane, benzoguanamine, and polyethylene resins.
  • organosilica sol MIBK-ST, MEK-ST-UP, MEK-ST-L, MEK-AC-2140Z manufactured by Nissan Chemical Industries
  • SIRMIBK15ET% -H24, SIRMIBK15ET% -H83, ALMIBK30WT%- H06 (CIK Nanotech) or the like can be used.
  • the clear coating composition may contain 0.5 to 20% by weight (solid content ratio in the coating) of a polyisocyanate compound having an isocyanate group.
  • a polyisocyanate compound By blending a polyisocyanate compound, it is preferable in terms of imparting moldability (stretchability) and scratch resistance.
  • the lower limit of the amount is more preferably 2% by weight, and the upper limit is more preferably 18% by weight.
  • the clear coating composition may contain a UV absorber. That is, in the case of a housing for home appliances such as an automobile outer plate, an automobile interior part, a mobile phone, and a lighting fixture, the design appearance may change due to irradiation with ultraviolet rays during use. In order to prevent such deterioration, an ultraviolet absorber may be added to the clear coating composition.
  • Examples of the ultraviolet absorber that can be blended in the clear coating composition include the same ones that can be used in the ultraviolet absorbing layer described above, and the blending amount is the total solid content in the clear coating composition.
  • the content may be 1 to 10% by weight.
  • the base film layer (E) serves as a carrier film when the laminated film of the present invention is produced. That is, it is used as a base material for forming each layer during the production of the laminated film for decorating a three-dimensional molded product of the present invention. Moreover, in the aspect as shown in FIG. 3 described above, there are some which are present on the molded body even after the decoration process. In this case, not only a role as a base material but also functions such as a surface protection function are exhibited.
  • the film for forming the base film layer (E) is not particularly limited, and for example, a conventionally known film such as a soft vinyl chloride film, an unstretched polypropylene film, an unstretched polyester film, a polycarbonate film, an acrylic resin film, and a fluorine film.
  • a film is mentioned.
  • a film formed of polyester and / or polyolefin is preferable, and an unstretched polyester film is more preferable from the viewpoint of energy-saving and low-temperature processability.
  • the thickness of the base film layer (E) is preferably from 0.01 to 0.5 mm, and more preferably from 0.02 to 0.3 mm. Outside this range, it is not preferable in terms of the function as a carrier film and the economical efficiency at the time of electromagnetic radiation curing.
  • release layer (F) As the release layer (F) in the present invention, any known one can be used, and for example, it can be formed with a silicone release agent or the like.
  • the peel strength between the release layer (F) and the clear coating layer (D) is preferably 0.05 to 8.0 N / 25 mm, and more preferably 0.1 to 5.0 N / 25 mm. When it is less than 0.05 N / 25 mm, workability is poor, such as peeling of the base film layer (E) during film production and decorative molding, and when it exceeds 8.0 N / 25 mm, a film after molding is obtained. In the case of peeling, there is a possibility that peeling becomes difficult.
  • the three-dimensional molded decorative laminated film of the present invention preferably has a breaking elongation of 30 to 400% at 40 to 130 ° C. before curing. That is, by having such elongation at break in the above temperature range, it is possible to easily cope with deep drawing, and the effects of the present invention can be suitably obtained. It is possible to make it within such a numerical range by preparing the components of each layer forming the film.
  • “having a breaking elongation of 30 to 400% at 40 to 130 ° C.” means that a temperature range in which the breaking elongation is 30 to 400% is within 40 to 130 ° C., and molding is performed at that temperature. Sufficient stretchability is obtained. It means that.
  • the elongation at break was measured by using an autograph AG-IS manufactured by Shimadzu Corporation with the base film (E) in a temperature range of 40 to 130 ° C. and a tensile speed of 50 mm / min. It is a value obtained by measuring the elongation at the time when such a layer broke.
  • the elongation at break may be in the above-described range at any arbitrary temperature within the range of 40 to 130 ° C.
  • Each layer other than the design layer (B) and the base film layer (E) constituting the three-dimensional molded product decorative laminated film of the present invention is prepared by preparing a coating composition in which components constituting each layer are dissolved in a solvent, It can form by apply
  • the design layer (B) is formed by ink jet printing as described above.
  • FIGS. 1 to 3 there is a step of inkjet printing the design layer (B) on the ultraviolet absorbing layer (C) during production.
  • the surface tension of the ultraviolet absorbing layer (C) is adjusted within a certain range, good printing can be performed in such a process.
  • the coating method for forming each layer is not particularly limited. For example, spray coating by spray, applicator, die coater, bar coater, roll coater, comma coater, roller brush, brush, spatula, etc. are used. And apply. After the coating solution is applied by the above application method, the coating solution can be formed by heating and drying in order to remove the solvent in the coating solution.
  • the adhesive layer (A) may be bonded by a laminating method instead of the coating / drying method. That is, the film formed by the adhesive layer (A) may be prepared and formed by a method of adhering the film to the film by lamination.
  • the base film layer (E) is peeled off from the laminated film as necessary, and the laminated film is pressure-bonded so that the laminated film is in close contact with the base material surface so that the adhesive layer faces the base material surface. Let them decorate. Thereafter, electromagnetic wave irradiation or heating is performed to cure each layer to obtain a coating film.
  • electromagnetic wave irradiation or heating is performed to cure each layer to obtain a coating film.
  • vacuum molding, heating by injection molding, molding or the like can be performed.
  • the base material that can be suitably decorated with the laminated film of the present invention is not particularly limited, but for example, automotive exteriors such as bumpers, front under spoilers, rear under spoilers, side under skirts, side garnishes, and door mirrors.
  • automotive exteriors such as bumpers, front under spoilers, rear under spoilers, side under skirts, side garnishes, and door mirrors.
  • automobile interior parts such as parts, instrument panels, center consoles, door switch panels, cellular phones, audio products, refrigerators, fan heaters, housings for household appliances such as lighting fixtures, and vanities.
  • % in the blending ratio means “% by weight” unless otherwise specified.
  • the present invention is not limited to the examples described below.
  • methyl ethyl ketone (MEK) was charged as a solvent.
  • 314.2 g of 4,4′-methylenebis-cyclohexyl diisocyanate was charged at 50 ° C. and reacted at 80 ° C. using dibutyltin laurate as a catalyst.
  • the viscosity of the reaction solution was adjusted by solvent dilution, and the reaction was allowed to proceed until 2,270 cm-1 absorption due to free isocyanate groups as measured by infrared absorption spectrum analysis disappeared. Cyclohexanone was added until the mass ratio of MEK to cyclohexanone was 1: 1 to obtain a resin solution containing polyurethane.
  • the resulting resin solution had a viscosity of 200 dPa ⁇ s / 20 ° C., a solid content of 45%, and a double bond equivalent of 600 g / eq. Moreover, the weight average molecular weight of the polyurethane measured by GPC was 44,000.
  • the resin composition forming each layer is shown in the table. Based on such a composition, a film having a laminated structure was prepared by the following method. On the base film (E) on which the release layer (D) is formed, the clear coating material is used so that a clear coating film layer (D) having a dry film thickness (hereinafter referred to as dry film thickness) of 20 ⁇ m is obtained. The solution was applied using an applicator and dried at 80 ° C. for 15 minutes to form a clear coating layer (D). In addition, below, what formed the clear coating film layer (D) on the base film layer (E) is described as an (E + D) layer film.
  • dry film thickness dry film thickness
  • the UV absorbing coating solution is applied using an applicator so that an ultraviolet absorbing layer (C) having a dry film thickness of 20 ⁇ m is obtained on the clear coating layer (D) of the (E + D) layer film. Thereafter, the film was dried at 80 ° C. for 15 minutes to form an ultraviolet absorbing layer (C). Further, a UV ink layer (B) was formed on the ultraviolet absorbing layer (C) using an inkjet printer UJF-3042 (manufactured by Mimaki Engineering). In the formation of the UV ink layer (B), the ink was cured by ultraviolet irradiation from the (Y) side in FIG. 2 after the layer formation.
  • an adhesive (Byron UR-3200, manufactured by Toyobo Co., Ltd. or UR-1361ET, manufactured by Aron Evergrip Co., Ltd.) is obtained on the UV ink layer (B) so as to obtain an adhesive layer having a dry film thickness of 10 ⁇ m. It apply
  • the applicator is used to apply the UV-absorbing coating solution so that an ultraviolet-absorbing layer (C) having a dry film thickness of 20 ⁇ m is obtained on the side opposite to the clear coating layer (D) of the (E + D) layer film. And then dried at 80 ° C. for 15 minutes to form an ultraviolet absorbing layer (C). Further, a UV ink layer (B) was formed on the ultraviolet absorbing layer (C) using an inkjet printer UJF-3042 (manufactured by Mimaki Engineering). In the formation of the UV ink layer (B), the ink was cured by ultraviolet irradiation from the (Y) side in FIG. 3 after the layer formation.
  • an adhesive (Byron UR-3200, manufactured by Toyobo Co., Ltd. or UR-1361ET, manufactured by Aron Evergrip Co., Ltd.) is applied on the UV ink layer (B) so as to obtain an adhesive layer having a dry film thickness of 10 ⁇ m. Then, it was applied using an applicator and dried at 80 ° C. for 15 minutes to form an adhesive layer.
  • the upper and lower boxes were opened to atmospheric pressure to obtain a decorative molded body decorated with a laminated film. Further, the clear coating layer (B) was irradiated with UV light of 2000 mJ / cm 2 using a 120 W / cm high-pressure mercury lamp from the clear coating layer (B) side of the decorative molded body. Was cured to obtain a UV (ultraviolet) cured product.
  • UV 1700B Nippon Synthetic Chemical Industry
  • Urethane acrylate oligomer Lucillin TPO BASF
  • 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide Novaclear SG007
  • A-PET sheet Soft Shine (Toyobo) II Axial stretched polyester film MAU-2000 (Daiichi Seika): Olefin resin Xp012N35 (Mitsui Chemicals): Olefin resin 1321 (Toagosei): Vinyl chloride / vinyl acetate copolymer resin TE-5430 (Mitsui Chemicals): Urethane resin RT-87140 Morton): acrylic resin D-178N (Mitsui Chemicals): allophanate-modified polyhexamethylene diisocyanate tinuvin 900 (BASF): 2,2- (2H-benzotriazol-2-yl) -4
  • the obtained laminated film was evaluated based on the following criteria. (Elongation) It was measured at a tensile rate of 50 mm / min under the temperature condition of 80 ° C. using an autograph AG-IS manufactured by Shimadzu Corporation including the base material. Elongation was determined when any layer broke.
  • UV-visible spectrophotometer U-4100 (Hitachi High-Technologies), measurement was performed in the wavelength range of 290.0 nm to 430.0 nm.
  • a deuterium lamp was used in the ultraviolet region, and a halogen lamp was used in the visible / near infrared region.
  • the film strength at an elongation of 200% was measured using an autograph AG-IS manufactured by Shimadzu Corporation under a temperature condition of 60 ° C. and a tensile speed of 50 mm / min.
  • Printability The printability in the printing process was judged according to the following criteria. ⁇ : Ink dot formation is good ⁇ ⁇ : Ink slightly repels (small dot diameter) or slightly blurs (large dot diameter) ⁇ : Ink is repelled (small dot diameter) or smeared (large dot diameter) ⁇ : Print image failure due to repellency or blurring ⁇ : Print image cannot be formed
  • the laminated film for 3D molded product decoration of the present invention since the laminated film for 3D molded product decoration of the present invention has good moldability and printability, it can perform good decoration on the 3D molded product. it is obvious.
  • the laminated film for decorating a three-dimensional molded product of the present invention can be suitably used when performing three-dimensional decoration having a three-dimensional shape surface on various molded bodies.
  • Adhesive layer B
  • Design layer C
  • Ultraviolet absorbing layer D
  • Clear coating layer E
  • Base film layer F

Abstract

Provided is a film for decorating having a design layer formed by ink-jet printing. This film is capable of maintaining the stretching properties of a clear coating layer, and allows the ink-jet printing to be satisfactorily preformed without generating repelling and bleeding. The film according to the invention of the present application is a laminate film for decorating a three-dimensional molded article, provided with an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a clear coating layer (D), and a substrate film layer (E). The design film (B) is formed by ink-jet printing using an energy ray-curable ink. The ultraviolet absorbing layer (C) is formed of a coating composition containing a binder resin (C-1), an ultraviolet absorber (C-2), and a surface conditioner (C-3), and has a strength of 3-1000 N/cm2 at 40-130°C, a surface tension of 20-60 mN/m, and an ultraviolet transmittance of 20% or lower at 290-430 nm. The ultraviolet absorbing layer (C) is formed between the design layer (B) and the clear coating layer (D). The clear coating layer (D) is an energy ray-curable coating film. The laminate film for decorating a three-dimensional molded article has, before curing, a breaking elongation of 30-400% at 40-130°C as a laminate film.

Description

成型品加飾用積層フィルム及び加飾成形体Laminated film for decorative molded product and decorative molded body
本発明は、成型品加飾用積層フィルム及び加飾成形体に関する。 The present invention relates to a laminated film for decorative molded products and a decorative molded body.
プラスチック、金属その他の各種材料から得られた成型品においては、表面に意匠性を付与したり、表面を保護したりするために表面に加飾することが一般的に行われている。 In a molded product obtained from various materials such as plastic, metal and the like, it is generally performed to decorate the surface in order to impart design properties to the surface or protect the surface.
このような加飾の方法の一つとして、積層フィルムを用いたフィルム加飾法が知られている。これは、成型品を加飾するための層をフィルムとして作成し、これを成型品上に貼着させることによって加飾を行うものである。それに際して、基材フィルム層、クリヤー塗膜層及び意匠層からなり、このうち、クリヤー塗膜層において、各種の硬化型塗料を使用することが開示されている。特に、エネルギー線硬化型コーティング組成物によってクリヤー塗膜層を形成し、これを成形後に硬化させることによって加飾を行う方法が知られている。 As one of such decoration methods, a film decoration method using a laminated film is known. In this method, a layer for decorating a molded product is created as a film, and this is applied to the molded product for decoration. In that case, it consists of a base film layer, a clear coating layer, and a design layer, and it is disclosed that various curable paints are used in the clear coating layer. In particular, there is known a method of decorating by forming a clear coating layer with an energy ray curable coating composition and curing it after molding.
このような加飾の方法において、近年、インクジェットプリンターによって意匠層を形成することが検討されている(特許文献1~3)。インクジェットプリンターは、通常の塗装では得られないような意匠性が高い各種の意匠層を形成できるものである。このようなインクジェットプリンターにおいて使用されるインクとして、エネルギー線硬化タイプのものが知られている。このようなエネルギー線硬化タイプのインクを使用したインクジェット印刷工程を有する、加飾用積層フィルムの製造工程においては、意匠層をエネルギー線によって硬化させる工程が必要となる。 In such a decoration method, in recent years, it has been studied to form a design layer by an ink jet printer (Patent Documents 1 to 3). The ink jet printer can form various design layers having high design properties that cannot be obtained by ordinary coating. As an ink used in such an ink jet printer, an energy ray curing type ink is known. In the process of producing a decorative laminated film having an ink jet printing process using such an energy ray curable ink, a step of curing the design layer with energy rays is required.
しかしながら、エネルギー線硬化性を有するインクの硬化工程において、クリヤー塗膜層においても同時に硬化反応が発生してしまうという問題がある。積層フィルムの製造工程においてクリヤー塗膜層の硬化が生じてしまうと、加飾時において充分な延伸性を確保することができず、良好な加飾を行うことができないという問題がある。 However, in the curing process of the ink having energy ray curability, there is a problem that a curing reaction occurs simultaneously in the clear coating layer. If the clear coating layer is cured in the production process of the laminated film, there is a problem that sufficient stretchability cannot be ensured at the time of decoration, and good decoration cannot be performed.
特許文献1には、UVインクを硬化させる紫外線波長と、保護層を硬化させる紫外線波長とを異なるものとすることで上述した問題を改善することが記載されている。このような発明においては、エネルギー線硬化工程における光源の選定が重要となるが、通常エネルギー線硬化工程における光源として、高圧水銀ランプ、メタルハライドランプ、ケミカルランプ、LED-UVランプなどが使用されるが、一般に光重合開始剤は広範囲の波長域に吸収を有しており、UVインクを硬化させる紫外線波長を、保護層を硬化させる紫外線波長とを異なるものとすることは困難であり、特定の極めて狭い波長範囲の光源しか使用することができないため、製造工程においてコストアップの原因となるおそれがある。 Patent Document 1 describes that the problem described above is improved by making the ultraviolet wavelength for curing the UV ink different from the ultraviolet wavelength for curing the protective layer. In such an invention, it is important to select a light source in the energy beam curing process, and a high pressure mercury lamp, a metal halide lamp, a chemical lamp, an LED-UV lamp, etc. are usually used as the light source in the energy beam curing process. In general, a photopolymerization initiator has absorption in a wide wavelength range, and it is difficult to make the ultraviolet wavelength for curing the UV ink different from the ultraviolet wavelength for curing the protective layer. Since only a light source in a narrow wavelength range can be used, there is a risk of increasing costs in the manufacturing process.
特許文献2には、UVインク層と保護層との間に紫外線吸収層を設けることが記載されている。しかしながら、特許文献2においては、紫外線吸収層の具体的な構成については記載されていない。しかしながら、このような積層体を得るには、紫外線吸収層の上にUVインク層をインクジェット印刷によって形成することとなるから、インクのハジキやにじみを防止することが必要となる。更に、成形時の延伸が必要であるから、延伸に対応できるような性能を有することが好ましい。 Patent Document 2 describes that an ultraviolet absorbing layer is provided between the UV ink layer and the protective layer. However, Patent Document 2 does not describe a specific configuration of the ultraviolet absorbing layer. However, in order to obtain such a laminate, a UV ink layer is formed on the ultraviolet absorbing layer by ink jet printing, so that it is necessary to prevent ink repelling and bleeding. Furthermore, since stretching at the time of molding is necessary, it is preferable to have a performance that can cope with stretching.
特許文献3においても、インクジェット印刷を用いて加飾用フィルムを製造することが記載されている。しかし、引用文献3においては、インクジェット印刷中の有機溶剤を吸収させるための溶剤吸収層を形成することに関する発明であり、インクジェット印刷のインクをUVインク層とした場合の問題点については言及されておらず、これを改善する方法に関する示唆も存在しない。 Also in patent document 3, manufacturing the film for decorating using inkjet printing is described. However, the cited document 3 is an invention relating to the formation of a solvent absorbing layer for absorbing an organic solvent during ink jet printing, and mentions the problems when the ink for ink jet printing is a UV ink layer. There is no suggestion on how to improve this.
特開2012-206262号公報JP 2012-206262 A 特開2012-116167号公報JP 2012-116167 A 特開2013-56459号公報JP 2013-56459 A
本発明は、上述したような課題を解決し、インクジェット印刷によって意匠層を形成した加飾用フィルムにおいて、クリヤー塗膜層の延伸性を維持し、かつ、インクジェット印刷において、はじき、にじみを生じることなく良好に行うことができるようなフィルムを提供することを目的とするものである。 The present invention solves the above-mentioned problems, maintains the stretchability of the clear coating layer in a decorative film in which a design layer is formed by ink jet printing, and causes repelling and bleeding in ink jet printing. The object is to provide a film that can be satisfactorily performed.
本発明は、接着層(A)、意匠層(B)、紫外線吸収層(C)、クリヤー塗膜層(D)及び基材フィルム層(E)を有する3次元成型品加飾用積層フィルムであって、意匠層(B)は、エネルギー線硬化性インキによるインクジェット印刷によって形成されたものであり、
紫外線吸収層(C)は、バインダー樹脂(C-1)及び紫外線吸収剤(C-2)を含有する塗料組成物によって形成され、かつ、
表面張力20~60mN/m、及び、
紫外線透過率290nm~430nmで20%以下
を満たすものであり、
紫外線吸収層(C)は、意匠層(B)とクリヤー塗膜層(D)との間に形成されたものであり、
クリヤー塗膜層(D)は、エネルギー線硬化性塗膜であり、
積層フィルムとして、硬化前に、40~130℃で30~400%の破断伸びを有することを特徴とする3次元成型品加飾用積層フィルムである。
紫外線吸収層(C)は、強度が40℃~130℃で3~1000N/cmであることが好ましい。
上記紫外線吸収層(C)は、更に、表面調整剤(C-3)を含有することが好ましい。
The present invention is a laminated film for decorating a three-dimensional molded product having an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a clear coating layer (D) and a base film layer (E). The design layer (B) is formed by inkjet printing with an energy ray curable ink,
The ultraviolet absorbing layer (C) is formed of a coating composition containing a binder resin (C-1) and an ultraviolet absorber (C-2), and
Surface tension 20-60 mN / m, and
UV transmittance of 290 nm to 430 nm satisfying 20% or less,
The ultraviolet absorbing layer (C) is formed between the design layer (B) and the clear coating layer (D),
The clear coating layer (D) is an energy ray curable coating,
The laminated film is a laminated film for decorating a three-dimensional molded product characterized by having a breaking elongation of 30 to 400% at 40 to 130 ° C. before curing.
The ultraviolet absorbing layer (C) preferably has a strength of 40 to 130 ° C. and 3 to 1000 N / cm 2 .
The ultraviolet absorbing layer (C) preferably further contains a surface conditioner (C-3).
上記3次元成型品加飾用積層フィルムは、接着層(A)、意匠層(B)、紫外線吸収層(C)、クリヤー塗膜層(D)及び基材フィルム層(E)をこの順で積層したものであってもよい。
上記3次元成型品加飾用積層フィルムは、クリヤー塗膜層(D)と基材フィルム層(E)との間に、離形層(F)を設けたものであってもよい。
The laminated film for decorating the three-dimensional molded product has an adhesive layer (A), a design layer (B), an ultraviolet absorption layer (C), a clear coating layer (D), and a base film layer (E) in this order. It may be laminated.
The laminated film for decorating the three-dimensional molded product may be one in which a release layer (F) is provided between the clear coating layer (D) and the base film layer (E).
上記3次元成型品加飾用積層フィルムは、接着層(A)、意匠層(B)、紫外線吸収層(C)、基材フィルム層(E)及びクリヤー塗膜層(D)をこの順で積層したものであってもよい。 The laminated film for decorating the three-dimensional molded product has an adhesive layer (A), a design layer (B), an ultraviolet absorption layer (C), a base film layer (E), and a clear coating layer (D) in this order. It may be laminated.
上記クリヤー塗膜層(D)は、ポリウレタンアクリレート(D1)と、不飽和2重結合を有するモノマー・オリゴマー(D2)と、重合開始剤(D3)とを含有する塗料組成物によって形成されたものであって、
上記ポリウレタンアクリレート(D1)は、
 2重結合当量:130~600g/eq
 分子量Mw:3000~200000
 ウレタン濃度:300~2000g/eq
であることが好ましい。
The clear coating layer (D) is formed of a coating composition containing polyurethane acrylate (D1), a monomer / oligomer (D2) having an unsaturated double bond, and a polymerization initiator (D3). Because
The polyurethane acrylate (D1) is
Double bond equivalent: 130-600 g / eq
Molecular weight Mw: 3000-200000
Urethane concentration: 300-2000 g / eq
It is preferable that
本発明は、上述した3次元成型品加飾用積層フィルムによって成型基材上に加飾して得られたものであることを特徴とする加飾成形体でもある。 The present invention is also a decorative molded body obtained by decorating a molded base material with the above-described three-dimensional molded product decorative laminated film.
本発明の3次元成型品加飾用積層フィルムは、エネルギー線硬化型インクを使用したインクジェット印刷の硬化工程によっても、クリヤー塗膜層が硬化しないため、充分な延伸性を有する。更に、インクジェット印刷においてはじき、にじみを生じることなく、良好に印刷を行うことができるものである。 The laminated film for decorating the three-dimensional molded product of the present invention has sufficient stretchability because the clear coating layer is not cured even by the curing process of ink jet printing using the energy ray curable ink. Further, the ink-jet printing can be favorably printed without causing repelling or bleeding.
本発明の3次元成型品加飾用積層フィルムの積層構造の一例を示す模式図である。It is a schematic diagram which shows an example of the laminated structure of the laminated film for three-dimensional molded product decoration of this invention. 本発明の3次元成型品加飾用積層フィルムの積層構造の一例を示す模式図である。It is a schematic diagram which shows an example of the laminated structure of the laminated film for three-dimensional molded product decoration of this invention. 本発明の3次元成型品加飾用積層フィルムの積層構造の一例を示す模式図である。It is a schematic diagram which shows an example of the laminated structure of the laminated film for three-dimensional molded product decoration of this invention.
以下、本発明を詳細に説明する。
(3次元成型品加飾用積層フィルム)
本発明の3次元成型品加飾用積層フィルムは、3次元成型品の加飾成形において使用するフィルムである。すなわち、意匠性を有するフィルムを各種成型体に接着させて、成型体に意匠性を付与したり、表面保護機能を付与したりするものである。
その際に、3次元形状の表面に沿った形に変形させて密着させるものである。
このように密着させる方法としては、公知の任意の方法を使用することができるが、例えば、真空成形、圧空成形等の方法によって変形させて密着させる方法を挙げることができる。また、金型内に加飾成形用積層フィルムを金型外壁面の形状に変形させ、その後、射出成型を行う方法等を挙げることができる。
Hereinafter, the present invention will be described in detail.
(Three-dimensional molded product laminated film)
The laminated film for decorating a three-dimensional molded product of the present invention is a film used in decorative molding of a three-dimensional molded product. That is, a film having design properties is adhered to various molded products to impart design properties to the molded products or to provide a surface protection function.
In that case, it deform | transforms into the shape along the surface of a three-dimensional shape, and it adheres.
As a method for the close contact, a known arbitrary method can be used, and examples thereof include a method for making the contact by deforming by a method such as vacuum forming or pressure forming. Moreover, the method etc. which deform | transform the laminated film for decorative shaping | molding into the shape of a metal mold | die outer wall surface in a metal mold | die, and perform injection molding after that can be mentioned.
本発明の3次元成型品加飾用積層フィルムは、エネルギー線硬化性インキによるインクジェット印刷によって形成された意匠層(B)を有する加飾性フィルムであって、特定の位置に紫外線吸収層(C)を形成することによって紫外線が遮断され、意匠層(B)をエネルギー線照射によって硬化させる際に、クリヤー塗膜層(D)に紫外線が照射されることがなく、このため、積層フィルム製造時においてクリヤー塗膜層(D)が硬化されないことで、成形時に伸びを維持することができるというものである。 The laminated film for three-dimensional molded product decoration of the present invention is a decorative film having a design layer (B) formed by ink jet printing with an energy ray curable ink, and an ultraviolet absorbing layer (C) at a specific position. ) Is cut off, and when the design layer (B) is cured by irradiation with energy rays, the clear coating layer (D) is not irradiated with ultraviolet rays. In the case where the clear coating layer (D) is not cured, the elongation can be maintained during molding.
上述した目的を達成するため、紫外線吸収層(C)は、意匠層(B)とクリヤー塗膜層(D)との間に形成されたものであることが必要となる。 In order to achieve the above-described object, the ultraviolet absorbing layer (C) needs to be formed between the design layer (B) and the clear coating layer (D).
上述したような効果を得られる3次元成型品加飾用積層フィルムの層構成としては、例えば、図1~3に示したようなものを挙げることができる。
図1に示したものは、接着層(A)、意匠層(B)、紫外線吸収層(C)、クリヤー塗膜層(D)及び基材フィルム層(E)をこの順で積層したものである。このような構成においては、成形前又は成形後に基材フィルム層(E)を剥離し、接着層(A)、意匠層(B)、紫外線吸収層(C)、クリヤー塗膜層(D)からなる表面被覆が形成されるものである。
Examples of the layer structure of the laminated film for decorating a three-dimensional molded product that can achieve the above-described effects include those shown in FIGS.
1 is a laminate of an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a clear coating layer (D) and a base film layer (E) in this order. is there. In such a configuration, the base film layer (E) is peeled off before or after molding, and from the adhesive layer (A), the design layer (B), the ultraviolet absorbing layer (C), and the clear coating layer (D). A surface coating is formed.
図2に示したものは、図1の層構成のクリヤー塗膜層(D)と基材フィルム層(E)との間に、離形層(F)を設けたものである。基材フィルム層(E)がPETフィルム等のように剥離性に優れた基材の場合は、離形層を設ける必要がないが、剥離性に劣る基材を使用した場合は、離形層(F)を設けることが好ましい。これによって、加飾成形時に、フィルムを容易に剥離することができる点で好ましいものである。 In the structure shown in FIG. 2, a release layer (F) is provided between the clear coating layer (D) having the layer structure shown in FIG. 1 and the base film layer (E). In the case where the substrate film layer (E) is a substrate having excellent releasability such as a PET film, it is not necessary to provide a release layer, but when a substrate inferior in releasability is used, the release layer It is preferable to provide (F). This is preferable in that the film can be easily peeled at the time of decorative molding.
図3に示したものは、接着層(A)、意匠層(B)、紫外線吸収層(C)、基材フィルム層(E)及びクリヤー塗膜層(D)をこの順で積層したものである。この態様の場合は、成形を行った後も、基材フィルムを剥離することはなく、接着層(A)、意匠層(B)、紫外線吸収層(C)、基材フィルム層(E)及びクリヤー塗膜層(D)からなる被覆層が形成されるものである。 The one shown in FIG. 3 is obtained by laminating an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a base film layer (E), and a clear coating layer (D) in this order. is there. In the case of this embodiment, the base film is not peeled even after molding, and the adhesive layer (A), the design layer (B), the ultraviolet absorbing layer (C), the base film layer (E) and A coating layer composed of the clear coating layer (D) is formed.
図1~3の加飾性フィルムにおいては、意匠層(B)中のエネルギー線硬化性のインキを硬化させる場合は、図中の矢印(Y)の方向からエネルギー線を照射する。すると、図中に示した紫外線吸収層(C)によってエネルギー線が遮蔽され、これによって、クリヤー塗膜層(D)が硬化しない。そして、クリヤー塗膜層を硬化させる際には、矢印(X)の側からエネルギー線が照射されることになる。 In the decorative film of FIGS. 1 to 3, when the energy ray curable ink in the design layer (B) is cured, the energy ray is irradiated from the direction of the arrow (Y) in the drawing. Then, the energy ray is shielded by the ultraviolet absorbing layer (C) shown in the figure, and thereby the clear coating layer (D) is not cured. And when hardening a clear coating film layer, an energy ray is irradiated from the arrow (X) side.
このため、エネルギー線硬化性のインキを硬化させる場合の光源については、特に限定されることがなく、高圧水銀灯、低圧水銀灯、メタルハライドランプ、ケミカルランプ、LED-UVランプ等の公知の任意の光源を使用することができる。 Therefore, the light source for curing the energy ray curable ink is not particularly limited, and any known light source such as a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a chemical lamp, or an LED-UV lamp may be used. Can be used.
これらの3次元成型品加飾用積層フィルムを構成する各層について、以下順次説明を行う。 Each layer constituting these three-dimensional molded product decorative laminated films will be sequentially described below.
(接着層(A))
接着層は、基材を積層フィルムにて加飾する際に、積層フィルムを基材表面に密着させて接着させるために用いられる。
(Adhesive layer (A))
The adhesive layer is used for adhering the laminated film to the substrate surface when the substrate is decorated with the laminated film.
接着層に含まれる接着剤としては、従来公知の接着剤であれば特に限定されないが、例えば、バイロンUR-3200(東洋紡社製)、UR-1361ET(東亜合成製)等を挙げることができる。
上記接着剤は、上記接着剤を塗布・乾燥することにより形成したものであっても、接着剤シートをラミネートして形成したものであってもよい。
The adhesive contained in the adhesive layer is not particularly limited as long as it is a conventionally known adhesive, and examples thereof include Byron UR-3200 (manufactured by Toyobo Co., Ltd.) and UR-1361ET (manufactured by Toa Gosei).
The adhesive may be formed by applying and drying the adhesive, or may be formed by laminating an adhesive sheet.
上記接着層(A)は、厚みを特に限定されるものではないが、例えば、3~30μmであることが好ましく、5~25μmであることがさらに好ましい。3μm未満であると接着が十分に確保できない可能性があり、30μmより大きいと塗工および乾燥が困難となり、またコストの面で不利となる。 The thickness of the adhesive layer (A) is not particularly limited, but is preferably 3 to 30 μm, and more preferably 5 to 25 μm. If it is less than 3 μm, there is a possibility that sufficient adhesion cannot be secured. If it is more than 30 μm, coating and drying are difficult, and this is disadvantageous in terms of cost.
(意匠層(B))
本発明における意匠層(B)は、3次元成型品加飾用積層フィルムによって付与される意匠外観を形成した層である。本発明における意匠層(B)は、エネルギー線硬化型のインクによるインクジェット印刷によって形成された層である。インクの成分、インクジェット印刷に使用する装置や方法等は特に限定されるものではなく、任意の公知のものを使用することができる。
(Design layer (B))
The design layer (B) in this invention is a layer which formed the design external appearance provided with the laminated | multilayer film for three-dimensional molded article decoration. The design layer (B) in the present invention is a layer formed by ink jet printing with an energy ray curable ink. The components of the ink, the apparatus and method used for inkjet printing are not particularly limited, and any known one can be used.
(紫外線吸収層(C))
紫外線吸収層(C)は、表面張力20~60mM/m、及び、紫外線透過率290nm~430nmで20%以下を満たすものである。
また、表面張力が低いとインクがにじみ、高いとインクがハジキ、いずれも良好な印刷画像を得られなくなる。
また、紫外線透過率が高いと、十分な紫外線遮断効果が得られなくなる。
すなわち、インクジェット印刷を行うのに十分な表面張力を有し、クリヤー塗膜層の硬化を防ぐのに十分な紫外線遮蔽能を有し、かつ、成形において不具合を生じないだけの強度を有するものとしたものである。
(Ultraviolet absorbing layer (C))
The ultraviolet absorbing layer (C) has a surface tension of 20 to 60 mM / m and an ultraviolet transmittance of 290 nm to 430 nm and satisfies 20% or less.
Further, if the surface tension is low, the ink bleeds, and if it is high, the ink repellates.
Further, when the ultraviolet transmittance is high, a sufficient ultraviolet blocking effect cannot be obtained.
That is, it has sufficient surface tension to perform ink jet printing, has sufficient ultraviolet shielding ability to prevent curing of the clear coating layer, and has strength that does not cause a problem in molding. It is a thing.
上記紫外線吸収層(C)の表面張力は、自動接触角計DSA20(クルツ社製)を用い、水およびヨウ化メチレンの接触角を測定し、算出されたものである。 The surface tension of the ultraviolet absorbing layer (C) is calculated by measuring the contact angles of water and methylene iodide using an automatic contact angle meter DSA20 (manufactured by Kurz).
上記紫外線吸収層(C)の紫外線透過率は、紫外可視分光光度計U-4100(日立ハイテクノロジーズ)を用い、波長290.0nm~430.0nmの範囲で測定されたものである。 The ultraviolet transmittance of the ultraviolet absorbing layer (C) was measured in the wavelength range of 290.0 nm to 430.0 nm using an ultraviolet-visible spectrophotometer U-4100 (Hitachi High Technologies).
また、紫外線吸収層(C)は、紫外線は吸収するが、可視光は透過しやすいものであることが好ましい。可視光が透過しなければ、意匠層が外部から見にくいものになってしまうためである。 The ultraviolet absorbing layer (C) preferably absorbs ultraviolet rays but easily transmits visible light. This is because if the visible light does not transmit, the design layer is difficult to see from the outside.
紫外線吸収層(C)は、強度が40℃~130℃で3~1000N/cmであることが好ましい。強度が低いと、成形時膨れを生じるおそれがあり、高いと成形性が不十分になるおそれがある。上記紫外線吸収層(C)の強度は、紫外線吸収層単独で島津製作所製オートグラフAG-ISを用い60℃の温度条件下、50mm/minの引張速度にて、伸び200%の時の膜強度を測定したものである。 The ultraviolet absorbing layer (C) preferably has a strength of 40 to 130 ° C. and 3 to 1000 N / cm 2 . If the strength is low, swelling may occur during molding, and if it is high, moldability may be insufficient. The strength of the ultraviolet absorbing layer (C) is the film strength when the ultraviolet absorbing layer alone is an autograph AG-IS manufactured by Shimadzu Corporation, at a temperature of 60 ° C., at a tensile rate of 50 mm / min, and an elongation of 200%. Is measured.
上記紫外線吸収層(C)は、バインダー樹脂(C-1)及び紫外線吸収剤(C-2)を含有する塗料組成物によって形成されたものである。そして、これらの成分の配合や組み合わせを調整することによって、上述したパラメータを満たす層を形成すことができる。 The ultraviolet absorbing layer (C) is formed of a coating composition containing a binder resin (C-1) and an ultraviolet absorber (C-2). And the layer which satisfy | fills the parameter mentioned above can be formed by adjusting the mixing | blending and combination of these components.
上記バインダー樹脂(C-1)としては、特に限定されず、アクリル樹脂、塩化ビニル-酢酸ビニル共重合体、ポリアミド樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、スチレン樹脂等の樹脂を使用することができ、ウレタン樹脂が好ましく、ウレア結合含有ウレタン樹脂がさらに好ましい。1種単独でまたは2種以上を併用して配合することができる。
紫外線吸収層(C)全量に対して85~99重量%の範囲内であることが好ましい。
The binder resin (C-1) is not particularly limited, and resins such as acrylic resin, vinyl chloride-vinyl acetate copolymer, polyamide resin, polyester resin, urethane resin, epoxy resin, and styrene resin can be used. Urethane resin is preferable, and urea bond-containing urethane resin is more preferable. One type can be used alone, or two or more types can be used in combination.
It is preferably in the range of 85 to 99% by weight with respect to the total amount of the ultraviolet absorbing layer (C).
上記紫外線吸収剤(C-2)としては、特に限定されず、例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ヒドロキシベンゾエート系紫外線吸収剤等を使用することができる。 The ultraviolet absorber (C-2) is not particularly limited. For example, a triazine ultraviolet absorber, a benzophenone ultraviolet absorber, a benzotriazole ultraviolet absorber, a cyanoacrylate ultraviolet absorber, or a hydroxybenzoate ultraviolet absorber. An agent or the like can be used.
上記トリアジン系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ジフェニル-s-トリアジン等が挙げられる。 Examples of the triazine ultraviolet absorber include 2- (2-hydroxy-4-methoxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4, 6-diphenyl-s-triazine, 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6- Examples thereof include bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-diphenyl-s-triazine.
上記ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシベンゾフェノン、5-クロロー2-ヒドロキシベンゾフェノン2,4-ジヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-n-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジエトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジプロポキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジブトキシベンゾフェノン、2,2’-ジヒドロキシー4-メトキシー4’-プロポキシベンゾフェノン、2,2’-ジヒドロキシー4-メトキシー4’-ブトキシベンゾフェノン、2,3,4-トリヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジ(ヒドロキシメチル)ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジ(2-ヒドロキシエチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジメトキシ-5,5’-ジ(ヒドロキシメチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジメトキシ-5,5’-ジ(2-ヒドロキシエチル)ベンゾフェノン等が挙げられる。 Examples of the benzophenone-based ultraviolet absorber include 2-hydroxybenzophenone, 5-chloro-2-hydroxybenzophenone 2,4-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2-hydroxy-4- Methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-n- Benzyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy -4,4 ' Diethoxybenzophenone, 2,2'-dihydroxy-4,4'-dipropoxybenzophenone, 2,2'-dihydroxy-4,4'-dibutoxybenzophenone, 2,2'-dihydroxy-4-methoxy-4'-propoxy Benzophenone, 2,2'-dihydroxy-4-methoxy-4'-butoxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,2'-dihydroxy-4,4'-di (hydroxymethyl) benzophenone, 2,2 '-Dihydroxy-4,4'-di (2-hydroxyethyl) benzophenone, 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-di (hydroxymethyl) benzophenone, 2,2'-dihydroxy -3,3'-dimethoxy-5,5'-di (2-hydroxyethyl) benzopheno Etc. The.
上記ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2-ヒドロキシー5-t-メチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシー3,5-ジ-t-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2-hydroxy-5-t-methylphenyl) -2H-benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) -2H. -Benzotriazole, 2- (2'-hydroxy-5'-t-octylphenyl) -2H-benzotriazole, 2- [2'-hydroxy-5 '-(hydroxymethyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-5 '-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-3'-methyl-5 '-(hydroxymethyl) phenyl] -2H-benzotriazole And the like.
上記シアノアクリレート系紫外線吸収剤としては、例えば、2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレート、エチル-2-シアノ-3,3’-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート、等が挙げられる。 Examples of the cyanoacrylate-based ultraviolet absorber include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and methyl-2-cyano-3- And methyl-3- (p-methoxyphenyl) acrylate.
上記ヒドロキシベンゾエート系紫外線吸収剤としては、例えば、フェニルサルシレート、レゾルシノールモノベンゾエート、4-t-ブチルフェニルサルシレート、2,5-t-ブチル-4-ヒドロキシ安息香酸n-ヘキサデシルエステル、2,4-ジ-t-ブチルフェニル-3’,5-ジ-t-ブチルー4’-ヒドロキシベンゾエート、2,4-ジ-t-アミルフェニル-3’,5-ジ-t-ブチルー4’-ヒドロキシベンゾエート、ヘキサデシル-3’,5-ジ-t-ブチルー4’-ヒドロキシベンゾエート等が挙げられる。 Examples of the hydroxybenzoate-based ultraviolet absorber include phenyl salicylate, resorcinol monobenzoate, 4-t-butylphenyl salicylate, 2,5-t-butyl-4-hydroxybenzoic acid n-hexadecyl ester, 2,4-di-t-butylphenyl-3 ', 5-di-t-butyl-4'-hydroxybenzoate, 2,4-di-t-amylphenyl-3', 5-di-t-butyl-4 ' -Hydroxybenzoate, hexadecyl-3 ', 5-di-t-butyl-4'-hydroxybenzoate and the like.
上記紫外線吸収剤(C-2)としては、短波長域から長波長域に渡る広範囲の波長(約280~360nm)の紫外線吸収性が高い点で、トリアジン系、ベンゾフェノン系、ベンゾトリアゾール系紫外線吸収剤が好ましい。
紫外線吸収剤は上記化合物を1種単独で又は2種以上を併用して配合することができる。
具体的には、チヌビン400、900、447、1130(BASF社製)を使用することができる。紫外線吸収剤(C-2)の配合量は使用する紫外線吸収剤によって相違し、上述した紫外線透過率を満たすものであれば特に限定されないが、紫外線吸収層(C)全量に対して1~15重量%の範囲内であることが好ましく、3~10重量%の範囲内であることがさらに好ましい。1重量%未満であると紫外線遮断効果が不十分になる可能性がある。15重量%を超えると紫外線吸収層の強度が低下し成形性が不十分になる可能性があり、またコストの面で不利となる。
The ultraviolet absorber (C-2) is a triazine-based, benzophenone-based, or benzotriazole-based UV absorber because it has a high UV-absorbing property over a wide wavelength range (from about 280 to 360 nm) from a short wavelength region to a long wavelength region. Agents are preferred.
The ultraviolet absorber can be blended with the above compounds singly or in combination of two or more.
Specifically, Tinuvin 400, 900, 447, 1130 (manufactured by BASF) can be used. The blending amount of the ultraviolet absorber (C-2) varies depending on the ultraviolet absorber used, and is not particularly limited as long as it satisfies the above-described ultraviolet transmittance, but is 1 to 15 with respect to the total amount of the ultraviolet absorbing layer (C). It is preferably in the range of wt%, more preferably in the range of 3 to 10 wt%. If it is less than 1% by weight, the ultraviolet blocking effect may be insufficient. If it exceeds 15% by weight, the strength of the ultraviolet absorbing layer may be lowered, the moldability may be insufficient, and it is disadvantageous in terms of cost.
上記紫外線吸収層(C)は、表面調整剤(C-3)を含有するものであってもよい。すなわち、紫外線吸収層(C)において使用する樹脂種によっては、表面張力を上述したような範囲内のものとすることが困難となる場合がある。この場合は、表面調整剤(C-3)を配合することによって、上述した範囲内の表面張力とすることができる。 The ultraviolet absorbing layer (C) may contain a surface conditioner (C-3). That is, depending on the type of resin used in the ultraviolet absorbing layer (C), it may be difficult to make the surface tension within the range described above. In this case, the surface tension within the above-mentioned range can be obtained by blending the surface conditioner (C-3).
上記表面調整剤(C-3)としては特に限定されず、例えば、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン等を使用することができる。具体的には、例えば、BYK-300、BYK-342、BYK-349(ビックケミージャパン社製)などが挙げられる。
上記表面調整剤(C-3)の配合量は特に限定されず、紫外線吸収層(C)全量に対して0.01~5重量%の範囲内であることが好ましい。
The surface conditioner (C-3) is not particularly limited, and for example, polyether-modified polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, and the like can be used. Specific examples include BYK-300, BYK-342, BYK-349 (manufactured by Big Chemie Japan).
The blending amount of the surface conditioner (C-3) is not particularly limited, and is preferably in the range of 0.01 to 5% by weight with respect to the total amount of the ultraviolet absorbing layer (C).
上記紫外線吸収層(C)は、その厚みを特に限定するものではないが、例えば、3~30μmであることが好ましく、5~25μmであることがより好ましい。薄すぎる場合は、紫外線遮蔽性能や強度を充分に得ることが困難となりやすく、厚すぎても特に性能が向上するわけではなく、コスト上不利になってしまうばかりか、塗工および乾燥が困難となる。 The thickness of the ultraviolet absorbing layer (C) is not particularly limited, but is preferably 3 to 30 μm, for example, and more preferably 5 to 25 μm. If it is too thin, it is difficult to obtain sufficient UV shielding performance and strength, and if it is too thick, the performance is not particularly improved, it will be disadvantageous in terms of cost, and coating and drying will be difficult. Become.
(クリヤー塗膜層(D))
本発明で使用するクリヤー塗膜層(D)は、エネルギー線硬化性塗膜であり、その具体的な組成は、積層フィルムとしての物性を害するものでない限り特に限定されるものではなく、公知のエネルギー線硬化性塗膜とすることができる。
なかでも、ポリウレタンアクリレート(D1)、不飽和2重結合を有するモノマー・オリゴマー(D2)及び重合開始剤(D3)を含有する活性エネルギー線硬化型コーティング組成物によって形成されたものであることが好ましい。このような組成のものとすることによって、使用時の延伸が容易になされ、深絞りにも容易に対応できるため、3次元形状への追随が良好となる。また、ブロッキングを生じにくいものとすることができるという利点も有する。
(Clear coating layer (D))
The clear coating layer (D) used in the present invention is an energy ray curable coating, and its specific composition is not particularly limited as long as it does not impair the physical properties of the laminated film. It can be set as an energy ray curable coating film.
Especially, it is preferable that it is formed by the active energy ray-curable coating composition containing the polyurethane acrylate (D1), the monomer / oligomer (D2) having an unsaturated double bond, and the polymerization initiator (D3). . By adopting such a composition, stretching during use is facilitated, and it is possible to easily cope with deep drawing, so that the follow-up to the three-dimensional shape is good. In addition, there is an advantage that blocking can hardly occur.
更に、上記活性エネルギー線硬化型コーティング組成物は、(D1)の固形分重量、(D2)の固形分重量の合計量((D1)+(D2))100重量部中に、(D1)を50~99重量部、(D2)を1~50重量部の範囲内となるように含有し、(D1)の固形分重量及び(D2)の固形分重量の合計量((D1)+(D2))100重量部に対して(D3)を0.5~20重量部の範囲内となるように含有するものであることが好ましい。これによって、硬化前の耐ブロッキング性、深絞り性 (延伸性)を有することができる。さらに硬化後の高い耐擦傷性、表面硬度、耐薬品性、耐衝撃性を有することができる。
以下、(D1)~(D3)について詳細に説明する。
Furthermore, the active energy ray-curable coating composition comprises (D1) in a total amount of (D1) solid content weight and (D2) solid content weight ((D1) + (D2)) in 100 parts by weight. 50 to 99 parts by weight, and (D2) is contained so as to fall within the range of 1 to 50 parts by weight, and the total amount of (D1) solid content weight and (D2) solid content weight ((D1) + (D2 )) It is preferable that (D3) is contained within a range of 0.5 to 20 parts by weight per 100 parts by weight. By this, it can have blocking resistance before hardening and deep drawability (stretchability). Furthermore, it can have high scratch resistance, surface hardness, chemical resistance, and impact resistance after curing.
Hereinafter, (D1) to (D3) will be described in detail.
(ポリウレタンアクリレート(D1))
ポリウレタンアクリレート(D1)は、ウレタン結合を分子内に有し、かつ(メタ)アクリレート基を分子中に有する化合物である。これを使用することによって、加飾成形を行う際の延伸性が向上し、深絞りにも容易に対応できるため、3次元形状への追随が良好となる。
(Polyurethane acrylate (D1))
The polyurethane acrylate (D1) is a compound having a urethane bond in the molecule and a (meth) acrylate group in the molecule. By using this, the stretchability at the time of performing decorative molding is improved, and it is possible to easily cope with deep drawing, so that the follow-up to the three-dimensional shape is good.
上記ポリウレタンアクリレート(D1)としては、特に限定されず、公知の任意のものを使用することができる。例えば、i)分子内に2個以上のイソシアナート基を持つ化合物に、分子内に1個以上の水酸基と1個以上の2重結合基を持つ化合物とを当量反応させて得られる化合物、ii)ポリオールと1塩基酸および/または多塩基酸および/またはその酸無水物との縮合物に、分子内に2個以上のイソシアナート基を持つ化合物を反応させたのち、さらに分子内に1個以上の水酸基と1個以上の2重結合基を持つ化合物を反応させて得られる化合物、iii)ポリオールに、分子内に2個以上のイソシアナート基を持つ化合物を反応させたのち、さらに分子内に1個以上の水酸基と1個以上の2重結合基を持つ化合物を反応させて得られる化合物等が挙げられる。 It does not specifically limit as said polyurethane acrylate (D1), A well-known arbitrary thing can be used. For example, i) a compound obtained by equivalently reacting a compound having two or more isocyanate groups in a molecule with a compound having one or more hydroxyl groups and one or more double bond groups in the molecule, ii ) After reacting a compound having two or more isocyanate groups in the molecule with a condensate of a polyol with a monobasic acid and / or polybasic acid and / or acid anhydride thereof, one more in the molecule A compound obtained by reacting the above hydroxyl group with a compound having one or more double bond groups, iii) after reacting a polyol with a compound having two or more isocyanate groups in the molecule, And compounds obtained by reacting a compound having one or more hydroxyl groups and one or more double bond groups.
上記i)~iii)において、分子内に1個以上の水酸基と1個以上の2重結合基を持つ化合物としては、例えば、2-ヒドロキシ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等や、市販品では、プラクセルF(M)Aシリーズ(ダイセル化学社の商品名)等が挙げられる。また、前記ii)~iii)において、多価アルコールとしては、例えば、ポリエチレングリコール、ポリカーボネートジオール、ポリテトラメチレングリコール、トリメチロールプロパン等や、市販品では、プラクセルジオールシリーズ(ダイセル化学社の商品名)、プラクセルトリオールシリーズ(ダイセル化学社の商品名)等が挙げられる。 In the above i) to iii), examples of the compound having one or more hydroxyl groups and one or more double bond groups in the molecule include 2-hydroxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, Examples of 4-hydroxybutyl (meth) acrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, and other commercially available products include Plaxel F (M) A series (trade name of Daicel Chemical Industries). In the above ii) to iii), examples of the polyhydric alcohol include polyethylene glycol, polycarbonate diol, polytetramethylene glycol, trimethylol propane and the like, and commercially available products such as Plaxeldiol series (trade name of Daicel Chemical Industries). ), Plaxel Triol series (trade name of Daicel Chemical).
上記ポリオールとしては特に限定されず、公知のアクリルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等を使用することができる。また、エチレングリコール、ブタンジオール、グリセリン、ペンタエリスリトール、ネオペンチルグリコール等の各種低分子量ジオール等も必要に応じて使用することができる。 It does not specifically limit as said polyol, A well-known acrylic polyol, polyester polyol, polycarbonate polyol, etc. can be used. Further, various low molecular weight diols such as ethylene glycol, butanediol, glycerin, pentaerythritol, and neopentyl glycol can be used as necessary.
上記ポリオールとしては、ポリカーボネート濃度:0.5~75wt%(ポリウレタンアクリレート(D1)全量に対する割合)となる割合でポリカーボネートジオール骨格を有することが好ましい。ポリカーボネートジオール骨格を有するものを使用することで、強靭性が発現し、加飾成形時の膨れ防止、意匠外観保持(ワレ防止)が可能となる利点を有する。上記ポリカーボネートジオールは、2~70重量%であることがより好ましい。 The polyol preferably has a polycarbonate diol skeleton at a ratio of polycarbonate concentration: 0.5 to 75 wt% (ratio to the total amount of polyurethane acrylate (D1)). By using a material having a polycarbonate diol skeleton, toughness is exhibited, and there is an advantage that it is possible to prevent swelling during decorative molding and to maintain the design appearance (prevention of cracks). The polycarbonate diol is more preferably 2 to 70% by weight.
上記ポリイソシアネートとしては、イソシアネート基を2個以上有する化合物であれば特に限定されず、例えば、トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、メタキシリレンジイソシアネート等の芳香族のもの;ヘキサメチレンジイソシアネート等の脂肪族のもの;イソホロンジイソシアネート等の脂環族のもの;その単量体及びそのビュレットタイプ、ヌレートタイプ、アダクトタイプ等の多量体等を挙げることができる。 The polyisocyanate is not particularly limited as long as it is a compound having two or more isocyanate groups, and examples thereof include aromatics such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and metaxylylene diisocyanate. Aliphatic groups such as hexamethylene diisocyanate; alicyclic groups such as isophorone diisocyanate; monomers thereof and multimers such as burette type, nurate type and adduct type.
上記ポリイソシアネートの市販品としては、デュラネート24A-90PX(NCO:23.6%、商品名、旭化成社製)、スミジュールN-3200-90M(商品名、住友バイエルウレタン社製)、タケネートD165N-90X(商品名、三井化学社製)、スミジュールN-3300、スミジュールN-3500(いずれも商品名、住友バイエルウレタン社製)、デュラネートTHA-100(商品名、旭化成社製)等を挙げることができる。また、必要に応じてこれらをブロックしたブロックイソシアネートを使用することもできる。 Commercially available products of the above polyisocyanates include Duranate 24A-90PX (NCO: 23.6%, trade name, manufactured by Asahi Kasei Co., Ltd.), Sumidur N-3200-90M (trade name, manufactured by Sumitomo Bayer Urethane Co., Ltd.), Takenate D165N- 90X (trade name, manufactured by Mitsui Chemicals), Sumijoule N-3300, Sumijoule N-3500 (both trade names, manufactured by Sumitomo Bayer Urethane Co., Ltd.), Duranate THA-100 (trade name, manufactured by Asahi Kasei) be able to. Moreover, the blocked isocyanate which blocked these can also be used as needed.
上記ポリウレタンアクリレート(D1)は、一部にウレア結合を有するものであってもよい。
ウレア結合を有するものとするためには、ポリウレタンアクリレートの合成において、一部にポリアミン化合物を使用すればよい。使用できるポリアミン化合物としては特に限定されず、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、トリアミノプロパン、2,2,4-トリメチルヘキサメチレンジアミン、2-ヒドロキシエチルエチレンジアミン、N-(2-ヒドロキシエチル)プロピレンジアミン、(2-ヒドロキシエチルプロピレン)ジアミン、(ジ-2-ヒドロキシエチルエチレン)ジアミン、(ジ-2-ヒドロキシエチルプロピレン)ジアミン、(2-ヒドロキシプロピルエチレン)ジアミン、(ジ-2-ヒドロキシプロピルエチレン)ジアミン、ピペラジン等の脂肪族ポリアミン;1,2-および1,3-シクロブタンジアミン、1,2-、1,3-および1,4-シクロヘキサンジアミン、イソホロンジアミン(IPDA)、メチレンビスシクロヘキサン2,4’-および/または4,4’-ジアミン、ノルボルナンジアミン等の脂環式ポリアミン;フェニレンジアミン、キシリレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、ジエチルトルエンジアミン,3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、4,4’-ビス-(sec-ブチル)ジフェニルメタン等の芳香族ジアミン;及びダイマー酸のカルボキシル基をアミノ基に転化したダイマージアミン、末端に一級又は二級アミノ基を有するデンドリマー等を挙げることができる。
The polyurethane acrylate (D1) may partially have a urea bond.
In order to have a urea bond, a polyamine compound may be partially used in the synthesis of polyurethane acrylate. The polyamine compound that can be used is not particularly limited. For example, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylenetetramine, diethylenetriamine, triaminopropane, 2,2,4-trimethylhexamethylene. Diamine, 2-hydroxyethylethylenediamine, N- (2-hydroxyethyl) propylenediamine, (2-hydroxyethylpropylene) diamine, (di-2-hydroxyethylethylene) diamine, (di-2-hydroxyethylpropylene) diamine, Aliphatic polyamines such as (2-hydroxypropylethylene) diamine, (di-2-hydroxypropylethylene) diamine and piperazine; 1,2- and 1,3-cyclobutane Alicyclic such as amine, 1,2-, 1,3- and 1,4-cyclohexanediamine, isophoronediamine (IPDA), methylenebiscyclohexane 2,4'- and / or 4,4'-diamine, norbornanediamine Polyamine; phenylenediamine, xylylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, diethyltoluenediamine, 3,3'-dichloro-4,4'-diaminodiphenylmethane, 4,4'-bis An aromatic diamine such as-(sec-butyl) diphenylmethane; dimer diamine obtained by converting a carboxyl group of a dimer acid into an amino group; a dendrimer having a primary or secondary amino group at a terminal;
上記ポリウレタンアクリレート(D1)は、2重結合当量が130~600g/eqであることが好ましく、150~300g/eqであることがさらに好ましい。2重結合等量が130g/eq未満であると、硬化膜の耐クラック性、耐衝撃性に劣るという問題を生じるおそれがある。2重結合等量が600g/eqを超えると、擦傷性、表面硬度、耐薬品性に劣るという問題を生じるおそれがある。 The polyurethane acrylate (D1) preferably has a double bond equivalent of 130 to 600 g / eq, more preferably 150 to 300 g / eq. If the double bond equivalent is less than 130 g / eq, there may be a problem that the cured film is inferior in crack resistance and impact resistance. When the double bond equivalent exceeds 600 g / eq, there is a possibility that problems such as inferior scratch resistance, surface hardness, and chemical resistance may occur.
上記ポリウレタンアクリレート(D1)は、重量平均分子量が3000~200000であることが好ましい。重量平均分子量が3000未満であると、耐ブロッキング性に劣るという問題を生じるおそれがある。重量平均分子量が200000を超えると、得られるポリウレタンアクリレート(D1)とクリヤー塗料組成物に含まれる不飽和2重結合を有するモノマー・オリゴマー(D2)等との相溶性が低下する。加えて重量平均分子量が200000を超えるとクリヤー塗料組成物の粘度が高くなる傾向にある。また、このような粘度の上昇を改善するために、有機溶剤を用いてクリヤー塗料組成物を希釈すると、クリヤー塗料組成物中の固形分量が著しく低下し、加工性が悪化するという問題を生じるおそれがある。なお、本明細書において、重量平均分子量は後述の方法により測定した。 The polyurethane acrylate (D1) preferably has a weight average molecular weight of 3000 to 200000. If the weight average molecular weight is less than 3000, there is a possibility of causing a problem that the blocking resistance is poor. When the weight average molecular weight exceeds 200,000, the compatibility between the obtained polyurethane acrylate (D1) and the monomer / oligomer (D2) having an unsaturated double bond contained in the clear coating composition is lowered. In addition, when the weight average molecular weight exceeds 200,000, the viscosity of the clear coating composition tends to increase. Further, when the clear coating composition is diluted with an organic solvent in order to improve such an increase in viscosity, the amount of solid content in the clear coating composition is remarkably reduced, and the processability may be deteriorated. There is. In the present specification, the weight average molecular weight was measured by the method described later.
上記ポリウレタンアクリレート(D1)は、ウレタン濃度が300~2000g/eqであることが好ましい。ウレタン濃度が300g/eq未満であると、得られるポリウレタンアクリレート(D1)とクリヤー塗料組成物に含まれる不飽和2重結合を有するモノマー・オリゴマー(D2)等との相溶性が低下する。加えてウレタン濃度が300g/eq未満であると、クリヤー塗料組成物の粘度が高くなる傾向にある。また、このような粘度の上昇を改善するために、有機溶剤を用いてクリヤー塗料組成物を希釈すると、クリヤー塗料組成物中の固形分量が著しく低下し、加工性が悪化するという問題を生じるおそれがある。ウレタン濃度が2000g/eqを超えると、耐ブロッキング性、耐衝撃性に劣るという問題を生じるおそれがある。 The polyurethane acrylate (D1) preferably has a urethane concentration of 300 to 2000 g / eq. When the urethane concentration is less than 300 g / eq, the compatibility between the obtained polyurethane acrylate (D1) and the monomer / oligomer (D2) having an unsaturated double bond contained in the clear coating composition is lowered. In addition, when the urethane concentration is less than 300 g / eq, the viscosity of the clear coating composition tends to increase. Further, when the clear coating composition is diluted with an organic solvent in order to improve such an increase in viscosity, the amount of solid content in the clear coating composition is remarkably reduced, and the processability may be deteriorated. There is. When the urethane concentration exceeds 2000 g / eq, there is a possibility that problems such as inferior blocking resistance and impact resistance may occur.
上記ポリウレタンアクリレート(D1)は、ウレア濃度が500~1000g/eqであることが好ましい。ウレア濃度が500g/eq未満であると、得られるポリウレタンアクリレート(D1)とクリヤー塗料組成物に含まれる不飽和2重結合を有するモノマー・オリゴマー(D2)等との相溶性が低下する。加えてウレア濃度が500g/eq未満であると、クリヤー塗料組成物の粘度が高くなる傾向にある。また、このような粘度の上昇を改善するために、有機溶剤を用いてクリヤー塗料組成物を希釈すると、クリヤー塗料組成物中の固形分量が著しく低下し、加工性が悪化するという問題を生じるおそれがある。ウレア濃度が1000g/eqを超えると、耐ブロッキング性に劣るという問題を生じるおそれがある。 The polyurethane acrylate (D1) preferably has a urea concentration of 500 to 1000 g / eq. When the urea concentration is less than 500 g / eq, the compatibility between the obtained polyurethane acrylate (D1) and the monomer / oligomer (D2) having an unsaturated double bond contained in the clear coating composition is lowered. In addition, when the urea concentration is less than 500 g / eq, the viscosity of the clear coating composition tends to increase. Further, when the clear coating composition is diluted with an organic solvent in order to improve such an increase in viscosity, the amount of solid content in the clear coating composition is remarkably reduced, and the processability may be deteriorated. There is. When the urea concentration exceeds 1000 g / eq, there is a possibility of causing a problem that the blocking resistance is poor.
ポリウレタンアクリレート(D1)は、フッ素及び/又はシリコーンで変性されたものであってもよい。すなわち、フッ素やシリコーン単位を含有する単量体を使用して上述した方法によってポリウレタンアクリレート(D1)を合成するものであってもよいし、上述した方法によって得られたポリウレタンアクリレート(D1)が有する官能基をフッ素及び/又はシリコーンを有する化合物と反応させたものであってもよい。 The polyurethane acrylate (D1) may be modified with fluorine and / or silicone. That is, the polyurethane acrylate (D1) may be synthesized by the above-described method using a monomer containing fluorine or a silicone unit, or the polyurethane acrylate (D1) obtained by the above-described method has. The functional group may be reacted with a compound having fluorine and / or silicone.
(不飽和2重結合を有するモノマー・オリゴマー(D2))
上記不飽和2重結合を有するモノマー・オリゴマー(D2)としては、公知の任意のものを使用することができ、例えば、以下の化合物を使用することができる。
(Monomer / oligomer having unsaturated double bond (D2))
As the monomer / oligomer (D2) having an unsaturated double bond, any known one can be used. For example, the following compounds can be used.
官能基数2の(メタ)アクリレートの例は、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジメチロールートリシクロデカンジ(メタ)アクリレート等を含む。なかでも、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等を好ましく用いることができる。 Examples of (meth) acrylates having 2 functional groups are 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethylene glycol Di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonane diol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, dimethylol over tricyclodecane (meth) acrylate. Of these, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and the like can be preferably used.
官能基数3の(メタ)アクリレートの例は、トリメチロールメタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート等を含む。なかでも、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリメタクリレート等を好ましく用いることができる。 Examples of the (meth) acrylate having 3 functional groups are trimethylolmethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, trimethylolpropane propylene oxide modified tri ( Meth) acrylate, pentaerythritol tri (meth) acrylate, glycerin propoxytri (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate and the like. Of these, trimethylolpropane trimethacrylate, pentaerythritol trimethacrylate, and the like can be preferably used.
官能基数4の(メタ)アクリレートの例は、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエチレンオキサイド変性テトラ(メタ)アクリレート、ペンタエリスリトールプロピレンオキサイド変性テトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等を含む。なかでも、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等を好ましく用いることができる。 Examples of (meth) acrylates having 4 functional groups are dipentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethylene oxide modified tetra (meth) acrylate, pentaerythritol propylene oxide modified tetra (meth) acrylate. , Ditrimethylolpropane tetra (meth) acrylate and the like. Of these, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and the like can be preferably used.
官能基数4以上の(メタ)アクリレートの例は、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエチレンオキサイド変性テトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート、ジペンタエリスリトールのカプロラクトン変性物のヘキサ(メタ)アクリレートなど多官能性(メタ)アクリレートが挙げられる。これらのモノマーは1種のみを用いてもよいし、2種以上を併用してもよい。 Examples of (meth) acrylates having 4 or more functional groups include pentaerythritol tetra (meth) acrylate, pentaerythritol ethylene oxide modified tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Dipentaerythritol penta (meth) acrylate, ditrimethylolpropane penta (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate, dipenta Examples include polyfunctional (meth) acrylates such as hexa (meth) acrylate of a caprolactone modified product of erythritol. These monomers may use only 1 type and may use 2 or more types together.
(メタ)アクリル系オリゴマーとしては、例えば、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。ここで、ポリエステルアクリレート系プレポリマーとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。エポキシアクリレート系プレポリマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。ウレタンアクリレートとしては、一般にポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に水酸基を有するアクリレートモノマーを反応させて得ることができる。これらの(メタ)アクリル系オリゴマーは1種のみ用いてもよいし、2種以上を併用してもよく、また、上記多官能性(メタ)アクリレート系モノマーと併用してもよい。 Examples of (meth) acrylic oligomers include epoxy (meth) acrylate, polyester (meth) acrylate, and urethane (meth) acrylate. Here, as the polyester acrylate-based prepolymer, for example, by esterifying the hydroxyl group of a polyester oligomer having a hydroxyl group at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid. The epoxy acrylate prepolymer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. The urethane acrylate can be generally obtained by reacting a polyester polyol, polyether polyol, or polycarbonate polyol with an isocyanate monomer or a product obtained by reacting a prepolymer with an acrylate monomer having a hydroxyl group. These (meth) acrylic oligomers may be used alone or in combination of two or more, or may be used in combination with the polyfunctional (meth) acrylate monomer.
上記不飽和2重結合を有するモノマー・オリゴマー(D2)としては、日本合成化学工業社製UV 1700B等の市販のものも使用することができる。 As the monomer / oligomer (D2) having an unsaturated double bond, commercially available products such as UV 1700B manufactured by Nippon Synthetic Chemical Industry Co., Ltd. can also be used.
(重合開始剤(D3))
上記重合開始剤(D3)としては、紫外線(UV)や電子線等の電磁線によって重合が開始されるエネルギー線重合開始剤を使用することができる。これらのエネルギー線重合開始剤は特に限定されるものではなく、公知の任意のものを使用することができる。
(Polymerization initiator (D3))
As said polymerization initiator (D3), the energy-beam polymerization initiator which superposition | polymerization is started by electromagnetic rays, such as an ultraviolet-ray (UV) and an electron beam, can be used. These energy beam polymerization initiators are not particularly limited, and any known one can be used.
具体的には、上記エネルギー線重合開始剤としては、例えば、ベンゾインメチルエーテル等のベンゾイン系化合物;2-エチルアントラキノン等のアントラキノン系化合物;ベンゾフェノン等のベンゾフェノン系化合物;ジフェニルスルフィド等のスルフィド系化合物;2,4-ジメチルチオキサントン等のチオキサントン系化合物;2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン系化合物;2,4,6-トリメチルベンゾインジフェニルホスフィノキサイド等のホスフィノキサイド系化合物;イルガキュア(登録商標)-184,イルガキュア-819(いずれもBASF社製)等の紫外線(UV)硬化用重合開始剤等を挙げることができる。これらの化合物は、重合開始剤として、1種又は2種以上を用いることができる。 Specifically, examples of the energy ray polymerization initiator include benzoin compounds such as benzoin methyl ether; anthraquinone compounds such as 2-ethylanthraquinone; benzophenone compounds such as benzophenone; sulfide compounds such as diphenyl sulfide; Thioxanthone compounds such as 2,4-dimethylthioxanthone; acetophenone compounds such as 2,2-dimethoxy-2-phenylacetophenone; phosphinoxide compounds such as 2,4,6-trimethylbenzoindiphenylphosphinoxide; Examples thereof include a polymerization initiator for ultraviolet (UV) curing such as Irgacure (registered trademark) -184, Irgacure-819 (all manufactured by BASF). These compounds can use 1 type (s) or 2 or more types as a polymerization initiator.
((D1)~(D3)の配合量)
(D1)の固形分重量、(D2)の固形分重量の合計量((D1)+(D2))100重量部中に、(D1)を50~99重量部、(D2)を1~50重量部の範囲内となるように含有し、(D1)の固形分重量及び(D2)の固形分重量の合計量((D1)+(D2))100重量部に対して(D3)を0.5~20重量部の範囲内となるように含有するものであることが好ましい。
(Amount of (D1) to (D3))
In 100 parts by weight of the solid content weight of (D1) and the solid content weight of (D2) ((D1) + (D2)), 50 to 99 parts by weight of (D1) and 1 to 50 of (D2) It is contained so as to be in the range of parts by weight, and (D3) is 0 with respect to 100 parts by weight of the total weight of the solid content of (D1) and the solid content of (D2) ((D1) + (D2)). It is preferable that it is contained so as to be in the range of 5 to 20 parts by weight.
上記ポリウレタンアクリレート(D1)の含有量が50重量部未満であると、耐ブロッキング性が低下するという点で好ましいものではない。上記ポリウレタンアクリレート(D1)の含有量が99重量部を超えると、耐擦傷性、表面硬度が不充分となる点で好ましいものではない。上記下限は、55重量部以上であることがより好ましく、65重量部以上であることが更に好ましい。上記上限は、98重量部以下であることがより好ましく、95重量部以下であることが更に好ましい。 When the content of the polyurethane acrylate (D1) is less than 50 parts by weight, the blocking resistance is not preferable. When the content of the polyurethane acrylate (D1) exceeds 99 parts by weight, it is not preferable in that the scratch resistance and surface hardness are insufficient. The lower limit is more preferably 55 parts by weight or more, and still more preferably 65 parts by weight or more. The upper limit is more preferably 98 parts by weight or less, and still more preferably 95 parts by weight or less.
上記不飽和2重結合を有するモノマー・オリゴマー(D2)の含有量が1重量部未満であると、耐擦傷性、表面硬度が不充分となる点で好ましいものではない。上記不飽和2重結合を有するモノマー・オリゴマー(D2)の含有量が50重量部を超えると、耐ブロッキング性が低下するという点で好ましいものではない。上記下限は、2重量部以上であることがより好ましく、5重量部以上であることが更に好ましい。上記上限は、45重量部以下であることがより好ましく、35重量部以下であることが更に好ましい。 When the content of the monomer / oligomer (D2) having an unsaturated double bond is less than 1 part by weight, it is not preferable in terms of insufficient scratch resistance and surface hardness. When the content of the monomer / oligomer (D2) having an unsaturated double bond exceeds 50 parts by weight, it is not preferable in that the blocking resistance is lowered. The lower limit is more preferably 2 parts by weight or more, and still more preferably 5 parts by weight or more. The upper limit is more preferably 45 parts by weight or less, and still more preferably 35 parts by weight or less.
上記重合開始剤(D3)の含有量が0.5重量部未満であると、クリヤー層を十分に硬化させることができず、得られるクリヤーの耐擦傷性、表面硬度、耐薬品性、耐衝撃性の塗膜物性を得られない可能性がある。上記重合開始剤(D3)の含有量が20重量部を超えると、クリヤー塗膜内に未反応の重合開始剤(D3)が残存し、屋外での太陽光等によって、クリヤー塗膜が劣化し、耐候性が悪化する可能性がある。 When the content of the polymerization initiator (D3) is less than 0.5 parts by weight, the clear layer cannot be sufficiently cured, and the resulting clear has scratch resistance, surface hardness, chemical resistance, and impact resistance. There is a possibility that the physical properties of the coating film cannot be obtained. When the content of the polymerization initiator (D3) exceeds 20 parts by weight, unreacted polymerization initiator (D3) remains in the clear coating film, and the clear coating film deteriorates due to sunlight outdoors. The weather resistance may deteriorate.
上記クリヤー塗料組成物は、チオール基及び/又はアミン基を有するモノマーを0.5~20重量部含有することが好ましい。
上記チオール基及び/又はアミン基を有するモノマーとしては、特に限定されず、通常使用されるチオール化合物、及び、アミン化合物を挙げることができる。
The clear coating composition preferably contains 0.5 to 20 parts by weight of a monomer having a thiol group and / or an amine group.
It does not specifically limit as a monomer which has the said thiol group and / or amine group, The thiol compound and amine compound which are normally used can be mentioned.
上記アミン化合物としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、等の脂肪族ポリアミン:1,2-および1,3-シクロブタンジアミン、1,2-、1,3-および1,4-シクロヘキサンジアミン、イソホロンジアミン(IPDA)、メチレンビスシクロヘキサン2,4’-および/または4,4’-ジアミン、ノルボルナンジアミン等の脂環式ポリアミン:フェニレンジアミン、キシリレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、ジエチルトルエンジアミン、4,4-ビス-(sec-ブチル)ジフェニルメタンなどの芳香族アミン:及びダイマー酸のカルボキシ基をアミノ基に転化したダイマー酸ジアミン、末端にアミノ基を有するデンドリマー、アミンを繰返し構造として有するポリアミンを用いることもできるがこれらに限定されない。 Examples of the amine compound include aliphatic diamines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylenetetramine, and diethylenetriamine: 1,2- and 1,3-cyclobutanediamine, 1, Alicyclic polyamines such as 2-, 1,3- and 1,4-cyclohexanediamine, isophoronediamine (IPDA), methylenebiscyclohexane 2,4′- and / or 4,4′-diamine, norbornanediamine: phenylenediamine Aromatic amines such as xylylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, diethyltoluenediamine, 4,4-bis- (sec-butyl) diphenylmethane: and the carboxy group of dimer acid Dimer acid diamine was converted into amino group, a dendrimer having a terminal amino group, can also be used a polyamine having the structural repeat amine without limitation.
上記チオール化合物としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、エチレングリコールジメルカプトプロピオネート、ジエチレングリコールジメルカプトプロピオネート、4-t-ブチル-1,2-ベンゼンジチオール、ビス-(2-メルカプトエチル)スルフィド、4,4’-チオジベンゼンチオール、ベンゼンジチオール、グリコールジメルカプトアセテート、グリコールジメルカプトプロピオネート、エチレンビス(3-メルカプトプロピオネート)、ポリエチレングリコールジメルカプトアセテート、ポリエチレングリコールジ-(3-メルカプトピロピオネート)、2,2-ビス(メルカプトメチル)-1,3-プロパンジチオール、2,5-ジメルカプトメチル-1,4-ジチアン、ビスフェノフルオレンビス(エトキシ-3-メルカプトプロピオネート)、4,8-ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオール、2-メルカプトメチル-2-メチル-1,3-プロパンジチオール、1,8-ジメルカプト-3,6-ジオキサオクタン、チオグリセロールビスメルカプト-アセテート等の2官能チオール:トリメチロールプロパン(トリスメルカプトプロピオネート)(TMPTMP)、トリメチロールプロパン トリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタン トリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトアセテート)、トリス(3-メルカプトプロピル)イソシアヌレート、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,2,3-トリメルカプトプロパン、及びトリス(3-メルカプトプロピオネート)トリエチル-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、等の3官能チオール:ポリ(メルカプトプロピルメチル)シロキサン(PMPMS)、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオールペンタエリスリトールテトラキス(3-メルカプトアセテート)、及びペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトール ヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリトール テトラキス(3-メルカプトブチレート)等の多官能チオールを含むが、これらに限定されない。 Examples of the thiol compound include 1,4-bis (3-mercaptobutyryloxy) butane, ethylene glycol dimercaptopropionate, diethylene glycol dimercaptopropionate, 4-t-butyl-1,2-benzenedithiol, bis -(2-mercaptoethyl) sulfide, 4,4'-thiodibenzenethiol, benzenedithiol, glycol dimercaptoacetate, glycol dimercaptopropionate, ethylenebis (3-mercaptopropionate), polyethylene glycol dimercaptoacetate Polyethylene glycol di- (3-mercaptopyropionate), 2,2-bis (mercaptomethyl) -1,3-propanedithiol, 2,5-dimercaptomethyl-1,4-dithiane, bisphenofluorene (Ethoxy-3-mercaptopropionate), 4,8-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol, 2-mercaptomethyl-2-methyl-1,3- Bifunctional thiols such as propanedithiol, 1,8-dimercapto-3,6-dioxaoctane, thioglycerol bismercapto-acetate: trimethylolpropane (trismercaptopropionate) (TMPTMP), trimethylolpropane tris (3- Mercaptobutyrate), trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptoacetate), tris (3-mercaptopropyl) isocyanurate 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,2,3-trimercaptopropane And tris (3-mercaptopropionate) triethyl-1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, and the like trifunctional thiols: poly (mercaptopropylmethyl) siloxane (PMPMS), 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol pentaerythritol tetrakis (3-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3 -Mercaptopropionate), pentaerythritol tetrakis (3-merca) Including but not limited to polyfunctional thiols such as ptobutyrate).
本発明の3次元成型品加飾用積層フィルムにおいて使用されるクリヤー塗膜層(D)は、上述したようなものであるが、更に好ましくは、ポリウレタンアクリレート(D1)が
2重結合当量:130~600g/eq
分子量Mw:3000~200000
ウレタン濃度:300~2000g/eq、
である塗料組成物によって形成されたものであることが好ましい。これらの性質を満たすものを使用することが好ましい。このようなクリヤー塗料組成物によってクリヤー塗膜層(D)を形成することによって、耐ブロッキング性、高い耐擦傷性,表面硬度,耐薬品性を備え,良好な耐衝撃性を付与することができる点で好ましいものである。さらに、上記ポリウレタンアクリレート(D1)は、ウレア濃度:500~1000g/eqであることが好ましい。
The clear coating layer (D) used in the three-dimensional molded product decorative laminated film of the present invention is as described above, and more preferably, the polyurethane acrylate (D1) has a double bond equivalent of 130. ~ 600g / eq
Molecular weight Mw: 3000-200000
Urethane concentration: 300 to 2000 g / eq,
It is preferable that it is formed with the coating composition which is. It is preferable to use a material satisfying these properties. By forming the clear coating layer (D) with such a clear coating composition, it has blocking resistance, high scratch resistance, surface hardness, chemical resistance, and can impart good impact resistance. It is preferable in terms. Further, the polyurethane acrylate (D1) preferably has a urea concentration of 500 to 1000 g / eq.
なお、本明細書における重量平均分子量は、東ソー(株)製HLC-82220GPCを用いて測定した。測定条件は下記の通りである。
カラム:TSKgel Super Multipore HZ-M 3本
展開溶媒:テトラヒドロフラン
カラム注入口オーブン 40℃
流量:0.35 ml/min.
検出器:RI
標準ポリスチレン:東ソー (株)PSオリゴマーキット
The weight average molecular weight in this specification was measured using HLC-82220GPC manufactured by Tosoh Corporation. The measurement conditions are as follows.
Column: TSKgel Super Multipore HZ-M 3 developing solvents: tetrahydrofuran column inlet oven 40 ° C
Flow rate: 0.35 ml / min.
Detector: RI
Standard polystyrene: Tosoh Corporation PS oligomer kit
(その他の成分)
クリヤー塗料組成物は、通常、塗料材料として添加される化合物が、その他の成分として含まれていてもよい。その他の成分としては、紫外線吸収剤(UVA)、光安定剤(HALS)、バインダー用樹脂や架橋剤、顔料、表面調整剤、消泡剤、導電性充填剤、溶剤等を挙げることができる。
(Other ingredients)
In the clear coating composition, a compound that is usually added as a coating material may contain other components. Examples of other components include an ultraviolet absorber (UVA), a light stabilizer (HALS), a binder resin and a crosslinking agent, a pigment, a surface conditioner, an antifoaming agent, a conductive filler, and a solvent.
さらに、クリヤー塗料組成物に含まれる各成分の混合や粘度調整のために溶剤を用いてもよい。該溶剤としては、例えば、エステル系、エーテル系、アルコール系、アミド系、ケトン系、脂肪族炭化水素系、脂環族炭化水素系、芳香族炭化水素系等、塗料に用いられる従来公知の有機溶媒を、1種又は2種以上を組み合わせて用いればよい。なお、上記溶剤を用いる場合、積層フィルムに揮発性物質が残存すると、基材への加飾に際して、揮発性物質が揮散して、ピンホールや膨れが生じることがある。そのため、積層フィルムに含まれる揮発性物質を十分に低減することが好ましい。 Furthermore, you may use a solvent for mixing of each component contained in a clear coating composition, and viscosity adjustment. Examples of the solvent include conventionally known organic materials used for paints such as ester, ether, alcohol, amide, ketone, aliphatic hydrocarbon, alicyclic hydrocarbon, and aromatic hydrocarbon. Solvents may be used alone or in combination of two or more. In addition, when using the said solvent, when a volatile substance remains in a laminated | multilayer film, a volatile substance may volatilize at the time of decorating to a base material, and a pinhole and a swelling may arise. For this reason, it is preferable to sufficiently reduce the volatile substances contained in the laminated film.
更に、上記クリヤー塗料組成物は、更に、平均1次粒子径が100nm以下の無機・有機フィラーを0.5~60重量部含有することが好ましい。これによって、耐ブロッキング性、高い耐擦傷性,表面硬度を改善することができる。上記配合量の下限は、1重量%であることがより好ましく、上限は50重量%であることがより好ましい。 Further, the clear coating composition preferably further contains 0.5 to 60 parts by weight of an inorganic / organic filler having an average primary particle size of 100 nm or less. Thereby, blocking resistance, high scratch resistance, and surface hardness can be improved. The lower limit of the amount is more preferably 1% by weight, and the upper limit is more preferably 50% by weight.
上記無機フィラーとしては、シリカ、微粉末ガラス、アルミナ、炭酸カルシウム、カオリン、クレー、セピオライト(マグネシウム珪酸塩)、タルク(珪酸マグネシウム)、マイカ(珪酸アルミ)、ゾノトライト(珪酸カルシウム)、硼酸アルミニウム、ハイドロタルサイト、ウォラストナイト(珪酸カルシウム)、チタン酸カリウム、酸化チタン、硫酸バリウム、硫酸マグネシウム、水酸化マグネシウム、イットリア、セリア、炭化ケイ素、炭化ホウ素、ジルコニア、窒化アルミニウム、窒化ケイ素、あるいはこれらの共融混合物、または成型、焼成などを経て得られる非金属無機材料いわゆるセラミックスフィラーが挙げられる。その中で価格と効果の面からシリカ、アルミナ、ジルコニア、あるいはこれらの共融混合物が好ましい。 Examples of the inorganic filler include silica, fine powder glass, alumina, calcium carbonate, kaolin, clay, sepiolite (magnesium silicate), talc (magnesium silicate), mica (aluminum silicate), zonotlite (calcium silicate), aluminum borate, hydro Talsite, wollastonite (calcium silicate), potassium titanate, titanium oxide, barium sulfate, magnesium sulfate, magnesium hydroxide, yttria, ceria, silicon carbide, boron carbide, zirconia, aluminum nitride, silicon nitride, or a combination thereof Examples thereof include non-metallic inorganic materials so-called ceramic fillers obtained through a melt mixture, molding, firing, or the like. Among them, silica, alumina, zirconia, or a eutectic mixture thereof is preferable from the viewpoint of cost and effect.
上記有機フィラーとしては、アクリル、スチレン、シリコーン、ポリウレタン、アクリルウレタン、ベンゾグアナミン、ポリエチレンの各樹脂のビーズが挙げられる。また、市販のものとして、オルガノシリカゾルMIBK-ST, MEK-ST-UP、MEK-ST-L,MEK-AC-2140Z (日産化学工業製)、SIRMIBK15ET%-H24、 SIRMIBK15ET%-H83、ALMIBK30WT%-H06(CIKナノテック)等を使用することができる。 Examples of the organic filler include beads of acrylic, styrene, silicone, polyurethane, acrylic urethane, benzoguanamine, and polyethylene resins. In addition, as commercially available products, organosilica sol MIBK-ST, MEK-ST-UP, MEK-ST-L, MEK-AC-2140Z (manufactured by Nissan Chemical Industries), SIRMIBK15ET% -H24, SIRMIBK15ET% -H83, ALMIBK30WT%- H06 (CIK Nanotech) or the like can be used.
クリヤー塗料組成物は、イソシアネート基を有するポリイソシアネート化合物を0.5~20重量%(塗料中の固形分比)含有するものであってもよい。ポリイソシアネート化合物を配合することによって、成形性(延伸性)と耐擦傷性を付与できる点で好ましい。上記配合量の下限は、2重量%であることがより好ましく、上限は18重量%であることがより好ましい。 The clear coating composition may contain 0.5 to 20% by weight (solid content ratio in the coating) of a polyisocyanate compound having an isocyanate group. By blending a polyisocyanate compound, it is preferable in terms of imparting moldability (stretchability) and scratch resistance. The lower limit of the amount is more preferably 2% by weight, and the upper limit is more preferably 18% by weight.
上記クリヤー塗料組成物は、紫外線吸収剤を配合するものであってもよい。すなわち、自動車外板や自動車内装部品、携帯電話、照明器具等の家電製品の筐体においては、使用時に紫外線が照射されることで意匠外観が変化してしまうおそれがある。このような劣化防止のために、クリヤー塗料組成物に紫外線吸収剤を配合してもよい。 The clear coating composition may contain a UV absorber. That is, in the case of a housing for home appliances such as an automobile outer plate, an automobile interior part, a mobile phone, and a lighting fixture, the design appearance may change due to irradiation with ultraviolet rays during use. In order to prevent such deterioration, an ultraviolet absorber may be added to the clear coating composition.
上記クリヤー塗料組成物において配合することができる紫外線吸収剤としては、上述した紫外線吸収層において使用できるものと同様のものを挙げることができ、配合量としては、クリヤー塗料組成物中の固形分全量に対し1~10重量%とすることができる。 Examples of the ultraviolet absorber that can be blended in the clear coating composition include the same ones that can be used in the ultraviolet absorbing layer described above, and the blending amount is the total solid content in the clear coating composition. The content may be 1 to 10% by weight.
クリヤー塗膜層において紫外線吸収剤を配合すると、耐候性が必要とされる場合は、クリヤーに含まれる紫外線吸収剤及び紫外線吸収層に含まれる紫外線吸収剤の両方の効果により、基材側のインクジェット層を充分に保護することができる点で、好ましい。 When a UV absorber is blended in the clear coating layer, if the weather resistance is required, the effect of both the UV absorber contained in the clear and the UV absorber contained in the UV absorbing layer is effective. It is preferable at the point which can fully protect a layer.
(基材フィルム層(E))
基材フィルム層(E)は、本発明の積層フィルムを製造する際のキャリアフィルムとしての働きをもなすものである。すなわち、本発明の3次元成型品加飾用積層フィルムの製造時に、各層を形成するための基材として使用されるものである。また、上述した図3に示したような態様においては、加飾処理を行った後にも成型体上に存在するものもある。この場合には、単なる基材としての役割だけではなく、表面保護機能等の機能も発揮する。
(Base film layer (E))
The base film layer (E) serves as a carrier film when the laminated film of the present invention is produced. That is, it is used as a base material for forming each layer during the production of the laminated film for decorating a three-dimensional molded product of the present invention. Moreover, in the aspect as shown in FIG. 3 described above, there are some which are present on the molded body even after the decoration process. In this case, not only a role as a base material but also functions such as a surface protection function are exhibited.
基材フィルム層(E)を形成するフィルムとしては、特に限定されず、例えば、軟質塩化ビニルフィルム、無延伸ポリプロピレンフィルム、無延伸ポリエステルフィルム、ポリカーボネートフィルム、アクリル樹脂フィルム、フッ素フィルム等の従来公知のフィルムが挙げられる。これらの中でも、ポリエステルおよび/またはポリオレフィンにより形成されるフィルムが好ましく、特に省エネ低温加工性の点からは無延伸ポリエステルフィルムがより好ましい。上記基材フィルム層(E)の厚みは、0.01~0.5mmであることが好ましく、0.02~0.3mmであることがより好ましい。この範囲を外れると、キャリアフィルムとしての働きや、電磁線硬化の際の経済性の点で好ましくない。 The film for forming the base film layer (E) is not particularly limited, and for example, a conventionally known film such as a soft vinyl chloride film, an unstretched polypropylene film, an unstretched polyester film, a polycarbonate film, an acrylic resin film, and a fluorine film. A film is mentioned. Among these, a film formed of polyester and / or polyolefin is preferable, and an unstretched polyester film is more preferable from the viewpoint of energy-saving and low-temperature processability. The thickness of the base film layer (E) is preferably from 0.01 to 0.5 mm, and more preferably from 0.02 to 0.3 mm. Outside this range, it is not preferable in terms of the function as a carrier film and the economical efficiency at the time of electromagnetic radiation curing.
(離型層(F))
本発明における離型層(F)は、公知の任意のものを使用することができ、例えば、シリコーン系離型剤等によって形成することができる。
離型層(F)とクリヤー塗膜層(D)の剥離強度は、0.05~8.0N/25mmであることが好ましく、0.1~5.0N/25mmであることがさらに好ましい。0.05N/25mm未満であると、フィルム製造時、加飾成形時に基材フィルム層(E)が剥離するなど、作業性が悪く、また、8.0N/25mmを超えると、成形後フィルムを剥離する場合に、剥離が困難となる恐れがある。
(Release layer (F))
As the release layer (F) in the present invention, any known one can be used, and for example, it can be formed with a silicone release agent or the like.
The peel strength between the release layer (F) and the clear coating layer (D) is preferably 0.05 to 8.0 N / 25 mm, and more preferably 0.1 to 5.0 N / 25 mm. When it is less than 0.05 N / 25 mm, workability is poor, such as peeling of the base film layer (E) during film production and decorative molding, and when it exceeds 8.0 N / 25 mm, a film after molding is obtained. In the case of peeling, there is a possibility that peeling becomes difficult.
(破断伸度)
本発明の3次元成型品加飾用積層フィルムは、硬化前に、40~130℃で30~400%の破断伸びを有するものであることが好ましい。すなわち上記の温度範囲で、このような破断伸度を有するものとすることで、深絞り成形に容易に対応できるものとなり、本発明の効果を好適に得ることができる。このような数値範囲内のものとすることは、フィルムを形成する各層の成分を調製することで可能となる。本発明において、「40~130℃で30~400%の破断伸びを有する」とは、破断伸びが30~400%を示す温度領域が40~130℃内にあり、その温度で成形することで、十分な延伸性が得られる。という意味である。
(Elongation at break)
The three-dimensional molded decorative laminated film of the present invention preferably has a breaking elongation of 30 to 400% at 40 to 130 ° C. before curing. That is, by having such elongation at break in the above temperature range, it is possible to easily cope with deep drawing, and the effects of the present invention can be suitably obtained. It is possible to make it within such a numerical range by preparing the components of each layer forming the film. In the present invention, “having a breaking elongation of 30 to 400% at 40 to 130 ° C.” means that a temperature range in which the breaking elongation is 30 to 400% is within 40 to 130 ° C., and molding is performed at that temperature. Sufficient stretchability is obtained. It means that.
なお、破断伸度は、基材フィルム(E)を含む状態で島津製作所製オートグラフAG-ISを用い、40~130℃の温度範囲内で、50mm/minの引張速度にて測定し、いずれかの層が破断した時点の伸びを測定して得られた値である。フィルムの性質に応じて、40~130℃の範囲内のいずれかの任意の温度において、破断伸びが上述した範囲のものとなればよい。 The elongation at break was measured by using an autograph AG-IS manufactured by Shimadzu Corporation with the base film (E) in a temperature range of 40 to 130 ° C. and a tensile speed of 50 mm / min. It is a value obtained by measuring the elongation at the time when such a layer broke. Depending on the properties of the film, the elongation at break may be in the above-described range at any arbitrary temperature within the range of 40 to 130 ° C.
(積層フィルムの製造方法)
本発明の3次元成型品加飾用積層フィルムを構成する意匠層(B)、基材フィルム層(E)以外の各層は、各層を構成する成分を溶剤に溶解した塗料組成物を調製し、これを基材フィルム層(E)上に塗布・乾燥することで、形成することができる。上記意匠層(B)は上述したように、インクジェット印刷によって形成するものである。
(Laminated film manufacturing method)
Each layer other than the design layer (B) and the base film layer (E) constituting the three-dimensional molded product decorative laminated film of the present invention is prepared by preparing a coating composition in which components constituting each layer are dissolved in a solvent, It can form by apply | coating and drying this on a base film layer (E). The design layer (B) is formed by ink jet printing as described above.
なお、図1~3に示したような本発明の層構成においては、製造に際して紫外線吸収層(C)上に意匠層(B)をインクジェット印刷する工程が存在する。本発明においては、紫外線吸収層(C)の表面張力が一定範囲に調整されたものであることから、このような工程において良好な印刷を行うことができるものである。 In the layer structure of the present invention as shown in FIGS. 1 to 3, there is a step of inkjet printing the design layer (B) on the ultraviolet absorbing layer (C) during production. In the present invention, since the surface tension of the ultraviolet absorbing layer (C) is adjusted within a certain range, good printing can be performed in such a process.
上記各層を形成するための塗布方法としては、特に限定されないが、例えば、スプレーによる吹付け塗布、アプリケーターや、ダイコーター、バーコーター、ロールコーター、コンマコーター、ローラブラシ、はけ、へら等を用いて塗布すればよい。上記塗布方法にて、塗料溶液を塗布した後、該塗料溶液中の溶剤を除去するために、加温乾燥を行って、形成することができる。 The coating method for forming each layer is not particularly limited. For example, spray coating by spray, applicator, die coater, bar coater, roll coater, comma coater, roller brush, brush, spatula, etc. are used. And apply. After the coating solution is applied by the above application method, the coating solution can be formed by heating and drying in order to remove the solvent in the coating solution.
また、上述したように、接着層(A)に関しては、塗布・乾燥という方法ではなく、ラミネート法によって接着するものであってもよい。すなわち、接着層(A)によって形成されたフィルムを調製し、これをフィルムにラミネートによって接着させる方法で形成してもよい。 Further, as described above, the adhesive layer (A) may be bonded by a laminating method instead of the coating / drying method. That is, the film formed by the adhesive layer (A) may be prepared and formed by a method of adhering the film to the film by lamination.
(使用方法)
本発明の3次元成型品加飾用積層フィルムを用いて基材を加飾する場合には、従来公知の手法と同様に行えばよく、特に限定されるものではない。すなわち、必要に応じて積層フィルムから基材フィルム層(E)を剥離し、接着層が基材表面に面するようにして、基材表面に積層フィルムを密着するように、該積層フィルムを圧着させて加飾する。その後、電磁波照射又は加熱を行い、各層を硬化させて、塗膜を得る。また、図1及び図2に示した層構成の複層フィルムの場合には、圧着、硬化後に基材フィルム層(E)を剥離してもよい。なお、積層フィルムを基材表面に密着させる場合には、真空成形、射出成型による加熱、成型等を行うことができる。
(how to use)
When decorating a base material using the laminated film for decorating a three-dimensional molded product of the present invention, it may be performed in the same manner as a conventionally known method, and is not particularly limited. That is, the base film layer (E) is peeled off from the laminated film as necessary, and the laminated film is pressure-bonded so that the laminated film is in close contact with the base material surface so that the adhesive layer faces the base material surface. Let them decorate. Thereafter, electromagnetic wave irradiation or heating is performed to cure each layer to obtain a coating film. Moreover, in the case of the multilayer film of the layer structure shown in FIG.1 and FIG.2, you may peel a base film layer (E) after pressure bonding and hardening. In the case where the laminated film is brought into close contact with the substrate surface, vacuum molding, heating by injection molding, molding or the like can be performed.
なお、本発明の積層フィルムによって好適に加飾を施すことができる基材は、特に限定されないが、例えば、バンパー、フロントアンダースポイラー、リヤーアンダースポイラー、サイドアンダースカート、サイドガーニッシュ、ドアミラー等の自動車外装部品、インパネ、センターコンソール、ドアスイッチパネル等の自動車内装部品、携帯電話やオーディオ製品、冷蔵庫、ファンヒータ、照明器具等の家電製品の筐体、洗面化粧台等を挙げることができる。 The base material that can be suitably decorated with the laminated film of the present invention is not particularly limited, but for example, automotive exteriors such as bumpers, front under spoilers, rear under spoilers, side under skirts, side garnishes, and door mirrors. Examples include automobile interior parts such as parts, instrument panels, center consoles, door switch panels, cellular phones, audio products, refrigerators, fan heaters, housings for household appliances such as lighting fixtures, and vanities.
以下、本発明を実施例によって説明する。実施例中、配合割合において%とあるのは特に言及がない限り重量%を意味する。本発明は以下に記載した実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples. In the examples, “%” in the blending ratio means “% by weight” unless otherwise specified. The present invention is not limited to the examples described below.
(合成例 ポリウレタンの合成)
 攪拌機、還流冷却管、温度計、空気吹き込み管、及び材料投入口を備えた反応容器を用意した。反応容器の内部を空気で置換しながら、ポリヘキサメチレンカーボネートジオール(商品名「デュラノールT6001」、旭化成ケミカルズ(株)製、末端官能基定量による数平均分子量=1,000)200.0g、1,4-ブタンジオール80.0g、及びジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合体(水酸基価102.9mgKOH/g)120.0gを仕込んだ。
次いで、溶剤としてメチルエチルケトン(MEK)238.1gを仕込んだ。系内が均一となった後、50℃で4,4‘-メチレンビス-シクロヘキシルジイソシアネート314.2gを仕込み、触媒としてジブチルチンラウリレートを使用して80℃で反応させた。
溶剤希釈により反応液の粘度を調整し、赤外吸収スペクトル分析で測定される遊離イソシアネート基による2,270cm-1の吸収が消失するまで反応を進行させた。MEKとシクロヘキサノンの質量比が1:1となるまでシクロヘキサノンを添加して、ポリウレタンを含有する樹脂溶液を得た。
得られた樹脂溶液の粘度は200dPa・s/20℃、固形分は45%、2重結合当量は600g/eqであった。また、GPCにより測定したポリウレタンの重量平均分子量は44,000であった。
(Synthesis example Polyurethane synthesis)
A reaction vessel equipped with a stirrer, a reflux condenser, a thermometer, an air blowing tube, and a material inlet was prepared. While replacing the inside of the reaction vessel with air, 200.0 g of polyhexamethylene carbonate diol (trade name “Duranol T6001”, manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight by terminal functional group determination = 1,000), 1, 80.0 g of 4-butanediol and 120.0 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (hydroxyl value: 102.9 mg KOH / g) were charged.
Next, 238.1 g of methyl ethyl ketone (MEK) was charged as a solvent. After the system became homogeneous, 314.2 g of 4,4′-methylenebis-cyclohexyl diisocyanate was charged at 50 ° C. and reacted at 80 ° C. using dibutyltin laurate as a catalyst.
The viscosity of the reaction solution was adjusted by solvent dilution, and the reaction was allowed to proceed until 2,270 cm-1 absorption due to free isocyanate groups as measured by infrared absorption spectrum analysis disappeared. Cyclohexanone was added until the mass ratio of MEK to cyclohexanone was 1: 1 to obtain a resin solution containing polyurethane.
The resulting resin solution had a viscosity of 200 dPa · s / 20 ° C., a solid content of 45%, and a double bond equivalent of 600 g / eq. Moreover, the weight average molecular weight of the polyurethane measured by GPC was 44,000.
〔積層フィルムの製造例〕
<クリヤー塗料溶液の調整>
攪拌機を備えた容器に、ポリウレタンアクリレート(D-1)、モノマー(D-2)を入れ、攪拌しながら最終の塗料がNV=40%となる量のMEKを入れ、さらに重合開始剤(C3)を入れ、30分間攪拌し、クリヤー塗料溶液を得た。
[Production example of laminated film]
<Preparation of clear paint solution>
Put a polyurethane acrylate (D-1) and a monomer (D-2) in a container equipped with a stirrer, add MEK in such an amount that the final coating becomes NV = 40% while stirring, and further a polymerization initiator (C3) And stirred for 30 minutes to obtain a clear coating solution.
<紫外線吸収塗料溶液の調整>       
攪拌機を備えた容器に、バインダー樹脂(C-1)及び紫外線吸収剤(C-2)を入れ、攪拌しながら最終の塗料がNV=35%となる量のMIBKを入れ、30分間攪拌し、紫外線吸収塗料溶液を得た。   
<Preparation of UV absorbing coating solution>
In a container equipped with a stirrer, the binder resin (C-1) and the ultraviolet absorber (C-2) are placed, and while stirring, the amount of MIBK in which the final paint is NV = 35% is placed, and stirred for 30 minutes. An ultraviolet absorbing coating solution was obtained.
<積層フィルムの作製1;図2に示す積層構造のフィルムの作成>
各層を形成する樹脂組成等は、それぞれ表中に示した。このような組成に基づいて、以下に示す方法で積層構造のフィルムを作成した。
離形層(D)を形成した基材フィルム(E)上に、乾燥した時の膜厚(以下、乾燥膜厚)が20μmのクリヤー塗膜層(D)が得られるように、上記クリヤー塗料溶液を、アプリケーターを用いて塗布し、80℃にて15分間乾燥させてクリヤー塗膜層(D)を形成した。
なお、以下では、基材フィルム層(E)上にクリヤー塗膜層(D)が形成されてなるものを、(E+D)層フィルムと記載する。
<Production 1 of laminated film; Production of film having a laminated structure shown in FIG. 2>
The resin composition forming each layer is shown in the table. Based on such a composition, a film having a laminated structure was prepared by the following method.
On the base film (E) on which the release layer (D) is formed, the clear coating material is used so that a clear coating film layer (D) having a dry film thickness (hereinafter referred to as dry film thickness) of 20 μm is obtained. The solution was applied using an applicator and dried at 80 ° C. for 15 minutes to form a clear coating layer (D).
In addition, below, what formed the clear coating film layer (D) on the base film layer (E) is described as an (E + D) layer film.
次いで、上記(E+D)層フィルムのクリヤー塗膜層(D)上に、乾燥膜厚が20μmの紫外線吸収層(C)が得られるように、上記紫外線吸収塗料溶液を、アプリケーターを用いて塗布し、その後、80℃にて15分間乾燥させ、紫外線吸収層(C)を形成した。
さらに、紫外線吸収層(C)上に、インクジェット印刷機UJF-3042(ミマキエンジニアリング製)を用いて、UVインク層(B)を形成した。なお、UVインク層(B)の形成においては、層形成の後に図2の(Y)側からの紫外線照射によってインクの硬化を行った。
Next, the UV absorbing coating solution is applied using an applicator so that an ultraviolet absorbing layer (C) having a dry film thickness of 20 μm is obtained on the clear coating layer (D) of the (E + D) layer film. Thereafter, the film was dried at 80 ° C. for 15 minutes to form an ultraviolet absorbing layer (C).
Further, a UV ink layer (B) was formed on the ultraviolet absorbing layer (C) using an inkjet printer UJF-3042 (manufactured by Mimaki Engineering). In the formation of the UV ink layer (B), the ink was cured by ultraviolet irradiation from the (Y) side in FIG. 2 after the layer formation.
続いてUVインク層(B)上に、乾燥膜厚が10μmの接着剤層が得られるように、接着剤(バイロンUR-3200、東洋紡社製またはUR-1361ET、アロンエバーグリップ社製)を、アプリケーターを用いて塗布し、80℃にて15分間乾燥させ、接着剤層を形成した。 Subsequently, an adhesive (Byron UR-3200, manufactured by Toyobo Co., Ltd. or UR-1361ET, manufactured by Aron Evergrip Co., Ltd.) is obtained on the UV ink layer (B) so as to obtain an adhesive layer having a dry film thickness of 10 μm. It apply | coated using the applicator and it was made to dry at 80 degreeC for 15 minute (s), and the adhesive bond layer was formed.
<積層フィルムの作製2;図2に示す積層構造のフィルムの作成2(実施例7)>
接着層(A)の形成において、接着層からなるフィルムを調整し、これを、MCK(株) MRK-650Yを使用したラミネート法によって、上述した方法によって得られた(B)~(E)層からなる積層フィルムに接着することによって、積層フィルムを得た。ラミネートは、以下の条件によって行った。
直径80mmの耐熱シリコンゴムロール
温度:85℃、速度:42cm/min
<Production 2 of laminated film 2; Production 2 of film having a laminated structure shown in FIG. 2 (Example 7)>
In the formation of the adhesive layer (A), a film composed of the adhesive layer was prepared, and this was obtained by laminating using MCK MRK-650Y, and the layers (B) to (E) obtained by the above-described method. A laminated film was obtained by adhering to a laminated film consisting of Lamination was performed under the following conditions.
Heat-resistant silicone rubber roll with a diameter of 80 mm Temperature: 85 ° C., Speed: 42 cm / min
<積層フィルムの作製3;図3に示す積層構造のフィルムの作成>
基材フィルム(E)上に、乾燥した時の膜厚(以下、乾燥膜厚)が20μmのクリヤー塗膜層(D)が得られるように、上記クリヤー塗料溶液を、アプリケーターを用いて塗布し、80℃にて15分間乾燥させてクリヤー塗膜層(D)を形成した。
なお、以下では、基材フィルム層(E)上にクリヤー塗膜層(D)が形成されてなるものを、(E+D)層フィルムと記載する。
<Production 3 of laminated film; Production of film having laminated structure shown in FIG. 3>
On the base film (E), the clear coating solution is applied using an applicator so that a clear coating layer (D) having a dry film thickness (hereinafter, dry film thickness) of 20 μm is obtained. And dried at 80 ° C. for 15 minutes to form a clear coating layer (D).
In addition, below, what formed the clear coating film layer (D) on the base film layer (E) is described as an (E + D) layer film.
次いで、上記(E+D)層フィルムのクリヤー塗膜層(D)とは反対側に、乾燥膜厚が20μmの紫外線吸収層(C)が得られるように、上記紫外線吸収塗料溶液を、アプリケーターを用いて塗布し、その後、80℃にて15分間乾燥させ、紫外線吸収層(C)を形成した。
さらに、紫外線吸収層(C)上に、インクジェット印刷機UJF-3042(ミマキエンジニアリング製)を用いて、UVインク層(B)を形成した。なお、UVインク層(B)の形成においては、層形成の後に図3の(Y)側からの紫外線照射によってインクの硬化を行った。
Next, the applicator is used to apply the UV-absorbing coating solution so that an ultraviolet-absorbing layer (C) having a dry film thickness of 20 μm is obtained on the side opposite to the clear coating layer (D) of the (E + D) layer film. And then dried at 80 ° C. for 15 minutes to form an ultraviolet absorbing layer (C).
Further, a UV ink layer (B) was formed on the ultraviolet absorbing layer (C) using an inkjet printer UJF-3042 (manufactured by Mimaki Engineering). In the formation of the UV ink layer (B), the ink was cured by ultraviolet irradiation from the (Y) side in FIG. 3 after the layer formation.
続いて、UVインク層(B)上に、乾燥膜厚が10μmの接着剤層が得られるように、接着剤(バイロンUR-3200、東洋紡社製またはUR-1361ET、アロンエバーグリップ社製)を、アプリケーターを用いて塗布し、80℃にて15分間乾燥させ、接着剤層を形成した。 Subsequently, an adhesive (Byron UR-3200, manufactured by Toyobo Co., Ltd. or UR-1361ET, manufactured by Aron Evergrip Co., Ltd.) is applied on the UV ink layer (B) so as to obtain an adhesive layer having a dry film thickness of 10 μm. Then, it was applied using an applicator and dried at 80 ° C. for 15 minutes to form an adhesive layer.
〔積層フィルムによって加飾された成形体の製造例〕
上下ボックスからなる両面真空成形装置(商品名NGF-0709、布施真空(株)社製)内に装備された上下昇降テーブル上に、ABS製基材(成型品)を載置した。その後、上記両面真空成形装置の成型基材(成型品)の上部にあるシートクランプ枠に、上記にて得た積層フィルムをセットした。続いて、上下ボックス内の真空度が1.0kPaになるように減圧し、近赤外線ヒータを用いて積層フィルムの温度が90℃になるまで加熱し、成型基材を上昇させて、成型基材と積層フィルムとを圧着、その後、上ボックスにのみ200kPaの圧縮空気を導入し、35秒間保持した。上下ボックスを大気圧に開放し、積層フィルムで加飾された加飾成形体を得た。さらに、上記加飾成形体のクリヤー塗膜層(B)側から、120W/cmの高圧水銀灯を用いて、2000mJ/cmの光量の紫外線を照射し、クリヤー塗膜層(B)のクリヤー塗料を硬化させ、UV(紫外線)硬化成形体を得た。
[Production Example of Molded Body Decorated with Laminated Film]
An ABS base material (molded product) was placed on a vertical lift table equipped in a double-sided vacuum forming apparatus (trade name NGF-0709, manufactured by Fuse Vacuum Co., Ltd.) consisting of upper and lower boxes. Thereafter, the laminated film obtained above was set on the sheet clamp frame at the upper part of the molding substrate (molded product) of the double-sided vacuum molding apparatus. Subsequently, the pressure in the upper and lower boxes is reduced to 1.0 kPa, and the laminated film is heated using a near infrared heater until the temperature of the laminated film reaches 90 ° C. Then, 200 kPa of compressed air was introduced only into the upper box and held for 35 seconds. The upper and lower boxes were opened to atmospheric pressure to obtain a decorative molded body decorated with a laminated film. Further, the clear coating layer (B) was irradiated with UV light of 2000 mJ / cm 2 using a 120 W / cm high-pressure mercury lamp from the clear coating layer (B) side of the decorative molded body. Was cured to obtain a UV (ultraviolet) cured product.
なお、以下に示す各表中で、以下の成分を使用した。
UV 1700B (日本合成化学工業);ウレタンアクリレートオリゴマールシリンTPO(BASF);2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド
ノバクリアSG007(三菱樹脂) A-PETシート
ソフトシャイン(東洋紡) 二軸延伸ポリエステルフィルム
MAU-2000(大日精化):オレフィン樹脂
Xp012N35(三井化学):オレフィン樹脂
1321(東亜合成):塩ビ、酢ビ共重合樹脂
TE-5430(三井化学):ウレタン樹脂
RT-87140(Morton):アクリル樹脂
D-178N(三井化学):アロファネート変性したポリヘキサメチレンジイソシアネート
チヌビン900(BASF):2,2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール
チヌビン477(BASF):ヒドロキシフェニルトリアジン(HPT)系紫外線吸収剤
In the following tables, the following components were used.
UV 1700B (Nippon Synthetic Chemical Industry); Urethane acrylate oligomer Lucillin TPO (BASF); 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide Novaclear SG007 (Mitsubishi Resin) A-PET sheet Soft Shine (Toyobo) II Axial stretched polyester film MAU-2000 (Daiichi Seika): Olefin resin Xp012N35 (Mitsui Chemicals): Olefin resin 1321 (Toagosei): Vinyl chloride / vinyl acetate copolymer resin TE-5430 (Mitsui Chemicals): Urethane resin RT-87140 Morton): acrylic resin D-178N (Mitsui Chemicals): allophanate-modified polyhexamethylene diisocyanate tinuvin 900 (BASF): 2,2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl) -1 -Phenylethyl) phenol tinuvin 477 (BASF): hydroxyphenyltriazine (HPT) UV absorber
得られた積層フィルムについて、以下の基準に基づいて評価を行った。
(伸度)
基材込みにて島津製作所製オートグラフAG-ISを用い80℃の温度条件下、50mm/minの引張速度にて測定した。
いずれかの層が破断した時点で、伸びを判定した。
The obtained laminated film was evaluated based on the following criteria.
(Elongation)
It was measured at a tensile rate of 50 mm / min under the temperature condition of 80 ° C. using an autograph AG-IS manufactured by Shimadzu Corporation including the base material.
Elongation was determined when any layer broke.
(表面張力)
自動接触角計DSA20(クルツ社製)を用い、水およびヨウ化メチレンの接触角を測定し、算出した。
(surface tension)
Using an automatic contact angle meter DSA20 (manufactured by Kurz), the contact angles of water and methylene iodide were measured and calculated.
(紫外線透過性)
紫外可視分光光度計U-4100(日立ハイテクノロジーズ)を用い、波長290.0 nm ~ 430.0nmの範囲で測定した。なお、光源として、紫外域は重水素ランプ、可視・近赤外域はハロゲンランプを使用した。
(Ultraviolet transmission)
Using a UV-visible spectrophotometer U-4100 (Hitachi High-Technologies), measurement was performed in the wavelength range of 290.0 nm to 430.0 nm. As the light source, a deuterium lamp was used in the ultraviolet region, and a halogen lamp was used in the visible / near infrared region.
(膜強度)
紫外線吸収層単独で島津製作所製オートグラフAG-ISを用い60℃の温度条件下、50mm/minの引張速度にて、伸び200%の時の膜強度を測定した。
(Membrane strength)
The film strength at an elongation of 200% was measured using an autograph AG-IS manufactured by Shimadzu Corporation under a temperature condition of 60 ° C. and a tensile speed of 50 mm / min.
(成形性)
布施真空(株)製両面真空成形機NGF-0709を用いてTOM成形にて確認した。
◎:基材に高延伸部まで追随し成形可能
○:基材に中延伸部まで追随し成形可能
△:基材に低延伸部まで追随し成形可能
×:成形不可
(Formability)
This was confirmed by TOM molding using a double-sided vacuum molding machine NGF-0709 manufactured by Fuse Vacuum Co., Ltd.
◎: The base material can be traced to the highly stretched part and can be molded ○: The base material can be traced to the middle stretched part and can be molded Δ: The base material can be traced to the low stretched part and molded
(印刷適性)
印刷工程における印刷適性を以下の基準によって判断した。
〇:インクドット形成良好
〇△:インクがややハジキ(ドット径小)または、ややにじみ(ドット径大)
△:インクがハジキ(ドット径小)または、にじみ(ドット径大)
△×:ハジキまたはにじみにより印刷画像不良
×:印刷画像形成できず
(Printability)
The printability in the printing process was judged according to the following criteria.
○: Ink dot formation is good ○ △: Ink slightly repels (small dot diameter) or slightly blurs (large dot diameter)
Δ: Ink is repelled (small dot diameter) or smeared (large dot diameter)
Δ: Print image failure due to repellency or blurring ×: Print image cannot be formed
成形後耐SW性:耐スチールウール性試験機を用いて、100g/cm荷重にて#0000のスチールウールを10往復
◎:傷なし
○:2~3本の傷
△:数えられる程度の傷
×:傷が無数
After molding resistance SW resistance: using a steel wool resistance tester, 100g / cm 2 10 reciprocates steel wool # 0000 under a load ◎: No scratches ○: 2 ~ 3 pieces of scratches △: the degree counted scratches ×: Countless scratches
成形後耐衝撃性:デュポン耐衝撃試験機を用い、高さ20cmから重さ500gの重りを落下させ、塗膜のワレを確認
○:ワレなし
△:塗膜にわずかなひび
×:塗膜に顕著なひび
Impact resistance after molding: Using a DuPont impact resistance tester, drop a weight from 20cm to 500g in weight and check the crack of the coating film. ○: No cracking △: Slight crack in coating film ×: Coating film Remarkable cracks
成形後耐薬品性:内径38mm 高さ15mmの円筒のポリリングを塗膜に固定し、下記の溶液を滴下。各条件下にてフタをして静置。試験後、水洗いして塗膜の状態初期と比較する。
耐酸    0.1N H2SO4溶液   5ml   20℃×24h
耐アルカリ 0.1N NaOH溶液    5ml   55℃×4h
耐水    蒸留水            5ml   55℃×4h
◎:塗膜に変化なし
○:塗膜外観がわずかに変化(しわ、クラック)
△:塗膜外観が明らかに変化(しわ、クラック)
×:塗膜外観が著しく変化(しわ、クラック)
Chemical resistance after molding: A cylindrical polyring having an inner diameter of 38 mm and a height of 15 mm is fixed to the coating film, and the following solution is dropped. Cap and leave under each condition. After the test, it is washed with water and compared with the initial state of the coating film.
Acid resistant 0.1N H2SO4 solution 5ml 20 ℃ × 24h
Alkali resistance 0.1N NaOH solution 5ml 55 ° C x 4h
Water resistant Distilled water 5ml 55 ℃ × 4h
A: No change in coating film B: Slight change in coating film appearance (wrinkles, cracks)
Δ: Appearance of coating is clearly changed (wrinkles, cracks)
×: Remarkably changes in appearance of coating film (wrinkles, cracks)
結果を以下の表1、2、4、5に示す。 The results are shown in Tables 1, 2, 4, and 5 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
なお、上記表2中の配合A~Dは、以下の表3に示した処方のものを使用した。 The formulations A to D in Table 2 used were those having the formulations shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
以上の実施例の結果から、本発明の3次元成型品加飾用積層フィルムは、良好な成形性、印刷適性を有するため、3次元成型品に対して良好な加飾を行うことができることが明らかである。 From the result of the above Example, since the laminated film for 3D molded product decoration of the present invention has good moldability and printability, it can perform good decoration on the 3D molded product. it is obvious.
本発明の3次元成型品加飾用積層フィルムは、各種の成型体に対して3次元的形状面を有する立体的な加飾を行う際に好適に使用することができる。 The laminated film for decorating a three-dimensional molded product of the present invention can be suitably used when performing three-dimensional decoration having a three-dimensional shape surface on various molded bodies.
(A) 接着層
(B) 意匠層
(C) 紫外線吸収層
(D) クリヤー塗膜層
(E) 基材フィルム層
(F) 離形層
 
 
(A) Adhesive layer (B) Design layer (C) Ultraviolet absorbing layer (D) Clear coating layer (E) Base film layer (F) Release layer

Claims (8)

  1. 接着層(A)、意匠層(B)、紫外線吸収層(C)、クリヤー塗膜層(D)及び基材フィルム層(E)を有する3次元成型品加飾用積層フィルムであって、
    意匠層(B)は、エネルギー線硬化性インキによるインクジェット印刷によって形成されたものであり、
    紫外線吸収層(C)は、バインダー樹脂(C-1)及び紫外線吸収剤(C-2)を含有する塗料組成物によって形成され、かつ、
    表面張力20~60mN/m、及び、
    紫外線透過率290nm~430nmで20%以下
    を満たすものであり、
    紫外線吸収層(C)は、意匠層(B)とクリヤー塗膜層(D)との間に形成されたもので
    あり、
    クリヤー塗膜層(D)は、エネルギー線硬化性塗膜であり、
    積層フィルムとして、硬化前に、40~130℃で30~400%の破断伸びを有することを特徴とする3次元成型品加飾用積層フィルム。
    A laminated film for decorating a three-dimensional molded product having an adhesive layer (A), a design layer (B), an ultraviolet absorbing layer (C), a clear coating layer (D) and a base film layer (E),
    The design layer (B) is formed by ink jet printing with an energy ray curable ink,
    The ultraviolet absorbing layer (C) is formed of a coating composition containing a binder resin (C-1) and an ultraviolet absorber (C-2), and
    Surface tension 20-60 mN / m, and
    UV transmittance of 290 nm to 430 nm satisfying 20% or less,
    The ultraviolet absorbing layer (C) is formed between the design layer (B) and the clear coating layer (D),
    The clear coating layer (D) is an energy ray curable coating,
    A laminated film for decorating a three-dimensional molded product characterized by having a breaking elongation of 30 to 400% at 40 to 130 ° C. before being cured as a laminated film.
  2. 紫外線吸収層(C)は、強度が40℃~130℃で3~1000N/cm2である請求項1記載の3次元成型品加飾用積層フィルム。 2. The laminated film for decorating a three-dimensional molded product according to claim 1, wherein the ultraviolet absorbing layer (C) has a strength of 3 to 1000 N / cm 2 at 40 to 130 ° C.
  3. 紫外線吸収層(C)は、更に、表面調整剤(C-3)を含有する請求項1又は2記載の3次元成型品加飾用積層フィルム。 The laminated film for decorating a three-dimensional molded product according to claim 1 or 2, wherein the ultraviolet absorbing layer (C) further contains a surface conditioner (C-3).
  4. 接着層(A)、意匠層(B)、紫外線吸収層(C)、クリヤー塗膜層(D)及び基材フィルム層(E)をこの順で積層したものである請求項1、2又は3記載の3次元成型品加飾用積層フィルム。 The adhesive layer (A), the design layer (B), the ultraviolet absorbing layer (C), the clear coating layer (D) and the base film layer (E) are laminated in this order. The laminated film for decorating the three-dimensional molded product described.
  5. クリヤー塗膜層(D)と基材フィルム層(E)との間に、離形層(F)を設けたものである請求項1、2、3又は4記載の3次元成型品加飾用積層フィルム。 The three-dimensional molded product decoration according to claim 1, 2, 3, or 4, wherein a release layer (F) is provided between the clear coating layer (D) and the base film layer (E). Laminated film.
  6. 接着層(A)、意匠層(B)、紫外線吸収層(C)、基材フィルム層(E)及びクリヤー塗膜層(D)をこの順で積層したものである請求項1、2又は3記載の3次元成型品加飾用積層フィルム。 The adhesive layer (A), the design layer (B), the ultraviolet absorbing layer (C), the base film layer (E) and the clear coating layer (D) are laminated in this order. The laminated film for decorating the three-dimensional molded product described.
  7. クリヤー塗膜層(D)は、ポリウレタンアクリレート(D1)と、不飽和2重結合を有するモノマー・オリゴマー(D2)と、重合開始剤(D3)とを含有する塗料組成物であって、
    上記ポリウレタンアクリレート(D1)は、
     2重結合当量:130~600g/eq
     分子量Mw:3000~200000
     ウレタン濃度:300~2000g/eq
    である請求項1、2、3、4、5又は6記載の3次元成型品加飾用積層フィルム。
    The clear coating layer (D) is a coating composition containing polyurethane acrylate (D1), a monomer / oligomer (D2) having an unsaturated double bond, and a polymerization initiator (D3),
    The polyurethane acrylate (D1) is
    Double bond equivalent: 130-600 g / eq
    Molecular weight Mw: 3000-200000
    Urethane concentration: 300-2000 g / eq
    The laminated film for decorating a three-dimensional molded article according to claim 1, 2, 3, 4, 5 or 6.
  8. 請求項1~7のいずれか1に記載の3次元成型品加飾用積層フィルムによって成型基材上に加飾して得られたものであることを特徴とする加飾成形体。
     
     
    A decorative molded article obtained by decorating a molded substrate with the three-dimensional molded article decorative laminated film according to any one of claims 1 to 7.

PCT/JP2016/051436 2015-01-20 2016-01-19 Laminate film for decorating molded article and decorative molding WO2016117555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-008365 2015-01-20
JP2015008365 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016117555A1 true WO2016117555A1 (en) 2016-07-28

Family

ID=56417096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051436 WO2016117555A1 (en) 2015-01-20 2016-01-19 Laminate film for decorating molded article and decorative molding

Country Status (2)

Country Link
TW (1) TW201637862A (en)
WO (1) WO2016117555A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022272134A1 (en) * 2021-06-24 2022-12-29 Vici Transition, Inc. Laminates and 3d printers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588996U (en) * 1992-05-25 1993-12-03 シーアイ化成株式会社 Transfer foil
JP2003182207A (en) * 2001-12-13 2003-07-03 Oji Paper Co Ltd Method for manufacturing inkjet recording sheet
JP2005186395A (en) * 2003-12-25 2005-07-14 Nissha Printing Co Ltd Transfer foil, its manufacturing method and manufacturing method of in-mold decorative molded product
JP2012111125A (en) * 2010-11-25 2012-06-14 Dainippon Printing Co Ltd Transfer foil
JP2012153052A (en) * 2011-01-27 2012-08-16 Toyo Ink Sc Holdings Co Ltd Coating agent for forming inkjet ink reception layer, recording medium using the same, and printed matter
JP2013099909A (en) * 2011-11-10 2013-05-23 Nissha Printing Co Ltd Transfer sheet and method for producing ornament molded article by vacuum pressure bonding method
JP2014030969A (en) * 2012-08-03 2014-02-20 Dainippon Printing Co Ltd Decorative sheet and method for manufacturing decorative molded article using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588996U (en) * 1992-05-25 1993-12-03 シーアイ化成株式会社 Transfer foil
JP2003182207A (en) * 2001-12-13 2003-07-03 Oji Paper Co Ltd Method for manufacturing inkjet recording sheet
JP2005186395A (en) * 2003-12-25 2005-07-14 Nissha Printing Co Ltd Transfer foil, its manufacturing method and manufacturing method of in-mold decorative molded product
JP2012111125A (en) * 2010-11-25 2012-06-14 Dainippon Printing Co Ltd Transfer foil
JP2012153052A (en) * 2011-01-27 2012-08-16 Toyo Ink Sc Holdings Co Ltd Coating agent for forming inkjet ink reception layer, recording medium using the same, and printed matter
JP2013099909A (en) * 2011-11-10 2013-05-23 Nissha Printing Co Ltd Transfer sheet and method for producing ornament molded article by vacuum pressure bonding method
JP2014030969A (en) * 2012-08-03 2014-02-20 Dainippon Printing Co Ltd Decorative sheet and method for manufacturing decorative molded article using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022272134A1 (en) * 2021-06-24 2022-12-29 Vici Transition, Inc. Laminates and 3d printers

Also Published As

Publication number Publication date
TW201637862A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6815984B2 (en) Laminated film for decoration of 3D molded products for vacuum forming, its manufacturing method and decoration method for 3D molded products
JP6683624B2 (en) Laminated film for decoration of three-dimensional molded product, manufacturing method thereof and three-dimensional decoration method
TWI636102B (en) Coatings and laminates
JP6599654B2 (en) 3D molded product decorative laminated film for vacuum forming, 3D molded product decoration method and decorative molded body
KR101432455B1 (en) Single-layer film and hydrophilic material comprising same
TWI647269B (en) Aqueous resin composition, laminated body using the same, and image display device
KR101644718B1 (en) Monolayer film and hydrophilic material comprising same
TWI652309B (en) Image display device
JP6353659B2 (en) Laminated film for decorative molded product, coating composition, and decorative molded body
JP5434568B2 (en) Hard coat film for molding
KR20210024486A (en) Radiation curable composition
JP6423947B2 (en) Coating composition for forming a clear coating layer of a laminated film for decorating a three-dimensional molded product
WO2016117555A1 (en) Laminate film for decorating molded article and decorative molding
WO2021132612A1 (en) Layered film for decorating three-dimensional molded article, method for manufacturing said layered film, and three-dimensional decoration method
JP7369558B2 (en) Laminated film for decorating 3D molded products
JP2013127043A (en) Lower layer formation paint used as base coat of hard coat layer, and laminate formed by application of the lower layer formation paint
JP7369559B2 (en) Laminated film for decorating 3D molded products
JP2022123593A (en) Laminated film for decorating three-dimensional molded articles, method for producing the same and method for decorating three-dimensional molded articles
JP2022159795A (en) Laminated film for three-dimensional molding decoration, and three-dimensional molding decoration method
JP2021027364A (en) Decorative film for solar cell module
JP2012167231A (en) Active energy-ray curing composition, laminated film-shape material, and laminated molded article
JP2021020414A (en) Laminate film for decoration of three-dimensional molded article
JP2022100644A (en) Laminated film for decoration of three-dimensional molding, method for manufacturing decorative molding using the same, and decorative molding
JP2022182014A (en) Laminated film for three-dimensional molding decoration, its manufacturing method and three-dimensional molding decoration method
JP2023145550A (en) Copolymer, curable polymer composition, cured product, and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP