WO2016117486A1 - Porous structure and manufacturing method thereof - Google Patents

Porous structure and manufacturing method thereof Download PDF

Info

Publication number
WO2016117486A1
WO2016117486A1 PCT/JP2016/051220 JP2016051220W WO2016117486A1 WO 2016117486 A1 WO2016117486 A1 WO 2016117486A1 JP 2016051220 W JP2016051220 W JP 2016051220W WO 2016117486 A1 WO2016117486 A1 WO 2016117486A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
main surface
porous structure
normal direction
film
Prior art date
Application number
PCT/JP2016/051220
Other languages
French (fr)
Japanese (ja)
Inventor
萬壽 優
直樹 河原
近藤 孝志
誠治 神波
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016570620A priority Critical patent/JP6540715B2/en
Publication of WO2016117486A1 publication Critical patent/WO2016117486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices

Definitions

  • the present invention relates to a porous structure and a method for producing the same.
  • the target object in the sample is collected in the porous structure using a porous structure having a plurality of pores as a filter.
  • a method of using a porous structure in which an object is collected for measurement is known.
  • the target object is a minute object contained in a fluid (specimen) such as PM2.5 existing in the atmosphere or an endoplasmic reticulum contained in blood
  • a porous (mesh-like) structure having pores smaller than those of the object is required.
  • Patent Document 1 International Publication No. 2014/192919), paragraph [0047] and FIG. 8, and Patent Document 2 (Japanese Utility Model Laid-Open No. 59-10879) have two through holes (voids).
  • a porous structure formed by laminating a single void arrangement structure so that one of the void portions of one void arrangement structure partially overlaps only one of the void portions of the other void arrangement structure Has been.
  • Patent Document 3 Japanese Patent Laid-Open No. 2010-42349
  • Patent Document 4 Japanese Patent Laid-Open No. 11-276820
  • a filter porous structure in which a smaller network is formed by laminating a plurality of network structures so that the positions of the meshes are shifted from each other is disclosed. Yes.
  • the porous structures disclosed in Patent Documents 3 and 4 are laminates of wire rods arranged in parallel, and the wires constituting the wire rods are not joined to each other in each layer.
  • the strength is low with respect to the force from the lateral direction of the wire in the direction parallel to the surface.
  • the porous structure disclosed in Patent Document 3 does not join the wires between the layers, positional displacement is likely to occur with respect to the force from the same direction. Therefore, when these porous structures are used as sieves, there has been a problem that the wire is easily deformed by stress due to the object, impurities, fluid, etc., and the strength of the porous structure is not sufficient.
  • an object of the present invention is to provide a porous structure having a small opening and a high opening ratio and sufficient strength, and a method for manufacturing the same.
  • the present invention is a membrane-like porous structure having a first main surface and a second main surface facing each other, A film-like first layer that includes the first main surface and has a plurality of first voids penetrating in the normal direction of the first main surface; A film-like second layer including a plurality of second voids including the second main surface and penetrating in a normal direction of the second main surface; The first layer and the second layer are bonded directly or indirectly, In a plan view seen from the normal direction of the first main surface, each of the plurality of first gaps overlaps two or more of the plurality of second gaps, In a plan view seen from the normal direction of the second main surface, each of the plurality of second voids overlaps two or more of the plurality of first voids, The present invention relates to a porous structure having a through hole penetrating the first main surface and the second main surface in a portion where the plurality of first void portions and the plurality of second void portions overlap. .
  • first layer and the second layer are separated from each other, and the first layer and the second layer are indirectly bonded via a connecting portion.
  • a projection projecting from the surface of the second layer to the first layer side is provided inside at least one of the plurality of second gap portions of the second layer.
  • the present invention is a method for producing a membrane-like porous structure having a first main surface and a second main surface facing each other, A first layer forming step of forming, on the first main surface side, a film-shaped first layer having a plurality of first voids penetrating in a normal direction of the main surface; A film-like second layer having a plurality of second voids penetrating in the normal direction of the main surface is formed on the second main surface side of the first layer, and the first layer, the second layer, A second layer forming step of obtaining the porous structure by directly or indirectly bonding In the second layer forming step, In a plan view seen from the normal direction of the first main surface, each of the plurality of first gap portions overlaps two or more of the plurality of second gap portions, In a plan view seen from the normal direction of the second main surface, each of the plurality of second gaps overlaps two or more of the plurality of first gaps, In the portion where the plurality of first gap portions and the plurality of second gap portions
  • the present invention is a membrane-like porous structure having a first main surface and a second main surface facing each other, A film-like first layer including at least one first void including the first principal surface and penetrating in a normal direction of the first principal surface; A film-like second layer including at least one second void portion including the second main surface and penetrating in a normal direction of the second main surface; The first layer and the second layer are separated from each other, and the first layer and the second layer are indirectly coupled via a connecting portion; In the plan view seen from the normal direction of the first main surface, not all of the at least one first gap portion overlaps the at least one second gap portion, The porous structure which has a through-hole which penetrates the said 1st main surface and the said 2nd main surface.
  • FIG. 2 is a schematic diagram illustrating a structure of a porous structure according to Embodiment 1.
  • FIG. (A) is a perspective view
  • (b) is a plan view.
  • FIG. 3 is a schematic diagram showing structures of a first layer and a second layer that constitute the porous structure of Embodiment 1.
  • (A) is a perspective view
  • (b) is a plan view.
  • FIG. 5 is a schematic diagram for explaining one of the advantages of the first embodiment.
  • (A) is a perspective view
  • (b) is a plan view. It is a schematic diagram as a comparison for demonstrating one of the advantages of Embodiment 1.
  • FIG. (A) is a perspective view
  • (b) is a plan view.
  • FIG. 6 is a plan view showing a structure of a modified example of the porous structure according to Embodiment 1.
  • FIG. 6 is a plan view showing a structure of another modified example of the porous structure according to Embodiment 1.
  • FIG. 6 is a plan view showing a structure of still another modified example of the porous structure according to Embodiment 1.
  • FIG. 6 is a perspective view showing a structure of a porous structure according to Embodiment 2.
  • FIG. 6 is a perspective view showing a structure of a modification of the porous structure according to Embodiment 2.
  • FIG. (A) And (b) shows the same porous structure, and only a viewpoint differs.
  • 6 is a perspective view showing a structure of another modified example of the porous structure according to Embodiment 2.
  • FIG. 6 is a perspective view showing a structure of a porous structure according to Embodiment 3.
  • FIG. 3 is a cross-sectional view for explaining the method for manufacturing the porous structure according to the first embodiment.
  • 6 is a cross-sectional view for explaining a method for producing a porous structure according to Embodiment 2.
  • FIG. 6 is a perspective view for explaining a method for producing a porous structure according to Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating a structure of a porous structure according to Embodiment 4.
  • FIG. 6 is a cross-sectional view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 6 is a cross-sectional view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4.
  • FIG. 6 is a perspective view showing a structure of a porous structure according to Embodiment 4.
  • FIG. FIG. 6 is a perspective view showing structures of a first layer and a second layer that constitute a porous structure according to a fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
  • the porous structure of the present embodiment is a film-like porous structure having a first main surface 11a and a second main surface 12a facing each other, and is a film-like first layer. 11 and a film-like second layer 12.
  • the first layer 11 includes a first main surface 11a and has a plurality of first gap portions 101 penetrating in the normal direction of the first main surface 11a.
  • the second layer 12 includes a second main surface 12a and has a plurality of second gap portions 102 penetrating in the normal direction of the second main surface 12a.
  • the first layer 11 and the second layer 12 are directly coupled to each other at a portion 12 b where they overlap each other.
  • each of the plurality of first gap portions 101 overlaps two or more of the plurality of second gap portions 102.
  • gap part has overlapped with 2 or more of several 1st space
  • a through hole 103 penetrating the first main surface 11a and the second main surface 12a is provided.
  • One through-hole 103 includes a part of one first gap part 101 and a part of one second gap part 102.
  • through-holes 103 having a size smaller than that of the first gap 101 and the second gap 102 are formed by such a configuration.
  • the hole size (D shown in FIG. 2B) of the first gap portion 101 and the second gap portion 102 is 1.0 ⁇ m
  • the width of the crosspiece portion (FIG. 2B) is 1.0 ⁇ m
  • the pitch (total of hole size and crosspiece width: P shown in FIG. 2B) is 1.4 ⁇ m
  • the hole size of the through hole 103 is 0.3 ⁇ m.
  • the pitch is 0.7 ⁇ m.
  • the crosspiece is a portion of the first layer 11 (second layer 12) other than the first gap portion 101 (second gap portion 102) when viewed from the normal direction of the first main surface 11a. This is a portion excluding the portion constituting the entire outer edge of the first layer (second layer). At least one of the first layer and the second layer of the present embodiment has a branch at the crosspiece.
  • the first layer 11 and the second layer 12 constituting the porous structure of the present embodiment have a pair of main surfaces facing each other, and a plurality of voids penetrating both main surfaces.
  • the plurality of gaps are periodically arranged in at least one direction on the first major surface 11a (second major surface 12a) of the first layer 11 (second layer 12).
  • all of the gaps may be periodically arranged, and within a range that does not impair the effects of the present invention, some of the gaps are periodically arranged and other gaps are non-periodically. It may be arranged.
  • the first layer 11 is preferably a quasi-periodic structure or a periodic structure.
  • a quasi-periodic structure is a structure that does not have translational symmetry but is maintained in order. Examples of the quasi-periodic structure include a Penrose structure as a two-dimensional quasi-periodic structure.
  • the term “periodic structure” refers to a structure having spatial symmetry as represented by translational symmetry, and is preferably a two-dimensional periodic structure. Examples of the two-dimensional periodic structure include a mesh filter and a two-dimensional diffraction grating.
  • the two-dimensional periodic structure for example, a film-like structure (lattice-like structure) in which voids are arranged at regular intervals in a matrix shape as shown in FIG.
  • the first layer 11 (second layer 12) shown in FIG. 2A has a square first gap portion 101 (second gap portion 102) as viewed from the first main surface 11a (second main surface 12a) side.
  • the first layer 11 (second layer 12) preferably includes at least a part including the surface thereof, and more preferably the entire porous structure is formed of a conductor.
  • the conductor is an object (material) that conducts electricity, and includes not only metals but also semiconductors.
  • a metal that can be bonded to a functional group of a compound having a functional group such as a hydroxy group, a thiol group, or a carboxyl group, a metal that can coat a functional group such as a hydroxy group or an amino group on the surface, and these An alloy of these metals can be mentioned.
  • nickel, gold, silver, copper, platinum, iron, chromium, silicon, germanium and the like can be mentioned, preferably nickel, gold, silver, copper, platinum and chromium, and more preferably nickel and gold. Can be mentioned.
  • semiconductors examples include group IV semiconductors (Si, Ge, etc.), group II-VI semiconductors (ZnSe, CdS, ZnO, etc.), group III-V semiconductors (GaAs, InP, GaN, etc.), group IV compounds, and the like.
  • Compound semiconductors such as semiconductors (SiC, SiGe, etc.), I-III-VI group semiconductors (CuInSe 2 etc.), and organic semiconductors can be mentioned.
  • the combination of the material of the 1st layer 11 and the 2nd layer 12 is not specifically limited, However, From a viewpoint of obtaining a uniform characteristic as the whole porous structure, it is preferable that it is a combination of the same kind of material.
  • the first layer 11 and the second layer 12 have the same size, shape, pitch, and the like of the voids.
  • through-holes having a uniform size can be regularly arranged in the porous structure.
  • strict sieving can be performed as a filter, and measurement with high accuracy can be performed as a measurement device.
  • the pitch of the first layer 11 and the second layer 12 may be the same, and the width of the crosspieces of the first layer 11 and the second layer 12 may be different.
  • the widths of the crosspieces of the first layer 11 and the second layer 12 may be different, the hole size of the through-hole 103 can be changed, whereby a porous structure having a finer and uniform pore diameter can be obtained. It is also possible to provide.
  • the strength of the porous structure can be increased while increasing the aperture ratio. The strength of the porous structure can be increased by reducing the opening ratio of one of the first layer 11 and the second layer 12 with the same width.
  • the porous structure of the present embodiment can be used as a filter (sieving) for collecting a target contained in a fluid (specimen).
  • the fluid is, for example, a gas or a liquid.
  • the target substance include inorganic substances, organic substances or composites thereof contained in a fluid, or microorganisms or cells.
  • the target object should just have a shape in the state which exists in the fluid, and may be not only solid but liquid, sol, or gel.
  • Examples of the inorganic substance, organic substance, or composite thereof in the gas include PM (Particle Matter) 2.5, SPM (Suspended Particulate Matter), PM10, and pollen in the atmosphere.
  • PM2.5 is a particulate substance floating in the atmosphere, and has a particle diameter of approximately 2.5 ⁇ m or less.
  • the porous structure of the present embodiment can be applied to collection of the following target object.
  • the porous structure of the above embodiment can be applied.
  • exosomes endoplasmic reticulum
  • the size of exosome is about several hundred nanometers, and the porous structure of the above embodiment is applied to collect (filter and concentrate) only exosomes from blood samples from which leukocytes, erythrocytes and other blood cells have been removed. can do.
  • Catching the target object means, for example, that the target object is physically held in the pores of the filter, or that the target object is directly or indirectly applied to the surface of the filter modified so that the target object is easily adsorbed. It means to attach an object.
  • the size of the through-hole 103 of the porous structure used as a filter is not particularly limited as long as the target can be collected.
  • the size of the target cannot physically pass or is difficult to pass. It is preferable.
  • the “size that the target object is difficult to pass” means that the target object can be partially deformed (eg, nucleated cells), and is smaller than the size of the part where the target object is not deformable. Means.
  • the size of the through-hole 103 is preferably less than 1/20 of the target object.
  • the size of the through hole 103 of the porous structure corresponds to the size of the filter hole.
  • the aperture ratio (the ratio of the total area of the through holes 103 to the area of the main surface of the porous structure including the first void 101 or the second void 102) is a viewpoint of increasing the flow velocity of the fluid passing through the porous structure. To 3% or more, more preferably 10% or more.
  • each of the plurality of first voids overlaps two or more of the plurality of second voids in a plan view viewed from the normal direction of the first main surface. .
  • gap part has overlapped with 2 or more of several 1st space
  • it has a through-hole which penetrates a 1st main surface and a 2nd main surface.
  • the porous structure of the present embodiment suppresses the decrease in the aperture ratio and reduces the filtration efficiency, electromagnetic wave measurement efficiency, and the like, as compared with the porous structures disclosed in Patent Documents 1 and 2. Can be suppressed.
  • the opening ratio is preferably 80% or less, and more preferably 60% or less.
  • the aperture ratio is, for example, adjusting the opening size of the void portion indicated by D in FIG. 2B and the lattice spacing (pitch) of the void portion indicated by P in the first layer 11 and the second layer 12, It can be controlled by adjusting the arrangement of the first layer 11 and the second layer 12.
  • the thickness of the porous structure is preferably thin as long as the necessary mechanical strength can be maintained.
  • the thickness of the porous structure is increased, generally the pressure loss when the fluid is passed increases. This is because when the pressure loss of the porous structure increases, the flow rate becomes slow and it becomes difficult to flow the fluid, so that there is a problem that the processing efficiency is lowered.
  • porous structure disclosed in Patent Documents 3 and 4 described above is a laminated body of wire groups arranged in parallel, in order to form a mesh smaller than a mesh composed of two layers, It is necessary to laminate at least four layers of wire rods. Such a laminate (porous structure) has a problem that the thickness is increased.
  • the porous structure of the present embodiment can form minute through holes with half the number of layers. Therefore, the porous structure and the manufacturing method thereof according to the present embodiment are advantageous in obtaining a porous structure having a minute through hole and a small thickness.
  • the thicknesses of the first layer 11 and the second layer 12 are not particularly limited, but when the size of the gap is small, it is preferably 0.5 ⁇ m to 10 ⁇ m from the viewpoint of workability.
  • the surface of the porous structure used as a filter may be modified so that the target product is easily adsorbed. As long as the target can be chemically collected by this surface modification, the size of the through-hole 103 of the porous structure may be such that the target can physically pass therethrough. .
  • Examples of the modification such that the target product is easily adsorbed include coating with a substance having a high affinity for the target product.
  • a modification that binds a host molecule to the surface of the porous structure may be performed so that the target substance is bound to the host molecule.
  • the host molecule is a molecule that can specifically bind the target substance.
  • Examples of the combination of the host molecule and the target substance include an antigen and an antibody, a sugar chain and a protein, a lipid and a protein, Examples include molecular compounds (ligands) and proteins, proteins and proteins, single-stranded DNA and single-stranded DNA, and the like.
  • the porous structure of the present embodiment has an advantage that clogging is less likely to occur when used as a filter than a planar void arrangement structure as shown in FIG. This will be described below with reference to FIG. 3 and FIG. 4 as a comparison.
  • FIG. 3 shows a state where the target object 9 is collected using the porous structure of the present embodiment (see FIG. 1).
  • FIG. 3 shows a closed portion 103 a that is blocked by the object 9 and an opening portion 103 b that is not blocked by the object 9 among the openings of the through-hole 103.
  • One advantage of the porous structure of the present embodiment is that the size of the first void portion 101 of the first layer 11 and the second void portion 102 of the second layer 12 is a small size that cannot be collected.
  • the point is that the through-hole 103 is used to collect an object. Therefore, the size of the object 9 here is smaller than the size of the first gap portion 101 and the second gap portion 102 and larger than the size of the through hole 103.
  • FIG. 4 uses a single-layer void arrangement structure (see FIG. 2) having a through hole 109 having the same size as the through hole 103 in FIG. The state which collected the thing 9 is shown.
  • a closed portion 109 a that is blocked by the object 9 and an opening portion 109 b that is not blocked by the object 9 among the openings of the through hole 109 are shown.
  • FIG. 3 As is clear from a comparison between FIG. 3 and FIG. 4, in the case of the porous structure of the present embodiment (FIG. 3), it can be seen that the relatively large opening 103b is maintained. Further, in the case of FIG. 3, since the opening of the through hole 103 is maintained not only in the plan view as shown in FIGS. 3B and 4B but also in the side surface direction in FIG. It can be seen that the fluid easily passes through the through hole 103 as compared with FIG.
  • the three-dimensional structure around the through-hole 103 makes it easier to maintain the opening of the through-hole 103 than in the single-layer structure with a void arrangement. It has the advantage that it does not occur easily.
  • Measurement device Moreover, it can be used as a measurement device for irradiating a porous structure (filter) collecting the target object with electromagnetic waves and measuring the amount or characteristic of the target object using the electromagnetic wave characteristics of the porous structure.
  • infrared spectroscopy such as FT-IR (Fourier transform infrared spectroscopy), terahertz time domain spectroscopy, and the like.
  • Method THz-TDS
  • the electromagnetic wave used for the measurement is, for example, an electromagnetic wave that can cause scattering according to the structure of the filter, and specifically includes radio waves, infrared rays, visible rays, ultraviolet rays, X-rays, gamma rays, and the like.
  • the frequency of the electromagnetic wave is not particularly limited, but is preferably 1 GHz to 1 PHz, and more preferably 20 GHz to 200 THz (terahertz wave).
  • a linearly polarized electromagnetic wave (linearly polarized wave) having a predetermined polarization direction or an unpolarized electromagnetic wave (nonpolarized wave) can be used.
  • linearly polarized electromagnetic waves for example, a terahertz wave generated by the optical rectification effect of an electro-optic crystal such as ZnTe using a short light pulse laser as a light source, visible light emitted from a semiconductor laser, or emitted from a photoconductive antenna An electromagnetic wave etc. are mentioned.
  • Non-polarized electromagnetic waves include infrared light emitted from a high-pressure mercury lamp or a ceramic lamp.
  • FIG. 5 to 7 show modified examples of the porous structure of the present embodiment.
  • the first layer 11 and the second layer 12 have a honeycomb structure having regular hexagonal voids.
  • the first layer 11 and the second layer 12 have a honeycomb structure having a circular gap.
  • two layers are laminated so that one void portion of one layer overlaps three void portions of the other layer.
  • porous structure of the present embodiment is not limited to the above-mentioned shape, and may be composed of a first layer 11 and a second layer 12 having a void such as a regular triangle or a regular octagon. .
  • the structure of the first layer 11 and the second layer 12 is the same as that of the above embodiment, but one void portion of one layer overlaps two void portions of the other layer.
  • Two layers are laminated.
  • two layers are laminated so that one void portion of one layer overlaps four void portions of the other layer.
  • the manufacturing method of the porous structure of the present embodiment is basically: A first layer forming step of forming the first layer 11 on the first main surface 11a side which is one main surface of the porous structure; By forming the second layer 12 on the second main surface 12a side which is the other main surface of the porous structure, and simultaneously bonding the first layer 11 and the second layer 12 together, the porous structure And a second layer forming step for obtaining a body.
  • the first layer 11 is formed on the first metal film 31 by a predetermined patterning by a predetermined method.
  • a substrate 2 is prepared.
  • substrate 2 is not specifically limited, For example, it consists of Si.
  • a Ti film and a Cu film are formed in this order on the substrate 2 by sputtering, and a laminated film (first metal film 31) composed of the Ti film and the Cu film is formed.
  • the first metal film 31 is a layer that is removed by etching in a later step, but also functions as a seed layer for Ni plating when the first layer is formed.
  • the thickness of the first metal film 31 is not particularly limited, but is preferably as thin as possible within the range in which the porous structure of the present embodiment can be obtained because it is partially removed in a later step. Specifically, for example, the thickness of the first metal film 31 is preferably 100 to 600 nm.
  • the thickness of the Ti film may be about 20 nm, and the thickness of the Cu film may be about 200 nm to 500 nm.
  • a first resist 41 is formed on the first metal film 31.
  • the first resist 41 can be formed by a photolithography method.
  • the first resist 41 is patterned so as to have an opening at a position corresponding to a portion where the first layer is formed, and a film-shaped first resist 41 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface. Patterning is performed so that one layer 11 is formed.
  • the first layer 11 (Ni film) is formed on the surface of the first metal film 31 exposed in the opening of the first resist 41 by a plating method. In this way, a film-like first layer 11 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface is formed.
  • the second layer 12 is formed on the first layer 11 by a deposition method by a predetermined patterning to obtain a porous structure.
  • a laminated film (second metal film 32) made of a Ti film and a Cu film is formed on the first resist 41.
  • the second metal film 32 is a layer that is partially removed by etching in a later step, but also functions as a seed layer for Ni plating when the second layer is formed.
  • a second resist 42 is formed on the second metal film 32.
  • the second resist 42 is patterned so as to have an opening at a position corresponding to a portion where the second layer is formed, and is a film-like second having a plurality of second void portions penetrating in the normal direction of the main surface. Patterned to form a layer.
  • each of the plurality of first gap portions 101 overlaps two or more of the plurality of second gap portions 102
  • the second Each of the plurality of second gaps 102 is designed to overlap two or more of the plurality of first gaps 101 in a plan view viewed from the normal direction of the main surface 12a.
  • the through-hole 103 which penetrates the 1st main surface 11a and the 2nd main surface 12a is formed in the part which the some 1st space
  • the second resist 42 has the same shape as the first resist 41, and only the position where it is arranged is different from the first resist 41.
  • the second layer 12 (Ni film) is formed on the surface of the second metal film 32 exposed in the opening of the second resist 42 by a plating method.
  • the second resist 42 is removed by a peeling method (dissolution peeling).
  • the second metal film 32 is partially removed by etching.
  • the etching method include a method of immersing the precursor of the porous structure obtained in the above step in an etching solution for dissolving a metal film. Note that the etching solution is washed by, for example, rinsing with pure water, and then dried.
  • the first resist 41 is removed by a peeling method.
  • a porous structure composed of the first layer 11 and the second layer 12 (including the remainder of the second metal film 32) can be obtained.
  • the first layer 11 and the second layer 12 are separated from each other, and the first layer 11 and the second layer 12 are connected via the connecting portion 13. It is different from the first embodiment in that it is indirectly coupled.
  • the first layer 11 and the second layer 12 are indirectly coupled via the connecting portion 13, so that not only the through-hole 103 communicated in the direction perpendicular to the main surface of the porous structure.
  • a communication hole 104 communicating in a direction parallel to the main surface of the porous structure is formed. Therefore, the fluid can flow not only in a direction perpendicular to the main surface of the porous structure but also in a parallel direction.
  • the porous structure of the present embodiment has an advantage that clogging is less likely to occur than in the first embodiment.
  • the connecting portion 13 is an integrated body composed of the first layer 11 and the second layer 12.
  • the porous structure of the present embodiment is preferably formed by integrally forming the connecting portion 13 and the second layer 12 on the first layer 11 after forming the first layer 11.
  • it is not limited to this, For example, after forming the 1st layer 11, you may form the connection part 13 on the 1st layer 11, and may form the 2nd layer 12 on the connection part 13 after that.
  • the porous structure manufacturing method of the present embodiment is performed in that the first layer 11 is formed thinner than the thickness of the first resist 41 as shown in FIG. Different from Form 1. As a result, a recess 13a is formed as shown in FIG.
  • the connecting portion 13 is formed in the plating step shown in FIG. 13 (g). Will be.
  • FIGS. 13D to 13F correspond to FIGS. 13D to 13F.
  • 13D to 13F correspond to the A-A ′ cross section of FIGS. 14D to 14F.
  • first layer 11 and the second layer 12 show a modification of the porous structure of the present embodiment.
  • the first layer 11 and the second layer 12 have a honeycomb structure having regular hexagonal voids.
  • the first layer 11 and the second layer 12 have a honeycomb structure having a circular gap.
  • the first layer 11 and the second layer 12 are indirectly coupled via the connecting portion 13.
  • the porous structure according to the present embodiment protrudes from the surface of the second layer 12 toward the first layer 11 inside at least one of the plurality of first gap portions 101 of the first layer 11.
  • the second embodiment is different from the second embodiment in that the protrusion 14 is provided.
  • the porous structure of the present embodiment can be manufactured in the same manner as the porous structure manufacturing method of Embodiment 2, and the second layer 12 is formed in the step (f) in FIG.
  • the second resist 42 for forming the protrusions 14 By patterning the second resist 42 for forming the protrusions 14, the protrusions 14 can be formed on the surface of the second layer 12.
  • FIG. 15 is an enlarged view corresponding to only the portion corresponding to the region R surrounded by the dotted line in FIG.
  • the first layer 11 and the second layer 12 are separated from each other and are indirectly coupled via the connecting portion 13.
  • the second layer 12 is composed of a plurality of rectangular separation parts 121, and has one grid-like second gap part 102 located between the plurality of separation parts 121.
  • the porous structure of the present embodiment is mainly because the first gap 101 does not entirely overlap with the second gap 102 in a plan view viewed from the normal direction of the first major surface 11a. This is different from the first embodiment.
  • connection part 13 is provided in a part of part which the 1st space
  • the porous structure of this embodiment has the communication hole 104 for connecting the 1st space
  • the porous structure according to the present embodiment includes a through hole (a through hole including the first gap 101, the communication hole 104, and the second gap 102) that penetrates the first main surface 11a and the second main surface 12a. )have.
  • the through-hole 103 communicated in a direction perpendicular to the main surface of the porous structure as in the second embodiment is not provided, the fluid is always parallel to the main surface of the porous structure. It passes through the communication hole 104 communicating in the direction. For this reason, by adjusting the size of the communication hole 104, it is possible to filter an object having a desired size in the fluid.
  • the thickness of the connecting portion 13 can be adjusted relatively easily with high accuracy, the length of the communication layer 104 in the stacking direction of the first layer 11 and the second layer 12 can be finely adjusted. . Therefore, in the present embodiment, by adjusting the length of the communication hole 104 in the stacking direction, it becomes possible to filter a finer target object.
  • the connecting portion 13 is an integrated body composed of the first layer 11 and the second layer 12.
  • the porous structure of the present embodiment is preferably formed by integrally forming the connecting portion 13 and the second layer 12 on the first layer 11 after forming the first layer 11.
  • it is not limited to this, For example, after forming the 1st layer 11, you may form the connection part 13 on the 1st layer 11, and may form the 2nd layer 12 on the connection part 13 after that.
  • FIG. 16 is a schematic diagram corresponding to the cross section AA ′ shown in FIGS.
  • the diagram in the left column of FIG. 17 is a schematic diagram corresponding to the AA ′ cross section shown in FIGS. 21 and 23, and the diagram in the right column is a schematic diagram corresponding to the BB ′ cross section shown in FIG. is there.
  • the substrate 2 is prepared.
  • substrate 2 is not specifically limited, For example, it consists of Si.
  • a conductive film (such as a Cu film) (not shown) is laminated on the surface of the substrate 2 (the upper surface in the drawing). This conductive film is a layer that is removed by etching in a later step, but also functions as a seed layer for Ni plating when the first layer is formed.
  • a first metal film 31 made of Cu is formed on the substrate 2 by sputtering.
  • the first metal film 31 is a film that is finally removed by etching.
  • a first resist 41 is formed on the first metal film 31.
  • the first resist 41 can be formed by a photolithography method.
  • the first resist 41 is patterned so as to have an opening at a position corresponding to a portion where the first layer is formed, and a film-shaped first resist 41 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface. Patterning is performed so that one layer 11 is formed.
  • the first metal film 31 exposed in the opening of the first resist 41 is partially removed by etching.
  • the etching method is the same as in the first embodiment.
  • a first layer 11 (Ni film) is formed on the surface of the substrate 2 (conductive film) exposed in the opening of the first resist 41 by a plating method.
  • a film-like first layer 11 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface is formed.
  • gap part does not need to be plural but at least one is sufficient.
  • the first resist 41 is removed by a peeling method (dissolution peeling).
  • a second metal film 32 made of Cu is formed on the first layer 11 and the first metal film 31 in the same manner as the first metal film 31.
  • the second metal film 32 is a layer that is partially removed by etching in a later step, but also functions as a seed layer for Ni plating when the second layer is formed.
  • a second resist 42 is formed on the second metal film 32.
  • the second resist 42 is patterned so as to have an opening at a position corresponding to the shape of the second gap portion 102 and the connecting portion 13 of the second layer 12 combined.
  • the second metal film 32 is removed by etching. Thereafter, referring to FIGS. 17J, 17J, and 25, the second resist 42 is removed.
  • a third resist 43 is formed on the second metal film 32.
  • the third resist 43 is patterned into the same shape as the second gap portion 102 of the second layer 12.
  • the second layer 12 has one grid-like second gap portion 102, but may have a plurality of second gap portions.
  • a Ni film is formed on the surface of the second metal film 32 and the first layer 11 exposed in the opening of the third resist 43 by a plating method. Thereby, the connection part 13 and the 2nd layer 12 which consist of Ni are formed simultaneously (refer FIG. 30). Thereafter, referring to FIG. 17 (m) and FIG. 28, the third resist 43 is removed.
  • the second metal film 32 and the first metal film are removed by etching. Further, by removing the conductive film on the surface of the substrate 2 by etching, the porous structure according to the present embodiment as shown in FIG. 17 (o) and FIG. 30 can be obtained (structure of the first layer). (See the exploded perspective view of FIG. 31).
  • Method 2 for producing porous structure Furthermore, as another method for manufacturing the porous structure according to the present embodiment, after the first layer 11 is formed by a deposition method, the connecting portion 13 and the second layer 12 are integrally formed on the first layer 11. Another example of the method will be described mainly with reference to FIGS.
  • a second resist 42 is formed on the first layer 11 and the first metal film 31 in the state shown in FIG.
  • a second metal film 32 made of Cu is formed on the first layer 11, the first metal film 31, and the second resist 42 in the same manner as the first metal film 31. Thereafter, referring to FIG. 34, the second resist 42 is peeled off (lifted off).
  • a third resist 43 is formed on the second metal film 32.
  • the third resist 43 is patterned in the same shape as the plurality of second gap portions 102 (see FIG. 37) of the second layer 12.
  • a Ni film is formed by plating on the surfaces of second metal film 32 and first layer 11 exposed in the opening of third resist 43. Thereby, the connection part 13 and the 2nd layer 12 which consist of Ni are formed simultaneously (refer FIG. 37). Thereafter, referring to FIG. 37, the third resist 43 is removed.
  • the second layer 12 is composed of a plurality of rectangular separation portions 122 having openings, and a second lattice-shaped second gap portion 102 a located between the plurality of separation portions 122 and the separation portion 122. And a plurality of second gap portions 102b corresponding to the openings.
  • a second metal film 32 made of Cu is formed on the second layer 12 in the same manner as the first metal film 31.
  • a Ni plating film is formed using a resist in the same manner as the second layer 12. Thereby, the third layer 13 made of Ni and the connecting portion 13a are formed simultaneously. Further, the lid portion 15 made of Ni is formed using a resist.
  • the porous structure can be obtained by removing the conductive film on the surface of the substrate 2 by etching.

Abstract

A membranous porous structure having a first main surface and a second main surface that face each other, wherein the porous structure is provided with a membranous first layer including the first main surface and having multiple first void portions penetrating in the normal direction to the first main surface, and a membranous second layer including the second main surface and having multiple second void portions penetrating in the normal direction to the second main surface, the first layer and the second layer being directly or indirectly bonded to each other, each of the multiple first void portions overlapping two or more of the multiple second void portions in a planar view seen from the normal direction to the first main surface, each of the multiple second void portions overlapping two or more of the multiple first void portions in a planar view seen from the normal direction to the second main surface, and through-holes penetrating the first main surface and the second main surface being present in portions in which the multiple first void portions and the multiple second void portions overlap each other.

Description

多孔質構造体およびその製造方法Porous structure and method for producing the same
 本発明は、多孔質構造体およびその製造方法に関する。 The present invention relates to a porous structure and a method for producing the same.
 検体中の目的物(被測定物)の量などを測定する方法として、複数の孔を有する多孔質構造体をフィルタとして用いて、検体中の目的物を多孔質構造体に捕集し、目的物が捕集された多孔質構造体を測定に供する方法が知られている。 As a method for measuring the amount of the target object (object to be measured) in the sample, the target object in the sample is collected in the porous structure using a porous structure having a plurality of pores as a filter. A method of using a porous structure in which an object is collected for measurement is known.
 ここで、目的物が大気中に存在するPM2.5、血液中に含まれる小胞体などの流体(検体)中に含まれる微小な物体である場合、微小な目的物を捕集するために、それらの目的物よりも小さな孔を有する多孔質(メッシュ状)構造体が必要となる。 Here, when the target object is a minute object contained in a fluid (specimen) such as PM2.5 existing in the atmosphere or an endoplasmic reticulum contained in blood, in order to collect the minute object, A porous (mesh-like) structure having pores smaller than those of the object is required.
 しかし、孔の微細化には技術的に限界がある。また、孔のサイズが製造可能な場合であっても、孔のサイズが小さくなればなる程(例えば、1μm以下)、歩留まり率の低下、製造工程および設備の複雑化などにより、製造コストが高くなるといった問題が生じる。 However, there is a technical limit to the refinement of holes. Even if the hole size is manufacturable, the smaller the hole size (for example, 1 μm or less), the higher the manufacturing cost due to the decrease in yield rate, the complexity of the manufacturing process and equipment, etc. Problem arises.
 特許文献1(国際公開第2014/192917号)の段落[0047]および図8、ならびに、特許文献2(実開昭59-10879号公報)には、複数の貫通孔(空隙部)を有する2枚の空隙配置構造体を、一方の空隙配置構造体の空隙部の1つが他方の空隙配置構造体の空隙部の1つのみに部分的に重なるように積層してなる多孔質構造体が開示されている。このようにしてフィルタを作製することで、微小な空隙部を有するフィルタを比較的容易に作製することができる。 Patent Document 1 (International Publication No. 2014/192919), paragraph [0047] and FIG. 8, and Patent Document 2 (Japanese Utility Model Laid-Open No. 59-10879) have two through holes (voids). Disclosed is a porous structure formed by laminating a single void arrangement structure so that one of the void portions of one void arrangement structure partially overlaps only one of the void portions of the other void arrangement structure Has been. By producing the filter in this way, a filter having a minute gap can be produced relatively easily.
 なお、特許文献3(特開2010-42349号公報)および特許文献4(特開平11-276820号公報)には、2層の平行に配列された線材群を互いに向きが90°異なるように積層することで網目状構造体を形成し、さらに複数の網目状構造体を互いに網目の位置がずれるように積層することで、より小さな網目が形成されたフィルタ(多孔質構造体)が開示されている。 In Patent Document 3 (Japanese Patent Laid-Open No. 2010-42349) and Patent Document 4 (Japanese Patent Laid-Open No. 11-276820), two layers of wire rods arranged in parallel are laminated so that their directions are different from each other by 90 °. A filter (porous structure) in which a smaller network is formed by laminating a plurality of network structures so that the positions of the meshes are shifted from each other is disclosed. Yes.
国際公開第2014/192917号International Publication No. 2014/192929 実開昭59-10879号公報Japanese Utility Model Publication No.59-10879 特開2010-42349号公報JP 2010-42349 A 特開平11-276820号公報Japanese Patent Laid-Open No. 11-276820
 特許文献1および2に開示される多孔質構造体のように、2つの空隙配置構造体を積層した場合、個々の空隙配置構造体の空隙部よりも小さな空隙部を形成することができる。しかし、個々の空隙配置構造体の空隙部と比べて、開口率が大きく低下するため、ろ過の効率、または、電磁波測定の効率が低下してしまうといった問題があった。 When two void arrangement structures are stacked like the porous structures disclosed in Patent Documents 1 and 2, voids smaller than the voids of the individual void arrangement structures can be formed. However, since the aperture ratio is greatly reduced as compared with the gaps of the individual gap arrangement structures, there is a problem that the efficiency of filtration or the efficiency of electromagnetic wave measurement is lowered.
 また、特許文献3および4に開示される多孔質構造体は、平行に配列された線材群の積層体であり、各層において線材群を構成する線材同士は接合していないため、積層体の主面に平行な方向であって線材の横方向からの力に対して強度が低い。また、特許文献3に開示される多孔質構造体は、各層間の線材同士も接合していないため、同方向からの力に対して位置ずれが生じやすい。したがって、これらの多孔質構造体を篩いとして用いる場合、目的物、夾雑物、流体などによる応力によって線材が変形しやすく、多孔質構造体の強度が十分ではないという問題があった。 Further, the porous structures disclosed in Patent Documents 3 and 4 are laminates of wire rods arranged in parallel, and the wires constituting the wire rods are not joined to each other in each layer. The strength is low with respect to the force from the lateral direction of the wire in the direction parallel to the surface. Moreover, since the porous structure disclosed in Patent Document 3 does not join the wires between the layers, positional displacement is likely to occur with respect to the force from the same direction. Therefore, when these porous structures are used as sieves, there has been a problem that the wire is easily deformed by stress due to the object, impurities, fluid, etc., and the strength of the porous structure is not sufficient.
 本発明は、上記の事情に鑑み、微小な開口部を有しつつ、開口率が高く、十分な強度を有する多孔質構造体、および、その製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a porous structure having a small opening and a high opening ratio and sufficient strength, and a method for manufacturing the same.
 本発明は、互いに対向する第1主面および第2主面を有する膜状の多孔質構造体であって、
 前記第1主面を含み、前記第1主面の法線方向に貫通する複数の第1空隙部を有する膜状の第1層と、
 前記第2主面を含み、前記第2主面の法線方向に貫通する複数の第2空隙部を有する膜状の第2層とを備え、
 前記第1層と前記第2層とは、直接的または間接的に結合しており、
 前記第1主面の法線方向から見た平面視において、前記複数の第1空隙部の各々は前記複数の第2空隙部のうちの2つ以上と重なっており、
 前記第2主面の法線方向から見た平面視において、前記複数の第2空隙部の各々は前記複数の第1空隙部のうちの2つ以上と重なっており、
 前記複数の第1空隙部と前記複数の第2空隙部とが重なっている部分において、前記第1主面および前記第2主面を貫通する貫通孔を有している、多孔質構造体に関する。
The present invention is a membrane-like porous structure having a first main surface and a second main surface facing each other,
A film-like first layer that includes the first main surface and has a plurality of first voids penetrating in the normal direction of the first main surface;
A film-like second layer including a plurality of second voids including the second main surface and penetrating in a normal direction of the second main surface;
The first layer and the second layer are bonded directly or indirectly,
In a plan view seen from the normal direction of the first main surface, each of the plurality of first gaps overlaps two or more of the plurality of second gaps,
In a plan view seen from the normal direction of the second main surface, each of the plurality of second voids overlaps two or more of the plurality of first voids,
The present invention relates to a porous structure having a through hole penetrating the first main surface and the second main surface in a portion where the plurality of first void portions and the plurality of second void portions overlap. .
 前記第1層と前記第2層とは離間しており、前記第1層と前記第2層とが連結部を介して間接的に結合していることが好ましい。 It is preferable that the first layer and the second layer are separated from each other, and the first layer and the second layer are indirectly bonded via a connecting portion.
 前記第2層の前記複数の第2空隙部の少なくとも1つの内部において、前記第2層の表面から前記第1層側に突出する突起を有することが好ましい。 It is preferable that a projection projecting from the surface of the second layer to the first layer side is provided inside at least one of the plurality of second gap portions of the second layer.
 また、本発明は、互いに対向する第1主面および第2主面を有する膜状の多孔質構造体の製造方法であって、
 前記第1主面側に、主面の法線方向に貫通する複数の第1空隙部を有する膜状の第1層を形成する第1層形成工程と、
 前記第1層の前記第2主面側に、主面の法線方向に貫通する複数の第2空隙部を有する膜状の第2層を形成し、前記第1層と前記第2層とを直接的または間接的に結合させることで、前記多孔質構造体を得る、第2層形成工程とを含み、
 前記第2層形成工程において、
 前記第1主面の法線方向から見た平面視において、前記複数の第1空隙部の各々は前記複数の第2空隙部のうちの2つ以上と重なり、
 前記第2主面の法線方向から見た平面視において、前記複数の第2空隙部の各々は前記複数の第1空隙部のうちの2つ以上と重なり、
 前記複数の第1空隙部と前記複数の第2空隙部とが重なっている部分において、前記第1主面および前記第2主面を貫通する貫通孔が形成されるように、前記第2層を形成する、多孔質構造体の製造方法に関する。
Further, the present invention is a method for producing a membrane-like porous structure having a first main surface and a second main surface facing each other,
A first layer forming step of forming, on the first main surface side, a film-shaped first layer having a plurality of first voids penetrating in a normal direction of the main surface;
A film-like second layer having a plurality of second voids penetrating in the normal direction of the main surface is formed on the second main surface side of the first layer, and the first layer, the second layer, A second layer forming step of obtaining the porous structure by directly or indirectly bonding
In the second layer forming step,
In a plan view seen from the normal direction of the first main surface, each of the plurality of first gap portions overlaps two or more of the plurality of second gap portions,
In a plan view seen from the normal direction of the second main surface, each of the plurality of second gaps overlaps two or more of the plurality of first gaps,
In the portion where the plurality of first gap portions and the plurality of second gap portions overlap, the second layer is formed such that a through-hole penetrating the first main surface and the second main surface is formed. The present invention relates to a method for manufacturing a porous structure.
 また、本発明は、互いに対向する第1主面および第2主面を有する膜状の多孔質構造体であって、
 前記第1主面を含み、前記第1主面の法線方向に貫通する少なくとも1つの第1空隙部を有する膜状の第1層と、
 前記第2主面を含み、前記第2主面の法線方向に貫通する少なくとも1つの第2空隙部を有する膜状の第2層とを備え、
 前記第1層と前記第2層とは離間しており、前記第1層と前記第2層とは、連結部を介して間接的に結合しており、
 前記第1主面の法線方向から見た平面視において、前記少なくとも1つの第1空隙部の全てが前記少なくとも1つの第2空隙部と重なっておらず、
 前記第1主面および前記第2主面を貫通する貫通孔を有している、多孔質構造体。
Further, the present invention is a membrane-like porous structure having a first main surface and a second main surface facing each other,
A film-like first layer including at least one first void including the first principal surface and penetrating in a normal direction of the first principal surface;
A film-like second layer including at least one second void portion including the second main surface and penetrating in a normal direction of the second main surface;
The first layer and the second layer are separated from each other, and the first layer and the second layer are indirectly coupled via a connecting portion;
In the plan view seen from the normal direction of the first main surface, not all of the at least one first gap portion overlaps the at least one second gap portion,
The porous structure which has a through-hole which penetrates the said 1st main surface and the said 2nd main surface.
 本発明によれば、微小な開口部を有しつつ、開口率が高く、十分な強度を有する多孔質構造体、および、その製造方法を提供することができる。 According to the present invention, it is possible to provide a porous structure having a high opening ratio and sufficient strength while having a minute opening, and a method for manufacturing the same.
実施形態1の多孔質構造体の構造を示す模式図である。(a)は斜視図であり、(b)は平面図である。2 is a schematic diagram illustrating a structure of a porous structure according to Embodiment 1. FIG. (A) is a perspective view, (b) is a plan view. 実施形態1の多孔質構造体を構成する第1層および第2層の構造を示す模式図である。(a)は斜視図であり、(b)は平面図である。FIG. 3 is a schematic diagram showing structures of a first layer and a second layer that constitute the porous structure of Embodiment 1. (A) is a perspective view, (b) is a plan view. 実施形態1の利点の1つを説明するための模式図である。(a)は斜視図であり、(b)は平面図である。FIG. 5 is a schematic diagram for explaining one of the advantages of the first embodiment. (A) is a perspective view, (b) is a plan view. 実施形態1の利点の1つを説明するための比較としての模式図である。(a)は斜視図であり、(b)は平面図である。It is a schematic diagram as a comparison for demonstrating one of the advantages of Embodiment 1. FIG. (A) is a perspective view, (b) is a plan view. 実施形態1の多孔質構造体の変形例の構造を示す平面図である。6 is a plan view showing a structure of a modified example of the porous structure according to Embodiment 1. FIG. 実施形態1の多孔質構造体の別の変形例の構造を示す平面図である。6 is a plan view showing a structure of another modified example of the porous structure according to Embodiment 1. FIG. 実施形態1の多孔質構造体のさらに別の変形例の構造を示す平面図である。6 is a plan view showing a structure of still another modified example of the porous structure according to Embodiment 1. FIG. 実施形態2の多孔質構造体の構造を示す斜視図である。6 is a perspective view showing a structure of a porous structure according to Embodiment 2. FIG. 実施形態2の多孔質構造体の変形例の構造を示す斜視図である。(a)および(b)は同じ多孔質構造体を示し、視点のみが異なる。6 is a perspective view showing a structure of a modification of the porous structure according to Embodiment 2. FIG. (A) And (b) shows the same porous structure, and only a viewpoint differs. 実施形態2の多孔質構造体の別の変形例の構造を示す斜視図である。(a)および(b)は同じ多孔質構造体を示し、視点のみが異なる。6 is a perspective view showing a structure of another modified example of the porous structure according to Embodiment 2. FIG. (A) And (b) shows the same porous structure, and only a viewpoint differs. 実施形態3の多孔質構造体の構造を示す斜視図である。6 is a perspective view showing a structure of a porous structure according to Embodiment 3. FIG. 実施形態1の多孔質構造体の製造方法を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the method for manufacturing the porous structure according to the first embodiment. 実施形態2の多孔質構造体の製造方法を説明するための断面図である。6 is a cross-sectional view for explaining a method for producing a porous structure according to Embodiment 2. FIG. 実施形態2の多孔質構造体の製造方法を説明するための斜視図である。6 is a perspective view for explaining a method for producing a porous structure according to Embodiment 2. FIG. 実施形態4の多孔質構造体の構造を示す模式図である。(a)は第2層側から見た斜視図であり、(b)は第1層側から見た斜視図であり、(c)は(a)に第2金属膜を追記した図である。6 is a schematic diagram illustrating a structure of a porous structure according to Embodiment 4. FIG. (A) is the perspective view seen from the 2nd layer side, (b) is the perspective view seen from the 1st layer side, (c) is the figure which added the 2nd metal film to (a). . 実施形態4の多孔質構造体の製造方法の一例を説明するための断面図である。6 is a cross-sectional view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための断面図である。6 is a cross-sectional view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の製造方法の一例を説明するための斜視図である。10 is a perspective view for explaining an example of a method for producing a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体の構造を示す斜視図である。6 is a perspective view showing a structure of a porous structure according to Embodiment 4. FIG. 実施形態4の多孔質構造体を構成する第1層および第2層の構造を示す斜視図である。FIG. 6 is a perspective view showing structures of a first layer and a second layer that constitute a porous structure according to a fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment. 実施形態4の多孔質構造体の製造方法の別の例を説明するための斜視図である。FIG. 10 is a perspective view for explaining another example of the method for producing a porous structure according to the fourth embodiment.
 以下、本発明の実施形態について、図面を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を表す。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。実施形態2以降では実施形態1と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Each embodiment is an exemplification, and it is needless to say that partial replacement or combination of configurations shown in different embodiments is possible. In the second and subsequent embodiments, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
 [実施形態1]
 (多孔質構造体)
 図1を参照して、本実施形態の多孔質構造体は、互いに対向する第1主面11aおよび第2主面12aを有する膜状の多孔質構造体であって、膜状の第1層11と、膜状の第2層12とを備える。
[Embodiment 1]
(Porous structure)
Referring to FIG. 1, the porous structure of the present embodiment is a film-like porous structure having a first main surface 11a and a second main surface 12a facing each other, and is a film-like first layer. 11 and a film-like second layer 12.
 第1層11は、第1主面11aを含み、第1主面11aの法線方向に貫通する複数の第1空隙部101を有している。また、第2層12は、第2主面12aを含み、第2主面12aの法線方向に貫通する複数の第2空隙部102を有している。 The first layer 11 includes a first main surface 11a and has a plurality of first gap portions 101 penetrating in the normal direction of the first main surface 11a. The second layer 12 includes a second main surface 12a and has a plurality of second gap portions 102 penetrating in the normal direction of the second main surface 12a.
 図1に示されるように、第1層11と第2層12とは、両者が重なっている部分12bにおいて直接的に結合している。 As shown in FIG. 1, the first layer 11 and the second layer 12 are directly coupled to each other at a portion 12 b where they overlap each other.
 そして、第1主面の法線方向から見た平面視において、複数の第1空隙部101の各々は複数の第2空隙部102のうちの2つ以上と重なっている。また、第2主面の法線方向から見た平面視において、複数の第2空隙部の各々は複数の第1空隙部のうちの2つ以上と重なっている。 And in the planar view seen from the normal line direction of the first main surface, each of the plurality of first gap portions 101 overlaps two or more of the plurality of second gap portions 102. Moreover, in the planar view seen from the normal line direction of the 2nd main surface, each of several 2nd space | gap part has overlapped with 2 or more of several 1st space | gap parts.
 複数の第1空隙部101と複数の第2空隙部102とが重なっている部分において、第1主面11aおよび第2主面12aを貫通する貫通孔103を有している。1つの貫通孔103は、1つの第1空隙部101の一部と1つの第2空隙部102の一部とから構成される。 In a portion where the plurality of first gap portions 101 and the plurality of second gap portions 102 overlap with each other, a through hole 103 penetrating the first main surface 11a and the second main surface 12a is provided. One through-hole 103 includes a part of one first gap part 101 and a part of one second gap part 102.
 本実施形態の多孔質構造体においては、このような構成により、第1空隙部101および第2空隙部102よりも小さいサイズの貫通孔103が形成されている。例えば、図1(b)に示されるように、第1空隙部101および第2空隙部102の孔サイズ(図2(b)に示すD)が1.0μm、桟部の幅(図2(b)に示すw)が0.4μm、ピッチ(孔サイズと桟部の幅の合計:図2(b)に示すP)が1.4μmである場合、貫通孔103の孔サイズは0.3μmとなり、ピッチは0.7μmとなる。 In the porous structure of the present embodiment, through-holes 103 having a size smaller than that of the first gap 101 and the second gap 102 are formed by such a configuration. For example, as shown in FIG. 1B, the hole size (D shown in FIG. 2B) of the first gap portion 101 and the second gap portion 102 is 1.0 μm, and the width of the crosspiece portion (FIG. 2B). When w) shown in b) is 0.4 μm and the pitch (total of hole size and crosspiece width: P shown in FIG. 2B) is 1.4 μm, the hole size of the through hole 103 is 0.3 μm. Thus, the pitch is 0.7 μm.
 なお、桟部とは、第1層11(第2層12)において、第1主面11aの法線方向から見て、第1空隙部101(第2空隙部102)以外の部分のうち、第1層(第2層)の全体の外縁を構成する部分を除いた部分である。本実施形態の第1層および第2層の少なくともいずれかは、桟部に分岐を有している。 The crosspiece is a portion of the first layer 11 (second layer 12) other than the first gap portion 101 (second gap portion 102) when viewed from the normal direction of the first main surface 11a. This is a portion excluding the portion constituting the entire outer edge of the first layer (second layer). At least one of the first layer and the second layer of the present embodiment has a branch at the crosspiece.
 (第1層および第2層)
 図2を参照して、本実施形態の多孔質構造体を構成する第1層11および第2層12は、互いに対向する一対の主面を有し、両主面を貫通する複数の空隙部を有している。例えば、複数の該空隙部は、第1層11(第2層12)の第1主面11a(第2主面12a)上の少なくとも一方向に周期的に配置されている。ただし、空隙部は、その全てが周期的に配置されていてもよく、本発明の効果を損なわない範囲で、一部の空隙部が周期的に配置され、他の空隙部が非周期的に配置されていてもよい。
(First layer and second layer)
With reference to FIG. 2, the first layer 11 and the second layer 12 constituting the porous structure of the present embodiment have a pair of main surfaces facing each other, and a plurality of voids penetrating both main surfaces. have. For example, the plurality of gaps are periodically arranged in at least one direction on the first major surface 11a (second major surface 12a) of the first layer 11 (second layer 12). However, all of the gaps may be periodically arranged, and within a range that does not impair the effects of the present invention, some of the gaps are periodically arranged and other gaps are non-periodically. It may be arranged.
 第1層11(第2層12)は、好ましくは準周期構造体や周期構造体である。準周期構造体とは、並進対称性は持たないが配列には秩序性が保たれている構造体のことである。準周期構造体としては、例えば、2次元準周期構造体としてペンローズ構造が挙げられる。周期構造体とは、並進対称性に代表される様な空間対称性を持つ構造体のことであり、好ましくは2次元周期構造体である。2次元周期構造体としては、例えば、メッシュフィルタ、2次元回折格子などが挙げられる。 The first layer 11 (second layer 12) is preferably a quasi-periodic structure or a periodic structure. A quasi-periodic structure is a structure that does not have translational symmetry but is maintained in order. Examples of the quasi-periodic structure include a Penrose structure as a two-dimensional quasi-periodic structure. The term “periodic structure” refers to a structure having spatial symmetry as represented by translational symmetry, and is preferably a two-dimensional periodic structure. Examples of the two-dimensional periodic structure include a mesh filter and a two-dimensional diffraction grating.
 2次元周期構造体としては、例えば、図2に示すようなマトリックス状に一定の間隔で空隙部が配置された膜状構造体(格子状構造体)が挙げられる。図2(a)に示す第1層11(第2層12)は、その第1主面11a(第2主面12a)側からみて正方形の第1空隙部101(第2空隙部102)が、該正方形の各辺と平行な2つの配列方向(図中の縦方向と横方向)に等しい間隔で設けられた膜状構造体である。 As the two-dimensional periodic structure, for example, a film-like structure (lattice-like structure) in which voids are arranged at regular intervals in a matrix shape as shown in FIG. The first layer 11 (second layer 12) shown in FIG. 2A has a square first gap portion 101 (second gap portion 102) as viewed from the first main surface 11a (second main surface 12a) side. These are film-like structures provided at equal intervals in two arrangement directions (vertical direction and horizontal direction in the drawing) parallel to each side of the square.
 第1層11(第2層12)は、少なくともその表面を含む一部が導体で形成されていることが好ましく、多孔質構造体の全体が導体で形成されていることがより好ましい。ここで、導体とは、電気を通す物体(物質)のことであり、金属だけでなく半導体も含まれる。 The first layer 11 (second layer 12) preferably includes at least a part including the surface thereof, and more preferably the entire porous structure is formed of a conductor. Here, the conductor is an object (material) that conducts electricity, and includes not only metals but also semiconductors.
 金属としては、ヒドロキシ基、チオール基、カルボキシル基などの官能基を有する化合物の官能基と結合することのできる金属や、ヒドロキシ基、アミノ基などの官能基を表面にコーティングできる金属、ならびに、これらの金属の合金が挙げられる。具体的には、ニッケル、金、銀、銅、白金、鉄、クロム、シリコン、ゲルマニウムなどが挙げられ、好ましくはニッケル、金、銀、銅、白金およびクロムであり、さらに好ましくはニッケルおよび金が挙げられる。 As the metal, a metal that can be bonded to a functional group of a compound having a functional group such as a hydroxy group, a thiol group, or a carboxyl group, a metal that can coat a functional group such as a hydroxy group or an amino group on the surface, and these An alloy of these metals can be mentioned. Specifically, nickel, gold, silver, copper, platinum, iron, chromium, silicon, germanium and the like can be mentioned, preferably nickel, gold, silver, copper, platinum and chromium, and more preferably nickel and gold. Can be mentioned.
 また、半導体としては、例えば、IV族半導体(Si、Geなど)や、II-VI族半導体(ZnSe、CdS、ZnOなど)、III-V族半導体(GaAs、InP、GaNなど)、IV族化合物半導体(SiC、SiGeなど)、I-III-VI族半導体(CuInSeなど)などの化合物半導体、有機半導体が挙げられる。 Examples of semiconductors include group IV semiconductors (Si, Ge, etc.), group II-VI semiconductors (ZnSe, CdS, ZnO, etc.), group III-V semiconductors (GaAs, InP, GaN, etc.), group IV compounds, and the like. Compound semiconductors such as semiconductors (SiC, SiGe, etc.), I-III-VI group semiconductors (CuInSe 2 etc.), and organic semiconductors can be mentioned.
 なお、第1層11と第2層12との材料の組み合わせは、特に限定されないが、多孔質構造体全体として均一な特性を得る観点からは、同種の材料の組み合わせであることが好ましい。 In addition, the combination of the material of the 1st layer 11 and the 2nd layer 12 is not specifically limited, However, From a viewpoint of obtaining a uniform characteristic as the whole porous structure, it is preferable that it is a combination of the same kind of material.
 また、第1層11と第2層12とは、その空隙部の大きさ、形状、ピッチなどが同一であることが好ましい。この場合、多孔質構造体において、大きさの均一な貫通孔を規則的に配列することができる。これにより、フィルタとしては厳密な篩いを行うことができ、測定デバイスとしては精度の高い測定を行うことができる。 Further, it is preferable that the first layer 11 and the second layer 12 have the same size, shape, pitch, and the like of the voids. In this case, through-holes having a uniform size can be regularly arranged in the porous structure. As a result, strict sieving can be performed as a filter, and measurement with high accuracy can be performed as a measurement device.
 ただし、第1層11と第2層12の材料および空隙部の大きさ、形状、ピッチなどを変えることで、多孔質構造体に特殊な特性を付与してもよい。例えば、第1層11と第2層12のピッチを同一とし、第1層11と第2層12の桟部の幅が異なるようにすることも可能である。第1層11と第2層12の桟部の幅を異なるようにすることにより、貫通孔103の孔サイズを変えることが出来、これにより、より微細で均一な孔径を持つ多孔質構造体を提供することも可能である。また、第1層11と第2層12のうちの一方の桟部の幅を大きくすると、開口率を大きくしつつ多孔質構造体の強度を高めることができる。第1層11と第2層12の桟部の幅を同じにして一方の開口率を小さくすれば、多孔質構造体の強度を高めることができる。 However, special characteristics may be imparted to the porous structure by changing the material of the first layer 11 and the second layer 12 and the size, shape, pitch, etc. of the voids. For example, the pitch of the first layer 11 and the second layer 12 may be the same, and the width of the crosspieces of the first layer 11 and the second layer 12 may be different. By making the widths of the crosspieces of the first layer 11 and the second layer 12 different, the hole size of the through-hole 103 can be changed, whereby a porous structure having a finer and uniform pore diameter can be obtained. It is also possible to provide. Further, when the width of one of the first layer 11 and the second layer 12 is increased, the strength of the porous structure can be increased while increasing the aperture ratio. The strength of the porous structure can be increased by reducing the opening ratio of one of the first layer 11 and the second layer 12 with the same width.
 (フィルタ)
 本実施形態の多孔質構造体は、流体(検体)中に含まれる目的物を捕集するためのフィルタ(篩い)として用いることができる。
(filter)
The porous structure of the present embodiment can be used as a filter (sieving) for collecting a target contained in a fluid (specimen).
 流体は、例えば、気体または液体である。目的物としては、例えば、流体中に含まれる無機物、有機物もしくはそれらの複合物、または、微生物もしくは細胞が挙げられる。なお、目的物は、流体中に存在する状態で形状を有しているものであればよく、固体に限らず、液体、ゾルまたはゲル等であってもよい。 The fluid is, for example, a gas or a liquid. Examples of the target substance include inorganic substances, organic substances or composites thereof contained in a fluid, or microorganisms or cells. In addition, the target object should just have a shape in the state which exists in the fluid, and may be not only solid but liquid, sol, or gel.
 気体中の無機物、有機物もしくはそれらの複合物としては、例えば、大気中のPM(Particle Matter)2.5や、SPM(Suspended Particulate Matter)、PM10、花粉などが挙げられる。なお、PM2.5とは、大気中に浮遊する粒子状物質であり、粒子径が概ね2.5μm以下のものである。 Examples of the inorganic substance, organic substance, or composite thereof in the gas include PM (Particle Matter) 2.5, SPM (Suspended Particulate Matter), PM10, and pollen in the atmosphere. PM2.5 is a particulate substance floating in the atmosphere, and has a particle diameter of approximately 2.5 μm or less.
 上述の目的物以外にも、例えば以下のような目的物の捕集に、本実施形態の多孔質構造体を適用することができる。 In addition to the above-described target object, for example, the porous structure of the present embodiment can be applied to collection of the following target object.
 液中の細胞(例えば、直径9μmの略球形のHL60が5×10個含まれた総量1mLのPBS液)を濾過するために、上記実施形態の多孔質構造体を適用することができる。 In order to filter cells in the liquid (for example, a total amount of 1 mL of PBS solution containing 5 × 10 4 substantially spherical HL60 having a diameter of 9 μm), the porous structure of the above embodiment can be applied.
 また、癌の新しい検査方法として、血中の癌細胞由来のエクソソーム(小胞体)を定量する研究が進められている。エクソソームのサイズは数百nm程度であり、白血球、赤血球および他の血液細胞を除去した血液サンプルから、エクソソームのみを捕集(濾過および濃縮)するために、上記実施形態の多孔質構造体を適用することができる。 Also, as a new test method for cancer, research for quantifying exosomes (endoplasmic reticulum) derived from cancer cells in blood is underway. The size of exosome is about several hundred nanometers, and the porous structure of the above embodiment is applied to collect (filter and concentrate) only exosomes from blood samples from which leukocytes, erythrocytes and other blood cells have been removed. can do.
 また、ノロウィルスは培養できないため、発病後、かなりの時間が経過して、ウィルス数が増えないと検査できないという問題があるが、微量なウィルスを多孔質構造体で捕集(濾過および濃縮)できれば、培養不要で迅速な検査が可能になる。このため、上記実施形態の多孔質構造体は、このようなウィルスの選択的な捕集に適用することもできる。 In addition, since norovirus cannot be cultured, a considerable amount of time has passed since the onset of the disease, and there is a problem that inspection cannot be performed unless the number of viruses increases. However, a trace amount of virus is collected with a porous structure (filtration and concentration). If possible, rapid inspection is possible without culturing. For this reason, the porous structure of the said embodiment can also be applied to such selective collection of viruses.
 目的物を「捕集する」とは、例えば、フィルタの孔に物理的に目的物を保持することや、目的物が吸着しやすいように修飾されたフィルタの表面に直接的または間接的に目的物を付着させることをいう。 “Catching” the target object means, for example, that the target object is physically held in the pores of the filter, or that the target object is directly or indirectly applied to the surface of the filter modified so that the target object is easily adsorbed. It means to attach an object.
 フィルタとして用いられる多孔質構造体の貫通孔103の大きさは、目的物を捕集できる大きさであれば特に限定されないが、例えば、物理的に目的物が通過できないか、または通過し難い大きさであることが好ましい。ここで、目的物が「通過し難い大きさ」とは、目的物が部分的に変形しうるもの(有核細胞など)の場合は、目的物の変形能が無い部分の大きさ未満の大きさを意味する。目的物の全体が変形する場合は、貫通孔103の大きさは、目的物の20分の1以下の大きさであることが好ましい。なお、多孔質構造体をフィルタとして用いる場合は、多孔質構造体の貫通孔103の大きさがフィルタの孔の大きさに相当する。 The size of the through-hole 103 of the porous structure used as a filter is not particularly limited as long as the target can be collected. For example, the size of the target cannot physically pass or is difficult to pass. It is preferable. Here, the “size that the target object is difficult to pass” means that the target object can be partially deformed (eg, nucleated cells), and is smaller than the size of the part where the target object is not deformable. Means. When the entire target object is deformed, the size of the through-hole 103 is preferably less than 1/20 of the target object. When the porous structure is used as a filter, the size of the through hole 103 of the porous structure corresponds to the size of the filter hole.
 開口率(第1空隙部101または第2空隙部102を含む多孔質構造体の主面の面積に対する貫通孔103の合計面積の比率)は、多孔質構造体を通過する流体の流速を高める観点から3%以上であることが好ましく、10%以上であることがより好ましい。 The aperture ratio (the ratio of the total area of the through holes 103 to the area of the main surface of the porous structure including the first void 101 or the second void 102) is a viewpoint of increasing the flow velocity of the fluid passing through the porous structure. To 3% or more, more preferably 10% or more.
 本実施形態の多孔質構造体では、第1主面の法線方向から見た平面視において、複数の第1空隙部の各々は複数の第2空隙部のうちの2つ以上と重なっている。また、第2主面の法線方向から見た平面視において、複数の第2空隙部の各々は複数の第1空隙部のうちの2つ以上と重なっている。そして、複数の第1空隙部と複数の第2空隙部とが重なっている部分において、第1主面および第2主面を貫通する貫通孔を有している。 In the porous structure according to the present embodiment, each of the plurality of first voids overlaps two or more of the plurality of second voids in a plan view viewed from the normal direction of the first main surface. . Moreover, in the planar view seen from the normal line direction of the 2nd main surface, each of several 2nd space | gap part has overlapped with 2 or more of several 1st space | gap parts. And in the part which the some 1st space | gap part and the some 2nd space | gap part have overlapped, it has a through-hole which penetrates a 1st main surface and a 2nd main surface.
 これにより、特許文献1および2に開示される多孔質構造体のように、一方の空隙配置構造体の空隙部の1つが他方の空隙配置構造体の空隙部の1つのみに部分的に重なっている場合に比べて、空隙部のうち貫通孔を構成する部分の比率を高めやすくなる。したがって、本実施形態の多孔質構造体は、特許文献1および2に開示されるような多孔質構造体よりも、開口率の低下を抑制し、ろ過の効率、電磁波測定の効率などの低下を抑制することができる。 Thereby, like the porous structure disclosed in Patent Documents 1 and 2, one of the voids of one void arrangement structure partially overlaps only one of the voids of the other void arrangement structure. Compared with the case where it has, it becomes easy to raise the ratio of the part which comprises a through-hole among space | gap parts. Therefore, the porous structure of the present embodiment suppresses the decrease in the aperture ratio and reduces the filtration efficiency, electromagnetic wave measurement efficiency, and the like, as compared with the porous structures disclosed in Patent Documents 1 and 2. Can be suppressed.
 なお、多孔質構造体の強度保証の観点からは、開口率が80%以下であることが好ましく、60%以下であることがより好ましい。 In addition, from the viewpoint of ensuring the strength of the porous structure, the opening ratio is preferably 80% or less, and more preferably 60% or less.
 開口率は、例えば、第1層11および第2層12における図2(b)にDで示される空隙部の開口サイズとPで示される空隙部の格子間隔(ピッチ)を調整することや、第1層11と第2層12との配置を調整することによって、制御することができる。 The aperture ratio is, for example, adjusting the opening size of the void portion indicated by D in FIG. 2B and the lattice spacing (pitch) of the void portion indicated by P in the first layer 11 and the second layer 12, It can be controlled by adjusting the arrangement of the first layer 11 and the second layer 12.
 多孔質構造体の厚みは、必要な機械的強度を維持できる範囲で、薄い方が好ましい。多孔質構造体の厚みが厚くなると、一般に流体を通過させた際の圧力損失が大きくなる。多孔質構造体の圧力損失が大きくなると、流速が遅くなったり、流体を流すことが困難になったりするため、処理効率が低下するといった問題があるからである。 The thickness of the porous structure is preferably thin as long as the necessary mechanical strength can be maintained. When the thickness of the porous structure is increased, generally the pressure loss when the fluid is passed increases. This is because when the pressure loss of the porous structure increases, the flow rate becomes slow and it becomes difficult to flow the fluid, so that there is a problem that the processing efficiency is lowered.
 なお、上述の特許文献3および4に開示される多孔質構造体は、平行に配列された線材群の積層体であるため、2層から構成される網目より小さな網目を形成するためには、少なくとも4層の線材群を積層する必要がある。このような積層体(多孔質構造体)は、厚みが厚くなるという問題があった。 In addition, since the porous structure disclosed in Patent Documents 3 and 4 described above is a laminated body of wire groups arranged in parallel, in order to form a mesh smaller than a mesh composed of two layers, It is necessary to laminate at least four layers of wire rods. Such a laminate (porous structure) has a problem that the thickness is increased.
 これに対して、本実施形態の多孔質構造体は、これらの半分の層数で微小な貫通孔を形成できる。したがって、本実施形態の多孔質構造体およびその製造方法は、微小な貫通孔を有し、かつ厚みの薄い多孔質構造体を得る上で有利である。 On the other hand, the porous structure of the present embodiment can form minute through holes with half the number of layers. Therefore, the porous structure and the manufacturing method thereof according to the present embodiment are advantageous in obtaining a porous structure having a minute through hole and a small thickness.
 第1層11および第2層12の厚みは、特に限定されないが、空隙部のサイズが微小になる場合は、加工性などの観点から0.5μm~10μmとすることが好ましい。 The thicknesses of the first layer 11 and the second layer 12 are not particularly limited, but when the size of the gap is small, it is preferably 0.5 μm to 10 μm from the viewpoint of workability.
 フィルタとして用いられる多孔質構造体の表面は、目的物が吸着しやすいような修飾が施されていてもよい。なお、この表面修飾によって化学的に目的物を捕集できる範囲であれば、多孔質構造体の貫通孔103の大きさは、物理的に目的物が通過できるような大きさであってもよい。 The surface of the porous structure used as a filter may be modified so that the target product is easily adsorbed. As long as the target can be chemically collected by this surface modification, the size of the through-hole 103 of the porous structure may be such that the target can physically pass therethrough. .
 目的物が吸着しやすいような修飾とは、例えば、目的物と親和性の高い物質によるコーティングが挙げられる。他にも、多孔質構造体の表面にホスト分子を結合する修飾を施し、該ホスト分子に目的物が結合されるようにしてもよい。ここで、ホスト分子とは、目的物を特異的に結合させることのできる分子などであり、ホスト分子と目的物の組み合わせとしては、例えば、抗原と抗体、糖鎖とタンパク質、脂質とタンパク質、低分子化合物(リガンド)とタンパク質、タンパク質とタンパク質、一本鎖DNAと一本鎖DNAなどが挙げられる。 Examples of the modification such that the target product is easily adsorbed include coating with a substance having a high affinity for the target product. In addition, a modification that binds a host molecule to the surface of the porous structure may be performed so that the target substance is bound to the host molecule. Here, the host molecule is a molecule that can specifically bind the target substance. Examples of the combination of the host molecule and the target substance include an antigen and an antibody, a sugar chain and a protein, a lipid and a protein, Examples include molecular compounds (ligands) and proteins, proteins and proteins, single-stranded DNA and single-stranded DNA, and the like.
 本実施形態の多孔質構造体は、フィルタとして用いたときに、図2に示されるような平面的な空隙配置構造体に比べて、目詰まりを生じ難いという利点を有している。この点について、図3と、比較としての図4を参照して以下に説明する。 The porous structure of the present embodiment has an advantage that clogging is less likely to occur when used as a filter than a planar void arrangement structure as shown in FIG. This will be described below with reference to FIG. 3 and FIG. 4 as a comparison.
 図3に、本実施形態の多孔質構造体(図1参照)を用いて、目的物9を捕集した状態を示す。図3では、貫通孔103の開口部のうち、目的物9によって閉塞される閉塞部分103aと、目的物9によって閉塞されない開口部分103bとを示している。 FIG. 3 shows a state where the target object 9 is collected using the porous structure of the present embodiment (see FIG. 1). FIG. 3 shows a closed portion 103 a that is blocked by the object 9 and an opening portion 103 b that is not blocked by the object 9 among the openings of the through-hole 103.
 なお、本実施形態の多孔質構造体の利点の1つは、第1層11の第1空隙部101や第2層12の第2空隙部102のサイズでは、捕集できない微小なサイズの目的物を捕集するために貫通孔103を用いる点にある。したがって、ここでの目的物9の大きさは、第1空隙部101および第2空隙部102のサイズより小さく、貫通孔103のサイズより大きいものとしている。 One advantage of the porous structure of the present embodiment is that the size of the first void portion 101 of the first layer 11 and the second void portion 102 of the second layer 12 is a small size that cannot be collected. The point is that the through-hole 103 is used to collect an object. Therefore, the size of the object 9 here is smaller than the size of the first gap portion 101 and the second gap portion 102 and larger than the size of the through hole 103.
 また、比較として、図4に、図3の貫通孔103と同じ大きさの貫通孔109を有する1層構造の空隙配置構造体(図2参照)を用いて、図3と同じ大きさの目的物9を捕集した状態を示す。図4では、貫通孔109の開口部のうち、目的物9によって閉塞される閉塞部分109aと、目的物9によって閉塞されない開口部分109bとを示している。 For comparison, FIG. 4 uses a single-layer void arrangement structure (see FIG. 2) having a through hole 109 having the same size as the through hole 103 in FIG. The state which collected the thing 9 is shown. In FIG. 4, a closed portion 109 a that is blocked by the object 9 and an opening portion 109 b that is not blocked by the object 9 among the openings of the through hole 109 are shown.
 図3と図4との比較から明らかなように、本実施形態の多孔質構造体の場合(図3)は、比較的大きなサイズの開口部分103bが維持されることが分かる。また、図3(b)および図4(b)のような平面視における違いだけでなく、図3(a)における側面方向においても、貫通孔103の開口が維持されるため、図3の場合、図4に比べて流体が貫通孔103を通過し易いことが分かる。 As is clear from a comparison between FIG. 3 and FIG. 4, in the case of the porous structure of the present embodiment (FIG. 3), it can be seen that the relatively large opening 103b is maintained. Further, in the case of FIG. 3, since the opening of the through hole 103 is maintained not only in the plan view as shown in FIGS. 3B and 4B but also in the side surface direction in FIG. It can be seen that the fluid easily passes through the through hole 103 as compared with FIG.
 このように、本実施形態の多孔質構造体においては、貫通孔103の周囲の立体構造により、1層構造の空隙配置構造体よりも貫通孔103の開口が広く維持され易いため、目詰まりを生じ難いという利点を有している。 As described above, in the porous structure of the present embodiment, the three-dimensional structure around the through-hole 103 makes it easier to maintain the opening of the through-hole 103 than in the single-layer structure with a void arrangement. It has the advantage that it does not occur easily.
 (測定デバイス)
 また、目的物を捕集した多孔質構造体(フィルタ)に電磁波を照射し、多孔質構造体の電磁波特性を用いて目的物の量または特性を測定するための測定デバイスとして用いることができる。
(Measurement device)
Moreover, it can be used as a measurement device for irradiating a porous structure (filter) collecting the target object with electromagnetic waves and measuring the amount or characteristic of the target object using the electromagnetic wave characteristics of the porous structure.
 多孔質構造体の電磁波特性を用いた測定方法としては、種々公知の機構を用いることができるが、例えば、FT-IR(フーリエ変換赤外分光法)などの赤外分光法、テラヘルツ時間領域分光法(THz-TDS)が挙げられる。 Various known mechanisms can be used as a measurement method using the electromagnetic wave characteristics of the porous structure. For example, infrared spectroscopy such as FT-IR (Fourier transform infrared spectroscopy), terahertz time domain spectroscopy, and the like. Method (THz-TDS).
 測定に用いられる電磁波は、例えば、フィルタの構造に応じて散乱を生じさせることのできる電磁波であり、具体的には、電波、赤外線、可視光線、紫外線、X線、ガンマ線などである。電磁波の周波数は、特に限定されないが、好ましくは1GHz~1PHzであり、さらに好ましくは20GHz~200THz(テラヘルツ波)である。 The electromagnetic wave used for the measurement is, for example, an electromagnetic wave that can cause scattering according to the structure of the filter, and specifically includes radio waves, infrared rays, visible rays, ultraviolet rays, X-rays, gamma rays, and the like. The frequency of the electromagnetic wave is not particularly limited, but is preferably 1 GHz to 1 PHz, and more preferably 20 GHz to 200 THz (terahertz wave).
 また、電磁波としては、例えば、所定の偏波方向を有する直線偏光の電磁波(直線偏波)や無偏光の電磁波(無偏波)を用いることができる。直線偏光の電磁波としては、例えば、短光パルスレーザを光源としてZnTe等の電気光学結晶の光整流効果により発生するテラヘルツ波や、半導体レーザから出射される可視光や、光伝導アンテナから放射される電磁波等が挙げられる。無偏光の電磁波としては、高圧水銀ランプやセラミックランプから放射される赤外光等が挙げられる。 As the electromagnetic wave, for example, a linearly polarized electromagnetic wave (linearly polarized wave) having a predetermined polarization direction or an unpolarized electromagnetic wave (nonpolarized wave) can be used. As linearly polarized electromagnetic waves, for example, a terahertz wave generated by the optical rectification effect of an electro-optic crystal such as ZnTe using a short light pulse laser as a light source, visible light emitted from a semiconductor laser, or emitted from a photoconductive antenna An electromagnetic wave etc. are mentioned. Non-polarized electromagnetic waves include infrared light emitted from a high-pressure mercury lamp or a ceramic lamp.
 図5~図7に、本実施形態の多孔質構造体の変形例を示す。図5に示す変形例は、第1層11および第2層12が、正六角形の空隙部を有するハニカム状の構造を有している。また、図6に示す変形例は、第1層11および第2層12が、円形の空隙部を有するハニカム状の構造を有している。これらの変形例において、一方の層の1つの空隙部が他方の層の3つの空隙部と重なるように2層が積層されている。 5 to 7 show modified examples of the porous structure of the present embodiment. In the modification shown in FIG. 5, the first layer 11 and the second layer 12 have a honeycomb structure having regular hexagonal voids. In the modification shown in FIG. 6, the first layer 11 and the second layer 12 have a honeycomb structure having a circular gap. In these modified examples, two layers are laminated so that one void portion of one layer overlaps three void portions of the other layer.
 なお、本実施形態の多孔質構造体は、上記の形状に限定されず、他にも正三角形、正八角形などの空隙部を有する第1層11および第2層12から構成されていてもよい。 Note that the porous structure of the present embodiment is not limited to the above-mentioned shape, and may be composed of a first layer 11 and a second layer 12 having a void such as a regular triangle or a regular octagon. .
 図7に示す変形例は、第1層11および第2層12の構造は、上記実施形態と同様であるが、一方の層の1つの空隙部が他方の層の2つの空隙部と重なるように2層が積層されている。なお、図1に示す上記実施形態の多孔質構造体では、一方の層の1つの空隙部が他方の層の4つの空隙部と重なるように2層が積層されている。 In the modification shown in FIG. 7, the structure of the first layer 11 and the second layer 12 is the same as that of the above embodiment, but one void portion of one layer overlaps two void portions of the other layer. Two layers are laminated. In the porous structure according to the embodiment shown in FIG. 1, two layers are laminated so that one void portion of one layer overlaps four void portions of the other layer.
 (多孔質構造体の製造方法)
 本実施形態の多孔質構造体の製造方法は、基本的に、
 多孔質構造体の一方の主面である第1主面11a側に、第1層11を形成する第1層形成工程と、
 多孔質構造体の他方の主面である第2主面12a側に、第2層12を形成すると同時に、第1層11と第2層12とを直接的に結合させることで、多孔質構造体を得る、第2層形成工程とを含む。
(Method for producing porous structure)
The manufacturing method of the porous structure of the present embodiment is basically:
A first layer forming step of forming the first layer 11 on the first main surface 11a side which is one main surface of the porous structure;
By forming the second layer 12 on the second main surface 12a side which is the other main surface of the porous structure, and simultaneously bonding the first layer 11 and the second layer 12 together, the porous structure And a second layer forming step for obtaining a body.
 以下、各工程について図12を参照して説明する。
 (第1層形成工程)
 本工程では、第1金属膜31上に堆積法により第1層11を所定のパターニングで形成する。
Hereinafter, each step will be described with reference to FIG.
(First layer forming step)
In this step, the first layer 11 is formed on the first metal film 31 by a predetermined patterning by a predetermined method.
 まず、図12(a)を参照して、基板2を用意する。基板2は、特に限定されないが、例えば、Siからなる。 First, referring to FIG. 12A, a substrate 2 is prepared. Although the board | substrate 2 is not specifically limited, For example, it consists of Si.
 次に、図12(b)を参照して、基板2上に、スパッタリングによりTi膜及びCu膜をこの順序で製膜し、Ti膜及びCu膜からなる積層膜(第1金属膜31)を形成する。この第1金属膜31は、後の工程でエッチングによって除去される層であるが、第1層を形成する際に、Niのめっきに際してのシード層としても機能する。 Next, referring to FIG. 12B, a Ti film and a Cu film are formed in this order on the substrate 2 by sputtering, and a laminated film (first metal film 31) composed of the Ti film and the Cu film is formed. Form. The first metal film 31 is a layer that is removed by etching in a later step, but also functions as a seed layer for Ni plating when the first layer is formed.
 第1金属膜31の厚みは、特に限定されないが、後の工程で部分的に除去されるものであるため、本実施形態の多孔質構造体を得られる範囲内で薄い方が好ましい。具体的には、例えば、第1金属膜31の厚みは、100~600nmであることが好ましい。なお、例えば、Ti膜の厚みは20nm程度とすればよく、Cu膜の厚みは200nm~500nm程度とすればよい。 The thickness of the first metal film 31 is not particularly limited, but is preferably as thin as possible within the range in which the porous structure of the present embodiment can be obtained because it is partially removed in a later step. Specifically, for example, the thickness of the first metal film 31 is preferably 100 to 600 nm. For example, the thickness of the Ti film may be about 20 nm, and the thickness of the Cu film may be about 200 nm to 500 nm.
 次に、図12(c)を参照して、第1金属膜31上に第1レジスト41を形成する。例えば、この第1レジスト41は、フォトリソグラフィー法により形成することができる。第1レジスト41は、第1層が形成される部分に相当する位置に、開口を有するようにパターニングされ、主面の法線方向に貫通する複数の第1空隙部101を有する膜状の第1層11が形成されるようにパターニングされる。 Next, referring to FIG. 12C, a first resist 41 is formed on the first metal film 31. For example, the first resist 41 can be formed by a photolithography method. The first resist 41 is patterned so as to have an opening at a position corresponding to a portion where the first layer is formed, and a film-shaped first resist 41 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface. Patterning is performed so that one layer 11 is formed.
 次に、図12(d)を参照して、第1レジスト41の開口において露出した第1金属膜31の表面上に、第1層11(Ni膜)をめっき法により形成する。このようにして、主面の法線方向に貫通する複数の第1空隙部101を有する膜状の第1層11が形成される。 Next, referring to FIG. 12D, the first layer 11 (Ni film) is formed on the surface of the first metal film 31 exposed in the opening of the first resist 41 by a plating method. In this way, a film-like first layer 11 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface is formed.
 (第2層形成工程)
 本工程では、第1層11上に堆積法により第2層12を所定のパターニングで形成し、多孔質構造体を得る。
(Second layer forming step)
In this step, the second layer 12 is formed on the first layer 11 by a deposition method by a predetermined patterning to obtain a porous structure.
 まず、図12(e)を参照して、第1金属膜31と同様にして、第1レジスト41上にTi膜及びCu膜からなる積層膜(第2金属膜32)を形成する。この第2金属膜32は、後の工程でエッチングによって部分的に除去される層であるが、第2層を形成する際に、Niのめっきに際してのシード層としても機能する。 First, referring to FIG. 12 (e), similarly to the first metal film 31, a laminated film (second metal film 32) made of a Ti film and a Cu film is formed on the first resist 41. The second metal film 32 is a layer that is partially removed by etching in a later step, but also functions as a seed layer for Ni plating when the second layer is formed.
 次に、図12(f)を参照して、第2金属膜32上に、第2レジスト42を形成する。第2レジスト42は、第2層が形成される部分に相当する位置に、開口を有するようにパターニングされ、主面の法線方向に貫通する複数の第2空隙部を有する膜状の第2層が形成されるようにパターニングされる。 Next, referring to FIG. 12 (f), a second resist 42 is formed on the second metal film 32. The second resist 42 is patterned so as to have an opening at a position corresponding to a portion where the second layer is formed, and is a film-like second having a plurality of second void portions penetrating in the normal direction of the main surface. Patterned to form a layer.
 また、パターニングは、第1主面の法線方向から見た平面視において、複数の第1空隙部101の各々は複数の第2空隙部102のうちの2つ以上と重なり、かつ、第2主面12aの法線方向から見た平面視において、複数の第2空隙部102の各々は複数の第1空隙部101のうちの2つ以上と重なるように設計される。これにより、複数の第1空隙部101と複数の第2空隙部102とが重なっている部分において、第1主面11aおよび第2主面12aを貫通する貫通孔103が形成される。 Further, in the patterning, in the plan view seen from the normal direction of the first main surface, each of the plurality of first gap portions 101 overlaps two or more of the plurality of second gap portions 102, and the second Each of the plurality of second gaps 102 is designed to overlap two or more of the plurality of first gaps 101 in a plan view viewed from the normal direction of the main surface 12a. Thereby, the through-hole 103 which penetrates the 1st main surface 11a and the 2nd main surface 12a is formed in the part which the some 1st space | gap part 101 and the some 2nd space | gap part 102 have overlapped.
 なお、本実施形態において、第2レジスト42は、第1レジスト41と同じ形状であり、配置される位置のみが第1レジスト41とは異なる。 In the present embodiment, the second resist 42 has the same shape as the first resist 41, and only the position where it is arranged is different from the first resist 41.
 次に、図12(g)を参照して、第2レジスト42の開口において露出した第2金属膜32の表面上に、第2層12(Ni膜)をめっき法により形成する。 Next, referring to FIG. 12G, the second layer 12 (Ni film) is formed on the surface of the second metal film 32 exposed in the opening of the second resist 42 by a plating method.
 次に、図12(h)を参照して、第2レジスト42を剥離法(溶解剥離)により除去する。 Next, referring to FIG. 12H, the second resist 42 is removed by a peeling method (dissolution peeling).
 次に、図12(i)を参照して、第2金属膜32をエッチングにより部分的に除去する。エッチング方法としては、例えば、金属膜を溶解するエッチング液に上記の工程で得られた多孔質構造体の前駆体を浸漬する方法が挙げられる。なお、エッチング液は、例えば、純水を用いたリンスによって洗浄し、その後に乾燥が行われる。 Next, referring to FIG. 12I, the second metal film 32 is partially removed by etching. Examples of the etching method include a method of immersing the precursor of the porous structure obtained in the above step in an etching solution for dissolving a metal film. Note that the etching solution is washed by, for example, rinsing with pure water, and then dried.
 次に、図12(j)を参照して、第1レジスト41を剥離法により除去する。
 上記の工程によって、図12(k)に示されるように、第1層11および第2層12(第2金属膜32の残部を含む)から構成される多孔質構造体を得ることができる。
Next, referring to FIG. 12J, the first resist 41 is removed by a peeling method.
By the above steps, as shown in FIG. 12 (k), a porous structure composed of the first layer 11 and the second layer 12 (including the remainder of the second metal film 32) can be obtained.
 [実施形態2]
 図8を参照して、本実施形態の多孔質構造体は、第1層11と第2層12とが離間しており、第1層11と第2層12とが連結部13を介して間接的に結合している点で、実施形態1とは異なる。
[Embodiment 2]
Referring to FIG. 8, in the porous structure of the present embodiment, the first layer 11 and the second layer 12 are separated from each other, and the first layer 11 and the second layer 12 are connected via the connecting portion 13. It is different from the first embodiment in that it is indirectly coupled.
 このように、第1層11と第2層12とが、連結部13を介して間接的に結合することで、多孔質構造体の主面に垂直な方向に連通した貫通孔103だけでなく、多孔質構造体の主面に平行な方向に連通した連通孔104が形成される。したがって、流体が、多孔質構造体の主面に垂直な方向だけでなく、平行な方向にも流れることが可能となる。これにより、本実施形態の多孔質構造体は、実施形態1よりもさらに目詰まりを生じ難くなるという利点を有している。 In this way, the first layer 11 and the second layer 12 are indirectly coupled via the connecting portion 13, so that not only the through-hole 103 communicated in the direction perpendicular to the main surface of the porous structure. A communication hole 104 communicating in a direction parallel to the main surface of the porous structure is formed. Therefore, the fluid can flow not only in a direction perpendicular to the main surface of the porous structure but also in a parallel direction. Thereby, the porous structure of the present embodiment has an advantage that clogging is less likely to occur than in the first embodiment.
 なお、本実施形態の多孔質構造体において、連結部13は、第1層11および第2層12とからなる一体物である。本実施形態の多孔質構造体は、第1層11を形成した後に、第1層11上に連結部13および第2層12が一体的に形成されてなるものであることが好ましい。ただし、これに限定されず、例えば、第1層11を形成した後に、第1層11上に連結部13を形成し、その後、連結部13上に第2層12を形成してもよい。 In the porous structure according to the present embodiment, the connecting portion 13 is an integrated body composed of the first layer 11 and the second layer 12. The porous structure of the present embodiment is preferably formed by integrally forming the connecting portion 13 and the second layer 12 on the first layer 11 after forming the first layer 11. However, it is not limited to this, For example, after forming the 1st layer 11, you may form the connection part 13 on the 1st layer 11, and may form the 2nd layer 12 on the connection part 13 after that.
 図13を参照して、本実施形態の多孔質構造体の製造方法は、図13(d)に示されるように、第1層11を第1レジスト41の厚みよりも薄く形成する点で実施形態1とは異なる。これにより、図13(e)に示されるように凹部13aが形成される。 Referring to FIG. 13, the porous structure manufacturing method of the present embodiment is performed in that the first layer 11 is formed thinner than the thickness of the first resist 41 as shown in FIG. Different from Form 1. As a result, a recess 13a is formed as shown in FIG.
 この凹部13aが、第2レジスト42によって形成された凹部13bと交差する部分(図13(f)および図14(f)参照)に、図13(g)に示すめっき工程において連結部13が形成されることになる。 In the portion where the recess 13a intersects the recess 13b formed by the second resist 42 (see FIGS. 13 (f) and 14 (f)), the connecting portion 13 is formed in the plating step shown in FIG. 13 (g). Will be.
 なお、図14(d)~(f)は、図13(d)~(f)に対応する図である。また、図13(d)~(f)は、図14(d)~(f)のA-A’断面に相当する。 14D to 14F correspond to FIGS. 13D to 13F. 13D to 13F correspond to the A-A ′ cross section of FIGS. 14D to 14F.
 図9および図10に、本実施形態の多孔質構造体の変形例を示す。図9に示す変形例は、第1層11および第2層12が、正六角形の空隙部を有するハニカム状の構造を有している。また、図10に示す変形例は、第1層11および第2層12が、円形の空隙部を有するハニカム状の構造を有している。なお、これらの変形例においても、第1層11と第2層12とが、連結部13を介して間接的に結合している。 9 and 10 show a modification of the porous structure of the present embodiment. In the modification shown in FIG. 9, the first layer 11 and the second layer 12 have a honeycomb structure having regular hexagonal voids. Further, in the modification shown in FIG. 10, the first layer 11 and the second layer 12 have a honeycomb structure having a circular gap. In these modified examples, the first layer 11 and the second layer 12 are indirectly coupled via the connecting portion 13.
 [実施形態3]
 図11を参照して、本実施形態の多孔質構造体は、第1層11の複数の第1空隙部101の少なくとも1つの内部において、第2層12の表面から第1層11側に突出する突起14を有する点で、実施形態2とは異なる。
[Embodiment 3]
Referring to FIG. 11, the porous structure according to the present embodiment protrudes from the surface of the second layer 12 toward the first layer 11 inside at least one of the plurality of first gap portions 101 of the first layer 11. The second embodiment is different from the second embodiment in that the protrusion 14 is provided.
 このような突起14を有していることで、貫通孔103を通過できない大きな夾雑物等が停滞した際でも、微小な目的物や流体が貫通孔103を通過し易い状態を作ることができる。 By having such protrusions 14, even when a large foreign object or the like that cannot pass through the through hole 103 stagnate, it is possible to create a state in which a minute object or fluid can easily pass through the through hole 103.
 なお、本実施形態の多孔質構造体は、実施形態2の多孔質構造体の製造方法と同様にして製造することができ、図13における(f)の工程で、第2層12を形成する為の第2レジスト42を突起14が形成できる様にパターニングすることで、第2層12の表面に突起14を形成することができる。 The porous structure of the present embodiment can be manufactured in the same manner as the porous structure manufacturing method of Embodiment 2, and the second layer 12 is formed in the step (f) in FIG. By patterning the second resist 42 for forming the protrusions 14, the protrusions 14 can be formed on the surface of the second layer 12.
 [実施形態4]
 図15、図30および図31を参照して、本実施形態の多孔質構造体について説明する。なお、図15は、図30において点線で囲まれた領域Rに相当する部分のみに相当する拡大図である。
[Embodiment 4]
The porous structure of the present embodiment will be described with reference to FIGS. 15, 30, and 31. FIG. 15 is an enlarged view corresponding to only the portion corresponding to the region R surrounded by the dotted line in FIG.
 本実施形態の多孔質構造体では、実施形態2と同様に、第1層11と第2層12とが離間しており、連結部13を介して間接的に結合している。なお、第2層12は、矩形状の複数の分離部121から構成されており、複数の分離部121の間に位置する格子状の1つの第2空隙部102を有している。しかし、本実施形態の多孔質構造体は、主に、第1主面11aの法線方向から見た平面視において、第1空隙部101の全てが第2空隙部102と重なっていない点で、実施形態1とは異なる。 In the porous structure of the present embodiment, as in the second embodiment, the first layer 11 and the second layer 12 are separated from each other and are indirectly coupled via the connecting portion 13. The second layer 12 is composed of a plurality of rectangular separation parts 121, and has one grid-like second gap part 102 located between the plurality of separation parts 121. However, the porous structure of the present embodiment is mainly because the first gap 101 does not entirely overlap with the second gap 102 in a plan view viewed from the normal direction of the first major surface 11a. This is different from the first embodiment.
 そして、本実施形態では、第1主面11aの法線方向から見た平面視において、第1空隙部101と第2空隙部102とが重なっていない部分の一部に連結部13が設けられている。これにより、本実施形態の多孔質構造体は、第1空隙部101と第2空隙部102とを第1主面11aに平行な方向に連通させるための連通孔104を有している。このように、本実施形態の多孔質構造体は、第1主面11aおよび第2主面12aを貫通する貫通孔(第1空隙部101、連通孔104および第2空隙部102を含む貫通孔)を有している。 And in this embodiment, the connection part 13 is provided in a part of part which the 1st space | gap part 101 and the 2nd space | gap part 102 have not overlapped in planar view seen from the normal line direction of the 1st main surface 11a. ing. Thereby, the porous structure of this embodiment has the communication hole 104 for connecting the 1st space | gap part 101 and the 2nd space | gap part 102 in the direction parallel to the 1st main surface 11a. As described above, the porous structure according to the present embodiment includes a through hole (a through hole including the first gap 101, the communication hole 104, and the second gap 102) that penetrates the first main surface 11a and the second main surface 12a. )have.
 本実施形態においては、実施形態2のような多孔質構造体の主面に垂直な方向に連通した貫通孔103を有していないため、流体は必ず、多孔質構造体の主面に平行な方向に連通した連通孔104を通過する。このため、連通孔104の大きさを調整することで、流体中の所望の大きさの目的物を濾過することができる。ここで、連結部13の厚みは比較的容易に高精度な調整が可能であるため、連通孔104の第1層11および第2層12の積層方向の長さを微小に調整することができる。したがって、本実施形態においては、この連通孔104の積層方向の長さを調整することで、より微小な目的物を濾過することが可能となる。 In this embodiment, since the through-hole 103 communicated in a direction perpendicular to the main surface of the porous structure as in the second embodiment is not provided, the fluid is always parallel to the main surface of the porous structure. It passes through the communication hole 104 communicating in the direction. For this reason, by adjusting the size of the communication hole 104, it is possible to filter an object having a desired size in the fluid. Here, since the thickness of the connecting portion 13 can be adjusted relatively easily with high accuracy, the length of the communication layer 104 in the stacking direction of the first layer 11 and the second layer 12 can be finely adjusted. . Therefore, in the present embodiment, by adjusting the length of the communication hole 104 in the stacking direction, it becomes possible to filter a finer target object.
 なお、本実施形態の多孔質構造体において、連結部13は、第1層11および第2層12とからなる一体物である。本実施形態の多孔質構造体は、第1層11を形成した後に、第1層11上に連結部13および第2層12が一体的に形成されてなるものであることが好ましい。ただし、これに限定されず、例えば、第1層11を形成した後に、第1層11上に連結部13を形成し、その後、連結部13上に第2層12を形成してもよい。 In the porous structure according to the present embodiment, the connecting portion 13 is an integrated body composed of the first layer 11 and the second layer 12. The porous structure of the present embodiment is preferably formed by integrally forming the connecting portion 13 and the second layer 12 on the first layer 11 after forming the first layer 11. However, it is not limited to this, For example, after forming the 1st layer 11, you may form the connection part 13 on the 1st layer 11, and may form the 2nd layer 12 on the connection part 13 after that.
 (多孔質構造体の製造方法1)
 本実施形態の多孔質構造体の製造方法として、堆積法により、第1層11を形成した後に、第1層11上に連結部13および第2層12を一体的に形成する方法の一例について、主に図16および図17を参照して説明する。なお、図16は、図21および図23に示すA-A’断面に相当する模式図である。図17の左列の図は、図21および図23に示すA-A’断面に相当する模式図であり、右列の図は、図24に示すB-B’断面に相当する模式図である。
(Method 1 for producing porous structure)
As an example of a method for manufacturing the porous structure according to the present embodiment, after the first layer 11 is formed by a deposition method, the connecting portion 13 and the second layer 12 are integrally formed on the first layer 11. A description will be given mainly with reference to FIGS. 16 and 17. FIG. 16 is a schematic diagram corresponding to the cross section AA ′ shown in FIGS. The diagram in the left column of FIG. 17 is a schematic diagram corresponding to the AA ′ cross section shown in FIGS. 21 and 23, and the diagram in the right column is a schematic diagram corresponding to the BB ′ cross section shown in FIG. is there.
 まず、図16(a)を参照して、基板2を用意する。基板2は、特に限定されないが、例えば、Siからなる。なお、基板2の表面(図の上側の表面)には、図示しない導電性膜(Cu膜など)が積層されている。この導電性膜は、後の工程でエッチングによって除去される層であるが、第1層を形成する際に、Niのめっきに際してのシード層としても機能する。 First, referring to FIG. 16A, the substrate 2 is prepared. Although the board | substrate 2 is not specifically limited, For example, it consists of Si. A conductive film (such as a Cu film) (not shown) is laminated on the surface of the substrate 2 (the upper surface in the drawing). This conductive film is a layer that is removed by etching in a later step, but also functions as a seed layer for Ni plating when the first layer is formed.
 次に、図16(b)および図18を参照して、基板2上に、スパッタリングによりCuからなる第1金属膜31を形成する。なお、この第1金属膜31は、最終的にはエッチングによって除去される膜である。 Next, with reference to FIGS. 16B and 18, a first metal film 31 made of Cu is formed on the substrate 2 by sputtering. The first metal film 31 is a film that is finally removed by etching.
 次に、図16(c)および図19を参照して、第1金属膜31上に第1レジスト41を形成する。例えば、この第1レジスト41は、フォトリソグラフィー法により形成することができる。第1レジスト41は、第1層が形成される部分に相当する位置に、開口を有するようにパターニングされ、主面の法線方向に貫通する複数の第1空隙部101を有する膜状の第1層11が形成されるようにパターニングされる。 Next, referring to FIG. 16C and FIG. 19, a first resist 41 is formed on the first metal film 31. For example, the first resist 41 can be formed by a photolithography method. The first resist 41 is patterned so as to have an opening at a position corresponding to a portion where the first layer is formed, and a film-shaped first resist 41 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface. Patterning is performed so that one layer 11 is formed.
 次に、図16(d)および図20を参照して、第1レジスト41の開口において露出した第1金属膜31をエッチングにより部分的に除去する。エッチング方法は、実施形態1と同様である。 Next, with reference to FIGS. 16D and 20, the first metal film 31 exposed in the opening of the first resist 41 is partially removed by etching. The etching method is the same as in the first embodiment.
 次に、図16(e)を参照して、第1レジスト41の開口において露出した基板2(導電性膜)の表面上に、第1層11(Ni膜)をめっき法により形成する。このようにして、主面の法線方向に貫通する複数の第1空隙部101を有する膜状の第1層11が形成される。なお、第1空隙部は複数でなくてもよく、少なくとも1つでよい。その後、図16(f)および図21を参照して、第1レジスト41を剥離法(溶解剥離)により除去する。 Next, referring to FIG. 16 (e), a first layer 11 (Ni film) is formed on the surface of the substrate 2 (conductive film) exposed in the opening of the first resist 41 by a plating method. In this way, a film-like first layer 11 having a plurality of first gap portions 101 penetrating in the normal direction of the main surface is formed. In addition, the 1st space | gap part does not need to be plural but at least one is sufficient. Thereafter, with reference to FIG. 16F and FIG. 21, the first resist 41 is removed by a peeling method (dissolution peeling).
 次に、図16(g)および図22を参照して、第1金属膜31と同様にして、第1層11および第1金属膜31上にCuからなる第2金属膜32を形成する。この第2金属膜32は、後の工程でエッチングによって部分的に除去される層であるが、第2層を形成する際に、Niのめっきに際してのシード層としても機能する。 Next, with reference to FIG. 16G and FIG. 22, a second metal film 32 made of Cu is formed on the first layer 11 and the first metal film 31 in the same manner as the first metal film 31. The second metal film 32 is a layer that is partially removed by etching in a later step, but also functions as a seed layer for Ni plating when the second layer is formed.
 次に、図17(h)、(h2)および図23を参照して、第2金属膜32上に、第2レジスト42を形成する。第2レジスト42は、第2層12の第2空隙部102および連結部13を合わせた形状に相当する位置に、開口を有するようにパターニングされる。 Next, referring to FIGS. 17 (h), (h2) and FIG. 23, a second resist 42 is formed on the second metal film 32. The second resist 42 is patterned so as to have an opening at a position corresponding to the shape of the second gap portion 102 and the connecting portion 13 of the second layer 12 combined.
 次に、図17(i)、(i2)および図24を参照して、第2金属膜32をエッチングにより除去する。その後、図17(j)、(j2)および図25を参照して、第2レジスト42を除去する。 Next, referring to FIGS. 17 (i), (i2) and FIG. 24, the second metal film 32 is removed by etching. Thereafter, referring to FIGS. 17J, 17J, and 25, the second resist 42 is removed.
 次に、図17(k)および図26を参照して、第2金属膜32上に、第3レジスト43を形成する。第3レジスト43は、第2層12の第2空隙部102と同様の形状にパターニングされる。なお、本実施形態において、第2層12は、格子状の1つの第2空隙部102を有するものであるが、複数の第2空隙部を有するものであってもよい。 Next, with reference to FIG. 17K and FIG. 26, a third resist 43 is formed on the second metal film 32. The third resist 43 is patterned into the same shape as the second gap portion 102 of the second layer 12. In the present embodiment, the second layer 12 has one grid-like second gap portion 102, but may have a plurality of second gap portions.
 次に、図17(l)および図27を参照して、第3レジスト43の開口において露出した第2金属膜32および第1層11の表面上に、Ni膜をめっき法により形成する。これにより、Niからなる連結部13と第2層12とが同時に形成される(図30参照)。その後、図17(m)および図28を参照して、第3レジスト43を除去する。 Next, referring to FIG. 17L and FIG. 27, a Ni film is formed on the surface of the second metal film 32 and the first layer 11 exposed in the opening of the third resist 43 by a plating method. Thereby, the connection part 13 and the 2nd layer 12 which consist of Ni are formed simultaneously (refer FIG. 30). Thereafter, referring to FIG. 17 (m) and FIG. 28, the third resist 43 is removed.
 次に、図17(n)および図29を参照して、第2金属膜32および第1金属膜をエッチングにより除去する。さらに、基板2の表面の導電性膜をエッチングにより除去することにより、図17(o)および図30に示されるような本実施形態の多孔質構造体を得ることができる(第1層の構造については図31の分解斜視図参照)。 Next, referring to FIG. 17 (n) and FIG. 29, the second metal film 32 and the first metal film are removed by etching. Further, by removing the conductive film on the surface of the substrate 2 by etching, the porous structure according to the present embodiment as shown in FIG. 17 (o) and FIG. 30 can be obtained (structure of the first layer). (See the exploded perspective view of FIG. 31).
 (多孔質構造体の製造方法2)
 さらに、本実施形態の別の多孔質構造体の製造方法として、堆積法により、第1層11を形成した後に、第1層11上に連結部13および第2層12を一体的に形成する方法の別の例について、主に図32~図40を参照して説明する。
(Method 2 for producing porous structure)
Furthermore, as another method for manufacturing the porous structure according to the present embodiment, after the first layer 11 is formed by a deposition method, the connecting portion 13 and the second layer 12 are integrally formed on the first layer 11. Another example of the method will be described mainly with reference to FIGS.
 まず、上記「多孔質構造体の製造方法1」と同様に、図16(a)~(f)および図18~21を参照して説明した工程を実施する。 First, the steps described with reference to FIGS. 16 (a) to 16 (f) and FIGS. 18 to 21 are performed in the same manner as in the above-mentioned “porous structure manufacturing method 1”.
 次に、図32を参照して、図21に示される状態の第1層11および第1金属膜31上に、第2レジスト42を形成する。 Next, referring to FIG. 32, a second resist 42 is formed on the first layer 11 and the first metal film 31 in the state shown in FIG.
 次に、図33を参照して、第1金属膜31と同様にして、第1層11、第1金属膜31および第2レジスト42上に、Cuからなる第2金属膜32を形成する。その後、図34を参照して、第2レジスト42を剥離(リフトオフ)する。 Next, referring to FIG. 33, a second metal film 32 made of Cu is formed on the first layer 11, the first metal film 31, and the second resist 42 in the same manner as the first metal film 31. Thereafter, referring to FIG. 34, the second resist 42 is peeled off (lifted off).
 次に、図35を参照して、第2金属膜32上に、第3レジスト43を形成する。第3レジスト43は、第2層12の複数の第2空隙部102(図37参照)と同様の形状にパターニングされる。 Next, referring to FIG. 35, a third resist 43 is formed on the second metal film 32. The third resist 43 is patterned in the same shape as the plurality of second gap portions 102 (see FIG. 37) of the second layer 12.
 次に、図36を参照して、第3レジスト43の開口において露出した第2金属膜32および第1層11の表面上に、Ni膜をめっき法により形成する。これにより、Niからなる連結部13と第2層12とが同時に形成される(図37参照)。その後、図37を参照して、第3レジスト43を除去する。 Next, referring to FIG. 36, a Ni film is formed by plating on the surfaces of second metal film 32 and first layer 11 exposed in the opening of third resist 43. Thereby, the connection part 13 and the 2nd layer 12 which consist of Ni are formed simultaneously (refer FIG. 37). Thereafter, referring to FIG. 37, the third resist 43 is removed.
 その後、図37を参照して、第3レジスト43を除去する。なお、第2層12は、開口を有する矩形状の複数の分離部122から構成されており、複数の分離部122の間に位置する格子状の1つの第2空隙部102aと、分離部122の開口に相当する複数の第2空隙部102bとを有している。 Thereafter, referring to FIG. 37, the third resist 43 is removed. The second layer 12 is composed of a plurality of rectangular separation portions 122 having openings, and a second lattice-shaped second gap portion 102 a located between the plurality of separation portions 122 and the separation portion 122. And a plurality of second gap portions 102b corresponding to the openings.
 次に、図38を参照して、第1金属膜31と同様にして、第2層12上にCuからなる第2金属膜32を形成する。 Next, referring to FIG. 38, a second metal film 32 made of Cu is formed on the second layer 12 in the same manner as the first metal film 31.
 次に、図39を参照して、第2層12と同様にレジストを用いて、Niめっき膜を形成する。これによりNiからな第3層13と連結部13aとが同時に形成される。さらに、レジストを用いてNiからなる蓋部15を形成する。 Next, referring to FIG. 39, a Ni plating film is formed using a resist in the same manner as the second layer 12. Thereby, the third layer 13 made of Ni and the connecting portion 13a are formed simultaneously. Further, the lid portion 15 made of Ni is formed using a resist.
 その後、第2金属膜32および第1金属膜31を除去する。さらに、基板2の表面の導電性膜をエッチングにより除去することにより、多孔質構造体を得ることができる。 Thereafter, the second metal film 32 and the first metal film 31 are removed. Furthermore, the porous structure can be obtained by removing the conductive film on the surface of the substrate 2 by etching.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 101 第1空隙部、102,102a,102b 第2空隙部、103,109 貫通孔、104 連通孔、11 第1層、11a 第1主面、12 第2層、12a 第2主面、121,122 分離部、13,13a 連結部、14 突起、15 蓋部、2 基板、31 第1金属膜、32 第2金属膜、33 第3金属膜、41 第1レジスト、42 第2レジスト、9 目的物。 101, first gap, 102, 102a, 102b, second gap, 103, 109 through-hole, 104 communication hole, 11 first layer, 11a first main surface, 12 second layer, 12a second main surface, 121, 122 Separation part, 13, 13a connection part, 14 protrusions, 15 lid part, 2 substrate, 31 first metal film, 32 second metal film, 33 third metal film, 41 first resist, 42 second resist, 9 purpose object.

Claims (6)

  1.  互いに対向する第1主面および第2主面を有する膜状の多孔質構造体であって、
     前記第1主面を含み、前記第1主面の法線方向に貫通する複数の第1空隙部を有する膜状の第1層と、
     前記第2主面を含み、前記第2主面の法線方向に貫通する複数の第2空隙部を有する膜状の第2層とを備え、
     前記第1層と前記第2層とは、直接的または間接的に結合しており、
     前記第1主面の法線方向から見た平面視において、前記複数の第1空隙部の各々は前記複数の第2空隙部のうちの2つ以上と重なっており、
     前記第2主面の法線方向から見た平面視において、前記複数の第2空隙部の各々は前記複数の第1空隙部のうちの2つ以上と重なっており、
     前記複数の第1空隙部と前記複数の第2空隙部とが重なっている部分において、前記第1主面および前記第2主面を貫通する貫通孔を有している、多孔質構造体。
    A membranous porous structure having a first main surface and a second main surface facing each other,
    A film-like first layer that includes the first main surface and has a plurality of first voids penetrating in the normal direction of the first main surface;
    A film-like second layer including a plurality of second voids including the second main surface and penetrating in a normal direction of the second main surface;
    The first layer and the second layer are bonded directly or indirectly,
    In a plan view seen from the normal direction of the first main surface, each of the plurality of first gaps overlaps two or more of the plurality of second gaps,
    In a plan view seen from the normal direction of the second main surface, each of the plurality of second voids overlaps two or more of the plurality of first voids,
    A porous structure having a through hole penetrating the first main surface and the second main surface in a portion where the plurality of first void portions and the plurality of second void portions overlap.
  2.  前記第1層と前記第2層とは離間しており、前記第1層と前記第2層とが連結部を介して間接的に結合している、請求項1に記載の多孔質構造体。 2. The porous structure according to claim 1, wherein the first layer and the second layer are separated from each other, and the first layer and the second layer are indirectly bonded via a connecting portion. .
  3.  前記第2層の前記複数の第2空隙部の少なくとも1つの内部において、前記第2層の表面から前記第1層側に突出する突起を有する、請求項1または2に記載の多孔質構造体。 3. The porous structure according to claim 1, further comprising a protrusion protruding from the surface of the second layer toward the first layer inside at least one of the plurality of second void portions of the second layer. .
  4.  互いに対向する第1主面および第2主面を有する膜状の多孔質構造体の製造方法であって、
     前記第1主面側に、主面の法線方向に貫通する複数の第1空隙部を有する膜状の第1層を形成する第1層形成工程と、
     前記第1層の前記第2主面側に、主面の法線方向に貫通する複数の第2空隙部を有する膜状の第2層を形成し、前記第1層と前記第2層とを直接的または間接的に結合させることで、前記多孔質構造体を得る、第2層形成工程とを含み、
     前記第2層形成工程において、
     前記第1主面の法線方向から見た平面視において、前記複数の第1空隙部の各々は前記複数の第2空隙部のうちの2つ以上と重なり、
     前記第2主面の法線方向から見た平面視において、前記複数の第2空隙部の各々は前記複数の第1空隙部のうちの2つ以上と重なり、
     前記複数の第1空隙部と前記複数の第2空隙部とが重なっている部分において、前記第1主面および前記第2主面を貫通する貫通孔が形成されるように、前記第2層を形成する、多孔質構造体の製造方法。
    A method for producing a membranous porous structure having a first main surface and a second main surface facing each other,
    A first layer forming step of forming, on the first main surface side, a film-shaped first layer having a plurality of first voids penetrating in a normal direction of the main surface;
    A film-like second layer having a plurality of second voids penetrating in the normal direction of the main surface is formed on the second main surface side of the first layer, and the first layer, the second layer, A second layer forming step of obtaining the porous structure by directly or indirectly bonding
    In the second layer forming step,
    In a plan view seen from the normal direction of the first main surface, each of the plurality of first gap portions overlaps two or more of the plurality of second gap portions,
    In a plan view seen from the normal direction of the second main surface, each of the plurality of second gaps overlaps two or more of the plurality of first gaps,
    In the portion where the plurality of first gap portions and the plurality of second gap portions overlap, the second layer is formed such that a through-hole penetrating the first main surface and the second main surface is formed. The manufacturing method of the porous structure which forms.
  5.  互いに対向する第1主面および第2主面を有する膜状の多孔質構造体であって、
     前記第1主面を含み、前記第1主面の法線方向に貫通する少なくとも1つの第1空隙部を有する膜状の第1層と、
     前記第2主面を含み、前記第2主面の法線方向に貫通する少なくとも1つの第2空隙部を有する膜状の第2層とを備え、
     前記第1層と前記第2層とは離間しており、前記第1層と前記第2層とは、連結部を介して間接的に結合しており、
     前記第1主面の法線方向から見た平面視において、前記少なくとも1つの第1空隙部の全てが前記少なくとも1つの第2空隙部と重なっておらず、
     前記第1主面および前記第2主面を貫通する貫通孔を有している、多孔質構造体。
    A membranous porous structure having a first main surface and a second main surface facing each other,
    A film-like first layer including at least one first void including the first principal surface and penetrating in a normal direction of the first principal surface;
    A film-like second layer including at least one second void portion including the second main surface and penetrating in a normal direction of the second main surface;
    The first layer and the second layer are separated from each other, and the first layer and the second layer are indirectly coupled via a connecting portion;
    In the plan view seen from the normal direction of the first main surface, not all of the at least one first gap portion overlaps the at least one second gap portion,
    The porous structure which has a through-hole which penetrates the said 1st main surface and the said 2nd main surface.
  6.  請求項1~3のいずれか1項または請求項5に記載の多孔質構造体を用いた細胞の濾過方法。 A method for filtering cells using the porous structure according to any one of claims 1 to 3 or claim 5.
PCT/JP2016/051220 2015-01-19 2016-01-18 Porous structure and manufacturing method thereof WO2016117486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016570620A JP6540715B2 (en) 2015-01-19 2016-01-18 Porous structure and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015007459 2015-01-19
JP2015-007459 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016117486A1 true WO2016117486A1 (en) 2016-07-28

Family

ID=56417032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051220 WO2016117486A1 (en) 2015-01-19 2016-01-18 Porous structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6540715B2 (en)
WO (1) WO2016117486A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173928A1 (en) * 2017-03-21 2018-09-27 株式会社村田製作所 Cell capture filter, method for producing cell capture filter, and method for determining degradation of cell capture filter
JPWO2018003476A1 (en) * 2016-06-30 2019-01-17 富士フイルム株式会社 Cell suspension membrane separation method and cell culture apparatus
WO2019181158A1 (en) * 2018-03-19 2019-09-26 株式会社村田製作所 Filtration filter and filtration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003478A (en) * 2005-06-27 2007-01-11 Sekisui Chem Co Ltd Blood separation material, blood separation device, and vacuum specimen collection container
JP2008018662A (en) * 2006-07-14 2008-01-31 Brother Ind Ltd Liquid droplet jet apparatus, liquid transfer unit, filter and its manufacturing method
JP2009119447A (en) * 2007-11-12 2009-06-04 Tomoyuki Kon Layered porous structure
JP2011510656A (en) * 2008-01-29 2011-04-07 カリフォルニア インスティチュート オブ テクノロジー Microfiltration method and apparatus for cell separation
JP2013537469A (en) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. Polymer microfilter and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003478A (en) * 2005-06-27 2007-01-11 Sekisui Chem Co Ltd Blood separation material, blood separation device, and vacuum specimen collection container
JP2008018662A (en) * 2006-07-14 2008-01-31 Brother Ind Ltd Liquid droplet jet apparatus, liquid transfer unit, filter and its manufacturing method
JP2009119447A (en) * 2007-11-12 2009-06-04 Tomoyuki Kon Layered porous structure
JP2011510656A (en) * 2008-01-29 2011-04-07 カリフォルニア インスティチュート オブ テクノロジー Microfiltration method and apparatus for cell separation
JP2013537469A (en) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. Polymer microfilter and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018003476A1 (en) * 2016-06-30 2019-01-17 富士フイルム株式会社 Cell suspension membrane separation method and cell culture apparatus
EP3480293A4 (en) * 2016-06-30 2019-07-03 FUJIFILM Corporation Cell-suspension membrane separation method and cell culture device
US11492578B2 (en) 2016-06-30 2022-11-08 Fujifilm Corporation Membrane separation method of cell suspension, and cell culture device
WO2018173928A1 (en) * 2017-03-21 2018-09-27 株式会社村田製作所 Cell capture filter, method for producing cell capture filter, and method for determining degradation of cell capture filter
CN109414657A (en) * 2017-03-21 2019-03-01 株式会社村田制作所 The deterioration judging method of Cell capture filter, the manufacturing method of Cell capture filter and Cell capture filter
JPWO2018173928A1 (en) * 2017-03-21 2019-11-07 株式会社村田製作所 Cell trapping filter, cell trapping filter manufacturing method, and cell trapping filter degradation determination method
US10918999B2 (en) 2017-03-21 2021-02-16 Murata Manufacturing Co., Ltd. Cell-capturing filter, method for manufacturing cell-capturing filter, and degradation determination method for cell-capturing filter
WO2019181158A1 (en) * 2018-03-19 2019-09-26 株式会社村田製作所 Filtration filter and filtration device
CN111801150A (en) * 2018-03-19 2020-10-20 株式会社村田制作所 Filter filter and filter device
JPWO2019181158A1 (en) * 2018-03-19 2020-12-03 株式会社村田製作所 Filtration filter and filtration device

Also Published As

Publication number Publication date
JP6540715B2 (en) 2019-07-10
JPWO2016117486A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6713959B2 (en) Filtration method using void-arranged structure
JPWO2014192917A1 (en) Filter device and measuring device
Lin et al. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy
WO2016117486A1 (en) Porous structure and manufacturing method thereof
US8830450B2 (en) Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes
Yoo et al. Template-stripped tunable plasmonic devices on stretchable and rollable substrates
Rodrigo et al. Self-similar multiresonant nanoantenna arrays for sensing from near-to mid-infrared
RoyChoudhury et al. Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents
US20190262778A1 (en) Fabrication of Microfilters and Nanofilters and Their Applications
Cao et al. Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications
JP5615258B2 (en) Manufacturing method of surface sensor, surface sensor system and use of surface sensor
JP5116362B2 (en) Biosensor
Zhu et al. Label-free detection of live cancer cells and DNA hybridization using 3D multilayered plasmonic biosensor
US10330643B2 (en) BAW sensing and filtration device and related methods
WO2016140005A1 (en) Porous body, and filter device
JPWO2011027642A1 (en) Method for measuring characteristics of object to be measured, and flat periodic structure
Golze et al. Sequential symmetry-breaking events as a synthetic pathway for chiral gold nanostructures with spiral geometries
Narasimhan et al. Bioinspired disordered flexible metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering
WO2008018923A2 (en) Fabrication of isolated nanostructures and/or arrays of nanostructures
TW201706588A (en) Structures for surface enhanced raman spectroscopy
US9329125B2 (en) Perforated-structure body, manufacturing method therefor, and measurement apparatus and measurement method
CN101538008A (en) Method for preparing nano-mesh film
JP2019219272A (en) Plasmon resonance structure, plasmon resonance sensor and plasmon resonance measurement system using the same, and method for manufacturing plasmon resonance structure
Fang et al. Interfacial Self-Assembly of Surfactant-Free Au Nanoparticles as a Clean Surface-Enhanced Raman Scattering Substrate for Quantitative Detection of As5+ in Combination with Convolutional Neural Networks
Zhang et al. Rationally designed graphene/bilayer silver/Cu hybrid structure with improved sensitivity and stability for highly efficient SERS sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740093

Country of ref document: EP

Kind code of ref document: A1