WO2016117462A1 - Tracheal tube - Google Patents

Tracheal tube Download PDF

Info

Publication number
WO2016117462A1
WO2016117462A1 PCT/JP2016/051102 JP2016051102W WO2016117462A1 WO 2016117462 A1 WO2016117462 A1 WO 2016117462A1 JP 2016051102 W JP2016051102 W JP 2016051102W WO 2016117462 A1 WO2016117462 A1 WO 2016117462A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
microstructure
tube body
tracheal
end portion
Prior art date
Application number
PCT/JP2016/051102
Other languages
French (fr)
Japanese (ja)
Inventor
秀彬 柴田
祐亮 百貫
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2016570603A priority Critical patent/JP6598801B2/en
Publication of WO2016117462A1 publication Critical patent/WO2016117462A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes

Definitions

  • the present invention relates to a tracheal tube. More particularly, the present invention relates to a tracheal tube such as a tracheostomy tube or an endotracheal tube.
  • tracheal intubation which is a method of inserting a tracheal tube called an endotracheal tube into the trachea from the mouth or nose through the pharynx to the trachea
  • Tracheostomy is a method in which tracheostomy tubes called tracheostomy tubes are inserted into the trachea from the incision through the skin of the trachea and the upper part of the trachea when the intubation is prolonged or when tracheal intubation is impossible Incision
  • annular thyroid incision is a method of inserting the tracheal cannula by incising the annular thyroid (annular thyroid ligament), and inserting the tracheal cannula by puncturing the annular thyroid
  • An example is a ring-shaped thyroid puncture.
  • the trachea is stimulated by inserting the tracheal tube into the trachea, the amount of sputum and other secretions increases, causing constriction / occlusion of the tracheal tube and causing dyspnea / suffocation There is a fear.
  • wrinkles are normally discharged by ciliary movement of the trachea, wrinkles are likely to adhere because the tracheal tube has no cilia. Therefore, the sputum in the tracheal tube must be periodically sucked to prevent the tracheal tube from becoming constricted and not blocked.
  • the salmon is mainly composed of water and glycoprotein (mucin), and the viscosity is as wide as several hundred to several hundred thousand cP.
  • Patent Document 1 discloses that a coating film, which is composed of a mixture of a methyl vinyl ether maleic anhydride copolymer and a fluorine-containing / acrylic / urethane / silicone resin, that exhibits surface lubricity when wet is formed on the inner surface of the tube. Describes a tracheostomy tube in which foreign substances such as sputum are less likely to accumulate.
  • Patent Document 2 discloses that one or more layers of metal oxide particles or the like are deposited on the inner surface (lumen) surface of the airway tube to roughen the surface, and a low surface energy material such as a fluorocarbon polymer (that is, a fluorocarbon polymer) The formation of a superhydrophobic surface region by applying a coating consisting essentially of hydrophobic).
  • a fluorocarbon polymer that is, a fluorocarbon polymer
  • the present inventors have provided a microstructure region on at least a part of the inner surface forming the respiratory path of the tube body in the tracheal tube, It has been found that having a microstructure surface on which a plurality of micro features are arranged can provide a tube for trachea to which wrinkles are difficult to adhere, and the present invention has been completed. That is, it has been found that the above problem can be solved by the following configuration.
  • a trachea comprising a distal end portion provided on the lung side in the trachea, a proximal end portion provided on the opposite side of the distal end portion, and a tube body having a breathing path penetrating from the proximal end portion to the distal end portion.
  • a microstructure region is provided on at least a part of the inner surface forming the breathing path of the tube body,
  • the microstructure region is a tracheal tube having a microstructure surface on which a plurality of micro features are disposed.
  • the microstructure region consists of extrusion molding, injection molding, cutting, laser processing, surface processing using a core rod, particle coating, nanoimprinting, solvent treatment, plasma sputtering, nanowire array deposition, and combinations thereof.
  • the tracheal tube according to (1) wherein micro features formed using a method selected from the group are arranged.
  • the microstructure region is a flexible substrate having at least a portion bent, curved, compressed, stretched, expanded, and / or distorted, and has a plurality of micro features disposed therein.
  • the tracheal tube according to (1), wherein a substrate having a surface is disposed on an inner surface forming a respiratory path of the tube body so that the microstructure surface is exposed to the respiratory path.
  • a plurality of microfeatures comprising a first set of microfeatures having a first set of dimensions and a second set of microfeatures having a second set of dimensions; The tracheal tube according to any one of (1) to (6), which is different from the two sets of dimensions.
  • the tube body has a curved portion between a distal end portion and a proximal end portion.
  • the angle between the central axis of the distal end portion and the central axis of the proximal end portion of the curved portion can be changed within a range of ⁇ 45 °, according to any one of (11) to (18) Tube for trachea.
  • a plane passing through the center of the tube body at each of the base end portion, the distal end portion, and the bending portion is a plane P
  • the plane P is outside the curve of the bending portion of the tube body
  • the intersection point intersecting the inner surface of the tube wall located at the intersection point B is the intersection point B
  • the reference line perpendicular to the plane P at the intersection point B is the reference line S
  • the tangent line in contact with the inner peripheral surface of the tube body 102 is the tangent line T
  • the angle ⁇ is an acute angle or a right angle formed by the reference line S and the tangent line T.
  • the tube for tracheas which a wrinkle cannot adhere easily can be provided.
  • the tracheal tube of the present invention it is possible to reduce the frequency of sucking and removing wrinkles adhering to the tracheal tube, so that the burden on the patient and caregiver can be reduced.
  • FIG. 1 is a diagram illustrating an exemplary microstructured surface comprising a substrate and a plurality of microfeatures.
  • FIG. 2 is a flow diagram of an exemplary method embodiment for creating a repellent surface.
  • FIG. 3 is a view showing a state in which the tracheostomy tube according to the first embodiment of the present invention is attached to a patient.
  • FIG. 4A is a cross-sectional view showing a main part of the tracheostomy tube according to the first embodiment of the present invention shown in FIG.
  • FIG. 4B is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 4C is a partially enlarged cross-sectional view of the microstructure region.
  • FIG. 4A is a cross-sectional view showing a main part of the tracheostomy tube according to the first embodiment of the present invention shown in FIG.
  • FIG. 4B is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 4C is
  • FIG. 4 (D) is a cross-sectional view showing a state in which wrinkles adhering to the inside of the tracheostomy tube according to the first embodiment of the present invention are sucked.
  • FIG. 4E is a partially enlarged cross-sectional view of another embodiment of the microstructure region.
  • FIG. 5A is a cross-sectional view showing a modified example of the tracheostomy tube according to the first embodiment of the present invention.
  • 5B and 5C are cross-sectional views taken along the line BB shown in FIG. 5A.
  • FIG. 6A is a cross-sectional view showing the main part of a tracheostomy tube according to the second embodiment of the present invention.
  • FIG. 6B is a cross-sectional view taken along the line CC shown in FIG.
  • FIG. 6C is a cross-sectional view showing a modified example of the tracheostomy tube according to the second embodiment.
  • FIG. 7A is a cross-sectional view showing the main part of a tracheostomy tube according to the third embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along the line DD shown in FIG.
  • FIG. 7C is a cross-sectional view showing a modification of the tracheostomy tube according to the third embodiment.
  • FIG. 8A is a cross-sectional view showing the main part of a tracheostomy tube according to the fourth embodiment of the present invention.
  • FIG. 8B is a cross-sectional view taken along line EE shown in FIG. FIG.
  • FIG. 9 is a view showing a state in which an endotracheal tube according to a fifth embodiment of the present invention is attached to a patient.
  • FIG. 10A is a perspective view showing a configuration example of an endotracheal tube according to the fifth embodiment of the present invention.
  • FIG. 10B is a cross-sectional view taken along the line FF shown in FIG.
  • FIG. 11 is a view showing a state in which a tracheal cannula according to a sixth embodiment of the present invention is attached to a patient.
  • FIG. 12 is a view showing a state in which a tracheal cannula according to a seventh embodiment of the present invention is attached to a patient.
  • FIG. 10A is a perspective view showing a configuration example of an endotracheal tube according to the fifth embodiment of the present invention.
  • FIG. 10B is a cross-sectional view taken along the line FF shown in FIG.
  • FIG. 11 is a view showing a state in which a
  • FIG. 13 is a scanning electron microscope image of the surface of a lotus leaf (Barthlott, W. and Neinhuism, C., April 1997, “The purity of sacred lotus or escape from contamination in biological surfaces”, Planta, 202, No. 1, p. 1-8, doi: 10.1007 / s004250050096W.).
  • FIG. 14 shows a surface roughened by micromachining techniques, showing the change in contact angle of a droplet on the surface.
  • FIG. 14A shows the contact angle ⁇ of the surface before rough surface finishing
  • FIG. 14B shows the contact angle ⁇ * of the surface after rough surface finishing.
  • FIG. 15 shows a droplet on the surface in Wenzel or Cassie-Baxter state.
  • FIG. 15A represents a droplet on the surface in the Wenzel state
  • FIG. 15B represents a droplet on the surface in the Cassie-Baxter state
  • FIG. 16 shows a convexly curved microstructure surface and droplets on the convexly curved microstructure surface.
  • FIG. 16 (A) represents a convexly curved microstructure surface
  • FIG. 16 (B) represents a convexly curved microstructure surface and a droplet thereon.
  • FIG. 17 is a diagram illustrating a concavely curved microstructure surface and a droplet on a concavely curved microstructure surface.
  • FIG. 17A represents a concavely curved microstructure surface
  • FIG. 17A represents a concavely curved microstructure surface
  • FIG. 17B represents a concavely curved microstructure surface and a droplet thereon.
  • FIG. 18 shows droplets on the non-microstructure surface and on the microstructure surface.
  • FIG. 18A shows a droplet on a non-microstructure surface, and the contact angle of the surface with respect to the droplet is ⁇ .
  • FIG. 18B is a diagram illustrating a droplet on a microstructure surface in a Wenzel state, and the contact angle of the surface with respect to the droplet is ⁇ W * .
  • FIG. 18C shows a droplet on the microstructure surface in the Cassie-Baxter state, and the contact angle of the surface with respect to the droplet is ⁇ CB * .
  • FIG. 18 shows droplets on the non-microstructure surface and on the microstructure surface.
  • FIG. 18A shows a droplet on a non-microstructure surface, and the contact angle of the surface with respect to the droplet is ⁇ .
  • FIG. 18B is a diagram illustrating a
  • FIG. 19 is a diagram showing the change in pitch of the micro features for convex and concave surfaces.
  • FIG. 19A shows the case where the surface of the microstructure is curved with a positive curvature, and shows that the interval (pitch) between the micro features is widened.
  • FIG. 19B shows a case where the surface of the microstructure is curved with a negative curvature, and the interval (pitch) between the micro features is narrowed.
  • FIG. 20 is a diagram showing a change in pitch of the silicone micro pillar.
  • FIG. 20A represents a flat polydimethylsiloxane (PDMS) surface and PDMS micropillars disposed on it with a pitch of 24.4 ⁇ m.
  • PDMS polydimethylsiloxane
  • FIG. 20B shows a PDMS surface that is curved with a curvature of + 0.11 / mm and PDMS micro-pillars arranged on the surface with a pitch of 26.2 ⁇ m in the bending direction.
  • FIG. 20 (C) shows a PDMS surface curved with a curvature of ⁇ 0.22 / mm and PDMS micro-pillars arranged thereon with a pitch of 20.7 ⁇ m in the bending direction.
  • FIG. 21 presents a model that shows the pitch versus critical curvature of Cassy-Baxter droplets on the surface for various microfeature heights.
  • FIG. 22 shows the curvature of a curved repellency / superhydrophobic surface (Curvature, 1 / mm) and water droplets (Water) or droplets of a 40/60 glycerin / water mixture by weight (Glyc / wat). It is the graph which plotted the relationship with the predicted value (Predicted) or measured value (Expt) of the contact angle (Contact Angle, degree) of a repellent and superhydrophobic surface.
  • Predicted predicted value
  • Expt measured value
  • FIG. 23 presents data indicating the angle of inclination (Slide Angle, degrees) that causes slip on a microstructured PDMS surface with various microstructure heights as a function of curvature (Curvature, 1 / mm). It is a figure to do.
  • FIG. 23A is a graph relating to water (Water)
  • FIG. 23B is a graph relating to a 40/60 glycerin / water mixture (40/60 Glycerol / Water) by weight.
  • FIG. 24 is a graph showing modeling results for a column having a diameter of 5 ⁇ m and a pitch of 8 ⁇ m in the case of a droplet having an original contact angle ⁇ of 100 °.
  • FIG. 25 is a graph showing modeling results for the transition between the Cassie-Baxter state and the Wenzel state.
  • koji is a type of mucus and is a viscous fluid that is secreted from mucous membranes such as the trachea and has a slimy nature. ) And viscoelasticity (such as rubber, it stretches when it is grabbed and lifted, returns to its original shape when released, and breaks when stretched more than a certain amount). Examples of the main components of koji include water and glycoproteins such as mucin.
  • the “repellency” refers to the property of repelling wrinkles. As a result of repelling wrinkles, wrinkles are less likely to adhere to the inside of the tracheal tube (the inner peripheral surface of the tube body). Moreover, the stringing property of the cocoon can be suppressed.
  • the repellency surface is a surface on which the wrinkle moves when an inclination angle is set to 30 ° and 100 ⁇ L of the wrinkle is dropped on the surface.
  • “Superhydrophobic” refers to a material property in which a liquid, eg, water, does not wet the surface of the material too much.
  • superhydrophobicity refers to a material property having a liquid contact angle of greater than 120 °, such as greater than 130 °, greater than 140 °, greater than 150 °, greater than 160 °, or greater than 170 °.
  • “Stand-alone” refers to an article that is not attached to another article, eg, a surface or substrate. In certain embodiments, a stand-alone film includes multiple layers, such as a flexible polymer layer and an adhesive layer.
  • Single unit”, “single member” and “monolithic” refer to an article or element consisting of a single member of the same material.
  • Microfeatures and “microstructures” are features on an article surface that have an average width, depth, length and / or thickness selected from 100 ⁇ m or less, or from 10 nm to 100 ⁇ m. Point to. “Preselected pattern” refers to the organization, design, or composition of the designed article. For example, a preselected pattern of microstructures can refer to an ordered array of micro features. In one embodiment, the preselected pattern is not a random and / or statistical pattern. “Pitch” refers to the spacing between articles. Pitch refers to the average spacing between multiple articles, the spacing between the center and / or edge of the article, and / or the spacing between specific parts of the article, for example, the tip, point, and / or end of the article.
  • Weight refers to the affinity of a surface for a liquid.
  • Hydrophilic refers to the degree of attractiveness of a surface to a liquid.
  • Hydrophobic refers to the degree of repulsion of a surface against a liquid.
  • surface wettability, hydrophilicity, and / or hydrophobicity are referred to relative to the liquid contact angle on the surface.
  • wetting”, “hydrophilic”, and “liquid affinity” are used interchangeably herein to refer to a liquid-surface contact angle of less than 90 °.
  • non-wetting non-wetting
  • hydrophobic hydrophobic and liquid non-affinity
  • the affinity of the surface is different for different liquids, and in these embodiments, the surface is simultaneously made liquid non-affinity and liquid affinity, depending on the reference liquid. Can do.
  • Contact angle refers to the angle at which the interface between the liquid and the gas contacts the solid.
  • Flexible refers to the ability of an article to reversibly deform when deformed, for example, so that the article does not suffer damage characterized by breakage, breakage, or inelastic deformation.
  • the tracheal tube of the present invention is made of a material having a distal end portion provided on the lung side in the trachea, a proximal end portion provided on the opposite side of the distal end portion, and a respiratory path penetrating from the proximal end portion to the distal end portion.
  • a micro structure region is provided on at least a part of the inner surface forming the breathing path of the tube body, and the micro structure region has a micro structure surface on which a plurality of micro features are arranged. It is characterized by having.
  • the microstructure region is provided on at least a part of the inner surface forming the respiratory path of the tube body provided in the tracheal tube of the present invention. Further, the microstructure region has a microstructure surface on which a plurality of micro features are disposed.
  • the microstructure region may be provided on at least a part of the inner surface forming the respiratory path of the tube body, but may be provided on any surface of the tracheal tube of the present invention. Good.
  • the microstructure region is preferably provided on the surface of the tracheal tube of the present invention that is easily in contact with the heel.
  • a plurality of micro features may be directly arranged, or a flexible substrate having a microstructure surface on which the plurality of micro features are arranged.
  • the surface opposite to the microstructure surface may be laminated toward the microstructure region.
  • FIG. 1 illustrates an exemplary embodiment of a microstructure surface.
  • the microstructure surface 10 shown in FIG. 1 has a micro feature 12 disposed on the surface of a substrate (base material) 11.
  • the microfeature 12 of this embodiment has a circular cross-sectional shape with a diameter 13. Also shown is the pitch 14 between the centers of the microfeatures 12 and the height 15 of the microfeatures 12 on the microstructured surface 10 shown in FIG.
  • At least a portion of the microstructure surface may be curved, bent, compressed, stretched, expanded, distorted, and / or deformed.
  • the radius of curvature of at least a portion of the curved and / or bent microstructure surface is not particularly limited, but is preferably selected from the range of 1 mm to 1,000 m.
  • At least a portion of the compressed microstructured surface is preferably compressed to a level of 1% to 100% of the original size.
  • At least a portion of the stretched or expanded microstructure surface is preferably expanded or stretched to a level of 100% to 500% of the original size.
  • the strain level of at least a portion of the distorted microstructure surface is preferably selected from the range of ⁇ 99% to 500%.
  • the microstructured surface may be a curved surface, for example, one that is flexible to match the contour of the article or structure.
  • the surface of the flexible substrate (substrate) on which the microfeatures are arranged may be a curved surface, for example a surface having one or more concave and / or convex regions.
  • the surface located opposite the microfeatures of the substrate (base material) having a flexible microstructured surface and optionally a surface having an adhesive layer may be a curved surface, eg one or more Or a surface having concave and / or convex regions.
  • the flexible substrate (base material) may be substantially flat.
  • the flexible substrate may include a surface having a combination of a substantially planar region and a curved region.
  • the microstructured surface may include folds, folds, or otherwise inelastically deformed regions that are shaped such that the microstructured surface conforms to a cornered article or is deformed. It is configured so that it can be introduced.
  • the micro feature and the substrate (base material) may be composed of a single member, for example, a monolithic structure having the micro feature as an integral component of the substrate (base material).
  • a micro-structured surface may be integrally formed as part of the substrate (base material) itself, extending from the surface of the substrate (base material), and optionally having the same composition as the substrate (base material). It may be a flexible film or a flexible substrate having a microstructured surface.
  • the micro feature and the substrate (base material) may be configured as a component integrated with a component of the tracheal tube.
  • the dimension of the micro feature is preferably selected from the range of 10 nm to 1000 ⁇ m.
  • the length, height, diameter, and / or width of the microfeature is preferably selected from the range of 10 nm to 1000 ⁇ m, more preferably from the range of 10 nm to 100 ⁇ m.
  • the pitch between the micro features is preferably selected from the range of 10 nm to 1000 ⁇ m, more preferably selected from the range of 1 ⁇ m to 1000 ⁇ m, and even more preferably selected from the range of 10 ⁇ m to 1000 ⁇ m.
  • the plurality of microfeatures have a physical dimension of a multimodal distribution, for example, a bimodal distribution height, and / or a bimodal distribution diameter, and / or a bimodal distribution microstructure pitch. It may be.
  • the plurality of microfeatures may include a first set of microfeatures having a first set of dimensions and a second set of microfeatures having a second set of dimensions. The first set and the second set may have different dimensions.
  • the first set of dimensions is preferably selected from the range of 10 nm to 10 ⁇ m
  • the second set of dimensions is preferably selected from the range of 10 ⁇ m to 1000 ⁇ m.
  • the microfeature may be any cross-sectional shape, for example, circular, oval, triangular, square, rectangular, polygonal, star, hexagonal, letter shape, number shape, mathematical symbol shape, etc. You may have the cross-sectional shape containing arbitrary combinations of these.
  • the cross-sectional shape refers to the cross-sectional shape of the microstructure in a plane parallel to the plane of the flexible substrate (base material).
  • the microstructure surface may include micro features having a preselected pattern.
  • the preselected pattern may be a regular array of micro features.
  • the preselected pattern also includes several regions where the microfeatures have a first pitch, and several regions where the microfeatures have a second pitch, eg, a pitch greater than the first pitch. May be included.
  • a microfeature having a preselected pattern includes a region where the microfeature has a first cross-sectional shape and a region where the microfeature has a second cross-sectional shape, eg, a cross-sectional shape different from the first cross-sectional shape; May be included.
  • the preselected pattern of microfeatures may include regions where the microfeatures have a plurality of cross-sectional shapes and / or sizes.
  • a preselected pattern of microfeatures may refer to microfeatures of two or more cross-sectional shapes and / or sizes in two or more arrays. Two or more arrays can be arranged in parallel, ie, the two arrays do not overlap. In another specific embodiment, two or more arrays can be arranged to overlap, and microfeatures having two or more cross-sectional shapes and / or sizes are interspersed in the overlapping arrays.
  • the microfeatures of the preselected pattern may include microfeatures of a plurality of dimensions, for example, a bimodal or multimodal distribution of dimensions. For example, a first group of micro features having a dimension selected from 10 nm to 1 ⁇ m and a second group of micro features having a dimension selected from 1 ⁇ m to 100 ⁇ m. May be included. Also, the size, shape, and arrangement of the microfeatures may be preselected with micrometer scale or nanometer scale accuracy and / or precision.
  • the microfeature may include particles having dimensions selected from the range of 1-100 nm.
  • the surface of the flexible substrate (base material) and / or the microfeature may be provided with a coating, for example a coating comprising particles having a dimension selected from the range of 1 to 100 nm. These particles provide an additional level of roughness on the nanometer scale to the surface of a flexible substrate (substrate), increasing surface repellency, hydrophobicity, and / or changing surface energy. To do.
  • the micro features of the preselected pattern may be designed to give the surface certain physical properties.
  • an ordered array of microfeatures can impart repellency and superhydrophobicity to the surface of the article.
  • the physical properties that can be adjusted and imparted by the microfeatures of the preselected pattern are not particularly limited, but include, for example, repellency; hydrophobicity; hydrophilicity; self-cleaning ability; fluid resistance coefficient and / or air resistance coefficient; Visual effects such as prism effect, specific color, and direction-dependent color change; haptic effect; gripping force; surface friction coefficient.
  • the repellency, hydrophobicity, wettability, and / or hydrophilicity of the microstructure surface can be controlled. For example, as the flexible substrate (substrate) is deformed by bending, bending, expanding, or reducing the substrate (substrate), the repellency, hydrophobicity, wettability, and / or hydrophilicity of the surface Sex changes. In another embodiment, the surface repellency, hydrophobicity, wettability, and / or hydrophilicity remain constant when the flexible substrate (substrate) deforms.
  • the surface repellency, hydrophobicity, wettability, and / or hydrophilicity remain constant for a portion of the surface
  • the surface wettability may vary for other parts of the surface.
  • the contact angle of water droplets on the surface may change as the flexible substrate (base material) deforms, or may remain constant.
  • the contact angle of water droplets on the microstructure surface is preferably more than 120 °, more preferably more than 130 °, 140 °, 150 °, 160 ° or 170 °.
  • the microstructure surface may contain a polymer.
  • the polymer is not particularly limited.
  • PDMS polydimethylsiloxane
  • PMMA polymethyl methacrylate
  • PTFE polytetrafluoroethylene
  • polyurethane Teflon (registered trademark)
  • polyacrylate poly Arylate
  • thermoplastic material polyethylene
  • thermoplastic elastomer fluoropolymer
  • biodegradable polymer polycarbonate
  • polyethylene polyimide
  • polystyrene polyvinyl
  • polyolefin silicone
  • natural rubber synthetic rubber, and combinations of two or more of these .
  • the microstructure surface may contain a metal.
  • Metal includes any metal or alloy that is moldable, castable, embossable, and / or stampable.
  • the metal is not particularly limited.
  • the microstructured surface may include industrial materials derived from animals and / or plants, such as materials including carbohydrates, cellulose, lignin, sugars, proteins, fibers, biopolymers, and / or starch.
  • Plant and / or animal derived industrial materials include, but are not limited to, for example, paper; cardboard; textiles, such as wool, linen, cotton, or leather; bioplastics; solid biofuels or biomass, such as Sawdust, flour, or charcoal; and construction materials such as wood, fiberboard, linoleum, cork, bamboo, hardwood and the like.
  • the microstructure surface may include a composite material.
  • the microstructured surface can include two or more different materials, layers, and / or components.
  • the microstructure surface may comprise a coating covering them on a plurality of micro features.
  • the coating is not particularly limited, and examples thereof include fluorinated polymers, fluorinated hydrocarbons, silanes, thiols, and combinations of two or more thereof.
  • the microstructure surface may be surface treated.
  • the surface treatment method is not particularly limited, and examples thereof include curing, cooking, annealing, chemical treatment, chemical coating, painting, coating, plasma treatment, and combinations of two or more of these.
  • FIG. 2 illustrates an exemplary embodiment for creating a microstructured surface.
  • the flow diagram shown in FIG. 2 begins with a substrate (base material) 21 with a photosensitive polymer or resist 22 sensitive to light or particles on top.
  • the micro feature 25 can be formed in the resist.
  • other types of electromagnetic waves, energy beams, or particles are used to form these micro-features or nano-features.
  • the resist 22 having the recess 26 of the formed micro feature 25 is used as a mold.
  • the microfeatures 25 can also be modified by processing the substrate (base material) 21 (eg by chemical etching).
  • the surface is coated with a drug to facilitate or improve subsequent molding steps.
  • Uncured polymer 27 is molded into microfeatures 25 and cured by heat, time, ultraviolet light, or other curing methods. When the cured polymer 28 is removed from the substrate (base material) -resist mold, features from the mold are transferred to the cured polymer 28.
  • the micro features on the surface of the microstructure may be made by duplicating from a lithography patterned mold.
  • Microfeatures may be replicated directly from a lithographically patterned mold (first generation duplication) or from a mold that has microfeatures replicated from a lithographically patterned mold Good (second generation replication). Further, the microfeature may be a third or subsequent generation that replicates a lithographically patterned master feature.
  • the method comprises the steps of providing an article and a microstructured surface comprising a flexible substrate (substrate) having a plurality of microfeatures disposed on the surface and an adhesive layer disposed on the opposite surface And attaching the microstructured surface to the surface of the article.
  • a substrate substrate having flexibility
  • a polymer substrate base material
  • the polymer those described above can be preferably used.
  • a method for controlling the repellency, superhydrophobicity and / or wettability of a surface including a flexible substrate (base material) provided with a plurality of micro features will be described.
  • the method includes the steps of (i) providing a flexible substrate (base material) provided with a plurality of micro features, and (ii) deforming the flexible substrate (base material), Thereby controlling the repellency, superhydrophobicity and / or wettability of the surface.
  • the step of deforming the flexible substrate (base material) includes bending the flexible substrate (base material), bending the flexible substrate (base material), and bending the flexible substrate (base material).
  • the step of deforming the flexible substrate (base material) optionally includes changing the pitch between at least a portion of the microfeatures by a value selected from the range of, for example, 10 nm to 1000 ⁇ m. , By selectively increasing or decreasing by a value selected from the range of 100 nm to 100 ⁇ m.
  • the method includes providing a microstructured surface and deforming the microstructured surface, thereby controlling the repellency and superhydrophobicity of the surface.
  • the microstructure surface comprises a flexible substrate (base material) provided with a plurality of micro features.
  • the flexible substrate (base material) may include a polymer and / or a metal.
  • polystyrene examples include, but are not limited to, PDMS (polydimethylsiloxane), PMMA (polymethyl methacrylate), PTFE (polytetrafluoroethylene), polyurethane, Teflon (registered trademark), polyacrylate, poly Arylate, thermoplastic material, thermoplastic elastomer, fluoropolymer, biodegradable polymer, polycarbonate, polyethylene, polyimide, polystyrene, polyvinyl, polyolefin, silicone, natural rubber, synthetic rubber, and combinations of two or more of these .
  • the metal is not particularly limited as long as it is any metal or alloy that is moldable, castable, embossable, and / or stampable, for example, aluminum, aluminum alloy, bismuth, bismuth alloy , Tin, tin alloy, lead, lead alloy, titanium, titanium alloy, iron, iron alloy, indium, indium alloy, gold, gold alloy, silver, silver alloy, copper, copper alloy, brass, nickel, nickel alloy, platinum, Examples include platinum alloy, palladium, palladium alloy, zinc, zinc alloy, cadmium, cadmium alloy and the like.
  • one or more physical, mechanical, or optical properties can be a flexible substrate with a plurality of microfeatures ( It is set, changed and / or controlled by deforming the substrate.
  • optical characteristics such as reflectance, wavelength distribution of reflected or scattered light, transmittance, wavelength distribution of propagating light, refractive index, or any combination thereof are provided with a plurality of micro features
  • the flexible substrate (base material) can be controlled by bending, bending, expanding, stretching, and / or contracting.
  • physical properties such as air resistance or fluid resistance can be obtained by bending, bending, expanding, extending, and / or reducing a flexible substrate (base material) provided with a plurality of micro features.
  • surface tactile properties such as surface tactile sensation, can be obtained by bending, bending, expanding, stretching, and / or bending a flexible substrate (substrate) provided with a plurality of micro features. It can be controlled by reducing.
  • the characteristics of the microstructure surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (base material).
  • the characteristics of at least a portion of the microstructured surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming at least a portion of the substrate (substrate).
  • the air resistance and / or fluid resistance of the surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (substrate).
  • the wettability of the surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (base material).
  • the optical properties of the surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (base material).
  • the surface prism effect, direction dependent reflectivity, direction dependent propagation rate, reflectivity, transmittance, reflected wave wavelength distribution, scattered wave wavelength distribution, propagated wave wavelength distribution, and / or refractive index are:
  • the substrate (base material) can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming.
  • the method includes providing a microstructured surface and deforming the microstructured surface thereby controlling the wettability of the microstructured surface.
  • the microstructure surface comprises a flexible substrate (base material) provided with a plurality of micro features.
  • the flexible substrate (base material) may include a polymer.
  • polystyrene polydimethylsiloxane
  • PMMA polymethyl methacrylate
  • PTFE polytetrafluoroethylene
  • polyurethane Teflon (registered trademark)
  • polyacrylate polyarylate w
  • thermoplastic material heat Plastic elastomer, fluoropolymer, biodegradable polymer, polycarbonate, polyethylene, polyimide, polystyrene, polyvinyl, polyolefin, silicone, natural rubber, synthetic rubber, and combinations of two or more of these.
  • the method of deforming the flexible substrate (base material) is not particularly limited, but the substrate (base material) is forced to extend or adopt a curved shape. And bending the substrate (base material).
  • the surface wettability may increase, decrease, or not change as the flexible substrate (base material) is deformed.
  • the tracheal tube shown in FIGS. 3 and 4 is a so-called tracheostomy tube.
  • a tracheostomy tube 101 shown in FIG. 3 is an instrument for performing respiratory management of a patient, and is used in a state where it is directly inserted into the trachea 7 through an incision hole formed by incising the trachea.
  • the tracheostomy tube 101 includes a tube body 102 that constitutes a main part of the tracheostomy tube 101, and a fixing portion 127 for fixing the tube body 102 to a patient.
  • a microstructure region 150 is provided on the inner surface (inner peripheral surface) forming the respiratory path 102a of the tube body 102, and FIG. 4 (C).
  • the microstructure region 150 has a microstructure surface 151 on which a plurality of micro features are disposed.
  • FIG. 4C shows an aspect in which the micro-structure surface 151 is configured by directly arranging the micro features on the inner surface (inner peripheral surface) forming the breathing path 102a of the tube body 102.
  • a microstructure surface 151 in which micro features are arranged on the inner surface (inner circumferential surface) forming the respiratory path 102a of the tube body 102 via a base material 152 and an adhesive layer 153 is configured.
  • the adhesive layer 153 is shown, but the adhesive layer 153 is not included, and the base material 152 is directly on the inner surface (inner peripheral surface) forming the breathing path 102a of the tube body 102.
  • An attached mode may be used.
  • the method for causing the microstructure region 150 to have the microstructure surface 151 is not particularly limited.
  • a plurality of micro-structure regions 150 are formed on the inner surface forming the respiratory path 102 a of the tube body 102.
  • a method for forming a microstructure surface 151 by forming a feature as shown in FIG. 4E, a film 160 having a microstructure surface 151 in which a plurality of micro features are arranged on a base material 152. Examples thereof include a method of adhering to the inner surface forming the respiratory path 102a so that the microstructure surface is exposed to the respiratory path 102a.
  • an adhesive layer 153 is interposed to attach the film 160 to the tube body 102.
  • a substrate having a microstructure surface on which a plurality of micro features are arranged is curved on at least a portion of at least one surface so that at least a portion of the microstructure surface is exposed to the respiratory tract. For example, a method of forming a tube body by curving.
  • the method for forming a plurality of micro features on the inner surface forming the respiratory path, or the method for forming the microstructure on the surface of the base material for forming the tube body is not particularly limited. Examples thereof include injection molding, cutting, laser processing, surface processing using a core rod, particle coating, nanoimprint, solvent treatment, plasma sputtering, nanowire array deposition, and combinations thereof.
  • a method for attaching a film having a microstructured surface to the inner surface forming the respiratory tract is not particularly limited.
  • adhesive thermal adhesive, photocuring agent, ultraviolet curing agent, thermal welding, ultrasonic welding, high frequency
  • examples thereof include a method of attaching to the inner surface using welding, laser welding, and a combination thereof.
  • the tube body 102 is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the tube body 102, a respiratory path 102a, which is a space through which exhalation passes along the length direction of the tube body 102, is formed.
  • the tube body 102 includes a distal end portion 122, a proximal end portion 121 disposed on the opposite side of the distal end portion 122, and a curved portion 123 positioned between the proximal end portion 121 and the distal end portion 122.
  • the curved portion 123 is curved so that the central axis of the distal end portion 122 and the central axis of the proximal end portion 121 intersect at an angle ⁇ .
  • the tube body 102 is formed in an approximately L shape. The That is, the angle ⁇ is about 90 °.
  • the tube body 102 has such flexibility that the ⁇ can be changed within a range of 90 ° to ⁇ about 45 ° in accordance with a change in the posture of the patient. Even if the ⁇ changes within this range, the microstructure region 150 does not peel off or drop off from the tube body 102.
  • the material of the tube body 102 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
  • a tracheostomy hole formed by incising the wall of the trachea 7 and the skin 5 on the upper part of the trachea 7 in a patient lying on his back (the supine position).
  • the distal end portion 122 of the tube body 102 is inserted into the trachea 7.
  • the distal end portion 122 of the tube body 102 is directed toward the lung side so as to be spaced apart from the mucous membranes (skin-side tracheal mucosa 7a, inner body tracheal mucosa 7b) constituting the tube wall of the trachea 7 toward the lung side. Placed inside.
  • the proximal end 121 of the tube body 102 is exposed outside the body through the tracheostomy hole, and a ventilator (not shown) is attached to the proximal end 121.
  • a ventilator (not shown) is attached to the proximal end 121.
  • exhalation passes through the respiratory path 102a.
  • respiratory management is performed.
  • the fixing portion 127 is attached to the proximal end portion 121 of the tube body 102.
  • the fixing portion 127 fixes the distal end portion 122 at an appropriate position in the trachea 7 by contacting the skin 5 when the tube body 102 is attached to the patient.
  • the fixing portion 128 and the bonding portion 129 are fixed to the fixing portion 127. And have.
  • the fixed plate 128 is a flat plate member, and a storage hole 131 that penetrates the fixed plate 128 is formed at the center.
  • An adhesive portion 129 is attached to the front surface of the fixing plate 128, and the back surface of the fixing plate 128 is brought into contact with the patient's skin 5.
  • the bonding portion 129 is for bonding the tube body 102 to the fixing portion 127, and has a ring shape in which a substantially circular through hole 130 is formed at the center.
  • the through hole 130 of the bonding portion 129 communicates with the storage hole 131 of the fixing plate 128, and the size of the through hole 130 is set according to the outer diameter of the tube body 102.
  • the tube body 102 is passed through the accommodation hole 131 of the fixing plate 128 and the through hole 130 of the bonding portion 129, and is fixed by, for example, an adhesive.
  • fixing with an adhesive is given as an example, but various fixing methods such as fixing by welding can be employed.
  • FIG. 3 A case where the eyelid in the tracheostomy tube 101 is sucked using a suction catheter will be described with reference to FIG.
  • the suction catheter 601 is inserted into the tube body 102 from the proximal end 121 side of the tube body 102, and the tip of the suction catheter 601 is advanced to the vicinity of the distal end portion 122 along the inner surface of the tube body 102, so that the heel Z is moved. Suction.
  • the microstructure region 150 exists over the entire circumference of the inner peripheral surface of the tube body 102, but is not limited to this form.
  • FIG. As shown in (A) to (C), it may exist only in a part on the inner peripheral surface of the tube body 102.
  • 5A to 5C show a tracheostomy tube 201 according to a modification of the first embodiment, and are different from the tracheostomy tube 101 of the first embodiment shown in FIGS. 3 and 4 described above. Is the position where the microstructure region 150 is present.
  • 5B and 5C are cross-sectional views taken along line BB shown in FIG. 5A.
  • the plane P passing through the center J of each tube body 102 at the proximal end portion 121, the distal end portion 122, and the bending portion 123 is curved.
  • intersection K intersecting the inner surface of the tube wall located outside the curve of the portion 123, an intersection L intersecting the inner surface of the tube wall located at the inside of the curve of the curved portion 123 of the tube body 102, and an intersection K
  • a reference line S orthogonal to the plane P
  • a tangent line T in contact with the inner peripheral surface of the tube body 102
  • a contact point M between the tangent line T and the inner peripheral surface
  • the microstructure region 150 exists at a position on the inner peripheral surface of the tube body 102 where ⁇ is 30 ° or more.
  • an acute angle or a right angle formed by the reference line S and the tangent line T is intended.
  • the tube body 102 moves to the back side of the patient (lower side in FIGS. 5B and 5C) and tends to accumulate.
  • the distal end portion of the suction catheter described in FIG. 4D easily reaches the lower position in FIGS. 5B and 5C on the inner peripheral surface of the tube body 102. 5B and 5C, it is difficult to reach the left and right side positions (positions where the microstructure region 150 is disposed). Therefore, if the microstructure region 150 is arranged at the position as described above, even if the wrinkle adheres to the microstructure region 150, the wrinkle easily moves to a position where it can be sucked by the suction catheter. As a result, the wrinkle is accumulated inside the tube body. Is suppressed.
  • FIG. 6 A second embodiment of the tracheal tube of the present invention will be described with reference to FIG.
  • the tracheal tube shown in FIG. 6 is a so-called tracheostomy tube.
  • the difference between the tracheostomy tube 301 of the second embodiment shown in FIG. 6 and the tracheostomy tube 101 of the first embodiment shown in FIG. 4 described above is mainly that the tracheostomy tube 301 includes the cuff 106 and the cuff.
  • the point which has the adjustment part 108 is mentioned.
  • a cuff 106 is attached to the distal end portion 122 of the tube body 102.
  • the cuff 106 is fixed so as to cover the outer peripheral surface of the tube body 102 in the vicinity of the distal end portion 122.
  • the cuff 106 is connected to the cuff adjusting unit 108.
  • the cuff adjusting unit 108 includes a pilot balloon 126 and an air injection tube 125 that connects the cuff 106 and the pilot balloon 126.
  • the pilot balloon 126 is formed to have a substantially flat hexagonal cross section.
  • the cross-sectional shape of the pilot balloon 126 is described as a hexagon, but the present invention is not limited to this.
  • the cross-sectional shape of the pilot balloon 126 can be formed in a substantially square shape or a circular shape, and may be formed in various other shapes.
  • An air injection hole 126 a is provided at one end of the pilot balloon 126, and a discharge port 126 b is provided at the other end of the pilot balloon 126.
  • a check valve is attached to the air injection hole 126a. Then, air is sent into the cuff 106 through the pilot balloon 126 and the air injection tube 125 from the air injection hole 126a. The air sent in does not leak from the air injection hole 126a by the check valve. Further, the pressure applied to the cuff 106 can be sensed tactilely by pressing the pilot balloon 126 with a finger.
  • the air injection tube 125 communicates with the internal space of the cuff 106 through the cuff side opening 111 formed once.
  • a storage hole 231 is formed at the center of the fixed plate 128.
  • the adhesive portion 129 has a substantially circular through hole 130 and a groove formed from the outer periphery toward the through hole 130.
  • the through hole 130 communicates with the storage hole 231.
  • the tube body 102 and the air injection tube 125 pass through the storage hole 231. That is, the air injection tube 125 passes through the groove portion of the bonding portion 129 and the accommodation hole 131 of the fixing plate 128.
  • the air injection tube 125 is disposed along the inside of the curved portion 123 of the tube body 102 and is fixed to the outer peripheral surface 102c of the tube body 102.
  • the cuff 106 When the air sent from the air injection hole 126a through the pilot balloon 126 and the air injection tube 125 enters the cuff 106, the cuff 106 swells and the mucous membrane of the trachea 7 (skin-side tracheal mucosa 7a, body inner tracheal mucosa 7b). ). Thereby, the gap formed between the tube body 102 and the trachea 7 can be closed. The cuff 106 closes the gap formed between the tube body 102 and the trachea 7, thereby preventing oxygen sent from the ventilator from leaking to the larynx side, and saliva etc. flowing from the larynx side. It can prevent getting into the lung side.
  • FIG. 6B the configuration in which the air injection tube 125 is fixed to the outer peripheral surface 102c of the tube body 102 has been described.
  • the present invention is not limited to this configuration.
  • an air injection lumen 125 a may be provided in the tube wall of the tube body 302, and air may be sent from the pilot balloon 126 to the cuff 106.
  • FIG. 7 is a so-called tracheostomy tube.
  • the difference between the tracheostomy tube 401 of the third embodiment shown in FIG. 7 and the tracheostomy tube 301 of the second embodiment shown in FIG. 6 described above is mainly that the tracheostomy tube 401 is a cuff side suction part. The point which has 138 is mentioned.
  • a cuff side suction part 138 is arranged on the opposite side of the cuff adjusting part 108 with the tube body 102 interposed therebetween.
  • the cuff side suction part 138 includes a cuff side suction connector 139 and a cuff side suction tube 140.
  • a storage hole 331 is formed at the center of the fixed plate 128.
  • the cuff side suction tube 140 passes through the groove portion of the bonding portion 129 and the accommodation hole 331 of the fixing plate 128, similarly to the air injection tube 125. 7B, the cuff side suction tube 140 is disposed along the outside of the curved portion 123 of the tube body 102 and is fixed to the outer peripheral surface 102c of the tube body 102.
  • One end of the cuff side suction tube 140 extends to the vicinity of the cuff 106 and opens, and the cuff side suction port 140a is formed by this opening.
  • a cuff side suction connector 139 is attached to the other end of the cuff side suction tube 140.
  • a suction device (not shown) is attached to the cuff side suction connector 139.
  • Saliva or the like flowing from the larynx side flows through the mucous membrane of the trachea 7 (skin-side tracheal mucosa 7a, internal tracheal mucosa 7b) and flows to the lung side.
  • the saliva or the like is blocked by the cuff 106 in an inflated state, and accumulates in a space formed by the mucous membrane (skin-side tracheal mucosa 7 a and body inner tracheal mucosa 7 b) and the cuff 106.
  • the saliva etc. which were dammed by the cuff 106 are sucked from the cuff side suction port 140a by the cuff side suction part 138 by operating the suction device.
  • the microstructure region 150 described above may be disposed on the inner peripheral surface of the cuff side suction tube 140.
  • the microstructure region 150 including the repellent layer 154 may be arranged on the inner peripheral surface of the cuff-side suction tube 140, it is possible to prevent wrinkles from adhering to the inner peripheral surface of the cuff-side suction tube 140 and to absorb the cuff-side suction. Occlusion of the tube 140 can be suppressed.
  • a suction line and related components may be further added to suck foreign substances such as sputum attached to the lung side of the cuff 106.
  • FIG. 7B the form in which the air injection tube 125 and the cuff side suction tube 140 are fixed to the outer peripheral surface 102c of the tube body 102 has been described.
  • the present invention is not limited to this form.
  • an air injection lumen 125 b is provided in the tube wall of the tube body 402 instead of the air injection tube 125, and a cuff is inserted in the tube wall of the tube body 402 instead of the cuff side suction tube 140.
  • a side suction lumen 140b may be provided.
  • the tracheostomy tube shown in FIG. 8 is a so-called tracheostomy tube, but is called a double-tube tracheostomy tube or a tracheostomy tube with an inner tube, and the tracheostomy tube body used for the purpose of securing the airway after tracheostomy And the inner cannula used to remove secretions in the tube and increase the patency of the lumen, and the inner cannula (hereinafter sometimes referred to as “inner cylinder”) is the tracheostomy tube body ( Hereinafter, it may be referred to as an “outer cylinder”).
  • each member constituting the double-tube tracheostomy tube 701 will be described in detail.
  • the tube body 102 constituting the inner cylinder 701a is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the tube body 102, a respiratory path 102a, which is a space through which exhalation passes along the length direction of the tube body 102, is formed.
  • the tube body 102 includes a distal end portion 122 and a proximal end portion 121 disposed on the opposite side of the distal end portion 122. If desired, the tube body 102 includes a curved portion 123 positioned between the proximal end portion 121 and the distal end portion 122. You may have.
  • the tube body 102 is preferably made of a flexible material and is preferably deformed along the tube body 702.
  • the tube body 102 When the tube body 102 has the curved portion 123, the tube body 102 is curved so that the central axis of the distal end portion 122 and the central axis of the base end portion 121 intersect at an angle ⁇ , and the tube body 102 is formed in a substantially L shape. Good. In the tube body 102 shown in FIG. 8A, the angle ⁇ is about 90 °.
  • the material of the tube body 102 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
  • the tube body 702 constituting the outer cylinder 701b is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the tube body 702, an inner cylinder insertion lumen 702a, which is a space for inserting an inner cannula (inner cylinder) along the length direction of the tube body 702, is formed.
  • the tube body 702 includes a distal end portion 722, a proximal end portion 721 disposed on the opposite side of the distal end portion 722, and a curved portion 723 positioned between the proximal end portion 721 and the distal end portion 722.
  • the curved portion 723 is curved so that the central axis of the distal end portion 722 and the central axis of the proximal end portion 721 intersect at an angle ⁇ , and in this fourth embodiment, the tube body 702 is formed in an approximately L shape.
  • the tube body 702 has such a degree of flexibility that the angle ⁇ can be changed within a range of about 90 ° to about ⁇ 45 ° in accordance with a change in the posture of the patient.
  • Examples of the material of the tube body 702 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride. Note that a microstructure region having the same configuration as that of the microstructure region 150 may be disposed on the inner surface of the tube body 702 forming the inner tube insertion lumen.
  • the proximal end 721 of the tube body 702 is exposed outside the body through the tracheostomy hole, and a ventilator (not shown) is attached to the proximal end 721.
  • a ventilator (not shown) is attached to the proximal end 721.
  • exhaled air passes through the breathing path 102a of the inner cylinder.
  • respiratory management is performed.
  • the fixing portion 727 is attached to the proximal end portion 721 of the tube body 702.
  • the fixing portion 727 fixes the distal end portion 722 to an appropriate position in the trachea 7 by contacting the skin 5 when the tube body 702 is attached to the patient.
  • the fixing portion 727 and the bonding portion 729 And have.
  • the fixing plate 728 is a flat plate member, and a storage hole 731 penetrating the fixing plate 728 is formed at the center.
  • An adhesive portion 729 is attached to the front surface of the fixing plate 728, and the back surface of the fixing plate 728 is brought into contact with the patient's skin 5.
  • the bonding portion 729 is for bonding the tube body 702 to the fixing portion 727, and has a ring shape in which a substantially circular through hole 730 is formed at the center.
  • the through hole 730 of the bonding portion 729 communicates with the storage hole 731 of the fixing plate 728, and the size of the through hole 730 is set according to the outer diameter of the tube body 702.
  • the tube body 702 is penetrated through the accommodation hole 731 of the fixing plate 728 and the through hole 730 of the bonding portion 729, and is fixed by, for example, an adhesive.
  • fixing with an adhesive is given as an example, but various fixing methods such as fixing by welding can be employed.
  • the microstructure region 150 installed on the inner surface constituting the respiratory path 102a of the tube body 102 constituting the inner cylinder is as described in the first embodiment of the present invention.
  • the multi-tube tracheostomy tube of the present invention has been described.
  • the cuff and the cuff adjusting unit, the suction line, and related configurations are described. Modifications such as adding can be made.
  • FIGS. 9 and 10 A fifth embodiment of the tracheal tube of the present invention will be described with reference to FIGS. 9 and 10.
  • the tracheal tube shown in FIGS. 9 and 10 is a so-called endotracheal tube.
  • An endotracheal tube 501 shown in FIGS. 9 and 10 is an instrument for performing respiratory management of a patient, and is inserted into the trachea 7 from the patient's mouth.
  • the endotracheal tube 501 includes a tube body 202, a cuff 206, and an air injection tube 225.
  • the above-described microstructure region 150 is arranged on the inner peripheral surface of the tube body 202 over the entire circumference.
  • the form of the microstructure region 150 is as described above, and a description thereof is omitted.
  • the endotracheal tube 501 includes a tube body 202, an air injection lumen 225 b provided along the longitudinal direction of the tube body 202 and extending to at least the vicinity of the distal end portion 222 of the tube body 202, and the distal end portion of the tube body 202
  • the cuff 206 is provided in the vicinity so as to surround the outer peripheral surface of the tube body 202 and communicates with one end of the air injecting lumen 225b and communicates with the other end of the air injecting lumen 225b.
  • a pilot balloon 226 for confirming whether or not
  • the tube body 202 is formed in a cylindrical shape having both ends opened.
  • the tube body 202 includes a distal end portion 222, a proximal end portion 221 provided on the opposite side of the distal end portion 222, and a curved portion 223 positioned between the proximal end portion 221 and the distal end portion 222.
  • the tube body 202 is made of a flexible material, and has a breathing path 202a that penetrates from the distal end portion 222 to the proximal end portion 221 for introducing anesthetic gas, oxygen gas, and the like.
  • the distal end portion 222 of the tube body 202 is formed in a smooth bevel shape in order to facilitate insertion into the body.
  • a connector 212 for connecting to the breathing circuit is attached to the proximal end portion 221.
  • an air injecting lumen 225b narrower than the respiratory path 202a is provided along the longitudinal direction of the tube body 202.
  • the air injection lumen 225b is an inflation lumen for sending air into a cuff 206 described later.
  • the air injection lumen 225 b communicates with the internal space of the cuff 206 via a cuff side opening 225 a formed on the outer surface of the tube wall of the tube body 202 in the cuff 206.
  • the air injecting lumen 225b is provided at the position near the base end 221 through the notch 207 formed on the outer surface of the tube wall of the tube body 202. Communicated with.
  • connection between the air injection tube 225 and the air injection lumen 225b is performed, for example, by inserting a preheated mandrel into the air injection lumen 225b, and simultaneously removing the mandrel, the air injection tube 225 is inserted into the air injection lumen 225b. It is carried out by a method such as inserting in and fixing using a solvent or an adhesive.
  • a cuff 206 capable of expanding and contracting is provided so as to surround the outer peripheral surface in an annular shape.
  • the cuff 206 covers the outer periphery of the tube body 202 with a membrane formed in advance in a cylindrical shape having an inner diameter larger than the outer diameter of the tube body 202 so as to cover the cuff side opening 225a of the air injection lumen 225b.
  • the both ends are adhered to the outer peripheral surface of the tube body 202 by an adhesive or a solvent, or are fused and attached by heat, high frequency, or the like, and are attached in an airtight manner.
  • an inflatable / deflatable pilot balloon 226 for recognizing the degree of expansion / contraction of the cuff 206 is installed at the rear end of the air injection tube 225 so as to communicate with the air injection tube 225. .
  • a check valve 226a having a function of preventing gas from flowing into the pilot balloon 226 but preventing gas from flowing into the pilot balloon 226 is installed at the rear end side of the pilot balloon 226. Yes.
  • a syringe or the like is connected to the check valve 226a and a gas such as air is press-fitted, the gas passes through the pilot balloon 226, the air injection tube 225, the air injection lumen 225b, and the cuff side opening 225a.
  • the cuff 206 is fed into the cuff 206 and the cuff 206 expands.
  • the tracheal tube shown in FIG. 11 is also called a small tracheostomy tube, a percutaneous tracheal puncture tube, an annular thyroid puncture tracheal cannula, an annular thyroid incision tracheal cannula, or the like.
  • a tracheal cannula 801 shown in FIG. 11 is an instrument for performing respiratory management of a patient who needs emergency respiratory management, and is inserted into the trachea 7 by puncturing the patient's annular thyroid membrane.
  • the tracheal cannula 801 includes a tube body 102 and a fixing part 127.
  • the tube body 102 of the tracheal cannula 801 is also called an outer needle because it punctures the annular thyroid membrane in a set with the inserted inner needle.
  • the tracheal cannula 801 includes a tube body 102 into which an inner needle (not shown) is inserted, and a fixing portion 127 that is provided at the proximal end portion of the tube body and fixes the tube body 102 to the skin.
  • the tube body 102 is made of a synthetic resin, and has a curved portion that is curved at an angle of 15 ° or less with respect to the axial direction of the inner needle at the distal end portion.
  • the above-described microstructure region 150 (not shown) is arranged over the entire periphery.
  • the form of the microstructure region 150 (not shown) is as described above, and a description thereof is omitted.
  • the annular thyroid membrane (annular thyroid ligament) between the cricoid cartilage and the thyroid cartilage is punctured with a metal inner needle (not shown) inserted into the tube body 102.
  • the inner needle (not shown) is removed, and only the tube body 102 is left in the trachea.
  • the tracheal cannula 801 is fixed by tying a cotton tape or the like (not shown) inserted through a string hole (not shown) provided in the fixing part 127 to the neck.
  • a seventh embodiment of the tracheal tube of the present invention will be described with reference to FIG.
  • the tracheal tube shown in FIG. 12 is also called an annular thyroid puncture tracheal cannula, an annular thyroid incision tracheal cannula, or the like.
  • a tracheal cannula 901 shown in FIG. 12 is used for the purpose of aspirating and removing secreted fluid stored in the trachea or bronchus.
  • the tracheal cannula 901 includes a tube body 102 and a fixing portion 127 (in particular, also referred to as a flange portion).
  • the tracheal cannula 901 includes a tube body 102 into which an introducer (not shown) is inserted, and a fixing portion 127 (flange) that is provided at the base of the tube body and fixes the tube body 102 to the skin.
  • the tube body 102 is made of a synthetic resin, and includes a curved portion that curves from the proximal end portion to the distal end portion.
  • the above-described microstructure region 150 (not shown) is arranged over the entire circumference.
  • the form of the microstructure region 150 (not shown) is as described above, and a description thereof is omitted.
  • the tracheal cannula 901 expands the puncture hole of the cricoid thyroid membrane by an expansion operation by a dilator (not shown) via a guide wire (not shown) introduced into the trachea 7 using the Seldinger method, for example.
  • the tube body 102 into which an introducer (not shown) is inserted can be inserted into the trachea 7 through the puncture hole expanded in the thyroid membrane, and the introducer can be removed to place the tracheal cannula 901 in the trachea.
  • the thyroid membrane is incised, the tube body 102 into which the introducer is inserted from the incision hole is inserted into the trachea 7, the introducer is removed, and the tracheal cannula 901 may be placed in the trachea.
  • normal tracheal suction using a suction catheter (not shown) and oxygen or air supply can be performed via the tracheal cannula 901.
  • FIG. 13 shows a micrograph image of the surface of a lotus plant that uses microscale and nanoscale roughness to modify the shape and behavior of water droplets on the plant surface (Barthlott, W. and Neinhuism, C., “ The purity of sacred lotus or escape from contamination in biological surfaces, Planta, April 1997, Vol. 202, No. 1, p. 1-8, doi: 10.1007 / s004250050096W).
  • the surface of the lotus leaf changes the shape and behavior of water droplets on the surface due to its microscale and nanoscale roughness. The friction between water and these surfaces is greatly reduced, and water droplets can easily roll off the surfaces.
  • FIG. 14 shows that microscale and nanoscale surfaces can be roughened by standard micromachining techniques. The manner in which the surface interacts with the liquid changes depending on the roughness of the surface. Microfabrication tools can roughen microscale and nanoscale surfaces to increase hydrophobicity, as well as lotus plants, and can also increase repellency.
  • a hydrophobic surface is a surface with an original contact angle ⁇ exceeding 90 °. If the surface is hydrophobic, the new contact angle ⁇ * of the roughened surface exceeds 90 °. As shown in FIG. 14, the contact angle between the surface 31 before roughing and the droplet 32 is ⁇ (FIG.
  • FIG. 15 shows two different possible wet states on the surface of the micro / nanostructure: the Wenzel state (FIG. 15A) and the Cassie-Baxter state (FIG. 15B). Both the Wenzel state (FIG. 15A) and the Cassie-Baxter state (FIG. 15B) are possible for micro / nanostructured surfaces. In the Wenzel state (FIG. 15A), the surface 41 and the liquid 42 are in close contact with both the valley and the peak. In the Cassie-Baxter state (FIG.
  • ⁇ * can be predicted using the following Cassie-Baxter equation.
  • cos ⁇ * ⁇ (cos ⁇ + 1) ⁇ 1
  • is the fraction of the area where water contacts when the droplet is in the Kathy-Baxter state, that is, the ratio of the point contact area in the contact area ( ⁇ ⁇ 1).
  • ⁇ * can be calculated by the Wenzel method and then by the Cassie-Baxter method. Two different methods result in two different predicted contact angles. The smallest contact angle among the calculated contact angles is the most promising. If the contact angle is calculated using the Wenzel equation, the droplet is likely to be in the Wenzel state. If the contact angle is calculated using the Kathy-Baxter equation, the droplet is likely to be in the Kathy-Baxter state.
  • FIG. 16 shows that a flexible microstructured surface can be curved convexly.
  • FIG. 16A shows a microstructured surface 51 that is convexly curved
  • FIG. 16B maintains superhydrophobicity when droplets 52 are added to the microstructured surface 51 curved in a convex shape.
  • repellency is maintained.
  • the superhydrophobicity of the microstructured surface can change the wet state and ⁇ * when curved convexly. The reason is that if the upper part of the microstructure moves away from each other, the effective pitch of the micro feature increases and the effective ⁇ decreases. As the effective ⁇ decreases, ⁇ * can be increased, and the possibility of a Wenzel state is higher than when the microstructure surface is not curved.
  • FIG. 17 shows that a flexible microstructured material can be bent concavely.
  • FIG. 17A shows a concavely curved microstructure surface 53
  • FIG. 17B maintains superhydrophobicity when droplets 54 are added to the concavely curved microstructure surface 53.
  • FIG. In addition, it shows that repellency is maintained.
  • the superhydrophobicity of the microstructured surface can change the wet state and ⁇ * when curved concavely. The reason is that when the upper part of the microstructure moves close to each other, the effective pitch of the micro feature is reduced and the effective ⁇ is increased. As the effective ⁇ increases, ⁇ * can be reduced, and more likely the Cassie-Baxter state is greater than when the microstructure surface is not curved.
  • Repellency and superhydrophobicity can suppress corrosion, control fluid flow, and reduce surface resistance.
  • the surface microstructure can control the repellency and hydrophobicity of the surface by adjusting the interaction between the droplet and the surface.
  • Published studies on microstructure repellency / hydrophobic surfaces are limited to almost exclusively flat surfaces, but for many repellency / superhydrophobic applications, microstructures on curved surfaces The ability to make is needed.
  • Polymer microfabrication provides an inexpensive way to create microstructured repellant / superhydrophobic surfaces, and polymer compliance allows curved microstructured repellant / hydrophobic surfaces. This example illustrates a situation where the curvature of a flexible microstructured polymer affects repellency and hydrophobicity.
  • FIG. 18 shows a state in which a droplet having a contact angle ⁇ can interact with a repellent / hydrophobic surface in a Wenzel state or a Cassie-Baxter state.
  • FIG. 18A shows that the droplet 62 seated on the solid surface 61 and surrounded by the gas 63 forms a unique contact angle ⁇ .
  • FIG. 18B shows that when the solid surface 64 is rough and the droplet 65 surrounded by the gas 63 is in critical contact with the ridge of the solid surface 64, the droplet 65 is in a Wenzel state. Show.
  • the contact angle in this case is ⁇ W * .
  • the pitch of the micro features can be changed to affect the repellency and hydrophobicity.
  • the geometry of the microstructure surface changes and the interaction between the microstructure surface and the droplet changes.
  • the pitch 73 of the micro features 72 is wider than before the curve, and the droplets interact with fewer micro features.
  • the pitch 76 of the micro features 75 becomes narrower than before the curve, and the droplets have more micro features. Interacts with part 75.
  • FIG. 20 shows the change in pitch of PDMS (polydimethylsiloxane) micropillars as a function of curvature.
  • FIG. 20A shows a flat microstructured surface 81 with a PDMS micropillar pitch of 24.4 ⁇ m.
  • 20B shows a curved member 84 having an outer surface curved with a positive curvature (+ 0.11 / mm) and an inner surface curved with a negative curvature ( ⁇ 0.22 / mm) and a micro curved with a positive curvature.
  • a structural surface 82 is shown.
  • 20C shows a curved member 84 having an outer surface curved with a positive curvature (+ 0.11 / mm) and an inner surface curved with a negative curvature ( ⁇ 0.22 / mm), and a micro curved with a negative curvature.
  • a structural surface 83 is shown.
  • the critical surface curvature (1 / R C , 1 / mm) for a film having a variation with the pitch of micro features (pitch Old , mm) on a flat surface is shown.
  • the microstructure surface In order to experimentally test the influence of curvature on the repellency / hydrophobicity of the microstructure surface, it has a microstructure surface in which cylindrical micro features having a diameter of 25 ⁇ m and a height of 70 ⁇ m are arranged at a pitch of 50 ⁇ m.
  • PDMS polydimethylsiloxane
  • the contact angles ⁇ of 10 ⁇ L of pure water and a glycerin / water mixture mixed at a mass ratio of 40/60 were 102 ° and 112 °, respectively.
  • the ⁇ CB * of 10 ⁇ L water and glycerin / water were 147 ° and 152 °, respectively.
  • FIG. 22 shows that PDMS is highly flexible and can be bent to a positive or negative curvature while maintaining repellency and superhydrophobicity. It also shows that the contact angle varies as a function of curvature.
  • FIG. 23 a water droplet having a volume of 10 ⁇ L or a droplet of a mixture of glycerin / water mixed at a mass ratio of 40/60 is placed on a PDMS film having a microstructured surface, the PDMS film is inclined, The sliding angle (Slide Angle, ⁇ SLIDE ) at which the drop causes slipping was measured. The curvature of the curve was changed variously, and for each of them, ⁇ SLIDE was measured, and the relationship between the curvature of the curve and the slip angle was plotted.
  • FIG. 23A shows the relationship between the curvature of curvature (Curvure, 1 / mm) and the water slide angle (Water Slide Angle, degree), and FIG.
  • (Mm) PDMS film was used.
  • the PDMS film is specified by the height h of the micro feature.
  • FIG. 24 shows a modeling result regarding a column having a diameter of 5 ⁇ m and a pitch of 8 ⁇ m in the case of a droplet having an original contact angle of 100 °.
  • the new contact angle ⁇ * increases as the column height increases.
  • the column height reaches 8-9 ⁇ m, the droplets transition from the Wenzel state to the Cassie-Baxter state.
  • FIG. 25 shows the modeling result of the transition between the Cassie-Baxter state and the Wenzel state in the case of a micro pillar having a diameter of 25 ⁇ m.
  • the curvature of the curved PDMS microstructure surface changes the number of micropillars that interact with a given volume droplet.
  • 25 ⁇ L of commercial Cellorow metal with a melting point of 47 ° C. was melted and deposited, and the microcolumn with a height of 70 ⁇ m had no curvature, curvature + 0.11 / mm, and curvature It was solidified in a state of ⁇ 0.22 / mm.
  • the droplets were then examined using a scanning electron microscope (SEM) for an approximate number of impressions from the geometry induced by the columns and curvature. Column impressions were counted along the major and minor axes of the ellipse contact line, and the approximate number of droplet-column interactions was found from the ellipse area formula.
  • SEM scanning electron microscope
  • the curvature of the microstructure surface made of polymer affects the properties of repellency and hydrophobicity.
  • the microstructure can maintain the Cassie-Baxter state when the curved surface is covered with the microstructure polymer to control the repellency and hydrophobicity of the microstructure surface.
  • Geometric shapes can be designed.

Abstract

Provided is a tracheal tube that includes a leading end part provided on the lung side within the trachea, a base end part provided on the side opposite the leading end part, and a tube body having a respiratory pathway that passes from the base end part through to the leading end part. A micro structure region is provided at least at a part of the inner surface that forms the respiratory pathway of the tube body, and the micro structure region has a micro structure surface on which a plurality of micro characteristic parts are disposed, thereby making it difficult for sputum to adhere thereto.

Description

気管用チューブTracheal tube
 本発明は気管用チューブに関する。より詳細には、本発明は、気管切開チューブ、気管内チューブ等の気管用チューブに関する。 The present invention relates to a tracheal tube. More particularly, the present invention relates to a tracheal tube such as a tracheostomy tube or an endotracheal tube.
 気道確保を必要とする患者の気道確保を行うための方法としては、口または鼻から咽頭を経由して気管に気管内チューブと呼ばれる気管用チューブを気管に挿入する方法である気管挿管、気管内挿管が長期にわたっている場合や気管挿管ができない場合には、気管とその上部の皮膚を切開してその部分から気管に気管切開チューブと呼ばれる気管用チューブを挿入する方法である気管切開(外科的気管切開)、緊急に気道確保が必要な場合には、輪状甲状膜(輪状甲状靭帯)を切開して気管カニューレを挿入する方法である輪状甲状膜切開、輪状甲状膜を穿刺して気管カニューレを挿入する方法である輪状甲状膜穿刺などが挙げられる。 As a method for securing the airway of a patient who needs to secure the airway, tracheal intubation, which is a method of inserting a tracheal tube called an endotracheal tube into the trachea from the mouth or nose through the pharynx to the trachea, Tracheostomy (surgical trachea) is a method in which tracheostomy tubes called tracheostomy tubes are inserted into the trachea from the incision through the skin of the trachea and the upper part of the trachea when the intubation is prolonged or when tracheal intubation is impossible Incision) If the airway is urgently needed, annular thyroid incision is a method of inserting the tracheal cannula by incising the annular thyroid (annular thyroid ligament), and inserting the tracheal cannula by puncturing the annular thyroid An example is a ring-shaped thyroid puncture.
 しかし、気管用チューブを気管内に挿入することによって気管が刺激されるため、痰などの分泌物が多量となって、気管用チューブの狭窄・閉塞を引き起こし、呼吸困難・窒息といった事象を発生させるおそれがある。痰は、通常であれば気管の繊毛運動によって排出されるが、気管用チューブには繊毛が無いため、痰が付着しやすい。そのため、気管用チューブ内の痰を定期的に吸引して気管用チューブの狭窄を防止し、閉塞しないようにしなければならない。痰は、主に水分と糖タンパク質(ムチン)で構成されており、粘度は数百~数十万cP程度と幅広く、粘度が高いほど気管用チューブ内に付着しやすく、除去の際に取り残しの残渣が出やすい。気管用チューブ内に取り残された痰が乾燥して、さらに痰が付着しやすくなることもある。気管用チューブからの痰の除去は、頻繁に行わなくてはならず、しかも極力取り残しが少なくなるように注意深く吸引しなければならないため、看護者・介護者の負担は大きい。
 そのため、痰が付着しにくい気管用チューブが求められている。
However, since the trachea is stimulated by inserting the tracheal tube into the trachea, the amount of sputum and other secretions increases, causing constriction / occlusion of the tracheal tube and causing dyspnea / suffocation There is a fear. Although wrinkles are normally discharged by ciliary movement of the trachea, wrinkles are likely to adhere because the tracheal tube has no cilia. Therefore, the sputum in the tracheal tube must be periodically sucked to prevent the tracheal tube from becoming constricted and not blocked. The salmon is mainly composed of water and glycoprotein (mucin), and the viscosity is as wide as several hundred to several hundred thousand cP. The higher the viscosity, the easier it will adhere to the tracheal tube, Residue is likely to appear. The soot left behind in the tracheal tube may dry out and become more likely to adhere. The removal of sputum from the tracheal tube must be performed frequently and must be carefully aspirated so that it is left as little as possible, so the burden on the nurse / caregiver is great.
Therefore, there is a demand for a tracheal tube that does not easily adhere soot.
 例えば、特許文献1には、チューブ内面に、メチルビニルエーテル無水マレイン酸共重合体および含フッ素・アクリル・ウレタン・シリコーン樹脂の混合物で構成される、湿潤時に表面潤滑性を発現する被膜を形成することにより、痰等の異物が溜まり難くした気管切開チューブが記載されている。また、特許文献2には、気道チューブの内側(内腔)表面に、酸化金属粒子などの粒子を1層以上堆積して粗面化し、その上にフルオロカーボン重合体などの低表面エネルギー材料(つまり、本質的に疎水性)からなるコーティングを施すことにより超疎水性表面領域を形成することが記載されている。 For example, Patent Document 1 discloses that a coating film, which is composed of a mixture of a methyl vinyl ether maleic anhydride copolymer and a fluorine-containing / acrylic / urethane / silicone resin, that exhibits surface lubricity when wet is formed on the inner surface of the tube. Describes a tracheostomy tube in which foreign substances such as sputum are less likely to accumulate. Further, Patent Document 2 discloses that one or more layers of metal oxide particles or the like are deposited on the inner surface (lumen) surface of the airway tube to roughen the surface, and a low surface energy material such as a fluorocarbon polymer (that is, a fluorocarbon polymer) The formation of a superhydrophobic surface region by applying a coating consisting essentially of hydrophobic).
国際公開第2006/037626号International Publication No. 2006/037626 国際公開第2006/135755号International Publication No. 2006/135755
 しかし、本発明者らの検討した限りでは、特許文献1および2に記載された気管(気道)チューブでは、昨今要求されるレベルでの痰の付着抑制が達成されておらず、改良の余地が残されていることが知見された。
 そこで、本発明は、痰が付着しにくい気管用チューブを提供することを課題とする。
However, as far as the present inventors have studied, the tracheal (airway) tubes described in Patent Documents 1 and 2 have not achieved soot adhesion suppression at the level required recently, and there is room for improvement. It was found that it was left.
Then, this invention makes it a subject to provide the tube for tracheas to which a soot does not adhere easily.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、気管用チューブにおいて、チューブ体の呼吸路を形成する内面の少なくとも一部にマイクロ構造領域が設けられ、マイクロ構造領域は、複数のマイクロ特徴部が配置されたマイクロ構造表面を有すると、痰が付着しにくい気管用チューブを提供することができることを知得し、本発明を完成させるに至った。
 すなわち、以下の構成により上記課題を解決できることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have provided a microstructure region on at least a part of the inner surface forming the respiratory path of the tube body in the tracheal tube, It has been found that having a microstructure surface on which a plurality of micro features are arranged can provide a tube for trachea to which wrinkles are difficult to adhere, and the present invention has been completed.
That is, it has been found that the above problem can be solved by the following configuration.
(1)気管内の肺側に設けられた先端部、先端部と反対側に設けられた基端部、および、基端部から先端部にかけて貫通する呼吸路を有するチューブ体を備える、気管用チューブにおいて、
 チューブ体の呼吸路を形成する内面の少なくとも一部にマイクロ構造領域が設けられ、
 マイクロ構造領域は、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する、気管用チューブ。
(2)マイクロ構造領域には、押出成型、射出成型、切削加工、レーザー加工、芯棒を用いた表面加工、粒子コーティング、ナノインプリント、溶剤処理、プラズマスパッタ、ナノワイヤ配列の堆積およびこれらの組合せからなる群から選択される方法を用いて形成されたマイクロ特徴部が配置されている、(1)に記載の気管用チューブ。
(3)マイクロ構造領域には、少なくとも一部分が屈曲、湾曲、圧縮、伸長、膨張および/または歪曲した形状である可撓性を有する基板であって、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する基板が、マイクロ構造表面を呼吸路に露出するようにチューブ体の呼吸路を形成する内面に配置されている、(1)に記載の気管用チューブ。
(4)マイクロ構造表面が撥痰性表面である、(1)~(3)のいずれか1項に記載の気管用チューブ。
(5)マイクロ特徴部の寸法が、10nm~1000μmの範囲から選択される、(1)~(4)のいずれか1項に記載の気管用チューブ。
(6)マイクロ特徴部間のピッチが、10nm~1000μmの範囲から選択される、(1)~(5)のいずれか1項に記載の気管用チューブ。
(7)複数のマイクロ特徴部が、第1組の寸法を有する第1組のマイクロ特徴部、および第2組の寸法を有する第2組のマイクロ特徴部を備え、第1組の寸法が第2組の寸法とは異なる、(1)~(6)のいずれか1項に記載の気管用チューブ。
(8)第1組の寸法が10nm~1μmの範囲から選択され、第2組の寸法が1μm~100μmの範囲から選択される、(7)に記載の気管用チューブ。
(9)複数のマイクロ特徴部上に被覆をさらに備える、(1)~(8)のいずれか1項に記載の気管用チューブ。
(10)被覆が1~100nmの範囲から選択されるサイズを有する粒子を含む、(9)に記載の気管用チューブ。
(11)チューブ体が、先端部と基端部との間に、湾曲部を有する、(1)~(10)のいずれか1項に記載の気管用チューブ。
(12)気管切開チューブである、(11)に記載の気管用チューブ。
(13)気管内チューブである、(11)に記載の気管用チューブ。
(14)複管式気管切開チューブである、(11)に記載の気管用チューブ。
(15)複管式気管切開チューブの内管である、(11)に記載の気管用チューブ。
(16)輪状甲状膜の穿刺孔または切開孔を介して気管に挿入可能な気管カニューレである、(11)に記載の気管用チューブ。
(17)輪状甲状膜に穿刺可能な気管カニューレである、(16)に記載の気管用チューブ。
(18)小気管切開チューブである、(16)または(17)に記載の気管用チューブ。
(19)湾曲部が先端部の中心軸と基端部の中心軸とがなす角を±45°の範囲内で変化させることができる、(11)~(18)のいずれか1項に記載の気管用チューブ。
(20)チューブ体の中心軸に直交する断面図において、基端部、先端部および湾曲部のそれぞれにおけるチューブ体の中心を通る平面を平面P、平面Pがチューブ体の湾曲部の湾曲の外側に位置するチューブ壁の内面と交差する交点を交点B、交点Bにおいて平面Pに直交する基準線を基準線S、チューブ体102の内周面に接する接線を接線T、ならびに接線Tが基準線Sとなす角を角φとするとき、角φが30°以上となるチューブ体の内周面上の位置に皮膜が配置されている、(11)~(19)のいずれか1項に記載の気管用チューブ。ただし、角φは、基準線Sと接線Tとがなす鋭角または直角である。
(1) A trachea comprising a distal end portion provided on the lung side in the trachea, a proximal end portion provided on the opposite side of the distal end portion, and a tube body having a breathing path penetrating from the proximal end portion to the distal end portion. In the tube,
A microstructure region is provided on at least a part of the inner surface forming the breathing path of the tube body,
The microstructure region is a tracheal tube having a microstructure surface on which a plurality of micro features are disposed.
(2) The microstructure region consists of extrusion molding, injection molding, cutting, laser processing, surface processing using a core rod, particle coating, nanoimprinting, solvent treatment, plasma sputtering, nanowire array deposition, and combinations thereof. The tracheal tube according to (1), wherein micro features formed using a method selected from the group are arranged.
(3) The microstructure region is a flexible substrate having at least a portion bent, curved, compressed, stretched, expanded, and / or distorted, and has a plurality of micro features disposed therein. The tracheal tube according to (1), wherein a substrate having a surface is disposed on an inner surface forming a respiratory path of the tube body so that the microstructure surface is exposed to the respiratory path.
(4) The tracheal tube according to any one of (1) to (3), wherein the microstructure surface is a repellent surface.
(5) The tracheal tube according to any one of (1) to (4), wherein the dimension of the micro feature is selected from a range of 10 nm to 1000 μm.
(6) The tracheal tube according to any one of (1) to (5), wherein the pitch between the micro features is selected from a range of 10 nm to 1000 μm.
(7) a plurality of microfeatures comprising a first set of microfeatures having a first set of dimensions and a second set of microfeatures having a second set of dimensions; The tracheal tube according to any one of (1) to (6), which is different from the two sets of dimensions.
(8) The tracheal tube according to (7), wherein the first set of dimensions is selected from a range of 10 nm to 1 μm, and the second set of dimensions is selected from a range of 1 μm to 100 μm.
(9) The tracheal tube according to any one of (1) to (8), further comprising a coating on the plurality of micro features.
(10) The tracheal tube according to (9), wherein the coating contains particles having a size selected from the range of 1 to 100 nm.
(11) The tracheal tube according to any one of (1) to (10), wherein the tube body has a curved portion between a distal end portion and a proximal end portion.
(12) The tracheal tube according to (11), which is a tracheostomy tube.
(13) The tracheal tube according to (11), which is an endotracheal tube.
(14) The tracheal tube according to (11), which is a double-tube tracheotomy tube.
(15) The tracheal tube according to (11), which is an inner tube of a double-tube tracheotomy tube.
(16) The tracheal tube according to (11), which is a tracheal cannula that can be inserted into the trachea through a puncture hole or an incision hole in a ring-shaped thyroid membrane.
(17) The tracheal tube according to (16), which is a tracheal cannula that can puncture the annular thyroid membrane.
(18) The tracheal tube according to (16) or (17), which is a small tracheostomy tube.
(19) The angle between the central axis of the distal end portion and the central axis of the proximal end portion of the curved portion can be changed within a range of ± 45 °, according to any one of (11) to (18) Tube for trachea.
(20) In a cross-sectional view orthogonal to the central axis of the tube body, a plane passing through the center of the tube body at each of the base end portion, the distal end portion, and the bending portion is a plane P, and the plane P is outside the curve of the bending portion of the tube body The intersection point intersecting the inner surface of the tube wall located at the intersection point B is the intersection point B, the reference line perpendicular to the plane P at the intersection point B is the reference line S, the tangent line in contact with the inner peripheral surface of the tube body 102 is the tangent line T, The film according to any one of (11) to (19), wherein the coating is disposed at a position on the inner peripheral surface of the tube body where the angle φ is 30 ° or more when the angle formed with S is the angle φ. Tube for trachea. However, the angle φ is an acute angle or a right angle formed by the reference line S and the tangent line T.
 本発明によれば、痰が付着しにくい気管用チューブを提供することができる。
 また、本発明の気管用チューブを使用することにより、気管用チューブに付着した痰を吸引除去する頻度を低減することができるので、患者および介護者の負担を軽減することができる。
ADVANTAGE OF THE INVENTION According to this invention, the tube for tracheas which a wrinkle cannot adhere easily can be provided.
In addition, by using the tracheal tube of the present invention, it is possible to reduce the frequency of sucking and removing wrinkles adhering to the tracheal tube, so that the burden on the patient and caregiver can be reduced.
図1は、基板および複数のマイクロ特徴部を備えた、例示的なマイクロ構造表面を示す図である。FIG. 1 is a diagram illustrating an exemplary microstructured surface comprising a substrate and a plurality of microfeatures. 図2は、撥痰性表面を作る例示的な方法の実施形態のフローダイヤグラムを示す図である。FIG. 2 is a flow diagram of an exemplary method embodiment for creating a repellent surface. 図3は、本発明の第1の実施形態にかかる気管切開チューブを患者に装着した状態を示す図である。FIG. 3 is a view showing a state in which the tracheostomy tube according to the first embodiment of the present invention is attached to a patient. 図4(A)は、図3に示す本発明の第1の実施形態にかかる気管切開チューブの要部を示す断面図である。図4(B)は、図4(A)に示すA-A線に沿って切断した断面図である。図4(C)は、マイクロ構造領域の一部拡大断面図である。図4(D)は、本発明の第1の実施形態にかかる気管切開チューブの内部に付着した痰を吸引する状態を示す断面図である。図4(E)は、マイクロ構造領域の他の実施形態の一部拡大断面図である。FIG. 4A is a cross-sectional view showing a main part of the tracheostomy tube according to the first embodiment of the present invention shown in FIG. FIG. 4B is a cross-sectional view taken along the line AA shown in FIG. FIG. 4C is a partially enlarged cross-sectional view of the microstructure region. FIG. 4 (D) is a cross-sectional view showing a state in which wrinkles adhering to the inside of the tracheostomy tube according to the first embodiment of the present invention are sucked. FIG. 4E is a partially enlarged cross-sectional view of another embodiment of the microstructure region. 図5(A)は、本発明の第1の実施形態にかかる気管切開チューブの変形例を示す断面図である。図5(B)および図5(C)は、図5(A)に示すB-B線に沿って切断した断面図である。FIG. 5A is a cross-sectional view showing a modified example of the tracheostomy tube according to the first embodiment of the present invention. 5B and 5C are cross-sectional views taken along the line BB shown in FIG. 5A. 図6(A)は、本発明の第2の実施形態にかかる気管切開チューブの要部を示す断面図である。図6(B)は、図6(A)に示すC-C線に沿って切断した断面図である。図6(C)は、第2の実施形態にかかる気管切開チューブの変形例を示す断面図である。FIG. 6A is a cross-sectional view showing the main part of a tracheostomy tube according to the second embodiment of the present invention. FIG. 6B is a cross-sectional view taken along the line CC shown in FIG. FIG. 6C is a cross-sectional view showing a modified example of the tracheostomy tube according to the second embodiment. 図7(A)は、本発明の第3の実施形態にかかる気管切開チューブの要部を示す断面図である。図7(B)は、図7(A)に示すD-D線に沿って切断した断面図である。図7(C)は、第3の実施形態にかかる気管切開チューブの変形例を示す断面図である。FIG. 7A is a cross-sectional view showing the main part of a tracheostomy tube according to the third embodiment of the present invention. FIG. 7B is a cross-sectional view taken along the line DD shown in FIG. FIG. 7C is a cross-sectional view showing a modification of the tracheostomy tube according to the third embodiment. 図8(A)は、本発明の第4の実施形態にかかる気管切開チューブの要部を示す断面図である。図8(B)は、図8(A)に示すE-E線に沿って切断した断面図である。FIG. 8A is a cross-sectional view showing the main part of a tracheostomy tube according to the fourth embodiment of the present invention. FIG. 8B is a cross-sectional view taken along line EE shown in FIG. 図9は、本発明の第5の実施形態にかかる気管内チューブを患者に装着した状態を示す図である。FIG. 9 is a view showing a state in which an endotracheal tube according to a fifth embodiment of the present invention is attached to a patient. 図10(A)は、本発明の第5の実施形態にかかる気管内チューブの構成例を示す斜視図である。図10(B)は、図10(A)に示すF-F線に沿って切断した断面図である。FIG. 10A is a perspective view showing a configuration example of an endotracheal tube according to the fifth embodiment of the present invention. FIG. 10B is a cross-sectional view taken along the line FF shown in FIG. 図11は、本発明の第6の実施形態にかかる気管カニューレを患者に装着した状態を示す図である。FIG. 11 is a view showing a state in which a tracheal cannula according to a sixth embodiment of the present invention is attached to a patient. 図12は、本発明の第7の実施形態にかかる気管カニューレを患者に装着した状態を示す図である。FIG. 12 is a view showing a state in which a tracheal cannula according to a seventh embodiment of the present invention is attached to a patient. 図13は、ハスの葉の表面の走査型電子顕微鏡画像である(Barthlott, W. and Neinhuism, C.、1997年4月、「The purity of sacred lotus or escape from contamination in biological surfaces」、Planta、第202巻、第1号、p.1~8、doi:10.1007/s004250050096W.)。FIG. 13 is a scanning electron microscope image of the surface of a lotus leaf (Barthlott, W. and Neinhuism, C., April 1997, “The purity of sacred lotus or escape from contamination in biological surfaces”, Planta, 202, No. 1, p. 1-8, doi: 10.1007 / s004250050096W.). 図14は表面上の液滴の接触角の変化を示す、マイクロ加工技法によって粗面仕上げされた表面を示す図である。図14(A)は粗面仕上げ前の表面の接触角θを表し、図14(B)は粗面仕上げ後の表面の接触角θを表す。FIG. 14 shows a surface roughened by micromachining techniques, showing the change in contact angle of a droplet on the surface. FIG. 14A shows the contact angle θ of the surface before rough surface finishing, and FIG. 14B shows the contact angle θ * of the surface after rough surface finishing. 図15はウェンゼル状態またはカシー-バクスター状態にある表面上の液滴を示す図である。図15(A)はウェンゼル状態にある表面上の液滴を表し、図15(B)はカシー-バクスター状態にある表面上の液滴を表す。FIG. 15 shows a droplet on the surface in Wenzel or Cassie-Baxter state. FIG. 15A represents a droplet on the surface in the Wenzel state, and FIG. 15B represents a droplet on the surface in the Cassie-Baxter state. 図16は、凸形に湾曲したマイクロ構造表面および凸形に湾曲したマイクロ構造表面上の液滴を示す図である。図16(A)は凸形に湾曲したマイクロ構造表面を表し、図16(B)は凸形に湾曲したマイクロ構造表面およびその上の液滴を表す。FIG. 16 shows a convexly curved microstructure surface and droplets on the convexly curved microstructure surface. FIG. 16 (A) represents a convexly curved microstructure surface, and FIG. 16 (B) represents a convexly curved microstructure surface and a droplet thereon. 図17は、凹形に湾曲したマイクロ構造表面および凹形に湾曲したマイクロ構造表面上の液滴を示す図である。図17(A)は凹形に湾曲したマイクロ構造表面を表し、図17(B)は凹形に湾曲したマイクロ構造表面およびその上の液滴を表す。FIG. 17 is a diagram illustrating a concavely curved microstructure surface and a droplet on a concavely curved microstructure surface. FIG. 17A represents a concavely curved microstructure surface, and FIG. 17B represents a concavely curved microstructure surface and a droplet thereon. 図18は非マイクロ構造表面上およびマイクロ構造表面上の液滴を示す図である。図18(A)は非マイクロ構造表面上の液滴を表す図であり、液滴に対する表面の接触角はθである。図18(B)はウェンゼル状態にあるマイクロ構造表面上の液滴を表す図であり、液滴に対する表面の接触角はθ である。図18(C)はカシー-バクスター状態にあるマイクロ構造表面上の液滴を表す図であり、液滴に対する表面の接触角はθCB である。FIG. 18 shows droplets on the non-microstructure surface and on the microstructure surface. FIG. 18A shows a droplet on a non-microstructure surface, and the contact angle of the surface with respect to the droplet is θ. FIG. 18B is a diagram illustrating a droplet on a microstructure surface in a Wenzel state, and the contact angle of the surface with respect to the droplet is θ W * . FIG. 18C shows a droplet on the microstructure surface in the Cassie-Baxter state, and the contact angle of the surface with respect to the droplet is θ CB * . 図19は、凸形表面および凹形表面に関するマイクロ特徴部のピッチの変化を示す図である。図19(A)はマイクロ構造表面が正の曲率で湾曲するときであり、マイクロ特徴部の間隔(ピッチ)が広くなることを表す。図19(B)はマイクロ構造表面が負の曲率で湾曲するときであり、マイクロ特徴部の間隔(ピッチ)が狭くなることを表す。FIG. 19 is a diagram showing the change in pitch of the micro features for convex and concave surfaces. FIG. 19A shows the case where the surface of the microstructure is curved with a positive curvature, and shows that the interval (pitch) between the micro features is widened. FIG. 19B shows a case where the surface of the microstructure is curved with a negative curvature, and the interval (pitch) between the micro features is narrowed. 図20は、シリコーンマイクロ柱のピッチの変化を示す図である。図20(A)は、平坦(Flat)なポリジメチルシロキサン(PDMS)表面およびその上にピッチ24.4μmで配置されたPDMSマイクロ柱を表す。図20(B)は、曲率+0.11/mmで湾曲したPDMS表面およびその上に湾曲方向のピッチ26.2μmで配置されたPDMSマイクロ柱を表す。湾曲方向のピッチは24.4μmから26.2μmに広くなった(予測=25.5μm)。図20(C)は、曲率-0.22/mmで湾曲したPDMS表面およびその上に湾曲方向のピッチ20.7μmで配置されたPDMSマイクロ柱を表す。湾曲方向のピッチは24.4μmから20.7μmに狭くなった(予測=22.1μm)。FIG. 20 is a diagram showing a change in pitch of the silicone micro pillar. FIG. 20A represents a flat polydimethylsiloxane (PDMS) surface and PDMS micropillars disposed on it with a pitch of 24.4 μm. FIG. 20B shows a PDMS surface that is curved with a curvature of + 0.11 / mm and PDMS micro-pillars arranged on the surface with a pitch of 26.2 μm in the bending direction. The pitch in the bending direction increased from 24.4 μm to 26.2 μm (prediction = 25.5 μm). FIG. 20 (C) shows a PDMS surface curved with a curvature of −0.22 / mm and PDMS micro-pillars arranged thereon with a pitch of 20.7 μm in the bending direction. The pitch in the bending direction was narrowed from 24.4 μm to 20.7 μm (prediction = 22.1 μm). 図21は、様々なマイクロ特徴部の高さに関して表面上のカシー-バクスター状態の液滴の臨界曲率に対するピッチを示すモデルを提示する図である。FIG. 21 presents a model that shows the pitch versus critical curvature of Cassy-Baxter droplets on the surface for various microfeature heights. 図22は、湾曲した撥痰性・超疎水性表面の曲率(Curvature,1/mm)と、水滴(Water)または重量で40/60のグリセリン/水の混合物の液滴(Glyc/wat)に対する撥痰性・超疎水性表面の接触角(Contact Angle,度)の予測値(Predicted)または実測値(Expt)との関係をプロットしたグラフである。FIG. 22 shows the curvature of a curved repellency / superhydrophobic surface (Curvature, 1 / mm) and water droplets (Water) or droplets of a 40/60 glycerin / water mixture by weight (Glyc / wat). It is the graph which plotted the relationship with the predicted value (Predicted) or measured value (Expt) of the contact angle (Contact Angle, degree) of a repellent and superhydrophobic surface. 図23は、様々なマイクロ構造の高さを有するマイクロ構造PDMS表面上において、滑りを引き起こす傾斜角度(Slide Angle,度)を示すデータを、湾曲の曲率(Curvature,1/mm)の関数として提示する図である。図23(A)は水(Water)に関するグラフであり、図23(B)は重量で40/60のグリセリン/水の混合物(40/60 Glycerol/Water)に関するグラフである。FIG. 23 presents data indicating the angle of inclination (Slide Angle, degrees) that causes slip on a microstructured PDMS surface with various microstructure heights as a function of curvature (Curvature, 1 / mm). It is a figure to do. FIG. 23A is a graph relating to water (Water), and FIG. 23B is a graph relating to a 40/60 glycerin / water mixture (40/60 Glycerol / Water) by weight. 図24は、元の接触角θが100°の液滴の場合の、直径5μm、ピッチ8μmの柱に関するモデリング結果を示すグラフである。FIG. 24 is a graph showing modeling results for a column having a diameter of 5 μm and a pitch of 8 μm in the case of a droplet having an original contact angle θ of 100 °. 図25は、カシー-バクスター状態とウェンゼル状態との間の移行に関するモデリング結果を示すグラフである。FIG. 25 is a graph showing modeling results for the transition between the Cassie-Baxter state and the Wenzel state.
[用語の定義]
 本明細書で使用する用語および語句は、当技術分野で認められた意味を有し、これは、標準的な文書、雑誌参考文献および当業者に知られた文脈を参照することで理解できる。本発明の文脈において特定の使用を明確にするために以下の定義を提示する。
 「痰」は、粘液の一種で、気管等の粘膜から分泌されるスライミーな性質を示す粘性流体であって、程度の差はあるものの、曳糸性(突っ込んだ棒を引き上げたときに、糸を引く性質)および粘弾性(ゴムのように、一部をつかんで持ち上げると伸びて、離すと元の形状に戻り、一定以上伸ばすと切れる性質)を有するものである。痰の主成分としては、水とムチン等の糖タンパク質とが挙げられる。
 「撥痰性」は、痰を撥ねる性質をいう。痰を撥ねる結果、気管用チューブ内部(チューブ体の内周面)に痰が付着しにくくなる。また、痰の糸曳き性を抑制することができる。また、撥痰性表面とは、傾斜角を30°とし、そこに痰を100μLずつ滴下した際に、痰が移動する表面をいう。
 「超疎水性」は、液体、例えば水が、材料の表面をあまり濡らさない材料特性を指す。特定の実施形態では、超疎水性は、液体接触角が120°を超える、例えば130°を超える、140°を超える、150°を超える、160°を超える、または170°を超える材料特性を指す。
 「独立型」は、別の物品に、例えば、表面または基板に取り付けられていない物品を指す。特定の実施形態では、独立型のフィルムは、複数の層、例えば、屈曲性ポリマー層および接着層を含む。
 「単体」、「単一部材」および「モノリシック」は、同一材料の単一の部材からなる物品または要素を指す。
 「マイクロ特徴部」および「マイクロ構造」は、平均の幅、深さ、長さおよび/または厚さが、100μm以下、または、10nm~100μmの範囲から選択される、物品表面上の特徴部を指す。
 「予め選択したパターン」は、整理、デザイン、または設計された物品の構成を指す。例えば、予め選択したパターンのマイクロ構造は、順序つき配列のマイクロ特徴部を指すことができる。一実施形態では、予め選択したパターンは、ランダムおよび/または統計的なパターンではない。
 「ピッチ」は物品間の間隔を指す。ピッチは、複数の物品間の平均間隔、物品の中心間および/または縁部間の間隔、ならびに/あるいは物品の特定部分、例えば、物品の先端、点、および/または端部の間の間隔を指すことができる。
 「濡れ性」は、液体に対する表面の親和性を指す。「親水性」は、液体に対する表面の引力の程度を指す。「疎水性」は、液体に対する表面の斥力の程度を指す。いくつかの実施形態では、表面の濡れ性、親水性、および/または疎水性は、表面上の液体接触角を基準として言及される。用語「濡れ性」、「親水性」、および「液体親和性」は、本明細書では互いに同義で用いられて、90°未満の液体と表面との接触角を指す。用語「非濡れ性」、「疎水性」、および「液体非親和性」は、本明細書では互いに同義で用いられて、90°超の液体と表面との接触角を指す。いくつかの実施形態の場合には、表面の親和性は、様々な液体ごとに異なり、これらの実施形態では、基準とする液体に応じて表面を同時に液体非親和性および液体親和性にすることができる。
 「接触角」は、液体と気体との境界面が固体と接する角度を指す。
 「可撓性」は、変形したときに、例えば、物品が破断、破損、または非弾性的な変形を特徴とする損傷をしないように、可逆的に変形する物品の能力を指す。
[Definition of terms]
The terms and phrases used herein have their art-recognized meanings and can be understood by reference to standard documents, journal references, and contexts known to those skilled in the art. In order to clarify certain uses in the context of the present invention, the following definitions are presented.
“Kashi” is a type of mucus and is a viscous fluid that is secreted from mucous membranes such as the trachea and has a slimy nature. ) And viscoelasticity (such as rubber, it stretches when it is grabbed and lifted, returns to its original shape when released, and breaks when stretched more than a certain amount). Examples of the main components of koji include water and glycoproteins such as mucin.
The “repellency” refers to the property of repelling wrinkles. As a result of repelling wrinkles, wrinkles are less likely to adhere to the inside of the tracheal tube (the inner peripheral surface of the tube body). Moreover, the stringing property of the cocoon can be suppressed. The repellency surface is a surface on which the wrinkle moves when an inclination angle is set to 30 ° and 100 μL of the wrinkle is dropped on the surface.
“Superhydrophobic” refers to a material property in which a liquid, eg, water, does not wet the surface of the material too much. In certain embodiments, superhydrophobicity refers to a material property having a liquid contact angle of greater than 120 °, such as greater than 130 °, greater than 140 °, greater than 150 °, greater than 160 °, or greater than 170 °. .
“Stand-alone” refers to an article that is not attached to another article, eg, a surface or substrate. In certain embodiments, a stand-alone film includes multiple layers, such as a flexible polymer layer and an adhesive layer.
“Single unit”, “single member” and “monolithic” refer to an article or element consisting of a single member of the same material.
“Microfeatures” and “microstructures” are features on an article surface that have an average width, depth, length and / or thickness selected from 100 μm or less, or from 10 nm to 100 μm. Point to.
“Preselected pattern” refers to the organization, design, or composition of the designed article. For example, a preselected pattern of microstructures can refer to an ordered array of micro features. In one embodiment, the preselected pattern is not a random and / or statistical pattern.
“Pitch” refers to the spacing between articles. Pitch refers to the average spacing between multiple articles, the spacing between the center and / or edge of the article, and / or the spacing between specific parts of the article, for example, the tip, point, and / or end of the article. Can point.
“Wettability” refers to the affinity of a surface for a liquid. “Hydrophilic” refers to the degree of attractiveness of a surface to a liquid. “Hydrophobic” refers to the degree of repulsion of a surface against a liquid. In some embodiments, surface wettability, hydrophilicity, and / or hydrophobicity are referred to relative to the liquid contact angle on the surface. The terms “wetting”, “hydrophilic”, and “liquid affinity” are used interchangeably herein to refer to a liquid-surface contact angle of less than 90 °. The terms “non-wetting”, “hydrophobic” and “liquid non-affinity” are used interchangeably herein to refer to a contact angle between a liquid and a surface of greater than 90 °. In some embodiments, the affinity of the surface is different for different liquids, and in these embodiments, the surface is simultaneously made liquid non-affinity and liquid affinity, depending on the reference liquid. Can do.
“Contact angle” refers to the angle at which the interface between the liquid and the gas contacts the solid.
“Flexible” refers to the ability of an article to reversibly deform when deformed, for example, so that the article does not suffer damage characterized by breakage, breakage, or inelastic deformation.
[気管用チューブ]
 本発明の気管用チューブは、気管内の肺側に設けられた先端部、先端部と反対側に設けられた基端部、および、基端部から先端部にかけて貫通する呼吸路を有する材料からなるチューブ体を備える、気管用チューブにおいて、チューブ体の呼吸路を形成する内面の少なくとも一部にマイクロ構造領域が設けられ、マイクロ構造領域は、複数のマイクロ特徴部が配置されたマイクロ構造表面を有することを特徴とする。
[Tracheal tube]
The tracheal tube of the present invention is made of a material having a distal end portion provided on the lung side in the trachea, a proximal end portion provided on the opposite side of the distal end portion, and a respiratory path penetrating from the proximal end portion to the distal end portion. In the tracheal tube including the tube body, a micro structure region is provided on at least a part of the inner surface forming the breathing path of the tube body, and the micro structure region has a micro structure surface on which a plurality of micro features are arranged. It is characterized by having.
〈マイクロ構造領域〉
 マイクロ構造領域は、本発明の気管用チューブが備えるチューブ体の呼吸路を形成する内面の少なくとも一部に設けられる。さらに、マイクロ構造領域は、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する。
<Microstructure area>
The microstructure region is provided on at least a part of the inner surface forming the respiratory path of the tube body provided in the tracheal tube of the present invention. Further, the microstructure region has a microstructure surface on which a plurality of micro features are disposed.
 本発明の気管用チューブにおいて、マイクロ構造領域は、チューブ体の呼吸路を形成する内面の少なくとも一部に設けられていればよいが、本発明の気管用チューブのあらゆる表面に設けられていてもよい。特に、マイクロ構造領域は、本発明の気管用チューブの、痰と接触しやすい表面に設けられていることが好ましい。 In the tracheal tube of the present invention, the microstructure region may be provided on at least a part of the inner surface forming the respiratory path of the tube body, but may be provided on any surface of the tracheal tube of the present invention. Good. In particular, the microstructure region is preferably provided on the surface of the tracheal tube of the present invention that is easily in contact with the heel.
 また、マイクロ構造領域には、複数のマイクロ特徴部が直接配置されていてもよいし、可撓性を有する基板であって、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する基板が当該マイクロ構造表面と反対側の面を当該マイクロ構造領域に向けて積層されていてもよい。 In the microstructure region, a plurality of micro features may be directly arranged, or a flexible substrate having a microstructure surface on which the plurality of micro features are arranged. The surface opposite to the microstructure surface may be laminated toward the microstructure region.
〈マイクロ構造表面〉
 以下、マイクロ構造表面およびマイクロ特徴部について詳細に説明する。
<Microstructure surface>
Hereinafter, the microstructure surface and the micro feature will be described in detail.
 図1に、マイクロ構造表面の例示的な一実施形態を示す。図1に示したマイクロ構造表面10は、基板(基材)11の表面上にマイクロ特徴部12が配置されている。この実施形態のマイクロ特徴部12は、直径13を有する円形の断面形状を有する。また、図1に示したマイクロ構造表面10において、マイクロ特徴部12の中心間のピッチ14およびマイクロ特徴部12の高さ15も示す。 FIG. 1 illustrates an exemplary embodiment of a microstructure surface. The microstructure surface 10 shown in FIG. 1 has a micro feature 12 disposed on the surface of a substrate (base material) 11. The microfeature 12 of this embodiment has a circular cross-sectional shape with a diameter 13. Also shown is the pitch 14 between the centers of the microfeatures 12 and the height 15 of the microfeatures 12 on the microstructured surface 10 shown in FIG.
 マイクロ構造表面の少なくとも一部分は、湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形した形状であってもよい。湾曲および/または屈曲したマイクロ構造表面の少なくとも一部分の曲率半径は、特に限定されないが、1mm~1,000mの範囲内から選択されることが好ましい。圧縮したマイクロ構造表面の少なくとも一部分は、元のサイズの1%~100%のレベルにまで圧縮したものであることが好ましい。伸長または膨張したマイクロ構造表面の少なくとも一部分は、元のサイズの100%~500%のレベルにまで膨張または伸長したものであることが好ましい。歪曲したマイクロ構造表面の少なくとも一部分の歪みレベルは、-99%~500%の範囲から選択されることが好ましい。 At least a portion of the microstructure surface may be curved, bent, compressed, stretched, expanded, distorted, and / or deformed. The radius of curvature of at least a portion of the curved and / or bent microstructure surface is not particularly limited, but is preferably selected from the range of 1 mm to 1,000 m. At least a portion of the compressed microstructured surface is preferably compressed to a level of 1% to 100% of the original size. At least a portion of the stretched or expanded microstructure surface is preferably expanded or stretched to a level of 100% to 500% of the original size. The strain level of at least a portion of the distorted microstructure surface is preferably selected from the range of −99% to 500%.
 マイクロ構造表面は、湾曲面、例えば、物品または構造の輪郭に適合する可撓性を有するものであってもよい。例えば、マイクロ特徴部が配置された、可撓性を有する基板(基材)の表面は、湾曲面、例えば、1つまたは複数の凹形および/または凸形の領域を有する表面であってもよい。また、例えば、可撓性を有するマイクロ構造表面を有する基板(基材)のマイクロ特徴部および任意選択で接着層を有する表面の反対側に位置する表面は、湾曲面、例えば、1つまたは複数の凹形および/または凸形の領域を有する表面であってもよい。可撓性を有する基板(基材)は、事実上平面であってもよい。さらに、可撓性を有する基板(基材)は、事実上平面の領域と湾曲領域との組み合わせを有する表面を含んでもよい。マイクロ構造表面は、折り目、畳み目、または別法で非弾性的に変形した領域を含んでもよく、それらの領域は、マイクロ構造表面が、角を有する物品に適合するか、または変形した形状を採り入れることができるように構成されている。 The microstructured surface may be a curved surface, for example, one that is flexible to match the contour of the article or structure. For example, the surface of the flexible substrate (substrate) on which the microfeatures are arranged may be a curved surface, for example a surface having one or more concave and / or convex regions. Good. Also, for example, the surface located opposite the microfeatures of the substrate (base material) having a flexible microstructured surface and optionally a surface having an adhesive layer may be a curved surface, eg one or more Or a surface having concave and / or convex regions. The flexible substrate (base material) may be substantially flat. Furthermore, the flexible substrate (base material) may include a surface having a combination of a substantially planar region and a curved region. The microstructured surface may include folds, folds, or otherwise inelastically deformed regions that are shaped such that the microstructured surface conforms to a cornered article or is deformed. It is configured so that it can be introduced.
 マイクロ特徴部および基板(基材)は、単一部材、例えば、基板(基材)と一体の構成要素としてマイクロ特徴部を有するモノリシック構造から構成されてもよい。例えば、マイクロ特徴部が基板(基材)自体の一部として一体形成され、基板(基材)の表面から延在し、任意選択で基板(基材)と同じ組成を有する、マイクロ構造表面を有する可撓性フィルム、またはマイクロ構造表面を有する可撓性基材であってもよい。マイクロ特徴部および基板(基材)は、気管用チューブの構成部材と一体の構成要素として構成されてもよい。 The micro feature and the substrate (base material) may be composed of a single member, for example, a monolithic structure having the micro feature as an integral component of the substrate (base material). For example, a micro-structured surface may be integrally formed as part of the substrate (base material) itself, extending from the surface of the substrate (base material), and optionally having the same composition as the substrate (base material). It may be a flexible film or a flexible substrate having a microstructured surface. The micro feature and the substrate (base material) may be configured as a component integrated with a component of the tracheal tube.
 マイクロ特徴部の寸法は、10nm~1000μmの範囲から選択されることが好ましい。マイクロ特徴部の長さ、高さ、直径、および/または幅は、好ましくは10nm~1000μmの範囲から選択され、より好ましくは10nm~100μmの範囲から選択される。マイクロ特徴部間のピッチは、好ましくは10nm~1000μmの範囲から選択され、より好ましくは1μm~1000μmの範囲から選択され、さらに好ましくは10μm~1000μmの範囲から選択される。 The dimension of the micro feature is preferably selected from the range of 10 nm to 1000 μm. The length, height, diameter, and / or width of the microfeature is preferably selected from the range of 10 nm to 1000 μm, more preferably from the range of 10 nm to 100 μm. The pitch between the micro features is preferably selected from the range of 10 nm to 1000 μm, more preferably selected from the range of 1 μm to 1000 μm, and even more preferably selected from the range of 10 μm to 1000 μm.
 複数のマイクロ特徴部は、複数様式の分布の物理的寸法、例えば、2様式の分布の高さ、および/または2様式の分布の直径、および/または2様式の分布のマイクロ構造ピッチを有していてもよい。例えば、複数のマイクロ特徴部は、第1組の寸法を有する第1組のマイクロ特徴部、および第2組の寸法を有する第2組のマイクロ特徴部を備えていてもよい。また、第1組の寸法と第2組の寸法は異なってもよい。第1組の寸法は、10nm~10μmの範囲から選択されることが好ましく、第2組の寸法は、10μm~1000μmの範囲から選択されることが好ましい。 The plurality of microfeatures have a physical dimension of a multimodal distribution, for example, a bimodal distribution height, and / or a bimodal distribution diameter, and / or a bimodal distribution microstructure pitch. It may be. For example, the plurality of microfeatures may include a first set of microfeatures having a first set of dimensions and a second set of microfeatures having a second set of dimensions. The first set and the second set may have different dimensions. The first set of dimensions is preferably selected from the range of 10 nm to 10 μm, and the second set of dimensions is preferably selected from the range of 10 μm to 1000 μm.
 マイクロ特徴部は、任意の断面形状、例えば、円形、楕円形、三角形、正方形、矩形、多角形、星形、六角形、文字形、数字形、数学記号形などであってよく、また、これらの任意の組み合わせを含む断面形状を有していてもよい。ここで、断面形状は、可撓性を有する基板(基材)の平面に平行な平面におけるマイクロ構造の断面の形状を指す。 The microfeature may be any cross-sectional shape, for example, circular, oval, triangular, square, rectangular, polygonal, star, hexagonal, letter shape, number shape, mathematical symbol shape, etc. You may have the cross-sectional shape containing arbitrary combinations of these. Here, the cross-sectional shape refers to the cross-sectional shape of the microstructure in a plane parallel to the plane of the flexible substrate (base material).
 マイクロ構造表面は、予め選択したパターンを有するマイクロ特徴部を備えてもよい。予め選択したパターンは、マイクロ特徴部の規則的な配列であってもよい。また、予め選択したパターンは、マイクロ特徴部が第1のピッチを有するいくつかの領域と、マイクロ特徴部が第2のピッチ、例えば第1のピッチよりも大きいピッチを有する、いくつかの領域とを含んでもよい。 The microstructure surface may include micro features having a preselected pattern. The preselected pattern may be a regular array of micro features. The preselected pattern also includes several regions where the microfeatures have a first pitch, and several regions where the microfeatures have a second pitch, eg, a pitch greater than the first pitch. May be included.
 予め選択したパターンのマイクロ特徴部が、マイクロ特徴部が第1の断面形状を有する領域と、マイクロ特徴部が第2の断面形状、例えば、第1の断面形状とは異なる断面形状を有する領域とを含んでもよい。予め選択したパターンのマイクロ特徴部が、マイクロ特徴部が複数の断面形状および/またはサイズを有する領域を含んでもよい。予め選択したパターンのマイクロ特徴部が、2以上の配列の、2以上の断面形状および/またはサイズのマイクロ特徴部を指してもよい。2以上の配列を、並列に、すなわち、2つの配列が重ならないように配置することができる。別の特定の実施形態では、2以上の配列が重なるように配置することができ、2以上の断面形状および/またはサイズを有するマイクロ特徴部が、重なった配列内に点在する。 A microfeature having a preselected pattern includes a region where the microfeature has a first cross-sectional shape and a region where the microfeature has a second cross-sectional shape, eg, a cross-sectional shape different from the first cross-sectional shape; May be included. The preselected pattern of microfeatures may include regions where the microfeatures have a plurality of cross-sectional shapes and / or sizes. A preselected pattern of microfeatures may refer to microfeatures of two or more cross-sectional shapes and / or sizes in two or more arrays. Two or more arrays can be arranged in parallel, ie, the two arrays do not overlap. In another specific embodiment, two or more arrays can be arranged to overlap, and microfeatures having two or more cross-sectional shapes and / or sizes are interspersed in the overlapping arrays.
 予め選択したパターンのマイクロ特徴部が、複数の寸法のマイクロ特徴部、例えば、2様式または複数様式の寸法の分布を含んでもよい。例えば、予め選択したパターンのマイクロ特徴部が、10nm~1μmから選択される寸法を有する第1グループのマイクロ特徴部と、1μm~100μmから選択される寸法を有する第2グループのマイクロ特徴部とを含んでもよい。また、マイクロ特徴部のサイズ、形状、および配置は、マイクロメートルスケールまたはナノメートルスケールの正確さおよび/または精密度で予め選択されてもよい。 The microfeatures of the preselected pattern may include microfeatures of a plurality of dimensions, for example, a bimodal or multimodal distribution of dimensions. For example, a first group of micro features having a dimension selected from 10 nm to 1 μm and a second group of micro features having a dimension selected from 1 μm to 100 μm. May be included. Also, the size, shape, and arrangement of the microfeatures may be preselected with micrometer scale or nanometer scale accuracy and / or precision.
 マイクロ特徴部は、1~100nmの範囲から選択される寸法を有する粒子を含んでもよい。可撓性を有する基板(基材)および/またはマイクロ特徴部の表面に、被覆、例えば、1~100nmの範囲から選択される寸法を有する粒子を含む被覆が設けられてもよい。これらの粒子は、nmスケールの追加のレベルの粗さを、可撓性を有する基板(基材)の表面にもたらし、表面の撥痰性、疎水性を上昇させ、および/または表面エネルギーを変更する。 The microfeature may include particles having dimensions selected from the range of 1-100 nm. The surface of the flexible substrate (base material) and / or the microfeature may be provided with a coating, for example a coating comprising particles having a dimension selected from the range of 1 to 100 nm. These particles provide an additional level of roughness on the nanometer scale to the surface of a flexible substrate (substrate), increasing surface repellency, hydrophobicity, and / or changing surface energy. To do.
 予め選択したパターンのマイクロ特徴部は、表面に特定の物理的特性を与えるように設計されてもよい。例えば、順序つき配列のマイクロ特徴部は、物品の表面に撥痰性、超疎水性を与えることができる。予め選択したパターンのマイクロ特徴部によって調整し与えることができる物理的特性は、特に限定されないが、例えば、撥痰性;疎水性;親水性;自浄能力;流体抵抗係数および/または空気抵抗係数;視覚的効果、例えばプリズム効果、特定の色、および方向依存の色の変化;触覚効果;把持力;表面摩擦係数などが挙げられる。 The micro features of the preselected pattern may be designed to give the surface certain physical properties. For example, an ordered array of microfeatures can impart repellency and superhydrophobicity to the surface of the article. The physical properties that can be adjusted and imparted by the microfeatures of the preselected pattern are not particularly limited, but include, for example, repellency; hydrophobicity; hydrophilicity; self-cleaning ability; fluid resistance coefficient and / or air resistance coefficient; Visual effects such as prism effect, specific color, and direction-dependent color change; haptic effect; gripping force; surface friction coefficient.
 マイクロ構造表面の撥痰性、疎水性、濡れ性、および/または親水性は制御可能である。例えば、基板(基材)を湾曲、屈曲、膨張、または縮小することによって可撓性を有する基板(基材)が変形するにつれて、表面の撥痰性、疎水性、濡れ性、および/または親水性が変化する。別の実施形態の場合には、可撓性を有する基板(基材)が変形するときに、表面の撥痰性、疎水性、濡れ性、および/または親水性は一定のままである。さらには、可撓性を有する基板(基材)が変形するときに、表面の撥痰性、疎水性、濡れ性、および/または親水性は、表面の一部については一定のままであり、表面の他の部分については表面の濡れ性は変化することもある。表面の水滴の接触角は、可撓性を有する基板(基材)が変形するにつれて変化することもあれば、一定のままであることもある。 The repellency, hydrophobicity, wettability, and / or hydrophilicity of the microstructure surface can be controlled. For example, as the flexible substrate (substrate) is deformed by bending, bending, expanding, or reducing the substrate (substrate), the repellency, hydrophobicity, wettability, and / or hydrophilicity of the surface Sex changes. In another embodiment, the surface repellency, hydrophobicity, wettability, and / or hydrophilicity remain constant when the flexible substrate (substrate) deforms. Furthermore, when the flexible substrate (base material) deforms, the surface repellency, hydrophobicity, wettability, and / or hydrophilicity remain constant for a portion of the surface, The surface wettability may vary for other parts of the surface. The contact angle of water droplets on the surface may change as the flexible substrate (base material) deforms, or may remain constant.
 マイクロ構造表面上の水滴の接触角は、好ましくは120°を超え、より好ましくは130°、140°、150°、160°、または170°を超える。 The contact angle of water droplets on the microstructure surface is preferably more than 120 °, more preferably more than 130 °, 140 °, 150 °, 160 ° or 170 °.
 マイクロ構造表面は、ポリマーを含んでもよい。ポリマーは、特に限定されるわけではないが、例えば、PDMS(ポリジメチルシロキサン)、PMMA(ポリメチルメタクリラート)、PTFE(ポリテトラフルオロエチレン)、ポリウレタン、テフロン(登録商標)、ポリアクリラート、ポリアリレート、熱可塑性物質、熱可塑性エラストマー、フルオロポリマー、生分解性ポリマー、ポリカーボネート、ポリエチレン、ポリイミド、ポリスチレン、ポリビニル、ポリオレフィン、シリコーン、天然ゴム、合成ゴム、これらのうち2種類以上の組合せなどが挙げられる。 The microstructure surface may contain a polymer. The polymer is not particularly limited. For example, PDMS (polydimethylsiloxane), PMMA (polymethyl methacrylate), PTFE (polytetrafluoroethylene), polyurethane, Teflon (registered trademark), polyacrylate, poly Arylate, thermoplastic material, thermoplastic elastomer, fluoropolymer, biodegradable polymer, polycarbonate, polyethylene, polyimide, polystyrene, polyvinyl, polyolefin, silicone, natural rubber, synthetic rubber, and combinations of two or more of these .
 マイクロ構造表面は、金属を含んでもよい。金属としては、モールド成形可能、キャスト成形可能、エンボス加工可能、および/またはスタンピング可能な任意の金属もしくは合金を含む。また、金属は、特に限定されるわけではないが、例えば、アルミニウム、アルミニウム合金、ビスマス、ビスマス合金、スズ、スズ合金、鉛、鉛合金、チタン、チタン合金、鉄、鉄合金、インジウム、インジウム合金、金、金合金、銀、銀合金、銅、銅合金、真鍮、ニッケル、ニッケル合金、白金、白金合金、パラジウム、パラジウム合金、亜鉛、亜鉛合金、カドミウム、カドミウム合金などが挙げられる。 The microstructure surface may contain a metal. Metal includes any metal or alloy that is moldable, castable, embossable, and / or stampable. The metal is not particularly limited. For example, aluminum, aluminum alloy, bismuth, bismuth alloy, tin, tin alloy, lead, lead alloy, titanium, titanium alloy, iron, iron alloy, indium, indium alloy Gold, gold alloy, silver, silver alloy, copper, copper alloy, brass, nickel, nickel alloy, platinum, platinum alloy, palladium, palladium alloy, zinc, zinc alloy, cadmium, cadmium alloy and the like.
 マイクロ構造表面は、動物および/または植物から由来した工業材料、例えば、炭水化物、セルロース、リグニン、糖、蛋白質、繊維、バイオポリマー、および/または澱粉を含む材料を含んでもよい。植物由来および/または動物由来の工業用材料としては、限定するわけではないが、例えば、紙;厚紙;テキスタイル、例えば、ウール、リネン、綿、または皮;バイオプラスチック;固体バイオ燃料またはバイオマス、例えば、おが屑、小麦粉、または木炭;ならびに建設材料、例えば、木材、ファイバボード、リノリウム、コルク、竹、硬材などが挙げられる。 The microstructured surface may include industrial materials derived from animals and / or plants, such as materials including carbohydrates, cellulose, lignin, sugars, proteins, fibers, biopolymers, and / or starch. Plant and / or animal derived industrial materials include, but are not limited to, for example, paper; cardboard; textiles, such as wool, linen, cotton, or leather; bioplastics; solid biofuels or biomass, such as Sawdust, flour, or charcoal; and construction materials such as wood, fiberboard, linoleum, cork, bamboo, hardwood and the like.
 マイクロ構造表面は複合材料を含んでもよい。例えば、マイクロ構造表面は、異なる2以上の材料、層、および/または構成要素を含むことができる。 The microstructure surface may include a composite material. For example, the microstructured surface can include two or more different materials, layers, and / or components.
 マイクロ構造表面は、複数のマイクロ特徴部上にそれらを覆う被覆を備えていてもよい。被覆としては、特に限定するわけではないが、例えば、フッ素化ポリマー、フッ素化炭化水素、シラン、チオール、これらのうちの2種類以上の組合せなどが挙げられる。マイクロ構造表面は、表面処理が施されてもよい。表面処理の方法としては、特に限定するわけではないが、硬化、蒸解、アニーリング、化学処理、化学被覆、塗装、被覆、プラズマ処理、これらのうち2種類以上の組合せなどが挙げられる。 The microstructure surface may comprise a coating covering them on a plurality of micro features. The coating is not particularly limited, and examples thereof include fluorinated polymers, fluorinated hydrocarbons, silanes, thiols, and combinations of two or more thereof. The microstructure surface may be surface treated. The surface treatment method is not particularly limited, and examples thereof include curing, cooking, annealing, chemical treatment, chemical coating, painting, coating, plasma treatment, and combinations of two or more of these.
〈マイクロ構造表面の作製方法〉
 図2に、マイクロ構造表面を作製するための例示的な一実施形態を示す。
 図2に示すフローダイヤグラムは、感光性ポリマーまたは光もしくは粒子に敏感なレジスト22を上部に備えた基板(基材)21で開始する。ステンシルマスク23を通してレジスト22に光24を当てることによって、そのレジストにマイクロ特徴部25を形成することができる。他の実施形態では、これらのマイクロ特徴部またはナノ特徴部を形成するために、他の種類の電磁波、エネルギービーム、または粒子が使用される。
 この段階では、形成されたマイクロ特徴部25の凹所26を有するレジスト22をモールド型として使用する。基板(基材)21を(例えば、化学エッチングで)処理して、マイクロ特徴部25を修正することもできる。いくつかの実施形態の場合には、その表面を薬剤で被覆して、後続のモールド成形ステップを容易にするかまたは改善する。
 未硬化のポリマー27をマイクロ特徴部25にモールド成形し、熱、時間、紫外線、または他の硬化法によって硬化させる。硬化したポリマー28を基板(基材)-レジストモールド型から取り外すときに、そのモールド型による特徴部が、硬化したポリマー28に転写される。
<Production method of microstructure surface>
FIG. 2 illustrates an exemplary embodiment for creating a microstructured surface.
The flow diagram shown in FIG. 2 begins with a substrate (base material) 21 with a photosensitive polymer or resist 22 sensitive to light or particles on top. By applying light 24 to the resist 22 through the stencil mask 23, the micro feature 25 can be formed in the resist. In other embodiments, other types of electromagnetic waves, energy beams, or particles are used to form these micro-features or nano-features.
At this stage, the resist 22 having the recess 26 of the formed micro feature 25 is used as a mold. The microfeatures 25 can also be modified by processing the substrate (base material) 21 (eg by chemical etching). In some embodiments, the surface is coated with a drug to facilitate or improve subsequent molding steps.
Uncured polymer 27 is molded into microfeatures 25 and cured by heat, time, ultraviolet light, or other curing methods. When the cured polymer 28 is removed from the substrate (base material) -resist mold, features from the mold are transferred to the cured polymer 28.
 マイクロ構造表面のマイクロ特徴部は、リソグラフィパターニングされたモールド型から複製されて作製されてもよい。マイクロ特徴部は、リソグラフィパターニングされたモールド型から直接複製されてもよいし(第1の世代の複製)、リソグラフィパターニングされたモールド型から複製されたマイクロ特徴部を有するモールド型から複製されてもよい(第2の世代の複製)。さらには、マイクロ特徴部は、リソグラフィパターニングされたマスタの特徴部を複製した第3のまたは後続の世代であってもよい。 The micro features on the surface of the microstructure may be made by duplicating from a lithography patterned mold. Microfeatures may be replicated directly from a lithographically patterned mold (first generation duplication) or from a mold that has microfeatures replicated from a lithographically patterned mold Good (second generation replication). Further, the microfeature may be a third or subsequent generation that replicates a lithographically patterned master feature.
 マイクロ構造表面を物品の表面に作製する方法の一例を説明するが、マイクロ構造表面を物品の表面に作製する方法はこの方法に限定されず、種々の方法を用いることが可能である。この方法は、物品を用意するステップと、表面に複数のマイクロ特徴部が配置され、その反対側の表面に接着層が配置された、可撓性を有する基板(基材)を備えるマイクロ構造表面を用意するステップと、マイクロ構造表面を物品の表面に付着させるステップとを含む。可撓性を有する基板(基材)としては、ポリマー基板(基材)が好ましい。ポリマーとしては上述したものを好適に使用しうる。 An example of a method for producing the microstructure surface on the surface of the article will be described, but the method for producing the microstructure surface on the article surface is not limited to this method, and various methods can be used. The method comprises the steps of providing an article and a microstructured surface comprising a flexible substrate (substrate) having a plurality of microfeatures disposed on the surface and an adhesive layer disposed on the opposite surface And attaching the microstructured surface to the surface of the article. As the substrate (base material) having flexibility, a polymer substrate (base material) is preferable. As the polymer, those described above can be preferably used.
〈マイクロ構造表面の撥痰性・超疎水性等の制御方法〉
 複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を備える表面の、撥痰性、超疎水性および/または濡れ性を制御する方法を説明する。この方法は、(i)複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を用意するステップと、(ii)可撓性を有する基板(基材)を変形し、それにより、表面の撥痰性、超疎水性および/または濡れ性を制御するステップとを含む。可撓性を有する基板(基材)を変形するステップは、可撓性を有する基板(基材)を湾曲、可撓性を有する基板(基材)を屈曲、可撓性を有する基板(基材)を膨張、可撓性を有する基板(基材)を伸長、および/または可撓性を有する基板(基材)を圧縮することによって実現することができる。一実施形態では、可撓性を有する基板(基材)を変形するステップは、マイクロ特徴部の少なくとも一部分の間のピッチを、例えば、10nm~1000μmの範囲から選択される値だけ、任意選択で、100nm~100μmの範囲から選択される値だけ増減することによって、選択的に変更する。
<Control method for repellency, superhydrophobicity, etc. of microstructure surface>
A method for controlling the repellency, superhydrophobicity and / or wettability of a surface including a flexible substrate (base material) provided with a plurality of micro features will be described. The method includes the steps of (i) providing a flexible substrate (base material) provided with a plurality of micro features, and (ii) deforming the flexible substrate (base material), Thereby controlling the repellency, superhydrophobicity and / or wettability of the surface. The step of deforming the flexible substrate (base material) includes bending the flexible substrate (base material), bending the flexible substrate (base material), and bending the flexible substrate (base material). This can be realized by expanding the material), stretching the flexible substrate (base material), and / or compressing the flexible substrate (base material). In one embodiment, the step of deforming the flexible substrate (base material) optionally includes changing the pitch between at least a portion of the microfeatures by a value selected from the range of, for example, 10 nm to 1000 μm. , By selectively increasing or decreasing by a value selected from the range of 100 nm to 100 μm.
 マイクロ構造表面の撥痰性および超疎水性を制御する方法を説明する。この方法は、マイクロ構造表面を用意するステップと、そのマイクロ構造表面を変形し、それにより、表面の撥痰性および超疎水性を制御するステップとを含む。この方法では、マイクロ構造表面は、複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を備える。可撓性を有する基板(基材)はポリマーおよび/または金属を含んでもよい。
 ポリマーとしては、限定されるものではないが、例えば、PDMS(ポリジメチルシロキサン)、PMMA(ポリメチルメタクリラート)、PTFE(ポリテトラフルオロエチレン)、ポリウレタン、テフロン(登録商標)、ポリアクリラート、ポリアリレート、熱可塑性物質、熱可塑性エラストマー、フルオロポリマー、生分解性ポリマー、ポリカーボネート、ポリエチレン、ポリイミド、ポリスチレン、ポリビニル、ポリオレフィン、シリコーン、天然ゴム、合成ゴム、これらのうちの2種類以上の組み合わせが挙げられる。
 金属は、モールド成形可能、キャスト成形可能、エンボス加工可能、および/またはスタンピング可能な任意の金属または合金であれば、特に限定されるものではないが、例えば、アルミニウム、アルミニウム合金、ビスマス、ビスマス合金、スズ、スズ合金、鉛、鉛合金、チタン、チタン合金、鉄、鉄合金、インジウム、インジウム合金、金、金合金、銀、銀合金、銅、銅合金、真鍮、ニッケル、ニッケル合金、白金、白金合金、パラジウム、パラジウム合金、亜鉛、亜鉛合金、カドミウム、カドミウム合金などが挙げられる。
A method for controlling the repellency and superhydrophobicity of the microstructure surface will be described. The method includes providing a microstructured surface and deforming the microstructured surface, thereby controlling the repellency and superhydrophobicity of the surface. In this method, the microstructure surface comprises a flexible substrate (base material) provided with a plurality of micro features. The flexible substrate (base material) may include a polymer and / or a metal.
Examples of the polymer include, but are not limited to, PDMS (polydimethylsiloxane), PMMA (polymethyl methacrylate), PTFE (polytetrafluoroethylene), polyurethane, Teflon (registered trademark), polyacrylate, poly Arylate, thermoplastic material, thermoplastic elastomer, fluoropolymer, biodegradable polymer, polycarbonate, polyethylene, polyimide, polystyrene, polyvinyl, polyolefin, silicone, natural rubber, synthetic rubber, and combinations of two or more of these .
The metal is not particularly limited as long as it is any metal or alloy that is moldable, castable, embossable, and / or stampable, for example, aluminum, aluminum alloy, bismuth, bismuth alloy , Tin, tin alloy, lead, lead alloy, titanium, titanium alloy, iron, iron alloy, indium, indium alloy, gold, gold alloy, silver, silver alloy, copper, copper alloy, brass, nickel, nickel alloy, platinum, Examples include platinum alloy, palladium, palladium alloy, zinc, zinc alloy, cadmium, cadmium alloy and the like.
 撥痰性および超疎水性以外に、またはそれらに加えて、1つまたは複数の物理的、機械的、または光学的な特性は、複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を変形することによって設定、変更、および/または制御される。例えば、光学的な特性、例えば、反射率、反射光もしくは散乱光の波長分布、透過率、伝播光の波長分布、屈折率、またはこれらの任意の組み合わせは、複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を湾曲、屈曲、膨張、伸長、および/または縮小することによって制御することができる。また、物理的特性、例えば、空気抵抗または流体抵抗は、複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を湾曲、屈曲、膨張、伸長、および/または縮小することによって制御することができる。また、表面の触知の特性、例えば、表面の触知の感覚は、複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を湾曲、屈曲、膨張、伸長、および/または縮小することによって制御することができる。 In addition to or in addition to repellency and superhydrophobicity, one or more physical, mechanical, or optical properties can be a flexible substrate with a plurality of microfeatures ( It is set, changed and / or controlled by deforming the substrate. For example, optical characteristics such as reflectance, wavelength distribution of reflected or scattered light, transmittance, wavelength distribution of propagating light, refractive index, or any combination thereof are provided with a plurality of micro features The flexible substrate (base material) can be controlled by bending, bending, expanding, stretching, and / or contracting. In addition, physical properties such as air resistance or fluid resistance can be obtained by bending, bending, expanding, extending, and / or reducing a flexible substrate (base material) provided with a plurality of micro features. Can be controlled. Also, surface tactile properties, such as surface tactile sensation, can be obtained by bending, bending, expanding, stretching, and / or bending a flexible substrate (substrate) provided with a plurality of micro features. It can be controlled by reducing.
 マイクロ構造表面の特性は、基板(基材)を湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形することによって選択的に調節することができる。マイクロ構造表面の少なくとも一部分の特性は、基板(基材)の少なくとも一部分を湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形することによって選択的に調節することができる。例えば、表面の空気抵抗および/または流体抵抗は、基板(基材)を湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形することによって選択的に調節することができる。また、表面の濡れ性は、基板(基材)を湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形することによって選択的に調節することができる。また、表面の光学的な特性は、基板(基材)を湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形することによって選択的に調節することができる。例えば、表面のプリズム効果、方向依存の反射率、方向依存の伝播率、反射率、透過率、反射波の波長分布、散乱波の波長分布、伝播波の波長分布、および/または屈折率は、基板(基材)を湾曲、屈曲、圧縮、伸長、膨張、歪曲、および/または変形することによって選択的に調節することができる。 The characteristics of the microstructure surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (base material). The characteristics of at least a portion of the microstructured surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming at least a portion of the substrate (substrate). For example, the air resistance and / or fluid resistance of the surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (substrate). The wettability of the surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (base material). Also, the optical properties of the surface can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming the substrate (base material). For example, the surface prism effect, direction dependent reflectivity, direction dependent propagation rate, reflectivity, transmittance, reflected wave wavelength distribution, scattered wave wavelength distribution, propagated wave wavelength distribution, and / or refractive index are: The substrate (base material) can be selectively adjusted by bending, bending, compressing, stretching, expanding, distorting, and / or deforming.
 マイクロ構造表面の濡れ性を制御する方法を説明する。この方法は、マイクロ構造表面を用意するステップと、そのマイクロ構造表面を変形し、それにより、マイクロ構造表面の濡れ性を制御するステップとを含む。この方法では、マイクロ構造表面は、複数のマイクロ特徴部が設けられた可撓性を有する基板(基材)を備える。可撓性を有する基板(基材)はポリマーを含んでもよい。
 ポリマーとしては、例えば、PDMS(ポリジメチルシロキサン)、PMMA(ポリメチルメタクリラート)、PTFE(ポリテトラフルオロエチレン)、ポリウレタン、テフロン(登録商標)、ポリアクリラート、ポリアリレートw、熱可塑性物質、熱可塑性エラストマー、フルオロポリマー、生分解性ポリマー、ポリカーボネート、ポリエチレン、ポリイミド、ポリスチレン、ポリビニル、ポリオレフィン、シリコーン、天然ゴム、合成ゴム、これらのうちの2種類以上の組み合わせが挙げられる。
 この方法では、可撓性を有する基板(基材)は変形するので、隣接するマイクロ特徴部間のピッチが変化する。可撓性を有する基板(基材)を変形する方法としては、特に限定されるわけではないが、基板(基材)を伸長すること、湾曲した形状を採り入れるように基板(基材)を強制すること、および基板(基材)を屈曲することを含む。表面の濡れ性は、可撓性を有する基板(基材)を変形するにつれて上昇する場合と、低下する場合と、変化しない場合とがある。
A method for controlling the wettability of the microstructure surface will be described. The method includes providing a microstructured surface and deforming the microstructured surface thereby controlling the wettability of the microstructured surface. In this method, the microstructure surface comprises a flexible substrate (base material) provided with a plurality of micro features. The flexible substrate (base material) may include a polymer.
Examples of the polymer include PDMS (polydimethylsiloxane), PMMA (polymethyl methacrylate), PTFE (polytetrafluoroethylene), polyurethane, Teflon (registered trademark), polyacrylate, polyarylate w, thermoplastic material, heat Plastic elastomer, fluoropolymer, biodegradable polymer, polycarbonate, polyethylene, polyimide, polystyrene, polyvinyl, polyolefin, silicone, natural rubber, synthetic rubber, and combinations of two or more of these.
In this method, since the flexible substrate (base material) is deformed, the pitch between adjacent micro features changes. The method of deforming the flexible substrate (base material) is not particularly limited, but the substrate (base material) is forced to extend or adopt a curved shape. And bending the substrate (base material). The surface wettability may increase, decrease, or not change as the flexible substrate (base material) is deformed.
 以下では、本発明の気管用チューブの各実施形態を、図面を適宜参照しながら、詳細に説明する。 Hereinafter, embodiments of the tracheal tube of the present invention will be described in detail with reference to the drawings as appropriate.
〈気管用チューブの第1の実施形態〉
 まず、本発明の気管用チューブの第1の実施形態について、図3および図4を参照して説明する。図3および図4に示す気管用チューブは、いわゆる気管切開チューブである。
 図3に示す気管切開チューブ101は、患者の呼吸管理を行うための器具であり、気管を切開して形成された切開孔から気管7に直接挿入された状態で使用される。気管切開チューブ101は、気管切開チューブ101の主要部を構成するチューブ体102と、チューブ体102を患者に対して固定するための固定部127とから構成される。
<First embodiment of tube for trachea>
First, a first embodiment of the tracheal tube of the present invention will be described with reference to FIGS. 3 and 4. The tracheal tube shown in FIGS. 3 and 4 is a so-called tracheostomy tube.
A tracheostomy tube 101 shown in FIG. 3 is an instrument for performing respiratory management of a patient, and is used in a state where it is directly inserted into the trachea 7 through an incision hole formed by incising the trachea. The tracheostomy tube 101 includes a tube body 102 that constitutes a main part of the tracheostomy tube 101, and a fixing portion 127 for fixing the tube body 102 to a patient.
 図4(A)および図4(B)に示すように、チューブ体102の呼吸路102aを形成する内面(内周面)上にはマイクロ構造領域150が設けられており、図4(C)および図4(E)に示すように、マイクロ構造領域150は、複数のマイクロ特徴部が配置されたマイクロ構造表面151を有する。図4(C)は、チューブ体102の呼吸路102aを形成する内面(内周面)に、直接、マイクロ特徴部が配置されてマイクロ構造表面151が構成されている態様を表す。図4(E)は、チューブ体102の呼吸路102aを形成する内面(内周面)に、基材152および接着層153を介して、マイクロ特徴部が配置されたマイクロ構造表面151が構成されている態様を表す。なお、図4(E)では、接着層153を記載しているが、接着層153を含まず、基材152がチューブ体102の呼吸路102aを形成する内面(内周面)に、直接、付着させた態様であってもよい。 As shown in FIGS. 4 (A) and 4 (B), a microstructure region 150 is provided on the inner surface (inner peripheral surface) forming the respiratory path 102a of the tube body 102, and FIG. 4 (C). As shown in FIG. 4E, the microstructure region 150 has a microstructure surface 151 on which a plurality of micro features are disposed. FIG. 4C shows an aspect in which the micro-structure surface 151 is configured by directly arranging the micro features on the inner surface (inner peripheral surface) forming the breathing path 102a of the tube body 102. In FIG. 4E, a microstructure surface 151 in which micro features are arranged on the inner surface (inner circumferential surface) forming the respiratory path 102a of the tube body 102 via a base material 152 and an adhesive layer 153 is configured. Represents an embodiment. In FIG. 4E, the adhesive layer 153 is shown, but the adhesive layer 153 is not included, and the base material 152 is directly on the inner surface (inner peripheral surface) forming the breathing path 102a of the tube body 102. An attached mode may be used.
 マイクロ構造領域150がマイクロ構造表面151を有するようにする方法は、特に限定されず、例えば、図4(C)に示すように、チューブ体102の呼吸路102aを形成する内面に、複数のマイクロ特徴部を形成してマイクロ構造表面151を形成する方法、図4(E)に示すように、基材152上に複数のマイクロ特徴部が配置されたマイクロ構造表面151を有するフィルム160を、当該マイクロ構造表面が呼吸路102aに露出するように当該呼吸路102aを形成する内面に付着させる方法などが挙げられる。図4(E)にはフィルム160をチューブ体102に付着させるために接着層153を介在させているが、溶着など、接着層153を介在させずフィルム160をチューブ体102に付着させる方法があるので、本発明において接着層153は必須というわけではない。図示しないが、少なくとも一つの面の少なくとも一部に、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する基材を湾曲させて、当該マイクロ構造表面の少なくとも一部が呼吸路に露出するように湾曲させてチューブ体を形成する方法などが挙げられる。 The method for causing the microstructure region 150 to have the microstructure surface 151 is not particularly limited. For example, as shown in FIG. 4C, a plurality of micro-structure regions 150 are formed on the inner surface forming the respiratory path 102 a of the tube body 102. A method for forming a microstructure surface 151 by forming a feature, as shown in FIG. 4E, a film 160 having a microstructure surface 151 in which a plurality of micro features are arranged on a base material 152. Examples thereof include a method of adhering to the inner surface forming the respiratory path 102a so that the microstructure surface is exposed to the respiratory path 102a. In FIG. 4E, an adhesive layer 153 is interposed to attach the film 160 to the tube body 102. However, there is a method of attaching the film 160 to the tube body 102 without using the adhesive layer 153 such as welding. Therefore, the adhesive layer 153 is not essential in the present invention. Although not shown, a substrate having a microstructure surface on which a plurality of micro features are arranged is curved on at least a portion of at least one surface so that at least a portion of the microstructure surface is exposed to the respiratory tract. For example, a method of forming a tube body by curving.
 呼吸路を形成する内面に複数のマイクロ特徴部を形成する方法、またはチューブ体を形成するための基材の表面にマイクロ構造部を形成する方法としては、特に限定されないが、例えば、押出成型、射出成型、切削加工、レーザー加工、芯棒を用いた表面加工、粒子コーティング、ナノインプリント、溶剤処理、プラズマスパッタ、ナノワイヤ配列の堆積およびこれらの組合せを用いて行う方法などが挙げられる。 The method for forming a plurality of micro features on the inner surface forming the respiratory path, or the method for forming the microstructure on the surface of the base material for forming the tube body is not particularly limited. Examples thereof include injection molding, cutting, laser processing, surface processing using a core rod, particle coating, nanoimprint, solvent treatment, plasma sputtering, nanowire array deposition, and combinations thereof.
 呼吸路を形成する内面にマイクロ構造表面を有するフィルムを付着させる方法としては、特に限定されないが、例えば、接着剤、熱接着剤、光硬化剤、紫外線硬化剤、熱溶着、超音波溶着、高周波溶着、レーザー溶着およびこれらの組合せを用いて当該内面に付着させる方法などが挙げられる。 A method for attaching a film having a microstructured surface to the inner surface forming the respiratory tract is not particularly limited. For example, adhesive, thermal adhesive, photocuring agent, ultraviolet curing agent, thermal welding, ultrasonic welding, high frequency Examples thereof include a method of attaching to the inner surface using welding, laser welding, and a combination thereof.
 以下、気管切開チューブ101を構成する各部材について詳述する。
 チューブ体102は、両端が開口し、かつ、長さ方向に沿って均一な外径および内径を有する筒形状に形成される。チューブ体102の内部には、チューブ体102の長さ方向に沿って呼気が通る空間である呼吸路102aが形成されている。
 チューブ体102は、先端部122と、先端部122と反対側に配置される基端部121と、基端部121と先端部122との間に位置する湾曲部123を有する。湾曲部123は先端部122の中心軸と基端部121の中心軸が角度θで交差するように湾曲しており、この第1の実施形態では、チューブ体102は略L字状に形成される。つまり、角度θは約90°である。
 なお、チューブ体102は、患者の体位の変化等に合わせて上記θが90°から±約45°の範囲内で変化しうる程度の可撓性を有する。上記θがこの範囲内で変化しても、マイクロ構造領域150は、チューブ体102から剥離したり、脱落したりはしない。
 チューブ体102の材質としては、例えば、シリコーン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の合成樹脂を挙げることができる。
Hereinafter, each member constituting the tracheostomy tube 101 will be described in detail.
The tube body 102 is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the tube body 102, a respiratory path 102a, which is a space through which exhalation passes along the length direction of the tube body 102, is formed.
The tube body 102 includes a distal end portion 122, a proximal end portion 121 disposed on the opposite side of the distal end portion 122, and a curved portion 123 positioned between the proximal end portion 121 and the distal end portion 122. The curved portion 123 is curved so that the central axis of the distal end portion 122 and the central axis of the proximal end portion 121 intersect at an angle θ. In the first embodiment, the tube body 102 is formed in an approximately L shape. The That is, the angle θ is about 90 °.
The tube body 102 has such flexibility that the θ can be changed within a range of 90 ° to ± about 45 ° in accordance with a change in the posture of the patient. Even if the θ changes within this range, the microstructure region 150 does not peel off or drop off from the tube body 102.
Examples of the material of the tube body 102 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
 図4(A)に示されるように、仰向けに寝ている(仰臥位)の患者に対して、気管7の管壁と気管7の上部の皮膚5を切開することで形成された気管切開孔からチューブ体102の先端部122が気管7内に挿入される。このとき、チューブ体102の先端部122は、気管7の管壁を構成する粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)から所定の間隔を隔てるように、肺側に向けて気管7内に配置される。 As shown in FIG. 4 (A), a tracheostomy hole formed by incising the wall of the trachea 7 and the skin 5 on the upper part of the trachea 7 in a patient lying on his back (the supine position). The distal end portion 122 of the tube body 102 is inserted into the trachea 7. At this time, the distal end portion 122 of the tube body 102 is directed toward the lung side so as to be spaced apart from the mucous membranes (skin-side tracheal mucosa 7a, inner body tracheal mucosa 7b) constituting the tube wall of the trachea 7 toward the lung side. Placed inside.
 また、チューブ体102の基端部121は、気管切開孔から体外に露出しており、この基端部121に、人工呼吸器(図示せず)が取り付けられている。人工呼吸器が作動することで、呼吸路102a内に呼気が通る。これにより、患者の呼吸を持続させ、呼吸管理を行っている。その結果、呼吸に必要な酸素の通り道である気道が閉塞することを防止することができ、患者の呼吸管理を行うことができる。 The proximal end 121 of the tube body 102 is exposed outside the body through the tracheostomy hole, and a ventilator (not shown) is attached to the proximal end 121. When the ventilator is activated, exhalation passes through the respiratory path 102a. Thereby, the patient's breathing is sustained and respiratory management is performed. As a result, it is possible to prevent the airway, which is a passage for oxygen necessary for breathing, from being blocked, and to manage the patient's breathing.
 固定部127は、チューブ体102の基端部121に取り付けられている。固定部127は、チューブ体102を患者に装着した際に、皮膚5に当接することで、先端部122を気管7内の適切な位置に固定するものであり、固定板128と、接着部129とを有している。
 固定板128は、平板状の部材で、中央部に、固定板128を貫通する収納孔131が形成されている。そして、固定板128の表面には、接着部129が取り付けられ、固定板128の裏面は、患者の皮膚5に当接される。
 接着部129は、チューブ体102を固定部127に接着するもので、中央に略円形の貫通孔130が形成されたリング形状を有している。接着部129の貫通孔130は、固定板128の収納孔131と連通しており、貫通孔130の大きさは、チューブ体102の外径に合わせて設定される。
 このような固定板128の収納孔131および接着部129の貫通孔130に、チューブ体102が貫通され、例えば、接着剤により固定される。
The fixing portion 127 is attached to the proximal end portion 121 of the tube body 102. The fixing portion 127 fixes the distal end portion 122 at an appropriate position in the trachea 7 by contacting the skin 5 when the tube body 102 is attached to the patient. The fixing portion 128 and the bonding portion 129 are fixed to the fixing portion 127. And have.
The fixed plate 128 is a flat plate member, and a storage hole 131 that penetrates the fixed plate 128 is formed at the center. An adhesive portion 129 is attached to the front surface of the fixing plate 128, and the back surface of the fixing plate 128 is brought into contact with the patient's skin 5.
The bonding portion 129 is for bonding the tube body 102 to the fixing portion 127, and has a ring shape in which a substantially circular through hole 130 is formed at the center. The through hole 130 of the bonding portion 129 communicates with the storage hole 131 of the fixing plate 128, and the size of the through hole 130 is set according to the outer diameter of the tube body 102.
The tube body 102 is passed through the accommodation hole 131 of the fixing plate 128 and the through hole 130 of the bonding portion 129, and is fixed by, for example, an adhesive.
 本実施形態では、チューブ体102を接着部129に固定する方法として、接着剤による固定を例に挙げたが、例えば、溶着による固定など各種の固定方法を採用することができる。 In this embodiment, as an example of fixing the tube body 102 to the bonding portion 129, fixing with an adhesive is given as an example, but various fixing methods such as fixing by welding can be employed.
 気管切開チューブ101内の痰を、吸引カテーテルを用いて吸引する場合について、図4(D)を参照して説明する。
 図3で示すように、気管切開チューブ101を装着される患者は通常仰向きで寝ているため、痰などの異物は重力方向である背側に溜まりやすい。つまり、図4(D)中の下側に痰が溜まりやすい。
 そこで、チューブ体102の基端部121側から吸引カテーテル601をチューブ体102に挿入し、吸引カテーテル601の先端をチューブ体102の内面上に沿わせながら先端部122付近まで進めて、痰Zを吸引する。
A case where the eyelid in the tracheostomy tube 101 is sucked using a suction catheter will be described with reference to FIG.
As shown in FIG. 3, since the patient wearing the tracheostomy tube 101 is usually lying on his back, foreign substances such as a heel tend to accumulate on the back side in the direction of gravity. That is, wrinkles easily collect on the lower side in FIG.
Therefore, the suction catheter 601 is inserted into the tube body 102 from the proximal end 121 side of the tube body 102, and the tip of the suction catheter 601 is advanced to the vicinity of the distal end portion 122 along the inner surface of the tube body 102, so that the heel Z is moved. Suction.
《変形例》
 上述した図3および図4の気管切開チューブ101の形態では、マイクロ構造領域150はチューブ体102の内周面の全周にわたって存在しているが、この形態には限定されず、例えば、図5(A)~(C)に示すように、チューブ体102の内周面上の一部のみに存在してもよい。
 図5(A)~(C)は第1の実施形態の変形例にかかる気管切開チューブ201を示し、上述した図3および図4に示す第1の実施形態の気管切開チューブ101との相違点は、マイクロ構造領域150の存在する位置が挙げられる。なお、図5(B)および(C)は、図5(A)に示すB-B線に沿って切断した断面図である。
 気管切開チューブ201では、チューブ体102の中心軸に直交する断面図において、基端部121と先端部122と湾曲部123におけるそれぞれのチューブ体102の中心Jを通る平面Pがチューブ体102の湾曲部123の湾曲の外側に位置するチューブ壁の内面と交差する交点Kと、平面Pがチューブ体102の湾曲部123の湾曲の内側に位置するチューブ壁の内面と交差する交点Lと、交点Kにおいて平面Pに直交する基準線Sと、チューブ体102の内周面に接する接線Tと、接線Tと内周面との接点Mとを想定した場合に、接線Tが基準線Sとなす角φが30°以上となるチューブ体102の内周面上の位置にマイクロ構造領域150が存在している。ただし、角φは、接点Mが交点Lまたは交点Kと一致するとき、すなわち接線Tが基準線Sに一致するときまたは平行であるとき、φ=0°とし、接点Mが交点Kおよび交点Lのいずれとも一致しないとき、すなわち基準線Sと接線Tとが一致せず、平行でもないときは、基準線Sと接線Tとがなす鋭角または直角を意図する。
 上記のような位置にマイクロ構造領域150を有する気管切開チューブ201を、図3で示すように仰向けに寝ている患者に挿入した場合、マイクロ構造領域150上に付着した痰は、その作用(撥痰性)によってチューブ体102内の患者の背中側(図5(B)および(C)中の下側)に移動して、溜まりやすい。一般的に、図4(D)で述べた吸引カテーテルの先端部は、チューブ体102の内周面のうち図5(B)および(C)での下側の位置には到達しやすいが、図5(B)および(C)中の左右側の位置(マイクロ構造領域150が配置される位置)には到達しにくい。そのため、上記のような位置にマイクロ構造領域150が配置されていれば、その上に痰が付着しても吸引カテーテルで吸引できる位置まで痰が移動しやすく、結果としてチューブ体内部の痰の堆積が抑制される。
<Modification>
In the form of the tracheostomy tube 101 of FIGS. 3 and 4 described above, the microstructure region 150 exists over the entire circumference of the inner peripheral surface of the tube body 102, but is not limited to this form. For example, FIG. As shown in (A) to (C), it may exist only in a part on the inner peripheral surface of the tube body 102.
5A to 5C show a tracheostomy tube 201 according to a modification of the first embodiment, and are different from the tracheostomy tube 101 of the first embodiment shown in FIGS. 3 and 4 described above. Is the position where the microstructure region 150 is present. 5B and 5C are cross-sectional views taken along line BB shown in FIG. 5A.
In the tracheostomy tube 201, in a cross-sectional view orthogonal to the central axis of the tube body 102, the plane P passing through the center J of each tube body 102 at the proximal end portion 121, the distal end portion 122, and the bending portion 123 is curved. An intersection K intersecting the inner surface of the tube wall located outside the curve of the portion 123, an intersection L intersecting the inner surface of the tube wall located at the inside of the curve of the curved portion 123 of the tube body 102, and an intersection K Assuming a reference line S orthogonal to the plane P, a tangent line T in contact with the inner peripheral surface of the tube body 102, and a contact point M between the tangent line T and the inner peripheral surface, the angle formed by the tangent line T and the reference line S The microstructure region 150 exists at a position on the inner peripheral surface of the tube body 102 where φ is 30 ° or more. However, the angle φ is φ = 0 ° when the contact point M coincides with the intersection point L or the intersection point K, that is, when the tangent line T coincides with the reference line S or is parallel, and the contact point M becomes the intersection point K and the intersection point L. In other words, when the reference line S and the tangent line T do not match and are not parallel, an acute angle or a right angle formed by the reference line S and the tangent line T is intended.
When the tracheostomy tube 201 having the microstructure region 150 at the position as described above is inserted into a patient lying on his back as shown in FIG. 3, the wrinkles adhering to the microstructure region 150 have its action (repellency). Due to inertia, the tube body 102 moves to the back side of the patient (lower side in FIGS. 5B and 5C) and tends to accumulate. In general, the distal end portion of the suction catheter described in FIG. 4D easily reaches the lower position in FIGS. 5B and 5C on the inner peripheral surface of the tube body 102. 5B and 5C, it is difficult to reach the left and right side positions (positions where the microstructure region 150 is disposed). Therefore, if the microstructure region 150 is arranged at the position as described above, even if the wrinkle adheres to the microstructure region 150, the wrinkle easily moves to a position where it can be sucked by the suction catheter. As a result, the wrinkle is accumulated inside the tube body. Is suppressed.
〈気管用チューブの第2の実施形態〉
 本発明の気管用チューブの第2の実施形態について、図6を参照して説明する。図6に示す気管用チューブは、いわゆる気管切開チューブである。
 図6に示す第2の実施形態の気管切開チューブ301と、上述した図4に示す第1の実施形態の気管切開チューブ101との相違点は、主に、気管切開チューブ301がカフ106およびカフ調整部108を有する点が挙げられる。そこで、以下では、主にカフ106およびカフ調整部108など気管切開チューブ101と異なる点について説明し、気管切開チューブ101と共通する部分には同一の符号を付して説明を省略する。
<Second embodiment of tube for trachea>
A second embodiment of the tracheal tube of the present invention will be described with reference to FIG. The tracheal tube shown in FIG. 6 is a so-called tracheostomy tube.
The difference between the tracheostomy tube 301 of the second embodiment shown in FIG. 6 and the tracheostomy tube 101 of the first embodiment shown in FIG. 4 described above is mainly that the tracheostomy tube 301 includes the cuff 106 and the cuff. The point which has the adjustment part 108 is mentioned. Therefore, in the following, differences from the tracheostomy tube 101 such as the cuff 106 and the cuff adjusting unit 108 will be mainly described, and portions common to the tracheostomy tube 101 are denoted by the same reference numerals and description thereof is omitted.
 チューブ体102の先端部122には、カフ106が取り付けられている。カフ106は、チューブ体102における先端部122近傍の外周面を覆うように固定されている。カフ106は、カフ調整部108と接続している。カフ調整部108は、パイロットバルーン126と、カフ106およびパイロットバルーン126を接続する空気注入用チューブ125とにより構成される。 A cuff 106 is attached to the distal end portion 122 of the tube body 102. The cuff 106 is fixed so as to cover the outer peripheral surface of the tube body 102 in the vicinity of the distal end portion 122. The cuff 106 is connected to the cuff adjusting unit 108. The cuff adjusting unit 108 includes a pilot balloon 126 and an air injection tube 125 that connects the cuff 106 and the pilot balloon 126.
 パイロットバルーン126は、略扁平の六角形状の断面を有するように形成される。本例では、パイロットバルーン126の断面形状を六角形として説明するが、これに限定されない。例えば、パイロットバルーン126の断面形状を略四角形や円形などに形成することができ、その他様々な形状に形成してもよい。 The pilot balloon 126 is formed to have a substantially flat hexagonal cross section. In this example, the cross-sectional shape of the pilot balloon 126 is described as a hexagon, but the present invention is not limited to this. For example, the cross-sectional shape of the pilot balloon 126 can be formed in a substantially square shape or a circular shape, and may be formed in various other shapes.
 パイロットバルーン126の一端部には空気注入孔126aが設けられ、パイロットバルーン126の他端部には、排出口126bが設けられている。空気注入孔126aには、逆止弁が取り付けられている。そして、空気注入孔126aから空気がパイロットバルーン126および空気注入用チューブ125を介してカフ106に送り込まれる。送り込まれた空気は、逆止弁により、空気注入孔126aから漏れ出なくなる。また、パイロットバルーン126を指で押圧することで、カフ106にかかる圧を触感的に感知することができる。 An air injection hole 126 a is provided at one end of the pilot balloon 126, and a discharge port 126 b is provided at the other end of the pilot balloon 126. A check valve is attached to the air injection hole 126a. Then, air is sent into the cuff 106 through the pilot balloon 126 and the air injection tube 125 from the air injection hole 126a. The air sent in does not leak from the air injection hole 126a by the check valve. Further, the pressure applied to the cuff 106 can be sensed tactilely by pressing the pilot balloon 126 with a finger.
 空気注入用チューブ125は、その一端がパイロットバルーン126に接続され、その他端がカフ106に接続されている。この空気注入用チューブ125はその一旦に形成されたカフ側開口部111を介して、カフ106の内部空間と連通している。
 なお、固定板128の中央部には、収納孔231が形成されている。また、接着部129は、略円形の貫通孔130と、外周から貫通孔130に向かって形成された溝部を有している。この貫通孔130は、収納孔231と連通している。収納孔231には、チューブ体102と、空気注入用チューブ125とが貫通する。つまり、空気注入用チューブ125は、接着部129の溝部と固定板128の収納孔131を貫通する。そして、図6(B)に示すように、空気注入用チューブ125は、チューブ体102の湾曲部123における湾曲の内側に沿って配置され、チューブ体102の外周面102cに固定される。
One end of the air injection tube 125 is connected to the pilot balloon 126, and the other end is connected to the cuff 106. The air injection tube 125 communicates with the internal space of the cuff 106 through the cuff side opening 111 formed once.
A storage hole 231 is formed at the center of the fixed plate 128. The adhesive portion 129 has a substantially circular through hole 130 and a groove formed from the outer periphery toward the through hole 130. The through hole 130 communicates with the storage hole 231. The tube body 102 and the air injection tube 125 pass through the storage hole 231. That is, the air injection tube 125 passes through the groove portion of the bonding portion 129 and the accommodation hole 131 of the fixing plate 128. Then, as shown in FIG. 6B, the air injection tube 125 is disposed along the inside of the curved portion 123 of the tube body 102 and is fixed to the outer peripheral surface 102c of the tube body 102.
 空気注入孔126aからパイロットバルーン126および空気注入用チューブ125を介して送り込まれた空気がカフ106に入ることで、カフ106は膨らみ、気管7の粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)に密着する。これにより、チューブ体102と気管7との間に形成される隙間を塞ぐことができる。
 カフ106がチューブ体102と気管7との間に形成される隙間を塞ぐことで、人工呼吸器から送られた酸素が喉頭側に漏れることを防止するとともに、喉頭側から流れてきた唾液等が肺側に入りこむことを防止することができる。
When the air sent from the air injection hole 126a through the pilot balloon 126 and the air injection tube 125 enters the cuff 106, the cuff 106 swells and the mucous membrane of the trachea 7 (skin-side tracheal mucosa 7a, body inner tracheal mucosa 7b). ). Thereby, the gap formed between the tube body 102 and the trachea 7 can be closed.
The cuff 106 closes the gap formed between the tube body 102 and the trachea 7, thereby preventing oxygen sent from the ventilator from leaking to the larynx side, and saliva etc. flowing from the larynx side. It can prevent getting into the lung side.
《変形例》
 上記図6(B)においては、空気注入用チューブ125がチューブ体102の外周面102cに固定される形態について述べたが、この形態には限定されず、例えば、図6(C)に示すように、空気注入用チューブ125の代わりに、チューブ体302のチューブ壁内に空気注入用ルーメン125aを設けて、パイロットバルーン126からカフ106に空気を送り込んでもよい。
<Modification>
In FIG. 6B, the configuration in which the air injection tube 125 is fixed to the outer peripheral surface 102c of the tube body 102 has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. Instead of the air injection tube 125, an air injection lumen 125 a may be provided in the tube wall of the tube body 302, and air may be sent from the pilot balloon 126 to the cuff 106.
〈気管用チューブの第3の実施形態〉
 本発明の気管用チューブの第3の実施形態について、図7を参照して、説明する。図7に示す気管用チューブは、いわゆる気管切開チューブである。
 図7に示す第3の実施形態の気管切開チューブ401と、上述した図6に示す第2の実施形態の気管切開チューブ301との相違点は、主に、気管切開チューブ401がカフ側吸引部138を有する点が挙げられる。そこで、以下では、主にカフ側吸引部138など気管切開チューブ301と異なる点について説明し、気管切開チューブ301と共通する部分には同一の符号を付して説明を省略する。
<Third embodiment of tube for trachea>
A third embodiment of the tracheal tube of the present invention will be described with reference to FIG. The tracheal tube shown in FIG. 7 is a so-called tracheostomy tube.
The difference between the tracheostomy tube 401 of the third embodiment shown in FIG. 7 and the tracheostomy tube 301 of the second embodiment shown in FIG. 6 described above is mainly that the tracheostomy tube 401 is a cuff side suction part. The point which has 138 is mentioned. Therefore, in the following, differences from the tracheostomy tube 301 such as the cuff side suction portion 138 will be mainly described, and the same reference numerals are given to portions common to the tracheostomy tube 301 and description thereof will be omitted.
 チューブ体102を挟んで、カフ調整部108と反対側には、カフ側吸引部138が配置されている。カフ側吸引部138は、カフ側吸引コネクタ139と、カフ側吸引チューブ140とから構成される。
 なお、固定板128の中央部には、収納孔331が形成されている。カフ側吸引チューブ140は、空気注入用チューブ125と同様に、接着部129の溝部および固定板128の収納孔331を貫通する。そして、図7(B)に示すように、カフ側吸引チューブ140は、チューブ体102の湾曲部123における湾曲の外側に沿って配置され、チューブ体102の外周面102cに固定される。
A cuff side suction part 138 is arranged on the opposite side of the cuff adjusting part 108 with the tube body 102 interposed therebetween. The cuff side suction part 138 includes a cuff side suction connector 139 and a cuff side suction tube 140.
A storage hole 331 is formed at the center of the fixed plate 128. The cuff side suction tube 140 passes through the groove portion of the bonding portion 129 and the accommodation hole 331 of the fixing plate 128, similarly to the air injection tube 125. 7B, the cuff side suction tube 140 is disposed along the outside of the curved portion 123 of the tube body 102 and is fixed to the outer peripheral surface 102c of the tube body 102.
 カフ側吸引チューブ140の一端は、カフ106の近傍にまで延びて開口しており、この開口によりカフ側吸引口140aが形成されている。カフ側吸引チューブ140の他端部には、カフ側吸引コネクタ139が取り付けられている。カフ側吸引コネクタ139には、吸引器(図示せず)が装着される。 One end of the cuff side suction tube 140 extends to the vicinity of the cuff 106 and opens, and the cuff side suction port 140a is formed by this opening. A cuff side suction connector 139 is attached to the other end of the cuff side suction tube 140. A suction device (not shown) is attached to the cuff side suction connector 139.
 喉頭側から流れてきた唾液等は、気管7の粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)を伝い、肺側に流れる。この唾液等は、膨張状態にあるカフ106によって堰き止められ、粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)とカフ106により形成される空間に溜まる。そして、カフ106によって堰き止められた唾液等は、吸引器が作動することで、カフ側吸引部138により、カフ側吸引口140aから吸引される。 Saliva or the like flowing from the larynx side flows through the mucous membrane of the trachea 7 (skin-side tracheal mucosa 7a, internal tracheal mucosa 7b) and flows to the lung side. The saliva or the like is blocked by the cuff 106 in an inflated state, and accumulates in a space formed by the mucous membrane (skin-side tracheal mucosa 7 a and body inner tracheal mucosa 7 b) and the cuff 106. And the saliva etc. which were dammed by the cuff 106 are sucked from the cuff side suction port 140a by the cuff side suction part 138 by operating the suction device.
 なお、カフ側吸引チューブ140の内周面には、上述したマイクロ構造領域150が配置されていてもよい。撥痰性層154を含むマイクロ構造領域150をカフ側吸引チューブ140の内周面上に配置することにより、カフ側吸引チューブ140の内周面に痰が付着するのを防止し、カフ側吸引チューブ140の閉塞の発生を抑制できる。
 また、カフ106よりも肺側に付着した痰などの異物を吸引するために、さらに吸引ラインおよび関連する構成を付加してもよい。
Note that the microstructure region 150 described above may be disposed on the inner peripheral surface of the cuff side suction tube 140. By arranging the microstructure region 150 including the repellent layer 154 on the inner peripheral surface of the cuff-side suction tube 140, it is possible to prevent wrinkles from adhering to the inner peripheral surface of the cuff-side suction tube 140 and to absorb the cuff-side suction. Occlusion of the tube 140 can be suppressed.
In addition, a suction line and related components may be further added to suck foreign substances such as sputum attached to the lung side of the cuff 106.
《変形例》
 上記図7(B)においては、空気注入用チューブ125およびカフ側吸引チューブ140がチューブ体102の外周面102cに固定される形態について述べたが、この形態には限定されず、例えば、図7(C)に示すように、空気注入用チューブ125の代わりにチューブ体402のチューブ壁内に空気注入用ルーメン125bを設けると共に、カフ側吸引チューブ140の代わりにチューブ体402のチューブ壁内にカフ側吸引用ルーメン140bを設けてもよい。
<Modification>
In FIG. 7B, the form in which the air injection tube 125 and the cuff side suction tube 140 are fixed to the outer peripheral surface 102c of the tube body 102 has been described. However, the present invention is not limited to this form. As shown in (C), an air injection lumen 125 b is provided in the tube wall of the tube body 402 instead of the air injection tube 125, and a cuff is inserted in the tube wall of the tube body 402 instead of the cuff side suction tube 140. A side suction lumen 140b may be provided.
〈気管用チューブの第4の実施形態〉
 本発明の第4の実施形態について、図8を参照して説明する。図8に示す気管用チューブは、いわゆる気管切開チューブであるが、複管式気管切開チューブまたは内筒付き気管切開チューブなどと呼ばれ、気管切開術後の気道確保目的に使用する気管切開チューブ本体と、チューブ内の分泌物除去および内腔の開存性を高めるために使用するインナーカニューラを組み合わせたものであり、インナーカニューラ(以下「内筒」という場合がある。)を気管切開チューブ本体(以下「外筒」という場合がある。)に挿入して使用する。
 以下、複管式気管切開チューブ701を構成する各部材について詳述する。
<Fourth Embodiment of Tracheal Tube>
A fourth embodiment of the present invention will be described with reference to FIG. The tracheostomy tube shown in FIG. 8 is a so-called tracheostomy tube, but is called a double-tube tracheostomy tube or a tracheostomy tube with an inner tube, and the tracheostomy tube body used for the purpose of securing the airway after tracheostomy And the inner cannula used to remove secretions in the tube and increase the patency of the lumen, and the inner cannula (hereinafter sometimes referred to as “inner cylinder”) is the tracheostomy tube body ( Hereinafter, it may be referred to as an “outer cylinder”).
Hereinafter, each member constituting the double-tube tracheostomy tube 701 will be described in detail.
 内筒701aを構成するチューブ体102は、両端が開口し、かつ、長さ方向に沿って均一な外径および内径を有する筒形状に形成される。チューブ体102の内部には、チューブ体102の長さ方向に沿って呼気が通る空間である呼吸路102aが形成されている。
 チューブ体102は、先端部122と、先端部122と反対側に配置される基端部121とを有し、所望により、基端部121と先端部122との間に位置する湾曲部123を有していてもよい。
 チューブ体102は可撓性を有する材料で構成され、チューブ体702に沿って変形することが好ましい。
 チューブ体102が湾曲部123を有する場合は、先端部122の中心軸と基端部121の中心軸が角度θで交差するように湾曲し、チューブ体102は略L字状に形成されてもよい。図8(A)に示すチューブ体102においては、角度θは約90°である。
 チューブ体102の材質としては、例えば、シリコーン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の合成樹脂を挙げることができる。
The tube body 102 constituting the inner cylinder 701a is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the tube body 102, a respiratory path 102a, which is a space through which exhalation passes along the length direction of the tube body 102, is formed.
The tube body 102 includes a distal end portion 122 and a proximal end portion 121 disposed on the opposite side of the distal end portion 122. If desired, the tube body 102 includes a curved portion 123 positioned between the proximal end portion 121 and the distal end portion 122. You may have.
The tube body 102 is preferably made of a flexible material and is preferably deformed along the tube body 702.
When the tube body 102 has the curved portion 123, the tube body 102 is curved so that the central axis of the distal end portion 122 and the central axis of the base end portion 121 intersect at an angle θ, and the tube body 102 is formed in a substantially L shape. Good. In the tube body 102 shown in FIG. 8A, the angle θ is about 90 °.
Examples of the material of the tube body 102 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
 外筒701bを構成するチューブ体702は、両端が開口し、かつ、長さ方向に沿って均一な外径および内径を有する筒形状に形成される。チューブ体702の内部には、チューブ体702の長さ方向に沿ってインナーカニューラ(内筒)を挿入するための空間である内筒挿入用ルーメン702aが形成されている。
 チューブ体702は、先端部722と、先端部722と反対側に配置される基端部721と、基端部721と先端部722との間に位置する湾曲部723を有する。湾曲部723は先端部722の中心軸と基端部721の中心軸が角度θで交差するように湾曲しており、この第4の実施形態では、チューブ体702は略L字状に形成される。つまり、角度θは約90°である。
 なお、チューブ体702は、患者の体位の変化等に合わせて上記θが約90°から±約45°までの範囲内で変化しうる程度の可撓性を有する。
 チューブ体702の材質としては、例えば、シリコーン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の合成樹脂を挙げることができる。
 なお、チューブ体702の内管挿入用ルーメンを形成する内面にはマイクロ構造領域150と同様の構成を備えるマイクロ構造領域が配置されていてもよい。
The tube body 702 constituting the outer cylinder 701b is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the tube body 702, an inner cylinder insertion lumen 702a, which is a space for inserting an inner cannula (inner cylinder) along the length direction of the tube body 702, is formed.
The tube body 702 includes a distal end portion 722, a proximal end portion 721 disposed on the opposite side of the distal end portion 722, and a curved portion 723 positioned between the proximal end portion 721 and the distal end portion 722. The curved portion 723 is curved so that the central axis of the distal end portion 722 and the central axis of the proximal end portion 721 intersect at an angle θ, and in this fourth embodiment, the tube body 702 is formed in an approximately L shape. The That is, the angle θ is about 90 °.
The tube body 702 has such a degree of flexibility that the angle θ can be changed within a range of about 90 ° to about ± 45 ° in accordance with a change in the posture of the patient.
Examples of the material of the tube body 702 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
Note that a microstructure region having the same configuration as that of the microstructure region 150 may be disposed on the inner surface of the tube body 702 forming the inner tube insertion lumen.
 また、チューブ体702の基端部721は、気管切開孔から体外に露出しており、この基端部721に、人工呼吸器(図示せず)が取り付けられている。人工呼吸器が作動することで、内筒の呼吸路102a内に呼気が通る。これにより、患者の呼吸を持続させ、呼吸管理を行っている。その結果、呼吸に必要な酸素の通り道である気道が閉塞することを防止することができ、患者の呼吸管理を行うことができる。 Also, the proximal end 721 of the tube body 702 is exposed outside the body through the tracheostomy hole, and a ventilator (not shown) is attached to the proximal end 721. When the ventilator is activated, exhaled air passes through the breathing path 102a of the inner cylinder. Thereby, the patient's breathing is sustained and respiratory management is performed. As a result, it is possible to prevent the airway, which is a passage for oxygen necessary for breathing, from being blocked, and to manage the patient's breathing.
 固定部727は、チューブ体702の基端部721に取り付けられている。固定部727は、チューブ体702を患者に装着した際に、皮膚5に当接することで、先端部722を気管7内の適切な位置に固定するものであり、固定板728と、接着部729とを有している。
 固定板728は、平板状の部材で、中央部に、固定板728を貫通する収納孔731が形成されている。そして、固定板728の表面には、接着部729が取り付けられ、固定板728の裏面は、患者の皮膚5に当接される。
 接着部729は、チューブ体702を固定部727に接着するもので、中央に略円形の貫通孔730が形成されたリング形状を有している。接着部729の貫通孔730は、固定板728の収納孔731と連通しており、貫通孔730の大きさは、チューブ体702の外径に合わせて設定される。
 このような固定板728の収納孔731および接着部729の貫通孔730に、チューブ体702が貫通され、例えば、接着剤により固定される。
The fixing portion 727 is attached to the proximal end portion 721 of the tube body 702. The fixing portion 727 fixes the distal end portion 722 to an appropriate position in the trachea 7 by contacting the skin 5 when the tube body 702 is attached to the patient. The fixing portion 727 and the bonding portion 729 And have.
The fixing plate 728 is a flat plate member, and a storage hole 731 penetrating the fixing plate 728 is formed at the center. An adhesive portion 729 is attached to the front surface of the fixing plate 728, and the back surface of the fixing plate 728 is brought into contact with the patient's skin 5.
The bonding portion 729 is for bonding the tube body 702 to the fixing portion 727, and has a ring shape in which a substantially circular through hole 730 is formed at the center. The through hole 730 of the bonding portion 729 communicates with the storage hole 731 of the fixing plate 728, and the size of the through hole 730 is set according to the outer diameter of the tube body 702.
The tube body 702 is penetrated through the accommodation hole 731 of the fixing plate 728 and the through hole 730 of the bonding portion 729, and is fixed by, for example, an adhesive.
 本実施形態では、チューブ体702を接着部729に固定する方法として、接着剤による固定を例に挙げたが、例えば、溶着による固定など各種の固定方法を採用することができる。 In the present embodiment, as an example of fixing the tube body 702 to the bonding portion 729, fixing with an adhesive is given as an example, but various fixing methods such as fixing by welding can be employed.
 内筒を構成するチューブ体102の呼吸路102aを構成する内面に設置されたマイクロ構造領域150については、本発明の第1の実施形態において説明したとおりである。 The microstructure region 150 installed on the inner surface constituting the respiratory path 102a of the tube body 102 constituting the inner cylinder is as described in the first embodiment of the present invention.
 以上では、本発明の複管式気管切開チューブの一形態について説明したが、本発明の第2の実施態様、第3の実施態様と同様に、カフおよびカフ調整部、吸引ラインならびに関連する構成を付加する等の変形が可能である。 In the above, one embodiment of the multi-tube tracheostomy tube of the present invention has been described. However, like the second embodiment and the third embodiment of the present invention, the cuff and the cuff adjusting unit, the suction line, and related configurations are described. Modifications such as adding can be made.
〈気管用チューブの第5の実施形態〉
 本発明の気管用チューブの第5の実施形態について、図9および図10を参照して、説明する。図9および図10に示す気管用チューブは、いわゆる気管内チューブである。
 図9および図10に示す気管内チューブ501は、患者の呼吸管理を行うための器具であり、患者の口から気管7に挿入される。気管内チューブ501は、チューブ体202と、カフ206と、空気注入用チューブ225とから構成される。
<Fifth embodiment of tube for trachea>
A fifth embodiment of the tracheal tube of the present invention will be described with reference to FIGS. 9 and 10. The tracheal tube shown in FIGS. 9 and 10 is a so-called endotracheal tube.
An endotracheal tube 501 shown in FIGS. 9 and 10 is an instrument for performing respiratory management of a patient, and is inserted into the trachea 7 from the patient's mouth. The endotracheal tube 501 includes a tube body 202, a cuff 206, and an air injection tube 225.
 図10(B)に示すように、チューブ体202の内周面には、全周にわたって上述したマイクロ構造領域150が配置されている。マイクロ構造領域150の形態は上述の通りであり、説明を省略する。 As shown in FIG. 10B, the above-described microstructure region 150 is arranged on the inner peripheral surface of the tube body 202 over the entire circumference. The form of the microstructure region 150 is as described above, and a description thereof is omitted.
 気管内チューブ501は、チューブ体202と、このチューブ体202の長手方向に沿って設けられ、チューブ体202の少なくとも先端部222付近まで延長された空気注入用ルーメン225bと、チューブ体202の先端部付近に、チューブ体202の外周面を囲むように設けられ、空気注入用ルーメン225bの一端と連通する膨張収縮可能なカフ206と、空気注入用ルーメン225bの他端と連通し、カフ206が膨張しているかどうかを確認するパイロットバルーン226とを有している。 The endotracheal tube 501 includes a tube body 202, an air injection lumen 225 b provided along the longitudinal direction of the tube body 202 and extending to at least the vicinity of the distal end portion 222 of the tube body 202, and the distal end portion of the tube body 202 The cuff 206 is provided in the vicinity so as to surround the outer peripheral surface of the tube body 202 and communicates with one end of the air injecting lumen 225b and communicates with the other end of the air injecting lumen 225b. A pilot balloon 226 for confirming whether or not
 チューブ体202は、両端が開口した筒状に形成される。チューブ体202は、先端部222と、先端部222と反対側に設けられる基端部221と、基端部221と先端部222との間に位置する湾曲部223を有する。
 チューブ体202は、可撓性を有する材料で構成されており、麻酔ガス、酸素ガス等を導入するための先端部222から基端部221まで貫通した呼吸路202aを有している。チューブ体202の先端部222は、体内への挿入を容易なものとするために、滑らかなベベル状に形成されている。また、基端部221には、呼吸回路に接続するためのコネクタ212が取り付けられている。
The tube body 202 is formed in a cylindrical shape having both ends opened. The tube body 202 includes a distal end portion 222, a proximal end portion 221 provided on the opposite side of the distal end portion 222, and a curved portion 223 positioned between the proximal end portion 221 and the distal end portion 222.
The tube body 202 is made of a flexible material, and has a breathing path 202a that penetrates from the distal end portion 222 to the proximal end portion 221 for introducing anesthetic gas, oxygen gas, and the like. The distal end portion 222 of the tube body 202 is formed in a smooth bevel shape in order to facilitate insertion into the body. Further, a connector 212 for connecting to the breathing circuit is attached to the proximal end portion 221.
 チューブ体202を形成するチューブ壁には、図10(B)に示すように、呼吸路202aより細い空気注入用ルーメン225bが、チューブ体202の長手方向に沿って設けられている。この空気注入用ルーメン225bは、後述するカフ206内に空気を送り込むためのインフレーション用のルーメンである。
 また、この空気注入用ルーメン225bは、カフ206内のチューブ体202のチューブ壁の外面に形成されたカフ側開口部225aを介して、カフ206の内部空間と連通している。
On the tube wall forming the tube body 202, as shown in FIG. 10B, an air injecting lumen 225b narrower than the respiratory path 202a is provided along the longitudinal direction of the tube body 202. The air injection lumen 225b is an inflation lumen for sending air into a cuff 206 described later.
The air injection lumen 225 b communicates with the internal space of the cuff 206 via a cuff side opening 225 a formed on the outer surface of the tube wall of the tube body 202 in the cuff 206.
 また、空気注入用ルーメン225bは、図10(A)に示すように、基端部221付近の位置において、チューブ体202のチューブ壁外面に形成された切欠部207を介して空気注入用チューブ225と連通している。 Further, as shown in FIG. 10A, the air injecting lumen 225b is provided at the position near the base end 221 through the notch 207 formed on the outer surface of the tube wall of the tube body 202. Communicated with.
 空気注入用チューブ225と空気注入用ルーメン225bとの接続は、例えば、予め加熱したマンドレルを空気注入用ルーメン225b内に挿入し、このマンドレルの抜去と同時に空気注入用チューブ225を空気注入用ルーメン225b内に挿入し、溶剤または接着剤を用いて固着する方法などにより行なわれる。 The connection between the air injection tube 225 and the air injection lumen 225b is performed, for example, by inserting a preheated mandrel into the air injection lumen 225b, and simultaneously removing the mandrel, the air injection tube 225 is inserted into the air injection lumen 225b. It is carried out by a method such as inserting in and fixing using a solvent or an adhesive.
 チューブ体202の先端部付近には、その外周面を環状に囲むようにして、膨張収縮可能なカフ206が設けられている。
 このカフ206は、予めチューブ体202の外径よりも大きな内径を有する筒形状に成形された膜を空気注入用ルーメン225bのカフ側開口部225aを覆うようにしてチューブ体202の外周にかぶせ、その両端をチューブ体202の外周面に対し、接着剤、溶剤により接着するか、または熱、高周波等により融着することにより、気密的に固着して取り付けられる。
In the vicinity of the distal end portion of the tube body 202, a cuff 206 capable of expanding and contracting is provided so as to surround the outer peripheral surface in an annular shape.
The cuff 206 covers the outer periphery of the tube body 202 with a membrane formed in advance in a cylindrical shape having an inner diameter larger than the outer diameter of the tube body 202 so as to cover the cuff side opening 225a of the air injection lumen 225b. The both ends are adhered to the outer peripheral surface of the tube body 202 by an adhesive or a solvent, or are fused and attached by heat, high frequency, or the like, and are attached in an airtight manner.
 また、空気注入用チューブ225の後端部には、カフ206の膨張・収縮の程度を認識するための膨張収縮可能なパイロットバルーン226が、空気注入用チューブ225と連通するように設置されている。 In addition, an inflatable / deflatable pilot balloon 226 for recognizing the degree of expansion / contraction of the cuff 206 is installed at the rear end of the air injection tube 225 so as to communicate with the air injection tube 225. .
 さらに、パイロットバルーン226の後端側には、パイロットバルーン226内への気体の流入は許容するが、膨張したパイロットバルーン226からの気体の流出は阻止する機能を有する逆止弁226aが設置されている。この逆止弁226aにシリンジ等を接続して空気のような気体を圧入すると、その気体は、パイロットバルーン226、空気注入用チューブ225内、空気注入用ルーメン225bおよびカフ側開口部225aを介してカフ206内に送り込まれ、カフ206が膨張する。 Furthermore, a check valve 226a having a function of preventing gas from flowing into the pilot balloon 226 but preventing gas from flowing into the pilot balloon 226 is installed at the rear end side of the pilot balloon 226. Yes. When a syringe or the like is connected to the check valve 226a and a gas such as air is press-fitted, the gas passes through the pilot balloon 226, the air injection tube 225, the air injection lumen 225b, and the cuff side opening 225a. The cuff 206 is fed into the cuff 206 and the cuff 206 expands.
 以上では、本発明の気管内チューブの一形態について説明したが、本発明の気管切開チューブと同様に、吸引ラインおよび関連する構成を付加する等の変形が可能である。 In the above, one embodiment of the endotracheal tube of the present invention has been described. However, as with the tracheostomy tube of the present invention, modifications such as addition of a suction line and related configurations are possible.
〈気管用チューブの第6の実施形態〉
 本発明の気管用チューブの第6の実施形態について、図11を参照して、説明する。図11に示す気管用チューブは、小気管切開チューブ、経皮的気管穿刺チューブ、輪状甲状膜穿刺用気管カニューレ、輪状甲状膜切開用気管カニューレなどとも呼ばれるものである。
 図11に示す気管カニューレ801は、緊急に呼吸管理を必要とする患者の呼吸管理を行うための器具であり、患者の輪状甲状膜に穿刺して気管7に挿入される。気管カニューレ801は、チューブ体102と、固定部127とから構成される。気管カニューレ801のチューブ体102は、挿入した内針とセットにして輪状甲状膜を穿刺することから、外針ともいわれる。
<Sixth Embodiment of Tracheal Tube>
A sixth embodiment of the tracheal tube of the present invention will be described with reference to FIG. The tracheal tube shown in FIG. 11 is also called a small tracheostomy tube, a percutaneous tracheal puncture tube, an annular thyroid puncture tracheal cannula, an annular thyroid incision tracheal cannula, or the like.
A tracheal cannula 801 shown in FIG. 11 is an instrument for performing respiratory management of a patient who needs emergency respiratory management, and is inserted into the trachea 7 by puncturing the patient's annular thyroid membrane. The tracheal cannula 801 includes a tube body 102 and a fixing part 127. The tube body 102 of the tracheal cannula 801 is also called an outer needle because it punctures the annular thyroid membrane in a set with the inserted inner needle.
 気管カニューレ801は、内針(図示せず)が挿入されるチューブ体102と、チューブ体の基端部に備えられ、チューブ体102を皮膚に固定する固定部127とを備えている。チューブ体102は合成樹脂製であり、先端部に内針の軸方向に対して15°以下の角度をなすように湾曲している湾曲部を備えている。 The tracheal cannula 801 includes a tube body 102 into which an inner needle (not shown) is inserted, and a fixing portion 127 that is provided at the proximal end portion of the tube body and fixes the tube body 102 to the skin. The tube body 102 is made of a synthetic resin, and has a curved portion that is curved at an angle of 15 ° or less with respect to the axial direction of the inner needle at the distal end portion.
 気管カニューレ801のチューブ体102の呼吸路を形成する内面(内周面)には、全周にわたって上述したマイクロ構造領域150(図示せず)が配置されている。マイクロ構造領域150(図示せず)の形態は上述のとおりであり、説明を省略する。 On the inner surface (inner peripheral surface) forming the respiratory path of the tube body 102 of the tracheal cannula 801, the above-described microstructure region 150 (not shown) is arranged over the entire periphery. The form of the microstructure region 150 (not shown) is as described above, and a description thereof is omitted.
 気管カニューレ801を使用するときには、チューブ体102に金属製の内針(図示せず)を挿入した状態で、輪状軟骨と甲状軟骨との間の輪状甲状膜(輪状甲状靭帯部)に穿刺する。次いで、内針(図示せず)を抜去して、チューブ体102のみを気管内に留置する。そして、固定部127に設けられた紐通し孔(図示せず)に挿通した綿テープ等(図示せず)を頸部に固縛することにより、気管カニューレ801を固定する。 When the tracheal cannula 801 is used, the annular thyroid membrane (annular thyroid ligament) between the cricoid cartilage and the thyroid cartilage is punctured with a metal inner needle (not shown) inserted into the tube body 102. Next, the inner needle (not shown) is removed, and only the tube body 102 is left in the trachea. Then, the tracheal cannula 801 is fixed by tying a cotton tape or the like (not shown) inserted through a string hole (not shown) provided in the fixing part 127 to the neck.
 以上では、本発明の小気管切開チューブの一形態について説明したが、本発明の気管切開チューブと同様に、種々の変形が可能である。 Although one embodiment of the small tracheostomy tube of the present invention has been described above, various modifications are possible as with the tracheostomy tube of the present invention.
〈気管用チューブの第7の実施形態〉
 本発明の気管用チューブの第7の実施形態について、図12を参照して説明する。図12に示す気管用チューブは、輪状甲状膜穿刺用気管カニューレ、輪状甲状膜切開用気管カニューレなどとも呼ばれるものである。
 図12に示す気管カニューレ901は、気管もしくは気管支の内部に貯留した分泌液の吸引除去を目的として、首部前面から気管の内部へ通じる吸引通路を確保するために使用する気管分泌物吸引、または緊急時の救急蘇生を目的として、首部前面から気管の内部へ通じる呼吸気道を確保するために使用する緊急気道確保のために使用する器具であり、患者の輪状甲状膜の穿刺孔または切開孔を通じて気管7に挿入される。気管カニューレ901は、チューブ体102と固定部127(特に、フランジ部ともいう。)とから構成される。
<Seventh Embodiment of Tracheal Tube>
A seventh embodiment of the tracheal tube of the present invention will be described with reference to FIG. The tracheal tube shown in FIG. 12 is also called an annular thyroid puncture tracheal cannula, an annular thyroid incision tracheal cannula, or the like.
A tracheal cannula 901 shown in FIG. 12 is used for the purpose of aspirating and removing secreted fluid stored in the trachea or bronchus. It is an instrument used to secure the emergency airway used to secure the respiratory airway leading from the front of the neck to the inside of the trachea for the purpose of emergency resuscitation at the time, and through the puncture hole or incision hole of the patient's cricoid thyroid 7 is inserted. The tracheal cannula 901 includes a tube body 102 and a fixing portion 127 (in particular, also referred to as a flange portion).
 気管カニューレ901は、イントロデューサ(図示せず)が挿入されるチューブ体102と、チューブ体の基部に備えられ、チューブ体102を皮膚に固定する固定部127(フランジ)とを備えている。チューブ体102は合成樹脂製であり、基端部から先端部にかけて湾曲する湾曲部を備えている。 The tracheal cannula 901 includes a tube body 102 into which an introducer (not shown) is inserted, and a fixing portion 127 (flange) that is provided at the base of the tube body and fixes the tube body 102 to the skin. The tube body 102 is made of a synthetic resin, and includes a curved portion that curves from the proximal end portion to the distal end portion.
 輪状甲状膜穿刺用気管カニューレ901のチューブ体102の呼吸路を形成する内面(内周面)には、全周にわたって上述したマイクロ構造領域150(図示せず)が配置されている。マイクロ構造領域150(図示せず)の形態は上述のとおりであり、説明を省略する。 On the inner surface (inner peripheral surface) forming the respiratory path of the tube body 102 of the annular thyroid puncture tracheal cannula 901, the above-described microstructure region 150 (not shown) is arranged over the entire circumference. The form of the microstructure region 150 (not shown) is as described above, and a description thereof is omitted.
 気管カニューレ901は、例えば、セルジンガー法を用いて気管7に導入したガイドワイヤ(図示せず))を介してダイレータ(図示せず)による拡張操作で輪状甲状膜の穿刺孔を拡張し、輪状甲状膜の拡張した穿刺孔から、イントロデューサ(図示せず)を挿入したチューブ体102を気管7に挿入し、イントロデューサを抜去して気管カニューレ901を気管内に留置することができるが、輪状甲状膜を切開して、切開孔からイントロデューサ―を挿入したチューブ体102を気管7に挿入し、イントロデューサを抜去して気管カニューレ901を気管内に留置してもよい。気管カニューレ901の留置後は、気管カニューレ901を介して、サクションカテーテル(図示せず)を使用した通常の気管内の吸引や酸素または空気の送気を行うことができる。 The tracheal cannula 901 expands the puncture hole of the cricoid thyroid membrane by an expansion operation by a dilator (not shown) via a guide wire (not shown) introduced into the trachea 7 using the Seldinger method, for example. The tube body 102 into which an introducer (not shown) is inserted can be inserted into the trachea 7 through the puncture hole expanded in the thyroid membrane, and the introducer can be removed to place the tracheal cannula 901 in the trachea. The thyroid membrane is incised, the tube body 102 into which the introducer is inserted from the incision hole is inserted into the trachea 7, the introducer is removed, and the tracheal cannula 901 may be placed in the trachea. After placement of the tracheal cannula 901, normal tracheal suction using a suction catheter (not shown) and oxygen or air supply can be performed via the tracheal cannula 901.
 以上では、本発明の輪状甲状膜穿刺用気管カニューレの一形態について説明したが、本発明の気管切開チューブと同様に、種々の変形が可能である。 In the above, one embodiment of the tracheal cannula for thyroid puncture of the present invention has been described, but various modifications are possible as with the tracheostomy tube of the present invention.
 以下の非限定的な実施例によって本発明をさらに理解することができる。 The invention can be further understood by the following non-limiting examples.
〈可撓性を有するマイクロ構造およびナノ構造の撥痰性・超疎水性表面〉
 この実施例では、マイクロ加工およびナノ加工によって撥痰性・超疎水性が与えられた、可撓性を有する表面を説明する。用語、撥痰性は表面が痰をはじく性質を指し、超疎水性は、表面が極端に水をはじく性質を指す。一部の研究は湾曲していないマイクロ構造の撥痰性・超疎水性表面を示し、他の研究は読者に剛性のある湾曲したマイクロ構造の撥痰性・超疎水性表面の作製法を教示してきたが、湾曲を伴う可撓性とマイクロ構造の撥痰性・超疎水性表面とを組み合わせた研究はない。
<Flexible microstructure and nanostructure repellency / superhydrophobic surface>
In this example, a flexible surface provided with repellency and superhydrophobicity by micromachining and nanomachining will be described. The term repellency refers to the property that the surface repels wrinkles, and superhydrophobicity refers to the property that the surface repels water extremely. Some studies show non-curved microstructured repellant / superhydrophobic surfaces, others teach readers how to make rigid curved microstructured repellant / superhydrophobic surfaces However, there has been no research combining flexibility with curvature and micro-repellent / superhydrophobic surfaces.
 表面の粗さにより、その表面が液体と相互作用する方式が変わる。
 図13に、マイクロスケールおよびナノスケールの粗さを用いて植物表面の水滴の形状および挙動を変更する、ハス植物の表面の顕微鏡写真の画像を示す(Barthlott, W. and Neinhuism, C.、「The purity of sacred lotus or escape from contamination in biological surfaces」、Planta、1997年4月、第202巻、第1号、p.1~8、doi:10.1007/s004250050096W)。ハスの葉の表面はマイクロスケールおよびナノスケールの粗さにより、表面上の水滴の形状および挙動を変更する。水とこれらの表面との間の摩擦が大幅に低下し、水滴が簡単に表面から転がり落ちる。このため、ハス植物の表面は、水滴が表面をあまり濡らさず表面上を簡単に転がり落ちる超疎水性を呈する。
 図14は、標準的なマイクロ加工技法により、マイクロスケールおよびナノスケール表面を粗面仕上げすることができることを示す。表面の粗さにより、その表面が液体と相互作用する方式が変化する。マイクロ加工ツールは、マイクロスケールおよびナノスケールの表面を粗面仕上げして、ハス植物と同様にして疎水性を高めることができ、さらには撥痰性を高めることもできる。疎水性表面は、元の接触角θが90°を超える表面である。表面が疎水性の場合は、粗面仕上げされた表面の新規の接触角θが90°を超える。図14に示すように、粗面仕上げ前の表面31と液滴32との接触角はθであるが(図14(A))、マイクロ加工ツールにより粗面仕上げした、粗面仕上げ後の表面33と液滴34との接触角はθ(>θ)に変化する(図14(B))。
 図15に、マイクロ/ナノ構造の表面に可能な異なる2つの湿潤状態、すなわちウェンゼル状態(図15(A))およびカシー-バクスター状態(図15(B))を示す。ウェンゼル状態(図15(A))およびカシー-バクスター状態(図15(B))が両方とも、マイクロ/ナノ構造の表面に関して可能である。ウェンゼル状態(図15(A))では、表面41と液体42とは、谷およびピークの両方で密接している。カシー-バクスター状態(図15(B))では、表面43と液体44とは、ピークでしか接触せず、液体44と表面43の谷との間にエアポケット45が残る。液滴は、ウェンゼル表面よりも小さい力しか必要としないカシー-バクスター表面上を滑る。
 元の接触角θおよび表面幾何形状が分かっている場合は、マイクロ/ナノ構造の表面に関してθおよび湿潤状態を予測することができる。
 下記ウェンゼル式を利用して、マイクロ構造またはナノ構造の表面上の液滴の新規の接触角θを予測することができる。
 cosθ=r・cosθ
 ここで、rは実表面積の投影表面積に対する比率である(r=実表面積/東映表面積)。
 また、下記カシー-バクスター式を利用してθを予測することもできる。
 cosθ=φ(cosθ+1)-1
 ここで、φは液滴がカシー-バクスター状態にあるときに水が接触する面積の分数、すなわち、接触面積中の点接触面積の割合である(φ<1)。
Depending on the roughness of the surface, the way in which the surface interacts with the liquid changes.
FIG. 13 shows a micrograph image of the surface of a lotus plant that uses microscale and nanoscale roughness to modify the shape and behavior of water droplets on the plant surface (Barthlott, W. and Neinhuism, C., “ The purity of sacred lotus or escape from contamination in biological surfaces, Planta, April 1997, Vol. 202, No. 1, p. 1-8, doi: 10.1007 / s004250050096W). The surface of the lotus leaf changes the shape and behavior of water droplets on the surface due to its microscale and nanoscale roughness. The friction between water and these surfaces is greatly reduced, and water droplets can easily roll off the surfaces. For this reason, the surface of the lotus plant exhibits super-hydrophobicity that water droplets do not wet the surface so much and roll on the surface easily.
FIG. 14 shows that microscale and nanoscale surfaces can be roughened by standard micromachining techniques. The manner in which the surface interacts with the liquid changes depending on the roughness of the surface. Microfabrication tools can roughen microscale and nanoscale surfaces to increase hydrophobicity, as well as lotus plants, and can also increase repellency. A hydrophobic surface is a surface with an original contact angle θ exceeding 90 °. If the surface is hydrophobic, the new contact angle θ * of the roughened surface exceeds 90 °. As shown in FIG. 14, the contact angle between the surface 31 before roughing and the droplet 32 is θ (FIG. 14A), but the surface after roughing is roughened by a micromachining tool. The contact angle between 33 and the droplet 34 changes to θ * (> θ) (FIG. 14B).
FIG. 15 shows two different possible wet states on the surface of the micro / nanostructure: the Wenzel state (FIG. 15A) and the Cassie-Baxter state (FIG. 15B). Both the Wenzel state (FIG. 15A) and the Cassie-Baxter state (FIG. 15B) are possible for micro / nanostructured surfaces. In the Wenzel state (FIG. 15A), the surface 41 and the liquid 42 are in close contact with both the valley and the peak. In the Cassie-Baxter state (FIG. 15B), the surface 43 and the liquid 44 are in contact only at the peak, and the air pocket 45 remains between the liquid 44 and the valley of the surface 43. The droplets slide on a Cassie-Baxter surface that requires less force than the Wenzel surface.
If the original contact angle θ and surface geometry are known, θ * and wet state can be predicted for the surface of the micro / nanostructure.
The following Wenzel equation can be used to predict a new contact angle θ * of a droplet on the surface of a microstructure or nanostructure.
cosθ * = r · cosθ
Here, r is the ratio of the actual surface area to the projected surface area (r = actual surface area / Toei surface area).
In addition, θ * can be predicted using the following Cassie-Baxter equation.
cos θ * = φ (cos θ + 1) −1
Here, φ is the fraction of the area where water contacts when the droplet is in the Kathy-Baxter state, that is, the ratio of the point contact area in the contact area (φ <1).
 液体がウェンゼル状態にあるか、またはカシー-バクスター状態にあるかを判定するには、θをウェンゼル法で計算し、次いで、カシー-バクスター法で計算することができる。異なる2つの方法により、異なる2つの予測接触角が得られる。計算した接触角のうちの最小の接触角が最も有望である。その接触角がウェンゼル式を用いて計算されている場合は、液滴はウェンゼル状態にある可能性が高い。その接触角がカシー-バクスター式を用いて計算されている場合は、液滴はカシー-バクスター状態にある可能性が高い。 To determine whether the liquid is in the Wenzel state or the Cassie-Baxter state, θ * can be calculated by the Wenzel method and then by the Cassie-Baxter method. Two different methods result in two different predicted contact angles. The smallest contact angle among the calculated contact angles is the most promising. If the contact angle is calculated using the Wenzel equation, the droplet is likely to be in the Wenzel state. If the contact angle is calculated using the Kathy-Baxter equation, the droplet is likely to be in the Kathy-Baxter state.
 図16は、可撓性を有するマイクロ構造表面を凸形に湾曲することができることを示す。図16(A)に、凸形に湾曲したマイクロ構造表面51を示し、図16(B)に、凸形に湾曲したマイクロ構造表面51に液滴52を加えたとき、超疎水性を維持すること、さらには撥痰性を維持することを示す。マイクロ構造表面の超疎水性は、凸形に湾曲したときに湿潤状態およびθを変更することができる。その理由は、マイクロ構造の上部が互いに遠くに移動すると、マイクロ特徴部の有効ピッチが大きくなり、有効φが小さくなるからである。有効φが小さくなると、θを大きくすることができ、さらに、マイクロ構造表面が湾曲していないときよりもウェンゼル状態である可能性が高くなる。 FIG. 16 shows that a flexible microstructured surface can be curved convexly. FIG. 16A shows a microstructured surface 51 that is convexly curved, and FIG. 16B maintains superhydrophobicity when droplets 52 are added to the microstructured surface 51 curved in a convex shape. In addition, it shows that repellency is maintained. The superhydrophobicity of the microstructured surface can change the wet state and θ * when curved convexly. The reason is that if the upper part of the microstructure moves away from each other, the effective pitch of the micro feature increases and the effective φ decreases. As the effective φ decreases, θ * can be increased, and the possibility of a Wenzel state is higher than when the microstructure surface is not curved.
 図17は、可撓性を有するマイクロ構造材料を凹形に湾曲することができることを示す。図17(A)に、凹形に湾曲したマイクロ構造表面53を示し、図17(B)に、凹形に湾曲したマイクロ構造表面53に液滴54を加えたとき、超疎水性を維持すること、さらには撥痰性を維持することを示す。マイクロ構造表面の超疎水性は、凹形に湾曲したときに湿潤状態およびθを変更することができる。その理由は、マイクロ構造の上部が互いに近くに移動すると、マイクロ特徴部の有効ピッチが小さくなり、有効φが大きくなるからである。有効φが大きくなると、θを小さくすることができ、さらに、マイクロ構造表面が湾曲していないときよりもカシー-バクスター状態である可能性が高くなる。 FIG. 17 shows that a flexible microstructured material can be bent concavely. FIG. 17A shows a concavely curved microstructure surface 53, and FIG. 17B maintains superhydrophobicity when droplets 54 are added to the concavely curved microstructure surface 53. FIG. In addition, it shows that repellency is maintained. The superhydrophobicity of the microstructured surface can change the wet state and θ * when curved concavely. The reason is that when the upper part of the microstructure moves close to each other, the effective pitch of the micro feature is reduced and the effective φ is increased. As the effective φ increases, θ * can be reduced, and more likely the Cassie-Baxter state is greater than when the microstructure surface is not curved.
〈可撓性を有するシリコーン製マイクロ構造表面の撥痰性・超疎水性に湾曲が及ぼす影響〉
 撥痰性・超疎水性は、腐食を抑制し、流体の流れを制御し、表面の抵抗を低減することができる。表面のマイクロ構造は、液滴と表面との相互作用を調節することによって表面の撥痰性・疎水性を制御することができる。マイクロ構造の撥痰性・疎水性表面について公開された調査は、ほぼ排他的に平坦な表面に限られているが、多くの撥痰性・超疎水性の用途では、湾曲面上にマイクロ構造を作製する能力が必要とされている。ポリマーのマイクロ加工は、マイクロ構造の撥痰性・超疎水性表面を作るための高価でない手法を提供し、ポリマーのコンプライアンスにより、湾曲したマイクロ構造の撥痰性・疎水性表面が可能になる。この実施例は、可撓性を有するマイクロ構造ポリマーの湾曲が撥痰性・疎水性に影響を及ぼす状態を説明する。
<Effects of curvature on repellency and superhydrophobicity of flexible silicone microstructures>
Repellency and superhydrophobicity can suppress corrosion, control fluid flow, and reduce surface resistance. The surface microstructure can control the repellency and hydrophobicity of the surface by adjusting the interaction between the droplet and the surface. Published studies on microstructure repellency / hydrophobic surfaces are limited to almost exclusively flat surfaces, but for many repellency / superhydrophobic applications, microstructures on curved surfaces The ability to make is needed. Polymer microfabrication provides an inexpensive way to create microstructured repellant / superhydrophobic surfaces, and polymer compliance allows curved microstructured repellant / hydrophobic surfaces. This example illustrates a situation where the curvature of a flexible microstructured polymer affects repellency and hydrophobicity.
 図18に、ウェンゼル状態、またはカシー-バクスター状態において、接触角θの液滴が撥痰性・疎水性表面と相互作用できる状態を示す。図18(A)は、固体表面61に着座し、気体63に囲繞された液滴62が固有の接触角θを形成することを示す。図18(B)は、固体表面64が粗面であり、気体63に囲繞された液滴65が固体表面64の隆起と臨界接触している場合は、液滴65はウェンゼル状態にあることを示す。この場合の接触角はθ である。図18(C)は、固体表面66が粗面であり、気体63に囲繞された液滴67が固体表面66の隆起の上部に着座している場合は、液滴67と固体表面66との間にはエアポケット68が存在し、液滴67はカシー-バクスター状態にあることを示す。この場合の接触角はθCB である。液滴が大幅に移動できるのでカシー-バクスター状態を実現することが望ましい。マイクロ構造表面上のマイクロ特徴部のサイズ、形状、およびピッチは、いずれの状態でも表面上の液滴の状態に影響を及ぼす。 FIG. 18 shows a state in which a droplet having a contact angle θ can interact with a repellent / hydrophobic surface in a Wenzel state or a Cassie-Baxter state. FIG. 18A shows that the droplet 62 seated on the solid surface 61 and surrounded by the gas 63 forms a unique contact angle θ. FIG. 18B shows that when the solid surface 64 is rough and the droplet 65 surrounded by the gas 63 is in critical contact with the ridge of the solid surface 64, the droplet 65 is in a Wenzel state. Show. The contact angle in this case is θ W * . In FIG. 18C, when the solid surface 66 is a rough surface and the droplet 67 surrounded by the gas 63 is seated on the top of the bulge of the solid surface 66, the droplet 67 and the solid surface 66 are separated. There is an air pocket 68 in between, indicating that the droplet 67 is in the Kathy-Baxter state. The contact angle in this case is θ CB * . It is desirable to achieve the Cassie-Baxter state because the droplets can move significantly. The size, shape, and pitch of the microfeatures on the microstructure surface will affect the state of the droplet on the surface in any state.
 ポリマーの湾曲により、マイクロ特徴部のピッチを変更して、撥痰性・疎水性に影響を与えることができる。
 図19に、マイクロ構造表面を湾曲することにより、マイクロ構造表面の幾何形状が変化し、マイクロ構造表面と液滴との相互作用が変化する。図19(A)に示すように、正の曲率で湾曲したマイクロ構造表面71では、湾曲する前に比べてマイクロ特徴部72のピッチ73が広がり、液滴はより少ないマイクロ特徴部と相互作用する。また、図19(B)に示すように、負の曲率で湾曲したマイクロ構造表面74では、湾曲する前に比べてマイクロ特徴部75のピッチ76が狭くなり、液滴は、より多くのマイクロ特徴部75と相互作用する。θCB はφの関数であり、φはピッチの関数であり、ピッチは曲率の関数である。したがって、θCB は曲率の関数である。他の疎水性の特性、例えば、必要な滑り力も、曲率の関数である。したがって、曲率は、疎水性の特性に、例えば液滴の滑りに影響を及ぼす。
 図20は、曲率の関数としてのPDMS(ポリジメチルシロキサン)マイクロ柱のピッチの変化を示す図である。図20(A)は、PDMSマイクロ柱のピッチが24.4μmの平坦なマイクロ構造表面81を示す。図20(B)は、正の曲率(+0.11/mm)で湾曲した外面および負の曲率(-0.22/mm)で湾曲した内面を有する湾曲部材84ならびに正の曲率で湾曲したマイクロ構造表面82を示す。正の曲率で湾曲したマイクロ構造表面82では、平坦なマイクロ構造表面81に比べて、PDMSマイクロ柱のピッチが24.4μmから26.2μm(予測=25.5μm)に広くなった。図20(C)は、正の曲率(+0.11/mm)で湾曲した外面および負の曲率(-0.22/mm)で湾曲した内面を有する湾曲部材84ならびに負の曲率で湾曲したマイクロ構造表面83を示す。負の曲率で湾曲したマイクロ構造表面83では、平坦なマイクロ構造表面81に比べて、PDMSマイクロ柱のピッチが24.4μmから20.7μm(予測=22.1μm)に狭くなった。
Due to the curvature of the polymer, the pitch of the micro features can be changed to affect the repellency and hydrophobicity.
In FIG. 19, by curving the microstructure surface, the geometry of the microstructure surface changes and the interaction between the microstructure surface and the droplet changes. As shown in FIG. 19A, on the microstructure surface 71 curved with a positive curvature, the pitch 73 of the micro features 72 is wider than before the curve, and the droplets interact with fewer micro features. . Also, as shown in FIG. 19B, on the microstructure surface 74 curved with a negative curvature, the pitch 76 of the micro features 75 becomes narrower than before the curve, and the droplets have more micro features. Interacts with part 75. θ CB * is a function of φ, φ is a function of pitch, and pitch is a function of curvature. Therefore, θ CB * is a function of curvature. Other hydrophobic properties such as the required slip force are also a function of curvature. Curvature thus affects the hydrophobic properties, for example droplet slippage.
FIG. 20 shows the change in pitch of PDMS (polydimethylsiloxane) micropillars as a function of curvature. FIG. 20A shows a flat microstructured surface 81 with a PDMS micropillar pitch of 24.4 μm. FIG. 20B shows a curved member 84 having an outer surface curved with a positive curvature (+ 0.11 / mm) and an inner surface curved with a negative curvature (−0.22 / mm) and a micro curved with a positive curvature. A structural surface 82 is shown. In the microstructure surface 82 curved with a positive curvature, the pitch of the PDMS microcolumns was widened from 24.4 μm to 26.2 μm (prediction = 25.5 μm) as compared to the flat microstructure surface 81. FIG. 20C shows a curved member 84 having an outer surface curved with a positive curvature (+ 0.11 / mm) and an inner surface curved with a negative curvature (−0.22 / mm), and a micro curved with a negative curvature. A structural surface 83 is shown. In the microstructure surface 83 curved with a negative curvature, the pitch of the PDMS micro-pillars was narrowed from 24.4 μm to 20.7 μm (prediction = 22.1 μm) compared to the flat microstructure surface 81.
 カシー-バクスター状態が存在するためには、下記不等式を満足しなければならない。
 cosθ<(φ-1)/(r-φ)
 ここで、φは柱の頂点の面積の割合であり、rは投影表面積に対する真の表面積の比である。
 このとき、ウェンゼル/カシー-バクスター転移の臨界ピッチPcは、
 Pc=[A-{h・b・cosθ/(1+cosθ)}]/P
である。ここで、Aはマイクロ特徴部の頂点の面積であり、hはマイクロ特徴部の高さであり、bはマイクロ特徴部の外周であり、Pは平坦な表面上のマイクロ特徴部のピッチである。
In order for the Cassie-Baxter condition to exist, the following inequality must be satisfied:
cos θ <(φ−1) / (r−φ)
Here, φ is the ratio of the area of the top of the column, and r is the ratio of the true surface area to the projected surface area.
At this time, the critical pitch Pc of the Wenzel / Cathy-Baxter transition is
Pc = [A− {h · b · cos θ / (1 + cos θ)}] / P
It is. Where A is the area of the top of the micro feature, h is the height of the micro feature, b is the outer periphery of the micro feature, and P is the pitch of the micro feature on the flat surface. .
 厚みtのフィルムが曲率半径Rでフィルムの中立軸に向かって湾曲するとき、湾曲方向における新規のピッチは
 Pα=P(R+t/2+h)・R-1
である。ここで、Pは平坦な表面上のマイクロ特徴部のピッチであり、hはマイクロ特徴部の高さであり、tはフィルムの厚みであり、Rは曲率半径である。
 図21に、マイクロ特徴部の高さ(h,μm)のいくつかの値に関して、マイクロ特徴部の直径=25μm、フィルムの厚み=0.7mm、表面の接触角θ=112°のマイクロ構造表面を有するフィルムに対する臨界表面曲率(1/R,1/mm)が平坦な表面上のマイクロ特徴部のピッチ(ピッチOld,mm)と共に変化する状態を示す。
When a film of thickness t is curved toward the neutral axis of the film with a radius of curvature R, the new pitch in the bending direction is P α = P (R + t / 2 + h) · R −1
It is. Where P is the pitch of the micro features on the flat surface, h is the height of the micro features, t is the thickness of the film, and R is the radius of curvature.
FIG. 21 shows the microstructure surface with microfeature diameter = 25 μm, film thickness = 0.7 mm, surface contact angle θ = 112 ° for several values of microfeature height (h, μm). The critical surface curvature (1 / R C , 1 / mm) for a film having a variation with the pitch of micro features (pitch Old , mm) on a flat surface is shown.
 マイクロ構造表面の撥痰性・疎水性に湾曲が影響する状態を実験的に試験するために、直径25μm、高さ70μmの円柱状のマイクロ特徴部がピッチ50μmで配列されたマイクロ構造表面を有する、厚み0.7mmのポリジメチルシロキサン(PDMS)シートを用意した。平坦なPDMSマイクロ構造表面上での、10μLの純水および40/60の質量比で混合したグリセリン/水の混合物の接触角θは、それぞれ、102°および112°であった。平坦なPDMSマイクロ構造表面上での、10μLの水およびグリセリン/水のθCB は、それぞれ、147°および152°であった。 In order to experimentally test the influence of curvature on the repellency / hydrophobicity of the microstructure surface, it has a microstructure surface in which cylindrical micro features having a diameter of 25 μm and a height of 70 μm are arranged at a pitch of 50 μm. A polydimethylsiloxane (PDMS) sheet having a thickness of 0.7 mm was prepared. On the flat PDMS microstructure surface, the contact angles θ of 10 μL of pure water and a glycerin / water mixture mixed at a mass ratio of 40/60 were 102 ° and 112 °, respectively. On the flat PDMS microstructure surface, the θ CB * of 10 μL water and glycerin / water were 147 ° and 152 °, respectively.
 図22に、PDMSは可撓性が高く、撥痰性・超疎水性を維持しながら正または負の曲率に湾曲可能であることを示す。接触角が曲率の関数として変化することも示す。 FIG. 22 shows that PDMS is highly flexible and can be bent to a positive or negative curvature while maintaining repellency and superhydrophobicity. It also shows that the contact angle varies as a function of curvature.
 図23に、マイクロ構造表面を有するPDMSフィルムの上に、体積10μLの水滴または40/60の質量比で混合したグリセリン/水の混合物の液滴を配置し、PDMSフィルムを傾斜させ、水滴または液滴が滑りを引き起こす、滑り角(Slide Angle,θSLIDE)を測定した。湾曲の曲率を様々に変化させ、そのそれぞれについて、θSLIDEを測定し、湾曲の曲率と滑り角度との関係をプロットした。図23(A)は、湾曲の曲率(Curvuture,1/mm)と水の滑り角(Water Slide Angle,度)との関係を、図23(B)は湾曲の曲率(Curvuture,1/mm)と40/60グリセリン/水の滑り角(40/60 Glycerol/Water Slide Angle,度)との関係を、それぞれ示す。θSLIDEは、曲率がさらに正になるにつれて、ほぼ直線的に小さくなる。図21から、液滴は、曲率が実験の最大曲率0.11/mmを十分に超える+1.25/mmに達するまでカシー-バクスター状態のままのはずである。
 なお、マイクロ構造表面を有するPDMSフィルムとしては、高さh(μm)、直径r(μm)の円柱状のマイクロ特徴部が、ピッチp(μm)で配置されたマイクロ構造表面を有する、厚みt(mm)のPDMSフィルムを用いた。
 h=10μm,r=25μm,p=50μm,t=0.8mm
 h=40μm,r=25μm,p=50μm,t=1.1mm
 h=70μm,r=25μm,p=50μm,t=1.2mm
 図23においては、マイクロ特徴部の高さhによってPDMSフィルムを特定している。
In FIG. 23, a water droplet having a volume of 10 μL or a droplet of a mixture of glycerin / water mixed at a mass ratio of 40/60 is placed on a PDMS film having a microstructured surface, the PDMS film is inclined, The sliding angle (Slide Angle, θ SLIDE ) at which the drop causes slipping was measured. The curvature of the curve was changed variously, and for each of them, θ SLIDE was measured, and the relationship between the curvature of the curve and the slip angle was plotted. FIG. 23A shows the relationship between the curvature of curvature (Curvure, 1 / mm) and the water slide angle (Water Slide Angle, degree), and FIG. 23B shows the curvature of curvature (Curvure, 1 / mm). And 40/60 glycerin / water slip angle (40/60 Glycerol / Water Slide Angle, degree), respectively. θ SLIDE decreases almost linearly as the curvature becomes more positive. From FIG. 21, the droplet should remain Kathy-Baxter until the curvature reaches + 1.25 / mm, well above the experimental maximum curvature of 0.11 / mm.
In addition, as a PDMS film having a microstructure surface, a thickness t having a microstructure surface in which cylindrical micro features having a height h (μm) and a diameter r (μm) are arranged at a pitch p (μm). (Mm) PDMS film was used.
h = 10 μm, r = 25 μm, p = 50 μm, t = 0.8 mm
h = 40 μm, r = 25 μm, p = 50 μm, t = 1.1 mm
h = 70 μm, r = 25 μm, p = 50 μm, t = 1.2 mm
In FIG. 23, the PDMS film is specified by the height h of the micro feature.
 図24に、元の接触角が100°の液滴の場合の直径5μm、8μmピッチの柱に関するモデリング結果を示す。ウェンゼル状態の場合に、新規の接触角θは、柱の高さが高くなるにつれて大きくなる。柱の高さが8~9μmに達すると、液滴がウェンゼル状態からカシー-バクスター状態に移行する。 FIG. 24 shows a modeling result regarding a column having a diameter of 5 μm and a pitch of 8 μm in the case of a droplet having an original contact angle of 100 °. In the Wenzel state, the new contact angle θ * increases as the column height increases. When the column height reaches 8-9 μm, the droplets transition from the Wenzel state to the Cassie-Baxter state.
 図25に、直径25μmのマイクロ柱の場合のカシー-バクスター状態とウェンゼル状態との間の移行についてモデリング結果を示す。ピッチを固定した柱の場合に元の接触角θが大きくなるにつれて、移行に関する臨界高さが小さくなる。元の接触角θを固定した場合にピッチが大きくなるにつれて、移行に関する臨界高さが大きくなる。 FIG. 25 shows the modeling result of the transition between the Cassie-Baxter state and the Wenzel state in the case of a micro pillar having a diameter of 25 μm. As the original contact angle θ increases for pillars with a fixed pitch, the critical height for transition decreases. The critical height for transition increases as the pitch increases when the original contact angle θ is fixed.
 湾曲したPDMSマイクロ構造表面の曲率により、所与の体積の液滴と相互作用するマイクロ柱の数が変化する。柱と液滴との間の相互作用を調べるために、融点47℃の市販のCerrolow金属25μLを溶融および堆積させ、高さ70μmのマイクロ柱を、湾曲なし、曲率+0.11/mm、および曲率-0.22/mmの状態で凝固させた。次いで、柱および湾曲により誘導された幾何形状からインプレッションの概算の数について走査型電子顕微鏡(SEM)を用いて液滴を検査した。楕円の接触線の長軸および短軸に沿って柱のインプレッションを数え、楕円の面積の式から液滴と柱との相互作用の概算の数が分かった。 The curvature of the curved PDMS microstructure surface changes the number of micropillars that interact with a given volume droplet. To investigate the interaction between the column and the droplet, 25 μL of commercial Cellorow metal with a melting point of 47 ° C. was melted and deposited, and the microcolumn with a height of 70 μm had no curvature, curvature + 0.11 / mm, and curvature It was solidified in a state of −0.22 / mm. The droplets were then examined using a scanning electron microscope (SEM) for an approximate number of impressions from the geometry induced by the columns and curvature. Column impressions were counted along the major and minor axes of the ellipse contact line, and the approximate number of droplet-column interactions was found from the ellipse area formula.
 この実施例は、ポリマーからなるマイクロ構造表面の湾曲が撥痰性・疎水性の特性に影響を及ぼすことを示している。ここで示した臨界曲率による制約を用いて、マイクロ構造表面の撥痰性・疎水性の制御のために、湾曲面がマイクロ構造のポリマーで覆われるときにカシー-バクスター状態を維持するマイクロ構造の幾何形状をデザインすることができる。 This example shows that the curvature of the microstructure surface made of polymer affects the properties of repellency and hydrophobicity. Using the critical curvature constraints shown here, the microstructure can maintain the Cassie-Baxter state when the curved surface is covered with the microstructure polymer to control the repellency and hydrophobicity of the microstructure surface. Geometric shapes can be designed.
 採用した用語および表現は、説明の用語として用いており、限定するものではなく、また、こうした用語および表現の使用において、提示および記載した特徴またはその一部の等価物を除外するものではなく、特許請求する本発明の範囲内で様々な修正が可能であることが認識される。したがって、好ましい実施形態および任意選択の特徴によって本発明を具体的に開示してきたが、本明細書に開示した概念の修正形態および変更形態を当業者が使用できること、ならびにこうした修正形態および変更形態は、添付の請求の範囲によって定義する本発明の範囲内に包含されると考えられることを理解されたい。 The terms and expressions employed are used as descriptive terms, are not limiting, and use of such terms and expressions does not exclude the features presented and described or some equivalents thereof, It will be appreciated that various modifications are possible within the scope of the claimed invention. Thus, while the invention has been specifically disclosed by preferred embodiments and optional features, modifications and variations of the concepts disclosed herein can be used by those skilled in the art, and such modifications and variations are not It should be understood that it is considered to be encompassed within the scope of the present invention as defined by the appended claims.
5 皮膚
7 気管
7a 皮膚側気管粘膜
7b 体内側気管粘膜
10 マイクロ構造表面
11 基板(基材)
12 マイクロ特徴部
13 直径
14 ピッチ
15 高さ
21 基板(基材)
22 レジスト
23 ステンシルマスク
24 光
25 マイクロ特徴部
26 凹所
27 未硬化のポリマー
28 硬化したポリマー
31 粗面仕上げ前の表面
32,34 液滴
33 粗面仕上げ後の表面
41,43 表面
42,44 液体
45 エアポケット
51 凸形に湾曲したマイクロ構造表面
52,54 液滴
53 凹形に湾曲したマイクロ構造表面
61,64,66 固体表面
62,65,67 液滴
63 気体
68 エアポケット
71 正の曲率で湾曲したマイクロ構造表面
72,75 マイクロ特徴部
73,76 ピッチ
74 負の曲率で湾曲したマイクロ構造表面
81 平坦なマイクロ構造表面
82 正の曲率で湾曲したマイクロ構造表面
83 負の曲率で湾曲したマイクロ構造表面
84 湾曲部材
101,201,301,401,501 気管切開チューブ
102,202,302,402,702 チューブ体
102a,202a 呼吸路
102c 外周面
104a 吸引ライン
104c 空気注入ライン
106,206 カフ
108 カフ調整部
121,221,721 基端部
122,222,722 先端部
123,223,723 湾曲部
125,225 空気注入用チューブ
111,225a カフ側開口部
125b,225b 空気注入用ルーメン
126,226 パイロットバルーン
126a 空気注入孔
126b 排出口
127,727 固定部
128,728 固定板
129,729 接着部
130,730 貫通孔
131,231,331,731 収納孔
138 カフ側吸引部
139 カフ側吸引コネクタ
140 カフ側吸引チューブ
140a カフ側吸引口
150 マイクロ構造領域
151 マイクロ特徴部
152 基材
153 接着層
160 フィルム
201 気管内チューブ
207 切欠部
212 コネクタ
226a 逆止弁
250 被膜
601 吸引カテーテル
701 複管式気管切開チューブ
701a 内筒
701b 外筒
702a 内筒挿入用ルーメン
801 輪状甲状膜穿刺用気管カニューレ
901 輪状甲状膜穿刺孔挿入用気管カニューレ
Z 痰
5 Skin 7 Trachea 7a Skin side tracheal mucosa 7b Body inner tracheal mucosa 10 Microstructure surface 11 Substrate (base material)
12 Micro features 13 Diameter 14 Pitch 15 Height 21 Substrate (base material)
22 Resist 23 Stencil mask 24 Light 25 Micro feature 26 Recess 27 Uncured polymer 28 Cured polymer 31 Surfaces 32 and 34 before roughing Liquid droplets 33 Surfaces 41 and 43 after roughing Surfaces 42 and 44 Liquid 45 Air pocket 51 Convex-shaped microstructured surface 52, 54 Droplet 53 Convex-shaped microstructured surface 61, 64, 66 Solid surface 62, 65, 67 Droplet 63 Gas 68 Air pocket 71 With positive curvature Curved microstructure surface 72, 75 Micro feature 73, 76 Pitch 74 Microstructure surface 81 curved with negative curvature Flat microstructure surface 82 Microstructure surface 83 curved with positive curvature Microstructure curved with negative curvature Surface 84 Curved member 101, 201, 301, 401, 501 Tracheostomy tube 102 202, 302, 402, 702 Tube body 102a, 202a Breathing path 102c Outer peripheral surface 104a Suction line 104c Air injection line 106, 206 Cuff 108 Cuff adjusting part 121, 221 and 721 Base end part 122, 222, 722 Tip part 123, 223 , 723 Curved portion 125, 225 Air injection tube 111, 225a Cuff side opening 125b, 225b Air injection lumen 126, 226 Pilot balloon 126a Air injection hole 126b Outlet 127, 727 Fixing portion 128, 728 Fixing plate 129, 729 Adhesion part 130,730 Through hole 131,231,331,731 Storage hole 138 Cuff side suction part 139 Cuff side suction connector 140 Cuff side suction tube 140a Cuff side suction port 150 Micro structure area 151 Micro feature part 152 Material 153 Adhesive layer 160 Film 201 Endotracheal tube 207 Notch 212 Connector 226a Check valve 250 Coating 601 Suction catheter 701 Double-tube tracheotomy tube 701a Inner tube 701b Outer tube 702a Inner tube insertion lumen 801 Ring-shaped thyroid membrane puncture trachea Cannula 901 Tracheal cannula Z for insertion of annular thyroid puncture hole

Claims (10)

  1.  気管内の肺側に設けられた先端部、前記先端部と反対側に設けられた基端部、および、前記基端部から前記先端部にかけて貫通する呼吸路を有するチューブ体を備える、気管用チューブにおいて、
     前記チューブ体の前記呼吸路を形成する内面の少なくとも一部にマイクロ構造領域が設けられ、
     前記マイクロ構造領域は、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する、気管用チューブ。
    A trachea comprising a distal end portion provided on the lung side in a trachea, a proximal end portion provided on the opposite side of the distal end portion, and a tube body having a breathing path penetrating from the proximal end portion to the distal end portion. In the tube,
    A microstructure region is provided on at least a part of the inner surface forming the respiratory path of the tube body;
    The microstructural region is a tracheal tube having a microstructural surface on which a plurality of microfeatures are disposed.
  2.  前記マイクロ構造領域には、押出成型、射出成型、切削加工、レーザー加工、芯棒を用いた表面加工、粒子コーティング、ナノインプリント、溶剤処理、プラズマスパッタ、ナノワイヤ配列の堆積およびこれらの組合せからなる群から選択される方法を用いて形成された前記マイクロ特徴部が配置されている、請求項1に記載の気管用チューブ。 The microstructure region includes a group consisting of extrusion molding, injection molding, cutting, laser processing, surface processing using a core rod, particle coating, nanoimprint, solvent processing, plasma sputtering, deposition of nanowire arrays, and combinations thereof. The tracheal tube according to claim 1, wherein the microfeatures formed using a selected method are disposed.
  3.  前記マイクロ構造領域には、少なくとも一部分が湾曲、屈曲、圧縮、伸長、膨張および/または歪曲した形状である可撓性を有する基板であって、複数のマイクロ特徴部が配置されたマイクロ構造表面を有する基板が、前記マイクロ構造表面を前記呼吸路に露出するように前記チューブ体の前記呼吸路を形成する内面に配置されている、請求項1に記載の気管用チューブ。 The microstructure region is a flexible substrate having at least a part that is curved, bent, compressed, stretched, expanded and / or distorted, and has a microstructure surface on which a plurality of micro features are arranged. The tracheal tube according to claim 1, wherein a substrate having the microstructural surface is disposed on an inner surface of the tube body that forms the respiratory path so as to expose the microstructure surface to the respiratory path.
  4.  前記マイクロ構造表面が撥痰性表面である、請求項1~3のいずれか1項に記載の気管用チューブ。 The tracheal tube according to any one of claims 1 to 3, wherein the microstructure surface is a repellent surface.
  5.  前記マイクロ特徴部の寸法が、10nm~1000μmの範囲から選択される、請求項1~4のいずれか1項に記載の気管用チューブ。 The tracheal tube according to any one of claims 1 to 4, wherein a dimension of the micro feature is selected from a range of 10 nm to 1000 µm.
  6.  前記マイクロ特徴部間のピッチが、10nm~1000μmの範囲から選択される、請求項1~5のいずれか1項に記載の気管用チューブ。 The tracheal tube according to any one of claims 1 to 5, wherein a pitch between the micro features is selected from a range of 10 nm to 1000 µm.
  7.  前記複数のマイクロ特徴部が、第1組の寸法を有する第1組のマイクロ特徴部、および第2組の寸法を有する第2組のマイクロ特徴部を備え、前記第1組の寸法が前記第2組の寸法とは異なる、請求項1~6のいずれか1項に記載の気管用チューブ。 The plurality of microfeatures comprises a first set of microfeatures having a first set of dimensions and a second set of microfeatures having a second set of dimensions, wherein the first set of dimensions is the first set of dimensions. The tracheal tube according to any one of claims 1 to 6, which is different from the two sets of dimensions.
  8.  前記第1組の寸法が10nm~1μmの範囲から選択され、前記第2組の寸法が1μm~100μmの範囲から選択される、請求項7に記載の気管用チューブ。 The tracheal tube according to claim 7, wherein the first set of dimensions is selected from a range of 10 nm to 1 µm, and the second set of dimensions is selected from a range of 1 µm to 100 µm.
  9.  前記複数のマイクロ特徴部上に被覆をさらに備える、請求項1~8のいずれか1項に記載の気管用チューブ。 The tracheal tube according to any one of claims 1 to 8, further comprising a coating on the plurality of micro features.
  10.  前記被覆が1~100nmの範囲から選択されるサイズを有する粒子を含む、請求項9に記載の気管用チューブ。 The tracheal tube according to claim 9, wherein the coating includes particles having a size selected from a range of 1 to 100 nm.
PCT/JP2016/051102 2015-01-22 2016-01-15 Tracheal tube WO2016117462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016570603A JP6598801B2 (en) 2015-01-22 2016-01-15 Tracheal tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-010537 2015-01-22
JP2015010537 2015-01-22

Publications (1)

Publication Number Publication Date
WO2016117462A1 true WO2016117462A1 (en) 2016-07-28

Family

ID=56417009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051102 WO2016117462A1 (en) 2015-01-22 2016-01-15 Tracheal tube

Country Status (2)

Country Link
JP (1) JP6598801B2 (en)
WO (1) WO2016117462A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001724A1 (en) * 2006-06-26 2008-01-03 Tomohiko Asahara Laryngeal mask provided with gastric tube insertion guide
JP2012170792A (en) * 2011-02-24 2012-09-10 Kawasumi Lab Inc Tracheal cannula
JP3181583U (en) * 2012-11-30 2013-02-14 ニプロ株式会社 Aspiration catheter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202682503U (en) * 2012-05-16 2013-01-23 杨志洲 Nanometer hydrophobicity trachea inserting tube sleeve tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001724A1 (en) * 2006-06-26 2008-01-03 Tomohiko Asahara Laryngeal mask provided with gastric tube insertion guide
JP2012170792A (en) * 2011-02-24 2012-09-10 Kawasumi Lab Inc Tracheal cannula
JP3181583U (en) * 2012-11-30 2013-02-14 ニプロ株式会社 Aspiration catheter

Also Published As

Publication number Publication date
JP6598801B2 (en) 2019-10-30
JPWO2016117462A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP2021035522A (en) Medical components with microstructures for humidification and condensate management
US8196584B2 (en) Endotracheal cuff and technique for using the same
EP1861152B1 (en) Inhaled air supplying device
JP5744096B2 (en) Endotracheal cuff and techniques for its use
JP5679813B2 (en) Tracheostomy tube with improved balloon cuff
JP2012517910A (en) Microstructured superhydrophobic material with flexibility
JP2004262470A (en) Delamination bottle and its manufacturing method
JPH01264839A (en) Polymer web having substantially fluid-impermeable small foam and manufacture thereof
US20080078406A1 (en) Endotracheal tube and technique for using the same
JP6598801B2 (en) Tracheal tube
WO2006131155A1 (en) A surgical suction device and a method for manufacturing such device
WO2016052350A1 (en) Trachea-insertable tracheal tube
JP6588452B2 (en) Tracheal tube that can be inserted into the trachea
JP2010540012A (en) Improved balloon cuffed tracheostomy tube for easy insertion
JP6573896B2 (en) Tracheal tube that can be inserted into the trachea
JP3181583U (en) Aspiration catheter
JP2016131839A (en) Endotracheal tube
US20230149654A1 (en) A respiratory conduit
JP2016131831A (en) Endotracheal tube
CN206183767U (en) A suction apparatus for suction -type aerosol
DE102005042182B4 (en) Apparatus for ventilation
CN209154789U (en) A kind of oropharyngeal airway
JP2017169654A (en) Method for manufacturing medical tube and medical tube
CN209286443U (en) Sputum aspirator tube and suction sputum set group
JP2017169655A (en) Method for manufacturing medical tube and medical tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740069

Country of ref document: EP

Kind code of ref document: A1