WO2016117453A1 - Anomaly diagnosis/analysis apparatus - Google Patents

Anomaly diagnosis/analysis apparatus Download PDF

Info

Publication number
WO2016117453A1
WO2016117453A1 PCT/JP2016/051065 JP2016051065W WO2016117453A1 WO 2016117453 A1 WO2016117453 A1 WO 2016117453A1 JP 2016051065 W JP2016051065 W JP 2016051065W WO 2016117453 A1 WO2016117453 A1 WO 2016117453A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnosis
abnormality
sensor
false
database
Prior art date
Application number
PCT/JP2016/051065
Other languages
French (fr)
Japanese (ja)
Inventor
内田 貴之
崎村 茂寿
智昭 蛭田
藤城 孝宏
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016117453A1 publication Critical patent/WO2016117453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a technology that supports improvement in diagnosis accuracy of machine abnormality diagnosis.
  • machine maintenance work In order for machines such as gas engines, elevators, mining and construction machinery to always operate, machine maintenance work is essential.
  • One of the effective technologies for maintenance work is to collect sensor data from sensors attached to each part of the machine, and perform sensor abnormality diagnosis from the collected sensor data as sensor data. If there is an abnormality, analyze the cause. There is technology to do.
  • FIG. 14 is a drawing that expresses the balance between the engine temperature and the cooling water pressure of the machine in a scatter diagram.
  • a circle 14100 in the figure represents a scatter diagram of temperature and pressure at the time of normal operation as a set of circles called clusters.
  • a technique for creating such a cluster from a scatter diagram is called clustering, and is a known technique in the fields of machine learning and data mining. Creating a cluster is called “learning” in the field of machine learning.
  • the distance 14120 from the cluster is calculated as the degree of abnormality, that is, the degree of abnormality, and if it is larger than the abnormality level threshold, the machine is diagnosed as abnormal.
  • the problem in applying the above-described diagnostic processing to a large number of machines is the variation in the accuracy of the diagnostic results for each machine.
  • the specifications of sensors and parts change from lot to lot due to cost reduction activities.
  • the sensor model number may change between the initial lot and the latest lot, and the frequency characteristics and dynamic range may be different. Therefore, even if the accuracy of diagnosis is high for individuals in the initial lot, the number of misreports / missing reports increases in the individual of the latest lot, and the accuracy may decrease.
  • it is necessary to correct the diagnosis process by identifying a sensor that causes a false alarm or a false alarm and removing it from the diagnosis target or changing the number of clusters.
  • Patent Document 1 is an example of an invention that prevents a decrease in accuracy of abnormality diagnosis caused by a change in parts.
  • This document is an invention for determining the cause of an abnormality as part of an abnormality diagnosis. If there is a change in the part specifications between the lot of the device to be diagnosed and the latest lot, it is assumed that the part has changed due to some problem with the part, and the cause is increased by increasing the probability that the changed part is the cause of the abnormality. Improve judgment accuracy.
  • the cause of the abnormality is estimated using the change information of the parts.
  • the present invention is to provide a technique for finding the cause of misreporting or misreporting and assisting in improving the diagnostic accuracy of machine abnormality diagnosis.
  • the abnormality diagnosis analyzer of the present invention detects a misreport / missing report by comparing a diagnosis unit that performs an abnormality diagnosis from sensor data of the machine and a diagnosis result of the diagnosis unit against a history of abnormality of the machine. And a sensor difference detection unit that presents an analyst with sensors having different specifications of individuals with a large number of individuals and a small number of individuals with the number of misinformation / missing reports.
  • the abnormality diagnosis / analysis apparatus of the present invention includes a misreport / miss report difference determination unit that counts misreports / missing reports in groups such as machine manufacturing lots by comparing the diagnosis results with the machine malfunction history. It is what.
  • the sensor difference detection unit searches the sensor information of lots with a large number and a small number of false alarms and / or misreports, and confirms the sensor specifications between lots. It is a feature.
  • the abnormality diagnosis analyzer of the present invention includes a sensor data database storing data measured by a sensor attached to the machine together with a measurement time, and the diagnosis unit performs diagnosis from the sensor data database. It is what.
  • the abnormality diagnosis analyzer of the present invention is characterized by including a sensor used for diagnosis and a diagnosis model database storing the processing contents of diagnosis.
  • the abnormality diagnosis / analysis apparatus of the present invention is characterized by comprising a parts information database storing information of parts including the sensors of the equipment.
  • the abnormality diagnosis analyzer of the present invention is characterized by comprising an abnormality period history database storing an abnormality period based on the maintenance history of the machine and the complaint information.
  • the abnormality diagnosis analyzer of the present invention is characterized by comprising a diagnosis result database for storing a period during which an abnormality is diagnosed by the diagnosis unit.
  • Analysts who create an abnormality diagnosis process can see differences in sensor specifications that cause false alarms and false alarms according to the present invention.
  • the analyst can remove the sensor having the difference in the specification from the diagnosis target or change the number of clusters to improve the diagnosis accuracy.
  • FIG. 1 is a system configuration diagram of an embodiment. It is a flowchart of an Example. It is a flowchart of an Example. It is a flowchart of an Example. It is a flowchart of an Example. It is a flowchart of an Example. It is a flowchart of an Example. It is a flowchart of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example. It is drawing explaining the data structure used with the system of an Example
  • FIG. 1 shows the overall configuration of the present invention.
  • the sensor data database 100 is a database that stores data such as engine pressure, cooling water temperature, and rotation speed measured by sensors attached to various parts of equipment such as railways and construction machines, along with measurement times.
  • FIG. 8 shows the internal table structure. Sensor values such as the engine pressure 805 and the engine speed 810 are stored in association with the measurement time 800, and each sensor value can be referred to from the measurement time 800.
  • data has already been measured and stored in the sensor data database 100.
  • the diagnostic model database 105 is a database that stores diagnostic processing contents such as sensors used for diagnosis and preprocessing.
  • FIG. 9 shows the table structure.
  • the number 925 stores the ID 930 of the device to which each diagnostic model is applied.
  • the processing contents of the diagnostic model applied to each device can be acquired from the table. These processing contents are determined by an analyst at the time of designing the diagnostic process, and the processing contents are already stored in the diagnostic model database 105 at the start of the process of the present invention.
  • the parts information database 110 is a database that stores information on parts including sensors constituting the device.
  • FIG. 10 shows the internal table structure. From the lot number 1000, it has a part name 1005, a part model number 1010, a dynamic range 1015, an attachment position 1020, and drawing data 1025 of the parts of the device of the lot.
  • a dynamic range 1015 indicates a range of data values that can be measured when the component is a sensor.
  • the attachment position 1020 is a number indicating the position where the component is attached, and data indicating the number exists in the drawing data 1025.
  • the drawing data 1025 stores CAD and image data indicating a manufacturing drawing of the device. By reading and presenting the drawing data 1025, the analyst can confirm the attachment position 1020 in the form of an image or CAD data.
  • the device information database 120 is a database that manages the association between a device to be diagnosed and a lot.
  • FIG. 11 shows the internal table structure.
  • the table structure manages the device ID 1100 to be diagnosed and the lot number 1105 in association with each other.
  • the abnormal period history database 115 is a database that stores a truly abnormal period created based on the maintenance history of the machine to be diagnosed, customer complaints, and the like. If the abnormal period in the abnormal period history database 115 cannot be detected, it is regarded as a misreport, and conversely, an abnormality detected without being stored in the abnormal period history database 115 is regarded as a false report.
  • the diagnosis result database 125 is a database that stores a period during which the diagnosis unit 145 diagnoses an abnormality.
  • FIG. 12 illustrates the table structure of the abnormal period history database 115.
  • the table structure is managed by associating the ID 1200 of the device in which the abnormality actually occurred, the start time 1210 when the abnormality started, the time 1215 when the abnormality ended, and the type 1220 of the abnormality.
  • FIG. 13 illustrates the table structure of the diagnosis result database 125.
  • the table structure is managed by associating the ID 1230 of the device diagnosed as abnormal by the diagnosis unit 145, the abnormality start time 1235, the end time 1240 calculated by the diagnosis, and the abnormality name 1245 detected by the diagnosis.
  • the input unit 160 includes a keyboard, a mouse, a touch panel, and the like, and is used for pressing a button on the screen or inputting data into the diagnostic model database 105 in the present invention.
  • the display unit 155 is a device configured by a liquid crystal display or the like and displaying the screens of FIGS.
  • the temporary storage unit 150 is a volatile memory composed of a RAM or the like, and temporarily stores variables and a data table as shown in FIG.
  • the diagnosis unit 145 performs a diagnosis from the diagnosis model database 105 and the sensor database 100, and calculates a period when it is determined as abnormal.
  • a calculation method for example, a period during which the degree of abnormality calculated by the clustering technique described in the above [Background Art] item exceeds a threshold may be calculated.
  • the false / missing report detection unit 140 checks whether the diagnosis unit 145 has correctly calculated an abnormal period, and if there is a false / missing report, calculates the number of occurrences. Specifically, if the true abnormal period in the abnormal period history database 115 and the abnormal period calculated by the diagnosis unit 145 are covered, it is considered that an abnormality has been detected correctly, and otherwise, it is regarded as a false or missing report. The flow of processing will be described later.
  • the misreport / miss report difference determination unit 135 counts the number of misreports and / or miss reports for each lot, and outputs a set of numbers of lots with many misreports / miss reports and lots with a small number. For this purpose, a search is made for a set of two lots that have a difference in the number of false / missing reports. If there is a difference in the number of occurrences between the two lots, it is highly possible that a change in the sensor specifications accompanying the change in lots is the cause of false or missing reports.
  • the two lot numbers determined to have a difference are output to the sensor difference detection unit 130 as the numbers of lots with many false alarms and lots with few false alarms.
  • the sensor difference detection unit 130 detects whether there is a difference in the specifications of sensors used for diagnosis between lots with many false alarms / missing reports and lots with few. If there is a difference, it is considered that the cause of the false / missed report is the sensor specification.
  • the sensor ID used for diagnosis is read from the diagnosis model database 105. A sensor specification is searched for each lot from the component information database using the sensor ID, and it is confirmed whether there is a difference in the specification between lots. If there is a difference, it is presented on the display unit 155. Next, processing performed in the present invention will be described with reference to a flowchart. 2 will be described with reference to FIG. 3 to FIG.
  • FIG. 2 shows a main flow of processing in the present invention.
  • step 202 a list of types of abnormalities detected by diagnosis is displayed on the display unit 155 as shown in FIG.
  • the abnormality name to be displayed information obtained by reading the abnormality name (abnormality name 905 in FIG. 9) in the diagnostic model database 105 is displayed.
  • the analyst selects an abnormality to be detected from FIG. 16 using the input unit.
  • S205 all the devices to be diagnosed are diagnosed to detect the abnormality selected in S202, and the number of false / missing reports is counted for each device based on the result.
  • SUB03 which is a subroutine for executing the processing, will be described with reference to FIG.
  • the abnormality name selected by the analyst from the diagnosis model database 105 as a search key (905 in FIG. 9) is used as a search key (sensor 910 in FIG. 9) and the number of clusters (in FIG. 9). Information necessary for diagnosis such as the number of clusters (925) is read.
  • the first line of the device ID (device ID 1100 in FIG. 11) is acquired from the device information database.
  • the sensor database 100 is searched using the device ID and sensor to be diagnosed as search keys, sensor data used for diagnosis is read, and abnormality diagnosis is performed.
  • the abnormality diagnosis uses the above-mentioned (background art) and the clustering technique described in FIG. A period in which the degree of abnormality exceeds the threshold value is regarded as abnormal along FIG.
  • the start time and end time of the abnormal period as output results are stored in the start time 1235 and end time 1240 of the diagnosis result database 125 shown in FIG.
  • Nf for storing the number of false alarms calculated in S400 is secured in the temporary storage unit 150. Nf is initialized to 0.
  • one line is read from the diagnosis result database 125, which is an abnormal period of the diagnosis result, using the device ID acquired in S305 and the abnormal name specified in S202 for the start time 1235 and the end time 1240 shown in FIG.
  • the read start time 1235 is ST
  • the end time 1240 is EN.
  • the determination method includes a start time 1210 and an end time 1215 of the abnormality history database in FIG. 12, which are periods in which the machine is actually abnormal, and a start time 1235 indicating an abnormal period in the diagnosis result database shown in FIG. Judgment is made by whether or not there is a time zone covered by the end time 1240.
  • one line of the start time 1210 and the end time 1215 of the abnormality history database in FIG. 12 is read from the abnormality period history database 115. It is assumed that the read start time 1210 is ST_H and the end time 1215 is EN_H.
  • S415 it is determined whether there is any time zone covered by the abnormal period ST to EN and the abnormal period history ST_H to EN_H of the diagnosis result. If ST is a time after EN_H or EN is a time before ST_H, it is determined that the time zone is not covered, and the process proceeds to S420. If it is covered, it is not a false alarm, so the process proceeds to S430 in order to determine the abnormal period of the diagnosis result of the next line.
  • S420 it is determined whether all abnormal period histories have been read in S410. If there is still an abnormal period history, the process returns to S410. If everything has been read, the process proceeds to S425.
  • S430 reads all abnormal periods in S405 and determines whether or not it is misreported. If all are read, returns the number Nf of false reports and returns to S315 in FIG. Otherwise, return to S405.
  • SUB01-01 is completed as described above and S315 in FIG. 3 ends, the process proceeds to S320.
  • Nn the number of unreported cases Nn is calculated.
  • Nn is the number of cases that are not covered by the abnormal period that is the diagnosis result, that is, are actually abnormal but not detected.
  • Nn is calculated in subroutine SUB01-02.
  • SUB01-02 is almost the same as SUB01-01 that calculates the number of false alarms already described.
  • the abnormal period history loops S410 to S420 are turned inside the abnormal period loops S405 to S430.
  • SUB01-02 the loop of the abnormal period is turned inside the loop of the abnormal period history. The rest of the logic is exactly the same, so details are omitted.
  • Nf and Nn counted in S315 and S320 are stored as a table in the temporary storage unit.
  • the structure is shown in a table 1330 in FIG.
  • the table 1330 includes a device ID 1300 and a diagnosis model ID 1310 that have issued a false / missed report, an abnormal name 1315, a false report count 1320, and a miss report count 1325. Record the diagnosis model ID, abnormality name, Nf and Nn in this table.
  • S340 it is checked whether the diagnosis of all devices and the count of false / missed reports have been completed. If not completed, the process returns to S305, and if completed, SUB01 is terminated. After the completion, the process returns to S205 in FIG. 2 and then proceeds to S208.
  • S208 to S220 are processes for determining whether there is a difference in the number of false / missed reports for each device for each lot of devices. If two lots with differences are found, one of the lots has few false alarms / missing reports, and the other lot has many misreporting / missing alarms. If the difference in the number of misreports / missing reports appears in lot units, the cause of the misreporting / missing reports is likely to be a difference in lots, that is, a difference in specifications of sensor parts.
  • S208 calls a subroutine SUB02 that searches for two lots in which there is a difference in the number of false alarms.
  • SUB02 will be described with reference to S600 to S615 in FIG.
  • the lot number 1100 and the device ID 1105 are searched from the device information database 120, and the device ID list of the lot number (here A) is read.
  • the table 1330 in the temporary storage unit 150 is searched to search for the number of misreports 1320 for all devices with the lot number A.
  • the average value Ave (Nf_A) and variance Var (Nf_A) of the number of misreports retrieved are calculated.
  • the device ID list of the lot number (here, B) in the device information database 120 is read, and the number of erroneous reports of lot number B is retrieved from the table 1330.
  • the average value Ave (Nf_B) and variance Var (Nf_B) of the number of detected false alarms are calculated.
  • Ave (Nf_A) and Ave (Nf_B) are well-known t-test as a method for statistically judging whether there is a difference in values between data lists, but in this example, for the sake of simplicity, Ave (Nf_A) and Ave (Nf_B) If the square of the difference is greater than the sum of Var (Nf_A) and Var (Nf_B), it is considered that there is a difference.
  • S215 searches for lots with a large number of missed reports and lots with a small number of reports in the same procedure as the number of false reports in S210.
  • the subroutine SUB03 of S215 is shown in FIG. 7, but the description is omitted because the number of erroneous reports of SUB02 is only the number of unreported cases.
  • S220 stores lot A and lot B with a large number of missed reports in the table 1370 shown in FIG.
  • the sensor part ID of the sensor used for the diagnosis of lot numbers A and B is acquired from the diagnosis model database 105.
  • the sensor component ID can be acquired from the sensor component ID 915 of FIG. 9 using the diagnosis model ID of the diagnosis model specified in S202 as a search key.
  • the sensor specifications of lot numbers A and B are searched from the sensor part ID. Specifically, the sensor specifications of A and B are searched from the component information database 110 using the sensor component ID and lot numbers A and B acquired in S225 as search keys.
  • S235 it is determined whether there is a difference in sensor specifications between lots A and B from the search result in S230. Specifically, it is determined whether there is a difference between the lot A and B in the part model number 1010, the dynamic range 1015, and the mounting position 1020 in FIG. If there is a difference, go to S240. Otherwise, this process ends.
  • FIG. 19 shows an example of a screen to be presented, in which a difference in sensor model number is presented as a cause of false alarm. This completes the processing performed in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A diagnosis process focusing on a plurality of machines is required in order to extend the application of effective anomaly diagnosis to preventive maintenance. However, due to cost reduction efforts, etc., the specifications for the sensors and components of machines change. The result is that the number of false or missing diagnostic reports can vary among different machines of the same type. Therefore, it is necessary to detect and analyze the underlying causes for many false or missing reports in a particular machine. However, if there are many individual machines to be checked for causes or many sensors used in diagnosis, the number of operations performed by an analyst to specify the causes increases, and analysis becomes difficult. In order to address this problem, this anomaly diagnosis/analysis apparatus is characterized by being provided with a diagnosis unit for performing anomaly diagnosis on the basis of sensor data of a machine, a false/missing report detection unit for comparing the diagnosis results of the diagnosis unit with the anomaly history of the machine to detect false/missing reports, and a sensor difference detection unit for informing the analyst about sensors of differing specifications in individual machines having many or few false/missing reports.

Description

異常診断分析装置Abnormality diagnosis analyzer
 本発明は機械の異常診断の診断精度向上を支援する技術に関する。 The present invention relates to a technology that supports improvement in diagnosis accuracy of machine abnormality diagnosis.
 ガスエンジンやエレベータ、採掘・建築機械といった機械を常に動作させるためには、機械の保守作業が必須である。保守作業で有効な技術の1つに機械の各部に取り付けられたセンサからセンサデータを収集しセンサデータとして、収集したセンサデータから機械の異常診断を行い、異常があった場合はその原因分析を行う技術がある。 In order for machines such as gas engines, elevators, mining and construction machinery to always operate, machine maintenance work is essential. One of the effective technologies for maintenance work is to collect sensor data from sensors attached to each part of the machine, and perform sensor abnormality diagnosis from the collected sensor data as sensor data. If there is an abnormality, analyze the cause. There is technology to do.
 該技術を実施するため、機械のセンサデータやデータ出現頻度を示す散布図やヒストグラムで表現し、その出現頻度分布の外れ値から機械の異常を調べる方法がある。 In order to implement this technique, there is a method of investigating machine abnormality from outliers of the appearance frequency distribution by expressing it with a scatter diagram or histogram showing the sensor data of the machine and the data appearance frequency.
 例えば、図14は機械の持つエンジン温度と冷却水圧力のバランスを散布図で表現した図面である。同図の円14100は正常稼働していた時期の温度と圧力の散布図をクラスタという円の集合で表現している。散布図からこのようなクラスタを作る技術はクラスタリングと呼ばれ、機械学習やデータマイニングの分野で公知の技術である。クラスタを作ることを機械学習の分野では「学習」すると呼ぶ。そのクラスタからの距離14120を異常の度合い、すなわち異常度として算出し、異常度の閾値と比較して大なら機械が異常と診断する。 For example, FIG. 14 is a drawing that expresses the balance between the engine temperature and the cooling water pressure of the machine in a scatter diagram. A circle 14100 in the figure represents a scatter diagram of temperature and pressure at the time of normal operation as a set of circles called clusters. A technique for creating such a cluster from a scatter diagram is called clustering, and is a known technique in the fields of machine learning and data mining. Creating a cluster is called “learning” in the field of machine learning. The distance 14120 from the cluster is calculated as the degree of abnormality, that is, the degree of abnormality, and if it is larger than the abnormality level threshold, the machine is diagnosed as abnormal.
 多数の機械を対象に上記のような診断処理を適用する際に問題になるのが、機械の個体ごとの診断結果の精度のバラつきである。機械は一般に原価低減活動などによりセンサや部品の仕様がロットごとに変化していく。例えばセンサの型番が初期ロットと最新ロットで変化し、周波数特性やダイナミックレンジが異なる場合がある。そのため初期ロットの個体は診断の精度が高くても最新のロットの個体では誤報・失報の件数が増え、精度が下がってしまうことがある。異常診断の精度を向上するには誤報・失報を起こす原因となるセンサを特定して診断対象から外したり、クラスタ数を変更したりして診断の処理を修正する必要がある。 The problem in applying the above-described diagnostic processing to a large number of machines is the variation in the accuracy of the diagnostic results for each machine. In general, the specifications of sensors and parts change from lot to lot due to cost reduction activities. For example, the sensor model number may change between the initial lot and the latest lot, and the frequency characteristics and dynamic range may be different. Therefore, even if the accuracy of diagnosis is high for individuals in the initial lot, the number of misreports / missing reports increases in the individual of the latest lot, and the accuracy may decrease. In order to improve the accuracy of abnormality diagnosis, it is necessary to correct the diagnosis process by identifying a sensor that causes a false alarm or a false alarm and removing it from the diagnosis target or changing the number of clusters.
 部品の変化によって起きる異常診断の精度低下を防ぐ発明としては、例えば(特許文献1)がある。該文献は異常診断の一環として異常の原因を判定する発明である。診断対象の機器のロットと最新のロットの間で部品仕様の変化がある場合、部品に何かしらの問題があったために変えたとみなし、変化した部品が異常の原因である確率を増やすことで原因の判定精度を向上する。 (Patent Document 1) is an example of an invention that prevents a decrease in accuracy of abnormality diagnosis caused by a change in parts. This document is an invention for determining the cause of an abnormality as part of an abnormality diagnosis. If there is a change in the part specifications between the lot of the device to be diagnosed and the latest lot, it is assumed that the part has changed due to some problem with the part, and the cause is increased by increasing the probability that the changed part is the cause of the abnormality. Improve judgment accuracy.
特開平5-101246号公報Japanese Patent Laid-Open No. 5-101246
 公知技術では異常の原因を部品の変化情報を用いて推定する。しかしながら異常原因ではなく、誤報・失報の原因を見つけることは困難であった。 In the known technology, the cause of the abnormality is estimated using the change information of the parts. However, it was difficult to find the cause of false or misreporting, not the cause of the abnormality.
 本発明は誤報・失報の原因を見つけ、機械の異常診断の診断精度向上を支援する技術を提供することにある。 The present invention is to provide a technique for finding the cause of misreporting or misreporting and assisting in improving the diagnostic accuracy of machine abnormality diagnosis.
 上記課題を解決するため、本発明の異常診断分析装置は、機械のセンサデータから異常診断を行う診断部と、該診断部の診断結果を機械の異常履歴と照らし合わせて誤報・失報を検知する誤報・失報検知部と、誤報・失報数が多い個体と少ない個体で仕様が異なるセンサを分析者に提示するセンサ差異検知部を備えたことを特徴とするものである。 In order to solve the above problems, the abnormality diagnosis analyzer of the present invention detects a misreport / missing report by comparing a diagnosis unit that performs an abnormality diagnosis from sensor data of the machine and a diagnosis result of the diagnosis unit against a history of abnormality of the machine. And a sensor difference detection unit that presents an analyst with sensors having different specifications of individuals with a large number of individuals and a small number of individuals with the number of misinformation / missing reports.
 更に、本発明の異常診断分析装置は、診断結果を機械の異常履歴と照らし合わせて誤報・失報を、機械の製造ロットなどのグループで集計する誤報・失報差異判定部を備えることを特徴とするものである。 Furthermore, the abnormality diagnosis / analysis apparatus of the present invention includes a misreport / miss report difference determination unit that counts misreports / missing reports in groups such as machine manufacturing lots by comparing the diagnosis results with the machine malfunction history. It is what.
 更に、本発明の異常診断分析装置は、前記センサ差異検知部は、誤報およびあるいは失報の件数が多いロットと少ないロットのセンサの情報を検索し、ロット間でのセンサ仕様を確認することを特徴とするものである。 Furthermore, in the abnormality diagnosis / analysis apparatus of the present invention, the sensor difference detection unit searches the sensor information of lots with a large number and a small number of false alarms and / or misreports, and confirms the sensor specifications between lots. It is a feature.
 更に、本発明の異常診断分析装置は、前記機械に取り付けられたセンサで計測したデータを、計測時刻とともに記憶したセンサデータデータベースを備え、前記診断部は前記センサデータデータベースから診断を行うことを特徴とするものである。 Furthermore, the abnormality diagnosis analyzer of the present invention includes a sensor data database storing data measured by a sensor attached to the machine together with a measurement time, and the diagnosis unit performs diagnosis from the sensor data database. It is what.
 更に、本発明の異常診断分析装置は、診断に用いるセンサと、診断の処理内容を記憶した診断モデルデータベースを備えたことを特徴とするものである。 Furthermore, the abnormality diagnosis analyzer of the present invention is characterized by including a sensor used for diagnosis and a diagnosis model database storing the processing contents of diagnosis.
 更に、本発明の異常診断分析装置は、前記機器が有するセンサを含む部品の情報を記憶している部品情報データベースを備えたことを特徴とするものである。 Furthermore, the abnormality diagnosis / analysis apparatus of the present invention is characterized by comprising a parts information database storing information of parts including the sensors of the equipment.
 更に、本発明の異常診断分析装置は、前記機械の保守履歴、クレーム情報に基づき異常の期間を記憶した異常期間履歴データベースを備えたことを特徴とするものである。 Furthermore, the abnormality diagnosis analyzer of the present invention is characterized by comprising an abnormality period history database storing an abnormality period based on the maintenance history of the machine and the complaint information.
 更に、本発明の異常診断分析装置は、前記診断部で異常と診断された期間を記憶する診断結果データベースを備えたことを特徴とするものである。 Furthermore, the abnormality diagnosis analyzer of the present invention is characterized by comprising a diagnosis result database for storing a period during which an abnormality is diagnosed by the diagnosis unit.
 異常診断の処理を作成する分析者は、本発明により誤報・失報の原因となるセンサの仕様の差異を見ることができる。分析者は仕様の差異があるセンサを診断対象から外したり、クラスタ数を変更したりして診断精度を向上する作業を行うことができる。 Analysts who create an abnormality diagnosis process can see differences in sensor specifications that cause false alarms and false alarms according to the present invention. The analyst can remove the sensor having the difference in the specification from the diagnosis target or change the number of clusters to improve the diagnosis accuracy.
実施例のシステム構成図である1 is a system configuration diagram of an embodiment. 実施例のフローチャートであるIt is a flowchart of an Example. 実施例のフローチャートであるIt is a flowchart of an Example. 実施例のフローチャートであるIt is a flowchart of an Example. 実施例のフローチャートであるIt is a flowchart of an Example. 実施例のフローチャートであるIt is a flowchart of an Example. 実施例のフローチャートであるIt is a flowchart of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 実施例のシステムで用いるデータ構造を説明する図面であるIt is drawing explaining the data structure used with the system of an Example. 異常診断の原理を説明する図面であるIt is drawing explaining the principle of abnormality diagnosis 実施例で表示する画面例であるIt is an example of a screen displayed in the embodiment 実施例で表示する画面例であるIt is an example of a screen displayed in the embodiment
 以下、本発明の一実施例を図面で説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1に本発明を示した全体構成を示す。 FIG. 1 shows the overall configuration of the present invention.
 センサデータデータベース100は鉄道や建設機械といった機器の各部に取り付けられたセンサで計測したエンジン圧力や、冷却水温度、回転数といったデータを、計測時刻とともに記憶したデータベースである。図8に内部のテーブル構造を示す。計測時刻800と紐づけてエンジン圧力805やエンジン回転数810のようなセンサ値が格納されており、計測時刻800から各センサ値を参照できるようになっている。以降、既にデータは計測されてセンサデータデータベース100に記憶されているものとする。 The sensor data database 100 is a database that stores data such as engine pressure, cooling water temperature, and rotation speed measured by sensors attached to various parts of equipment such as railways and construction machines, along with measurement times. FIG. 8 shows the internal table structure. Sensor values such as the engine pressure 805 and the engine speed 810 are stored in association with the measurement time 800, and each sensor value can be referred to from the measurement time 800. Hereinafter, it is assumed that data has already been measured and stored in the sensor data database 100.
 診断モデルデータベース105は診断に用いるセンサや前処理といった診断の処理内容を記憶したデータベースである。図9にそのテーブル構造を示す。診断モデルを特定するための診断モデルID900と、各診断モデルが検知する異常名905に紐づける形で診断処理に使うセンサ910とそのセンサ部品ID915と、各センサ値に適用する前処理920、クラスタ数925、各診断モデルを適用する機器のID930を格納している。該テーブルから各機器に適用している診断モデルの処理内容を取得する事が出来る。これらの処理内容は診断処理を設計する時点で分析者が決定し、本発明の処理開始時にはすでに処理内容は診断モデルデータベース105に記憶されているものとする。 The diagnostic model database 105 is a database that stores diagnostic processing contents such as sensors used for diagnosis and preprocessing. FIG. 9 shows the table structure. A diagnosis model ID 900 for specifying a diagnosis model, a sensor 910 and its sensor component ID 915 used for diagnosis processing in association with an abnormality name 905 detected by each diagnosis model, a pre-processing 920 applied to each sensor value, a cluster The number 925 stores the ID 930 of the device to which each diagnostic model is applied. The processing contents of the diagnostic model applied to each device can be acquired from the table. These processing contents are determined by an analyst at the time of designing the diagnostic process, and the processing contents are already stored in the diagnostic model database 105 at the start of the process of the present invention.
 部品情報データベース110は機器を構成するセンサを含む部品の情報を記憶しているデータベースである。図10に内部のテーブル構造を示す。ロット番号1000からそのロットの機器個体がもつ部品の部品名1005と部品型番1010とダイナミックレンジ1015と取り付け位置1020と図面データ1025をもつ。ダイナミックレンジ1015は部品がセンサの場合、計測できるデータ値の範囲を示している。取り付け位置1020は本部品が取り付けられた位置を示す番号であり、図面データ1025中にその番号を示すデータが存在する。図面データ1025は本機器の製造図面を示すCADや画像データを記憶する。図面データ1025を読み込み提示することで、分析者は取り付け位置1020を画像やCADデータの形式で確認できるものとする。 The parts information database 110 is a database that stores information on parts including sensors constituting the device. FIG. 10 shows the internal table structure. From the lot number 1000, it has a part name 1005, a part model number 1010, a dynamic range 1015, an attachment position 1020, and drawing data 1025 of the parts of the device of the lot. A dynamic range 1015 indicates a range of data values that can be measured when the component is a sensor. The attachment position 1020 is a number indicating the position where the component is attached, and data indicating the number exists in the drawing data 1025. The drawing data 1025 stores CAD and image data indicating a manufacturing drawing of the device. By reading and presenting the drawing data 1025, the analyst can confirm the attachment position 1020 in the form of an image or CAD data.
 機器情報データベース120は診断する機器とロットの紐づけを管理するデータベースである。図11に内部のテーブル構造を示す。テーブル構造は診断対象の機器ID1100とロット番号1105を紐づけて管理する。 The device information database 120 is a database that manages the association between a device to be diagnosed and a lot. FIG. 11 shows the internal table structure. The table structure manages the device ID 1100 to be diagnosed and the lot number 1105 in association with each other.
 異常期間履歴データベース115は診断する機械の保守履歴や顧客からのクレームなどを元に作成した真に異常だった期間を記憶したデータベースである。異常期間履歴データベース115の異常期間を検知できないと失報、逆に異常期間履歴データベース115に記憶していないのに検知された異常は誤報とみなす。 The abnormal period history database 115 is a database that stores a truly abnormal period created based on the maintenance history of the machine to be diagnosed, customer complaints, and the like. If the abnormal period in the abnormal period history database 115 cannot be detected, it is regarded as a misreport, and conversely, an abnormality detected without being stored in the abnormal period history database 115 is regarded as a false report.
 診断結果データベース125は診断部145で異常と診断された期間を記憶するデータベースである。 The diagnosis result database 125 is a database that stores a period during which the diagnosis unit 145 diagnoses an abnormality.
 図12に異常期間履歴データベース115のテーブル構造を説明する。テーブル構造は真に異常が起きた機器のID1200、その異常が起き始めた開始時刻1210、その異常が終了した時刻1215、そして、異常の種類1220を紐づけて管理する。 FIG. 12 illustrates the table structure of the abnormal period history database 115. The table structure is managed by associating the ID 1200 of the device in which the abnormality actually occurred, the start time 1210 when the abnormality started, the time 1215 when the abnormality ended, and the type 1220 of the abnormality.
 図13に診断結果データベース125のテーブル構造を説明する。 FIG. 13 illustrates the table structure of the diagnosis result database 125.
 テーブル構造は診断部145で異常と診断された機器のID1230、診断によって算出された異常の開始時刻1235、終了時刻1240、診断で検知された異常名1245を紐づけて管理する。 The table structure is managed by associating the ID 1230 of the device diagnosed as abnormal by the diagnosis unit 145, the abnormality start time 1235, the end time 1240 calculated by the diagnosis, and the abnormality name 1245 detected by the diagnosis.
 入力部160はキーボードやマウス、タッチパネルなどで構成され、本発明で画面上のボタンを押したり、診断モデルデータベース105にデータ入力したりするのに用いる。 The input unit 160 includes a keyboard, a mouse, a touch panel, and the like, and is used for pressing a button on the screen or inputting data into the diagnostic model database 105 in the present invention.
 表示部155は液晶ディスプレイなどで構成され図16、図17の画面を表示する装置である。 The display unit 155 is a device configured by a liquid crystal display or the like and displaying the screens of FIGS.
 一時記憶部150はRAMなどで構成された揮発性のメモリであり、一時的に変数や図14のようなデータテーブルを記憶する。 The temporary storage unit 150 is a volatile memory composed of a RAM or the like, and temporarily stores variables and a data table as shown in FIG.
 診断部145は診断モデルデータベース105とセンサデータベース100から診断を行い、異常と判定した期間を算出する。算出方法は例えば前述の〔背景技術〕の項目で説明したクラスタリング技術で算出した異常度が閾値を越えている期間を算出すれば良い。 The diagnosis unit 145 performs a diagnosis from the diagnosis model database 105 and the sensor database 100, and calculates a period when it is determined as abnormal. As a calculation method, for example, a period during which the degree of abnormality calculated by the clustering technique described in the above [Background Art] item exceeds a threshold may be calculated.
 誤報・失報検知部140は診断部145が正しく異常な期間を算出で来ているか確認し、誤報・失報があれば発生件数を算出する。具体的には異常期間履歴データベース115の真の異常期間と、診断部145が算出した異常期間が被っていれば正しく異常を検知できたとみなし、そうでないなら誤報あるいは失報とみなす。処理の流れは後述する。 The false / missing report detection unit 140 checks whether the diagnosis unit 145 has correctly calculated an abnormal period, and if there is a false / missing report, calculates the number of occurrences. Specifically, if the true abnormal period in the abnormal period history database 115 and the abnormal period calculated by the diagnosis unit 145 are covered, it is considered that an abnormality has been detected correctly, and otherwise, it is regarded as a false or missing report. The flow of processing will be described later.
 誤報・失報差異判定部135は、誤報ならびにあるいは失報の発生件数をロットごとに集計し、誤報・失報が多いロットと少ないロットの番号の組を出力する。そのために誤報・失報の発生件数に差がある2つのロットの組を探索する。2つのロットで発生件数に差がある場合、ロットの変化に伴うセンサの仕様の変化が誤報・失報の原因である可能性が高い。差があると判定した2つロット番号を、誤報の多いロットと少ないロットの番号として、センサ差異検知部130に出力する。
センサ差異検知部130は誤報・失報の多いロットと少ないロットで診断に使ったセンサの仕様に差異があるか検知する。もし差異があれば誤報・失報の原因がセンサ仕様であると考えられる。そのために診断モデルデータベース105から診断に使ったセンサIDを読み出す。そのセンサIDで部品情報データベースからロットごとにセンサの仕様を検索し、ロット間で仕様に差異が無いか確認する。もし差異があれば表示部155で提示する。
次に本発明で行う処理をフローチャートで説明する。図2をメインフロー、図1から呼び出すサブルーチンを図3~7で説明する。
The misreport / miss report difference determination unit 135 counts the number of misreports and / or miss reports for each lot, and outputs a set of numbers of lots with many misreports / miss reports and lots with a small number. For this purpose, a search is made for a set of two lots that have a difference in the number of false / missing reports. If there is a difference in the number of occurrences between the two lots, it is highly possible that a change in the sensor specifications accompanying the change in lots is the cause of false or missing reports. The two lot numbers determined to have a difference are output to the sensor difference detection unit 130 as the numbers of lots with many false alarms and lots with few false alarms.
The sensor difference detection unit 130 detects whether there is a difference in the specifications of sensors used for diagnosis between lots with many false alarms / missing reports and lots with few. If there is a difference, it is considered that the cause of the false / missed report is the sensor specification. For this purpose, the sensor ID used for diagnosis is read from the diagnosis model database 105. A sensor specification is searched for each lot from the component information database using the sensor ID, and it is confirmed whether there is a difference in the specification between lots. If there is a difference, it is presented on the display unit 155.
Next, processing performed in the present invention will be described with reference to a flowchart. 2 will be described with reference to FIG. 3 to FIG.
 図2に本発明における処理のメインフローを示す。 FIG. 2 shows a main flow of processing in the present invention.
 ステップ202(以下、S202と称す)において、診断で検知する異常の種類名の一覧を図16のように表示部155で表示し、分析者に選択させる。
表示する異常名は、診断モデルデータベース105の異常名(図9の異常名905)を読み込んだ情報を表示する。分析者は図16から検知したい異常を、入力部を用いて選択する。
In step 202 (hereinafter referred to as “S202”), a list of types of abnormalities detected by diagnosis is displayed on the display unit 155 as shown in FIG.
As the abnormality name to be displayed, information obtained by reading the abnormality name (abnormality name 905 in FIG. 9) in the diagnostic model database 105 is displayed. The analyst selects an abnormality to be detected from FIG. 16 using the input unit.
 S205で診断対象の全機器に対してS202で選択した異常を検知する診断を行い、その結果から機器ごとに誤報・失報発生件数をカウントする。その処理を実行するサブルーチンであるSUB03を図3を用いて説明する。 In S205, all the devices to be diagnosed are diagnosed to detect the abnormality selected in S202, and the number of false / missing reports is counted for each device based on the result. SUB03, which is a subroutine for executing the processing, will be described with reference to FIG.
 以下、図3において
 S300で、診断モデルデータベース105から分析者が選択した異常名を検索キー(図9の905)にして異常診断に使うセンサ(図9のセンサ910)やクラスタ数(図9のクラスタ数925)といった診断に必要な情報を読み込む。
Hereinafter, in S300 in FIG. 3, the abnormality name selected by the analyst from the diagnosis model database 105 as a search key (905 in FIG. 9) is used as a search key (sensor 910 in FIG. 9) and the number of clusters (in FIG. 9). Information necessary for diagnosis such as the number of clusters (925) is read.
 S305で診断する機器のIDを取得するため機器情報データベースから機器ID(図11の機器ID1100) の1行目を取得する。 In order to acquire the ID of the device to be diagnosed in S305, the first line of the device ID (device ID 1100 in FIG. 11) is acquired from the device information database.
 S310で診断する機器IDとセンサを検索キーにしてセンサデータベース100を検索し、診断に使うセンサデータを読み出し、異常診断を行う。異常診断は前述の(背景技術)と、図15で説明したクラスタリング技術などを用いる。図15に沿って異常度が閾値を超えていた期間を異常とみなして出力する。出力結果である異常期間の開始時刻、終了時刻は図13に示す診断結果データベース125の開始時刻1235、終了時刻1240に格納する。 In S310, the sensor database 100 is searched using the device ID and sensor to be diagnosed as search keys, sensor data used for diagnosis is read, and abnormality diagnosis is performed. The abnormality diagnosis uses the above-mentioned (background art) and the clustering technique described in FIG. A period in which the degree of abnormality exceeds the threshold value is regarded as abnormal along FIG. The start time and end time of the abnormal period as output results are stored in the start time 1235 and end time 1240 of the diagnosis result database 125 shown in FIG.
 S315で診断結果の誤報件数Nfを算出するサブルーチンSUB01-01を呼ぶ。以下、図4にSUB01-01を説明する。 In S315, the subroutine SUB01-01 for calculating the number Nf of false alarms of the diagnosis result is called. Hereinafter, SUB01-01 will be described with reference to FIG.
 S400で算出する誤報件数を格納する変数Nfを一時記憶部150に確保する。Nfは0に初期化しておく。 The variable Nf for storing the number of false alarms calculated in S400 is secured in the temporary storage unit 150. Nf is initialized to 0.
 S405で診断結果の異常期間である診断結果データベース125から図13に示す開始時刻1235、終了時刻1240をS305で取得した機器IDとS202で指定した異常名を検索キーにして1行読み出す。読み出した開始時刻1235をST、終了時刻1240をENとする。 In S405, one line is read from the diagnosis result database 125, which is an abnormal period of the diagnosis result, using the device ID acquired in S305 and the abnormal name specified in S202 for the start time 1235 and the end time 1240 shown in FIG. The read start time 1235 is ST, and the end time 1240 is EN.
 以下、読み出した異常期間が誤報かどうかをS410~S420で判定する。 判定方法は、実際に機械が異常であった期間である図12の異常履歴データベースの開始時刻1210と終了時刻1215と、図13に示す診断結果の診断結果データベースの異常期間を示す開始時刻1235と終了時刻1240が被っている時間帯があるかどうかで判定する。 Hereafter, it is determined in S410 to S420 whether the read abnormal period is a false alarm. The determination method includes a start time 1210 and an end time 1215 of the abnormality history database in FIG. 12, which are periods in which the machine is actually abnormal, and a start time 1235 indicating an abnormal period in the diagnosis result database shown in FIG. Judgment is made by whether or not there is a time zone covered by the end time 1240.
 S410で異常期間履歴データベース115から図12の異常履歴データベースの開始時刻1210と終了時刻1215を1行読み出す。読み出した開始時刻1210をST_H、終了時刻1215をEN_Hとする。
  S415で診断結果の異常期間ST~EN、異常期間履歴ST_H~EN_Hで被っている時間帯がないか判定する。STがEN_Hより後の時刻か、あるいはENがST_Hより前の時刻ならば時間帯は被っていないと判定し、S420に移る。被っている場合は誤報でないので
次行の診断結果の異常期間を判定するためS430に移る。
In S410, one line of the start time 1210 and the end time 1215 of the abnormality history database in FIG. 12 is read from the abnormality period history database 115. It is assumed that the read start time 1210 is ST_H and the end time 1215 is EN_H.
In S415, it is determined whether there is any time zone covered by the abnormal period ST to EN and the abnormal period history ST_H to EN_H of the diagnosis result. If ST is a time after EN_H or EN is a time before ST_H, it is determined that the time zone is not covered, and the process proceeds to S420. If it is covered, it is not a false alarm, so the process proceeds to S430 in order to determine the abnormal period of the diagnosis result of the next line.
 S420ではすべての異常期間履歴をS410で読み出したか判定し、まだ異常期間履歴があるならS410に戻る。すべて読み出していたならS425に移る。 In S420, it is determined whether all abnormal period histories have been read in S410. If there is still an abnormal period history, the process returns to S410. If everything has been read, the process proceeds to S425.
 S425はS405で読んだ異常診断の異常期間が異常期間履歴と被らない、つまり誤報であると判定されたので誤報数Nfを+1して次のS430に移る。 In S425, since it is determined that the abnormality period of the abnormality diagnosis read in S405 does not cover the abnormality period history, that is, it is determined to be misinformation, the number Nf of misinformation is incremented by 1 and the process proceeds to the next S430.
 S430はすべての異常期間をS405で読み込んで誤報か否かを判定したか確認し、すべて読み込んでいたら誤報数Nfを返却し、図3のS315に戻る。そうでないならS405に戻る。以上でSUB01-01が完了し、図3のS315が終了するとS320に移る。 S430 reads all abnormal periods in S405 and determines whether or not it is misreported. If all are read, returns the number Nf of false reports and returns to S315 in FIG. Otherwise, return to S405. When SUB01-01 is completed as described above and S315 in FIG. 3 ends, the process proceeds to S320.
 S320では失報件数Nnを計算する。異常期間履歴のうち診断結果である異常期間に被っていない、つまり本当は異常なのに検知できていない件数がNnである。
NnはサブルーチンSUB01-02で算出する。SUB01-02は既に説明した誤報件数を算出するSUB01-01とほぼ同一である。SUB01-01では異常期間のループS405~S430の内側に異常期間履歴のループS410~S420が回っている。SUB01-02では逆に異常期間履歴のループの内側に異常期間のループが回っている。それ以外のロジックはまったく同じであるため詳細は省略する。SUB01-02から失報件数Nnが返却されると、S320からS330に移行する。
In S320, the number of unreported cases Nn is calculated. Of the abnormal period history, Nn is the number of cases that are not covered by the abnormal period that is the diagnosis result, that is, are actually abnormal but not detected.
Nn is calculated in subroutine SUB01-02. SUB01-02 is almost the same as SUB01-01 that calculates the number of false alarms already described. In SUB01-01, the abnormal period history loops S410 to S420 are turned inside the abnormal period loops S405 to S430. On the other hand, in SUB01-02, the loop of the abnormal period is turned inside the loop of the abnormal period history. The rest of the logic is exactly the same, so details are omitted. When the number of unreported cases Nn is returned from SUB01-02, the process proceeds from S320 to S330.
 S330ではS315とS320でカウントしたNfとNnを一時記憶部にテーブルとして記憶する。その構造を図14のテーブル1330に示す。テーブル1330は誤報・失報を出した機器ID1300と診断モデルID1310、異常名1315、誤報件数1320、失報件数1325からなる。このテーブルに診断モデルID、異常名、NfとNnを記録する。 In S330, Nf and Nn counted in S315 and S320 are stored as a table in the temporary storage unit. The structure is shown in a table 1330 in FIG. The table 1330 includes a device ID 1300 and a diagnosis model ID 1310 that have issued a false / missed report, an abnormal name 1315, a false report count 1320, and a miss report count 1325. Record the diagnosis model ID, abnormality name, Nf and Nn in this table.
 S340では全機器の診断および誤報・失報のカウントが完了したか確認し、未完了ならS305に戻り、完了したならSUB01を終了する。終了後は図2のS205に戻ったあとS208に移る。 In S340, it is checked whether the diagnosis of all devices and the count of false / missed reports have been completed. If not completed, the process returns to S305, and if completed, SUB01 is terminated. After the completion, the process returns to S205 in FIG. 2 and then proceeds to S208.
 S208~S220は機器ごとの誤報・失報数が機器のロットごとに差があるか判定する処理である。差異がある2つのロットが見つかればそのロットの片方は誤報・失報が少なく、もう片方が誤報・失報が多いロットである。誤報・失報の件数の差がロット単位で現れれば、その誤報・失報の原因はロットの違いすなわちセンサ部品の仕様の差異である可能性が高い。 S208 to S220 are processes for determining whether there is a difference in the number of false / missed reports for each device for each lot of devices. If two lots with differences are found, one of the lots has few false alarms / missing reports, and the other lot has many misreporting / missing alarms. If the difference in the number of misreports / missing reports appears in lot units, the cause of the misreporting / missing reports is likely to be a difference in lots, that is, a difference in specifications of sensor parts.
 S208は誤報数に差が見られる2つのロットを探索するサブルーチンSUB02を呼び出す。
図6のS600~S615でSUB02を説明する。
S208 calls a subroutine SUB02 that searches for two lots in which there is a difference in the number of false alarms.
SUB02 will be described with reference to S600 to S615 in FIG.
 S600では機器情報データベース120からロット番号1100と機器ID1105を検索し、1行目のロット番号(ここではAとする)の機器ID一覧を読み込む。それらの機器IDを検索キーに一時記憶部150のテーブル1330を検索してロット番号Aの全機器の誤報件数1320を検索する。検索した誤報件数の平均値Ave(Nf_A)、分散Var(Nf_A)を計算する。 In S600, the lot number 1100 and the device ID 1105 are searched from the device information database 120, and the device ID list of the lot number (here A) is read. Using the device IDs as search keys, the table 1330 in the temporary storage unit 150 is searched to search for the number of misreports 1320 for all devices with the lot number A. The average value Ave (Nf_A) and variance Var (Nf_A) of the number of misreports retrieved are calculated.
 S605ではS600と同様に機器情報データベース120の2行目のロット番号(ここではBとする)の機器ID一覧を読み込み、テーブル1330からロット番号Bの誤報件数を検索する。検索した誤報件数の平均値Ave(Nf_B)、分散Var(Nf_B)を計算する。
S610ではロットAの誤報件数の平均値Ave(Nf_A)、分散Var(Nf_A)とロットBの誤報件数Ave(Nf_B)、分散Var(Nf_B)から誤報件数に差があるか統計的に判定する。
データのリスト同士で値に差があるかどうかを統計的に判定する方法としてはよく知られているt検定などがあるが、本実施例では簡便のためAve(Nf_A)とAve(Nf_B)の差の2乗がVar(Nf_A)とVar(Nf_B)の和より大きかったら差があるとみなす。
In S605, as in S600, the device ID list of the lot number (here, B) in the device information database 120 is read, and the number of erroneous reports of lot number B is retrieved from the table 1330. The average value Ave (Nf_B) and variance Var (Nf_B) of the number of detected false alarms are calculated.
In S610, it is statistically determined whether there is a difference in the number of false reports from the average value Ave (Nf_A), variance Var (Nf_A), and the false report count Ave (Nf_B) and variance Var (Nf_B) of lot B.
There is a well-known t-test as a method for statistically judging whether there is a difference in values between data lists, but in this example, for the sake of simplicity, Ave (Nf_A) and Ave (Nf_B) If the square of the difference is greater than the sum of Var (Nf_A) and Var (Nf_B), it is considered that there is a difference.
 差がある場合はそのロット番号Aとロット番号BとAve(Nf_A)とAve(Nf_B)を返却し本サブルーチンSUB02を終了する。そうでなければS615に移る。 If there is a difference, the lot number A, lot number B, Ave (Nf_A) and Ave (Nf_B) are returned, and this subroutine SUB02 is completed. Otherwise, go to S615.
 S615ではロット番号AとBの組み合わせを変化させて別の組み合わせがないか判定す。
たとえばロット番号A=1かつB=2ならBを変化させてA=1、B=3にする。まだA、Bに当てはめていないロット番号の組み合わせがあるならその番号をA、Bに代入してS600に戻る。そうでないなら何も返却せずに本サブルーチンSUB02を終了する。SUB02終了後は図2のS210に移行する。
In S615, the combination of lot numbers A and B is changed to determine whether there is another combination.
For example, if lot number A = 1 and B = 2, B is changed to A = 1 and B = 3. If there is a combination of lot numbers not yet applied to A and B, the numbers are assigned to A and B, and the process returns to S600. Otherwise, this subroutine SUB02 is terminated without returning anything. After SUB02 ends, the process proceeds to S210 in FIG.
 S210ではSUB02からロット番号AとBとAve(Nf_A)とAve(Nf_B)が返却されているか確認し、何も返却されていないならロットごとの誤報数に違いはないので、失報の差の判定S215、S220に移る。そうでないなら返却値を一時記憶部150に、図15のテーブル1335を作成して記憶する。その後S225に移る。 In S210, check whether lot numbers A, B, Ave (Nf_A), and Ave (Nf_B) are returned from SUB02.If nothing is returned, there is no difference in the number of false reports for each lot. The process moves to determinations S215 and S220. Otherwise, the return value is created and stored in the temporary storage unit 150 in the table 1335 of FIG. Then move to S225.
 S215は失報の多いロットと少ないロットをS210の誤報数と同様の手順で探索する。
S215のサブルーチンSUB03は図7に示してあるが、SUB02の誤報件数が失報件数になっているだけの違いなので説明は省略する。 
 S220はS210と同様の手順で失報数の多いロットAと少ないロットBを一時記憶部150の図16に示すテーブル1370に格納する。
S215 searches for lots with a large number of missed reports and lots with a small number of reports in the same procedure as the number of false reports in S210.
The subroutine SUB03 of S215 is shown in FIG. 7, but the description is omitted because the number of erroneous reports of SUB02 is only the number of unreported cases.
S220 stores lot A and lot B with a large number of missed reports in the table 1370 shown in FIG.
 S225ではロット番号AとBの診断に使ったセンサのセンサ部品IDを診断モデルデータベース105から取得する。S202で指定した診断モデルの診断モデルIDを検索キーにしてセンサ部品IDは図9のセンサ部品ID915から取得できる。 In S225, the sensor part ID of the sensor used for the diagnosis of lot numbers A and B is acquired from the diagnosis model database 105. The sensor component ID can be acquired from the sensor component ID 915 of FIG. 9 using the diagnosis model ID of the diagnosis model specified in S202 as a search key.
 S230でセンサ部品IDからロット番号AとBのセンサ仕様を検索する。
具体的にはS225で取得したセンサ部品IDとロット番号A、Bを検索キーにしてAとBのセンサ仕様を部品情報データベース110から検索する。
In S230, the sensor specifications of lot numbers A and B are searched from the sensor part ID.
Specifically, the sensor specifications of A and B are searched from the component information database 110 using the sensor component ID and lot numbers A and B acquired in S225 as search keys.
 S235ではS230の検索結果からロットAとBの間にセンサ仕様の差異がないか判定する。具体的には部品情報データベース110の内部構造を示す図10の部品型番1010、ダイナミックレンジ1015、取り付け位置1020がロットAとBで差異がないか判定する。違いがあればS240に移る。そうでなければ本処理を終了する。 In S235, it is determined whether there is a difference in sensor specifications between lots A and B from the search result in S230. Specifically, it is determined whether there is a difference between the lot A and B in the part model number 1010, the dynamic range 1015, and the mounting position 1020 in FIG. If there is a difference, go to S240. Otherwise, this process ends.
 S240ではロットAとBのセンサ部品の仕様の違いを誤報・失報の原因として分析者に提示する。図19は提示する画面の例であり、センサ型番が違いを誤報の原因として提示している。
以上で本発明で行う処理は完了する。
In S240, the difference in the specifications of the sensor parts of lots A and B is presented to the analyst as the cause of the false alarm or misreport. FIG. 19 shows an example of a screen to be presented, in which a difference in sensor model number is presented as a cause of false alarm.
This completes the processing performed in the present invention.
100…センサデータデータベース
105…診断モデルデータベース
110…部品情報データベース
115…異常期間履歴データベース
120…機器情報データベース
125…診断結果データベース
100 ... Sensor data database
105 ... Diagnosis model database
110… Part information database
115… Abnormal period history database
120… Device information database
125 ... Diagnosis result database

Claims (8)

  1. 機械のセンサデータから異常診断を行う診断部と、
    該診断部の診断結果を機械の異常履歴と照らし合わせて誤報・失報を検知する誤報・失報検知部と、
    誤報・失報数が多い個体と少ない個体で仕様が異なるセンサを分析者に提示するセンサ差異検知部を備えたことを特徴とする異常診断分析装置
    A diagnostic unit for performing abnormality diagnosis from the sensor data of the machine;
    An error / missing alarm detection unit that detects an error / missing error by comparing the diagnosis result of the diagnosis unit with an abnormality history of the machine;
    An abnormality diagnosis analyzer characterized by having a sensor difference detection unit that presents to the analyst sensors with different specifications between individuals with a large number of false alarms and missed reports
  2. 請求項1において、
    診断結果を機械の異常履歴と照らし合わせて誤報・失報を、機械の製造ロットなどのグループで集計する誤報・失報差異判定部を備えることを特徴とする異常診断分析装置。
    In claim 1,
    An abnormality diagnosis / analysis apparatus comprising a misreport / miss report difference determination unit that counts misreports / misses in a group such as a machine manufacturing lot by comparing diagnosis results with a machine malfunction history.
  3. 請求項2において、
    前記センサ差異検知部は、誤報およびあるいは失報の件数が多いロットと少ないロットのセンサの情報を検索し、ロット間でのセンサ仕様を確認することを特徴とする異常診断分析装置。
    In claim 2,
    The abnormality detection analysis apparatus characterized in that the sensor difference detection unit searches the sensor information of lots with a large number and a small number of false and / or misreports, and confirms sensor specifications between lots.
  4. 請求項1において、
    機械に取り付けられたセンサで計測したデータを、計測時刻とともに記憶したセンサデータデータベースを備え、
    前記診断部は前記センサデータベースから診断を行うことを特徴とする異常診断分析装置。
    In claim 1,
    It is equipped with a sensor data database that stores data measured by the sensors attached to the machine along with the measurement time,
    The abnormality diagnosis analyzer according to claim 1, wherein the diagnosis unit makes a diagnosis from the sensor database.
  5. 請求項1において、
    診断に用いるセンサと、診断の処理内容を記憶した診断モデルデータベースを備えたことを特徴とする異常診断分析装置。
    In claim 1,
    An abnormality diagnosis analysis apparatus comprising a sensor used for diagnosis and a diagnosis model database storing diagnosis processing contents.
  6. 請求項1において、
    前記機器が有するセンサを含む部品の情報を記憶している部品情報データベースを備えたことを特徴とする異常診断分析装置。
    In claim 1,
    An abnormality diagnosis and analysis apparatus comprising a component information database that stores information on components including sensors included in the device.
  7. 請求項1において、
    前記機械の保守履歴、クレーム情報に基づき異常の期間を記憶した異常期間履歴データベースを備えたことを特徴とする異常診断分析装置。
    In claim 1,
    An abnormality diagnosis / analysis apparatus comprising an abnormality period history database storing an abnormality period based on maintenance history and claim information of the machine.
  8. 請求項1において、
    前記診断部で異常と診断された期間を記憶する診断結果データベースを備えたことを特徴とする異常診断分析装置。
    In claim 1,
    An abnormality diagnosis analyzer comprising a diagnosis result database for storing a period during which an abnormality is diagnosed by the diagnosis unit.
PCT/JP2016/051065 2015-01-19 2016-01-15 Anomaly diagnosis/analysis apparatus WO2016117453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-007359 2015-01-19
JP2015007359A JP6430263B2 (en) 2015-01-19 2015-01-19 Abnormality diagnosis analyzer

Publications (1)

Publication Number Publication Date
WO2016117453A1 true WO2016117453A1 (en) 2016-07-28

Family

ID=56417000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051065 WO2016117453A1 (en) 2015-01-19 2016-01-15 Anomaly diagnosis/analysis apparatus

Country Status (2)

Country Link
JP (1) JP6430263B2 (en)
WO (1) WO2016117453A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017101545A1 (en) * 2017-01-26 2018-07-26 Infineon Technologies Ag A sensor control unit, a sensor signal receiver, an incremental magnetic speed sensor module, a sensor control unit method, a sensor signal receiver method, and a computer program
JP6315528B1 (en) * 2017-08-18 2018-04-25 ブレインズテクノロジー株式会社 Anomaly detection model construction device, anomaly detection model construction method and program
JP2019159841A (en) * 2018-03-13 2019-09-19 住友重機械工業株式会社 Construction machinery and construction machinery management device
US11931904B2 (en) * 2018-05-01 2024-03-19 Nissan Motor Co., Ltd. Abnormality determination apparatus, abnormality determination system, and abnormality determination method
JP7313828B2 (en) * 2019-01-22 2023-07-25 キヤノン株式会社 Information processing device, information processing method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110708A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Method and device for fault diagnosis
JP2002342861A (en) * 2001-05-17 2002-11-29 Omron Corp Remote monitoring system, method and program, and recording medium recording the same and readable by computer
JP2012073756A (en) * 2010-09-28 2012-04-12 Toshiba Corp Abnormality diagnosis filter generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066165B2 (en) * 2009-12-07 2012-11-07 株式会社日立製作所 Inspection data management device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110708A (en) * 1993-10-13 1995-04-25 Hitachi Ltd Method and device for fault diagnosis
JP2002342861A (en) * 2001-05-17 2002-11-29 Omron Corp Remote monitoring system, method and program, and recording medium recording the same and readable by computer
JP2012073756A (en) * 2010-09-28 2012-04-12 Toshiba Corp Abnormality diagnosis filter generator

Also Published As

Publication number Publication date
JP2016133944A (en) 2016-07-25
JP6430263B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2016117453A1 (en) Anomaly diagnosis/analysis apparatus
CN111542846B (en) Fault Prediction System and Fault Prediction Method
Barsalou Root cause analysis: A step-by-step guide to using the right tool at the right time
US9091588B2 (en) System and method of mechanical fault detection based on signature detection
CN102375452B (en) Event-driven data mining method for improving fault code settings and isolating faults
CN106104496A (en) The abnormality detection not being subjected to supervision for arbitrary sequence
JP5820072B2 (en) Similar failure case search device
JP2013140135A (en) Abnormality detection apparatus for periodic driving system, processing apparatus including periodic driving system, abnormality detection method for periodic driving system, and computer program
JP6200833B2 (en) Diagnostic equipment for plant and control equipment
CN108363952A (en) Diagnostic device
Zhang et al. Economic design of time-between-events control chart system
CN106383760A (en) Computer fault management method and apparatus
JP2012008030A (en) Rotator bearing diagnostic device
JP5487060B2 (en) Failure cause diagnosis method and failure cause diagnosis device
CN107391335B (en) Method and equipment for checking health state of cluster
CA3127100C (en) Anomaly detection for predictive maintenance and deriving outcomes and workflows based on data quality
EP3862829B1 (en) State estimation device, system, and manufacturing method
CN110068435A (en) Vibration analysis system and method
Atzmueller et al. Anomaly detection and structural analysis in industrial production environments
CN109839900A (en) Numerical control device
JP6802122B2 (en) Cause estimation method and program
KR20200007083A (en) Quality Analysis Device and Quality Analysis Method
JP6247777B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2007226639A (en) Multivariate data discrimination device
JP2009238190A (en) Maintenance plan support system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740060

Country of ref document: EP

Kind code of ref document: A1